WorldWideScience

Sample records for directionally solidified binary

  1. Directionally Solidified Multifunctional Ceramics

    Science.gov (United States)

    2006-12-01

    Vidrio , Vol. 44 [5] (2005) pp 347 - 352. 9. F. W. Dynys and A. Sayir, "Self Assemble Silicide Architectures by Directional Solidification," Journal...Sociedad Espanola de Ceramica y Vidrio , Vol. 43 [4] (2004) pp 753 - 758. 21. A. Sayir and F. S. Lowery, "Combustion-Resistance of Silicon-Based Ceramics...Espafiola de Cerdmica y Vidrio , Vol. 43 [3], 2004. ISSN-0366-3175-BSCVB9. 14 37. P. Berger, A. Sayir and M. H. Berger, "Nuclear Microprobe using Elastic

  2. Chemical leaching of rapidly solidified Al-Si binary alloys

    International Nuclear Information System (INIS)

    Yamauchi, I.; Takahara, K.; Tanaka, T.; Matsubara, K.

    2005-01-01

    Various particulate precursors of Al 100-x Si x (x = 5-12) alloys were prepared by a rapid solidification process. The rapidly solidified structures of the precursors were examined by XRD, DSC and SEM. Most of Si atoms were dissolved into the α-Al(fcc) phase by rapid solidification though the solubility of Si in the α-Al phase is negligibly small in conventional solidification. In the case of 5 at.% Si alloy, a single α-Al phase was only formed. The amount of the primary Si phase increased with increase of Si content for the alloys beyond 8 at.% Si. Rapid solidification was effective to form super-saturated α-Al precursors. These precursors were chemically leached by using a basic solution (NaOH) or a hydrochloric acid (HCl) solution. All Al atoms were removed by a HCl solution as well as a NaOH solution. Granules of the Si phase were newly formed during leaching. The specific surface area was about 50-70 m 2 /g independent of Si content. The leaching behavior in both solutions was slightly different. In the case of a NaOH solution, the shape of the precursor often degenerated after leaching. On the other hand, it was retained after leaching by a HCl solution. Fine Si particles precipitated in the α-Al phase by annealing of as-rapidly solidified precursors at 773 K for 7.2 x 10 3 s. In this case, it was difficult to obtain any products by NaOH leaching, but a few of Si particles were obtained by HCl leaching. Precipitated Si particles were dissolved by the NaOH solution. The X-ray diffraction patterns of leached specimens showed broad lines of the Si phase and its lattice constant was slightly larger than that of the pure Si phase. The microstructures of the leached specimens were examined by transmission electron microscopy. It showed that the leached specimens had a skeletal structure composed of slightly elongated particles of the Si phase and quite fine pores. The particle size was about 30-50 nm. It was of comparable order with that evaluated by Scherer

  3. Directionally solidified Al2O3/GAP eutectic ceramics by micro-pulling-down method

    Science.gov (United States)

    Cao, Xue; Su, Haijun; Guo, Fengwei; Tan, Xi; Cao, Lamei

    2016-11-01

    We reported a novel route to prepare directionally solidified (DS) Al2O3/GAP eutectic ceramics by micro-pulling-down (μ-PD) method. The eutectic crystallizations, microstructure characters and evolutions, and their mechanical properties were investigated in detail. The results showed that the Al2O3/GAP eutectic composites can be successfully fabricated through μ-PD method, possessed smooth surface, full density and large crystal size (the maximal size: φ90 mm × 20 mm). At the process of Diameter, the as-solidified Al2O3/GAP eutectic presented a combination of "Chinese script" and elongated colony microstructure with complex regular structure. Inside the colonies, the rod-type or lamellar-type eutectic microstructures with ultra-fine GAP surrounded by the Al2O3 matrix were observed. At an appropriate solidificational rate, the binary eutectic exhibited a typical DS irregular eutectic structure of "chinese script" consisting of interpenetrating network of α-Al2O3 and GAP phases without any other phases. Therefore, the interphase spacing was refined to 1-2 µm and the irregular microstructure led to an outstanding vickers hardness of 17.04 GPa and fracture toughness of 6.3 MPa × m1/2 at room temperature.

  4. Welding and Weldability of Directionally Solidified Single Crystal Nickel-Base Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Vitek, J M; David, S A; Reed, R W; Burke, M A; Fitzgerald, T J

    1997-09-01

    Nickel-base superalloys are used extensively in high-temperature service applications, and in particular, in components of turbine engines. To improve high-temperature creep properties, these alloys are often used in the directionally-solidified or single-crystal form. The objective of this CRADA project was to investigate the weldability of both experimental and commercial nickel-base superalloys in polycrystalline, directionally-solidified, and single-crystal forms.

  5. Nial and Nial-Based Composites Directionally Solidified by a Containerless Zone Process. Ph.D. Thesis

    Science.gov (United States)

    Joslin, Steven M.

    1995-01-01

    A containerless electromagnetically levitated zone (CELZ) process has been used to directionally solidify NiAl and NiAl-based composites. The CELZ processing results in single crystal NiAl (HP-NiAl) having higher purity than commercially pure NiAl grown by a modified Bridgman process (CP-NiAl). The mechanical properties, specifically fracture toughness and creep strength, of the HP-NiAl are superior to binary CP-NiAl and are used as a base-line for comparison with the composite materials subsequently studied. Two-phase composite materials (NiAl-based eutectic alloys) show improvement in room temperature fracture toughness and 1200 to 1400 K creep strength over that of binary HP-NiAl. Metallic phase reinforcements produce the greatest improvement in fracture toughness, while intermetallic reinforcement produces the largest improvement in high temperature strength. Three-phase eutectic alloys and composite materials were identified and directionally solidified with the intent to combine the improvements observed in the two-phase alloys into one alloy. The room temperature fracture toughness and high temperature strength (in air) serve as the basis for comparison between all of the alloys. Finally, the composite materials are discussed in terms of dominant fracture mechanism observed by fractography.

  6. Comparison of Directionally Solidified Samples Solidified Terrestrially and Aboard the International Space Station

    Science.gov (United States)

    Angart, S.; Lauer, M.; Tewari, S. N.; Grugel, R. N.; Poirier, D. R.

    2014-01-01

    This article reports research that has been carried out under the aegis of NASA as part of a collaboration between ESA and NASA for solidification experiments on the International Space Station (ISS). The focus has been on the effect of convection on the microstructural evolution and macrosegregation in hypoeutectic Al-Si alloys during directional solidification (DS). Terrestrial DS-experiments have been carried out at Cleveland State University (CSU) and under microgravity on the International Space Station (ISS). The thermal processing-history of the experiments is well defined for both the terrestrially processed samples and the ISS-processed samples. As of this writing, two dendritic metrics was measured: primary dendrite arm spacings and primary dendrite trunk diameters. We have observed that these dendrite-metrics of two samples grown in the microgravity environment show good agreements with models based on diffusion controlled growth and diffusion controlled ripening, respectively. The gravity-driven convection (i.e., thermosolutal convection) in terrestrially grown samples has the effect of decreasing the primary dendrite arm spacings and causes macrosegregation. Dendrite trunk diameters also show differences between the earth- and space-grown samples. In order to process DS-samples aboard the ISS, the dendritic seed crystals were partially remelted in a stationary thermal gradient before the DS was carried out. Microstructural changes and macrosegregation effects during this period are described and have modeled.

  7. Evaluating Primary Dendrite Trunk Diameters in Directionally Solidified Al-Si Alloys

    Science.gov (United States)

    Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2014-01-01

    The primary dendrite trunk diameters of Al-Si alloys that were directionally solidified over a range of processing conditions have been measured. These data are analyzed with a model based primarily on an assessment of secondary dendrite arm dissolution in the mushy zone. Good fit with the experimental data is seen and it is suggested that the primary dendrite trunk diameter is a useful metric that correlates well with the actual solidification processing parameters. These results are placed in context with the limited results from the aluminium - 7 wt. % silicon samples directionally solidified aboard the International Space Station as part of the MICAST project.

  8. Primary Dendrite Arm Spacings in Al-7Si Alloy Directionally Solidified on the International Space Station

    Science.gov (United States)

    Angart, Samuel; Lauer, Mark; Poirier, David; Tewari, Surendra; Rajamure, Ravi; Grugel, Richard

    2015-01-01

    Samples from directionally solidified Al- 7 wt. % Si have been analyzed for primary dendrite arm spacing (lambda) and radial macrosegregation. The alloy was directionally solidified (DS) aboard the ISS to determine the effect of mitigating convection on lambda and macrosegregation. Samples from terrestrial DS-experiments thermal histories are discussed for comparison. In some experiments, lambda was measured in microstructures that developed during the transition from one speed to another. To represent DS in the presence of no convection, the Hunt-Lu model was used to represent diffusion controlled growth under steady-state conditions. By sectioning cross-sections throughout the entire length of a solidified sample, lambda was measured and calculated using the model. During steady-state, there was reasonable agreement between the measured and calculated lambda's in the space-grown samples. In terrestrial samples, the differences between measured and calculated lambda's indicated that the dendritic growth was influenced by convection.

  9. Influence of Short-time Oxidation on Corrosion Properties of Directionally Solidified Superalloys with Different Orientations

    Directory of Open Access Journals (Sweden)

    MA Luo-ning

    2016-07-01

    Full Text Available In order to investigate the corrosion performance on intersecting and longitudinal surfaces of unoxidized and oxidized directionally solidified superalloys, Ni-base directionally solidified superalloy DZ125 and Co-base directionally solidified superalloy DZ40M were selected. Oxidation behavior on both alloys with different orientations was investigated at 1050℃ at different times, simulating the oxidation process of vanes or blades in service; subsequent electrochemical performance in 3.5%NaCl aqueous solution was studied on two orientations of unoxidized and oxidized alloys, simulating the corrosion process of superalloy during downtime. The results show that grain boundaries and sub-boundaries of directionally solidified superalloys are susceptible to corrosion and thus longitudinal surface with lower area fraction of grain boundaries has higher corrosion resistance. Compared to intersecting surface of alloys, the structure of grain boundaries of longitudinal surface is less conducive to diffusion and thus the oxidation rate on longitudinal surface is lower. Formation of oxide layers on alloys after short-time oxidation provides protective effect and enhances the corrosion resistance.

  10. Development of high temperature fasteners using directionally solidified eutectic alloys

    Science.gov (United States)

    George, F. D.

    1972-01-01

    The suitability of the eutectics for high temperature fasteners was investigated. Material properties were determined as a function of temperature, and included shear parallel and perpendicular to the growth direction and torsion parallel to it. Techniques for fabricating typical fastener shapes included grinding, creep forming, and direct casting. Both lamellar Ni3Al-Ni3Nb and fibrous (Co,Cr,Al)-(Cr,Co)7C3 alloys showed promise as candidate materials for high temperature fastener applications. A brief evaluation of the performance of the best fabricated fastener design was made.

  11. Microstructure of directionally solidified Ti-Fe eutectic alloy with low interstitial and high mechanical strength

    Science.gov (United States)

    Contieri, R. J.; Lopes, E. S. N.; Taquire de La Cruz, M.; Costa, A. M.; Afonso, C. R. M.; Caram, R.

    2011-10-01

    The performance of Ti alloys can be considerably enhanced by combining Ti and other elements, causing an eutectic transformation and thereby producing composites in situ from the liquid phase. This paper reports on the processing and characterization of a directionally solidified Ti-Fe eutectic alloy. Directional solidification at different growth rates was carried out in a setup that employs a water-cooled copper crucible combined with a voltaic electric arc moving through the sample. The results obtained show that a regular fiber-like eutectic structure was produced and the interphase spacing was found to be a function of the growth rate. Mechanical properties were measured using compression, microindentation and nanoindentation tests to determine the Vickers hardness, compressive strength and elastic modulus. Directionally solidified eutectic samples presented high values of compressive strength in the range of 1844-3000 MPa and ductility between 21.6 and 25.2%.

  12. Modeling Macrosegregation in Directionally Solidified Aluminum Alloys under Gravitational and Microgravitational Conditions.

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, Mark A.; Poirier, David R.; Erdmann, Robert G.; Tewari, Surendra N.; Madison, Jonathan D

    2014-09-01

    This report covers the modeling of seven directionally solidified samples, five under normal gravitational conditions and two in microgravity. A model is presented to predict macrosegregation during the melting phases of samples solidified under microgravitational conditions. The results of this model are compared against two samples processed in microgravity and good agreement is found. A second model is presented that captures thermosolutal convection during directional solidification. Results for this model are compared across several experiments and quantitative comparisons are made between the model and the experimentally obtained radial macrosegregation profiles with good agreement being found. Changes in cross section were present in some samples and micrographs of these are qualitatively compared with the results of the simulations. It is found that macrosegregation patterns can be affected by changing the mold material.

  13. Effect of tensile mean stress on fatigue behavior of single-crystal and directionally solidified superalloys

    Science.gov (United States)

    Kalluri, Sreeramesh; Mcgaw, Michael A.

    1990-01-01

    Two nickel base superalloys, single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf, were studied in view of the potential usage of the former and usage of the latter as blade materials for the turbomachinery of the space shuttle main engine. The baseline zero mean stress (ZMS) fatigue life (FL) behavior of these superalloys was established, and then the effect of tensile mean stress (TMS) on their FL behavior was characterized. At room temperature these superalloys have lower ductilities and higher strengths than most polycrystalline engineering alloys. The cycle stress-strain response was thus nominally elastic in most of the fatigue tests. Therefore, a stress range based FL prediction approach was used to characterize both the ZMS and TMS fatigue data. In the past, several researchers have developed methods to account for the detrimental effect of tensile mean stress on the FL for polycrystalline engineering alloys. However, the applicability of these methods to single crystal and directionally solidified superalloys has not been established. In this study, these methods were applied to characterize the TMS fatigue data of single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf and were found to be unsatisfactory. Therefore, a method of accounting for the TMS effect on FL, that is based on a technique proposed by Heidmann and Manson was developed to characterize the TMS fatigue data of these superalloys. Details of this method and its relationship to the conventionally used mean stress methods in FL prediction are discussed.

  14. The influence of interfacial energies and gravitational levels on the directionally solidified structures in hypermonotectic alloys

    Science.gov (United States)

    Andrews, J. B.; Curreri, P. A.; Sandlin, A. C.

    1988-01-01

    Various Cu-Pb-Al alloys were directionally solidified under 1-g conditions and alternating high-g/low-g conditions (achieved using NSAS's KC-135 aircraft) as a means of studying the influence of interfacial energies and gravitational levels on the resulting microstructures. Directional solidification of low Al content alloys was found to result in samples with coarser more irregular microstructures than in alloys with high Al contents under all the gravity conditions considered. Structures are correlated with interfacial energies, growth rates, and gravitational levels.

  15. Cryogenic EBSD reveals structure of directionally solidified ice–polymer composite

    International Nuclear Information System (INIS)

    Donius, Amalie E.; Obbard, Rachel W.; Burger, Joan N.; Hunger, Philipp M.; Baker, Ian; Doherty, Roger D.; Wegst, Ulrike G.K.

    2014-01-01

    Despite considerable research efforts on directionally solidified or freeze-cast materials in recent years, little fundamental knowledge has been gained that links model with experiment. In this contribution, the cryogenic characterization of directionally solidified polymer solutions illustrates, how powerful cryo-scanning electron microscopy combined with electron backscatter diffraction is for the structural characterization of ice–polymer composite materials. Under controlled sublimation, the freeze-cast polymer scaffold structure is revealed and imaged with secondary electrons. Electron backscatter diffraction fabric analysis shows that the ice crystals, which template the polymer scaffold and create the lamellar structure, have a-axes oriented parallel to the direction of solidification and the c-axes perpendicular to it. These results indicate the great potential of both cryo-scanning electron microscopy and cryo-electron backscatter diffraction in gaining fundamental knowledge of structure–property–processing correlations. - Highlights: • Cryo-SEM of freeze-cast polymer solution reveals an ice-templated structure. • Cryo-EBSD reveals the ice crystal a-axis to parallel the solidification direction. • The honeycomb-like polymer phase favors columnar ridges only on one side. • Combining cryo-SEM with EBSD links solidification theory with experiment

  16. Cryogenic EBSD reveals structure of directionally solidified ice–polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Donius, Amalie E., E-mail: amalie.donius@gmail.com [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Obbard, Rachel W., E-mail: Rachel.W.Obbard@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Burger, Joan N., E-mail: ridge.of.the.ancients@gmail.com [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Hunger, Philipp M., E-mail: philipp.m.hunger@gmail.com [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Baker, Ian, E-mail: Ian.Baker@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Doherty, Roger D., E-mail: dohertrd@drexel.edu [Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Wegst, Ulrike G.K., E-mail: ulrike.wegst@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States)

    2014-07-01

    Despite considerable research efforts on directionally solidified or freeze-cast materials in recent years, little fundamental knowledge has been gained that links model with experiment. In this contribution, the cryogenic characterization of directionally solidified polymer solutions illustrates, how powerful cryo-scanning electron microscopy combined with electron backscatter diffraction is for the structural characterization of ice–polymer composite materials. Under controlled sublimation, the freeze-cast polymer scaffold structure is revealed and imaged with secondary electrons. Electron backscatter diffraction fabric analysis shows that the ice crystals, which template the polymer scaffold and create the lamellar structure, have a-axes oriented parallel to the direction of solidification and the c-axes perpendicular to it. These results indicate the great potential of both cryo-scanning electron microscopy and cryo-electron backscatter diffraction in gaining fundamental knowledge of structure–property–processing correlations. - Highlights: • Cryo-SEM of freeze-cast polymer solution reveals an ice-templated structure. • Cryo-EBSD reveals the ice crystal a-axis to parallel the solidification direction. • The honeycomb-like polymer phase favors columnar ridges only on one side. • Combining cryo-SEM with EBSD links solidification theory with experiment.

  17. Directionally Solidified Aluminum - 7 wt% Silicon Alloys: Comparison of Earth and International Space Station Processed Samples

    Science.gov (United States)

    Grugel, Richard N,; Tewari, Surendra; Rajamure, R. S.; Erdman, Robert; Poirier, David

    2012-01-01

    Primary dendrite arm spacings of Al-7 wt% Si alloy directionally solidified in low gravity environment of space (MICAST-6 and MICAST-7: Thermal gradient approx. 19 to 26 K/cm, Growth speeds varying from 5 to 50 microns/s show good agreement with the Hunt-Lu model. Primary dendrite trunk diameters of the ISS processed samples show a good fit with a simple analytical model based on Kirkwood s approach, proposed here. Natural convection, a) decreases primary dendrite arm spacing. b) appears to increase primary dendrite trunk diameter.

  18. Experimental study of directionally solidified ferromagnetic shape memory alloy under multi-field coupling

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuping, E-mail: zhuyuping@126.com [Institute of Geophysics, China Earthquake Administration, Beijing 100081 (China); Chen, Tao; Teng, Yao [Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013 (China); Liu, Bingfei [Airport College, Civil Aviation University of China, Tianjin 300300 (China); Xue, Lijun [Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2016-11-01

    Directionally solidified, polycrystalline Ni–Mn–Ga is studied in this paper. The polycrystalline Ni–Mn–Ga samples were cut at different angles to solidification direction. The magnetic field induced strain under constant stress and the temperature-induced strain under constant magnetic field during the loading–unloading cycle were measured. The experimental results show that the mechanical behavior during the loading–unloading cycle of the material is nonlinear and anisotropic. Based on the experimental results, the effects of multi-field coupling factors, such as stress, magnetic field, temperature and cutting angle on the mechanical behaviors were analyzed. Some useful conclusions were obtained, which will provide guidance for practical applications. - Highlights: • The magnetic-induced strains in different directions are tested. • The temperature-induced strains in different directions are tested. • The effects of coupling factors on directional solidification samples are studied.

  19. Freckle Defect Formation near the Casting Interfaces of Directionally Solidified Superalloys.

    Science.gov (United States)

    Hong, Jianping; Ma, Dexin; Wang, Jun; Wang, Fu; Sun, Baode; Dong, Anping; Li, Fei; Bührig-Polaczek, Andreas

    2016-11-16

    Freckle defects usually appear on the surface of castings and industrial ingots during the directional solidification process and most of them are located near the interface between the shell mold and superalloys. Ceramic cores create more interfaces in the directionally solidified (DS) and single crystal (SX) hollow turbine blades. In order to investigate the location of freckle occurrence in superalloys, superalloy CM247 LC was directionally solidified in an industrial-sized Bridgman furnace. Instead of ceramic cores, Alumina tubes were used inside of the casting specimens. It was found that freckles occur not only on the casting external surfaces, but also appear near the internal interfaces between the ceramic core and superalloys. Meanwhile, the size, initial position, and area of freckle were investigated in various diameters of the specimens. The initial position of the freckle chain reduces when the diameter of the rods increase. Freckle area follows a linear relationship in various diameters and the average freckle fraction is 1.1% of cross sectional area of casting specimens. The flow of liquid metal near the interfaces was stronger than that in the interdendritic region in the mushy zone, and explained why freckle tends to occur on the outer or inner surfaces of castings. This new phenomenon suggests that freckles are more likely to occur on the outer or inner surfaces of the hollow turbine blades.

  20. Freckle Defect Formation near the Casting Interfaces of Directionally Solidified Superalloys

    Directory of Open Access Journals (Sweden)

    Jianping Hong

    2016-11-01

    Full Text Available Freckle defects usually appear on the surface of castings and industrial ingots during the directional solidification process and most of them are located near the interface between the shell mold and superalloys. Ceramic cores create more interfaces in the directionally solidified (DS and single crystal (SX hollow turbine blades. In order to investigate the location of freckle occurrence in superalloys, superalloy CM247 LC was directionally solidified in an industrial-sized Bridgman furnace. Instead of ceramic cores, Alumina tubes were used inside of the casting specimens. It was found that freckles occur not only on the casting external surfaces, but also appear near the internal interfaces between the ceramic core and superalloys. Meanwhile, the size, initial position, and area of freckle were investigated in various diameters of the specimens. The initial position of the freckle chain reduces when the diameter of the rods increase. Freckle area follows a linear relationship in various diameters and the average freckle fraction is 1.1% of cross sectional area of casting specimens. The flow of liquid metal near the interfaces was stronger than that in the interdendritic region in the mushy zone, and explained why freckle tends to occur on the outer or inner surfaces of castings. This new phenomenon suggests that freckles are more likely to occur on the outer or inner surfaces of the hollow turbine blades.

  1. Microstructure and property of directionally solidified Ni-Si hypereutectic alloy

    Science.gov (United States)

    Cui, Chunjuan; Tian, Lulu; Zhang, Jun; Yu, Shengnan; Liu, Lin; Fu, Hengzhi

    2016-03-01

    This paper investigates the influence of the solidification rate on the microstructure, solid/liquid interface, and micro-hardness of the directionally solidified Ni-Si hypereutectic alloy. Microstructure of the Ni-Si hypereutectic alloy is refined with the increase of the solidification rate. The Ni-Si hypereutectic composite is mainly composed of α-Ni matrix, Ni-Ni3Si eutectic phase, and metastable Ni31Si12 phase. The solid/liquid interface always keeps planar interface no matter how high the solidification rate is increased. This is proved by the calculation in terms of M-S interface stability criterion. Moreover, the Ni-Si hypereutectic composites present higher micro-hardness as compared with that of the pure Ni3Si compound. This is caused by the formation of the metastable Ni31Si12 phase and NiSi phase during the directional solidification process.

  2. On oscillatory microstructure during cellular growth of directionally solidified Sn-36at.%Ni peritectic alloy.

    Science.gov (United States)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-04-12

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn-36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure.

  3. Solute redistribution and Rayleigh number in the mushy zone during directional solidifi cation of Inconel 718

    Directory of Open Access Journals (Sweden)

    Wang Ling

    2009-08-01

    Full Text Available The interdendritic segregation along the mushy zone of directionally solidifi ed superalloy Inconel 718 has been measured by scanning electron microscope (SEM and energy dispersion analysis spectrometry (EDAXtechniques and the corresponding liquid composition profile was presented. The liquid density and Rayleigh number (Ra profi les along the mushy zone were calculated as well. It was found that the liquid density difference increased from top to bottom in the mushy zone and there was no density inversion due to the segregation of Nb and Mo. However carbide formation in the freezing range and the preferred angle of the orientated dendrite array could prompt the fl uid fl ow in the mushy zone although there was no liquid density inversion. The largest relative Rayleigh number appeared at 1,326 篊 for Inconel 718 where the fl uid fl ow most easily occurred.

  4. Radial macrosegregation and dendrite clustering in directionally solidified Al-7Si and Al-19Cu alloys

    Science.gov (United States)

    Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2016-05-01

    Hypoeutectic Al-7 wt% Si and Al-19 wt% Cu alloys were directionally solidified upward in a Bridgman furnace through a range of constant growth speeds and thermal gradients. Though processing is thermo-solutally stable, flow initiated by gravity-independent advection at, slightly leading, central dendrites moves rejected solute out ahead and across the advancing interface. Here any lagging dendrites are further suppressed which promotes a curved solid-liquid interface and the eventual dendrite "clustering" seen in transverse sections (dendrite "steepling" in longitudinal orientations) as well as extensive radial macrosegregation. Both aluminum alloys showed considerable macrosegregation at the low growth speeds (10 and 30 μm s-1) but not at higher speed (72 μm s-1). Distribution of the fraction eutectic-constituent on transverse sections was determined in order to quantitatively describe radial macrosegregation. The convective mechanisms leading to dendrite-steepling were elucidated with numerical simulations, and their results compared with the experimental observations.

  5. Effect of Al substitution for Ga on the mechanical properties of directional solidified Fe-Ga alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yangyang; Li, Jiheng; Gao, Xuexu, E-mail: gaox@skl.ustb.edu.cn

    2017-02-01

    Alloys of Fe{sub 82}Ga{sub 18−x}Al{sub x} (x=0, 4.5, 6, 9, 12, 13.5) were prepared by directional solidification technique and exhibited a <001> preferred orientation along the axis of alloy rods. The saturation magnetostriction value of the Fe{sub 82}Ga{sub 13.5}Al{sub 4.5} alloy was 247 ppm under no pre-stress. The tensile properties of alloys of Fe{sub 82}Ga{sub 18−x}Al{sub x} at room temperature were investigated. The results showed that tensile ductility of binary Fe-Ga alloy was significantly improved with Al addition. The fracture elongation of the Fe{sub 82}Ga{sub 18} alloy was only 1.3%, while that of the Fe{sub 82}Ga{sub 9}Al{sub 9} alloy increased up to 16.5%. Addition of Al increased the strength of grain boundary and cleavage, resulting in the enhancement of tensile ductility of the Fe-Ga-Al alloys. Analysis of deformation microstructure showed that a great number of deformation twins formed in the Fe-Ga-Al alloys, which were thought to be the source of serrated yielding in the stress-strain curves. The effect of Al content in the Fe-Ga-Al alloys on tensile ductility was also studied by the analysis of deformation twins. It indicated that the joint effect of slip and twinning was beneficial to obtain the best ductility in the Fe{sub 82}Ga{sub 9}Al{sub 9} alloy. - Highlights: • Tensile ductility of directional solidified Fe-Ga alloys was significantly improved with Al addition. • The fracture elongation of binary Fe{sub 82}Ga{sub 18} alloy was only 1.3% at room temperature. • The fracture elongation of Fe{sub 82}Ga{sub 9}Al{sub 9} alloy was 16.5% at room temperature. • A great number of deformation twins formed in the Fe-Ga-Al alloys during tensile tests at room temperature.

  6. Formation and growth of crystal defects in directionally solidified multicrystalline silicon for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryningen, Birgit

    2008-07-01

    Included in this thesis are five publications and one report. The common theme is characterisation of directionally solidified multicrystalline silicon for solar cells. Material characterisation of solar cell silicon is naturally closely linked to both the casting process and to the solar cell processing: Many of the material properties are determined by the casting process, and the solar cell processing will to some extend determine which properties will influence the solar cell performance. Solar grade silicon (SoG-Si) made by metallurgical refining route and supplied by Elkem Solar was directionally solidified and subsequently characterised, and a simple solar cell process was applied. Except from some metallic co-precipitates in the top of the ingot, no abnormalities were found, and it is suggested that within the limits of the tests performed in this thesis, the casting and the solar cell processing, rather than the assumed higher impurity content, was the limiting factor. It is suggested in this thesis that the main quality problem in multicrystalline silicon wafers is the existence of dislocation clusters covering large wafer areas. The clusters will reduce the effect of gettering and even if gettering could be performed successfully, the clusters will still reduce the minority carrier mobility and hence the solar cell performance. It has further been pointed out that ingots solidified under seemingly equal conditions might have a pronounced difference in minority carrier lifetime. Ingots with low minority carrier lifetime have high dislocation densities. The ingots with the substantially higher lifetime seem all to be dominated by twins. It is also found a link between a higher undercooling and the ingots dominated by twins. It is suggested that the two types of ingots are subject to different nucleation and crystal growth mechanisms: For the ingots dominated by dislocations, which are over represented, the crystal growth is randomly nucleated at the

  7. On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni peritectic alloy

    Science.gov (United States)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-01-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn–36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure. PMID:27066761

  8. High temperature low cycle fatigue behavior of a directionally solidified Ni-base superalloy DZ951

    International Nuclear Information System (INIS)

    Chu Zhaokuang; Yu Jinjiang; Sun Xiaofeng; Guan Hengrong; Hu Zhuangqi

    2008-01-01

    Total strain-controlled low cycle fatigue (LCF) tests were performed at a temperature range from 700 to 900 deg. C in ambient air condition on a directionally solidified Ni-base superalloy DZ951. The fatigue life of DZ951 alloy does not monotonously decrease with increasing temperature, but exhibits a strong dependence on the total strain range. The dislocation characteristics and failed surface observation were evaluated through transmission electron microscopy and scanning electron microscopy. The alloy exhibits cyclic hardening, softening or cyclic stability as a whole, which is dependent on the testing temperature and total strain range. At 700 deg. C, the cyclic plastic deformation process is the main cause of fatigue failure. At 900 deg. C, the failure mostly results from combined fatigue and creep damage under total strain range from 0.6 to 1.2% and the reduction in fatigue life can be taken as the cause of oxidation, creep and cyclic plastic deformation under total strain range of 0.5%

  9. Evaluating Local Primary Dendrite Arm Spacing Characterization Techniques Using Synthetic Directionally Solidified Dendritic Microstructures

    Science.gov (United States)

    Tschopp, Mark A.; Miller, Jonathan D.; Oppedal, Andrew L.; Solanki, Kiran N.

    2015-10-01

    Microstructure characterization continues to play an important bridge to understanding why particular processing routes or parameters affect the properties of materials. This statement certainly holds true in the case of directionally solidified dendritic microstructures, where characterizing the primary dendrite arm spacing is vital to developing the process-structure-property relationships that can lead to the design and optimization of processing routes for defined properties. In this work, four series of simulations were used to examine the capability of a few Voronoi-based techniques to capture local microstructure statistics (primary dendrite arm spacing and coordination number) in controlled (synthetically generated) microstructures. These simulations used both cubic and hexagonal microstructures with varying degrees of disorder (noise) to study the effects of length scale, base microstructure, microstructure variability, and technique parameters on the local PDAS distribution, local coordination number distribution, bulk PDAS, and bulk coordination number. The Voronoi tesselation technique with a polygon-side-length criterion correctly characterized the known synthetic microstructures. By systematically studying the different techniques for quantifying local primary dendrite arm spacings, we have evaluated their capability to capture this important microstructure feature in different dendritic microstructures, which can be an important step for experimentally correlating with both processing and properties in single crystal nickel-based superalloys.

  10. Giant Enhancement of Magnetostrictive Response in Directionally-Solidified Fe83Ga17Erx Compounds

    Directory of Open Access Journals (Sweden)

    Radhika Barua

    2018-06-01

    Full Text Available We report, for the first time, correlations between crystal structure, microstructure and magnetofunctional response in directionally solidified [110]-textured Fe83Ga17Erx (0 < x < 1.2 alloys. The morphology of the doped samples consists of columnar grains, mainly composed of a matrix phase and precipitates of a secondary phase deposited along the grain boundary region. An enhancement of more than ~275% from ~45 to 170 ppm is observed in the saturation magnetostriction value (λs of Fe83Ga17Erx alloys with the introduction of small amounts of Er. Moreover, it was noted that the low field derivative of magnetostriction with respect to an applied magnetic field (i.e., dλs/dHapp for Happ up to 1000 Oe increases by ~230% with Er doping (dλs/dHapp,FeGa= 0.045 ppm/Oe; dλs/dHapp,FeGaEr= 0.15 ppm/Oe. The enhanced magnetostrictive response of the Fe83Ga17Erx alloys is ascribed to an amalgamation of microstructural and electronic factors, namely: (i improved grain orientation and local strain effects due to deposition of Er in the intergranular region; and (ii strong local magnetocrystalline anisotropy, due to the highly anisotropic localized nature of the 4f electronic charge distribution of the Er atom. Overall, this work provides guidelines for further improving galfenol-based materials systems for diverse applications in the power and energy sector.

  11. Crack initiation modeling of a directionally-solidified nickel-base superalloy

    Science.gov (United States)

    Gordon, Ali Page

    Combustion gas turbine components designed for application in electric power generation equipment are subject to periodic replacement as a result of cracking, damage, and mechanical property degeneration that render them unsafe for continued operation. In view of the significant costs associated with inspecting, servicing, and replacing damaged components, there has been much interest in developing models that not only predict service life, but also estimate the evolved microstructural state of the material. This thesis explains manifestations of microstructural damage mechanisms that facilitate fatigue crack nucleation in a newly-developed directionally-solidified (DS) Ni-base superalloy components exposed to elevated temperatures and high stresses. In this study, models were developed and validated for damage and life prediction using DS GTD-111 as the subject material. This material, proprietary to General Electric Energy, has a chemical composition and grain structure designed to withstand creep damage occurring in the first and second stage blades of gas-powered turbines. The service conditions in these components, which generally exceed 600°C, facilitate the onset of one or more damage mechanisms related to fatigue, creep, or environment. The study was divided into an empirical phase, which consisted of experimentally simulating service conditions in fatigue specimens, and a modeling phase, which entailed numerically simulating the stress-strain response of the material. Experiments have been carried out to simulate a variety of thermal, mechanical, and environmental operating conditions endured by longitudinally (L) and transversely (T) oriented DS GTD-111. Both in-phase and out-of-phase thermo-mechanical fatigue tests were conducted. In some cases, tests in extreme environments/temperatures were needed to isolate one or at most two of the mechanisms causing damage. Microstructural examinations were carried out via SEM and optical microscopy. A continuum

  12. Dendritic coarsening of γ' phase in a directionally solidified superalloy during 24,000 h of exposure at 1173 K

    International Nuclear Information System (INIS)

    Li, H.; Wang, L.; Lou, L.H.

    2010-01-01

    Dendritic coarsening of γ' was investigated in a directionally solidified Ni-base superalloy during exposure at 1173 K for 24,000 h. Chemical homogeneity along different directions and residual internal strain in the experimental superalloy were measured by electronic probe microanalysis (EPMA) and electron back-scattered diffraction (EBSD) technique. It was indicated that the gradient of element distribution was anisotropic and the inner strain between dendrite core and interdendritic regions was different even after 24,000 h of exposure at 1173 K, which influenced the kinetics for the dendrite coarsening of γ' phase.

  13. Studies of the Influence of Beam Profile and Cooling Conditions on the Laser Deposition of a Directionally-Solidified Superalloy

    Directory of Open Access Journals (Sweden)

    Shuo Yang

    2018-02-01

    Full Text Available In the laser deposition of single crystal and directionally-solidified superalloys, it is desired to form laser deposits with high volume fractions of columnar grains by suppressing the columnar-to-equiaxed transition efficiently. In this paper, the influence of beam profile (circular and square shapes and cooling conditions (natural cooling and forced cooling on the geometric morphology and microstructure of deposits were experimentally studied in the laser deposition of a directionally-solidified superalloy, IC10, and the mechanisms of influence were revealed through a numerical simulation of the thermal processes during laser deposition. The results show that wider and thinner deposits were obtained with the square laser beam than those with the circular laser beam, regardless of whether natural or forced cooling conditions was used. The heights and contact angles of deposits were notably increased due to the reduced substrate temperatures by the application of forced cooling for both laser beam profiles. Under natural cooling conditions, columnar grains formed epitaxially at both the center and the edges of the deposits with the square laser beam, but only at the center of the deposits with the circular laser beam; under forced cooling conditions, columnar grains formed at both the center and the edges of deposits regardless of the laser beam profile. The high ratios of thermal gradient and solidification velocity in the height direction of the deposits were favorable to forming deposits with higher volume fractions of columnar grains.

  14. Numerical simulation of boundary heat flow effects on directional solidification microstructure of a binary alloy

    Directory of Open Access Journals (Sweden)

    Xue Xiang

    2010-08-01

    Full Text Available The boundary heat flow has important significance for the microstructures of directional solidified binary alloy. Interface evolution of the directional solidified microstructure with different boundary heat flow was discussed. In this study, only one interface was allowed to have heat flow, and Neumann boundary conditions were imposed at the other three interfaces. From the calculated results, it was found that different boundary heat flows will result in different microstructures. When the boundary heat flow equals to 20 W·cm-2, the growth of longitudinal side branches is accelerated and the growth of transverse side branches is restrained, and meanwhile, there is dendritic remelting in the calculation domain. When the boundary heat flow equals to 40 W·cm-2, the growths of the transverse and longitudinal side branches compete with each other, and when the boundary heat flow equals to 100-200 W·cm-2, the growth of transverse side branches dominates absolutely. The temperature field of dendritic growth was analyzed and the relation between boundary heat flow and temperature field was also investigated.

  15. Effect of solidification parameters on mechanical properties of directionally solidified Al-Rich Al-Cu alloys

    Science.gov (United States)

    Çadırlı, Emin

    2013-05-01

    Al(100-x)-Cux alloys (x=3 wt%, 6 wt%, 15 wt%, 24 wt% and 33 wt%) were prepared using metals of 99.99% high purity in vacuum atmosphere. These alloys were directionally solidified under steady-state conditions by using a Bridgman-type directional solidification furnace. Solidification parameters (G, V and ), microstructure parameters (λ1, λ2 and λE) and mechanical properties (HV, σ) of the Al-Cu alloys were measured. Microstructure parameters were expressed as functions of solidification parameters by using a linear regression analysis. The dependency of HV, σ on the cooling rate, microstructure parameters and composition were determined. According to experimental results, the microhardness and ultimate tensile strength of the solidified samples was increased by increasing the cooling rate and Cu content, but decreased with increasing microstructure parameters. The microscopic fracture surfaces of the different samples were observed using scanning electron microscopy. Fractographic analysis of the tensile fracture surfaces showed that the type of fracture significantly changed from ductile to brittle depending on the composition.

  16. Printing low-melting-point alloy ink to directly make a solidified circuit or functional device with a heating pen.

    Science.gov (United States)

    Wang, Lei; Liu, Jing

    2014-12-08

    A new method to directly print out a solidified electronic circuit through low-melting-point metal ink is proposed. A functional pen with heating capability was fabricated. Several typical thermal properties of the alloy ink Bi 35 In 48.6 Sn 16 Zn 0.4 were measured and evaluated. Owing to the specifically selected melting point of the ink, which is slightly higher than room temperature, various electronic devices, graphics or circuits can be manufactured in a short period of time and then rapidly solidified by cooling in the surrounding air. The liquid-solid phase change mechanism of the written lines was experimentally characterized using a scanning electron microscope. In order to determine the matching substrate, wettability between the metal ink Bi 35 In 48.6 Sn 16 Zn 0.4 and several materials, including mica plate and silicone rubber, was investigated. The resistance-temperature curve of a printed resistor indicated its potential as a temperature control switch. Furthermore, the measured reflection coefficient of a printed double-diamond antenna accords well with the simulated result. With unique merits such as no pollution, no requirement for encapsulation and easy recycling, the present printing approach is an important supplement to current printed electronics and has enormous practical value in the future.

  17. Effect of thermal cycling on the microstructure of a directionally solidified Fe, Cr, Al-TaC eutectic alloy

    Science.gov (United States)

    Harf, F. H.; Tewari, S. N.

    1977-01-01

    Cylindrical bars (1.2 cm diameter) of Fe-13.6Cr-3.7Al-9TaC (wt %) eutectic alloy were directionally solidified in a modified Bridgman type furnace at 1 cm/h. The alloy microstructure consisted of aligned TaC fibers imbedded in a bcc Fe-Cr-Al matrix. Specimens of the alloy were thermally cycled from 1100 to 425 C in a burner rig. The effects of 1800 thermal cycles on the microstructure was examined by scanning electron microscopy, revealing a zig-zag shape of TaC fibers aligned parallel to the growth direction. The mechanism of carbide solution and reprecipitation on the (111) easy growth planes, suggested previously to account for the development of irregular serrations in Co-Cr-Ni matrix alloys, is believed to be responsible for these zig-zag surfaces.

  18. Segregation and microstructure evolution in chill cast and directionally solidified Ni-Mn-Sn metamagnetic shape memory alloys

    Science.gov (United States)

    Czaja, P.; Wierzbicka-Miernik, A.; Rogal, Ł.

    2018-06-01

    A multiphase solidification behaviour is confirmed for a range of Ni-rich and Ni-deficient Ni-Mn-Sn induction cast and directionally solidified (Bridgman) alloys. The composition variation is primarily linked to the changing Mn/Sn ratio, whereas the content of Ni remains largely stable. The partitioning coefficients for the Ni50Mn37Sn13 and Ni46Mn41.5Sn12.5 Bridgman alloys were obtained according to the Scheil equation based on the composition distribution along the longitudinal cross section of the ingots. Homogenization heat treatment performed for 72 h at 1220 K turned out sufficient for ensuring chemical uniformity on the macro- and microscale. It is owed to a limited segregation length scale due to slow cooling rates adopted for the directional solidification process.

  19. Application of a Pore Fraction Hot Tearing Model to Directionally Solidified and Direct Chill Cast Aluminum Alloys

    Science.gov (United States)

    Dou, Ruifeng; Phillion, A. B.

    2016-08-01

    Hot tearing susceptibility is commonly assessed using a pressure drop equation in the mushy zone that includes the effects of both tensile deformation perpendicular to the thermal gradient as well as shrinkage feeding. In this study, a Pore Fraction hot tearing model, recently developed by Monroe and Beckermann (JOM 66:1439-1445, 2014), is extended to additionally include the effect of strain rate parallel to the thermal gradient. The deformation and shrinkage pore fractions are obtained on the basis of the dimensionless Niyama criterion and a scaling variable method. First, the model is applied to the binary Al-Cu system under conditions of directional solidification. It is shown that for the same Niyama criterion, a decrease in the cooling rate increases both the deformation and shrinkage pore fractions because of an increase in the time spent in the brittle temperature region. Second, the model is applied to the industrial aluminum alloy AA5182 as part of a finite element simulation of the Direct Chill (DC) casting process. It is shown that an increase in the casting speed during DC casting increases the deformation and shrinkage pore fractions, causing the maximum point of pore fraction to move towards the base of the casting. These results demonstrate that including the strain rate parallel to the thermal gradient significantly improves the predictive quality of hot tearing criteria based on the pressure drop equation.

  20. Comparison of ice particle morphology crushed from ice chunk and directly solidified from droplet

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.H.; Yoon, Y.S.; Bang, S.Y. [Dongguk Univ., Pil-dong, Chung-gu, Seoul (Korea, Republic of). Dept. of Mechanical Engineering

    2008-07-01

    In order to investigate the transition kinetics of ice to hydrate and to produce standard specimens of hydrate pellet from prepared hydrate powders, fine ice beads with uniform diameters must be fabricated. This paper discussed the construction of several experimental setups for the fabrication of fine ice particle generation. The ultrasonic nozzle was used to produce fine mist which solidified near the free surface of liquid nitrogen bath. The shape and population distribution of ice bead diameters was analyzed. The study also compared ice particles produced by crushing. The surface morphology of ice particles produced with a ball mill was also examined. Experimental results were obtained for an ice shaver, ball mill, bowl for grinding medicine, and ultrasonic nozzle. It was concluded that the information generated from the study was useful in estimating the macroscopic flow characteristics such as permeability of bulk powder and in determining mean effective diameter of irregular shaped particles. Future work was also noted as being underway with different experiments for other cases with different operating conditions. 5 refs., 5 figs.

  1. Estimation of the Ideal Binary Mask using Directional Systems

    DEFF Research Database (Denmark)

    Boldt, Jesper; Kjems, Ulrik; Pedersen, Michael Syskind

    2008-01-01

    The ideal binary mask is often seen as a goal for time-frequency masking algorithms trying to increase speech intelligibility, but the required availability of the unmixed signals makes it difficult to calculate the ideal binary mask in any real-life applications. In this paper we derive the theory...... and the requirements to enable calculations of the ideal binary mask using a directional system without the availability of the unmixed signals. The proposed method has a low complexity and is verified using computer simulation in both ideal and non-ideal setups showing promising results....

  2. Effect of a high magnetic field on the microstructures in directionally solidified Zn–Cu peritectic alloys

    International Nuclear Information System (INIS)

    Li, Xi; Gagnoud, Annie; Wang, Jiang; Li, Xiaolong; Fautrelle, Yves; Ren, Zhongming; Lu, Xionggang; Reinhart, Guillaume; Nguyen-Thi, Henri

    2014-01-01

    The effect of an axial high magnetic field on the microstructures in directionally solidified Zn–Cu peritectic alloys was investigated. The experimental results indicated that the magnetic field induced the destabilization of the liquid–solid interface and the formation of a band-like structure. The magnetic field also caused the disruption of the columnar η-Zn and ε-Zn 5 Cu dendrites. As the applied magnetic field increased, the columnar-to-equiaxed transition occurred, and the size of the equiaxed grains gradually decreased. The magnetic effects, the magnetic moment and the thermoelectric magnetic effects during the directional solidification of Zn–Cu peritectic alloys under an axial magnetic field were studied. Regular ε-Zn 5 Cu hexagons appeared on the transverse section of the sample fabricated with a high magnetic field (i.e. 16 T). In addition, electron backscatter diffraction analysis revealed that the 〈0 0 0 1〉-crystal direction of the Zn 5 Cu crystal is not only its easy magnetization direction but also its preferred growth direction. The thermoelectric magnetic effects were numerically simulated. The results indicated that a thermoelectric magnetic force acts on the solid near the liquid–solid interface and increases linearly with an increase in the magnetic field. As the effect of the magnetic moment arising from the magnetic crystalline anisotropy is eliminated, the thermoelectric magnetic effect has a substantial effect on the solidification structure. Therefore, the destabilization of the liquid–solid interface and the disruption of the dendrites during directional solidification under the magnetic field are primarily due to the thermoelectric magnetic force acting on the solid

  3. Macrosegregation During Re-melting and Holding of Directionally Solidified Al-7 wt.% Si Alloy in Microgravity

    Science.gov (United States)

    Lauer, M.; Ghods, M.; Angart, S. G.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2017-08-01

    As-cast aluminum-7 wt.% ailicon alloy sample rods were re-melted and directionally solidified on Earth which resulted in uniform dendritically aligned arrays. These arrays were then partially back-melted through an imposed, and constant, temperature gradient in the microgravity environment aboard the International Space Station. The mushy zones that developed in the seed crystals were held for different periods prior to initiating directional solidification. Upon return, examination of the initial mushy-zone regions exhibited significant macrosegregation in terms of a solute-depleted zone that increased as a function of the holding time. The silicon (solute) content in these regions was measured on prepared longitudinal sections by electron microprobe analysis as well as by determining the fraction eutectic on several transverse sections. The silicon content was found to increase up the temperature gradient resulting in significant silicon concentration immediately ahead of the mushy-zone tips. The measured macrosegregation agrees well with calculations from a mathematical model developed to simulate the re-melting and holding process. The results, due to processing in a microgravity environment where buoyancy and thermosolutal convection are minimized, serve as benchmark solidification data.

  4. Effect of growth anisotropy on the morphology and property of directionally solidified RE123

    International Nuclear Information System (INIS)

    Nakamura, Yuichi; Shibusawa, Akira; Ooishi, Yoshihiro; Misu, Tomohiko; Inada, Ryoji; Oota, Akio

    2005-01-01

    The REBa 2 Cu 3 O y (RE123: RE = Y, Sm, Gd etc.) superconducting current lead is a favorable application due to the high J c properties and low thermal conductivity. Since the RE123 crystal shows the anisotropy in the J c properties as well as the mechanical properties, the ab-plane of the crystal parallel to the growth direction is preferable. The preferential growth direction during directional solidification is determined by the growth anisotropy in the early stage of the growth. In order to get the fundamental information to control the growth orientation, we investigated the growth rates of the Gd123 and Sm123 crystals against the undercooling and the continuous growth condition of Sm123 in directional solidification process. The growth rates of Sm123 and Gd123 were found to be about 5-10 times larger than that of Y123 at the same undercooling. The Sm123 showed the continuous growth structure up to 15 mm/h for fiber samples and up to 10 mm/h for 2 mm circle rods by the zone melting process. These pulling rates for continuous growth are larger than those of Y123 although the difference in growth rates between Sm123 and Y123 is much larger than this difference

  5. Formation of equiaxed crystal structures in directionally solidified Al-Si alloys using Nb-based heterogeneous nuclei

    Science.gov (United States)

    Bolzoni, Leandro; Xia, Mingxu; Babu, Nadendla Hari

    2016-01-01

    The design of chemical compositions containing potent nuclei for the enhancement of heterogeneous nucleation in aluminium, especially cast alloys such as Al-Si alloys, is a matter of importance in order to achieve homogeneous properties in castings with complex geometries. We identified that Al3Nb/NbB2 compounds are effective heterogeneous nuclei and are successfully produced in the form of Al-2Nb-xB (x = 0.5, 1 and 2) master alloys. Our study shows that the inoculation of Al-10Si braze alloy with these compounds effectively promotes the heterogeneous nucleation of primary α-Al crystals and reduces the undercooling needed for solidification to take place. Moreover, we present evidences that these Nb-based compounds prevent the growth of columnar crystals and permit to obtain, for the first time, fine and equiaxed crystals in directionally solidified Al-10Si braze alloy. As a consequence of the potent heterogeneous particles, the size of the α-Al crystals was found to be less dependent on the processing conditions, especially the thermal gradient. Finally, we also demonstrate that the enhanced nucleation leads to the refinement of secondary phases such as eutectic silicon and primary silicon particles. PMID:28008967

  6. Microstructures and mechanical properties of directionally solidified Ni-25%Si full lamellar in situ composites

    International Nuclear Information System (INIS)

    Zhang, Binggang; Li, Xiaopeng; Wang, Ting; Liu, Zheng

    2016-01-01

    Directional solidification experiments have been performed on Ni-25 at% Si alloy using electron beam floating zone method. A fully regular eutectic microstructures consisting of Ni, γ-Ni 31 Si 12 and β 1 -Ni 3 Si have been obtained. The influences of the directional solidification rate on the microstructures and properties of the full lamellar structures have been studied. The results show that the relationship between the mean interphase spacing (λ) and withdrawal rate (v) meets λ=29.9v −0.65 . The hardness increases with the increasing of growth rate (v) and decreasing of the interlamellar spacing (λ) which meets the relationship of H V =445.2v 0.14 and H V =910λ −0.21 . The maximum compressive strength, 2576 MPa, for DS samples is obtained by 10 mm/h. The average fracture toughness value found for 5 mm/h, 7 mm/h, 10 mm/h is 28.3 MPa m 1/2 , 29.1 MPa m 1/2 and 35.9 MPa m 1/2 , respectively. The crack bridging and crack deflection/interface debonding are the main toughening mechanism of Ni-25 at% Si with full lamellar structures.

  7. The preferential orientation and lattice misfit of the directionally solidified Fe-Al-Ta eutectic composite

    Science.gov (United States)

    Cui, Chunjuan; Wang, Pei; Yang, Meng; Wen, Yagang; Ren, Chiqiang; Wang, Songyuan

    2018-01-01

    Fe-Al intermetallic compound has been paid more attentions recently in many fields such as aeronautic, aerospace, automobile, energy and chemical engineering, and so on. In this paper Fe-Al-Ta eutectic was prepared by a modified Bridgman directional solidification technique, and it is found that microstructure of the Fe-Al-Ta eutectic alloy transforms from the broken-lamellar eutectic to cellular eutectic with the increase of the solidification rate. In the cellular eutectic structure, the fibers are parallel to each other within the same grain, but some fibers are deviated from the original orientation at the grain boundaries. To study the crystallographic orientation relationship (OR) between the two phases, the preferential orientation of the Fe-Al-Ta eutectic alloy at the different solidification rates was studied by Selected Area Electron Diffraction (SAED). Moreover, the lattice misfit between Fe2Ta(Al) Laves phase and Fe(Al,Ta) matrix phase was calculated.

  8. Microstructure and Tensile/Corrosion Properties Relationships of Directionally Solidified Al-Cu-Ni Alloys

    Science.gov (United States)

    Rodrigues, Adilson V.; Lima, Thiago S.; Vida, Talita A.; Brito, Crystopher; Garcia, Amauri; Cheung, Noé

    2018-03-01

    Al-Cu-Ni alloys are of scientific and technological interest due to high strength/high temperature applications, based on the reinforcement originated from the interaction between the Al-rich phase and intermetallic composites. The nature, morphology, size, volume fraction and dispersion of IMCs particles throughout the Al-rich matrix are important factors determining the resulting mechanical and chemical properties. The present work aims to evaluate the effect of the addition of 1wt%Ni into Al-5wt%Cu and Al-15wt%Cu alloys on the solidification rate, macrosegregation, microstructure features and the interrelations of such characteristics on tensile and corrosion properties. A directional solidification technique is used permitting a wide range of microstructural scales to be examined. Experimental growth laws relating the primary and secondary dendritic spacings to growth rate and solidification cooling rate are proposed, and Hall-Petch type equations are derived relating the ultimate tensile strength and elongation to the primary dendritic spacing. Considering a compromise between ultimate tensile strength and corrosion resistance of the examined alloys samples from both alloys castings it is shown that the samples having more refined microstructures are associated with the highest values of such properties.

  9. Pore structure and mechanical properties of directionally solidified porous aluminum alloys

    Directory of Open Access Journals (Sweden)

    Komissarchuk Olga

    2014-01-01

    Full Text Available Porous aluminum alloys produced by the metal-gas eutectic method or GASAR process need to be performed under a certain pressure of hydrogen, and to carry over melt to a tailor-made apparatus that ensures directional solidification. Hydrogen is driven out of the melt, and then the quasi-cylindrical pores normal to the solidification front are usually formed. In the research, the effects of processing parameters (saturation pressure, solidification pressure, temperature, and holding time on the pore structure and porosity of porous aluminum alloys were analyzed. The mechanical properties of Al-Mg alloys were studied by the compressive tests, and the advantages of the porous structure were indicated. By using the GASAR method, pure aluminum, Al-3wt.%Mg, Al-6wt.%Mg and Al-35wt.%Mg alloys with oriented pores have been successfully produced under processing conditions of varying gas pressure, and the relationship between the final pore structure and the solidification pressure, as well as the influences of Mg quantity on the pore size, porosity and mechanical properties of Al-Mg alloy were investigated. The results show that a higher pressure of solidification tends to yield smaller pores in aluminum and its alloys. In the case of Al-Mg alloys, it was proved that with the increasing of Mg amount, the mechanical properties of the alloys sharply deteriorate. However, since Al-3%Mg and Al-6wt.%Mg alloys are ductile metals, their porous samples have greater compressive strength than that of the dense samples due to the existence of pores. It gives the opportunity to use them in industry at the same conditions as dense alloys with savings in weight and material consumption.

  10. Cooling thermal parameters and microstructure features of directionally solidified ternary Sn–Bi–(Cu,Ag) solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Bismarck L., E-mail: bismarck_luiz@yahoo.com.br [Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil); Garcia, Amauri [Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083-860 Campinas, SP (Brazil); Spinelli, José E. [Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil)

    2016-04-15

    Low temperature soldering technology encompasses Sn–Bi based alloys as reference materials for joints since such alloys may be molten at temperatures less than 180 °C. Despite the relatively high strength of these alloys, segregation problems and low ductility are recognized as potential disadvantages. Thus, for low-temperature applications, Bi–Sn eutectic or near-eutectic compositions with or without additions of alloying elements are considered interesting possibilities. In this context, additions of third elements such as Cu and Ag may be an alternative in order to reach sounder solder joints. The length scale of the phases and their proportions are known to be the most important factors affecting the final wear, mechanical and corrosions properties of ternary Sn–Bi–(Cu,Ag) alloys. In spite of this promising outlook, studies emphasizing interrelations of microstructure features and solidification thermal parameters regarding these multicomponent alloys are rare in the literature. In the present investigation Sn–Bi–(Cu,Ag) alloys were directionally solidified (DS) under transient heat flow conditions. A complete characterization is performed including experimental cooling thermal parameters, segregation (XRF), optical and scanning electron microscopies, X-ray diffraction (XRD) and length scale of the microstructural phases. Experimental growth laws relating dendritic spacings to solidification thermal parameters have been proposed with emphasis on the effects of Ag and Cu. The theoretical predictions of the Rappaz-Boettinger model are shown to be slightly above the experimental scatter of secondary dendritic arm spacings for both ternary Sn–Bi–Cu and Sn–Bi–Ag alloys examined. - Highlights: • Dendritic growth prevailed for the ternary Sn–Bi–Cu and Sn–Bi–Ag solder alloys. • Bi precipitates within Sn-rich dendrites were shown to be unevenly distributed. • Morphology and preferential region for the Ag{sub 3}Sn growth depend on Ag

  11. Interconnection of thermal parameters, microstructure and mechanical properties in directionally solidified Sn–Sb lead-free solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Marcelino; Costa, Thiago [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil); Rocha, Otávio [Federal Institute of Education, Science and Technology of Pará — IFPA, 66093-020 Belém, PA (Brazil); Spinelli, José E. [Department of Materials Engineering, Federal University of São Carlos — UFSCar, 13565-905 São Carlos, SP (Brazil); Cheung, Noé, E-mail: cheung@fem.unicamp.br [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil); Garcia, Amauri [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil)

    2015-08-15

    Considerable effort is being made to develop lead-free solders for assembling in environmental-conscious electronics, due to the inherent toxicity of Pb. The search for substitute alloys of Pb–Sn solders has increased in order to comply with different soldering purposes. The solder must not only meet the expected levels of electrical performance but may also have appropriate mechanical strength, with the absence of cracks in the solder joints. The Sn–Sb alloy system has a range of compositions that can be potentially included in the class of high temperature solders. This study aims to establish interrelations of solidification thermal parameters, microstructure and mechanical properties of Sn–Sb alloys (2 wt.%Sb and 5.5 wt.%Sb) samples, which were directionally solidified under cooling rates similar to those of reflow procedures in industrial practice. A complete high-cooling rate cellular growth is shown to be associated with the Sn–2.0 wt.%Sb alloy and a reverse dendrite-to-cell transition is observed for the Sn–5.5 wt.%Sb alloy. Strength and ductility of the Sn–2.0 wt.%Sb alloy are shown not to be affected by the cellular spacing. On the other hand, a considerable variation in these properties is associated with the cellular region of the Sn–5.5 wt.%Sb alloy casting. - Graphical abstract: Display Omitted - Highlights: • The microstructure of the Sn–2 wt.%Sb alloy is characterized by high-cooling rates cells. • Reverse dendrite > cell transition occurs for Sn–5.5 wt.%Sb alloy: cells prevail for cooling rates > 1.2 K/s. • Sn–5.5 wt.%Sb alloy: the dendritic region occurs for cooling rates < 0.9 K/s. • Sn–5.5 wt.%Sb alloy: tensile properties are improved with decreasing cellular spacing.

  12. Large magnetoresistance in a directionally solidified Ni44.5Co5.1Mn37.1In13.3 magnetic shape memory alloy

    Science.gov (United States)

    Li, Zongbin; Hu, Wei; Chen, Fenghua; Zhang, Mingang; Li, Zhenzhuang; Yang, Bo; Zhao, Xiang; Zuo, Liang

    2018-04-01

    Polycrystalline Ni44.5Co5.1Mn37.1In13.3 alloy with coarse columnar-shaped grains and 〈0 0 1〉A preferred orientation was prepared by directional solidification. Due to the strong magnetostructural coupling, inverse martensitic transformation can be induced by the magnetic field, resulting in large negative magnetoresistance up to -58% under the field of 3 T. Such significant field controlled functional behaviors should be attributed to the coarse grains and strong preferred orientation in the directionally solidified alloy.

  13. Converting optical scanning holograms of real objects to binary Fourier holograms using an iterative direct binary search algorithm.

    Science.gov (United States)

    Leportier, Thibault; Park, Min Chul; Kim, You Seok; Kim, Taegeun

    2015-02-09

    In this paper, we present a three-dimensional holographic imaging system. The proposed approach records a complex hologram of a real object using optical scanning holography, converts the complex form to binary data, and then reconstructs the recorded hologram using a spatial light modulator (SLM). The conversion from the recorded hologram to a binary hologram is achieved using a direct binary search algorithm. We present experimental results that verify the efficacy of our approach. To the best of our knowledge, this is the first time that a hologram of a real object has been reconstructed using a binary SLM.

  14. An Abnormal Increase of Fatigue Life with Dwell Time during Creep-Fatigue Deformation for Directionally Solidified Ni-Based Superalloy DZ445

    Science.gov (United States)

    Ding, Biao; Ren, Weili; Deng, Kang; Li, Haitao; Liang, Yongchun

    2018-03-01

    The paper investigated the creep-fatigue behavior for directionally solidified nickel-based superalloy DZ445 at 900 °C. It is found that the fatigue life shows an abnormal increase when the dwell time exceeds a critical value during creep-fatigue deformation. The area of hysteresis loop and fractograph explain the phenomenon quite well. The shortest life corresponds to the maximal area of hysteresis loop, i. e. the maximum energy to be consumed during the creep-fatigue cycle. The fractographic observation of failed samples further supports the abnormal behavior of fatigue life.

  15. Numerical Research on Magnetic Field, Temperature Field and Flow Field During Melting and Directionally Solidifying TiAl Alloys by Electromagnetic Cold Crucible

    Science.gov (United States)

    Chen, Ruirun; Yang, Yaohua; Gong, Xue; Guo, Jingjie; Su, Yanqing; Ding, Hongsheng; Fu, Hengzhi

    2017-12-01

    The electromagnetic cold crucible (EMCC) technique is an effective method to melt and directionally solidify reactive and high-temperature materials without contamination. The temperature field and fluid flow induced by the electromagnetic field are very important for melting and controlling the microstructure. In this article, a 3D EMCC model for calculating the magnetic field in the charges (TiAl alloys) using the T-Ω finite element method was established and verified. Magnetic fields in the charge under different electrical parameters, positions and dimensions of the charge were calculated and analyzed. The calculated results show that the magnetic field concentrates in the skin layer, and the magnetic flux density ( B) increases with increasing of the frequency, charge diameter and current. The maximum B in the charge is affected by the position of the charge in EMCC ( h 1) and the charge height ( h 2), which emerges at the middle of coils ( h c) when the relationship of h c < h 1 + h 2 < h c + δ is satisfied. Lower frequency and smaller charge diameter can improve the uniformity of the magnetic field in the charge. Consequently, the induced uniform electromagnetic stirring weakens the turbulence and improves temperature uniformity in the vicinity of the solid/liquid (S/L) interface, which is beneficial to forming a planar S/L interface during directional solidification. Based on the above conclusions, the TiAlNb alloy was successfully melted with lower power consumption and directionally solidified by the square EMCC.

  16. Direct numerical simulations of nucleate boiling flows of binary mixtures

    International Nuclear Information System (INIS)

    Didier Jamet; Celia Fouillet

    2005-01-01

    phenomena. Namely, it is numerically observed that, for binary mixtures involving small amounts of a quasi non-condensable gas, the large decrease of the heat transfer coefficient observed is mostly due to the concentration distribution close to the triple line. Therefore, for direct numerical simulations of nucleate boiling of binary mixtures to provide quantitative results, it is important to account for the variations of the interface temperature with the local concentration of the mixture components in the close vicinity of the triple line. This knowledge requires a better modeling of the triple line motion of binary mixtures during liquid-vapor phase-change, which is still a very difficult modeling task. (author)

  17. Influence of Thermal Parameters, Microstructure, and Morphology of Si on Machinability of an Al–7.0 wt.% Si Alloy Directionally Solidified

    Directory of Open Access Journals (Sweden)

    Cássio A. P. Silva

    2018-01-01

    Full Text Available This study aims to correlate the influence of thermal and microstructural parameters such as growth rate and cooling rate (VL and TR and secondary dendrite spacing (λ2, respectively, in the machining cutting temperature and tool wear on the necking process of the Al–7 wt.% Si alloy solidified in a horizontal directional device using a high-speed steel with a tungsten tool. The dependence of λ2 on VL and TR and dependence of the maximum cutting temperature and maximum flank wear on λ2 were determined by power experimental laws given by λ2 = constant (VL and TRn and TMAX, VBMAX = constant (λ2n, respectively. The maximum cutting temperature increased with increasing of λ2. The opposite occurred with the maximum flank wear. The role of Si alloying element on the aforementioned results has also been analyzed. A morphological change of Si along the solidified ingot length has been observed, that is, the morphology of Si in the eutectic matrix has indicated a transition from particles to fibers along the casting together with an increase of the particle diameters with the position from the metal/mold interface.

  18. Effect of swaging on the 1000 C compressive slow plastic flow characteristics of the directionally solidified eutectic alloy gamma/gamma prime-alpha

    Science.gov (United States)

    Whittenberger, J. D.; Wirth, G.

    1983-01-01

    Swaging between 750 and 1050 C has been investigated as a means to introduce work into the directionally solidified eutectic alloy gamma/gamma prime-alpha (Ni-32.3 wt percent Mo-6.3 wt percent Al) and increase the elevated temperature creep strength. The 1000 C slow plastic compressive flow stress-strain rate properties in air of as-grown, annealed, and worked nominally 10 and 25 percent materials have been determined. Swaging did not improve the slow plastic behavior. In fact large reductions tended to degrade the strength and produced a change in the deformation mechanism from uniform flow to one involving intense slip band formation. Comparison of 1000 C tensile and compressive strength-strain rate data reveals that deformation is independent of the stress state.

  19. Effects of Microalloying on the Microstructures and Mechanical Properties of Directionally Solidified Ni-33(at.%)Al-31Cr-3Mo Eutectic Alloys Investigated

    Science.gov (United States)

    Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.

    2002-01-01

    Despite nickel aluminide (NiAl) alloys' attractive combination of oxidation and thermophysical properties, their development as replacements for superalloy airfoils in gas turbine engines has been largely limited by difficulties in developing alloys with an optimum combination of elevated-temperature creep resistance and room-temperature fracture toughness. Alternatively, research has focused on developing directionally solidified NiAl-based in situ eutectic composites composed of NiAl and (Cr,Mo) phases in order to obtain a desirable combination of properties a systematic investigation was undertaken at the NASA Glenn Research Center to examine the effects of small additions of 11 alloying elements (Co, Cu, Fe, Hf, Mn, Nb, Re, Si, Ta, Ti, and Zr) in amounts varying from 0.25 to 1.0 at.% on the elevated-temperature strength and room-temperature fracture toughness of directionally solidified Ni-33Al-31Cr-3Mo eutectic alloy. The alloys were grown at 12.7 mm/hr, where the unalloyed eutectic base alloy exhibited a planar eutectic microstructure. The different microstructures that formed because of these fifth-element additions are included in the table. The additions of these elements even in small amounts resulted in the formation of cellular microstructures, and in some cases, dendrites and third phases were observed. Most of these elemental additions did not improve either the elevated-temperature strength or the room-temperature fracture toughness over that of the base alloy. However, small improvements in the compression strength were observed between 1200 and 1400 K when 0.5 at.% Hf and 0.25 at.% Ti were added to the base alloy. The results of this study suggest that the microalloying of Ni-33Al-31Cr-3Mo will not significantly improve either its elevatedtemperature strength or its room-temperature fracture toughness. Thus, any improvements in these properties must be acquired by changing the processing conditions.

  20. Microstructure investigation of NiAl-Cr(Mo) interface in a directionally solidified NiAl-Cr(Mo) eutectic alloyed with refractory metal

    International Nuclear Information System (INIS)

    Chen, Y.X.; Cui, C.Y.; Guo, J.T.; Li, D.X.

    2004-01-01

    The microstructure of a directionally solidified NiAl-Cr(Mo) eutectic alloyed with refractory metal in as-processed and heat-treated states has been studied by means of scanning electron microscopy and high resolution electron microscopy (HREM). The microstructure of the NiAl-Cr(Mo) eutectic was characterized by lamellar Cr(Mo) phases embedded within NiAl matrix with common growth direction of . The interface between NiAl and lamellar Cr(Mo) did not have any transition layers. Misfit dislocations were observed at the NiAl-Cr(Mo) interface. In addition to lamellar Cr(Mo) phases, coherent Cr(Mo, Ni, Al) precipitates and NiAl precipitates were also observed in the NiAl matrix and lamellar Cr(Mo) phases, respectively. After hot isostatic pressing and heat treatment, the NiAl-Cr(Mo) interfaces became smooth and straight. Square array of misfit dislocations was directly observed at the (0 0 1) interface between NiAl and Cr(Mo, Ni, Al) precipitate. The configuration of misfit dislocation network showed a generally good agreement with prediction based on the geometric O-lattice model

  1. Convection and macrosegregation in Al-19Cu alloy directionally solidified through an abrupt contraction in cross-section: A comparison with Al-7Si

    Science.gov (United States)

    Ghods, M.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2017-02-01

    Hypoeutectic Al-19 wt. % Cu alloys were directionally solidified in cylindrical molds that featured an abrupt cross-section decrease 9.5 to 3.2 mm in diameter). Thermo-solutal convection and cross-section-change-induced shrinkage flow effects on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation was seen, particularly in the larger cross-section before contraction. This alloy shows positive longitudinal macrosegregation near the contraction followed by negative macrosegregation right after it; the extent of macrosegregation, however, decreases with increasing growth speed. The degree of thermo-solutal convection was compared to another study investigating directional solidification of Al-7 wt. % Si [1] in order to study the effect of solutal expansion coefficient on macrosegregation. An interesting change of the radial macrosegregation profile, attributable to the area-change-induced-shrinkage flow, was observed very close to the contraction. A two-dimensional model accounting for both shrinkage and thermo-solutal convection was used to simulate solidification, the resulting steepling as well as axial and radial macrosegregation. The experimentally observed macrosegregation associated with the contraction during directional solidification was well predicted by the numerical simulations.

  2. Macrosegregation Due to Convection in Al-19Cu Alloy Directionally Solidified Through an Abrupt Expansion in Cross-Section: A Comparison with Al-7Si

    Science.gov (United States)

    Ghods, M.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2017-10-01

    Hypoeutectic Al-19 wt.% Cu alloys were directionally solidified at two different growth speeds in cylindrical molds that featured an abrupt increase in cross-section, from 3.2 to 9.5 mm in diameter. The effects of thermosolutal convection and shrinkage flow induced by the cross-section change on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation were seen, particularly in the larger cross-section after expansion. Negative longitudinal macrosegregation right after the cross-section increase was observed; the extent of macrosegregation, however, decreases with increasing growth speed. Both thermal and flow effects due to cross-section change were seen to influence the radial macrosegregation immediately before, and after the expansion. Radial macrosegregation pattern was found to be changing as the mushy zone enters the larger cross-section region above the cross-section change where the solidification is in its unsteady state. The effect of the solutal expansion coefficient on macrosegregation was studied by comparing the degree of thermosolutal convection in Al-19 wt.% Cu with a previous study in which we investigated Al-7 wt.% Si. A two-dimensional model accounting for both shrinkage and thermosolutal convection was used to simulate the resulting steepling, as well as the axial and radial macrosegregation. The experimentally observed macrosegregation associated with the expansion during directional solidification is well predicted by the numerical simulations.

  3. Primary Dendrite Arm Spacing and Trunk Diameter in Al-7-Weight-Percentage Si Alloy Directionally Solidified Aboard the International Space Station

    Science.gov (United States)

    Ghods, M.; Tewari, S. N.; Lauer, M.; Poirier, D. R.; Grugel, R. N.

    2016-01-01

    Under a NASA-ESA collaborative research project, three Al-7-weight-percentage Si samples (MICAST-6, MICAST-7 and MICAST 2-12) were directionally solidified aboard the International Space Station to determine the effect of mitigating convection on the primary dendrite array. The samples were approximately 25 centimeters in length with a diameter of 7.8 millimeter-diameter cylinders that were machined from [100] oriented terrestrially grown dendritic Al-7Si samples and inserted into alumina ampoules within the Sample Cartridge Assembly (SCA) inserts of the Low Gradient Furnace (LGF). The feed rods were partially remelted in space and directionally solidified to effect the [100] dendrite-orientation. MICAST-6 was grown at 5 microns per second for 3.75 centimeters and then at 50 microns per second for its remaining 11.2 centimeters of its length. MICAST-7 was grown at 20 microns per second for 8.5 centimeters and then at 10 microns per second for 9 centimeters of its remaining length. MICAST2-12 was grown at 40 microns per second for 11 centimeters. The thermal gradient at the liquidus temperature varied from 22 to 14 degrees Kelvin per centimeter during growth of MICAST-6, from 26 to 24 degrees Kelvin per centimeter for MICAST-7 and from 33 to 31 degrees Kelvin per centimeter for MICAST2-12. Microstructures on the transverse sections along the sample length were analyzed to determine nearest-neighbor spacing of the primary dendrite arms and trunk diameters of the primary dendrite-arrays. This was done along the lengths where steady-state growth prevailed and also during the transients associated with the speed-changes. The observed nearest-neighbor spacings during steady-state growth of the MICAST samples show a very good agreement with predictions from the Hunt-Lu primary spacing model for diffusion controlled growth. The observed primary dendrite trunk diameters during steady-state growth of these samples also agree with predictions from a coarsening-based model

  4. Magnetic anisotropy induced by crystallographic orientation and morphological alignment in directionally-solidified eutectic Mn-Sb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Chang-Sheng [School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159 (China); Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Liu, Tie, E-mail: liutie@epm.neu.edu.cn [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Dong, Meng; Wu, Chun; Shao, Jian-Guo; Wang, Qiang [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China)

    2017-02-15

    The influences of the crystallographic orientation and morphological alignment upon the magnetic anisotropic behavior of polycrystalline materials were investigated. Microstructures obtained in eutectic Mn-Sb alloys via directional solidification simultaneously displayed crystallographic orientation and morphological alignment. Both the crystallographic orientation and the morphological alignment were able to induce magnetic anisotropy in the alloys, wherein the influence of the crystallographic orientation and the morphological alignment upon the magnetic anisotropic behavior of the alloys strongly depended upon their directions and exhibited either mutual promotion or competition. These findings may provide useful guidance for the fabrication design of functional magnetic materials. - Highlights: • We study effects of orientation in crystal and morphology on magnetic anisotropy. • Both orientation in crystal and morphology can induce magnetic anisotropy. • Their effects depend on direction and exhibit either mutual promotion or competition.

  5. Simulating the Effect of Space Vehicle Environments on Directional Solidification of a Binary Alloy

    Science.gov (United States)

    Westra, D. G.; Heinrich, J. C.; Poirier, D. R.

    2003-01-01

    Space microgravity missions are designed to provide a microgravity environment for scientific experiments, but these missions cannot provide a perfect environment, due to vibrations caused by crew activity, on-board experiments, support systems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps. Therefore, it is necessary to predict the impact of these vibrations on space experiments, prior to performing them. Simulations were conducted to study the effect of the vibrations on the directional solidification of a dendritic alloy. Finite element ca!cu!attie?ls were dme with a simd2titcr based on a continuum model of dendritic solidification, using the Fractional Step Method (FSM). The FSM splits the solution of the momentum equation into two steps: the viscous intermediate step, which does not enforce continuity; and the inviscid projection step, which calculates the pressure and enforces continuity. The FSM provides significant computational benefits for predicting flows in a directionally solidified alloy, compared to other methods presently employed, because of the efficiency gains in the uncoupled solution of velocity and pressure. finite differences, arises when the interdendritic liquid reaches the eutectic temperature and concentration. When a node reaches eutectic temperature, it is assumed that the solidification of the eutectic liquid continues at constant temperature until all the eutectic is solidified. With this approach, solidification is not achieved continuously across an element; rather, the element is not considered solidified until the eutectic isotherm overtakes the top nodes. For microgravity simulations, where the convection is driven by shrinkage, it introduces large variations in the fluid velocity. When the eutectic isotherm reaches a node, all the eutectic must be solidified in a short period, causing an abrupt increase in velocity. To overcome this difficulty, we employed a scheme to numerically predict a more accurate value

  6. Growth crystallography and lamellar to rod transition in directionally solidified Nb--Nb2C eutectic composites

    International Nuclear Information System (INIS)

    David, S.A.; Santhanam, A.T.; Brody, H.D.

    1976-01-01

    The transition in morphology of the carbide phase is discussed in terms of the relative volume fraction of the phases, growth rate, and orientation relationships. The carbide morphology is influenced by the growth rate and carbon content. For constant growth rate increasing the volume fraction of the carbide phase favors the lamellar morphology. At low growth rates the lamellar morphology is favored, and at high growth rates the rod-like morphology is favored. Growth crystallography has no direct influence on the transition in carbide morphology

  7. Microstructure and Macrosegregation Study of Directionally Solidified Al-7Si Samples Processed Terrestrially and Aboard the International Space Station

    Science.gov (United States)

    Angart, Samuel; Erdman, R. G.; Poirier, David R.; Tewari, S.N.; Grugel, R. N.

    2014-01-01

    This talk reports research that has been carried out under the aegis of NASA as part of a collaboration between ESA and NASA for solidification experiments on the International Space Station (ISS). The focus has been on the effect of convection on the microstructural evolution and macrosegregation in hypoeutectic Al-Si alloys during directional solidification (DS). The DS-experiments have been carried out under 1-g at Cleveland State University (CSU) and under low-g on the International Space Station (ISS). The thermal processing-history of the experiments is well defined for both the terrestrially-processed samples and the ISS-processed samples. We have observed that the primary dendrite arm spacings of two samples grown in the low-g environment of the ISS show good agreement with a dendrite-growth model based on diffusion controlled growth. The gravity-driven convection (i.e., thermosolutal convection) in terrestrially grown samples has the effect of decreasing the primary dendrite arm spacings and causes macrosgregation. In order to process DS-samples aboard the ISS, dendritic-seed crystals have to partially remelted in a stationary thermal gradient before the DS is carried out. Microstructural changes and macrosegregation effects during this period are described.

  8. Liquid wastes concentrating and solidifying device

    International Nuclear Information System (INIS)

    Kamiyoshi, Hideki; Ninokata, Yoshihide.

    1985-01-01

    Purpose: To provide a device for concentrating to solidify radioactive liquid wastes at large solidifying speed and with high decontaminating coefficient, without requirement for automatic control. Constitution: An asphalt solidifying device is disposed below a centrifugal thin film drier, and powder resulted from the drier is directly solidified with asphalt by utilizing the rotation of the drier for the mixing operation in the asphalt vessel. If abnormality should occur in the operation of the drier, resulting liquid wastes can be received and solidified in the asphalt vessel. The liquid wastes are heated to dry in a vessel main body having the heating surface at the circumferential surface. The vessel main body provided with a nozzle for supplying liquid to be treated disposed slantwise at the upper portion of the heating face, scrapers which rotate and slidingly contact the heating face and nozzles which jet out chemicals to the heating face behind the scrapers. Below the vessel main body, are disposed a funnel-like hopper for receiving falling scales, rotary vanes, and the likes by which the scales are introduced into the asphalt solidifying vessel. (Moriyama, K.)

  9. Evolution of double white dwarf binaries undergoing direct-impact accretion: Implications for gravitational wave astronomy

    Science.gov (United States)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki

    2017-01-01

    For close double white dwarf binaries, the mass-transfer phenomenon known as direct-impact accretion (when the mass transfer stream impacts the accretor directly rather than forming a disc) may play a pivotal role in the long-term evolution of the systems. In this analysis, we explore the long-term evolution of white dwarf binaries accreting through direct-impact and explore implications of such systems to gravitational wave astronomy. We cover a broad range of parameter space which includes initial component masses and the strength of tidal coupling, and show that these systems, which lie firmly within the LISA frequency range, show strong negative chirps which can last as long as several million years. Detections of double white dwarf systems in the direct-impact phase by detectors such as LISA would provide astronomers with unique ways of probing the physics governing close compact object binaries.

  10. Radioactive substance solidifying device

    International Nuclear Information System (INIS)

    Sakoda, Kotaro.

    1979-01-01

    Purpose: To easily solidify radioactive substances adhering to the surfaces of solid wastes without scattering in the circumference by paints, and further to reduce surface contamination concentrations. Constitution: Solid wastes are placed on a hanging plate, and dipped in paints within a paint dipping treatment tank installed at the lower part of a treatment tank by means of a monorail hoist, and the surfaces of said solid wastes are coated with paints, thereby to solidify the radioactivity on the surfaces of the solid wastes. After dipping, the solid wastes are suspended up to a paint spraying tank to dry the paints. After drying, non-contaminated paints are atomized to apply through an atomizing tube onto the solid wastes. After drying the atomized paints, the solid wastes are carried outside the treatment tank by means of the monorail hoist. (Yoshino, Y.)

  11. Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bond, T.C; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Costa, C. F. Da Silva; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.A.; Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, Idelmis G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.A.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jimenez-Forteza, F.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Namjun; Kim, W.; Kim, Y.M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Zertuche, L. Magana; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A. L.; Miller, B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, D.M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, António Dias da; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; Van Beuzekom, Martin; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J.L.; Wu, D.S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Campanelli, M.; Chu, I.W.T.; Clark, M.; Fauchon-Jones, E. J.; Fong, H.; Healy, J.; Hemberger, D.; Hinder, I.; Husa, S.; Kalaghati, C.; Khan., S.; Kidder, L. E.; Kinsey, M.; Laguna, P.; London, L. T.; Lousto, C. O.; Lovelace, G.; Ossokine, S.; Pannarale, F.; Pfeiffer, H. P.; Scheel, M.; Shoemaker, D. M.; Szilagyi, B.; Teukolsky, S.; Vinuales, A. Vano; Zlochower, Y.

    2016-01-01

    We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, including several performed specifically to reproduce this event. Our calculations go beyond existing semianalytic models, because for all simulations—including sources with two independent,

  12. Radioactive waste solidifying material

    International Nuclear Information System (INIS)

    Ono, Keiichi; Sakai, Etsuro.

    1989-01-01

    The solidifying material according to this invention comprises cement material, superfine powder, highly water reducing agent, Al-containing rapid curing material and coagulation controller. As the cement material, various kinds of quickly hardening, super quickly hardening and white portland cement, etc. are usually used. As the superfine powder, those having average grain size smaller by one order than that of the cement material are desirable and silica dusts, etc. by-produced upon preparing silicon, etc. are used. As the highly water reducing agent, surface active agents of high decomposing performance and comprising naphthalene sulfonate, etc. as the main ingredient are used. As the Al-containing rapidly curing material, calcium aluminate, etc. is used in an amount of less than 10 parts by weight based on 100 parts by weight of the powdery body. As the coagulation controller, boric acid etc. usually employed as a retarder is used. This can prevent dissolution or collaption of pellets and reduce the leaching of radioactive material. (T.M.)

  13. Numerical simulation of freckle formation in directional solidification of binary alloys

    Science.gov (United States)

    Felicelli, Sergio D.; Heinrich, Juan C.; Poirier, David R.

    1992-01-01

    A mathematical model of solidification is presented which simulates the formation of segregation models known as 'freckles' during directional solidification of binary alloys. The growth of the two-phase or dendritic zone is calculated by solving the coupled equations of momentum, energy, and solute transport, as well as maintaining the thermodynamic constraints dictated by the phase diagram of the alloy. Calculations for lead-tin alloys show that the thermosolutal convection in the dendritic zone during solidification can produce heavily localized inhomogeneities in the composition of the final alloy.

  14. Radioactive liquid waste solidifying device

    International Nuclear Information System (INIS)

    Uchiyama, Yoshio.

    1987-01-01

    Purpose: To eliminate the requirement for discharge gas processing and avoid powder clogging in a facility suitable to the volume-reducing solidification of regenerated liquid wastes containing sodium sulfate. Constitution: Liquid wastes supplied to a liquid waste preheater are heated under a pressure higher than the atmospheric pressure at a level below the saturation temperature for that pressure. The heated liquid wastes are sprayed from a spray nozzle from the inside of an evaporator into the super-heated state and subjected to flash distillation. They are further heated to deposit and solidify the solidification components in the solidifying evaporation steams. The solidified powder is fallen downwardly and heated for removing water content. The recovered powder is vibrated so as not to be solidified and then reclaimed in a solidification storage vessel. Steams after flash distillation are separated into gas, liquid and solids by buffles. (Horiuchi, T.)

  15. Microstructure and Mechanical Properties of Al2O3/Er3Al5O12 Binary Eutectic Ceramic Prepared by Bridgman Method

    Science.gov (United States)

    Song, Caiyu; Wang, Shunheng; Liu, Juncheng; Zhai, Shuoyan

    2018-01-01

    Directionally solidified Al2O3/Er3Al5O12 (EAG) eutectic ceramic was prepared via vertical Bridgman method with high-frequency induction heating. The effects of the growth rate on the microstructure and mechanical properties of the solidified ceramic were investigated. The experimental results showed that there were no pores or amorphous phases in the directionally solidified Al2O3/EAG eutectic ceramic. Al2O3 phase was embedded in the EAG matrix phase, and the two phases were intertwined with each other to form a typical binary eutectic “hieroglyphic” structure. With the increase of growth rate, the phase size and spacing of the solidified Al2O3/EAG ceramic both decreased, and the growth rate and phase spacing satisfied the λ2v ≈ 60 formula of Jackson-Hunt theory. The cross section microstructure of the solidified ceramic always exhibited an irregular eutectic growth, while the longitudinal section microstructure presented a directional growth. The mechanical properties of the solidified ceramic gradually increased with the increase of growth rate, and the maximum hardness and fracture toughness could reach 21.57 GPa and 2.98 MPa·m1/2 respectively. It was considered that the crack deflection and branching could enhance the toughness of the solidified ceramic effectively. PMID:29601545

  16. BinCat: a Catalog of Nearby Binary Stars with Tools for Calculating Light-Leakage for Direct Imaging Missions

    Science.gov (United States)

    Holte, Elias Peter; Sirbu, Dan; Belikov, Ruslan

    2018-01-01

    Binary stars have been largely left out of direct imaging surveys for exoplanets, specifically for earth-sized planets in their star's habitable zone. Utilizing new direct imaging techniques brings us closer to being able to detect earth-like exoplanets around binary stars. In preparation for the upcoming WFIRST mission and other direct imaging-capable missions (HabEx, LUVIOR) it is important to understand the expected science yield resulting from the implementation of these imaging techniques. BinCat is a catalog of binary systems within 30 parsecs to be used as a target list for future direct imaging missions. There is a non-static component along with BinCat that allows researchers to predict the expected light-leakage between a binary component and its off-axis companion (a value critical to the aforementioned techniques) at any epoch. This is accomplished by using orbital elements from the Sixth Orbital Catalog to model the orbits of the binaries. The software was validated against the historical data used to generate the orbital parameters. When orbital information is unknown or the binaries are purely optical the proper motion of the pair taken from the Washington Double Star catalog is integrated in time to estimate expected light-leakage.

  17. Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Zertuche, L. Magaña; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Campanelli, M.; Chu, T.; Clark, M.; Fauchon-Jones, E.; Fong, H.; Healy, J.; Hemberger, D.; Hinder, I.; Husa, S.; Kalaghati, C.; Khan, S.; Kidder, L. E.; Kinsey, M.; Laguna, P.; London, L. T.; Lousto, C. O.; Lovelace, G.; Ossokine, S.; Pannarale, F.; Pfeiffer, H. P.; Scheel, M.; Shoemaker, D. M.; Szilagyi, B.; Teukolsky, S.; Vinuales, A. Vano; Zlochower, Y.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-09-01

    We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, including several performed specifically to reproduce this event. Our calculations go beyond existing semianalytic models, because for all simulations—including sources with two independent, precessing spins—we perform comparisons which account for all the spin-weighted quadrupolar modes, and separately which account for all the quadrupolar and octopolar modes. Consistent with the posterior distributions reported by Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016)] (at the 90% credible level), we find the data are compatible with a wide range of nonprecessing and precessing simulations. Follow-up simulations performed using previously estimated binary parameters most resemble the data, even when all quadrupolar and octopolar modes are included. Comparisons including only the quadrupolar modes constrain the total redshifted mass Mz∈[64 M⊙-82 M⊙] , mass ratio 1 /q =m2/m1∈[0.6 ,1 ], and effective aligned spin χeff∈[-0.3 ,0.2 ], where χeff=(S1/m1+S2/m2).L ^/M . Including both quadrupolar and octopolar modes, we find the mass ratio is even more tightly constrained. Even accounting for precession, simulations with extreme mass ratios and effective spins are highly inconsistent with the data, at any mass. Several nonprecessing and precessing simulations with similar mass ratio and χeff are consistent with the data. Though correlated, the components' spins (both in magnitude and directions) are not significantly constrained by the data: the data is consistent with simulations with component spin magnitudes a1 ,2 up to at least 0.8, with random orientations. Further detailed follow-up calculations are needed to determine if the data contain a weak imprint from transverse (precessing) spins. For nonprecessing binaries, interpolating between simulations, we reconstruct a posterior distribution consistent with previous results. The final black hole

  18. Thermochemistry of some binary lead and transition metal compounds by high temperature direct synthesis calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Meschel, S.V., E-mail: meschel@jfi.uchicago.edu [Illinois Institute of Technology,Thermal Processing Technology Center, 10 W. 32nd Street, Chicago, Illinois 60615 (United States); Gordon Center for Integrated Science, 929 E. 57th Street, Chicago, Illinois 60637 (United States); Nash, P. [Illinois Institute of Technology,Thermal Processing Technology Center, 10 W. 32nd Street, Chicago, Illinois 60615 (United States); Chen, X.Q.; Wei, P. [Materials processing Modeling Division, Shenyang National Laboratory for Materials Science, Institute of Metals Research, 72 Wenhua Road, Shenyang City (China)

    2015-06-05

    Highlights: • Studied binary lead-transition metal alloys by high temperature calorimetry. • Determined the enthalpies of formation of 8 alloys. • Compared the measurements with predictions by the model of Miedema and by the ab initio method. - Abstract: The standard enthalpies of formation of some binary lead and transition metal compounds have been measured by high temperature direct synthesis calorimetry. The reported results are: Pb{sub 3}Sc{sub 5}(−61.3 ± 2.9); PbTi{sub 4}(−16.6 ± 2.4); Pb{sub 3}Y{sub 5}(−64.8 ± 3.6); Pb{sub 3}Zr{sub 5}(−50.6 ± 3.1); PbNb{sub 3}(−10.4 ± 3.4); PbRh(−16.5 ± 3.3); PbPd{sub 3}(−29.6 ± 3.1); PbPt(−34.7 ± 3.3) kJ/mole of atoms. We will compare our results with previously published measurements. We will also compare the experimental measurements with enthalpies of formation of transition metal compounds with elements in the same vertical column in the periodic table. We will compare our measurements with predicted values on the basis of the semi empirical model of Miedema and coworkers and with ab initio values when available.

  19. A Binary-Encounter-Bethe Approach to Simulate DNA Damage by the Direct Effect

    Science.gov (United States)

    Plante, Ianik; Cucinotta, Francis A.

    2013-01-01

    The DNA damage is of crucial importance in the understanding of the effects of ionizing radiation. The main mechanisms of DNA damage are by the direct effect of radiation (e.g. direct ionization) and by indirect effect (e.g. damage by.OH radicals created by the radiolysis of water). Despite years of research in this area, many questions on the formation of DNA damage remains. To refine existing DNA damage models, an approach based on the Binary-Encounter-Bethe (BEB) model was developed[1]. This model calculates differential cross sections for ionization of the molecular orbitals of the DNA bases, sugars and phosphates using the electron binding energy, the mean kinetic energy and the occupancy number of the orbital. This cross section has an analytic form which is quite convenient to use and allows the sampling of the energy loss occurring during an ionization event. To simulate the radiation track structure, the code RITRACKS developed at the NASA Johnson Space Center is used[2]. This code calculates all the energy deposition events and the formation of the radiolytic species by the ion and the secondary electrons as well. We have also developed a technique to use the integrated BEB cross section for the bases, sugar and phosphates in the radiation transport code RITRACKS. These techniques should allow the simulation of DNA damage by ionizing radiation, and understanding of the formation of double-strand breaks caused by clustered damage in different conditions.

  20. Method of solidifying radioactive laundry wastes

    International Nuclear Information System (INIS)

    Yasumura, Keijiro

    1984-01-01

    Purpose: To enable to solidify radioactive laundry wastes containing non-ionic liquid detergents less solidifiable by plastic solidification process in liquid laundry wastes for cloths or the likes discharged from a nuclear power plant. Method: Radioactive laundry wastes are solidified by using plastic solidifying agent comprising, as a main ingredient, unsaturated polyester resins and methylmethacrylate monomers. The plastic solidifying agents usable herein include, for example, unsaturated polyester resins prepared by condensating maleic anhydride and phthalic anhydride with propylene glycol and incorporated with methylmethacrylate monomers. The mixing ratio of the methylmethacrylate monomers is preferably 30 % by weight based on the unsaturated polyester resins. (Aizawa, K.)

  1. Effects of focused ion beam milling on the compressive behavior of directionally solidified micro-pillars and the nanoindentation response of an electro-polished surface

    International Nuclear Information System (INIS)

    Shim, Sang Hoon; Bei, Hongbin; Miller, Michael K; Pharr, George Mathews; George, Easo P

    2009-01-01

    Focused ion beam (FIB) milling is the typical way in which micro-pillars are fabricated to study small-scale plasticity and size effects in uniaxial compression. However, FIB milling can introduce defects into the milled pillars. To investigate the effects of FIB damage on mechanical behavior, we tested Mo-alloy micro-pillars that were FIB milled following directional solidification, and compared their compressive response to pillars that were not FIB milled. We also FIB milled at glancing incidence a Mo-alloy single-crystal surface, and compared its nanoindentation response to an electro-polished surface of the same crystal. Consequences for the interpretation of data obtained from FIB milled micro-pillars are discussed

  2. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Fukazawa, Tetsuo; Ootsuka, Masaharu; Uetake, Naoto; Ozawa, Yoshihiro.

    1984-01-01

    Purpose: To prepare radioactive solidified wastes excellent in strength, heat resistance, weather-proof, water resistance, dampproof and low-leaching property. Method: A hardening material reactive with alkali silicates to form less soluble salts is used as a hardener for alkali silicates which are solidification filler for the radioactive wastes, and mixed with cement as a water absorbent and water to solidify the radioactive wastes. The hardening agent includes, for example, CaCO 3 , Ca(ClO 4 ) 2 , CaSiF 6 and CaSiO 3 . Further, in order to reduce the water content in the wastes and reduce the gap ratio in the solidification products, the hardener adding rate, cement adding rate and water content are selected adequately. As the result, solidification products can be prepared with no deposition of easily soluble salts to the surface thereof, with extremely low leaching of radioactive nucleides. (Kamimura, M.)

  3. LONG-TERM EVOLUTION OF DOUBLE WHITE DWARF BINARIES ACCRETING THROUGH DIRECT IMPACT

    International Nuclear Information System (INIS)

    Kremer, Kyle; Kalogera, Vassiliki; Sepinsky, Jeremy

    2015-01-01

    We calculate the long-term evolution of angular momentum in double white dwarf binaries undergoing direct impact accretion over a broad range of parameter space. We allow the rotation rate of both components to vary and account for the exchange of angular momentum between the spins of the white dwarfs and the orbit, while conserving the total angular momentum. We include gravitational, tidal, and mass transfer effects in the orbital evolution, and allow the Roche radius of the donor star to vary with both the stellar mass and the rotation rate. We examine the long-term stability of these systems, focusing in particular on those systems that may be progenitors of AM CVn or SNe Ia. We find that our analysis yields an increase in the predicted number of stable systems compared to that in previous studies. Additionally, we find that by properly accounting for the effects of asynchronism between the donor and the orbit on the Roche-lobe size, we eliminate oscillations in the orbital parameters, which were found in previous studies. Removing these oscillations can reduce the peak mass transfer rate in some systems, keeping them from entering an unstable mass transfer phase

  4. Mimicking directed binary networks for exploring systemic sensitivity: Is NCAA FBS a fragile competition system?

    Directory of Open Access Journals (Sweden)

    Fushing Hsieh

    2016-07-01

    Full Text Available Can a popular real-world competition system indeed be fragile? To address this question, we represent such a system by a directed binary network. Upon observed network data, typically in a form of win-and-loss matrix, our computational developments begin with collectively extracting network's information flows. And then we compute and discover network's macrostate. This computable macrostate is further shown to contain deterministic structures embedded with randomness mechanisms. Such coupled deterministic and stochastic components becomes the basis for generating the microstate ensemble. Specifically a network mimicking algorithm is proposed to generate a microstate ensemble by subject to the statistical mechanics principle: All generated microscopic states have to conform to its macrostate of the target system. We demonstrate that such a microstate ensemble is an effective platform for exploring systemic sensitivity. Throughout our computational developments, we employ the NCAA Football Bowl Subdivision (FBS as an illustrating example system. Upon this system, its macrostate is discovered by having a nonlinear global ranking hierarchy as its deterministic component, while its constrained randomness component is embraced within the nearly completely recovered conference schedule . Based on the computed microstate ensemble, we are able to conclude that the NCAA FBS is overall a fragile competition system because it retains highly heterogeneous degrees of sensitivity with its ranking hierarchy.

  5. Radiation binary targeted therapy for HER-2 positive breast cancers: assumptions, theoretical assessment and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Mundy, Daniel W [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47909 (United States); Harb, Wael [Horizon Oncology, The Care Group, Unity Medical Center, Lafayette, IN 47901 (United States); Jevremovic, Tatjana [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47909 (United States)

    2006-03-21

    A novel radiation targeted therapy is investigated for HER-2 positive breast cancers. The proposed concept combines two known approaches, but never used together for the treatment of advanced, relapsed or metastasized HER-2 positive breast cancers. The proposed radiation binary targeted concept is based on the anti HER-2 monoclonal antibodies (MABs) that would be used as vehicles to transport the nontoxic agent to cancer cells. The anti HER-2 MABs have been successful in targeting HER-2 positive breast cancers with high affinity. The proposed concept would utilize a neutral nontoxic boron-10 predicting that anti HER-2 MABs would assure its selective delivery to cancer cells. MABs against HER-2 have been a widely researched strategy in the clinical setting. The most promising antibody is Trastuzumab (Herceptin (registered) ). Targeting HER-2 with the MAB Trastuzumab has been proven to be a successful strategy in inducing tumour regression and improving patient survival. Unfortunately, these tumours become resistant and afflicted women succumb to breast cancer. In the proposed concept, when the tumour region is loaded with boron-10 it is irradiated with neutrons (treatment used for head and neck cancers, melanoma and glioblastoma for over 40 years in Japan and Europe). The irradiation process takes less than an hour producing minimal side effects. This paper summarizes our recent theoretical assessments of radiation binary targeted therapy for HER-2 positive breast cancers on: the effective drug delivery mechanism, the numerical model to evaluate the targeted radiation delivery and the survey study to find the neutron facility in the world that might be capable of producing the radiation effect as needed. A novel method of drug delivery utilizing Trastuzumab is described, followed by the description of a computational Monte Carlo based breast model used to determine radiation dose distributions. The total flux and neutron energy spectra of five currently available

  6. Solidification of AM and AZ magnesium alloys characterized by heat-transfer modeled thermal and calorimetric analysis and microsegregation study of directionally solidified microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Mirkovic, Djordje

    2008-05-09

    The micro-scale solidification of commercial Mg alloys of the AZ and AM series is in the focus of the present thesis. Two approaches of investigating solidification are implemented, complementary regarding temperature gradient and solidification rate, and also with respect to the generated microstructure. The first approach considers solidification under a negligible spatial temperature gradient. Here the solidification curves, i.e. fraction solid versus temperature, were determined by developing an improved heat-transfer modeling applicable on both differential thermal analysis (DTA) and differential scanning calorimetry (DSC) signals. The correlation between solidification enthalpy and fraction solid during solidification was tested in detail. A better evaluation of the measured DTA and DSC signals is attained through an independent measurement of the time constant as function of temperature for the applied equipment. A further improvement is achieved through a more impartial interpretation of the measured curves. Both improvements enable a better desmearing of measured signals and reduce the error induced by the operator. The novel tantalum encapsulation enabled appropriate handling of challenging Mg-alloys. The viability and limitations of thermal analysis in general to determine start and end of solidification of AZ magnesium alloys was also studied. The second approach is based on directional solidification in a high temperature gradient and at constant solidification rate, achieved by the Bridgman technique. The resulting dendritic microstructure and inherent microsegregation are studied in this work. The solute profiles, i.e. solute content versus solid phase fraction during solidification, are determined by an advanced treatment of the EPMA data. Problems that are demonstrated in this work are Al-loss and melt pollution due to reaction with typical sample container material made of unprotected steel. The development of an optimized boron nitride (BN

  7. Study of directionally solidified eutectic Al2O3-ZrO2(3%Y2O3 doped with TiO2

    Directory of Open Access Journals (Sweden)

    Peña, J. I.

    2007-06-01

    Full Text Available An study of directionally grown samples of the eutectic composition in the Al2O3-ZrO2 (3 mol% Y2O3 system, with small TiO2 additions (1 wt%, is presented. The microstructural changes induced by this addition are analysed using SEM (EDX techniques. The mechanical changes, when TiO2 is added, are studied by measuring the flexural strength by three point bending. Also, the toughness is determined by Vickers indentation method. When slow growth rates (10 mm/h are used, interpenetratred and homogeneous microstructure is obtained, independently of the TiO2 doping. When growth rates are higher (300 and 1000 mm/h the structure changes and the phases are organized in form of colonies or cells, which have smaller size when TiO2 is present. This size reduction is accompanied with an increase of the toughness.Este trabajo presenta un estudio de muestras crecidas direccionalmente del sistema Al2O3-ZrO2 (3 mol% Y2O3 en su composición eutéctica con pequeñas adiciones de óxido de titanio (1% de TiO2 en peso. Se analizan los cambios microestructurales inducidos por esta adición mediante SEM (EDX y se estudian los cambios en su comportamiento mecánico medido por flexión en tres puntos, así como la tenacidad de fractura mediante indentación Vickers. Con velocidades lentas de solidificación (10 mm/h se obtiene en ambos casos una microestructura homogénea e interpenetrada, mientras que a velocidades mayores, 300 y 1000 mm/h, se forma una estructura en las que las fases se organizan en forma de colonias o células, siendo éstas de menor tamaño en las muestras dopadas. Esta disminución en el tamaño viene acompañada de un aumento de la tenacidad de fractura medida por indentación.

  8. Structural perfection of directionally solidified lamellar eutectics

    International Nuclear Information System (INIS)

    Attallah, T.; Gurzleski, J.E.

    1976-01-01

    The mechanisms for the formation of faults in lamellar eutectics are reviewed, and it is postulated that faults play several roles in eutectic freezing with their exact importance depending on the specific alloy system and the growth conditions. Faults are not the cause of lamellar spiralling although they are necessary for it to occur. Lamellar spiralling is found to occur only when the crystallographic orientations of the two eutectic phases lead to a growth component normal to the lamellar plane, and although some systems such as Pb-Sn normally spiral it is possible for them to achieve orientation relationships where no spiralling occurs

  9. GPU-accelerated 3D phase-field simulations of dendrite competitive growth during directional solidification of binary alloy

    International Nuclear Information System (INIS)

    Sakane, S; Takaki, T; Ohno, M; Shimokawabe, T; Aoki, T

    2015-01-01

    Phase-field method has emerged as the most powerful numerical scheme to simulate dendrite growth. However, most phase-field simulations of dendrite growth performed so far are limited to two-dimension or single dendrite in three-dimension because of the large computational cost involved. To express actual solidification microstructures, multiple dendrites with different preferred growth directions should be computed at the same time. In this study, in order to enable large-scale phase-field dendrite growth simulations, we developed a phase-field code using multiple graphics processing units in which a quantitative phase-field method for binary alloy solidification and moving frame algorithm for directional solidification were employed. First, we performed strong and weak scaling tests for the developed parallel code. Then, dendrite competitive growth simulations in three-dimensional binary alloy bicrystal were performed and the dendrite interactions in three-dimensional space were investigated. (paper)

  10. Directly comparing GW150914 with numerical solutions of Einstein’s equations for binary black hole coalescence

    OpenAIRE

    Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Brunett, S.

    2016-01-01

    We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, including several performed specifically to reproduce this event. Our calculations go beyond existing semianalytic models, because for all simulations—including sources with two independent, precessing spins—we perform comparisons which account for all the spin-weighted quadrupolar modes, and separately which account for all the quadrupolar and octopolar modes. Consistent with the posterio...

  11. Method of solidifying powderous wastes

    International Nuclear Information System (INIS)

    Kakimoto, Akira; Miyake, Takashi; Sato, Shuichi; Inagaki, Yuzo.

    1985-01-01

    Purpose: To improve the properties of solidification products, in the case of solidifying powderous wastes with thermosetting resins. Method. A solvent for the solution of the thermosetting resin is admixed with the powderous wastes into a paste-like form prior to adding the resin to the wastes, which are then mixed with the resin solution. As the result, those solidification products having the specific gravity and the compression strength more excellent than those of the conventional ones, and much higher than the reference values can be obtained. (Kamimura, M.)

  12. Electrostatic and capillary force directed tunable 3D binary micro- and nanoparticle assemblies on surfaces

    International Nuclear Information System (INIS)

    Singh, G; Pillai, S; Arpanaei, A; Kingshott, P

    2011-01-01

    We report a simple, rapid and cost-effective method based on evaporation induced assembly to grow 3D binary colloidal assemblies on a hydrophobic/hydrophilic substrate by simple drop casting. The evaporation of a mixed colloidal drop results in ring-like or uniform area deposition depending on the concentration of particles, and thus assembly occurs at the periphery of a ring or uniformly all over the drop area. Binary colloidal assemblies of different crystal structure are successfully prepared over a wide range of size ratios (γ = small/large) from 0.06 to 0.30 by tuning the γ of the micro- and nanoparticles used during assembly. The growth mechanism of 3D binary colloidal assemblies is investigated and it is found that electrostatic forces facilitate assembly formation until the end of the evaporation process, with capillary forces also playing a role. In addition, the effects of solvent type, humidity, and salt concentration on crystal formation and ordering behaviour are also examined. Furthermore, long range, highly ordered binary colloidal assemblies can be fabricated by the choice of a low conducting solvent combined with evaporation induced assembly.

  13. Solidifying processing device for radioactive waste

    International Nuclear Information System (INIS)

    Sueto, Kumiko; Toyohara, Naomi; Tomita, Toshihide; Sato, Tatsuaki

    1990-01-01

    The present invention concerns a solidifying device for radioactive wastes. Solidifying materials and mixing water are mixed by a mixer and then charged as solidifying and filling materials to a wastes processing container containing wastes. Then, cleaning water is sent from a cleaning water hopper to a mixer to remove the solidifying and filling materials deposited in the mixer. The cleaning liquid wastes are sent to a separator to separate aggregate components from cleaning water components. Then, the cleaning water components are sent to the cleaning water hopper and then mixed with dispersing materials and water, to be used again as the mixing water upon next solidifying operation. On the other hand, the aggregate components are sent to a processing mechanism as radioactive wastes. With such procedures, since the discharged wastes are only composed of the aggregates components, and the amount of the wastes are reduced, facilities and labors for the processing of cleaning liquid wastes can be decreased. (I.N.)

  14. Method of solidifying radioactive waste

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Mihara, Shigeru; Yamashita, Koji; Sauda, Kenzo.

    1988-01-01

    Purpose: To obtain satisfactory plastic solidification products rapidly and more conveniently from radioactive wastes. Method: liquid wastes contain, in addition to sodium sulfate as the main ingredient, nitrates hindering the polymerizing curing reactions and various other unknown ingredients, while spent resins contain residual cationic exchange groups hindering the polymerizing reaction. Generally, as the acid value of unsaturated liquid polyester resins is lower, the number of terminal alkyd resins is small, formation of nitrates is reduced and the polymerizing curing reaction is taken place more smoothly. In view of the above, radioactive wastes obtained by dry powderization or dehydration of radioactive liquid wastes or spent resins are polymerized with unsaturated liquid polyester resins with the acid value of less than 13 to obtain plastic solidification. Thus, if the radioactive wastes contain a great amount of polymerization hindering material such as NaNO 2 , they can be solidified rapidly and conveniently with no requirement for pre-treatment. (Kamimura, Y.)

  15. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Maeda, Masahiko; Kira, Satoshi; Watanabe, Naotoshi; Nagaoka, Takeshi; Akane, Junta.

    1982-01-01

    Purpose: To obtain solidification products of radioactive wastes having sufficient monoaxial compression strength and excellent in water durability upon ocean disposal of the wastes. Method: Solidification products having sufficient strength and filled with a great amount of radioactive wastes are obtained by filling and solidifying 100 parts by weight of chlorinated polyethylene resin and 100 - 500 parts by weight of particular or powderous spent ion exchange resin as radioactive wastes. The chlorinated polyethylene resin preferably used herein is prepared by chlorinating powderous or particulate polyethylene resin in an aqueous suspending medium or by chlorinating polyethylene resin dissolved in an organic solvent capable of dissolving the polyethylene resin, and it is crystalline or non-crystalline chlorinated polyethylene resin comprising 20 - 50% by weight of chlorine, non-crystalline resin with 25 - 40% by weight of chlorine being particularly preferred. (Horiuchi, T.)

  16. Microstructure of rapidly solidified materials

    Science.gov (United States)

    Jones, H.

    1984-07-01

    The basic features of rapidly solidified microstructures are described and differences arising from alternative processing strategies are discussed. The possibility of achieving substantial undercooling prior to solidification in processes such as quench atomization and chill block melt spinning can give rise to striking microstructural transitions even when external heat extraction is nominally Newtonian. The increased opportunity in laser and electron beam surface melting for epitaxial growth on the parent solid at an accelerating rate, however, does not exclude the formation of nonequilibrium phases since the required undercooling can be locally attained at the solidification front which is itself advancing at a sufficiently high velocity. The effects of fluid flow indicated particularly in melt spinning and surface melting are additional to the transformational and heat flow considerations that form the present basis for interpretation of such microstructural effects.

  17. Method of solidifying radioactive solid wastes

    International Nuclear Information System (INIS)

    Fukazawa, Tetsuo; Kawamura, Fumio; Kikuchi, Makoto.

    1984-01-01

    Purpose: To obtain solidification products of radioactive wastes satisfactorily and safely with no destruction even under a high pressure atmosphere by preventing the stress concentration by considering the relationships of the elastic module between the solidifying material and radioactive solid wastes. Method: Solidification products of radioactive wastes with safety and securing an aimed safety ratio are produced by conditioning the modules of elasticity of the solidifying material equal to or less than that of the radioactive wastes in a case where the elastic module of radioactive solid wastes to be solidified is smaller than that of the solidifying material (the elastic module of wastes having the minimum elastic module among various wastes). The method of decreasing the elastic module of the solidifying material usable herein includes the use of such a resin having a long distance between cross-linking points of a polymer in the case of plastic solidifying materials, and addition of rubber-like binders in the case of cement or like other inorganic solidifying materials. (Yoshihara, H.)

  18. DNA-directed self-assembly of gold nanoparticles into binary and ternary nanostructures

    International Nuclear Information System (INIS)

    Yao Hui; Yi Changqing; Tzang Chihung; Zhu Junjie; Yang Mengsu

    2007-01-01

    The assembly and characterization of gold nanoparticle-based binary and ternary structures are reported. Two strategies were used to assemble gold nanoparticles into ordered nanoscale architectures: in strategy 1, gold nanoparticles were functionalized with single-strand DNA (ssDNA) first, and then hybridized with complementary ssDNA-labelled nanoparticles to assemble designed architectures. In strategy 2, the designed architectures were constructed through hybridization between complementary ssDNA first, then by assembling gold nanoparticles to the scaffolding through gold-sulfur bonds. Both TEM measurements and agarose gel electrophoresis confirmed that the latter strategy is more efficient in generating the designed nanostructures

  19. Coulomb force directed single and binary assembly of nanoparticles from aqueous dispersions by AFM nanoxerography.

    Science.gov (United States)

    Palleau, Etienne; Sangeetha, Neralagatta M; Viau, Guillaume; Marty, Jean-Daniel; Ressier, Laurence

    2011-05-24

    We present a simple protocol to obtain versatile assemblies of nanoparticles from aqueous dispersions onto charge patterns written by atomic force microscopy, on a 100 nm thin film of polymethylmethacrylate spin-coated on silicon wafers. This protocol of nanoxerography uses a two-stage development involving incubation of the desired aqueous colloidal dispersion on charge patterns and subsequent immersion in an adequate water-soluble alcohol. The whole process takes only a few minutes. Numerical simulations of the evolution of the electric field generated by charge patterns in various solvents are done to resolve the mechanism by which nanoparticle assembly occurs. The generic nature of this protocol is demonstrated by constructing various assemblies of charged organic/inorganic/metallic (latex, silica, gold) nanoparticles of different sizes (3 to 100 nm) and surface functionalities from aqueous dispersions onto charge patterns of complex geometries. We also demonstrate that it is possible to construct a binary assembly of nanoparticles on a pattern made of positive and negative charges generated in a single charge writing step, by sequential developments in two aqueous dispersions of oppositely charged particles. This protocol literally extends the spectra of eligible colloids that can be assembled by nanoxerography and paves the way for building complex assemblies of nanoparticles on predefined areas of surfaces, which could be useful for the elaboration of nanoparticle-based functional devices.

  20. Generalisation to binary mixtures of the second gradient method and application to direct numerical simulation of nucleate boiling

    International Nuclear Information System (INIS)

    Fouillet, C.

    2003-01-01

    In this work, we simulate a nucleate boiling problem using direct numerical simulation. The numerical method used is the second gradient method based on a diffuse interface model which represents interfaces as volumetric regions of finite thickness across which the physical properties of the fluid vary continuously. First, this method is successfully applied to nucleate boiling of a pure fluid. Then, the model is extended to dilute binary mixtures. After studying its validity and its limits in simple configurations, it is then applied to nucleate boiling of a dilute mixture. These simulations show a strong decrease of the heat transfer coefficient as the concentration increases, in agreement with the numerous experimental studies published in this domain. (author) [fr

  1. Method of solidifying radioactive wastes with plastics

    International Nuclear Information System (INIS)

    Matsuura, Hiroyuki; Yasumura, Keijiro; Minami, Yuji; Tomita, Toshihide

    1980-01-01

    Purpose: To prevent solidification of solidifying agents in the mixer by conducting the mixing process for the solidifying agents and the radioactive wastes at a temperature below the initiation point for the solidification of the agents thereby separating the mixing process from the solidification-integration process. Method: Catalyst such as cobalt naphthenate is charged into an unsaturated polyester resin in a mixer previously cooled, for example, to -10 0 C. They are well mixed with radioactive wastes and the mixture in the mixer is charged in a radioactive waste storage container. The temperature of the mixture, although kept at a low temperature initially, gradually increases to an ambient temperature whereby curing reaction is promoted and the reaction is completed about one day after to provide firm plastic solidification products. This can prevent the solidification of the solidifying agents in the mixer to thereby improve the circumstance's safety. (Kawakami, Y.)

  2. A non-binary direct digital synthesizer with an extended phase accumulator.

    Science.gov (United States)

    Nosaka, H; Yamaguchi, Y; Muraguchi, M

    2001-01-01

    We describe a new direct digital synthesizer (DDS) in which output tuning resolution is flexibly controlled. The new DDS has an extended phase accumulator (EPA) controlled by two frequency control words; one determines the wave number within a single EPA operation cycle, and the other determines the length of the cycle. The EPA allows the DDS to provide jitter-free signals, the frequencies of which are given by arbitrary fractional expressions. (The denominator is fixed in conventional DDS that use normal phase accumulators.) Experimental results showed that the EPA worked well, allowing flexible output tuning resolution.

  3. Direct measurements of conventional and anisotropic magnetocaloric effect in binary RAl2 single crystals

    Science.gov (United States)

    Monteiro, J. C. B.; Gandra, F. G.

    2017-06-01

    We report on specific heat and magnetocaloric effect (MCE) measurements in single crystals of HoAl2, DyAl2, and TbAl2 measured by a heat flux technique using Peltier devices. Those compounds order ferromagnetically at 31 K, 61 K, and 106 K respectively, and present a spin reorientation transition (SRT) below TC. We study the dependence of the SRT with magnetic field and temperature by means of specific heat measurements performed in single crystals oriented at the [" separators="| 100 ], [" separators="| 110 ], and [" separators="| 111 ] directions with the aid of calculations using a simple model. We obtained the conventional MCE for HoAl2 and TbAl2 and also the anisotropic version of the effect obtained indirectly from the specific heat for TbAl2 and DyAl2. We also present the results for a direct determination of the anisotropic MCE for DyAl2 by measuring the heat flux generated by a rotation of the single crystal under constant field.

  4. Total and Direct Correlation Function Integrals from Molecular Simulation of Binary Systems

    DEFF Research Database (Denmark)

    Wedberg, Nils Hejle Rasmus Ingemar; O’Connell, John P.; Peters, Günther H.J.

    2011-01-01

    The possibility for obtaining derivative properties for mixtures from integrals of spatial total and direct correlation functions obtained from molecular dynamics simulations is explored. Theoretically well-supported methods are examined to extend simulation radial distribution functions to long...... are consistent with an excess Helmholtz energy model fitted to available simulations. In addition, simulations of water/methanol and water/t-butanol mixtures have been carried out. The method yields results for partial molar volumes, activity coefficient derivatives, and individual correlation function integrals...... in reasonable agreement with smoothed experimental data. The proposed method for obtaining correlation function integrals is shown to perform at least as well as or better than two previously published approaches....

  5. Rapidly solidified aluminium for optical applications

    NARCIS (Netherlands)

    Gubbels, G.P.H.; Venrooy, B.W.H. van; Bosch, A.J.; Senden, R.

    2008-01-01

    This paper present the results of a diamond turning study of a rapidly solidified aluminium 6061 alloy grade, known as RSA6061. It is shown that this small grain material can be diamond turned to smaller roughness values than standard AA6061 aluminium grades. Also, the results are nearly as good as

  6. The thermochemical behavior of some binary shape memory alloys by high temperature direct synthesis calorimetry

    International Nuclear Information System (INIS)

    Meschel, S.V.; Pavlu, J.; Nash, P.

    2011-01-01

    Research highlights: → We studied 14 shape memory alloys. → The enthalpies of formation and structure characteristics are summarized. → Theoretical predictions by ab initio calculations compare better with experimental measurements than Miedema's semi empirical model. - Abstract: The standard enthalpies of formation of some shape memory alloys have been measured by high temperature direct synthesis calorimetry at 1373 K. The following results (in kJ/mol of atoms) are reported: CoCr (-0.3 ± 2.9); CuMn (-3.7 ± 3.2); Cu 3 Sn (-10.4 ± 3.1); Fe 2 Tb (-5.5 ± 2.4); Fe 2 Dy (-1.6 ± 2.9); Fe 17 Tb 2 (-2.1 ± 3.1); Fe 17 Dy 2 (-5.3 ± 1.7); FePd 3 (-16.0 ± 2.7); FePt (-23.0 ± 1.9); FePt 3 (-20.7 ± 2.3); NiMn (-24.9 ± 2.6); TiNi (-32.7 ± 1.0); TiPd (-60.3 ± 2.5). The results are compared with some earlier experimental values obtained by calorimetry and by EMF technique. They are also compared with predicted values on the basis of the semi empirical model of Miedema and co-workers and with ab initio calculations when available. We will also assess the available information regarding the structures of these alloys.

  7. Standard enthalpies of formation of some Lanthanide–Cobalt binary alloys by high temperature direct synthesis calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Meschel, S.V., E-mail: meschel@jfi.uchicago.edu [Illinois Institute of Technology, Thermal Processing Technology Center, 10 W. 32nd Street, Chicago, IL (United States); University of Chicago, Gordon Center of Interactive Science, 929 E 57th Street, Chicago, IL 60637 (United States); Nash, P. [Illinois Institute of Technology, Thermal Processing Technology Center, 10 W. 32nd Street, Chicago, IL (United States); Gao, Q.N.; Wang, J.C.; Du, Y. [Central South University, State Key Laboratory of Powder Metallurgy, Changsha, Hunan 410083 (China)

    2013-11-25

    Highlights: •Studied binary Lanthanide–Cobalt intermetallic alloys by high temperature calorimetry. •Determined the enthalpies of formation of 16 magnetostrictive alloys. •Compared the experimental measurements with theoretical predictions by two different models. -- Abstract: The standard enthalpies of formation of intermetallic compounds of some Lanthanide–Cobalt systems have been measured by high temperature direct synthesis calorimetry at 1373 ± 2 K. The following results in kJ/mol of atoms are reported: CeCo{sub 5}(−9.4 ± 3.3); Ce{sub 2}Co{sub 17}(−6.8 ± 3.2); PrCo{sub 5}(−10.5 ± 2.4); Pr{sub 2}Co{sub 17}(−6.8 ± 3.6); NdCo{sub 5}(−12.7 ± 2.6); Nd{sub 2}Co{sub 17}(−6.6 ± 2.7); SmCo{sub 5}(−12.2 ± 1.8); Sm{sub 2}Co{sub 17}(−7.2 ± 2.5); GdCo{sub 5}(−10.0 ± 2.4); Tb{sub 2}Co{sub 17}(−7.7 ± 2.9); Dy{sub 2}Co{sub 17}(−8.1 ± 2.9); HoCo{sub 3}(−17.5 ± 2.2); ErCo{sub 3}(−19.7 ± 3.3); TmCo{sub 3}(−22.9 ± 3.0); LuCo{sub 3}(−23.0 ± 2.6). The measurements are compared with values from the literature and with predicted values of the semi empirical model of Miedema and Coworkers. We also compare the measurements with predicted values by ab initio calculations. We will present a systematic picture of how the enthalpies of formation may be related to the atomic number of the Lanthanide element (LA). We will also compare the thermochemical behavior of the Fe, Co and Ni binary alloys with Lanthanide elements.

  8. Method for solidifying powdery radioactive wastes

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Matsuura, Hiroyuki; Tomita, Toshihide.

    1978-01-01

    Purpose: To solidify powdery radioactive wastes through polymerization in a vessel at a high impregnation speed with no cloggings in pipes. Method: A drum can is lined with an inner liner layer of a predetermined thickness made of inflammable material such as glass fiber. A plurality of pipes for supplying liquid plastic monomer are provided in adjacent to the upper end face of the inflammable material or inserted between the vessel and the inflammable material. Then powdery radioactive wastes are filled in the vessel and the liquid plastic monomer dissolving therein a polymerization initiator is supplied through the pipes. The liquid plastic monomer impregnates through the inflammable material layer into the radioactive wastes and the plastic monomer is polymerized by the aid of the polymerization initiator after a predetermined of time to produce solidified plastic products of radioactive wastes. (Seki, T.)

  9. Leaching behavior of solidified plastics radioactive wastes

    International Nuclear Information System (INIS)

    Yook, Chong Chul; Lee, Byung Hun; Jae, Won Mok; Kim, Kyung Eung

    1986-01-01

    It is highly needed to develope the solidification process to dispose safely the radioactive wastes increasing with the growth of the nuclear industry. The leaching mechanisms of the solidified plastic wastes were investigated and the leaching rates of the plastic wastes were also measured among the many solidification processes. In addition, the transport equation based on the diffusion or the diffusion-dissolution was compared with the empirical equation derived from the experimental data by graphical method. Consequently, leaching process of the solidified plastic wastes is quite well agreed with the mass transport theory, but it may be difficult to simulate leaching process by diffusion dissolution mechanism. But the theoretical equation could be applicable to the cumulative amount of radionuclides leached form the plastic wastes disposed into the environment. (Author)

  10. Characterization of aluminium alloys rapidly solidified

    International Nuclear Information System (INIS)

    Monteiro, W.A.

    1988-01-01

    This paper discussed the investigation of the microstructural and mechanical properties of the aluminium alloys (3003; 7050; Al-9% Mg) rapidly solidified by melt spinning process (cooling rate 10 4 - 10 6 K/s). The rapidly solidification process of the studied aluminium alloys brought a microcrystallinity, a minimum presence of coarse precipitation and, also, better mechanical properties of them comparing to the same alloys using ingot process. (author) [pt

  11. Interacting binaries

    International Nuclear Information System (INIS)

    Eggleton, P.P.; Pringle, J.E.

    1985-01-01

    This volume contains 15 review articles in the field of binary stars. The subjects reviewed span considerably, from the shortest period of interacting binaries to the longest, symbiotic stars. Also included are articles on Algols, X-ray binaries and Wolf-Rayet stars (single and binary). Contents: Preface. List of Participants. Activity of Contact Binary Systems. Wolf-Rayet Stars and Binarity. Symbiotic Stars. Massive X-ray Binaries. Stars that go Hump in the Night: The SU UMa Stars. Interacting Binaries - Summing Up

  12. Cation distributions on rapidly solidified cobalt ferrite

    Science.gov (United States)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  13. Site Simulation of Solidified Peat: Lab Monitoring

    Science.gov (United States)

    Durahim, N. H. Ab; Rahman, J. Abd; Tajuddin, S. F. Mohd; Mohamed, R. M. S. R.; Al-Gheethi, A. A.; Kassim, A. H. Mohd

    2018-04-01

    In the present research, the solidified peat on site simulation is conducted to obtain soil leaching from soil column study. Few raw materials used in testing such as Ordinary Portland Cement (OPC), Fly ash (FA) and bottom ash (BA) which containing in solidified peat (SP), fertilizer (F), and rainwater (RW) are also admixed in soil column in order to assess their effects. This research was conducted in two conditions which dry and wet condition. Distilled water used to represent rainfall during flushing process while rainwater used to gain leaching during dry and wet condition. The first testing made after leaching process done was Moisture Content (MC). Secondly, Unconfined Compressive Strength (UCS) will be conducted on SP to know the ability of SP strength. These MC and UCS were made before and after SP were applied in soil column. Hence, the both results were compared to see the reliability occur on SP. All leachate samples were tested using Absorption Atomic Spectroscopy (AAS), Ion Chromatography (IC) and Inductively-Coupled Plasma Spectrophotometry (ICP-MS) testing to know the anion and cation present in it.

  14. Method and apparatus for solidifying radioactive waste

    International Nuclear Information System (INIS)

    Kadota, Hiroko; Kikuchi, Makoto; Tsuchiya, Hiroyuki; Tamada, Shin.

    1989-01-01

    The present invention concerns a method of solidifying radioactive wastes that generate heat with water curing solidifying material and the object there of is suppress the effect of heat generation of the wastes given on the solidification material. That is, it is a feature of the invention to inject water content contained in the water curable solidification material in the form of ice into the wastes. Thus, since the water content in the water curable solidification material is ice, the solidification products can be obtained by way of the following three steps: (1) ice is dissolved into water, (2) solid content of the solidification material is dissolved into water, and(3) curing reaction of the solidification material is started. Acccordingly, since the heat generated from the wastes contributes as heat of reaction when ice is dissolved into water till the solidification material has been completely filled, promotion for the curing reaction causing problems so far can be suppressed to enable easy filling. Then, after the completion of the filling of the solidification material, the heat of the wastes has an effect of promoting the second and the third steps described above to accelerate the curing reaction. (K.M.)

  15. Method and device for solidifying radioactive waste

    International Nuclear Information System (INIS)

    Hayashi, Tadamasa.

    1981-01-01

    Purpose: To solidify radioactive waste without producing radioactive dusts by always heating and evaporating the water from liquid radioactive waste in a mixture of liquid plastic and exhausting the molten mixture of the waste residue and the plastic material. Constitution: Liquid plastic material in a tank cooled to prevent polymerization or changes of its properties is continuously supplied to the top of a heating and mixing evaporator by a constant supply pump. After the heat transfer surface of the evaporator is covered with the plastic material, radioactive waste in the tank is supplied to the evaporator via the constant supply pump. The waste is abruptly mixed with the plastic material by an agitating rotor, heated by a heater, and the evaporated water is fed to a condenser. An anhydrous molten mixture is continuously exhausted from the bottom of the evaporator into a mixture cooler, a polymerizing agent and catalyst are introduced thereinto from a polymerizing agent tank and a catalyst tank, inhibitor is introduced thereinto from a polymerization inhibitor tank as required, and is filled with the mixture a solidifying container while it is cooled for its polymerization and solidification. (Yoshino, Y.)

  16. Study of the thermal and kinetic parameters during directional solidification of zinc-aluminum eutectic alloys

    International Nuclear Information System (INIS)

    Gueijman, Sergio Fabian; Ares, Alicia Esther; Schvezov, Carlos Enrique

    2008-01-01

    Much work has been done recently on investigating zinc-based binary alloys, with different aluminum content, and modified or not with small amounts of other alloying elements. Some of these alloys have interesting properties, such as, the ZA alloys that have properties similar to some bronzes that are used in applications that require pieces with enough resistance to mechanical stresses. The longitudinal thermal gradients, the minimal gradients, the velocities of the liquid interphases, the velocities of the solid interphases and the accelerations of both interphases as a function of time and position were determined for each diluted alloy of the eutectic concentration considered (Zn-5%Al, % in weight), solidified horizontally with caloric extraction from both ends of the test pieces. The values obtained from the horizontal solidification with two directions of predominant caloric extraction are compared to previous values obtained for the same vertically solidified alloy system with a predominantly caloric extraction direction

  17. Microstructural Quantification of Rapidly Solidified Undercooled D2 Tool Steel

    Science.gov (United States)

    Valloton, J.; Herlach, D. M.; Henein, H.; Sediako, D.

    2017-10-01

    Rapid solidification of D2 tool steel is investigated experimentally using electromagnetic levitation (EML) under terrestrial and reduced gravity conditions and impulse atomization (IA), a drop tube type of apparatus. IA produces powders 300 to 1400 μm in size. This allows the investigation of a large range of cooling rates ( 100 to 10,000 K/s) with a single experiment. On the other hand, EML allows direct measurements of the thermal history, including primary and eutectic nucleation undercoolings, for samples 6 to 7 mm in diameter. The final microstructures at room temperature consist of retained supersaturated austenite surrounded by eutectic of austenite and M7C3 carbides. Rapid solidification effectively suppresses the formation of ferrite in IA, while a small amount of ferrite is detected in EML samples. High primary phase undercoolings and high cooling rates tend to refine the microstructure, which results in a better dispersion of the eutectic carbides. Evaluation of the cell spacing in EML and IA samples shows that the scale of the final microstructure is mainly governed by coarsening. Electron backscattered diffraction (EBSD) analysis of IA samples reveals that IA powders are polycrystalline, regardless of the solidification conditions. EBSD on EML samples reveals strong differences between the microstructure of droplets solidified on the ground and in microgravity conditions. While the former ones are polycrystalline with many different grains, the EML sample solidified in microgravity shows a strong texture with few much larger grains having twinning relationships. This indicates that fluid flow has a strong influence on grain refinement in this system.

  18. Method of solidifying radioactive waste by plastics

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Tomita, Toshihide.

    1976-01-01

    Purpose: To prevent leakage of radioactivity by providing corrosion-resistant layer on the inner surface of a waste container for radioactive waste. Constitution: The inner periphery and bottom of a drum can is lined with an non-flammable cloth of such material as asbestos. This drum is filled with a radioactive waste in the form of powder or pellets. Then, a mixture of a liquid plastic monomer and a polymerization starting agent is poured at a normal temperature, and the surface is covered with a non-flammable cloth. The plastic monomer and radioactive waste are permitted to impregnate the non-flammable cloth and are solidified there. Thus, even if the drum can is corroded at the sea bottom after disposal it in the ocean, it is possible to prevent the waste from permeating into the outer sea water because of the presence of the plastic layer on the inside. Styrene is used as the monomer. (Aizawa, K.)

  19. A process for solidifying radioactive liquid waste

    International Nuclear Information System (INIS)

    Mergan, L.M.; Cordier, J.-P.

    1981-01-01

    In a process for solidifying radioactive liquid waste, its pH is adjusted, solids precipitated and then it is concentrated to about 50% solids content using a thin film evaporator, the concentrate then being dried to powder in a heated mixer. The mixer has a heated wall and working means, e.g. a rotor and helical screw, to shear the dried concentrate from the internal walls, subdivide it into a dry particulate powder, and advance the powder to the mixer outlet. The dried particles are then encapsulated in a suitable matrix. Vapour from the mixer and evaporator is condensed and recycled after any particles have been removed from it. The mixer may both dry the concentrate and mix the dry particles with the encapsulating matrix, and possibly, part of the mixer may be used for pH adjustment and precipitation. (author)

  20. Method of solidifying radioactive liquid wastes

    International Nuclear Information System (INIS)

    Uetake, Naoto; Kawamura, Fumio; Kikuchi, Makoto; Fukazawa, Tetsuo.

    1983-01-01

    Purpose: To enable to confine the volatiling ingredients such as cesium in liquid wastes safely in glass solidification products while suppressing the volatilization thereof. Method: Acid salt of tetravalent metal such as titanium phosphate has an intense selective adsorption property to cesium. So liquid wastes stored in a high level liquid wastes tank is mixed with titanium phosphate gels stored in an adsorbent tank, then supplied to a mixer and mixed with a sodium silicate solution stored in a sodium silicate storage tank and boric acid stored in an additive tank, into gel-like state. The gel-like material thus formed is supplied to a drier. After being dried at a temperature of 200sup(o)C - 300sup(o)C, the material is melted under heating at a temperature of 1000sup(o)C - 1100sup(o)C, and then cooled to solidify. (Horiuchi, T.)

  1. Direct methanol fuel cells: Pt-Ni/C binary electrocatalysts; Celulas a combutivel de metanol direto: eletrocatalisadores binarios de Pt-Ni/C

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, Jose Ricardo Cezar; Antolini, Ermete; Santos, Ana Maria dos; Gonzalez, Ernesto Rafael [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Quimica], e-mail: salgado@iqsc.usp.br

    2004-07-01

    Direct methanol fuel cells use platinum alloys as more efficient catalysts than platinum. In the case of binary alloys, the second metal affects several properties of platinum, like the interatomic distance, the electronic density and the capacity of forming oxygenated species at lower potentials. In this work, Pt-Ni catalysts supported on high surface area carbon (Pt-Ni/C) were prepared and characterized, and tested as catalysts in the anode and the cathode in direct methanol fuel cells. In both cases the performance of the material was better than that of Pt/C, and comparing the two situations it was better when the material was used in the cathode. The improved performance in the cathode was attributed to the nickel that forms a true alloy with platinum, while the better performance in the anode was attributed to the presence of nickel oxides. (author)

  2. Binary and ternary systems

    International Nuclear Information System (INIS)

    Petrov, D.A.

    1986-01-01

    Conditions for thermodynamical equilibrium in binary and ternary systems are considered. Main types of binary and ternary system phase diagrams are sequently constructed on the basis of general regularities on the character of transition from one equilibria to others. New statements on equilibrium line direction in the diagram triple points and their isothermal cross sections are developed. New represenations on equilibria in case of monovariant curve minimum and maximum on three-phase equilibrium formation in ternary system are introduced

  3. The origin of high activity but low CO(2) selectivity on binary PtSn in the direct ethanol fuel cell.

    Science.gov (United States)

    Jin, Jia-Mei; Sheng, Tian; Lin, Xiao; Kavanagh, Richard; Hamer, Philip; Hu, Peijun; Hardacre, Christopher; Martinez-Bonastre, Alex; Sharman, Jonathan; Thompsett, David; Lin, Wen-Feng

    2014-05-28

    The most active binary PtSn catalyst for direct ethanol fuel cell applications has been studied at 20 °C and 60 °C, using variable temperature electrochemical in situ FTIR. In comparison with Pt, binary PtSn inhibits ethanol dissociation to CO(a), but promotes partial oxidation to acetaldehyde and acetic acid. Increasing the temperature from 20 °C to 60 °C facilitates both ethanol dissociation to CO(a) and then further oxidation to CO2, leading to an increased selectivity towards CO2; however, acetaldehyde and acetic acid are still the main products. Potential-dependent phase diagrams for surface oxidants of OH(a) formation on Pt(111), Pt(211) and Sn modified Pt(111) and Pt(211) surfaces have been determined using density functional theory (DFT) calculations. It is shown that Sn promotes the formation of OH(a) with a lower onset potential on the Pt(111) surface, whereas an increase in the onset potential is found upon modification of the (211) surface. In addition, Sn inhibits the Pt(211) step edge with respect to ethanol C-C bond breaking compared with that found on the pure Pt, which reduces the formation of CO(a). Sn was also found to facilitate ethanol dehydrogenation and partial oxidation to acetaldehyde and acetic acid which, combined with the more facile OH(a) formation on the Pt(111) surface, gives us a clear understanding of the experimentally determined results. This combined electrochemical in situ FTIR and DFT study provides, for the first time, an insight into the long-term puzzling features of the high activity but low CO2 production found on binary PtSn ethanol fuel cell catalysts.

  4. The True Ultracool Binary Fraction Using Spectral Binaries

    Science.gov (United States)

    Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Schmidt, Sarah J.; Gagné, Jonathan; Faherty, Jacqueline K.; Cruz, Kelle; Gelino, Chris

    2018-01-01

    Brown dwarfs bridge the gap between stars and giant planets. While the essential mechanisms governing their formation are not well constrained, binary statistics are a direct outcome of the formation process, and thus provide a means to test formation theories. Observational constraints on the brown dwarf binary fraction place it at 10 ‑ 20%, dominated by imaging studies (85% of systems) with the most common separation at 4 AU. This coincides with the resolution limit of state-of-the-art imaging techniques, suggesting that the binary fraction is underestimated. We have developed a separation-independent method to identify and characterize tightly-separated (dwarfs as spectral binaries by identifying traces of methane in the spectra of late-M and early-L dwarfs. Imaging follow-up of 17 spectral binaries yielded 3 (18%) resolved systems, corroborating the observed binary fraction, but 5 (29%) known binaries were missed, reinforcing the hypothesis that the short-separation systems are undercounted. In order to find the true binary fraction of brown dwarfs, we have compiled a volume-limited, spectroscopic sample of M7-L5 dwarfs and searched for T dwarf companions. In the 25 pc volume, 4 candidates were found, three of which are already confirmed, leading to a spectral binary fraction of 0.95 ± 0.50%, albeit for a specific combination of spectral types. To extract the true binary fraction and determine the biases of the spectral binary method, we have produced a binary population simulation based on different assumptions of the mass function, age distribution, evolutionary models and mass ratio distribution. Applying the correction fraction resulting from this method to the observed spectral binary fraction yields a true binary fraction of 27 ± 4%, which is roughly within 1σ of the binary fraction obtained from high resolution imaging studies, radial velocity and astrometric monitoring. This method can be extended to identify giant planet companions to young brown

  5. Method for accelerated leaching of solidified waste

    International Nuclear Information System (INIS)

    Fuhrmann, M.; Heiser, J.H.; Pietrzak, R.F.; Franz, E.M.; Colombo, P.

    1990-11-01

    An accelerated leach test method has been developed to determine the maximum leachability of solidified waste. The approach we have taken is to use a semi-dynamic leach test; that is, the leachant is sampled and replaced periodically. Parameters such as temperature, leachant volume, and specimen size are used to obtain releases that are accelerated relative to other standard leach tests and to the leaching of full-scale waste forms. The data obtained with this test can be used to model releases from waste forms, or to extrapolate from laboratory-scale to full-scale waste forms if diffusion is the dominant leaching mechanism. Diffusion can be confirmed as the leaching mechanism by using a computerized mathematical model for diffusion from a finite cylinder. We have written a computer program containing several models including diffusion to accompany this test. The program and a Users' Guide that gives screen-by-screen instructions on the use of the program are available from the authors. 14 refs., 4 figs., 1 tab

  6. Leaching behavior of cement solidified materials

    International Nuclear Information System (INIS)

    2002-03-01

    An immersion test of mortar was carried out in order to solidify waste with uranium. The sample consists of 2000g cement, 950g ion exchange water, 1600g sound and 1g water reducing agent. The solid sample and ion exchange water (100 of immersion liquid/original sample) was put into polystyrene closed vessel in globe box and kept four weeks, and then it was separated to the immersion liquid and the solid phase. New ion exchange water was added to the solid and kept four weeks and then separated. Its ratio showed 200. The analysis was done at 100, 200 and 300 ratio of immersion liquid/sample. The solid phase was studied by the powder X-ray diffraction analysis, thermo gravimetric analysis and chemical analysis. The liquid phase was determined by pH values and composition analysis. The results showed Ca(OH) 2 , cement hydrate, was flowed out and it was not found in the solid phase at 200 ratio. (S.Y.)

  7. Interacting binaries

    CERN Document Server

    Shore, S N; van den Heuvel, EPJ

    1994-01-01

    This volume contains lecture notes presented at the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. The contributors deal with symbiotic stars, cataclysmic variables, massive binaries and X-ray binaries, in an attempt to provide a better understanding of stellar evolution.

  8. Leaching studies of radionuclides from solidified wastes with thermosetting resin

    International Nuclear Information System (INIS)

    Suzuki, K.; Kuribayashi, H.; Morimitsu, W.; Ono, I.

    1982-01-01

    This paper reports on studies of the leachability of Co-60 and Cs-137 from simulated LWR radwastes solidified with thermosetting resin and evaluates the effects of chemical fixation on leachability. It is concluded that insolubilization by a nickel-ferrocyanide compound offers an effective chemical fixation of these radionuclides and is a recommended pretreating method for radwastes that are to be solidified. 2 figures

  9. Microstructure and orientation evolution in unidirectional solidified Al–Zn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhongwei, E-mail: chzw@nwpu.edu.cn; Wang, Enyuan; Hao, Xiaolei

    2016-06-14

    Morphological instability and growth orientation evolution during unidirectional solidification of Al–Zn alloys with different pulling speeds were investigated by X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) in scanning electron microscope (SEM). The experimental results show that, as the pulling speed increases, the primary dendrite spacing becomes smaller gradually and dendrite trunks incline to the heat flow direction perfectly in unidirectional solidified Al–9.8 wt%Zn and Al–89 wt%Zn alloys. However, regardless of the pulling speed in unidirectional solidified Al–Zn alloys under fixed thermal gradient, the regular dendrites with <100> directions of primary trunks and secondary arms in 9.8 wt% Zn composition are replaced by <110> dendrites of primary trunks and secondary arms in 89 wt% Zn composition. In unidirectional solidified Al–32 wt% Zn alloy, cellular, fractal seaweed, and stabilized seaweed structures were observed at high pulling speeds. At a high pulling speed of 1000 µm/s, seaweed structures transform to the columnar dendrites with <110> trunks and <100> arms. The above orientation evolution can be attributed to low anisotropy of solid-liquid interface energy and the seaweed structure is responsible for isotropy of {111} planes.

  10. Influence of micro-additions of bismuth on structures, mechanical and electrical transport properties of rapidly solidified Sn-3.5% Ag Alloy from melt

    International Nuclear Information System (INIS)

    El Bahay, M.M.; Mady, H.A.

    2005-01-01

    The present study was undertaken to investigate the influence of the Bi addition in the Sn-3.5 Ag rapidly solidified binary system for use as a Pb-free solder. The resulting properties of the binary system were extended to the Sn based ternary systems Sn 9 6.5-X Ag 3 .5 Bi x (0≤ X ≤ 2.5) solder. The structure and electrical resistivity of rapidly solidified (melt spun) alloys have been investigated. With the addition of up to 2.5 mass % Bi, the melting temperature decreases from 221.1 to 214.8 degree C. Wetting contact angle of the six alloys on Cu Zn 3 0 substrate are carried out at 573 K. Microhardness evaluations were also performed on the Sn-Ag-Bi alloys. The measured values and other researcher's results were compared with the calculated data

  11. Structure and mechanical properties of Al-3Fe rapidly solidified alloy

    International Nuclear Information System (INIS)

    Karakoese, Ercan; Keskin, Mustafa

    2011-01-01

    The Al based Al-3 wt%Fe alloy was prepared by conventionally casting (ingot) and further processed the melt-spinning technique and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) together with energy dispersive spectroscopy (EDS), differential scanning calorimetry (DSC) and the Vickers microhardness tester. The rapidly solidified (RS) binary alloys were composed of supersaturated α-Al solid solution and finely dispersed intermetallic phases. Experimental results showed that the mechanical properties of RS alloys were enhanced, which can be attributed to significant changes in the microstructure. The dependence of microhardness H V on the solidification rate (V) was analysed. These results showed that with the increasing values of V, the values of H V increased.

  12. Trojan Binaries

    Science.gov (United States)

    Noll, K. S.

    2017-12-01

    The Jupiter Trojans, in the context of giant planet migration models, can be thought of as an extension of the small body populations found beyond Neptune in the Kuiper Belt. Binaries are a distinctive feature of small body populations in the Kuiper Belt with an especially high fraction apparent among the brightest Cold Classicals. The binary fraction, relative sizes, and separations in the dynamically excited populations (Scattered, Resonant) reflects processes that may have eroded a more abundant initial population. This trend continues in the Centaurs and Trojans where few binaries have been found. We review new evidence including a third resolved Trojan binary and lightcurve studies to understand how the Trojans are related to the small body populations that originated in the outer protoplanetary disk.

  13. Biodegradation testing of solidified low-level waste streams

    International Nuclear Information System (INIS)

    Piciulo, P.L.; Shea, C.E.; Barletta, R.E.

    1985-05-01

    The NRC Technical Position on Waste Form (TP) specifies that waste should be resistant to biodegradation. The methods recommended in the TP for testing resistance to fungi, ASTM G21, and for testing resistance to bacteria, ASTM G22, were carried out on several types of solidified simulated wastes, and the effect of microbial activity on the mechanical strength of the materials tested was examined. The tests are believed to be sufficient for distinguishing between materials that are susceptible to biodegradation and those that are not. It is concluded that failure of these tests should not be regarded of itself as an indication that the waste form will biodegrade to an extent that the form does not meet the stability requirements of 10 CFR Part 61. In the case of failure of ASTM G21 or ASTM G22 or both, it is recommended that additional data be supplied by the waste generator to demonstrate the resistance of the waste form to microbial degradation. To produce a data base on the applicability of the biodegradation tests, the following simulated laboratory-scale waste forms were prepared and tested: boric acid and sodium sulfate evaporator bottoms, mixed-bed bead resins and powdered resins each solidified in asphalt, cement, and vinyl ester-styrene. Cement solidified wastes supported neither fungal nor bacterial growth. Of the asphalt solidified wastes, only the forms of boric acid evaporator bottoms did not support fungal growth. Bacteria grew on all of the asphalt solidified wastes. Cleaning the surface of these waste forms did not affect bacterial growth and had a limited effect on the fungal growth. Only vinyl esterstyrene solidified sodium sulfate evaporator bottoms showed viable fungi cultures, but surface cleaning with solvents eliminated fungal growth in subsequent testing. Some forms of all the waste streams solidified in vinyl ester-styrene showed viable bacteria cultures. 13 refs., 12 tabs

  14. The use of Nb in rapid solidified Al alloys and composites

    Energy Technology Data Exchange (ETDEWEB)

    Audebert, F., E-mail: metal@fi.uba.ar [Advanced Materials Group, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, Ciudad de Buenos Aires 1063 (Argentina); Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Department of Mechanical Engineering and Mathematical Sciences, Oxford Brookes University, Wheatley Campus, OX33 1HX Oxford (United Kingdom); Galano, M. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Saporiti, F. [Advanced Materials Group, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, Ciudad de Buenos Aires 1063 (Argentina)

    2014-12-05

    Highlights: • The use of Nb in RS Al alloys and composites has been reviewed. • Nb was found to improve the GFA of rapid solidified Al–Fe and Al–Ni alloys. • Nb has higher effect in increasing the corrosion resistance than RE in Al–Fe alloys. • Nb improves the stability of the Al–Fe–Cr icosahedral phase. • Nb improves strength, ductility and toughness of nanoquasicrystalline Al matrix composites. - Abstract: The worldwide requirements for reducing the energy consumption and pollution have increased the demand of new and high performance lightweight materials. The development of nanostructured Al-based alloys and composites is a key direction towards solving this demand. High energy prices and decreased availability of some alloying elements open up the opportunity to use non-conventional elements in Al alloys and composites. In this work the application of Nb in rapid solidified Al-based alloys and Al alloys matrix composites is reviewed. New results that clarify the effect of Nb on rapid solidified Al alloys and composites are also presented. It is observed that Nb stabilises the icosahedral Al–Fe/Cr clusters, enhances the glass forming ability and shifts the icosahedral phase decomposition towards higher temperatures. Nb provides higher corrosion resistance with respect to the pure Al and Al–Fe–RE (RE: rare earth) alloys in the amorphous and crystalline states. The use of Nb as a reinforcement to produce new Al alloy matrix composites is explored. It is observed that Nb provides higher strength, ductility and toughness to the nanoquasicrystalline matrix composite. Nb appears as a new key element that can improve several properties in rapid solidified Al alloys and composites.

  15. Parameters of Solidifying Mixtures Transporting at Underground Ore Mining

    Directory of Open Access Journals (Sweden)

    Golik Vladimir

    2017-01-01

    Full Text Available The article is devoted to the problem of providing mining enterprises with solidifying filling mixtures at underground mining. The results of analytical studies using the data of foreign and domestic practice of solidifying mixtures delivery to stopes are given. On the basis of experimental practice the parameters of transportation of solidifying filling mixtures are given with an increase in their quality due to the effect of vibration in the pipeline. The mechanism of the delivery process and the procedure for determining the parameters of the forced oscillations of the pipeline, the characteristics of the transporting processes, the rigidity of the elastic elements of pipeline section supports and the magnitude of vibrator’ driving force are detailed. It is determined that the quality of solidifying filling mixtures can be increased due to the rational use of technical resources during the transportation of mixtures, and as a result the mixtures are characterized by a more even distribution of the aggregate. The algorithm for calculating the parameters of the pipe vibro-transport of solidifying filling mixtures can be in demand in the design of mineral deposits underground mining technology.

  16. Parameters of Solidifying Mixtures Transporting at Underground Ore Mining

    Science.gov (United States)

    Golik, Vladimir; Dmitrak, Yury

    2017-11-01

    The article is devoted to the problem of providing mining enterprises with solidifying filling mixtures at underground mining. The results of analytical studies using the data of foreign and domestic practice of solidifying mixtures delivery to stopes are given. On the basis of experimental practice the parameters of transportation of solidifying filling mixtures are given with an increase in their quality due to the effect of vibration in the pipeline. The mechanism of the delivery process and the procedure for determining the parameters of the forced oscillations of the pipeline, the characteristics of the transporting processes, the rigidity of the elastic elements of pipeline section supports and the magnitude of vibrator' driving force are detailed. It is determined that the quality of solidifying filling mixtures can be increased due to the rational use of technical resources during the transportation of mixtures, and as a result the mixtures are characterized by a more even distribution of the aggregate. The algorithm for calculating the parameters of the pipe vibro-transport of solidifying filling mixtures can be in demand in the design of mineral deposits underground mining technology.

  17. Energy asymmetry in melting and solidifying processes of PCM

    International Nuclear Information System (INIS)

    Jin, Xing; Hu, Huoyan; Shi, Xing; Zhang, Xiaosong

    2015-01-01

    Highlights: • The melting process and the solidifying process of PCM were asymmetrical. • The enthalpy and state of PCM were affected by its previous state. • The main reason for energy asymmetry of PCM was supercooling. - Abstract: The solidifying process of phase change material (PCM) was usually recognized as the exact inverse process of its melting process, especially when building the heat transfer model of PCM. To figure out that whether the melting process and the solidifying process of PCM were symmetrical, several kinds of PCMs were tested by a differential scanning calorimeter (DSC) in this paper. The experimental results showed that no matter using the DSC dynamic measurement method or the DSC step measurement method, the melting process and the solidifying process of PCM were asymmetrical. Because of the energy asymmetry in the melting and solidifying processes of PCM, it was also found that the enthalpy and the state of PCM were not only dependent on its temperature, but also affected by its “previous state”.

  18. Binary optics: Trends and limitations

    Science.gov (United States)

    Farn, Michael W.; Veldkamp, Wilfrid B.

    1993-01-01

    We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.

  19. Method of solidifying and disposing radioactive waste plastic

    International Nuclear Information System (INIS)

    Matsuura, Hiroyuki; Yasumura, Keijiro

    1981-01-01

    Purpose: To solidify radioactive waste as it is with plastic by forming a W/O (Water-in-Oil) emulsion with the radioactive waste and a plastic solidifier, and treating it with a polymerization starting agent, an accelerator, and the like. Method: A predetermined amount of alkaline substance such as sodium hydroxide, triethanol, or the like is added quantitatively to radioactive waste and it is mixed by an agitator. A predetermined amount of solidifier such as unsaturated polyester or the like is added to the mixture and it is further mixed by the agitator to form a stable W/O emulsion. Subsequently, predetermined amounts of polymerization starting agent such as methyl ethyl ketone peroxide and polymerization accelerator such as cobalt naphthenate or the like are added thereto, the mixture is mixed, and is then allowed to stand for at room temperature for the plastic solidification thereof. No reaction occurs after the solidification. (Sekiya, K.)

  20. Detection of free liquid in containers of solidified radioactive waste

    Science.gov (United States)

    Greenhalgh, Wilbur O.

    1985-01-01

    A method of nondestructively detecting the presence of free liquid within a sealed enclosure containing solidified waste by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solidified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  1. Evaluation of solidified high-level waste forms

    International Nuclear Information System (INIS)

    1981-01-01

    One of the objectives of the IAEA waste management programme is to coordinate and promote development of improved technology for the safe management of radioactive wastes. The Agency accomplished this objective specifically through sponsoring Coordinated Research Programmes on the ''Evaluation of Solidified High Level Waste Products'' in 1977. The primary objectives of this programme are to review and disseminate information on the properties of solidified high-level waste forms, to provide a mechanism for analysis and comparison of results from different institutes, and to help coordinate future plans and actions. This report is a summary compilation of the key information disseminated at the second meeting of this programme

  2. Wetting-layer formation mechanisms of surface-directed phase separation under different quench depths with off-critical compositions in polymer binary mixture

    Science.gov (United States)

    Yan, Li-Tang; Xie, Xu-Ming

    2007-02-01

    Focusing on the off-critical condition, the quench depth dependence of surface-directed phase separation in the polymer binary mixture is numerically investigated by combination of the Cahn-Hilliard-Cook theory and the Flory-Huggins-de Gennes theory. Two distinct situations, i.e., for the wetting, the minority component is preferred by the surface and the majority component is preferred by the surface, are discussed in detail. The simulated results show that the formation mechanism of the wetting layer is affected by both the quench depth and the off-critical extent. Moreover, a diagram, illustrating the formation mechanisms of the wetting layer with various quench depths and compositions, is obtained on the basis of the simulated results. It is found that, when the minority component is preferred by the surface, the growth of the wetting layer can exhibit pure diffusion limited growth law, logarithmic growth law, and Lifshitz-Slyozov growth law. However, when the majority component is preferred by the surface, the wetting layer always grows logarithmically, regardless of the quench depth and the off-critical extent. It is interesting that the surface-induced nucleation can be observed in this case. The simulated results demonstrate that the surface-induced nucleation only occurs below a certain value of the quench depth, and a detailed range about it is calculated and indicated. Furthermore, the formation mechanisms of the wetting layer are theoretically analyzed in depth by the chemical potential gradient.

  3. A genetically optimized kinetic model for ethanol electro-oxidation on Pt-based binary catalysts used in direct ethanol fuel cells

    Science.gov (United States)

    Sánchez-Monreal, Juan; García-Salaberri, Pablo A.; Vera, Marcos

    2017-09-01

    A one-dimensional model is proposed for the anode of a liquid-feed direct ethanol fuel cell. The complex kinetics of the ethanol electro-oxidation reaction is described using a multi-step reaction mechanism that considers free and adsorbed intermediate species on Pt-based binary catalysts. The adsorbed species are modeled using coverage factors to account for the blockage of the active reaction sites on the catalyst surface. The reaction rates are described by Butler-Volmer equations that are coupled to a one-dimensional mass transport model, which incorporates the effect of ethanol and acetaldehyde crossover. The proposed kinetic model circumvents the acetaldehyde bottleneck effect observed in previous studies by incorporating CH3CHOHads among the adsorbed intermediates. A multi-objetive genetic algorithm is used to determine the reaction constants using anode polarization and product selectivity data obtained from the literature. By adjusting the reaction constants using the methodology developed here, different catalyst layers could be modeled and their selectivities could be successfully reproduced.

  4. Measurements of Mercury Released from Solidified/Stabilized Waste Forms

    International Nuclear Information System (INIS)

    Mattus, C.H.

    2001-01-01

    This report covers work performed during FY 1999-2000 in support of treatment demonstrations conducted for the Mercury Working Group of the U.S. Department of Energy (DOE) Mixed Waste Focus Area. In order to comply with the requirements of the Resource Conservation and Recovery Act, as implemented by the U.S. Environmental Protection Agency (EPA), DOE must use one of these procedures for wastes containing mercury at levels above 260 ppm: a retorting/roasting treatment or an incineration treatment (if the wastes also contain organics). The recovered radioactively contaminated mercury must then be treated by an amalgamation process prior to disposal. The DOE Mixed Waste Focus Area and Mercury Working Group are working with the EPA to determine if some alternative processes could treat these types of waste directly, thereby avoiding for DOE the costly recovery step. They sponsored a demonstration in which commercial vendors applied their technologies for the treatment of two contaminated waste soils from Brookhaven National Laboratory. Each soil was contaminated with ∼4500 ppm mercury; however, one soil had as a major radioelement americium-241, while the other contained mostly europium-152. The project described in this report addressed the need for data on the mercury vapor released by the solidified/stabilized mixed low-level mercury wastes generated during these demonstrations as well as the comparison between the untreated and treated soils. A related work began in FY 1998, with the measurement of the mercury released by amalgamated mercury, and the results were reported in ORNL/TM-13728. Four treatments were performed on these soils. The baseline was obtained by thermal treatment performed by SepraDyne Corp., and three forms of solidification/stabilization were employed: one using sulfur polymer cement (Brookhaven National Laboratory), one using portland cement [Allied Technology Group (ATG)], and a third using proprietary additives (Nuclear Fuel Services)

  5. Site suitability criteria for solidified high level waste repositories

    International Nuclear Information System (INIS)

    Heckman, R.A.; Holdsworth, T.; Towse, D.F.

    1979-01-01

    Activities devoted to development of regulations, criteria, and standards for storage of solidified high-level radioactive wastes are reported. The work is summarized in sections on site suitability regulations, risk calculations, geological models, aquifer models, human usage model, climatology model, and repository characteristics. Proposed additional analytical work is also summarized

  6. Characteristics of solidified high-level waste products

    International Nuclear Information System (INIS)

    1979-01-01

    The object of the report is to contribute to the establishment of a data bank for future preparation of codes of practice and standards for the management of high-level wastes. The work currently in progress on measuring the properties of solidified high-level wastes is being studied

  7. Binary effectivity rules

    DEFF Research Database (Denmark)

    Keiding, Hans; Peleg, Bezalel

    2006-01-01

    is binary if it is rationalized by an acyclic binary relation. The foregoing result motivates our definition of a binary effectivity rule as the effectivity rule of some binary SCR. A binary SCR is regular if it satisfies unanimity, monotonicity, and independence of infeasible alternatives. A binary...

  8. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  9. Development and characterization of solidified forms for high-level wastes: 1978. Annual report

    International Nuclear Information System (INIS)

    Ross, W.A.; Mendel, J.E.

    1979-12-01

    Development and characterization of solidified high-level waste forms are directed at determining both process properties and long-term behaviors of various solidified high-level waste forms in aqueous, thermal, and radiation environments. Waste glass properties measured as a function of composition were melt viscosity, melt electrical conductivity, devitrification, and chemical durability. The alkali metals were found to have the greatest effect upon glass properties. Titanium caused a slight decrease in viscosity and a significant increase in chemical durability in acidic solutions (pH-4). Aluminum, nickel and iron were all found to increase the formation of nickel-ferrite spinel crystals in the glass. Four multibarrier advanced waste forms were produced on a one-liter scale with simulated waste and characterized. Glass marbles encapsulated in a vacuum-cast lead alloy provided improved inertness with a minimal increase in technological complexity. Supercalcine spheres exhibited excellent inertness when coated with pyrolytic carbon and alumina and put in a metal matrix, but the processing requirements are quite complex. Tests on simulated and actual high-level waste glasses continue to suggest that thermal devitrification has a relatively small effect upon mechanical and chemical durabilities. Tests on the effects radiation has upon waste forms also continue to show changes to be relatively insignificant. Effects caused by decay of actinides can be estimated to saturate at near 10 19 alpha-events/cm 3 in homogeneous solids. Actually, in solidified waste forms the effects are usually observed around certain crystals as radiation causes amorphization and swelling of th crystals

  10. Detecting Malicious Code by Binary File Checking

    Directory of Open Access Journals (Sweden)

    Marius POPA

    2014-01-01

    Full Text Available The object, library and executable code is stored in binary files. Functionality of a binary file is altered when its content or program source code is changed, causing undesired effects. A direct content change is possible when the intruder knows the structural information of the binary file. The paper describes the structural properties of the binary object files, how the content can be controlled by a possible intruder and what the ways to identify malicious code in such kind of files. Because the object files are inputs in linking processes, early detection of the malicious content is crucial to avoid infection of the binary executable files.

  11. Propertis of solidified radioactive wastes from commercial LWRs

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.; Colombo, P.

    1978-01-01

    A study has been performed to characterize the properties of solidified radioactive wastes generated in the liquid radwaste treatment systems at LWRs. The properties which have been studied are those which are pertinent in defining the relative potential for the release of radionuclides to the environment as well as others relating to the evaluation of various solidification agents on an economic and feasibility basis. The use of standard testing procedures in measuring these properties allows an intercomparison of respective properties between various types of solidified waste forms. The leachability, mechanical properties, thermal stability, radiation stability, and thermal properties of hydraulic cement, ureaformaldehyde, bitumen, and addition type polymer waste forms have been measured. In addition, the chemical sensitivity, volumetric efficiency and radiation shielding characteristics of these waste forms have been studied. Emphasis in this paper is placed on the results of studies concerning chemical compatibility of solidification agents with specific waste streams, volumetric efficiency, free standing water, and leachability

  12. Production and properties of solidified high-level waste

    International Nuclear Information System (INIS)

    Brodersen, K.

    1980-08-01

    Available information on production and properties of solidified high-level waste are presented. The review includes literature up to the end of 1979. The feasibility of production of various types of solidified high-level wast is investigated. The main emphasis is on borosilicate glass but other options are also mentioned. The expected long-term behaviour of the materials are discussed on the basis of available results from laboratory experiments. Examples of the use of the information in safety analysis of disposal in salt formations are given. The work has been made on behalf of the Danish utilities investigation of the possibilities of disposal of high-level waste in salt domes in Jutland. (author)

  13. Characterization of rapidly solidified powder of high-speed steel

    Czech Academy of Sciences Publication Activity Database

    Miglierini, M.; Lančok, Adriana; Kusý, M.

    2009-01-01

    Roč. 190, 1-3 (2009), s. 51-57 ISSN 0304-3843 R&D Projects: GA ČR GP203/07/P011 Grant - others:GA(SK) VEGA1/3190/06 Institutional research plan: CEZ:AV0Z40320502 Keywords : Rapidly solidified powder * Tool steel * Mössbauer spectroscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 0.209, year: 2007

  14. Rapidly solidified prealloyed powders by laser spin atomization

    Science.gov (United States)

    Konitzer, D. G.; Walters, K. W.; Heiser, E. L.; Fraser, H. L.

    1984-01-01

    A new technique, termed laser spin atomization, for the production of rapidly solidified prealloyed powders is described. The results of experiments involving the production of powders of two alloys, one based on Ni, the other on Ti, are presented. The powders have been characterized using light optical metallography, scanning electron microscopy, energy dispersive X-ray spectroscopy, and Auger elec-tron spectroscopy, and these various observations are described.

  15. Organic alloy systems suitable for the investigation of regular binary and ternary eutectic growth

    Science.gov (United States)

    Sturz, L.; Witusiewicz, V. T.; Hecht, U.; Rex, S.

    2004-09-01

    Transparent organic alloys showing a plastic crystal phase were investigated experimentally using differential scanning calorimetry and directional solidification with respect to find a suitable model system for regular ternary eutectic growth. The temperature, enthalpy and entropy of phase transitions have been determined for a number of pure substances. A distinction of substances with and without plastic crystal phases was made from their entropy of melting. Binary phase diagrams were determined for selected plastic crystal alloys with the aim to identify eutectic reactions. Examples for lamellar and rod-like eutectic solidification microstructures in binary systems are given. The system (D)Camphor-Neopentylglycol-Succinonitrile is identified as a system that exhibits, among others, univariant and a nonvariant eutectic reaction. The ternary eutectic alloy close to the nonvariant eutectic composition solidifies with a partially faceted solid-liquid interface. However, by adding a small amount of Amino-Methyl-Propanediol (AMPD), the temperature of the nonvariant eutectic reaction and of the solid state transformation from plastic to crystalline state are shifted such, that regular eutectic growth with three distinct nonfaceted phases is observed in univariant eutectic reaction for the first time. The ternary phase diagram and examples for eutectic microstructures in the ternary and the quaternary eutectic alloy are given.

  16. The effect of grain size and cement content on index properties of weakly solidified artificial sandstones

    Science.gov (United States)

    Atapour, Hadi; Mortazavi, Ali

    2018-04-01

    The effects of textural characteristics, especially grain size, on index properties of weakly solidified artificial sandstones are studied. For this purpose, a relatively large number of laboratory tests were carried out on artificial sandstones that were produced in the laboratory. The prepared samples represent fifteen sandstone types consisting of five different median grain sizes and three different cement contents. Indices rock properties including effective porosity, bulk density, point load strength index, and Schmidt hammer values (SHVs) were determined. Experimental results showed that the grain size has significant effects on index properties of weakly solidified sandstones. The porosity of samples is inversely related to the grain size and decreases linearly as grain size increases. While a direct relationship was observed between grain size and dry bulk density, as bulk density increased with increasing median grain size. Furthermore, it was observed that the point load strength index and SHV of samples increased as a result of grain size increase. These observations are indirectly related to the porosity decrease as a function of median grain size.

  17. Prediction of as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal conditions

    International Nuclear Information System (INIS)

    Du, Qiang; Li, Yanjun

    2015-01-01

    In this paper, a multi-scale as-cast grain size prediction model is proposed to predict as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal condition, i.e., the existence of temperature gradient. Given melt composition, inoculation and heat extraction boundary conditions, the model is able to predict maximum nucleation undercooling, cooling curve, primary phase solidification path and final as-cast grain size of binary alloys. The proposed model has been applied to two Al-Mg alloys, and comparison with laboratory and industrial solidification experimental results have been carried out. The preliminary conclusion is that the proposed model is a promising suitable microscopic model used within the multi-scale casting simulation modelling framework. (paper)

  18. Structural investigations of mechanical properties of Al based rapidly solidified alloys

    International Nuclear Information System (INIS)

    Karakoese, Ercan; Keskin, Mustafa

    2011-01-01

    Highlights: → Rapid solidification processing (RSP) involves exceptionally high cooling rates. → We correlate the microstructure of the intermetallic Al 3 Fe, Al 2 Cu and Al 3 Ni phases with the cooling rate. → The solidification rate is high enough to retain most of alloying elements in the Al matrix. → The rapid solidification has effect on the phase constitution. -- Abstract: In this study, Al based Al-3 wt.%Fe, Al-3 wt.%Cu and Al-3 wt.%Ni alloys were prepared by conventional casting. They were further processed using the melt-spinning technique and characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM) together with energy dispersive spectroscopy (EDS), transmission electron microscope (TEM), differential scanning calorimetry (DSC) and the Vickers microhardness tester. The rapidly solidified (RS) binary alloys were composed of supersaturated α-Al solid solution and finely dispersed intermetallic phases. Experimental results showed that the mechanical properties of RS alloys were enhanced, which can be attributed to significant changes in the microstructure. RS samples were measured using a microhardness test device. The dependence of microhardness H V on the solidification rate (V) was analysed. These results showed that with the increasing values of V, the values of H V increased. The enthalpies of fusion for the same alloys were determined by DSC.

  19. Solidifier effectiveness : variation due to oil composition, oil thickness and temperature

    International Nuclear Information System (INIS)

    Fieldhouse, B.; Fingas, M.

    2009-01-01

    This paper provided an overview of solidifier types and composition. Solidifiers are a class of spill treating agents that offer an effective means to convert a liquid oil into a solid material. They are used as a treatment option for oil spills on water. This paper also reported on recent laboratory studies that consist of 4 components: (1) a qualitative examination of the characteristics of the interaction of a broad range of solidifier products with a standard oil to evaluate reaction rate, states of solidification, and the impact of dosage, (2) a comparison of a smaller subset of solidifiers on the standard oil at lower temperatures, (3) solidifier treatment on a range of oils of varying physical properties and composition to assess the potential scope of application, and (4) the treatment of a series of small-scale oil layers of varying thickness to determine the significance of oil thickness on solidifier effectiveness and recovery. This paper also reviewed solidifier chemistry with particular reference to polymer sorbents; cross-linking agents; and cross-linking agents and polymeric sorbents combined. Toxicity is also an important issue regarding solidifiers. The aquatic toxicity of solidifiers is low and not measurable as the products are not water-soluble. There have not been any studies on the effects of the solidifier or the treated oil on surface feeders and shoreline wildlife that may come into contact with the products. It was concluded that oil composition may play a major role in solidifier effectiveness. The effectiveness of solidifiers is also inhibited at reduced temperatures, increased viscosity and density of the oil. 25 refs., 5 tabs., 2 figs., 1 appendix

  20. Micro and Macro Segregation in Alloys Solidifying with Equiaxed Morphology

    Science.gov (United States)

    Stefanescu, Doru M.; Curreri, Peter A.; Leon-Torres, Jose; Sen, Subhayu

    1996-01-01

    To understand macro segregation formation in Al-Cu alloys, experiments were run under terrestrial gravity (1g) and under low gravity during parabolic flights (10(exp -2) g). Alloys of two different compositions (2% and 5% Cu) were solidified at two different cooling rates. Systematic microscopic and SEM observations produced microstructural and segregation maps for all samples. These maps may be used as benchmark experiments for validation of microstructure evolution and segregation models. As expected, the macro segregation maps are very complex. When segregation was measured along the central axis of the sample, the highest macro segregation for samples solidified at 1g was obtained for the lowest cooling rate. This behavior is attributed to the longer time available for natural convection and shrinkage flow to affect solute redistribution. In samples solidified under low-g, the highest macro-segregation was obtained at the highest cooling rate. In general, low-gravity solidification resulted in less segregation. To explain the experimental findings, an analytical (Flemings-Nereo) and a numerical model were used. For the numerical model, the continuum formulation was employed to describe the macroscopic transports of mass, energy, and momentum, associated with the microscopic transport phenomena, for a two-phase system. The model proposed considers that liquid flow is driven by thermal and solutal buoyancy, and by solidification shrinkage. The Flemings-Nereo model explains well macro segregation in the initial stages of low-gravity segregation. The numerical model can describe the complex macro segregation pattern and the differences between low- and high-gravity solidification.

  1. Nickel speciation in cement-stabilized/solidified metal treatment filtercakes

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Amitava, E-mail: reroy@lsu.edu [J. Bennett Johnston, Sr., Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, LA 70806, USA (United States); Stegemann, Julia A., E-mail: j.stegemann@ucl.ac.uk [Centre for Resource Efficiency & the Environment, Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK (United Kingdom)

    2017-01-05

    Highlights: • XAS shows the same Ni speciation in untreated and stabilized/solidified filtercake. • Ni solubility is the same for untreated and stabilized/solidified filtercake. • Leaching is controlled by pH and physical encapsulation for all binders. - Abstract: Cement-based stabilization/solidification (S/S) is used to decrease environmental leaching of contaminants from industrial wastes. In this study, two industrial metal treatment filtercakes were characterized by X-ray diffractometry (XRD), thermogravimetric and differential thermogravimetric analysis (TG/DTG) and Fourier transform infrared (FTIR); speciation of nickel was examined by X-ray absorption (XAS) spectroscopy. Although the degree of carbonation and crystallinity of the two untreated filtercakes differed, α-nickel hydroxide was identified as the primary nickel-containing phase by XRD and nickel K edge XAS. XAS showed that the speciation of nickel in the filtercake was unaltered by treatment with any of five different S/S binder systems. Nickel leaching from the untreated filtercakes and all their stabilized/solidified products, as a function of pH in the acid neutralization capacity test, was essentially complete below pH ∼5, but was 3–4 orders of magnitude lower at pH 8–12. S/S does not respeciate nickel from metal treatment filtercakes and any reduction of nickel leaching by S/S is attributable to pH control and physical mechanisms only. pH-dependent leaching of Cr, Cu and Ni is similar for the wastes and s/s products, except that availability of Cr, Cu and Zn at decreased pH is reduced in matrices containing ground granulated blast furnace slag.

  2. Detection of free liquid in containers of solidified radioactive waste

    Science.gov (United States)

    Greenhalgh, W.O.

    Nondestructive detection of the presence of free liquid within a sealed enclosure containing solidified waste is accomplished by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solifified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  3. Undercooling and demixing in rapidly solidified Cu-Co alloys

    DEFF Research Database (Denmark)

    Battezzati, L.; Curiotto, S.; Johnson, Erik

    2007-01-01

    The Cu–Co system displays a metastable miscibility gap in the liquid state. A considerable amount of work has been performed to study phase separation and related microstructures showing that demixing of the liquid is followed by coagulation before dendritic solidification. Due to kinetic...... competition of transformation phenomena, the mechanisms have not been fully disclosed. This contribution reviews such findings with the help of a computer calculation of the phase diagram and extends the present knowledge by presenting new results obtained by rapidly solidifying various Cu–Co compositions...... using a wide range of cooling rates achieved by forcing the liquid into cylindric and conic moulds and by melt spinning....

  4. Filling of recovered mining areas using solidifying backfill

    Directory of Open Access Journals (Sweden)

    Zeman Róbert

    2001-12-01

    Full Text Available The aim of this article is to explore the possibilities for filling recovered mining areas using solidifying backfill .The article describes the preparation of the backfill (backfill formulation with an eventual application using low quality sands, wastes from treatment plants and ash from power plants etc now to transport it as well as its application in practice. Advantageous and disadvantageous of this method are also mentioned.Several factors must be taken info consideration during the preparation process of the backfill mixture. Firstly, the quantities of each individual component must be constantly regulated. Secondly, the properties of each component must be respected. In addition, the needs of the pipeline transport system and the specific conditions of the recovered area to be filled must also be considered.Hydraulic transport and pneumo-hydraulic pipeline transport are used for handling the backfill. Pumps for transporting the solidifying backfill have to carry out demanding tasks.Due to the physical-mechanical properties of the backfill, only highly powerful pumps can be considered. Piston type pumps such as Abel Simplex and Duplex pumps with capacities of up to 100 m3.h-1 and operating pressures of up to 16 MPa would be suitable.This method has been applied abroad for different purposes. For example, solid backfill was used in the Hamr mine during exploitation of uranium using the room-and-pillar system mining method.In the Ostrava–Karvina Coal field, backfill was used in decontamination work, filling areas in a zone of dangerous deformations and for creating a dividing stratum during thick seam mining.Research info the use of solidifying backfill was also done in the Walsum mine in Germany. The aim of this research was:- to investigate the possibilities of filling a collapsing area in a working face using a solidifying mixture of power plant ash and water,- to verify whether towing pipelines proposed by the DMT corporation would be

  5. Study on dissolution behavior of molten solidified waste

    International Nuclear Information System (INIS)

    Mizuno, Tsuyoshi; Maeda, Toshikatsu

    2005-01-01

    Radioactive molten solidified waste (slag) has been generated by melting non-metallic low-level radioactive wastes (LLW). Slag is expected to immobilize radionuclides in the waste repository. The chemical durability of slag is an important factor for the safety assessment of the disposal in that the durability provides the source term in the assessment. Since a chemical characteristic of slag is similar to that of glass, the general information on the chemical durability of slag might be provided from previous studies on nuclear waste glass. We have investigated effects of chemical compositions of slag and alkaline environments of repository on the chemical durability of slag. (author)

  6. Annual report on the development and characterization of solidified forms for nuclear wastes, 1979

    International Nuclear Information System (INIS)

    Chick, L.A.; McVay, G.L.; Mellinger, G.B.; Roberts, F.P.

    1980-12-01

    Development and characterization of solidified nuclear waste forms is a major continuing effort at Pacific Northwest Laboratory. Contributions from seven programs directed at understanding chemical composition, process conditions, and long-term behaviors of various nuclear waste forms are included in this report. The major findings of the report are included in extended figure captions that can be read as brief technical summaries of the research, with additional information included in a traditional narrative format. Waste form development proceeded on crystalline and glass materials for high-level and transuranic (TRU) wastes. Leaching studies emphasized new areas of research aimed at more basic understanding of waste form/aqueous solution interactions. Phase behavior and thermal effects research included studies on crystal phases in defense and TRU waste glasses and on liquid-liquid phase separation in borosilicate waste glasses. Radiation damage effects in crystals and glasses from alpha decay and from transmutation are reported

  7. Solidified ceramics of radioactive wastes and method of producing it

    International Nuclear Information System (INIS)

    Oota, Takao; Matake, Shigeru; Ooka, Kazuo.

    1980-01-01

    Purpose: To provide solidified ceramics which have low leaching properties to water of radioactive substance, excellent heat dissipating and resistive properties and high mechanical strength by mixing and sintering limited amounts of titanium and aluminum compounds with calcined radioactive wastes containing special compound. Method: More than 20% by weight of titanium compound (as TiO 2 ) and more than 5% by weight of aluminum compound (as Al 2 O 3 ) are mixed with the calcined radioactive wasted containing, as converted by oxide, 5 to 40% by weight of Na 2 O, 5 to 20% by weight of Fe 2 O 3 , 5 to 15% by weight of MoO 3 , 5 to 15% by weight of ZrO 2 , 2 to 10% by weight of CeO 2 , 2 to 10% by weight of Cs 2 O, 1 to 5% by weight of BaO, 1 to 5% by weight of SrO, 0.2 to 2% by weight of Rb 2 O, 0.2% by weight of Y 2 O 3 , 0.2 to 2% by weight of NiO, 5 to 20% by weight of rare earth metal oxide, and 0.2 to 2% by weight of Cr 2 O 3 . The mixture is molded, sintered, and solidified to ceramics which contains no Mo phase, Na 2 O, MoO 3 , K 2 O, MoO 3 and Cs 2 O, MoO 3 phases and the like. (Yoshino, Y.)

  8. Leaching experiment of cement solidified waste form under unsaturated condition

    International Nuclear Information System (INIS)

    Wang Zhiming; Yao Laigen; Li Shushen; Zhao Yingjie; Cai Yun; Li Dan; Han Xinsheng; An Yongfeng

    2003-01-01

    A device for unsaturated leaching experiments was designed and built up. 8 different sizes, ranging from 40.2 cm 3 to 16945.5 cm 3 , of solidified waste form were tested in the experiment. 5 different water contents, from 0.15 to 0.40, were used for the experiment. The results show that the cumulative leaching fraction increases with water content when the sizes of the forms are equal to and less than 4586.7 cm 3 , for example, the ratios of the cumulative leaching fractions are between 1.24-1.41 under water content of 0.35 and 0.15 on 360 day of Teaching. It can also be seen that the cumulative leaching fraction under higher water content is close to that under saturated condition. The cumulative leaching fraction decreases with size of the form. Maximum leached depth of the solidified waste forms is about 2.25 cm after one year Teaching. Moreover, it has no clear effect on cumulative leaching fraction that sampling or non-sampling during the experiment

  9. Vessel for solidifying water-impermeable radioactive waste

    International Nuclear Information System (INIS)

    Kiuchi, Yoshimasa; Tamada, Shin; Suzuki, Yasushi.

    1993-01-01

    A blend prepared by admixing silica sand, alumina powder or glass fiber, as aggregates, to epoxy resin elastic adhesives is coated on an inner surface of a steel drum can or an inner surface of a concrete vessel at a thickness of greater than 1mm followed by hardening. The addition amount of the silica sand, alumina powder or glass fiber is determined as 20 to 40% by weight, 30 to 60% by weight or 5 to 15% by weight respectively. A lid having a hole for injecting fillers is previously bonded to a container for use in solidifying radioactive materials. The strength of the coating layer is increased and a coating performance and an adhesion force are improved by admixing the aggregates, to provide a satisfactory water-impermeability. The container for use in solidifying radioactive wastes having a coating layer with an advantage of the elastic resin adhesives, strong strength and adhesion and being excellent in the water-impermeability can be obtained relatively economically. (N.H.)

  10. GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE

    Energy Technology Data Exchange (ETDEWEB)

    Holley-Bockelmann, Kelly [Vanderbilt University, Nashville, TN (United States); Khan, Fazeel Mahmood, E-mail: k.holley@vanderbilt.edu [Institute of Space Technology (IST), Islamabad (Pakistan)

    2015-09-10

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.

  11. GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE

    International Nuclear Information System (INIS)

    Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood

    2015-01-01

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy

  12. Eliciting Subjective Probabilities with Binary Lotteries

    DEFF Research Database (Denmark)

    Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd

    objective probabilities. Drawing a sample from the same subject population, we find evidence that the binary lottery procedure induces linear utility in a subjective probability elicitation task using the Quadratic Scoring Rule. We also show that the binary lottery procedure can induce direct revelation...

  13. Effects of leachate concentration on the integrity of solidified clay liners.

    Science.gov (United States)

    Xue, Qiang; Zhang, Qian

    2014-03-01

    This study aimed to evaluate the impact of landfill leachate concentration on the degradation behaviour of solidified clay liners and to propose a viable mechanism for the observed degradation. The results indicated that the unconfined compressive strength of the solidified clay decreased significantly, while the hydraulic conductivity increased with the leachate concentration. The large pore proportion in the solidified clay increased and the sum of medium and micro pore proportions decreased, demonstrating that the effect on the solidified clay was evident after the degradation caused by exposure to landfill leachate. The unconfined compressive strength of the solidified clay decreased with increasing leachate concentration as the leachate changed the compact structure of the solidified clay, which are prone to deformation and fracture. The hydraulic conductivity and the large pore proportion of the solidified clay increased with the increase in leachate concentration. In contrast, the sum of medium and micro pore proportions showed an opposite trend in relation to leachate concentration, because the leachate gradually caused the medium and micro pores to form larger pores. Notably, higher leachate concentrations resulted in a much more distinctive variation in pore proportions. The hydraulic conductivity of the solidified clay was closely related to the size, distribution, and connection of pores. The proportion of the large pores showed a positive correlation with the increase of hydraulic conductivity, while the sum of the proportions of medium and micro pores showed a negative correlation.

  14. Experiment of solidifying photo sensitive polymer by using UV LED

    Science.gov (United States)

    Kang, Byoung Hun; Shin, Sung Yeol

    2008-11-01

    The development of Nano/Micro manufacturing technologies is growing rapidly and in the same manner, the investments in these areas are increasing. The applications of Nano/Micro technologies are spreading out to semiconductor production technology, biotechnology, environmental engineering, chemical engineering and aerospace. Especially, SLA is one of the most popular applications which is to manufacture 3D shaped microstructure by using UV laser and photo sensitive polymer. To make a high accuracy and precision shape of microstructures that are required from the diverse industrial fields, the information of interaction relationship between the photo resin and the light source is necessary for further research. Experiment of solidifying photo sensitive polymer by using UV LED is the topic of this paper and the purpose of this study is to find out what relationships do the reaction of the resin have in various wavelength, power of the light and time.

  15. Effective hydrogen diffusion coefficient for solidifying aluminium alloys

    International Nuclear Information System (INIS)

    Felberbaum, M.; Landry-Desy, E.; Weber, L.; Rappaz, M.

    2011-01-01

    An effective hydrogen diffusion coefficient has been calculated for two solidifying Al - 4.5 wt.% Cu and Al - 10 wt.% Cu alloys as a function of the volume fraction of solid. For this purpose, in situ X-ray tomography was performed on these alloys. For each volume fraction of solid between 0.6 and 0.9, a representative volume element of the microstructure was extracted. Solid and liquid voxels were assimilated to solid and liquid nodes in order to solve the hydrogen diffusion equation based on the chemical potential and using a finite volume formulation. An effective hydrogen diffusion coefficient based on the volume fraction of solid only could be deduced from the results of the numerical model at steady state. The results are compared with various effective medium theories.

  16. Structure fields in the solidifying cast iron roll

    Directory of Open Access Journals (Sweden)

    W.S. Wołczyński

    2010-01-01

    Full Text Available Some properties of the rolls depend on the ratio of columnar structure area to equiaxed structure area created during roll solidification. The transition is fundamental phenomenon that can be apply to characterize massive cast iron rolls produced by the casting house. As the first step of simulation, a temperature field for solidifying cast iron roll was created. The convection in the liquid is not comprised since in the first approximation, the convection does not influence the studied occurrence of the (columnar to equiaxed grains transition in the roll. The obtained temperature field allows to study the dynamics of its behavior observed in the middle of the mould thickness. This midpoint of the mould thickness was treated as an operating point for the transition. A full accumulation of the heat in the mould was postulated for the transition. Thus, a plateau at the curve was observed at the midpoint. The range of the plateau existence corresponded to the incubation period , that appeared before fully equiaxed grains formation. At the second step of simulation, behavior of the thermal gradients field was studied. Three ranges within the filed were visible: EC→EC→EC→EC→(tTECtt↔RERCtt↔a/ for the formation of columnar structure (the C – zone: ( and 0>>T&0>>=−>−=REREttGttG.The columnar structure formation was significantly slowed down during incubation period. It resulted from a competition between columnar growth and equiaxed growth expected at that period of time. The 0≈=−=RERCttGttG relationship was postulated to correspond well with the critical thermal gradient, known in the Hunt’s theory. A simulation was performed for the cast iron rolls solidifying as if in industrial condition. Since the incubation divides the roll into two zones: C and E; (the first with columnar structure and the second with fully equiaxed structure some experiments dealing with solidification were made on semi-industrial scale.

  17. Solving a binary puzzle

    NARCIS (Netherlands)

    Utomo, P.H.; Makarim, R.H.

    2017-01-01

    A Binary puzzle is a Sudoku-like puzzle with values in each cell taken from the set {0,1} {0,1}. Let n≥4 be an even integer, a solved binary puzzle is an n×n binary array that satisfies the following conditions: (1) no three consecutive ones and no three consecutive zeros in each row and each

  18. Eclipsing binaries in open clusters

    DEFF Research Database (Denmark)

    Southworth, John; Clausen, J.V.

    2006-01-01

    Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August......Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August...

  19. Cold Heat Release Characteristics of Solidified Oil Droplet-Water Solution Latent Heat Emulsion by Air Bubbles

    Science.gov (United States)

    Inaba, Hideo; Morita, Shin-Ichi

    The present work investigates the cold heat-release characteristics of the solidified oil droplets (tetradecane, C14H30, freezing point 278.9 K)/water solution emulsion as a latent heat-storage material having a low melting point. An air bubbles-emulsion direct-contact heat exchange method is selected for the cold heat-results from the solidified oil droplet-emulsion layer. This type of direct-contact method results in the high thermal efficiency. The diameter of air bubbles in the emulsion increases as compared with that in the pure water. The air bubbles blown from a nozzle show a strong mixing behavior during rising in the emulsion. The temperature effectiveness, the sensible heat release time and the latent heat release time have been measured as experimental parameters. The useful nondimensional emulsion level equations for these parameters have been derived in terms of the nondimensional emalsion level expressed the emulsion layer dimensions, Reynolds number for air flow, Stefan number and heat capacity ratio.

  20. Radial Velocities of 41 Kepler Eclipsing Binaries

    Science.gov (United States)

    Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.

    2017-12-01

    Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.

  1. Bondi-Hoyle-Lyttleton Accretion onto Binaries

    Science.gov (United States)

    Antoni, Andrea; MacLeod, Morgan; Ramírez-Ruiz, Enrico

    2018-01-01

    Binary stars are not rare. While only close binary stars will eventually interact with one another, even the widest binary systems interact with their gaseous surroundings. The rates of accretion and the gaseous drag forces arising in these interactions are the key to understanding how these systems evolve. This poster examines accretion flows around a binary system moving supersonically through a background gas. We perform three-dimensional hydrodynamic simulations of Bondi-Hoyle-Lyttleton accretion using the adaptive mesh refinement code FLASH. We simulate a range of values of semi-major axis of the orbit relative to the gravitational focusing impact parameter of the pair. On large scales, gas is gravitationally focused by the center-of-mass of the binary, leading to dynamical friction drag and to the accretion of mass and momentum. On smaller scales, the orbital motion imprints itself on the gas. Notably, the magnitude and direction of the forces acting on the binary inherit this orbital dependence. The long-term evolution of the binary is determined by the timescales for accretion, slow down of the center-of-mass, and decay of the orbit. We use our simulations to measure these timescales and to establish a hierarchy between them. In general, our simulations indicate that binaries moving through gaseous media will slow down before the orbit decays.

  2. Solidified structure of Al-Pb-Cu alloys

    International Nuclear Information System (INIS)

    Ikeda, Tetsuyuki; Nishi, Seiki; Kumeuchi, Hiroyuki; Tatsuta, Yoshinori.

    1986-01-01

    Al-Pb-Cu alloys were cast into bars or plates in different two metal mold casting processes in order to suppress gravity segregation of Pb and to achieve homogeneous dispersion of Pb phase in the alloys. Solidified structures were analyzed by a video-pattern-analyzer. Plate castings 15 to 20 mm in thickness of Al-Pb-1 % Cu alloy containing Pb up to 5 % in which Pb phase particles up to 10 μm disperse are achieved through water cooled metal mold casting. The plates up to 5 mm in thickness containing Pb as much as 8 to 10 % cast in this process have dispersed Pb particles up to 5 μm in diameter in the surface layer. Al-8 % Pb-1 % Cu alloy bars 40 mm in diameter and 180 mm in height in which gravity segregation of Pb is prevented can be cast by movable and water sprayed metal mold casting at casting temperature 920 deg C and mold moving speed 1.0 mm/s. Pb phase particles 10 μm in mean size are dispersed in the bars. (author)

  3. Characteristics of solidified products containing radioactive molten salt waste.

    Science.gov (United States)

    Park, Hwan-Seo; Kim, In-Tae; Cho, Yong-Zun; Eun, Hee-Chul; Kim, Joon-Hyung

    2007-11-01

    The molten salt waste from a pyroprocess to recover uranium and transuranic elements is one of the problematic radioactive wastes to be solidified into a durable wasteform for its final disposal. By using a novel method, named as the GRSS (gel-route stabilization/solidification) method, a molten salt waste was treated to produce a unique wasteform. A borosilicate glass as a chemical binder dissolves the silicate compounds in the gel products to produce one amorphous phase while most of the phosphates are encapsulated by the vitrified phase. Also, Cs in the gel product is preferentially situated in the silicate phase, and it is vitrified into a glassy phase after a heat treatment. The Sr-containing phase is mainly phosphate compounds and encapsulated by the glassy phase. These phenomena could be identified by the static and dynamic leaching test that revealed a high leach resistance of radionuclides. The leach rates were about 10(-3) - 10(-2) g/m2 x day for Cs and 10(-4) - 10(-3) g/m2 x day for Sr, and the leached fractions of them were predicted to be 0.89% and 0.39% at 900 days, respectively. This paper describes the characteristics of a unique wasteform containing a molten salt waste and provides important information on a newly developed immobilization technology for salt wastes, the GRSS method.

  4. Site suitability criteria for solidified high level waste repositories

    International Nuclear Information System (INIS)

    Heckman, R.A.; Holdsworth, T.; Isherwood, D.; Towse, D.F.; Dayem, N.L.

    1979-01-01

    The NRC is developing a framework of regulations, criteria, and standards. Lawrence Livermore Laboratory provides broad technical support to the NRC for developing this regulatory framework, part of which involves site suitability criteria for solidified high-level wastes (SHLW). Both the regulatory framework and the technical base on which it rests have evolved in time. This document is the second report of the technical support project. It was issued as a draft working paper for a programmatic review held at LLL from August 16 to 18, 1977. It was printed and distributed solely as a briefing document on preliminary methodology and initial findings for the purpose of critical review by those in attendance. These briefing documents are being reprinted now in their original formats as UCID-series reports for the sake of the historical record. Analysis results have evolved as both the models and data base have changed. As a result, the methodology, models, and data base in this document are severely outmoded

  5. A new technology for concentrating and solidifying liquid LLRW

    Energy Technology Data Exchange (ETDEWEB)

    Newell, N. [TMC, Inc., Portland, OR (United States); Osborn, M.W.; Carey, C.C. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others

    1995-12-31

    One of the unsolved problem areas of low level radioactive waste management is the radiolabeled material generated by life sciences research and clinical diagnostics. In hundreds of academic, biotechnology, and pharmaceutical institutions, there exists large amounts of both aqueous and organic solutions containing radioactively labeled nucleic acids, proteins, peptides, and their monomeric components. We have invented a generic slurry capable of binding all these compounds, thus making it possible to concentrate and solidify the radioactive molecules into a very small and lightweight material. The slurry can be contained in both large and small disposal plastic devices designed for the size of any particular operation. The savings in disposal costs and convenience of this procedure is a very attractive alternative to the present methods of long and short term storage. Additionally, the slurry can remove radiolabeled biological compounds from organic solvents, thus solving the major problem of {open_quotes}mixed{close_quotes} waste. We are now proceeding with the field application stage for the testing of these devices and anticipate widespread use of the process. We also are exploring the use of the slurry on other types of liquid low level radioactive waste.

  6. Microlensing discovery of a population of very tight, very low mass binary brown dwarfs

    DEFF Research Database (Denmark)

    Choi, J.-Y.; Han, C.; Udalski, A.

    2013-01-01

    the discovery via gravitational microlensing of two very low mass, very tight binary systems. These binaries have directly and precisely measured total system masses of 0.025 M ☉ and 0.034 M ☉, and projected separations of 0.31 AU and 0.19 AU, making them the lowest-mass and tightest field BD binaries known....... The discovery of a population of such binaries indicates that BD binaries can robustly form at least down to masses of ~0.02 M ☉. Future microlensing surveys will measure a mass-selected sample of BD binary systems, which can then be directly compared to similar samples of stellar binaries....

  7. Solidified self-nanoemulsifying formulation for oral delivery of combinatorial therapeutic regimen

    DEFF Research Database (Denmark)

    Jain, Amit K; Thanki, Kaushik; Jain, Sanyog

    2014-01-01

    PURPOSE: The present work reports rationalized development and characterization of solidified self-nanoemulsifying drug delivery system for oral delivery of combinatorial (tamoxifen and quercetin) therapeutic regimen. METHODS: Suitable oil for the preparation of liquid SNEDDS was selected based...

  8. Proposed experiment to test fundamentally binary theories

    Science.gov (United States)

    Kleinmann, Matthias; Vértesi, Tamás; Cabello, Adán

    2017-09-01

    Fundamentally binary theories are nonsignaling theories in which measurements of many outcomes are constructed by selecting from binary measurements. They constitute a sensible alternative to quantum theory and have never been directly falsified by any experiment. Here we show that fundamentally binary theories are experimentally testable with current technology. For that, we identify a feasible Bell-type experiment on pairs of entangled qutrits. In addition, we prove that, for any n , quantum n -ary correlations are not fundamentally (n -1 ) -ary. For that, we introduce a family of inequalities that hold for fundamentally (n -1 ) -ary theories but are violated by quantum n -ary correlations.

  9. Binary Masking & Speech Intelligibility

    DEFF Research Database (Denmark)

    Boldt, Jesper

    The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either experime......The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either...... experiments under ideal conditions or as experiments under more realistic conditions useful for real-life applications such as hearing aids. In the experiments under ideal conditions, the previously defined ideal binary mask is evaluated using hearing impaired listeners, and a novel binary mask -- the target...... binary mask -- is introduced. The target binary mask shows the same substantial increase in intelligibility as the ideal binary mask and is proposed as a new reference for binary masking. In the category of real-life applications, two new methods are proposed: a method for estimation of the ideal binary...

  10. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  11. Containment of solidified liquid hazardous waste in domal salt

    International Nuclear Information System (INIS)

    Domenico, P.A.; Lerman, A.

    1992-01-01

    In recent years, the solidification of hazardous liquid waste has become a viable option in waste management. The solidification process results in an increased volume but more stable waste form that must be disposed of or stored in a dry environment. An environment of choice in south central Texas is domal salt. The salt dome currently under investigation has a water content of 0.002 percent by weight and a permeability less than one nanodarcy. A question that must be addressed is whether a salt dome has a particular set of attributes that will prevent the release of contaminants to the environment. From a regulatory perspective, a ''no migration'' petition must be approved by the U.S.E.P.A. for the containment facility. By ''no migration'' it is implied that the waste must be contained for 10,000 years. A demonstration that this condition will be met will require model calculations and such models must be based on the physical and chemical characteristics of the waste form and the geologic environment. In particular, the models must address the rate of brine infiltration into the caverns, providing information on how fast an immobile solid waste form could convert to a more mobile liquid state. Additionally, the potential for migration by both diffusion and advection is of concern. Lastly, given a partially saturated cavern, the question of how far gaseous waste will be transported over the 10,000 year containment period must also be addressed. Results indicate that the containment capabilities of domal salt are exceptional. A nominal volume of brine will seep into the cavern and most voids between the injected solidified waste pellets will remain unsaturated. Very small quantities of hazardous constituents will be leached from the waste pellets

  12. Assessment of phase constitution on the Al-rich region of rapidly solidified Al-Co-Fe-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, W., E-mail: witorw@gmail.com [Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Bolfarini, C., E-mail: cbolfa@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Kiminami, C.S., E-mail: kiminami@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Botta, W.J., E-mail: wjbotta@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil)

    2016-12-15

    The formation of quasicrystalline approximants in rapidly solidified Al-Co-Fe-Cr alloys was investigated. Alloys of atomic composition Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8}, Al{sub 77}Co{sub 11}Fe{sub 6}Cr{sub 6} and Al{sub 76}Co{sub 19}Fe{sub 4}Cr{sub 1} were produced using melt spinning and arc melting methods and their microstructural characterization was carried out by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Up to the present there is no consensus in the literature regarding the formation of quasicrystalline phase or quasicrystalline approximants in the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy. This work presents, for the first time, a detailed structural characterization of selected alloys in the Al-Co-Fe-Cr system close to the atomic composition Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8}. The results indicated the samples to be composed, mostly, by two intermetallic phases, which are quaternary extensions of Al{sub 5}Co{sub 2} and Al{sub 13}Co{sub 4} and are quasicrystalline approximants. Although the Al{sub 5}Co{sub 2} phase has already been reported in the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy, the presence of the monoclinic Al{sub 13}Co{sub 4} is now identified for the first time in the as cast state. In the binary Al-Co system a quasicrystalline phase is known to form in a rapidly solidified alloy with composition close to the monoclinic and orthorhombic Al{sub 13}Co{sub 4} phases. This binary quasicrystalline phase presents an average valence electron per atom (e/a) between 1.7 and 1.9; thus, in addition to the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy, the compositions Al{sub 77}Co{sub 11}Fe{sub 6}Cr{sub 6} and Al{sub 76}Co{sub 19}Fe{sub 4}Cr{sub 1} were chosen to be within the region of formation of the quaternary extension of the Al{sub 13}Co{sub 4} phase and also within the (e/a) of 1.7 to 1.9. However, no quasicrystalline phase is present in any of the studied alloys. The Al-Co-Fe-Cr system

  13. Assessment of phase constitution on the Al-rich region of rapidly solidified Al-Co-Fe-Cr alloys

    International Nuclear Information System (INIS)

    Wolf, W.; Bolfarini, C.; Kiminami, C.S.; Botta, W.J.

    2016-01-01

    The formation of quasicrystalline approximants in rapidly solidified Al-Co-Fe-Cr alloys was investigated. Alloys of atomic composition Al 71 Co 13 Fe 8 Cr 8 , Al 77 Co 11 Fe 6 Cr 6 and Al 76 Co 19 Fe 4 Cr 1 were produced using melt spinning and arc melting methods and their microstructural characterization was carried out by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Up to the present there is no consensus in the literature regarding the formation of quasicrystalline phase or quasicrystalline approximants in the Al 71 Co 13 Fe 8 Cr 8 alloy. This work presents, for the first time, a detailed structural characterization of selected alloys in the Al-Co-Fe-Cr system close to the atomic composition Al 71 Co 13 Fe 8 Cr 8 . The results indicated the samples to be composed, mostly, by two intermetallic phases, which are quaternary extensions of Al 5 Co 2 and Al 13 Co 4 and are quasicrystalline approximants. Although the Al 5 Co 2 phase has already been reported in the Al 71 Co 13 Fe 8 Cr 8 alloy, the presence of the monoclinic Al 13 Co 4 is now identified for the first time in the as cast state. In the binary Al-Co system a quasicrystalline phase is known to form in a rapidly solidified alloy with composition close to the monoclinic and orthorhombic Al 13 Co 4 phases. This binary quasicrystalline phase presents an average valence electron per atom (e/a) between 1.7 and 1.9; thus, in addition to the Al 71 Co 13 Fe 8 Cr 8 alloy, the compositions Al 77 Co 11 Fe 6 Cr 6 and Al 76 Co 19 Fe 4 Cr 1 were chosen to be within the region of formation of the quaternary extension of the Al 13 Co 4 phase and also within the (e/a) of 1.7 to 1.9. However, no quasicrystalline phase is present in any of the studied alloys. The Al-Co-Fe-Cr system, around the compositions studied, is composed of quaternary extensions of Al-Co intermetallic phases, which present solubility of Fe and Cr at Co atomic sites. - Highlights: •The Al rich region of the Al

  14. Tuning of platinum nano-particles by Au usage in their binary alloy for direct ethanol fuel cell: Controlled synthesis, electrode kinetics and mechanistic interpretation

    Science.gov (United States)

    Dutta, Abhijit; Mondal, Achintya; Datta, Jayati

    2015-06-01

    Understanding of the electrode-kinetics and mechanism of ethanol oxidation reaction (EOR) is of considerable interest for optimizing electro-catalysis in direct ethanol fuel cell (DEFC). This work attempts to design Pt based electro-catalyst on carbon support, tuned with gold nano-particles (NPs), for their use in DEFC operating in alkaline medium. The platinum-gold alloyed NPs are synthesized at desired compositions and size (2-10 nm) by controlled borohydride reduction method and successfully characterized by XRD, TEM, EDS and XPS techniques. The kinetic parameters along with the activation energies for the EOR are evaluated over the temperature range 20-80 °C and the oxidation reaction products estimated through ion chromatographic analysis. Compared to single Pt/C catalyst, the over potential of EOR is reduced by ca. 500 mV, at the onset during the reaction, for PtAu/C alloy with only 23% Pt content demonstrating the ability of Au and/or its surface oxides providing oxygen species at much lower potentials compared to Pt. Furthermore, a considerable increase in the peak power density (>191%) is observed in an in-house fabricated direct ethanol anion exchange membrane fuel cell, DE(AEM)FC using the best performing Au covered Pt electrode (23% Pt) compared to the monometallic Pt catalyst.

  15. Particle Engulfment and Pushing by Solidifying Interfaces. Pt. 2; Micro-Gravity Experiments and Theoretical Analysis

    Science.gov (United States)

    Stefanescu, Doru M.; Juretzko, Frank R.; Dhindaw, Brij K.; Catalina, Adrian; Sen, Subhayu; Curreri, Peter A.

    1998-01-01

    Results of the directional solidification experiments on Particle Engulfment and Pushing by Solidifying Interfaces (PEP) conducted on the space shuttle Columbia during the Life and Microgravity Science Mission are reported. Two pure aluminum (99.999%) 9 mm cylindrical rods, loaded with about 2 vol.% 500 micrometers diameter zirconia particles were melted and resolidified in the microgravity (microg) environment of the shuttle. One sample was processed at step-wise increased solidification velocity, while the other at step-wise decreased velocity. It was found that a pushing-to-engulfment transition (PET) occurred in the velocity range of 0.5 to 1 micrometers. This is smaller than the ground PET velocity of 1.9 to 2.4 micrometers. This demonstrates that natural convection increases the critical velocity. A previously proposed analytical model for PEP was further developed. A major effort to identify and produce data for the surface energy of various interfaces required for calculation was undertaken. The predicted critical velocity for PET was of 0.775 micrometers/s.

  16. Review of metal-matrix encapsulation of solidified radioactive high-level waste

    International Nuclear Information System (INIS)

    Jardine, L.J.; Steindler, M.J.

    1978-05-01

    Literature describing previous and current work on the encapsulation of solidified high-level waste forms in a metal matrix was reviewed. Encapsulation of either stabilized calcine pellets or glass beads in alloys by casting techniques was concluded to be the most developed and direct approach to fabricating solid metal-matrix waste forms. Further characterizations of the physical and chemical properties of metal-matrix waste forms are still needed to assess the net attributes of metal-encapsulation alternatives. Steady-state heat transfer properties of waste canisters in air and water environments were calculated for four reference waste forms: (1) calcine, (2) glass monoliths, (3) metal-encapsulated calcine, and (4) metal-encapsulated glass beads. A set of criteria for the maximum allowable canister centerline and surface temperatures and heat generation rates per canister at the time of shipment to a Federal repository was assumed, and comparisons were made between canisters of these reference waste forms of the shortest time after reactor discharge that canisters could be filled and the subsequent ''interim'' storage times prior to shipment to a Federal repository for various canister diameters and waste ages. A reference conceptual flowsheet based on existing or developing technology for encapsulation of stabilized calcine pellets is discussed. Conclusions and recommendations are presented

  17. Measurements of Mercury Released From Solidified/Stabilized Waste Forms-FY2002

    International Nuclear Information System (INIS)

    Mattus, C.H.

    2003-01-01

    This report covers work performed during FY 2002 in support of treatment demonstrations conducted for the U.S. Department of Energy (DOE) Mixed Waste Focus Area (MWFA) Mercury Working Group. To comply with the requirements of the Resource Conservation and Recovery Act, as implemented by the U.S. Environmental Protection Agency (EPA), DOE must use one of the following procedures for mixed low-level radioactive wastes containing mercury at levels above 260 ppm: a retorting/roasting treatment or (if the wastes also contain organics) an incineration treatment. The recovered radioactively contaminated mercury must then be treated by an amalgamation process prior to disposal. The DOE MWFA Mercury Working Group is working with EPA to determine whether some alternative processes could be used to treat these types of waste directly, thereby avoiding a costly recovery step for DOE. In previous years, demonstrations were performed in which commercial vendors applied their technologies for the treatment of radiologically contaminated elemental mercury as well as radiologically contaminated and mercury-contaminated waste soils from Brookhaven National Laboratory. The test results for mercury release in the headspace were reported in two reports, ''Measurements of Mercury Released from Amalgams and Sulfide Compounds'' (ORNL/TM-13728) and ''Measurements of Mercury Released from Solidified/Stabilized Waste Forms'' (ORNL/TM-2001/17). The current work did not use a real waste; a surrogate sludge had been prepared and used in the testing in an effort to understand the consequences of mercury speciation on mercury release

  18. Acoustic emission from a solidifying aluminum-lithium alloy

    Science.gov (United States)

    Henkel, D. P.; Wood, J. D.

    1992-01-01

    Physical phenomena associated with the solidification of an AA2090 Al-Li alloy have been characterized by AE methods. Repeatable patterns of AE activity as a function of solidification time are recorded and explained for ultrahigh-purity (UHP) aluminum and an Al-4.7 wt pct Cu binary alloy, in addition to the AA2090 Al-Li alloy, by the complementary utilization of thermal, AE, and metallographic methods. One result shows that the solidification of UHP aluminum produces one discrete period of high AE activity as the last 10 percent of solid forms.

  19. Investigation on microstructure characterization and property of rapidly solidified Mg-Zn-Ca-Ce-La alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Tao, E-mail: tzhou1118@163.com [College of Material Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Chen Zhenhua, E-mail: chenzhenhua45@hotmail.com [College of Material Science and Engineering, Hunan University, Changsha 410082 (China); Yang Mingbo, E-mail: yangmingbo@cqit.edu.cn [College of Material Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Hu Jianjun, E-mail: hujj@qq.com [College of Material Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Xia Hua, E-mail: xiahua@cqut.edu.cn [College of Material Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China)

    2012-01-15

    Rapidly solidified (RS) Mg-Zn-Ca-Ce-La (wt.%) alloys have been produced via atomizing the alloy melt and subsequent splat-quenching on the water-cooled copper twin-rollers in the form of flakes. Microstructure characterization, phase compositions and thermal stability of the alloys have been systematically investigated. The results showed that with addition of RE (Ce and La) to the Mg-6Zn-5Ca alloy, the stable intermetallic compounds i.e. the Mg{sub x}Zn{sub y}RE{sub z} phase with a few Ca (about 3 at.%), shortened as the T Prime phase, were formed at the expense of the binary Mg-Zn and Ca{sub 2}Mg{sub 6}Zn{sub 3} phases, which was possibly beneficial to the enhanced thermal stability of the alloy. In the Mg-6Zn-5Ca-3Ce-0.5La alloy, the composition of the T Prime phase in the grain interior was different from that at the grain boundaries, in which the segregation of the La elements was found, and the atomic percentage ratio of Zn to Ce in the T Prime phase within the grains was close to 2. Moreover, the stable Mg{sub 2}Ca phases were detected around the T Prime phases at the grain boundaries in the alloy. - Research Highlights: Black-Right-Pointing-Pointer The phase constitution of RS Mg-6Zn-5Ca alloy can be improved by RE additions. Black-Right-Pointing-Pointer In the Mg-Zn-Ca-Ce-La alloys, the Mg{sub x}Zn{sub y}RE{sub z} phase with a few Ca (T Prime phase) is formed. Black-Right-Pointing-Pointer The formation of the T Prime phase leads to the loss of the Mg-Zn and Ca{sub 2}Mg{sub 6}Zn{sub 3} phases. Black-Right-Pointing-Pointer The composition of the T Prime phase differs from the grain interior to the grain boundary.

  20. Mining frequent binary expressions

    NARCIS (Netherlands)

    Calders, T.; Paredaens, J.; Kambayashi, Y.; Mohania, M.K.; Tjoa, A.M.

    2000-01-01

    In data mining, searching for frequent patterns is a common basic operation. It forms the basis of many interesting decision support processes. In this paper we present a new type of patterns, binary expressions. Based on the properties of a specified binary test, such as reflexivity, transitivity

  1. High performance direct absorption spectroscopy of pure and binary mixture hydrocarbon gases in the 6-11 μm range

    Science.gov (United States)

    Heinrich, Robert; Popescu, Alexandru; Hangauer, Andreas; Strzoda, Rainer; Höfling, Sven

    2017-08-01

    The availability of accurate and fast hydrocarbon analyzers, capable of real-time operation while enabling feedback-loops, would lead to a paradigm change in the petro-chemical industry. Primarily gas chromatographs measure the composition of hydrocarbon process streams. Due to sophisticated gas sampling, these analyzers are limited in response time. As hydrocarbons absorb in the mid-infrared spectral range, the employment of fast spectroscopic systems is highly attractive due to significantly reduced maintenance costs and the capability to setup real-time process control. New developments in mid-infrared laser systems pave the way for the development of high-performance analyzers provided that accurate spectral models are available for multi-species detection. In order to overcome current deficiencies in the availability of spectroscopic data, we developed a laser-based setup covering the 6-11 μm wavelength range. The presented system is designated as laboratory reference system. Its spectral accuracy is at least 6.6× 10^{-3} cm^{-1} with a precision of 3× 10^{-3} cm^{-1}. With a "per point" minimum detectable absorption of 1.3× 10^{-3} cm^{-1} Hz^{{-}{1/2}} it allows us to perform systematic measurements of hydrocarbon spectra of the first 7 alkanes under conditions which are not tabulated in spectroscopic database. We exemplify the system performance with measured direct absorption spectra of methane, propane, iso-butane, and a mixture of methane and propane.

  2. Solidifying incongruently melting intermetallic phases as bulk single phases using the example of Al{sub 2}Cu and Q-phase in the Al-Mg-Cu-Si system

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, Andrea [Institute of Materials Science and Technology, Friedrich-Schiller-University, Jena (Germany); Groebner, Joachim; Hampl, Milan [Institute of Metallurgy, Clausthal University of Technology, Clausthal-Zellerfeld (Germany); Engelhardt, Hannes [Institute of Materials Science and Technology, Friedrich-Schiller-University, Jena (Germany); Schmid-Fetzer, Rainer [Institute of Metallurgy, Clausthal University of Technology, Clausthal-Zellerfeld (Germany); Rettenmayr, Markus, E-mail: M.Rettenmayr@uni-jena.de [Institute of Materials Science and Technology, Friedrich-Schiller-University, Jena (Germany)

    2012-02-25

    Highlights: Black-Right-Pointing-Pointer Samples consisting of pure Al{sub 2}Cu and 95% Q-phase respectively were prepared. Black-Right-Pointing-Pointer The Q-phase composition is Al{sub 17}Cu{sub 9}Mg{sub 44}Si{sub 30}, its solubility range is negligible. Black-Right-Pointing-Pointer The Q-phase peritectic temperature was determined by DSC measurements as 703 Degree-Sign C. Black-Right-Pointing-Pointer A new thermodynamic dataset for the Q-phase has been assessed. - Abstract: Plane front directional solidification experiments were carried out for preparing incongruently melting intermetallic phases in the quaternary alloy system Al-Cu-Mg-Si, particularly the binary Al{sub 2}Cu phase and the quaternary phase ('Q-phase'). By this method, bulk samples that consist of only a single phase are generated. Sample sections consisting of 100% single phase Al{sub 2}Cu and of 95% Q-phase, respectively, were obtained. The composition of the Q-phase was measured by Energy Dispersive X-ray Spectroscopy (EDX). The measured concentrations are close to the Al{sub 3}Cu{sub 2}Mg{sub 9}Si{sub 7} composition that has recently been predicted as most stable by ab initio calculations. A peritectic temperature of 703 Degree-Sign C for the reaction Q {yields} L + Mg{sub 2}Si + (Si) was determined by differential scanning calorimetry (DSC). An optimization of the Calphad database was performed considering the measured composition and peritectic temperature. For validating the optimized database, Scheil calculations were performed and compared with the experimentally determined sequence of solidifying phases.

  3. Analysis of cement solidified product and ash samples and preparation of a reference material

    International Nuclear Information System (INIS)

    Ishimori, Ken-ichiro; Haraga, Tomoko; Shimada, Asako; Kameo, Yutaka; Takahashi, Kuniaki

    2010-08-01

    Simple and rapid analytical methods for radionuclides in low-level radioactive waste have been developed by the present authors. The methods were applied to simulated solidified products and actual metal wastes to confirm their usefulness. The results were summarized as analytical guide lines. In the present work, cement solidified product and ash waste were analyzed followed by the analytical guide lines and subjects were picked up and solved for the application of the analytical guide lines to these wastes. Pulverization and homogenization method for ash waste was improved to prevent a contamination since the radioactivity concentrations of the ash samples were relatively high. Pre-treatment method was altered for the cement solidified product and ash samples taking account for their high concentration of Ca. Newly, an analytical method was also developed to measure 129 I with a dynamic reaction cell inductively coupled plasma mass spectrometer. In the analytical test based on the improved guide lines, gamma-ray emitting nuclides, 60 Co and 137 Cs, were measured to estimate the radioactivity of the other alpha and beta-ray emitting nuclides. The radionuclides assumed detectable, 3 H, 14 C, 36 Cl, 63 Ni, 90 Sr, and alpha-ray emitting nuclides, were analyzed with the improved analytical guide lines and their applicability for cement solidified product and ash samples were confirmed. Additionally a cement solidified product sample was evaluated in terms of the homogeneity and the radioactivity concentrations in order to prepare a reference material for radiochemical analysis. (author)

  4. On confirmation of abandonment of imported waste (glass solidified bodies) outside business places

    International Nuclear Information System (INIS)

    1996-01-01

    Electric power companies entrust the reprocessing of spent fuel generated from nuclear power stations to COGEMA in France, and in April, 1995, 28 high level radioactive wastes (glass solidified bodies) generated by the reprocessing were returned. When these glass solidified wastes are abandoned in the waste management facility of Japan Nuclear Fuel Service Co., it was decided to receive the confirmation of the prime minister on the measures based on the relevant law. Four electric power companies submitted the application and the explanation paper. As to the contents of the glass solidified wastes, the technical inspection was carried out by Bureau Veritas. Considering that this import of glass solidified wastes is the first in Japan, Science and Technology Agency carried out the measurement of all 28 wastes. The results are reported. It was confirmed that the measures for the abandonment taken by four electric power companies conform to the stipulation. The contents of the confirmation are reported in the order of the stipulation. These wastes were solidified with borosilicate glass in 5 mm thick stainless steel vessels, and the welding was done properly. (K.I.)

  5. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tashlykova-Bushkevich, Iya I. [Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus)

    2015-12-31

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defect interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered.

  6. A Study on Factors Affecting Strength of Solidified Peat through XRD and FESEM Analysis

    Science.gov (United States)

    Rahman, J. A.; Napia, A. M. A.; Nazri, M. A. A.; Mohamed, R. M. S. R.; Al-Geethi, A. S.

    2018-04-01

    Peat is soft soil that often causes multiple problems to construction. Peat has low shear strength and high deformation characteristics. Thus, peat soil needs to be stabilized or treated. Study on peat stabilization has been conducted for decades with various admixtures and mixing formulations. This project intends to provide an overview of the solidification of peat soil and the factors that affecting the strength of solidified peat soil. Three types of peats which are fabric, hemic and sapric were used in this study to understand the differences on the effect. The understanding of the factors affecting strength of solidified peat in this study is limited to XRD and FESEM analysis only. Peat samples were collected at Pontian, Johor and Parit Raja, Johor. Peat soil was solidified using fly ash, bottom ash and Portland cement with two mixing formulation following literature review. The solidified peat were cured for 7 days, 14 days, 28 days and 56 days. All samples were tested using Unconfined Compressive Strength Test (UCS), X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM). The compressive strength test of solidified peat had shown consistently increase of sheer strength, qu for Mixing 1 while decrease of its compressive strength value for Mixing 2. All samples were tested and compared for each curing days. Through XRD, it is found that all solidified peat are dominated with pargasite and richterite. The highest qu is Fabric Mixing 1(FM1) with the value of 105.94 kPa. This sample were proven contain pargasite. Samples with high qu were observed to be having fly ash and bottom ash bound together with the help of pargasite. Sample with decreasing strength showed less amount of pargasite in it. In can be concluded that XRD and FESEM findings are in line with UCS values.

  7. Microstructure and mechanical properties of an Al–Mg alloy solidified under high pressures

    International Nuclear Information System (INIS)

    Jie, J.C.; Zou, C.M.; Brosh, E.; Wang, H.W.; Wei, Z.J.; Li, T.J.

    2013-01-01

    Highlights: •Al–42.2Mg alloy was solidified under pressures of 1, 2, and 3 GPa and the microstructure analyzed. •A thermodynamic calculation of the Al–Mg phase diagram at high pressures was performed. •The phase content changes from predominantly γ-Al 12 Mg 17 at 1 GPa to FCC solid solution at 3 GPa. •The β-Al 3 Mg 2 is predicted to remain stable at low temperatures but is not observed. •The alloy solidified at high pressure has remarkably enhanced ultimate tensile strength. -- Abstract: Phase formation, the microstructure and its evolution, and the mechanical properties of an Al–42.2 at.% Mg alloy solidified under high pressures were investigated. After solidification at pressures of 1 GPa and 2 GPa, the main phase is the γ phase, richer in Al than in equilibrium condition. When the pressure is further increased to 3 GPa, the main phase is the supersaturated Al(Mg) solid solution with Mg solubility up to 41.6 at.%. Unlike in similar alloys solidified at ambient pressure, the β phase does not appear. Calculated high-pressure phase diagrams of the Al–Mg system show that although the stability range of the β phase is diminished with pressure, it is still thermodynamically stable at room temperature. Hence, the disappearance of the β phase is interpreted as kinetic suppression, due to the slow diffusion rate at high pressures, which inhibits solid–solid reactions. The Al–42.2 at.% Mg alloy solidified under 3 GPa has remarkably enhanced ultimate tensile strength compared to the alloy solidified under normal atmospheric pressure

  8. Close binary stars

    International Nuclear Information System (INIS)

    Larsson-Leander, G.

    1979-01-01

    Studies of close binary stars are being persued more vigorously than ever, with about 3000 research papers and notes pertaining to the field being published during the triennium 1976-1978. Many major advances and spectacular discoveries were made, mostly due to increased observational efficiency and precision, especially in the X-ray, radio, and ultraviolet domains. Progress reports are presented in the following areas: observational techniques, methods of analyzing light curves, observational data, physical data, structure and models of close binaries, statistical investigations, and origin and evolution of close binaries. Reports from the Coordinates Programs Committee, the Committee for Extra-Terrestrial Observations and the Working Group on RS CVn binaries are included. (Auth./C.F.)

  9. Planet formation in Binaries

    OpenAIRE

    Thebault, Ph.; Haghighipour, N.

    2014-01-01

    Spurred by the discovery of numerous exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation research. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain aspects of the planet formation scenario by submitting them to extreme environments. We review her...

  10. Texture classification by texton: statistical versus binary.

    Directory of Open Access Journals (Sweden)

    Zhenhua Guo

    Full Text Available Using statistical textons for texture classification has shown great success recently. The maximal response 8 (Statistical_MR8, image patch (Statistical_Joint and locally invariant fractal (Statistical_Fractal are typical statistical texton algorithms and state-of-the-art texture classification methods. However, there are two limitations when using these methods. First, it needs a training stage to build a texton library, thus the recognition accuracy will be highly depended on the training samples; second, during feature extraction, local feature is assigned to a texton by searching for the nearest texton in the whole library, which is time consuming when the library size is big and the dimension of feature is high. To address the above two issues, in this paper, three binary texton counterpart methods were proposed, Binary_MR8, Binary_Joint, and Binary_Fractal. These methods do not require any training step but encode local feature into binary representation directly. The experimental results on the CUReT, UIUC and KTH-TIPS databases show that binary texton could get sound results with fast feature extraction, especially when the image size is not big and the quality of image is not poor.

  11. The fate of close encounters between binary stars and binary supermassive black holes

    Science.gov (United States)

    Wang, Yi-Han; Leigh, Nathan; Yuan, Ye-Fei; Perna, Rosalba

    2018-04-01

    The evolution of main-sequence binaries that reside in the Galactic Centre can be heavily influenced by the central supermassive black hole (SMBH). Due to these perturbative effects, the stellar binaries in dense environments are likely to experience mergers, collisions, or ejections through secular and/or non-secular interactions. More direct interactions with the central SMBH are thought to produce hypervelocity stars (HVSs) and tidal disruption events (TDEs). In this paper, we use N-body simulations to study the dynamics of stellar binaries orbiting a central SMBH primary with an outer SMBH secondary orbiting this inner triple. The effects of the secondary SMBH on the event rates of HVSs, TDEs, and stellar mergers are investigated, as a function of the SMBH-SMBH binary mass ratio. Our numerical experiments reveal that, relative to the isolated SMBH case, the TDE and HVS rates are enhanced for, respectively, the smallest and largest mass ratio SMBH-SMBH binaries. This suggests that the observed event rates of TDEs and HVSs have the potential to serve as a diagnostic of the mass ratio of a central SMBH-SMBH binary. The presence of a secondary SMBH also allows for the creation of hypervelocity binaries. Observations of these systems could thus constrain the presence of a secondary SMBH in the Galactic Centre.

  12. On creep of directionally solidified eutectic Co-Cr-C-base superalloys

    International Nuclear Information System (INIS)

    Hildebrandt, U.W.

    1981-01-01

    It is shown in the present paper that the stress exponent and the activation energy of an Al-modified 73 C-alloy agree with the following mechanisms: diffusion controlled climbing of dislocation takes place and, the activation energy is in accordance with the self-diffusion energy of chromium, particularly that of Cr in Cr 7 C 3 . (orig.) [de

  13. High temperature creep properties of directionally solidified CM-247LC Ni-based superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, Mau-Sheng [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China); Jian, Sheng-Rui, E-mail: srjian@gmail.com [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China); Yeh, An-Chou [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Kuo, Chen-Ming [Department of Mechanical and Automation Engineering, I-Shou University, Kaohsiung 840, Taiwan (China); Juang, Jenh-Yih [Department of Electrophysics, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2016-02-08

    This study explores the effects of cooling rate after solution heat treatment on the high temperature/low stress (982 °C/200 MPa) creep properties of CM-247LC Nickel base superalloy. Cooling rate was controlled by blowing argon gas, air cooling, and furnace cooling, which, in turn, gave rise to corresponding cooling rates (from 1260 °C to 800 °C) of 18.7, 7.4, and 0.19 °C/s, respectively. The results indicated that higher cooling rate from the solution heat treatment temperature led to finer γ′ precipitates and much improved tertiary creep as well as rupture life time in high-temperature creep test. The microstructural analyses using both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that finer γ′ precipitates and narrower γ channel width could result in denser rafting structure which might have hindered the climb of dislocations across the precipitates rafts.

  14. WORK FUNCTION CHARACTERIZATION OF DIRECTIONALLY SOLIDIFIED LAB6VB2 EUTECTIC (POSTPRINT)

    Science.gov (United States)

    2017-05-10

    Roth , V. Dose , Interaction of atomic hydrogen with the graphite single-crystal surface, Appl. Phys. A 55 (1992) 4 89–4 92 . Please cite this article ...Clearance Date: 28 Apr 2017. This document contains color. Journal article published in Ultramicroscopy, 10 May 2017. © 2017 Elsevier B.V. The U.S...system. Here we combine thermal emission electron microscopy and low energy electron microscopy with Augerelectron spectroscopy and physical vapor

  15. Monotonic and fatigue deformation of Ni--W directionally solidified eutectic

    International Nuclear Information System (INIS)

    Garmong, G.; Williams, J.C.

    1975-01-01

    Unlike many eutectic composites, the Ni--W eutectic exhibits extensive ductility by slip. Furthermore, its properties may be greatly varied by proper heat treatments. Results of studies of deformation in both monotonic and fatigue loading are reported. During monotonic deformation the fiber/matrix interface acts as a source of dislocations at low strains and an obstacle to matrix slip at higher strains. Deforming the quenched-plus-aged eutectic causes planar matrix slip, with the result that matrix slip bands create stress concentrations in the fibers at low strains. The aged eutectic reaches generally higher stress levels for comparable strains than does the as-quenched eutectic, and the failure strains decrease with increasing aging times. For the composites tested in fatigue, the aged eutectic has better high-stress fatigue resistance than the as-quenched material, but for low-stress, high-cycle fatigue their cycles to failure are nearly the same. However, both crack initiation and crack propagation are different in the two conditions, so the coincidence in high-cycle fatigue is probably fortuitous. The effect of matrix strength on composite performance is not simple, since changes in strength may be accompanied by alterations in slip modes and failure processes. (17 fig) (auth)

  16. Vertical solidification of dendritic binary alloys

    Science.gov (United States)

    Heinrich, J. C.; Felicelli, S.; Poirier, D. R.

    1991-01-01

    Three numerical techniques are employed to analyze the influence of thermosolutal convection on defect formation in directionally solidified (DS) alloys. The finite-element models are based on the Boussinesq approximation and include the plane-front model and two plane-front models incorporating special dendritic regions. In the second model the dendritic region has a time-independent volume fraction of liquid, and in the last model the dendritic region evolves as local conditions dictate. The finite-element models permit the description of nonlinear thermosolutal convection by treating the dendritic regions as porous media with variable porosities. The models are applied to lead-tin alloys including DS alloys, and severe segregation phenomena such as freckles and channels are found to develop in the DS alloys. The present calculations and the permeability functions selected are shown to predict behavior in the dendritic regions that qualitatively matches that observed experimentally.

  17. Radiochemical analysis of homogeneously solidified low level radioactive waste from nuclear power plants

    International Nuclear Information System (INIS)

    Sato, Kaneaki; Ikeuchi, Yoshihiro; Higuchi, Hideo

    1995-01-01

    As mentioned above, we have reliable radioanalytical methods for all kinds of homogeneously solidified wastes. We are now under studying an analytical method for pellets which are made from evaporator concentrates or resin. And we are going to study to establish new analytical method for the rad-waste including metal, cloths and so on in near future. (J.P.N.)

  18. Evaluation of Carbonation Effects on Cement-Solidified Contaminated Soil Used in Road Subgrade

    Directory of Open Access Journals (Sweden)

    Yundong Zhou

    2018-01-01

    Full Text Available Cement solidification/stabilization is widely used towards contaminated soil since it has a low price and significant improvement for the structural capacity of soil. To increase the usage of the solidified matrix, cement-solidified contaminated soil was used as road subgrade material. In this study, carbonation effect that reflected the durability on strength characteristics of cement-solidified contaminated soil and the settlement of pavement were evaluated through experimental and numerical analysis, respectively. According to results, compressive strengths of specimens with 1% Pb(II under carbonation and standard curing range from 0.44 MPa to 1.17 MPa and 0.14 MPa to 2.67 MPa, respectively. The relatively low strengths were attributed to immobilization of heavy metal, which consumed part of SiO2, Al2O3, and CaO components in the cement or kaolin and reduced the hydration and pozzolanic reaction materials. This phenomenon further decreased the strength of solidified soils. The carbonation depth of 1% Cu(II or Zn(II contaminated soils was 18 mm, which significantly increased with the increase of curing time and contamination concentration. Furthermore, the finite element calculation results showed that surface settlements decreased with the increase of modulus of subgrade and the distance away from the center. At the center, the pavement settlement was proportional to the level of traffic load.

  19. Elution behavior of heavy metals from cement solidified products of incinerated ash waste - 59102

    International Nuclear Information System (INIS)

    Meguro, Yoshihiro; Kawato, Yoshimi; Nakayama, Takuya; Tomioka, Osamu; Mitsuda, Motoyuki

    2012-01-01

    A method, in which incinerated ash is solidified with a cement material, has been developed to dispose radioactive incinerated ash waste. In order to bury the solidified product, it is required that elution of hazardous heavy metals included in the ash from the solidified products is inhibited. In this study, the elution behavior of the heavy metals from the synthetic solidified products, which included Pb(II), Cd(II), and Cr(VI) and were prepared using ordinary portland cement (OPC), blast furnace slag cement (BFS), or a cement material that showed low alkalinity (LA-Cement), was investigated. Several chemicals and materials were added as additive agents to prevent the elution of the heavy metals. When OPC was used, Cd elution was inhibited, but Pb and Cr were not enough even using the additive agent examined. FeSO 4 and Na 2 S additive agents worked effective to inhibit elution of Cr. When BFS was used, the elution of Pb, Cd and Cr was inhibited for the all products prepared. In the case of LA-Cement, the elution of Pb and Cd was inhibited for the all products, but only the product that was added FeSO 4 showed good result of the elution of Cr. (authors)

  20. IAEA coordinated research program on the evaluation of solidified high-level radioactive waste products

    International Nuclear Information System (INIS)

    Grover, J.R.; Schneider, K.J.

    1979-01-01

    A coordinated research program on the evaluation of solidified high-level radioactive waste products has been active with the IAEA since 1976. The program's objectives are to integrate research and to provide a data bank on an international basis in this subject area. Results and considerations to date are presented

  1. Effect of drying-wetting cycles on leaching behavior of cement solidified lead-contaminated soil.

    Science.gov (United States)

    Li, Jiang-Shan; Xue, Qiang; Wang, Ping; Li, Zhen-Ze; Liu, Lei

    2014-12-01

    Lead contaminated soil was treated by different concentration of ordinary Portland cement (OPC). Solidified cylindrical samples were dried at 40°C in oven for 48 h subsequent to 24h of immersing in different solution for one drying-wetting. 10 cycles were conducted on specimens. The changes in mass loss of specimens, as well as leaching concentration and pH of filtered leachates were studied after each cycle. Results indicated that drying-wetting cycles could accelerate the leaching and deterioration of solidified specimens. The cumulative leached lead with acetic acid (pH=2.88) in this study was 109, 83 and 71 mg respectively for solidified specimens of cement-to-dry soil (C/Sd) ratios 0.2, 0.3 and 0.4, compared to 37, 30, and 25mg for a semi-dynamic leaching test. With the increase of cycle times, the cumulative mass loss of specimens increased linearly, but pH of filtered leachates decreased. The leachability and deterioration of solidified specimens increased with acidity of solution. Increases of C/Sd clearly reduced the leachability and deterioration behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Performance criteria for solidified high-level radioactive wastes. Environmental impact statement. Revision 1

    International Nuclear Information System (INIS)

    1977-09-01

    This draft Environmental Impact Statement on performance criteria for solidified high-level radioactive wastes (PCSHLW) covers: considerations for PCSHLW development, the proposed rulemaking, characteristics of the PCSHLW, environmental impacts of the proposed PCSHLW, alternatives to the PCSHLW criteria, and cost/benefit/risk evaluation. Five appendices are included to support the technical data required in the Environmental Impact Statement

  3. Skewed Binary Search Trees

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Moruz, Gabriel

    2006-01-01

    It is well-known that to minimize the number of comparisons a binary search tree should be perfectly balanced. Previous work has shown that a dominating factor over the running time for a search is the number of cache faults performed, and that an appropriate memory layout of a binary search tree...... can reduce the number of cache faults by several hundred percent. Motivated by the fact that during a search branching to the left or right at a node does not necessarily have the same cost, e.g. because of branch prediction schemes, we in this paper study the class of skewed binary search trees....... For all nodes in a skewed binary search tree the ratio between the size of the left subtree and the size of the tree is a fixed constant (a ratio of 1/2 gives perfect balanced trees). In this paper we present an experimental study of various memory layouts of static skewed binary search trees, where each...

  4. Binary translation using peephole translation rules

    Science.gov (United States)

    Bansal, Sorav; Aiken, Alex

    2010-05-04

    An efficient binary translator uses peephole translation rules to directly translate executable code from one instruction set to another. In a preferred embodiment, the translation rules are generated using superoptimization techniques that enable the translator to automatically learn translation rules for translating code from the source to target instruction set architecture.

  5. The evaluation of solidifying performance of heavy metal waste using cementitious materials (2)

    International Nuclear Information System (INIS)

    Fujita, Hideki; Harasawa, Shuichi

    2005-02-01

    Some of radioactive waste generated from JNC's facilities contain the poisonous substances such as lead, cadmium and mercury. In order to establish an appropriate method of the treatment of these heavy metals, solidification performance was evaluated using cementitious materials. In this report, the solidification performance of lead and mercury, which accounts for relatively high ratio in total wastes, was evaluated. The results are summarized below: 1. The test of stabilization process of mercury. The conversion process from mercury to the powdery mercury sulfide (red) was examined on the beaker scale. As a result, it was confirmed that the conversion was possible using the liquid phase reaction at 80deg C by the addition of sulfur powder with the NaOH solution. After the process, the mercury concentration in the filtrate was relatively high (0.6 mass%), so it was judged that the reuse of the recovered mercury waste fluid was indispensable. 2. The fabrication and evaluation of solidified wastes. The solidified waste were fabricated with cementitious material, and were evaluated by the measurement of one-axis compressive strength, the elution ratio of lead, mercury and so on. Powdery lead sulfide and the mercury sulfide of reagent were used as model waste. (1) solidification test of the lead waste. It was confirmed one-axis compressive strength for all solidified waste to pass the technical standards 15 kg/cm 2 (1.5 Mpa) for homogeneously solidified waste as the Low-level Radioactive Waste Disposal Center in Aomori Prefecture, and as for the elution ratio of lead, it had obtained the better result (0.06 mg/L) at the case of solidification of sulfide lead 30 mass% packed in the total solidified waste by using Highly Fly-ash contained Silica fume Cement (HFSC) than standard value (0.3 mg/L) at Regulations of Waste Management and Public Cleansing Law. Additionally, it was confirmed the using admixture of the inorganic reducing agent such as the Iron (II) chloride

  6. Modelling binary data

    CERN Document Server

    Collett, David

    2002-01-01

    INTRODUCTION Some Examples The Scope of this Book Use of Statistical Software STATISTICAL INFERENCE FOR BINARY DATA The Binomial Distribution Inference about the Success Probability Comparison of Two Proportions Comparison of Two or More Proportions MODELS FOR BINARY AND BINOMIAL DATA Statistical Modelling Linear Models Methods of Estimation Fitting Linear Models to Binomial Data Models for Binomial Response Data The Linear Logistic Model Fitting the Linear Logistic Model to Binomial Data Goodness of Fit of a Linear Logistic Model Comparing Linear Logistic Models Linear Trend in Proportions Comparing Stimulus-Response Relationships Non-Convergence and Overfitting Some other Goodness of Fit Statistics Strategy for Model Selection Predicting a Binary Response Probability BIOASSAY AND SOME OTHER APPLICATIONS The Tolerance Distribution Estimating an Effective Dose Relative Potency Natural Response Non-Linear Logistic Regression Models Applications of the Complementary Log-Log Model MODEL CHECKING Definition of Re...

  7. Evolution of dwarf binaries

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Fedorova, A.V.; Yungel'son, L.R.

    1982-01-01

    The conditions of mass exchange in close binary systems with masses of components less or equal to one solar mass have been analysed for the case, when the system radiates gravitational waves. It has been shown that the mass exchange rate depends in a certain way on the mass ratio of components and on the mass of component that fills its inner critical lobe. The comparison of observed periods, masses of contact components, and mass exchange rates of observed cataclysmic binaries have led to the conclusion that the evolution of close binaries WZ Sge, OY Car, Z Cha, TT Ari, 2A 0311-227, and G 61-29 may be driven by the emission of gravitational waves [ru

  8. Binary catalogue of exoplanets

    Science.gov (United States)

    Schwarz, Richard; Bazso, Akos; Zechner, Renate; Funk, Barbara

    2016-02-01

    Since 1995 there is a database which list most of the known exoplanets (The Extrasolar Planets Encyclopaedia at http://exoplanet.eu/). With the growing number of detected exoplanets in binary and multiple star systems it became more important to mark and to separate them into a new database, which is not available in the Extrasolar Planets Encyclopaedia. Therefore we established an online database (which can be found at: http://www.univie.ac.at/adg/schwarz/multiple.html) for all known exoplanets in binary star systems and in addition for multiple star systems, which will be updated regularly and linked to the Extrasolar Planets Encyclopaedia. The binary catalogue of exoplanets is available online as data file and can be used for statistical purposes. Our database is divided into two parts: the data of the stars and the planets, given in a separate list. We describe also the different parameters of the exoplanetary systems and present some applications.

  9. Binary and Millisecond Pulsars.

    Science.gov (United States)

    Lorimer, Duncan R

    2008-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 M ⊙ , a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric ( e = 0.44) orbit around an unevolved companion. Supplementary material is available for this article at 10.12942/lrr-2008-8.

  10. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2008-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.

  11. Improvement in mechanical properties of hypereutectic Al-Si-Cu alloys through sono-solidified

    Directory of Open Access Journals (Sweden)

    Yoshiki Tsunekawa

    2014-07-01

    Full Text Available For the wider applications, it is necessary to improve the ductility as well as the strength and wear-resistance of hypereutectic Al-Si-Cu alloys, which are typical light-weight wear-resistant materials. An increase in the amounts of primary silicon particles causes the modified wear-resistance of hypereutectic Al-Si-Cu alloys, but leads to the poor strength and ductility. It is known that dual phase steels composed of hetero-structure have succeeded in bringing contradictory mechanical properties of high strength and ductility concurrently. In order to apply the idea of hetero-structure to hypereutectic Al-Si-Cu alloys for the achievement of high strength and ductility along with wear resistance, ultrasonic irradiation of the molten metal during the solidification, which is called sono-solidification, was carried out from its molten state to just above the eutectic temperature. The sono-solidified Al-17Si-4Cu alloy is composed of hetero-structure, which are, hard primary silicon particles, soft non-equilibrium a -Al phase and the eutectic region. Rheo-casting was performed at just above the eutectic temperature with sono-solidified slurry to shape a disk specimen. After the rheo-casting with modified sonosolidified slurry held for 45 s at 570 篊, the quantitative optical microscope observation exhibits that the microstructure is composed of 18area% of hard primary silicon particles and 57area% of soft a -Al phase. In contrast, there exist only 5 area% of primary silicon particles and no a -Al phase in rheo-cast specimen with normally solidified slurry. Hence the tensile tests of T6 treated rheo-cast specimens with modified sono-solidified slurry exhibit improved strength and 5% of elongation, regardless of having more than 3 times higher amounts of primary silicon particles compared to that of rheo-cast specimen with normally solidified slurry.

  12. Applications Of Binary Image Analysis Techniques

    Science.gov (United States)

    Tropf, H.; Enderle, E.; Kammerer, H. P.

    1983-10-01

    After discussing the conditions where binary image analysis techniques can be used, three new applications of the fast binary image analysis system S.A.M. (Sensorsystem for Automation and Measurement) are reported: (1) The human view direction is measured at TV frame rate while the subject's head is free movable. (2) Industrial parts hanging on a moving conveyor are classified prior to spray painting by robot. (3) In automotive wheel assembly, the eccentricity of the wheel is minimized by turning the tyre relative to the rim in order to balance the eccentricity of the components.

  13. Dissipative binary collisions

    International Nuclear Information System (INIS)

    Aboufirassi, M; Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Kerambrun, A.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; Lopez, O.; Louvel, M.; Meslin, C.; Metivier, V.; Nakagawa, T.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Wieloch, A.; Yuasa-Nakagawa, K.

    1998-01-01

    The binary character of the heavy ion collisions at intermediate energies in the exit channel has been observed under 30 MeV/n in medium and heavy systems. Measurements in light systems at energies approaching ∼ 100 MeV/nucleon as well as in very heavy systems have allowed to extend considerably the investigations of this binary process. Thus, the study of the Pb + Au system showed that the complete charge events indicated two distinct sources: the quasi-projectile and the quasi-target. The characteristics of these two sources are rather well reproduced by a trajectory computation which takes into account the Coulomb and nuclear forces and the friction appearing from the projectile-target interaction. The Wilczynski diagram is used to probe the correlation between the kinetic energy quenching and the deflecting angle. In case of the system Pb + Au at 29 MeV/nucleon the diagram indicate dissipative binary collisions typical for low energies. This binary aspect was also detected in the systems Xe + Ag at 44 MeV/nucleon, 36 Ar + 27 Al and 64 Zn + nat Ti. Thus, it was possible to reconstruct the quasi-projectile and to study its mass and excitation energy evolution as a function of the impact parameter. The dissipative binary collisions represent for the systems and energies under considerations the main contribution to the cross section. This does not implies that there are not other processes; particularly, the more or less complete fusion is also observed but with a low cross section which decreases with the increase of bombardment energy. More exclusive measurements with the INDRA detector on quasi-symmetric systems as Ar + KCl and Xe + Sn seem to confirm the importance of the binary collisions. The two source reconstruction of the Xe + Sn data at 50 MeV/nucleon reproduces the same behaviour as that observed in the system Pb + Au at 29 MeV/nucleon

  14. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2005-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5.

  15. Equational binary decision diagrams

    NARCIS (Netherlands)

    J.F. Groote (Jan Friso); J.C. van de Pol (Jaco)

    2000-01-01

    textabstractWe incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and

  16. Binary tense and modality

    NARCIS (Netherlands)

    Broekhuis, H.; Verkuyl, H.J

    2014-01-01

    The present paper adopts as its point of departure the claim by Te Winkel (1866) and Verkuyl (2008) that mental temporal representations are built on the basis of three binary oppositions: Present/Past, Synchronous/Posterior and Imperfect/Perfect. Te Winkel took the second opposition in terms of the

  17. N-Bit Binary Resistor

    Science.gov (United States)

    Tcheng, Ping

    1989-01-01

    Binary resistors in series tailored to precise value of resistance. Desired value of resistance obtained by cutting appropriate traces across resistors. Multibit, binary-based, adjustable resistor with high resolution used in many applications where precise resistance required.

  18. The evaluation of solidifying performance of heavy metal waste using cementitious materials

    International Nuclear Information System (INIS)

    Takei, Akihiko; Fujita, Hideki; Harasawa, Shuichi

    2004-02-01

    Some of radioactive waste generated form JNC's facilities contain the poisonous substances such as lead, cadmium and mercury. In order to establish an appropriate method of the treatment of these heavy metals, solidification performance was evaluated using cementitious materials. In this report, the solidification performance of lead, which accounts for relatively high ratio in total wastes, was evaluated. The results are summarized below: 1. The test of stabilization process of lead: The conversion process from block lead to the powdery lead sulfide was examined on the beaker scale. As a result, it was confirmed that the conversion was possible using the liquid phase reaction by the addition of thiourea after block lead had been dissolved by the acetic acid with bubbling air. After the process, the lead concentration in the filtrate was extremely low (0.02 mg/L), so it was judged that almost all of the lead was converted and recovered as lead sulfide. 2. The fabrication and evaluation of solidified wastes: Five types of solidified waste were fabricated with different binder, and were evaluated by the measurement of one-axis compressive strength, porosity, the elution ratio of lead, and so on. Powdery lead and sulfide lead reagent were used as model waste. As a result of the test, it was confirmed one-axis compressive strength for all solidified waste to pass the technical standards 15 kg/cm 2 (1.5 MPa) for homogeneously solidified waste as the Low-level Radioactive Waste Disposal Center in Aomori Prefecture, and as for the elution ratio of lead, it had obtained the better result (0.27 mg/L) at the case of solidification of sulfide lead 20 mass% packed in the total solidified waste by using low alkaline cement (including Hauyne mineral) than standard value (0.3 mg/L) at Regulations of Waste Management and Public Cleansing Law. Moreover, it was understood that the elution of lead had high relationship with not only the character of the binder but also the physical

  19. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  20. Learning to assign binary weights to binary descriptor

    Science.gov (United States)

    Huang, Zhoudi; Wei, Zhenzhong; Zhang, Guangjun

    2016-10-01

    Constructing robust binary local feature descriptors are receiving increasing interest due to their binary nature, which can enable fast processing while requiring significantly less memory than their floating-point competitors. To bridge the performance gap between the binary and floating-point descriptors without increasing the computational cost of computing and matching, optimal binary weights are learning to assign to binary descriptor for considering each bit might contribute differently to the distinctiveness and robustness. Technically, a large-scale regularized optimization method is applied to learn float weights for each bit of the binary descriptor. Furthermore, binary approximation for the float weights is performed by utilizing an efficient alternatively greedy strategy, which can significantly improve the discriminative power while preserve fast matching advantage. Extensive experimental results on two challenging datasets (Brown dataset and Oxford dataset) demonstrate the effectiveness and efficiency of the proposed method.

  1. Validation of the solidifying soil process using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Lin, Zhao-Xiang; Liu, Lin-Mei; Liu, Lu-Wen

    2016-09-01

    Although an Ionic Soil Stabilizer (ISS) has been widely used in landslide control, it is desirable to effectively monitor the stabilization process. With the application of laser-induced breakdown spectroscopy (LIBS), the ion contents of K, Ca, Na, Mg, Al, and Si in the permeable fluid are detected after the solidified soil samples have been permeated. The processes of the Ca ion exchange are analyzed at pressures of 2 and 3 atm, and it was determined that the cation exchanged faster as the pressure increased. The Ca ion exchanges were monitored for different stabilizer mixtures, and it was found that a ratio of 1:200 of ISS to soil is most effective. The investigated plasticity and liquidity indexes also showed that the 1:200 ratio delivers the best performance. The research work indicates that it is possible to evaluate the engineering performances of soil solidified by ISS in real time and online by LIBS.

  2. Accelerated leach testing of radionuclides from solidified low-level waste

    International Nuclear Information System (INIS)

    Pietrzak, R.F.; Fuhrmann, M.; Franz, E.M.; Heiser, J. III; Colombo, P.

    1989-01-01

    This paper describes some of the work performed to develop an accelerated leach test designed to provide data that show long-term leaching behavior of solidified waste in a relatively short period of testing (1,2). The need for an accelerated leach test stems from the fact that the response of an effectively solidified waste form to the leaching process is so slow that a very long time is required to complete a test which shows the long-term leaching behavior of a waste form. Because of time limitations, as well as economic considerations, most studies have been limited to the early stages of the leaching process which is predominantly controlled by diffusion, although acknowledged to be due to also dissolution, corrosion or ion-exchange

  3. Functions and requirements document for interim store solidified high-level and transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Smith-Fewell, M.A., Westinghouse Hanford

    1996-05-17

    The functions, requirements, interfaces, and architectures contained within the Functions and Requirements (F{ampersand}R) Document are based on the information currently contained within the TWRS Functions and Requirements database. The database also documents the set of technically defensible functions and requirements associated with the solidified waste interim storage mission.The F{ampersand}R Document provides a snapshot in time of the technical baseline for the project. The F{ampersand}R document is the product of functional analysis, requirements allocation and architectural structure definition. The technical baseline described in this document is traceable to the TWRS function 4.2.4.1, Interim Store Solidified Waste, and its related requirements, architecture, and interfaces.

  4. Research on the compressive strength of basic magnesium salts and cyanide slag solidified body

    Science.gov (United States)

    Tu, Yubo; Han, Peiwei; Ye, Shufeng; Wei, Lianqi; Zhang, Xiaomeng; Fu, Guoyan; Yu, Bo

    2018-02-01

    The solidification of cyanide slag by using basic magnesium salts could reduce pollution and protect the environment. Experiments were carried out to investigate the effects of age, mixing amount of cyanide slag, water cement ratio and molar ratio of MgO to MgSO4 on the compressive strength of basic magnesium salts and cyanide slag solidified body in the present paper. It was found that compressive strength of solidified body increased with the increase of age, and decreased with the increase of mixing amount of cyanide slag and water cement ratio. The molar ratio of MgO to MgSO4 should be controlled in the range from 9 to 11 when the mixing amount of cyanide slag was larger than 80 mass%.

  5. Comparative analysis of mechanical characteristics of solidified concentrates from BWR system using Yugoslav and Italian cements

    International Nuclear Information System (INIS)

    Plecas, I.; Peric, A.; Drljaca, J.; Kostadinovic, A.

    1987-01-01

    In this paper, properties of Italian and Yugoslav cement mixture with BWR evaporation concentrates were compared, research was held upon fifteen samples, according to the adequate formulations. Samples were made in standard cube form, side 10 cm. Functional relationship between decreasing the compressive strength and amount of incorporated BWR concentrate cement mixture was developed. The results of research showed nearly the same mechanical properties of solidified BWR concentrate with Italian and Yugoslav cements. (author)

  6. Fabrication and tensile properties of rapidly solidified Cu-10wt. %Ni alloy. [Cu-10Ni

    Energy Technology Data Exchange (ETDEWEB)

    Baril, D; Angers, R; Baril, J [Dept. of Mining and Metallurgy, Laval Univ., Ste-Foy, Quebec (Canada)

    1992-10-15

    Cu-10wt.%Ni ribbons were produced by melt spinning and cut into small particles with a blade cutter mill. The powders were then hot consolidated to full density by hot pressing followed by hot extrusion. Tensile properties of the resulting pieces were measured. Cu-10wt.%Ni cast ingots were also hot extruded and mechanically tested to compare with the rapidly solidified alloy and to evaluate the possible benefits brought by the rapid solidification process.

  7. Leach testing of simulated ion-exchange resin waste solidified in cement

    International Nuclear Information System (INIS)

    Muurinen, A.K.; Uotila, P.I.; Ovaskainen, R.M.

    Leach tests were carried out on ion-exchange resins solidified in cement. Three product mixtures, two isotopes and four leachants at two temperatures, were tested. The increase of resin content increased the leaching of Cs-137; the effect of silix admixture was negligible. The type of the leachant has a stronger influence on Co-60 than on Cs-137. The increase of temperature usually also increased leaching. (author)

  8. An Efficient Binary Differential Evolution with Parameter Adaptation

    Directory of Open Access Journals (Sweden)

    Dongli Jia

    2013-04-01

    Full Text Available Differential Evolution (DE has been applied to many scientific and engineering problems for its simplicity and efficiency. However, the standard DE cannot be used in a binary search space directly. This paper proposes an adaptive binary Differential Evolution algorithm, or ABDE, that has a similar framework as the standard DE but with an improved binary mutation strategy in which the best individual participates. To further enhance the search ability, the parameters of the ABDE are slightly disturbed in an adaptive manner. Experiments have been carried out by comparing ABDE with two binary DE variants, normDE and BDE, and the most used binary search technique, GA, on a set of 13 selected benchmark functions and the classical 0-1 knapsack problem. Results show that the ABDE performs better than, or at least comparable to, the other algorithms in terms of search ability, convergence speed, and solution accuracy.

  9. Structure and transformation behaviour of a rapidly solidified Al-Y-Ni-Co-Pd alloy

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, D.V.; Inoue, A.

    2005-01-01

    An as-solidified structure and transformation behaviour on heating of the rapidly solidified Al-Y-Ni-Co-Pd alloy was studied by X-ray diffractometry (XRD), transmission electron microscopy (TEM), differential scanning and isothermal calorimetries. The Al-Y-Ni-Co-Pd ribbon samples have been produced by the melt spinning technique and heat treated using a differential scanning calorimeter (DSC). The addition of Pd to Al-Y-Ni-Co alloys caused disappearance of the supercooled liquid region as well as the formation of the highly dispersed primary α-Al nanoparticles about 3-7 nm in size homogeneously embedded in the glassy matrix upon solidification. An extremely high density of precipitates of the order of 10 24 m -3 is obtained. These particles start growing at the temperature below a glass-transition temperature. The results presented in this paper indicate that some of so-called 'marginal' glass-formers in as-solidified state are actually not glassy alloys with pre-existed nuclei but crystal-glassy nanocomposites

  10. Processing Of Binary Images

    Science.gov (United States)

    Hou, H. S.

    1985-07-01

    An overview of the recent progress in the area of digital processing of binary images in the context of document processing is presented here. The topics covered include input scan, adaptive thresholding, halftoning, scaling and resolution conversion, data compression, character recognition, electronic mail, digital typography, and output scan. Emphasis has been placed on illustrating the basic principles rather than descriptions of a particular system. Recent technology advances and research in this field are also mentioned.

  11. Young and Waltzing Binary Stars

    Science.gov (United States)

    2001-10-01

    ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a

  12. Instabilities in rapid directional solidification under weak flow

    Science.gov (United States)

    Kowal, Katarzyna N.; Davis, Stephen H.; Voorhees, Peter W.

    2017-12-01

    We examine a rapidly solidifying binary alloy under directional solidification with nonequilibrium interfacial thermodynamics viz. the segregation coefficient and the liquidus slope are speed dependent and attachment-kinetic effects are present. Both of these effects alone give rise to (steady) cellular instabilities, mode S , and a pulsatile instability, mode P . We examine how weak imposed boundary-layer flow of magnitude |V | affects these instabilities. For small |V | , mode S becomes a traveling and the flow stabilizes (destabilizes) the interface for small (large) surface energies. For small |V | , mode P has a critical wave number that shifts from zero to nonzero giving spatial structure. The flow promotes this instability and the frequencies of the complex conjugate pairs each increase (decrease) with flow for large (small) wave numbers. These results are obtained by regular perturbation theory in powers of V far from the point where the neutral curves cross, but requires a modified expansion in powers of V1 /3 near the crossing. A uniform composite expansion is then obtained valid for all small |V | .

  13. Formation of an 18R long-period stacking ordered structure in rapidly solidified Mg88Y8Zn4 alloy

    International Nuclear Information System (INIS)

    Garcés, Gerardo; Requena, Guillermo; Tolnai, Domonkos; Pérez, Pablo; Medina, Judit; Stark, Andreas; Schell, Norbert; Adeva, Paloma

    2016-01-01

    The formation of the long-period stacking ordered structure (LPSO) in a Mg 88 Y 8 Zn 4 (at%) ribbon produced by melt spinning was studied using high energy X-ray synchrotron radiation diffraction during in-situ isochronal heating and transmission electron microscopy. The microstructure of the rapidly solidified ribbons is characterised by fine magnesium grains with yttrium and zinc in solid solution and primary 18R LPSO-phase segregated at grain boundaries. Using differential scanning calorimetry, a strong exothermal peak was observed around 300 °C which was associated with the development of the 18R-type LPSO-phase in the magnesium grains. The apparent activation energy calculated using the Kissinger model was 125 KJmol −1 and it is related to simultaneous diffusion of Y and Zn through magnesium basal plane. - Highlights: •The formation of the LPSO phase in rapidly solidified ribbons was studied. •The formation of the 18R LPSO starts at around 300 °C. •LPSO formation have to steps: Stacking faults along basal plane and then growth of 18R structure along the c direction.

  14. Massive Black Hole Binary Evolution

    Directory of Open Access Journals (Sweden)

    Merritt David

    2005-11-01

    Full Text Available Coalescence of binary supermassive black holes (SBHs would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, “diffusive” refilling of the binary’s loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the “damage” inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.

  15. Tidal Disruption of Inclined or Eccentric Binaries by Massive Black Holes

    Science.gov (United States)

    Brown, Harriet; Kobayashi, Shiho; Rossi, Elena M.; Sari, Re'em

    2018-04-01

    Binary stars that are on close orbits around massive black holes (MBH) such as Sgr A* in the centre of the Milky Way are liable to undergo tidal disruption and eject a hypervelocity star. We study the interaction between such a MBH and circular binaries for general binary orientations and penetration depths (i.e. binaries penetrate into the tidal radius around the BH). We show that for very deep penetrators, almost all binaries are disrupted when the binary rotation axis is roughly oriented toward the BH or it is in the opposite direction. The surviving chance becomes significant when the angle between the binary rotation axis and the BH direction is between 0.15π and 0.85π. The surviving chance is as high as ˜20% when the binary rotation axis is perpendicular to the BH direction. However, for shallow penetrators, the highest disruption chance is found in such a perpendicular case, especially in the prograde case. This is because the dynamics of shallow penetrators is more sensitive to the relative orientation of the binary and orbital angular momenta. We provide numerical fits to the disruption probability and energy gain at the the BH encounter as a function of the penetration depth. The latter can be simply rescaled in terms of binary masses, their initial separation and the binary-to-BH mass ratio to evaluate the ejection velocity of a binary members in various systems. We also investigate the disruption of coplanar, eccentric binaries by a MBH. It is shown that for highly eccentric binaries retrograde orbits have a significantly increased disruption probability and ejection velocities compared to the circular binaries.

  16. Particle acceleration in binaries

    Directory of Open Access Journals (Sweden)

    Sinitsyna V.G.

    2017-01-01

    Full Text Available Cygnus X-3 massive binary system is one of the powerful sources of radio and X-ray emission consisting of an accreting compact object, probably a black hole, with a Wolf-Rayet star companion. Based on the detections of ultra high energy gamma-rays by Kiel and Havera Park, Cygnus X-3 has been proposed to be one of the most powerful sources of charged cosmic ray particles in the Galaxy. The results of long-term observations of the Cyg X-3 binary at energies 800 GeV–85 TeV detected by SHALON in 1995 are presented with images, integral spectra and spectral energy distribution. The identification of source with Cygnus X-3 detected by SHALON was secured by the detection of its 4.8 hour orbital period in TeV gamma-rays. During the whole observation period of Cyg X-3 with SHALON significant flux increases were detected at energies above 0.8 TeV. These TeV flux increases are correlated with flaring activity at a lower energy range of X-ray and/or at observations of Fermi LAT as well as with radio emission from the relativistic jets of Cygnus X-3. The variability of very high-energy gamma-radiation and correlation of radiation activity in the wide energy range can provide essential information on particle mechanism production up to very high energies. Whereas, modulation of very high energy emission connected to the orbital motion of the binary system, provides an understanding of the emission processes, nature and location of particle acceleration.

  17. High-temperature deformation behavior and mechanical properties of rapidly solidified Al-Li-Co and Al-Li-Zr alloys

    International Nuclear Information System (INIS)

    Sastry, S.M.L.; Oneal, J.E.

    1984-01-01

    The deformation behavior at 25-300 C of rapidly solidified Al-3Li-0.6Co and Al-3Li-0.3Zr alloys was studied by tensile property measurements and transmission electron microscopic examination of dislocation substructures. In binary Al-3Li and Al-3Li-Co alloys, the modulus normalized yield stress increases with an increase in temperature up to 150 C and then decreases. The yield stress at 25 C of Al-3Li-0.3Zr alloys is 180-200 MPa higher than that of Al-3Li alloys. However, the yield stress of the Zr-containing alloy decreases drastically with increasing temperatures above 75 C. The short-term yield stresses at 100-200 C of the Al-3Li-based alloys are higher than that of the conventional high-temperature Al alloys. The temperature dependences of the flow stresses of the alloys were analyzed in terms of the magnitudes and temperature dependences of the various strengthening contributions in the two alloys. The dislocation substructures at 25-300 C were correlated with mechanical properties. 19 references

  18. Magnetic binary nanofillers

    International Nuclear Information System (INIS)

    Morales Mendoza, N.; Goyanes, S.; Chiliotte, C.; Bekeris, V.; Rubiolo, G.; Candal, R.

    2012-01-01

    Magnetic binary nanofillers containing multiwall carbon nanotubes (MWCNT) and hercynite were synthesized by Chemical Vapor Deposition (CVD) on Fe/AlOOH prepared by the sol-gel method. The catalyst precursor was fired at 450 °C, ground and sifted through different meshes. Two powders were obtained with different particle sizes: sample A (50-75 μm) and sample B (smaller than 50 μm). These powders are composed of iron oxide particles widely dispersed in the non-crystalline matrix of aluminum oxide and they are not ferromagnetic. After reduction process the powders are composed of α-Fe nanoparticles inside hercynite matrix. These nanofillers are composed of hercynite containing α-Fe nanoparticles and MWCNT. The binary magnetic nanofillers were slightly ferromagnetic. The saturation magnetization of the nanofillers depended on the powder particle size. The nanofiller obtained from powder particles in the range 50-75 μm showed a saturation magnetization 36% higher than the one formed from powder particles smaller than 50 μm. The phenomenon is explained in terms of changes in the magnetic environment of the particles as consequence of the presence of MWCNT.

  19. Magnetic binary nanofillers

    Energy Technology Data Exchange (ETDEWEB)

    Morales Mendoza, N. [INQUIMAE, CONICET-UBA, Ciudad Universitaria, Pab2, (C1428EHA) Bs As (Argentina); LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Goyanes, S. [LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Chiliotte, C.; Bekeris, V. [LBT, Dep. De Fisica, FCEN-UBA. Ciudad Universitaria, Pab1, C1428EGA CABA (Argentina); Rubiolo, G. [LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Unidad de Actividad Materiales, CNEA, Av Gral. Paz 1499, San Martin (1650), Prov. de Bs As (Argentina); Candal, R., E-mail: candal@qi.fcen.uba.ar [INQUIMAE, CONICET-UBA, Ciudad Universitaria, Pab2, (C1428EHA) Bs As (Argentina); Escuela de Ciencia y Tecnologia, 3iA, Universidad de Gral. San Martin, San Martin, Prov. Bs As (Argentina)

    2012-08-15

    Magnetic binary nanofillers containing multiwall carbon nanotubes (MWCNT) and hercynite were synthesized by Chemical Vapor Deposition (CVD) on Fe/AlOOH prepared by the sol-gel method. The catalyst precursor was fired at 450 Degree-Sign C, ground and sifted through different meshes. Two powders were obtained with different particle sizes: sample A (50-75 {mu}m) and sample B (smaller than 50 {mu}m). These powders are composed of iron oxide particles widely dispersed in the non-crystalline matrix of aluminum oxide and they are not ferromagnetic. After reduction process the powders are composed of {alpha}-Fe nanoparticles inside hercynite matrix. These nanofillers are composed of hercynite containing {alpha}-Fe nanoparticles and MWCNT. The binary magnetic nanofillers were slightly ferromagnetic. The saturation magnetization of the nanofillers depended on the powder particle size. The nanofiller obtained from powder particles in the range 50-75 {mu}m showed a saturation magnetization 36% higher than the one formed from powder particles smaller than 50 {mu}m. The phenomenon is explained in terms of changes in the magnetic environment of the particles as consequence of the presence of MWCNT.

  20. Evolution and merging of binaries with compact objects

    International Nuclear Information System (INIS)

    Bethe, Hans A.; Brown, Gerald E.; Lee, Chang-Hwan

    2007-01-01

    In the light of recent observations in which short γ-ray bursts are interpreted as arising from black-hole(BH), neutron-star(NS) or NS-NS mergings we would like to review our research on the evolution of compact binaries, especially those containing NS's. These were carried out with predictions for LIGO in mind, but are directly applicable to short γ-ray bursts in the interpretation above. Most important in our review is that we show that the standard scenario for evolving NS-NS binaries always ends up with a low-mass BH (LMBH), NS binary. Bethe and Brown [1998, Astrophys. J. 506, 780] showed that this fate could be avoided if the two giants in the progenitor binary burned He at the same time, and that in this way the binary could avoid the common envelope evolution of the NS with red giant companion which sends the first born NS into a BH in the standard scenario. The burning of He at the same time requires, for the more massive giants such as the progenitors of the Hulse-Taylor binary NS that the two giants be within 4% of each other in zero age main sequence (ZAMS) mass. Applying this criterion to all binaries results in a factor ∼5 of LMBH-NS binaries as compared with NS-NS binaries. Although this factor is substantially less than the originally claimed factor of 20 which Bethe and Brown (1998) estimated, largely because a careful evolution has been carried through here, our factor 5 is augmented by a factor of ∼8 arising from the higher rate of star formation in the earlier Galaxy from which the BH-NS binaries came from. Furthermore, here we calculate the mergers for short-hard gamma-ray bursts, whereas Bethe and Brown's factor 20 included a factor of 2 for the higher chirp masses in a BH-NS binary as compared with NS-NS one. In short, we end up with an estimate of factor ∼40 over that calculated with NS-NS binary mergers in our Galaxy alone. Our total rate is estimated to be about one merging of compact objects per year. Our scenario of NS-NS binaries

  1. Hardness and microstructural characteristics of rapidly solidified Al-8-16 wt.%Si alloys

    International Nuclear Information System (INIS)

    Uzun, O.; Karaaslan, T.; Gogebakan, M.; Keskin, M.

    2004-01-01

    Al-Si alloys with nominal composition of Al-8 wt.%Si, Al-12 wt.%Si, and Al-16 wt.%Si were rapidly solidified by using melt-spinning technique to examine the influence of the cooling rate/conditions on microstructure and mechanical properties. The microstructures of the rapidly solidified ribbons and ingot samples were investigated by the optical microscopy, electron microscopy and X-ray diffraction (XRD) techniques. The results showed that the structures of all melt-spun ribbons were completely composed of finely dispersed α-Al and eutectic Si phase, and primary silicon was not observed. The XRD analysis indicated that the solubility of Si in the α-Al matrix was greatly increased with rapid solidification. Additionally, mechanical properties of both conventionally cast (ingot) and melt-spun ribbons were examined by using Vickers indenter for one applied load (0.098 N). The hardness values of the melt-spun ribbons were about three times higher than those of ingot counterparts. The high hardness of the rapidly solidified state can be attributed to the supersaturated solid solutions. Besides, hardness values with different applied loads were measured for melt-spun ribbons. The results indicated that Vickers hardness values (H v ) of the ribbons depended on the applied load. Applying the concept of Hays-Kendall, the load independent hardness values were calculated as 694.0, 982.8 and 1186.8 MN/m 2 for Al-8 wt.%Si, Al-12 wt.%Si and Al-16 wt.%Si, respectively

  2. Chemical characterization, leach, and adsorption studies of solidified low-level wastes

    International Nuclear Information System (INIS)

    Walter, M.B.; Serne, R.J.; Jones, T.L.; McLaurine, S.B.

    1986-12-01

    Laboratory and field leaching experiments are beig conducted by Pacific Northwest Laboratory (PNL) to investigate the performance of solidified low-level nuclear waste in a typical, arid, near-surface disposal site. Under PNL's Special Waste Form Lysimeters-Arid Program, a field test facility was constructed to monitor the leaching of commercial solidified waste. Laboratory experiments were conducted to investigate the leaching and adsorption characteristics of the waste forms in contact with soil. Liquid radioactive wastes solidified in cement, vinyl ester-styrene, and bitumen were obtained from commercial boiling water and pressurized water reactors, and buried in a field leaching facility on the Hanford site in southeastern Washington State. Batch leaching, soil column adsorption, and soil/waste form column experiments were conducted in the laboratory, using small-scale cement waste forms and Hanford site ground water. The purpose of these experiments is to evaluate the ability of laboratory leaching tests to predict leaching under actual field conditions and to determine which mechanisms (i.e., diffusion, solubility, adsorption) actually control the concentration of radionuclides in the soil surrounding the waste form. Chemical and radionuclide analyses performed on samples collected from the field and laboratory experiments indicate strong adsorption of /sup 134,137/Cs and 85 Sr onto the Hanford site sediment. Small amounts of 60 Co are leached from the waste forms as very mobile species. Some 60 Co migrated through the soil at the same rate as water. Chemical constituents present in the reactor waste streams also found at elevated levels in the field and laboratory leachates include sodium, sulfate, magnesium, and nitrate. Plausible solid phases that could be controlling some of the chemical and radionuclide concentrations in the leachate were identified using the MINTEQ geochemical computer code

  3. Solidification structure and dispersoids in rapidly solidified Ti-Al-Sn-Zr-Er-B alloys

    International Nuclear Information System (INIS)

    Rowe, R.G.; Broderick, T.F.; Koch, E.F.; Froes, F.H.

    1986-01-01

    The microstructure of melt extracted and melt spun titanium alloys containing erbium and boron revealed a duplex solidification structure of columnar grains leading to equiaxed and dendritic structures near the free surface of melt extracted and melt spun alloys. The solidification structure was revealed by apparent boride segregation to cellular, interdendritic and grain boundaries. Precipitation of needle or lath-like TiB particles occurred adjacent to Er/sub 2/O/sub 3/ dispesoid particles in as-rapidly solidified ribbon

  4. Determination of performance criteria for high-level solidified nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.; Holdsworth, T.

    1979-05-07

    To minimize radiological risk from the operation of a waste management system, performance limits on volatilization, particulate dispersion, and dissolution characteristics of solidified high level waste must be specified. The results show clearly that the pre-emplacement environs are more limiting in establishing the waste form performance criteria than the post-emplacement environs. Absolute values of expected risk are very sensitive to modeling assumptions. The transportation and interim storage operations appear to be most limiting in determining the performance characteristics required. The expected values of risk do not rely upon the repositories remaining intact over the potentially hazardous lifetime of the waste.

  5. Determination of performance criteria for high-level solidified nuclear waste

    International Nuclear Information System (INIS)

    Heckman, R.A.; Holdsworth, T.

    1979-01-01

    To minimize radiological risk from the operation of a waste management system, performance limits on volatilization, particulate dispersion, and dissolution characteristics of solidified high level waste must be specified. The results show clearly that the pre-emplacement environs are more limiting in establishing the waste form performance criteria than the post-emplacement environs. Absolute values of expected risk are very sensitive to modeling assumptions. The transportation and interim storage operations appear to be most limiting in determining the performance characteristics required. The expected values of risk do not rely upon the repositories remaining intact over the potentially hazardous lifetime of the waste

  6. Instabilities in Interacting Binary Stars

    Science.gov (United States)

    Andronov, I. L.; Andrych, K. D.; Antoniuk, K. A.; Baklanov, A. V.; Beringer, P.; Breus, V. V.; Burwitz, V.; Chinarova, L. L.; Chochol, D.; Cook, L. M.; Cook, M.; Dubovský, P.; Godlowski, W.; Hegedüs, T.; Hoňková, K.; Hric, L.; Jeon, Y.-B.; Juryšek, J.; Kim, C.-H.; Kim, Y.; Kim, Y.-H.; Kolesnikov, S. V.; Kudashkina, L. S.; Kusakin, A. V.; Marsakova, V. I.; Mason, P. A.; Mašek, M.; Mishevskiy, N.; Nelson, R. H.; Oksanen, A.; Parimucha, S.; Park, J.-W.; Petrík, K.; Quiñones, C.; Reinsch, K.; Robertson, J. W.; Sergey, I. M.; Szpanko, M.; Tkachenko, M. G.; Tkachuk, L. G.; Traulsen, I.; Tremko, J.; Tsehmeystrenko, V. S.; Yoon, J.-N.; Zola, S.; Shakhovskoy, N. M.

    2017-07-01

    The types of instability in the interacting binary stars are briefly reviewed. The project “Inter-Longitude Astronomy” is a series of smaller projects on concrete stars or groups of stars. It has no special funds, and is supported from resources and grants of participating organizations, when informal working groups are created. This “ILA” project is in some kind similar and complementary to other projects like WET, CBA, UkrVO, VSOLJ, BRNO, MEDUZA, AstroStatistics, where many of us collaborate. Totally we studied 1900+ variable stars of different types, including newly discovered variables. The characteristic timescale is from seconds to decades and (extrapolating) even more. The monitoring of the first star of our sample AM Her was initiated by Prof. V.P. Tsesevich (1907-1983). Since more than 358 ADS papers were published. In this short review, we present some highlights of our photometric and photo-polarimetric monitoring and mathematical modeling of interacting binary stars of different types: classical (AM Her, QQ Vul, V808 Aur = CSS 081231:071126+440405, FL Cet), asynchronous (BY Cam, V1432 Aql), intermediate (V405 Aql, BG CMi, MU Cam, V1343 Her, FO Aqr, AO Psc, RXJ 2123, 2133, 0636, 0704) polars and magnetic dwarf novae (DO Dra) with 25 timescales corresponding to different physical mechanisms and their combinations (part “Polar”); negative and positive superhumpers in nova-like (TT Ari, MV Lyr, V603 Aql, V795 Her) and many dwarf novae stars (“Superhumper”); eclipsing “non-magnetic” cataclysmic variables(BH Lyn, DW UMa, EM Cyg; PX And); symbiotic systems (“Symbiosis”); super-soft sources (SSS, QR And); spotted (and not spotted) eclipsing variables with (and without) evidence for a current mass transfer (“Eclipser”) with a special emphasis on systems with a direct impact of the stream into the gainer star's atmosphere, which we propose to call “Impactor” (short from “Extreme Direct Impactor”), or V361 Lyr-type stars. Other

  7. Formation and Evolution of X-ray Binaries

    Science.gov (United States)

    Fragkos, Anastasios

    X-ray binaries - mass-transferring binary stellar systems with compact object accretors - are unique astrophysical laboratories. They carry information about many complex physical processes such as star formation, compact object formation, and evolution of interacting binaries. My thesis work involves the study of the formation and evolution of Galactic and extra-galacticX-ray binaries using both detailed and realistic simulation tools, and population synthesis techniques. I applied an innovative analysis method that allows the reconstruction of the full evolutionary history of known black hole X-ray binaries back to the time of compact object formation. This analysis takes into account all the available observationally determined properties of a system, and models in detail four of its evolutionary evolutionary phases: mass transfer through the ongoing X-ray phase, tidal evolution before the onset of Roche-lobe overflow, motion through the Galactic potential after the formation of the black hole, and binary orbital dynamics at the time of core collapse. Motivated by deep extra-galactic Chandra survey observations, I worked on population synthesis models of low-mass X-ray binaries in the two elliptical galaxies NGC3379 and NGC4278. These simulations were targeted at understanding the origin of the shape and normalization of the observed X-ray luminosity functions. In a follow up study, I proposed a physically motivated prescription for the modeling of transient neutron star low-mass X-ray binary properties, such as duty cycle, outburst duration and recurrence time. This prescription enabled the direct comparison of transient low-mass X-ray binary population synthesis models to the Chandra X-ray survey of the two ellipticals NGC3379 and NGC4278. Finally, I worked on population synthesismodels of black holeX-ray binaries in the MilkyWay. This work was motivated by recent developments in observational techniques for the measurement of black hole spin magnitudes in

  8. Spectral properties of binary asteroids

    Science.gov (United States)

    Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme

    2018-04-01

    We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15% of all small asteroids). For that, an analysis of 0.8-2.5{μ m} near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF is presented. Taxonomic class and meteorite analog is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21%. Most binary systems are bound in the S-, X-, and C- classes, followed by Q and V-types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C-types which are under-represented among binaries.

  9. Planets in Binary Star Systems

    CERN Document Server

    Haghighipour, Nader

    2010-01-01

    The discovery of extrasolar planets over the past decade has had major impacts on our understanding of the formation and dynamical evolution of planetary systems. There are features and characteristics unseen in our solar system and unexplainable by the current theories of planet formation and dynamics. Among these new surprises is the discovery of planets in binary and multiple-star systems. The discovery of such "binary-planetary" systems has confronted astrodynamicists with many new challenges, and has led them to re-examine the theories of planet formation and dynamics. Among these challenges are: How are planets formed in binary star systems? What would be the notion of habitability in such systems? Under what conditions can binary star systems have habitable planets? How will volatiles necessary for life appear on such planets? This volume seeks to gather the current research in the area of planets in binary and multistar systems and to familiarize readers with its associated theoretical and observation...

  10. RS CVn binary systems

    International Nuclear Information System (INIS)

    Linsky, J.L.

    1984-01-01

    The author attempts to place in context the vast amount of data obtained in the last few years as a result of X-ray, ultraviolet, optical, and microwave observations of RS CVn and similar spectroscopic binary systems. He concentrates on the RS CVn systems and their long-period analogs, and restricts the scope by attempting to answer on the basis of the recent data and theory following questions: (1) Are the original defining characteristics still valid and still adequate? (2) What is the evidence for discrete active regions? (3) Have we derived any meaningful physical properties for the atmospheres of RS CVn systems? (4) What are the flare observations telling us about magnetic fields in the RS CVn systems? (5) Is there evidence for systematic trends in RS CVn systems with spectral type?

  11. Rotational properties of the binary and non-binary populations in the Trans-Neptunian belt

    Science.gov (United States)

    Thirouin, Audrey; Noll, Keith S.; Ortiz Moreno, Jose Luis; Morales , Nicolas

    2014-11-01

    An exhaustive study about short-term variability as well as derived properties from lightcurves allowed us to draw some conclusions for the Trans-Neptunian belt binary population. Based on Maxwellian fit distributions of the spin rate, we suggested that the binary population rotates slower than the non-binary one. This slowing-down can be attributed to tidal effects between the satellite and the primary, as expected. We showed that no system in this work is tidally locked, but the primary despinning process may have already affected the primary rate (as well as the satellite rotational rate). We used the Gladman et al. (1996) formula to compute the time required to tidally lock the systems, but this formula is based on several assumptions and approximations that do not always hold. The computed times are reasonable in most cases and confirm that none of the systems is tidally locked, assuming that the satellite densities are low and have a high rigidity or have a higher dissipation than usually assumed. The rotational properties of small bodies provide information about important physical properties, such as shape, density, and cohesion (Pravec & Harris 2000; Holsapple 2001, 2004; Thirouin et al. 2010, 2012). For binaries it is also possible to derive several physical parameters of the system components, such as diameters of the primary/secondary and albedo under some assumptions. We compare our results as well as our technique for deriving this information from the lightcurve with other methods, such as: i) thermal or thermophysical modeling, ii) from the mutual orbit of the binary component, iii) from direct imaging or iv) from stellar occultation by Trans-Neptunian Objects (TNOs). Finally, by studying the specific angular momentum of the sample, we proposed possible formation models for several binary TNOs. In several cases, we obtained hints of the formation mechanism from the angular momentum, but for other cases we do not have enough information about the

  12. Binary Cepheids: Separations and Mass Ratios in 5 M ⊙ Binaries

    Science.gov (United States)

    Evans, Nancy Evans; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.; Karovska, Margarita; Tingle, Evan

    2013-10-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ~5 M ⊙—are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M ⊙. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M ⊙ binaries have systematically shorter periods than do 1 M ⊙ stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  13. BINARY CEPHEIDS: SEPARATIONS AND MASS RATIOS IN 5 M ☉ BINARIES

    International Nuclear Information System (INIS)

    Evans, Nancy Remage; Karovska, Margarita; Tingle, Evan; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.

    2013-01-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ∼5 M ☉ —are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M ☉ . Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M ☉ binaries have systematically shorter periods than do 1 M ☉ stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple

  14. BINARY CEPHEIDS: SEPARATIONS AND MASS RATIOS IN 5 M {sub ☉} BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Nancy Remage; Karovska, Margarita; Tingle, Evan [Smithsonian Astrophysical Observatory, MS 4, 60 Garden Street, Cambridge, MA 02138 (United States); Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Schaefer, Gail H. [The CHARA Array, Georgia State University, P.O. Box 3965, Atlanta, GA 30302-3965 (United States); Mason, Brian D., E-mail: nevans@cfa.harvard.edu, E-mail: heb11@psu.edu, E-mail: schaefer@chara-array.org [US Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420 (United States)

    2013-10-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ∼5 M {sub ☉}—are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M {sub ☉}. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M {sub ☉} binaries have systematically shorter periods than do 1 M {sub ☉} stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple.

  15. Performance demonstration program plan for RCRA constituent analysis of solidified wastes

    International Nuclear Information System (INIS)

    1995-06-01

    Performance Demonstration Programs (PDPS) are designed to help ensure compliance with the Quality Assurance Objectives (QAOs) for the Waste Isolation Pilot Plant (WIPP). The PDPs are intended for use by the Department of Energy (DOE) Carlsbad Area Office (CAO) to assess and approve the laboratories and other measurement facilities supplying services for the characterization of WIPP TRU waste. The PDPs may also be used by CAO in qualifying laboratories proposing to supply additional analytical services that are required for other than waste characterization, such as WIPP site operations. The purpose of this PDP is to test laboratory performance for the analysis of solidified waste samples for TRU waste characterization. This performance will be demonstrated by the successful analysis of blind audit samples of simulated, solidified TRU waste according to the criteria established in this plan. Blind audit samples (hereinafter referred to as PDP samples) will be used as an independent means to assess laboratory performance regarding compliance with the QAOs. The concentration of analytes in the PDP samples will address levels of regulatory concern and will encompass the range of concentrations anticipated in actual waste characterization samples. Analyses that are required by the WIPP to demonstrate compliance with various regulatory requirements and which are included in the PDP must be performed by laboratories that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses and the samples on which they are performed are referred to as WIPP samples for the balance of this document

  16. EPICOR-II: a field leaching test of solidified radioactively loaded ion exchange resin

    International Nuclear Information System (INIS)

    Davis, E.C.; Marshall, D.S.; Todd, R.A.; Craig, P.M.

    1986-08-01

    As part of an ongoing research program investigating the disposal of radioactive solid wastes in the environment' the Oak Ridge National Laboratory (ORNL) is participating with Argonne National Laboratory, the Idaho National Engineering Laboratory, and the Nuclear Regulatory Commission in a study of the leachability of solidified EPICOR-II ion-exchange resin under simulated disposal conditions. To simulate disposal, a group of five 2-m 3 soil lysimeters has been installed in Solid Waste Storage Area Six at ORNL, with each lysimeter containing a small sample of solidified resin at its center. Two solidification techniques are being investigated: a Portland cement and a vinyl ester-styrene treatment. During construction, soil moisture temperature cells were placed in each lysimeter, along with five porous ceramic tubes for sampling water near the waste source. A meteorological station was set up at the study site to monitor climatic conditions (primarily precipitation and air temperature), and a data acquisition system was installed to keep daily records of these meteorological parameters as well as lysimeter soil moisture and temperature conditions. This report documents the first year of the long-term field study and includes discussions of lysimeter installation, calibration of soil moisture probes, installation of the site meteorological station, and the results of the first-quarter sampling for radionuclides in lysimeter leachate. In addition, the data collection and processing system developed for this study is documented, and the results of the first three months of data collection are summarized in Appendix D

  17. Study on metal material corrosion behavior of packaging of cement solidified form

    International Nuclear Information System (INIS)

    He Zhouguo; Lin Meiqiong; Fan Xianhua

    1997-01-01

    The corrosion behavior of A3 carbon steel is studied by the specimens that are exposed to atmosphere, embedded in cement solidified form or immersed in corrosion liquid. The corrosion rate is determined by mass change of the specimens. In order to compare the corrosion resistant performance of various coatings, the specimens painted with various material such as epoxide resin, propionic acid resin, propane ether resin and Ti-white paint are tested. The results of the tests show that corrosion rate of A3 carbon steel is less than 10 -3 mm·a -1 in the atmosphere and the cement solidified from, less than 0.1 mm·a -1 in the corrosion liquids, and pH value in the corrosion liquids also affect the corrosion rate of A3 carbon steel. The corrosion resistant performance of Ti-white paint is better than that of other paints. So, A3 carbon steel as packaging material can meet the requirements during storage

  18. Microstructural development in a rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Park, W.J.; Baek, E.R.; Lee, Sunghak; Kim, N.J.

    1991-01-01

    TEM is used to investigate microstructural development in a rapidly solidified Al-Fe-V-Si alloy. The as-cast microstructure of a rapidly solidified Al-Fe-V-Si alloy was found to vary depending on casting conditions and also through the thickness of ribbon. For completely Zone A ribbon, intercellular phase consists of a microquasi-crystalline phase, while for the Zone A and Zone B mixed ribbon, it consists of a silicide phase. In either case, formation of globular particles of a cluster microquasi-crystalline phase is observed near the air side of the ribbon. Annealing study shows significant differences in the final microstructure depending on the initial status of the ribbon. Completely Zone A ribbon, whose microstructure is composed of a microquasi-crystalline phase, results in a very coarse microstructure after annealing as compared to the Zone A and Zone B mixed ribbon. This result has important implications for the development of high-performance elevated-temperature Al alloys. 12 refs

  19. Experimental Investigation of Closed Porosity of Inorganic Solidified Foam Designed to Prevent Coal Fires

    Directory of Open Access Journals (Sweden)

    Yi Lu

    2015-01-01

    Full Text Available In order to overcome the deficiency of the existing fire control technology and control coal spontaneous combustion by sealing air leakages in coal mines, inorganic solidified foam (ISF with high closed porosity was developed. The effect of sodium dodecyl sulfate (SDS concentration on the porosity of the foams was investigated. The results showed that the optimized closed porosity of the solidified foam was 38.65 wt.% for an SDS concentration of approximately 7.4×10-3 mol/L. Based on observations of the microstructure of the pore walls after solidification, it was inferred that an equilibrium between the hydration process and the drainage process existed. Therefore, the ISF was improved using three different systems. Gelatin can increase the viscosity of the continuous phase to form a viscoelastic film around the air cells, and the SDS + gelatin system can create a mixed surfactant layer at gas/liquid interfaces. The accelerator (AC accelerates the hydration process and coagulation of the pore walls before the end of drainage. The mixed SDS + gelatin + AC systems produced an ISF with a total porosity of 79.89% and a closed porosity of 66.89%, which verified the proposed stabilization mechanism.

  20. Study on the barrier performance of molten solidified waste (I). Review of the performance assessment research

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Toshikatsu; Sakamoto, Yoshiaki; Nakayama, Shinichi; Yamaguchi, Tetsuji; Ogawa, Hiromichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-02-01

    Application of melting technique is thought as one of the effective methods to treatment of the waste from the view point of its homogeneity and waste volume reduction. Solidified products by melting are expected as potential candidates of engineered barrier in a repository due to the good properties for their stabilization of radionuclides and hazardous elements. However, the methodology of performance evaluation has not been estimated so far. In this report, a literature survey on the properties of molten solidified waste was performed. It is clarified that the leachability of waste elements such as Co or Sr in molten waste form would be controlled by the corrosion behaviors of iron or silica which are the matrix elements of the waste form. While, no investigations into the durability of waste form have performed so far. Also noticed that the research items on performance evaluation such as the leachability for long-lived radionuclides and durability of waste form would be necessary for the long-term barrier assessment on the disposal. (author)

  1. Testing of variables which affect stablity of cement solidified low-level waste

    International Nuclear Information System (INIS)

    Boris, G.F.

    1989-01-01

    This paper describes the test program undertaken to investigate variables which could affect the stability of cement solidified low-level waste and to evaluate the effect of these variables on certain tests prescribed in the Technical Position on Waste Form. The majority of the testing was performed on solidified undepleted bead resin, however, six additional waste types, suggested by the NRC, were tested. The tested variables included waste loading, immersion duration, depletion level, ambient cure duration, curing environment, immersion medium and waste type. Of these, lower waste loadings, longer ambient cures prior to testing and immersion in demineralized water versus simulated sea water and potable water resulted in higher compressive strengths for bead resin samples. Immersion times longer than 90 days did not affect the resin samples. Compressive strengths for other waste types varied depending upon the waste. The strengths of all waste types exceeded the minimum criterion by at least a factor of four, up to a factor of forty. The higher waste loadings exhibit strengths less than the lower waste loadings

  2. Detection of free liquid in cement-solidified radioactive waste drums using computed tomography

    International Nuclear Information System (INIS)

    Steude, J.S.; Tonner, P.D.

    1991-01-01

    Acceptance criteria for disposal of radioactive waste drums require that the cement-solidified material in the drum contain minimal free liquid after the cement has hardened. Free liquid is to be avoided because it may corrode the drum, escape and cause environmental contamination. The DOE has requested that a nondestructive evaluation method be developed to detect free liquid in quantities in excess of 0.5% by volume. This corresponds to about 1 liter in a standard 208 liter (55 gallon) drum. In this study, the detection of volumes of free liquid in a 57 cm (2 ft.) diameter cement-solidified drum is demonstrated using high-energy X-ray computed tomography (CT0. In this paper it is shown that liquid concentrations of simulated radioactive waste inside glass tubes imbedded in cement can easily be detected, even for tubes with inner diameters less than 2 mm (0.08 in.). Furthermore, it is demonstrated that tubes containing water and liquid concentrations of simulated radioactive waste can be distinguished from tubes of the same size containing air. The CT images were obtained at a rate of about 6 minutes per slice on a commercially available CT system using a 9 MeV linear accelerator source

  3. Experimental Study and Application of Inorganic Solidified Foam Filling Material for Coal Mines

    Directory of Open Access Journals (Sweden)

    Hu Wen

    2017-01-01

    Full Text Available Spontaneous combustion of residual coal in a gob due to air leakage poses a major risk to mining safety. Building an airtight wall is an effective measure for controlling air leakage. A new type of inorganic solidified foam-filled material was developed and its physical and chemical properties were analyzed experimentally. The compressive strength of this material increased with the amount of sulphoaluminate cement. With an increasing water–cement ratio, the initial setting time was gradually extended while the final setting time firstly shortened and then extended. The change in compressive strength had the opposite tendency. Additionally, as the foam expansion ratio increased, the solidification time tended to decrease but the compressive strength remained approximately constant. With an increase in foam production, the solidification time increased and the compressive strength decreased exponentially. The results can be used to determine the optimal material ratios of inorganic solidified foam-filled material for coal mines, and filling technology for an airtight wall was designed. A field application of the new material demonstrated that it seals crossheadings tightly, leaves no fissures, suppresses air leakage to the gob, and narrows the width of the spontaneous combustion and heat accumulation zone.

  4. A study on the microstructural characteristics of rapidly solidified Al-Fe alloys(I)

    International Nuclear Information System (INIS)

    Kim, D.H.; Lee, H.I.

    1991-01-01

    Solidification microstructures and phases in rapidly solidified Al-5, 10wt% Fe alloys have been investigated by TEM bright field and dark field imaging techniques and electron and x-ray diffraction techniques. Rapid solidification of Al-5, 10wt%Fe alloys produces various metastable and stable phases, such as Al m Fe, Al 6 Fe and Al 13 Fe 4 . In addition to these phases, clusters of randomly oriented few nm scale particles exist in the form of fine cellular network with α-Al or primary spherical particles. Solidification microstructures of the rapidly solidified Al-5, 10wt%Fe alloys consist of various combination of primary phases such as Al 13 Fe 4 , Al m Fe and cluster of nm scale particles, and cellular/dendritic structures such as fine cellular network structure of nm scale particle clusters and α-Al and cellular structure of Al m Fe and α-Al, depending upon alloy compositions and local cooling rates. (Author)

  5. Microbially influenced degradation of cement-solidified low-level radioactive waste forms

    International Nuclear Information System (INIS)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr.

    1996-01-01

    Because of its apparent structural integrity, cement has been widely used in the United States as a binder to solidify Class B and C low-level radioactive waste (LLW). However, the resulting cement preparations are susceptible to failure due to the actions of stress and environment. This paper contains information on three groups of microoganisms that are associated with the degradation of cement materials: sulfur-oxidizing bacteria (Thiobacillus), nitrifying bacteria (Nitrosomonas and Nitrobacter), and heterotrophic bacteria, which produce organic acids. Preliminary work using laboratory- and vendor-manufactured, simulated waste forms exposed to thiobacilli has shown that microbiologically influenced degradation has the potential to severely compromise the structural integrity of ion-exchange resin and evaporator-bottoms waste that is solidified with cement. In addition, it was found that a significant percentage of calcium was leached from the treated waste forms. Also, the surface pH of the treated specimens was decreased to below 2. These conditions apparently contributed to the physical deterioration of simulated waste forms after 30 to 60 days of exposure

  6. Leaching test of bituminized waste and waste solidified by epoxy resin

    International Nuclear Information System (INIS)

    Yoshinaka, Kazuyuki; Sugaya, Atsushi; Onizawa, Toshikazu; Takano, Yugo; Kimura, Yukihiko

    2008-10-01

    About 30,000 bituminized waste drums and about 1800 drums of waste solidified by epoxy resin, generated from Tokai Reprocessing Plant, were stored in storage facilities. And study for disposal of these waste is performed. It was considered that radioactive nuclides and chemical components were released from these waste by contact of underground water, when disposed there waste. This paper is reported that result of leaching tests for these waste, done from 2003 to 2006. We've get precious knowledge and data, as follows. (1) In leaching tests for bituminized waste, it has detected iodine-129 peak, considered difficult too low energy gamma to detect. We've get data and knowledge of iodine-129 behavior first. Leached radioactivity for 50 days calculated by peak area was equal for about 40% and 100% of including radioactivity in bituminized waste sample. And we've get data of behavior of nitric acid ion and so on, important to study for disposal, in various condition of sample shape or leaching liquid temperature. (2) In leaching test for waste solidified by epoxy resin, we've get data of behavior of TBP, radionuclides and so on, important to study for disposal. Leached TBP was equal about 1% of including of sample. And we've get data of iodine-129 behavior, too. It was confirmed that leached iodine-129 was equal for about 60% and 100% of including sample, for 90 days. (author)

  7. Leachability of radionuclides from cement solidified waste forms produced at operating nuclear power plants

    International Nuclear Information System (INIS)

    Croney, S.T.

    1985-03-01

    This study determined the leachability indexes of radionuclides contained in solidified liquid wastes from operating nuclear power plants. Different sizes of samples of cement-solidified liquid wastes were collected from two nuclear power plants - a pressurized water reactor and a boiling water reactor - to correlate radionuclide leaching from small- and full-sized (55-gallon) waste forms. Diffusion-based model analysis (ANS 16.1) of measured radionuclide leach data from both small- and full-sized samples was performed and indicate that leach data from small samples can be used to determine leachability indexes for full-sizes waste forms. The leachability indexes for cesium, strontium, and cobalt isotopes were determined for waste samples from both plants according to the models used for ANS 16.1. The leachability indexes for the pressurized water reactor samples were 6.4 for cesium, 7.1 for strontium, and 10.4 for cobalt. Leachability indexes for the boiling water reactor samples were 6.5 for cesium, 8.6 for strontium, and 11.1 for cobalt

  8. Planetary Formation and Dynamics in Binary Systems

    Science.gov (United States)

    Xie, J. W.

    2013-01-01

    dissipating gas disk, all the planetesimals eventually converge toward the same forced orbits regardless of their size, leading to the much lower impact velocities. This process progressively increases the net mass accretion and can even trigger the runaway growth for large planetesimals. In chapter 3, for the first time, we adopt a 3-dimensional approach to investigate the planetesimals' mutual accretion in binary systems. We find that the inclusion of a small inclination between the binary orbital plane and the circumstellar disk plane leads to the realization of the differential orbital phasing in 3-dimensional space. In such a case, impacts mainly occur between similar-sized bodies with the impact velocities being significantly reduced, and thus the planetesimal accretion is more favored. In chapter 4, we investigate the planet formation in a specific system, the habitable zone of Alpha Centauri B. For the first time, we develop a scaling method to estimate the planetesimal collisional timescale in binary systems. We find that the accretion-favorable conditions satisfied at 1˜2 AU from Alpha Centauri B after the first 10^5 years. However, the planetesimal accretion is significantly less efficient as compared to the single star case. Our results suggest that the formation of Earth-like planets through the accretion of km-sized planetesimals is possible in Alpha Centauri B, while the formation of gaseous giant planets is not favorable. In chapter 5, we outline a new concept, which we call the ``snowball'' growth mode. In this snowball phase, the isolated planetesimals move in the Keplerian orbits, and grow solely via the direct accretion of subcentimeter-sized dust entrained with the gas in the protoplanetary disk. Using a simplified model in which the planetesimals are progressively produced from the dust, we find that the snowball growth phase can be the dominant mode to transfer mass from the dust to planetesimals. The snowball growth mode could provide an alternative

  9. Evaluating the freeze-thaw durability of portland cement-stabilized-solidified heavy metal waste using acoustic measurements

    International Nuclear Information System (INIS)

    El-Korchi, T.; Gress, D.; Baldwin, K.; Bishop, P.

    1989-01-01

    The use of stress wave propagation to assess freeze-thaw resistance of portland cement solidified/stabilized waste is presented. The stress wave technique is sensitive to the internal structure of the specimens and would detect structural deterioration independent of weight loss or visual observations. The freeze-thaw resistance of a cement-solidified cadmium waste and a control was evaluated. The control and cadmium wastes both showed poor freeze-thaw resistance. However, the addition of cadmium and seawater curing increased the resistance to more cycles of freezing and thawing. This is attributed to microstructural changes

  10. Long-term leach testing of solidified radioactive waste forms (International Standard Publication ISO 6961:1982)

    International Nuclear Information System (INIS)

    Stefanik, J.

    2001-01-01

    Processes are developed for the immobilization of radionuclides by solidification of radioactive wastes. The resulting solidification products are characterized by strong resistance to leaching aimed at low release rates of the radionuclides to the environment. To measure this resistance to leaching of the solidified materials: glass, glass-ceramics, bitumen, cement, concrete, plastics, a long-term leach test is presented. The long-term leach test is aimed at: a) the comparison of different kinds or compositions of solidified waste forms; b) the intercomparison between leach test results from different laboratories on one product; c) the intercomparison between leach test results on products from different processes

  11. Optimally cloned binary coherent states

    Science.gov (United States)

    Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.

    2017-10-01

    Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.

  12. ORBITAL EVOLUTION OF COMPACT WHITE DWARF BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, David L. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Bildsten, Lars [Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States); Steinfadt, Justin D. R., E-mail: kaplan@uwm.edu, E-mail: bildsten@kitp.ucsb.edu, E-mail: jdrsteinfadt@gmail.com [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States)

    2012-10-10

    The newfound prevalence of extremely low mass (ELM, M{sub He} < 0.2 M{sub Sun }) helium white dwarfs (WDs) in tight binaries with more massive WDs has raised our interest in understanding the nature of their mass transfer. Possessing small (M{sub env} {approx} 10{sup -3} M{sub Sun }) but thick hydrogen envelopes, these objects have larger radii than cold WDs and so initiate mass transfer of H-rich material at orbital periods of 6-10 minutes. Building on the original work of D'Antona et al., we confirm the 10{sup 6} yr period of continued inspiral with mass transfer of H-rich matter and highlight the fact that the inspiraling direct-impact double WD binary HM Cancri likely has an ELM WD donor. The ELM WDs have less of a radius expansion under mass loss, thus enabling a larger range of donor masses that can stably transfer matter and become a He mass transferring AM CVn binary. Even once in the long-lived AM CVn mass transferring stage, these He WDs have larger radii due to their higher entropy from the prolonged H-burning stage.

  13. Gas dynamics of semidetached binaries

    International Nuclear Information System (INIS)

    Lubow, S.H.; Shu, F.H.

    1975-01-01

    We analyze the gas dynamics of semidetached binary systems within the context of the Rohce model. With the adoption of the assumptions that the contact component rotates synchronously and that the flow occurs isothermally with the thermal speed being a small fraction epsilon of the relative orbital speed, Ωd, of the two stars, we show that the steady flow can be formulated in terms of a problem with multiple length scales. Using this concept, we demonstrate the following by semianalytical methods. (1) The escape of material from the surface of the contact component is accomplished by a highly nonisotropic stellar wind which reaches sonic velocities in a neighborhood of the inner Lagrangian point, L1, of size epsilon in comparison with the orbit separation d. (2) This wind throttles into a narrow stram of material which makes a prescribed angle with respect to the line joining the stellar centers ranging from 19 0 5 to 28 0 4 for the full range of possible stellar mass ratios. (3) The width of the stream scales epsilond while its density scales with epsilon -2 M-dot/Ωd 3 , where M-dot is the mass transfer rate. (4) The stream width remains nearly constant over the part of the stream which is nearly straight, and narrows somewhat as the stream curves toward the detached component. (5) If the detached component is smaller than a certain specified size, the stream results in the formation of a disk of material of prescribed size orbiting the detached component in a direct sense. A subsidi []ry issue examined briefly in this paper is the flow mechanism responsible for moving material to the equator of the contact component, and from there to the L1 region where it is lost by the directed stellar wind. Comparisons of our work are made with previous theoretical studies, and some applications are indicated

  14. Separation in 5 Msun Binaries

    Science.gov (United States)

    Evans, Nancy R.; Bond, H. E.; Schaefer, G.; Mason, B. D.; Karovska, M.; Tingle, E.

    2013-01-01

    Cepheids (5 Msun stars) provide an excellent sample for determining the binary properties of fairly massive stars. International Ultraviolet Explorer (IUE) observations of Cepheids brighter than 8th magnitude resulted in a list of ALL companions more massive than 2.0 Msun uniformly sensitive to all separations. Hubble Space Telescope Wide Field Camera 3 (WFC3) has resolved three of these binaries (Eta Aql, S Nor, and V659 Cen). Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations for a sample of 18 Cepheids, and also a distribution of mass ratios. The distribution of orbital periods shows that the 5 Msun binaries prefer shorter periods than 1 Msun stars, reflecting differences in star formation processes.

  15. Mesoscopic model for binary fluids

    Science.gov (United States)

    Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.

    2017-10-01

    We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.

  16. A New Orbit for the Eclipsing Binary V577 Oph

    Science.gov (United States)

    Jeffery, Elizabeth J.; Barnes, Thomas G., III; Skillen, Ian; Montemayor, Thomas J.

    2017-09-01

    Pulsating stars in eclipsing binary systems are unique objects for providing constraints on stellar models. To fully leverage the information available from the binary system, full orbital radial velocity curves must be obtained. We report 23 radial velocities for components of the eclipsing binary V577 Oph, whose primary star is a δ Sct variable. The velocities cover a nearly complete orbit and a time base of 20 years. We computed orbital elements for the binary and compared them to the ephemeris computed by Creevey et al. The comparison shows marginally different results. In particular, a change in the systemic velocity by -2 km s-1 is suggested by our results. We compare this systemic velocity difference to that expected due to reflex motion of the binary in response to the third body in the system. The systemic velocity difference is consistent with reflex motion, given our mass determination for the eclipsing binary and the orbital parameters determined by Volkov & Volkova for the three-body orbit. We see no evidence for the third body in our spectra, but we do see strong interstellar Na D lines that are consistent in strength with the direction and expected distance of V577 Oph.

  17. A New Orbit for the Eclipsing Binary V577 Oph

    Energy Technology Data Exchange (ETDEWEB)

    Jeffery, Elizabeth J. [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States); Barnes, Thomas G. III; Montemayor, Thomas J. [The University of Texas at Austin, McDonald Observatory, 1 University Station, C1402, Austin, TX 78712-0259 (United States); Skillen, Ian, E-mail: ejjeffer@calpoly.edu, E-mail: tgb@astro.as.utexas.edu, E-mail: tm@astro.as.utexas.edu, E-mail: wji@ing.iac.es [Isaac Newton Group, Apartado de Correos 321, E-38700 Santa Cruz de La Palma, Canary Islands (Spain)

    2017-09-01

    Pulsating stars in eclipsing binary systems are unique objects for providing constraints on stellar models. To fully leverage the information available from the binary system, full orbital radial velocity curves must be obtained. We report 23 radial velocities for components of the eclipsing binary V577 Oph, whose primary star is a δ Sct variable. The velocities cover a nearly complete orbit and a time base of 20 years. We computed orbital elements for the binary and compared them to the ephemeris computed by Creevey et al. The comparison shows marginally different results. In particular, a change in the systemic velocity by −2 km s{sup −1} is suggested by our results. We compare this systemic velocity difference to that expected due to reflex motion of the binary in response to the third body in the system. The systemic velocity difference is consistent with reflex motion, given our mass determination for the eclipsing binary and the orbital parameters determined by Volkov and Volkova for the three-body orbit. We see no evidence for the third body in our spectra, but we do see strong interstellar Na D lines that are consistent in strength with the direction and expected distance of V577 Oph.

  18. Binary Cockroach Swarm Optimization for Combinatorial Optimization Problem

    Directory of Open Access Journals (Sweden)

    Ibidun Christiana Obagbuwa

    2016-09-01

    Full Text Available The Cockroach Swarm Optimization (CSO algorithm is inspired by cockroach social behavior. It is a simple and efficient meta-heuristic algorithm and has been applied to solve global optimization problems successfully. The original CSO algorithm and its variants operate mainly in continuous search space and cannot solve binary-coded optimization problems directly. Many optimization problems have their decision variables in binary. Binary Cockroach Swarm Optimization (BCSO is proposed in this paper to tackle such problems and was evaluated on the popular Traveling Salesman Problem (TSP, which is considered to be an NP-hard Combinatorial Optimization Problem (COP. A transfer function was employed to map a continuous search space CSO to binary search space. The performance of the proposed algorithm was tested firstly on benchmark functions through simulation studies and compared with the performance of existing binary particle swarm optimization and continuous space versions of CSO. The proposed BCSO was adapted to TSP and applied to a set of benchmark instances of symmetric TSP from the TSP library. The results of the proposed Binary Cockroach Swarm Optimization (BCSO algorithm on TSP were compared to other meta-heuristic algorithms.

  19. Some properties of spectral binary stars

    International Nuclear Information System (INIS)

    Krajcheva, Z.T.; Popova, E.I.; Tutukov, A.V.; Yungel'son, L.R.; AN SSSR, Moscow. Astronomicheskij Sovet)

    1978-01-01

    Statistical investigations of spectra binary stars are carried out. Binary systems consisting of main sequence stars are considered. For 826 binary stars masses of components, ratios of component masses, semiaxes of orbits and orbital angular momenta are calculated. The distributions of these parameters and their correlations are analyzed. The dependences of statistical properties of spectral binary stars on their origin and evolution are discussed

  20. KIC 7177553: A QUADRUPLE SYSTEM OF TWO CLOSE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, H. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Borkovits, T. [Baja Astronomical Observatory of Szeged University, H-6500 Baja, Szegedi út, Kt. 766 (Hungary); Rappaport, S. A. [Massachusetts Institute of Technology, Department of Physics, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States); Ngo, H. [California Institute of Technology, Division of Geological and Planetary Sciences, 1200 E. California Boulevard, MC 150-21, Pasadena, CA 91125 (United States); Mawet, D. [California Institute of Technology, Astronomy Dept. MC 249-17, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Csizmadia, Sz. [German Aerospace Center (DLR), Institut für Planeten-forschung, Rutherfordstraße 2, D-12489 Berlin (Germany); Forgács-Dajka, E., E-mail: lehm@tls-tautenburg.de, E-mail: borko@electra.bajaobs.hu, E-mail: sar@mit.edu, E-mail: hngo@caltech.edu, E-mail: dmawet@astro.caltech.edu, E-mail: szilard.csizmadia@dlr.de, E-mail: e.forgacs-dajka@astro.elte.hu [Astronomical Department, Eötvös University, H-1118 Budapest, Pázmány Péter stny. 1/A (Hungary)

    2016-03-01

    KIC 7177553 was observed by the Kepler satellite to be an eclipsing eccentric binary star system with an 18-day orbital period. Recently, an eclipse timing study of the Kepler binaries has revealed eclipse timing variations (ETVs) in this object with an amplitude of ∼100 s and an outer period of 529 days. The implied mass of the third body is that of a super-Jupiter, but below the mass of a brown dwarf. We therefore embarked on a radial velocity (RV) study of this binary to determine its system configuration and to check the hypothesis that it hosts a giant planet. From the RV measurements, it became immediately obvious that the same Kepler target contains another eccentric binary, this one with a 16.5-day orbital period. Direct imaging using adaptive optics reveals that the two binaries are separated by 0.″4 (∼167 AU) and have nearly the same magnitude (to within 2%). The close angular proximity of the two binaries and very similar γ velocities strongly suggest that KIC 7177553 is one of the rare SB4 systems consisting of two eccentric binaries where at least one system is eclipsing. Both systems consist of slowly rotating, nonevolved, solar-like stars of comparable masses. From the orbital separation and the small difference in γ velocity, we infer that the period of the outer orbit most likely lies in the range of 1000–3000 yr. New images taken over the next few years, as well as the high-precision astrometry of the Gaia satellite mission, will allow us to set much narrower constraints on the system geometry. Finally, we note that the observed ETVs in the Kepler data cannot be produced by the second binary. Further spectroscopic observations on a longer timescale will be required to prove the existence of the massive planet.

  1. Evaluation of leaching behavior and immobilization of zinc in cement-based solidified products

    Directory of Open Access Journals (Sweden)

    Krolo Petar

    2012-01-01

    Full Text Available This study has examined leaching behavior of monolithic stabilized/solidified products contaminated with zinc by performing modified dynamic leaching test. The effectiveness of cement-based stabilization/solidification treatment was evaluated by determining the cumulative release of Zn and diffusion coefficients, De. The experimental results indicated that the cumulative release of Zn decreases as the addition of binder increases. The values of the Zn diffusion coefficients for all samples ranged from 1.210-8 to 1.1610-12 cm2 s-1. The samples with higher amounts of binder had lower De values. The test results showed that cement-based stabilization/solidification treatment was effective in immobilization of electroplating sludge and waste zeolite. A model developed by de Groot and van der Sloot was used to clarify the controlling mechanisms. The controlling leaching mechanism was found to be diffusion for samples with small amounts of waste material, and dissolution for higher waste contents.

  2. Processing method of radiation concrete waste and manufacturing method for radioactive waste solidifying filling mortar

    International Nuclear Information System (INIS)

    Sukekiyo, Mitsuaki; Okamoto, Masamichi

    1998-01-01

    Radioactive concrete wastes are crushed and pulverized. Fine solid granular materials caused by the pulverization are classified and the grain size is controlled so that the maximum grain size is 2.5mm, with the grains having a grain size of up to 0.15mm being up to 30% by weight to form fine aggregates. Separated and recovered fine concrete powders are classified and the size of the powder is controlled within a range of from 3,000 to 15,000cm 2 /g which is smaller than cement particles to form fine powders having a stable quality suitable as a mixing agent. The fine aggregates and the mixing agent are mixed to form a filling mortar (filler) for solidifying radioactive wastes. The filling mortar is filled together with other radioactive wastes in a drum to form a waste body in a drum. With such a constitution, crushed radioactive concrete wastes can be reutilized completely. (I.N.)

  3. Retrievable surface storage: interim storage of solidified high-level waste

    International Nuclear Information System (INIS)

    LaRiviere, J.R.; Nelson, D.C.

    1976-01-01

    Studies have been conducted on retrievable-surface-storage concepts for the interim storage of solidified high-level wastes. These studies have been reviewed by the Panel on Engineered Storage, convened by the Committee on Radioactive Waste Management of the National Research Council-National Academy of Sciences. The Panel has concluded that ''retrievable surface storage is an acceptable interim stage in a comprehensive system for managing high-level radioactive wastes.'' The scaled storage cask concept, which was recommended by the Panel on Engineered Storage, consists of placing a canister of waste inside a carbon-steel cask, which in turn is placed inside a thick concrete cylinder. The waste is cooled by natural convection air flow through an annulus between the cask and the inner wall of the concrete cylinder. The complete assembly is placed above ground in an outdoor storage area

  4. Solidified structure of thin-walled titanium parts by vertical centrifugal casting

    Directory of Open Access Journals (Sweden)

    Wu Shiping

    2011-05-01

    Full Text Available The solidified structure of the thin-walled and complicated Ti-6Al-4V castings produced by the vertical centrifugal casting process was studied in the present work. The results show that the wall thickness of the section is featured with homogeneously distributed fine equiaxial grains, compared with the microstructure of the thick-walled section. The grain size of the castings has a tendency to decrease gradually with the increasing of the centrifugal radius. The inter-lamellar space in thick-walled casting parts is bigger than that of the thin-walled parts, and the profile of inter-lamellar space is not susceptible to the centrifugal radius.

  5. The Characterization of Filtration Waste Solidified Product from Baghouse Filter of the Incineration Process

    International Nuclear Information System (INIS)

    Sutoto

    2000-01-01

    To increase of the safety, quality and to easy maintenance of the incinerator media of bag house filter, coating of the surface filter media by CaCO 3 powder were done. In the incinerator process, the CaCO 3 powder will scrub of fly ash as secondary waste. And finally, both of the secondary waste and CaCO 3 will immobilized by cement matrix. The research has an objective to study and characterizing of the CaCO 3 as secondary waste on their cemented product. The research were done on block samples with content of CaCO 3 and the properties characterized by compressive strength and density. From this research known that on their solidified, each quantity of CaCO 3 will be impact to decreasing of the quality cementation product. The optimum formula for solidification of bag house filter scrubbed is CaCO 3 : cement: water is 3 : 10 : 7. (author)

  6. Relationship between critical current properties and microstructure in cylindrical RE123 melt-solidified bulks

    International Nuclear Information System (INIS)

    Nakashima, T.; Shimoyama, J.; Honzumi, M.; Tazaki, Y.; Horii, S.; Kishio, K.

    2005-01-01

    We report the synthesis of cylindrical melt-solidified bulks in REBa 2 Cu 3 O y (RE = Sm, Gd, Dy, Ho, Y and Er), and their critical current properties and microstructures of the a- and the c-growth regions. It was found from the microstructure analysis that the volume fractions of RE211 particles in the c-growth region were always lower than those in the a-growth region. Moreover, those in the c-growth region were increased with distance from the seed crystal. Interestingly, the second peak effects in J c -B curves were prominently enhanced for the c-growth region. J c values at zero field for the c-growth region through the appropriate oxygen post-annealing reached approximately 95 kA cm -2 for RE = Ho, Dy and Y

  7. Phase composition of rapidly solidified Ag-Sn-Cu dental alloys

    International Nuclear Information System (INIS)

    Lecong Dzuong; Do Minh Nghiep; Nguyen van Dzan; Cao the Ha

    1996-01-01

    The phase composition of some rapidly solidified Ag-Sn-Cu dental alloys with different copper contents (6.22 wtpct) has been studied by XRD, EMPA and optical microscopy. The samples were prepared from melt-spun ribbons. The microstructure of the as-quenched ribbons was microcrystalline and consisted of the Ag sub 3 Sn, Ag sub 4 Sn, Cu sub 3 Sn and Cu sub 3 Sn sub 8 phases. Mixing with mercury (amalgamation) led to formation of the Ag sub 2 Hg sub 3, Sn sub 7 Hg and Cu sub 6 Sn sub 5 phases. The amount of copper atoms in the alloys played an important role in phase formation in the amalgams

  8. Importance of microscopy in durability studies of solidified and stabilized contaminated soils

    Science.gov (United States)

    Klich, I.; Wilding, L.P.; Drees, L.R.; Landa, E.R.

    1999-01-01

    Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical, thermal, or biological means. Despite the increased use of S/S technologies, little research has been conducted on the weathering and degradation of solidified and stabilized wastes once the treated materials have been buried. Published data to verify the performance and durability of landfilled treated wastes over time are rare. In this preliminary study, optical and electron microscopy (scanning electron microscopy [SEM], transmission electron microscopy [TEM] and electron probe microanalyses [EPMA]) were used to evaluate weathering features associated with metal-bearing contaminated soil that had been solidified and stabilized with Portland cement and subsequently buried on site, stored outdoors aboveground, or achieved in a laboratory warehouse for up to 6 yr. Physical and chemical alteration processes identified include: freeze-thaw cracking, cracking caused by the formation of expansive minerals such as ettringite, carbonation, and the movement of metals from waste aggregates into the cement micromass. Although the extent of degradation after 6 yr is considered slight to moderate, results of this study show that the same environmental concerns that affect the durability of concrete must be considered when evaluating the durability and permanence of the solidification and stabilization of contaminated soils with cement. In addition, such evaluations cannot be based on leaching and chemical analyses alone. The use of all levels of microscopic analyses must be incorporated into studies of the long-term performance of S/S technologies.Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical

  9. 3D observation of the solidified structures by x-ray micro computerized tomography

    International Nuclear Information System (INIS)

    Yasuda, Hideyuki; Ohnaka, Itsuo; Tsuchiyama, Akira; Nakano, Tsukasa; Uesugi, Kentaro

    2003-01-01

    The high flux density of the monochromatized and well-collimated X-ray and the high-resolution detector provide a new 3D observation tool for microstructures of metallic alloys and ceramics. The X-ray micro computerized tomography in BL47XU of SPring-8 (SP-μCT) was applied to observe microstructures produced through the eutectic reaction for Sn-based alloys and an Al 2 O 3 -Y 2 O 3 oxide system. The constituent phases in the eutectic structures were three-dimensionally identified, in which the lamellar spacing ranged from several to 10 μm. Since the 3D structure of the unidirectionally solidified specimens contains history of the eutectic structure formation, the 3D structure obtained by SP-μCT gives useful information to consider the microstructure evolution. (author)

  10. Microstructure of rapidly solidified Al2O3-dispersion-strengthened Type 316 stainless steel

    International Nuclear Information System (INIS)

    Megusar, J.; Arnberg, L.; Vander Sande, J.B.; Grant, N.J.

    1981-01-01

    An aluminum oxide dispersion strengthened 316 stainless steel was developed by surface oxidation. Surface oxidation was chosen as a preferred method in order to minimize formation of less stable chromium oxides. Ultra low C+N 316 stainless steel was alloyed with 1 wt % Al, rapidly solidified to produce fine powders and attrited to approximately 0.5 μm thick flakes to provide for surface oxidation. Oxide particles in the extruded material were identified mostly as Al oxides. In the preirradiated condition, oxide dispersion retarded crystallization and grain growth and had an effect on room temperature tensile properties. These structural modifications are expected to have an effect on the swelling resistance, structure stability and high temperature strength of austenitic stainless steels

  11. Experimental study on the leaching of radioactive materials from radioactive wastes solidified in cement into sea water. Part 2

    International Nuclear Information System (INIS)

    Hatta, H.; Ono, H.; Nagakura, T.; Machida, T.; Seki, T.; Maki, Y.

    Results are presented from the study on leachability of 60 Co and 137 Cs from BWR concentrated wastes that had been solidified in cement. The leachability of 60 Co is very small compared to that of 137 Cs and varies greatly with the type of leaching medium. The effect of duration of immersion on leachability is comparatively large

  12. A Laboratory Screening Study On The Use Of Solidifiers As A Response Tool To Remove Crude Oil Slicks On Seawater

    Science.gov (United States)

    The effectiveness of five solidifiers to remove Prudhoe Bay crude oil from artificial seawater in the laboratory was determined by ultraviolet-visible spectroscopy (UV-VIS) and gas chromatography/mass spectrometry (GC/MS). The performance of the solidifers was determined by US-V...

  13. Formation of metastable phases and nanocomposite structures in rapidly solidified Al-Fe alloys

    International Nuclear Information System (INIS)

    Nayak, S.S.; Chang, H.J.; Kim, D.H.; Pabi, S.K.; Murty, B.S.

    2011-01-01

    Highlights: → Structures of nanocomposites in rapidly solidified Al-Fe alloys were investigated. → Nanoquasicrystalline, amorphous and intermetallics phases coexist with α-Al. → Nanoquasicrystalline phase was observed for the first time in the dilute Al alloys. → Thermodynamic driving force plays dominant role in precipitation of Fe-rich phases. → High hardness (3.57 GPa) was observed for nanocomposite of Al-10Fe alloy. - Abstract: In the present work the structure and morphology of the phases of nanocomposites formed in rapidly solidified Al-Fe alloys were investigated in details using analytical transmission electron microscopy and X-ray diffraction. Nanoquasicrystalline phases, amorphous phase and intermetallics like Al 5 Fe 2 , Al 13 F 4 coexisted with α-Al in nanocomposites of the melt spun alloys. It was seen that the Fe supersaturation in α-Al diminished with the increase in Fe content and wheel speed indicating the dominant role of the thermodynamic driving force in the precipitation of Fe-rich phases. Nanoquasicrystalline phases were observed for the first time in the dilute Al alloys like Al-2.5Fe and Al-5Fe as confirmed by high resolution TEM. High hardness (3.57 GPa) was measured in nanocomposite of Al-10Fe alloy, which was attributed to synergistic effect of solid solution strengthening due to high solute content (9.17 at.% Fe), dispersion strengthening by high volume fraction of nanoquasicrystalline phase; and Hall-Petch strengthening from finer cell size (20-30 nm) of α-Al matrix.

  14. Surface free energy of polypropylene and polycarbonate solidifying at different solid surfaces

    International Nuclear Information System (INIS)

    Chibowski, Emil; Terpilowski, Konrad

    2009-01-01

    Advancing and receding contact angles of water, formamide, glycerol and diiodomethane were measured on polypropylene (PP) and polycarbonate (PC) sample surfaces which solidified at Teflon, glass or stainless steel as matrix surfaces. Then from the contact angle hystereses (CAH) the apparent free energies γ s tot of the surfaces were evaluated. The original PP surface is practically nonpolar, possessing small electron donor interaction (γ s - =1.91mJ/m 2 ), as determined from the advancing contact angles of these liquids. It may result from impurities of the polymerization process. However, it increases up to 8-10 mJ/m 2 for PP surfaces contacted with the solids. The PC surfaces both original and modified show practically the same γ s - =6.56.7mJ/m 2 . No electron acceptor interaction is found on the surfaces. The γ s tot of modified PP and PC surfaces depend on the kind of probe liquid and contacted solid surface. The modified PP γ s tot values determined from CAH of polar liquids are greater than that of original surface and they increase in the sequence: Teflon, glass, stainless steel surface, at which they solidified. No clear dependence is observed between γ s tot and dielectric constant or dipole moment of the polar probe liquids. The changes in γ s tot of the polymer surfaces are due to the polymer nature and changes in its surface structure caused by the structure and force field of the contacting solid. It has been confirmed by AFM images.

  15. Leachability and heavy metal speciation of 17-year old stabilised/solidified contaminated site soils

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fei, E-mail: fwtiffany@gmail.com [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Wang, Hailing, E-mail: wanghailing@njtech.edu.cn [College of Environment, Nanjing Tech University, Nanjing 210009 (China); Al-Tabbaa, Abir, E-mail: aa22@cam.ac.uk [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2014-08-15

    Highlights: • The effectiveness of the cement-based S/S at 17 years in West Drayton site is still satisfactory. • Major leaching of Cu, Zn, Ni, Cd and Pb in all mixes took place in the Fe/Mn oxides phase. • The hydration process has been fully completed and further carbonation took place at 17 years. • Microstructure analyses show that unreacted PFA exists. - Abstract: The long-term leachability, heavy metal speciation transformation and binding mechanisms in a field stabilised/solidified contaminated soil (made ground) from West Drayton site were recently investigated following in situ auger mixing treatment with a number of cement-based binders back in 1996. Two batch leaching tests (TCLP and BS EN 12457) and a modified five step sequential extraction procedure along with X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were employed for the testing of the 17-year-old field soil. The results of batch leaching tests show that the treatment employed remained effective at 17 years of service time, with all BS EN 12457 test samples and most of TCLP test samples satisfied drinking water standards. Sequential extraction results illustrate that the leaching of Cu, Ni, Zn, Pb and Cd in all mixes mainly occurred at the Fe/Mn phase, ranging from 43% to 83%. Amongst the five metals tested, Ni was the most stable with around 40% remained in the residual phase for all the different cement-based binder stabilised/solidified samples. XRD and SEM analyses show that the hydration process has been fully completed and further carbonation took place. In summary, this study confirms that such cement-based stabilisation/solidification (S/S) treatment can achieve satisfactory durability and thus is a reliable technique for long-term remediation of heavy metal contaminated soil.

  16. Study on Magnesium in Rainwater and Fertilizer Infiltration to Solidified Peat

    Science.gov (United States)

    Tajuddin, S. A. M.; Rahman, J. A.; Mohamed, R. M. S. R.

    2018-04-01

    Magnesium is a component of several primary and secondary minerals in the soil which are essentially insoluble for agricultural purpose. The presence of water infiltrate in the soil allows magnesium to dissolve together into the groundwater. In fertilizers, magnesium is categorized as secondary macronutrient which supplies food and encouraging for plants growth. The main objective of this study was to determine the concentration of magnesium in fibric peat when applied the solidification under different conditions. Physical model was used as a mechanism for the analysis of the experimental data using a soil column as an equipment to produce water leaching. In this investigation, there were four outlets in the soil column which were prepared from the top of the column to the bottom with the purpose of identifying the concentration of magnesium for each soil level. The water leaching of each outlet was tested using atomic absorption spectroscopy (AAS). The results obtained showed that the highest concentrations of magnesium for flush and control condition at outlet 4 was 12.50 ppm and 1.29 ppm respectively. Similarly, fibric with solidified peat under rainwater recorded the highest value of 3.16 at outlet 1 for wet condition while for dry condition at outlet 4 of 1.33 ppm. However, the difference in fibric with solidified peat under rainwater and fertilizer condition showed that the highest value for the wet condition was achieved at outlet 1 with 5.43 ppm while highest value of 1.26 ppm was obtained for the dry condition at the outlet 4. It was concluded that the outlets in the soil column gave a detailed analysis of the concentration of magnesium in the soil which was influenced by the environmental conditions.

  17. Variations of Microsegregation and Second Phase Fraction of Binary Mg-Al Alloys with Solidification Parameters

    Science.gov (United States)

    Paliwal, Manas; Kang, Dae Hoon; Essadiqi, Elhachmi; Jung, In-Ho

    2014-07-01

    A systematic experimental investigation on microsegregation and second phase fraction of Mg-Al binary alloys (3, 6, and 9 wt pct Al) has been carried out over a wide range of cooling rates (0.05 to 700 K/s) by employing various casting techniques. In order to explain the experimental results, a solidification model that takes into account dendrite tip undercooling, eutectic undercooling, solute back diffusion, and secondary dendrite arm coarsening was also developed in dynamic linkage with an accurate thermodynamic database. From the experimental data and solidification model, it was found that the second phase fraction in the solidified microstructure is not determined only by cooling rate but varied independently with thermal gradient and solidification velocity. Lastly, the second phase fraction maps for Mg-Al alloys were calculated from the solidification model.

  18. Binary Systems and the Initial Mass Function

    Science.gov (United States)

    Malkov, O. Yu.

    2017-07-01

    In the present paper we discuss advantages and disadvantages of binary stars, which are important for star formation history determination. We show that to make definite conclusions of the initial mass function shape, it is necessary to study binary population well enough to correct the luminosity function for unresolved binaries; to construct the mass-luminosity relation based on wide binaries data, and to separate observational mass functions of primaries, of secondaries, and of unresolved binaries.

  19. Binary versus non-binary information in real time series: empirical results and maximum-entropy matrix models

    Science.gov (United States)

    Almog, Assaf; Garlaschelli, Diego

    2014-09-01

    The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of multiple time series of activity of the constituent units, such as stocks or neurons, respectively. While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relations between binary and non-binary properties of financial time series. These relations are a novel quantification of the fact that extreme price increments occur more often when most stocks move in the same direction. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices and their mapping to spin models in statistical physics, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to accurately replicate, and mathematically characterize, the observed binary/non-binary relations. We also obtain a phase diagram allowing us to identify, based only on the instantaneous aggregate return of a set of multiple time series, a regime where the so-called ‘market mode’ has an optimal interpretation in terms of collective (endogenous) effects, a regime where it is parsimoniously explained by pure noise, and a regime where it can be regarded as a combination of endogenous and exogenous factors. Our approach allows us to connect spin models, simple stochastic processes, and ensembles of time series inferred from partial information.

  20. Binary versus non-binary information in real time series: empirical results and maximum-entropy matrix models

    International Nuclear Information System (INIS)

    Almog, Assaf; Garlaschelli, Diego

    2014-01-01

    The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of multiple time series of activity of the constituent units, such as stocks or neurons, respectively. While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relations between binary and non-binary properties of financial time series. These relations are a novel quantification of the fact that extreme price increments occur more often when most stocks move in the same direction. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices and their mapping to spin models in statistical physics, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to accurately replicate, and mathematically characterize, the observed binary/non-binary relations. We also obtain a phase diagram allowing us to identify, based only on the instantaneous aggregate return of a set of multiple time series, a regime where the so-called ‘market mode’ has an optimal interpretation in terms of collective (endogenous) effects, a regime where it is parsimoniously explained by pure noise, and a regime where it can be regarded as a combination of endogenous and exogenous factors. Our approach allows us to connect spin models, simple stochastic processes, and ensembles of time series inferred from partial information. (paper)

  1. Modeling of formation of binary-phase hollow nanospheres from metallic solid nanospheres

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.; Vollath, D.

    2009-01-01

    Spontaneous formation of binary-phase hollow nanospheres by reaction of a metallic nanosphere with a non-metallic component in the surrounding atmosphere is observed for many systems. The kinetic model describing this phenomenon is derived by application of the thermodynamic extremal principle. The necessary condition of formation of the binary-phase hollow nanospheres is that the diffusion coefficient of the metallic component in the binary phase is higher than that of the non-metallic component (Kirkendall effect occurs in the correct direction). The model predictions of the time to formation of the binary-phase hollow nanospheres agree with the experimental observations

  2. Hidden slow pulsars in binaries

    Science.gov (United States)

    Tavani, Marco; Brookshaw, Leigh

    1993-01-01

    The recent discovery of the binary containing the slow pulsar PSR 1718-19 orbiting around a low-mass companion star adds new light on the characteristics of binary pulsars. The properties of the radio eclipses of PSR 1718-19 are the most striking observational characteristics of this system. The surface of the companion star produces a mass outflow which leaves only a small 'window' in orbital phase for the detection of PSR 1718-19 around 400 MHz. At this observing frequency, PSR 1718-19 is clearly observable only for about 1 hr out of the total 6.2 hr orbital period. The aim of this Letter is twofold: (1) to model the hydrodynamical behavior of the eclipsing material from the companion star of PSR 1718-19 and (2) to argue that a population of binary slow pulsars might have escaped detection in pulsar surveys carried out at 400 MHz. The possible existence of a population of partially or totally hidden slow pulsars in binaries will have a strong impact on current theories of binary evolution of neutron stars.

  3. First detections of gravitational waves from binary black holes

    International Nuclear Information System (INIS)

    Bejger, Michał

    2017-01-01

    Recent direct detections of gravitational waves from coalescing binary black holes systems herald a new era in the observational astronomy, as well as in experimental verifications of the theories of gravity. I will present the principles of detection of gravitational waves, current state-of-art laser interferometric detectors (Advanced LIGO and Advanced Virgo), and the most promising astrophysical sources of gravitational waves. (paper)

  4. The Young Visual Binary Survey

    Science.gov (United States)

    Prato, Lisa; Avilez, Ian; Lindstrom, Kyle; Graham, Sean; Sullivan, Kendall; Biddle, Lauren; Skiff, Brian; Nofi, Larissa; Schaefer, Gail; Simon, Michal

    2018-01-01

    Differences in the stellar and circumstellar properties of the components of young binaries provide key information about star and disk formation and evolution processes. Because objects with separations of a few to a few hundred astronomical units share a common environment and composition, multiple systems allow us to control for some of the factors which play into star formation. We are completing analysis of a rich sample of about 100 pre-main sequence binaries and higher order multiples, primarily located in the Taurus and Ophiuchus star forming regions. This poster will highlight some of out recent, exciting results. All reduced spectra and the results of our analysis will be publicly available to the community at http://jumar.lowell.edu/BinaryStars/. Support for this research was provided in part by NSF award AST-1313399 and by NASA Keck KPDA funding.

  5. Evolution in close binary systems

    International Nuclear Information System (INIS)

    Yungel'son, L.R.; Masevich, A.G.

    1983-01-01

    Duality is the property most typical of stars. If one investigates how prevalent double stars are, making due allowance for selection effects, one finds that as many as 90 percent of all stars are paired. Contrary to tradition it is single stars that are out of the ordinary, and as will be shown presently even some of these may have been formed by coalescence of the members of binary systems. This review deals with the evolution of close binaries, defined as double-star systems whose evolution entails exchange of material between the two components

  6. Interplay between temperature gradients field and C - E transformation in solidifying rolls

    Directory of Open Access Journals (Sweden)

    W. Wołczyński

    2009-07-01

    Full Text Available At first step of simulation a temperature field for solidifying cast steel and cast iron roll has been performed. The calculation does not take into account the convection in the liquid since convection has no influence on the proposed model for the localization of the C-E (columnar to equiaxed grains transformation. However, it allows to study the dynamics of temperature field temporal behavior in the middle of a mould. It is postulated that for the C-E transition a full accumulation of the heat in the mould has been observed (plateau at the T(t curve. The temporal range of plateau existence corresponds to the incubation time for the full equiaxed grains formation. At the second step of simulation temporal behavior of the temperature gradient field has been studied. Three ranges within temperature gradients field have been distinguished for the operating point situated at the middle of mould: a/ for the formation of columnar grains zone, ( and high temperature gradient 0>>T&0//>>∂∂−∂∂∂∂−∂∂>EttEtrTrT. T - temperature, r - roll radius. It is evident that the heat transfer across the mould decides on the temporal appearance of incubation during which the solidification is significantly arrested and competition between columnar and equiaxed growth occurs. Moreover solidification with positive temperature gradient transforms into solidification with negative temperature gradient (locally after the incubation. A simulation has been performed for the cast steel and cast iron rolls solidifying as in industry condition. Since the incubation divides the roll into to parts (first with columnar structure, second with equiaxed structure some experiments dealing with solidification have been made in laboratory scale. Finally, observations of the macrosegregation or microsegregation and phase or structure appearance in the cast iron ingot / roll (made in laboratory has also been done in order to confront them with theoretical predictions

  7. Photovoltaic performance of bifacial dye sensitized solar cell using chemically healed binary ionic liquid electrolyte solidified with SiO2 nanoparticles

    International Nuclear Information System (INIS)

    Cosar, Burak; Icli, Kerem Cagatay; Yavuz, Halil Ibrahim; Ozenbas, Macit

    2013-01-01

    Highlights: ► A bifacial DSSC is realized and irradiated from front and rear sides. ► Maximum efficiency was found for 70% PMII/30% (EMIB(CN) 4 ) electrolyte composition. ► A significant increase in photocurrent using 0.1 M GuSCN and 0.4 M NMB was observed. ► Addition of SiO 2 nanoparticles to the electrolyte enhanced photovoltaic efficiency. ► Dispersed SiO 2 particles are found to be more efficient compared to SiO 2 overlayer. - Abstract: In this study, we investigated the effect of electrolyte composition, photoanode thickness, and the additions of GuSCN (guanidinium thiocyanate), NMB (N-methylbenimidazole), and SiO 2 on the photovoltaic performance of DSSCs (dye sensitized solar cells). A bifacial DSSC is realized and irradiated from front and rear sides. The devices give maximum photovoltaic efficiencies for 70% PMII (1-propyl-3-methyl-imidazolium iodide)/30% (EMIB(CN) 4 ) (1-ethyl-3-methyl-imidazolium tetracyanoborate) electrolyte composition and 10 μm thick photoanode coating which is considered to be the ideal coating thickness for the diffusion length of electrolyte and dye absorption. A significant increase in the photocurrent for DSSCs with optimum molarity of 0.1 M GuSCN was observed due to decreased recombination which is believed to be surface passivation effect at photoanode electrolyte interface suppressing recombination rate. Moreover, optimum NMB molarity was found to be 0.4 for maximum efficiency. Addition of SiO 2 to the electrolyte both as an overlayer and dispersed particles enhanced rear side illuminated cells where dispersed particles are found to be more efficient for the front side illuminated cells due to additional electron transport properties. Best rear side illuminated cell efficiency was 3.2% compared to front side illuminated cell efficiency of 4.2% which is a promising result for future rear side dye sensitized solar cell applications where front side illumination is not possible like tandem structures and for cells working from both front and rear side illuminations.

  8. DOUBLE-LINED SPECTROSCOPIC BINARY STARS IN THE RAVE SURVEY

    International Nuclear Information System (INIS)

    Matijevic, G.; Zwitter, T.; Munari, U.; Siviero, A.; Bienayme, O.; Siebert, A.; Binney, J.; Bland-Hawthorn, J.; Boeche, C.; Steinmetz, M.; Campbell, R.; Freeman, K. C.; Gibson, B.; Gilmore, G.; Grebel, E. K.; Helmi, A.; Navarro, J. F.; Parker, Q. A.; Seabroke, G. M.; Watson, F. G.

    2010-01-01

    We devise a new method for the detection of double-lined binary stars in a sample of the Radial Velocity Experiment (RAVE) survey spectra. The method is both tested against extensive simulations based on synthetic spectra and compared to direct visual inspection of all RAVE spectra. It is based on the properties and shape of the cross-correlation function, and is able to recover ∼80% of all binaries with an orbital period of order 1 day. Systems with periods up to 1 yr are still within the detection reach. We have applied the method to 25,850 spectra of the RAVE second data release and found 123 double-lined binary candidates, only eight of which are already marked as binaries in the SIMBAD database. Among the candidates, there are seven that show spectral features consistent with the RS CVn type (solar type with active chromosphere) and seven that might be of W UMa type (over-contact binaries). One star, HD 101167, seems to be a triple system composed of three nearly identical G-type dwarfs. The tested classification method could also be applicable to the data of the upcoming Gaia mission.

  9. Formation of the wide asynchronous binary asteroid population

    International Nuclear Information System (INIS)

    Jacobson, Seth A.; Scheeres, Daniel J.; McMahon, Jay

    2014-01-01

    We propose and analyze a new mechanism for the formation of the wide asynchronous binary population. These binary asteroids have wide semimajor axes relative to most near-Earth and main belt asteroid systems. Confirmed members have rapidly rotating primaries and satellites that are not tidally locked. Previously suggested formation mechanisms from impact ejecta, from planetary flybys, and directly from rotational fission events cannot satisfy all of the observations. The newly hypothesized mechanism works as follows: (1) these systems are formed from rotational fission, (2) their satellites are tidally locked, (3) their orbits are expanded by the binary Yarkovsky-O'Keefe-Radzievskii-Paddack (BYORP) effect, (4) their satellites desynchronize as a result of the adiabatic invariance between the libration of the secondary and the mutual orbit, and (5) the secondary avoids resynchronization because of the YORP effect. This seemingly complex chain of events is a natural pathway for binaries with satellites that have particular shapes, which define the BYORP effect torque that acts on the system. After detailing the theory, we analyze each of the wide asynchronous binary members and candidates to assess their most likely formation mechanism. Finally, we suggest possible future observations to check and constrain our hypothesis.

  10. Candidate Binary Trojan and Hilda Asteroids from Rotational Light Curves

    Science.gov (United States)

    Sonnett, Sarah M.; Mainzer, Amy K.; Grav, Tommy; Masiero, Joseph R.; Bauer, James M.; Kramer, Emily A.

    2017-10-01

    Jovian Trojans (hereafter, Trojans) are asteroids in stable orbits at Jupiter's L4 and L5 Lagrange points, and Hilda asteroids are inwards of the Trojans in 3:2 mean-motion resonance with Jupiter. Due to their special dynamical properties, observationally constraining the formation location and dynamical histories of Trojans and HIldas offers key input for giant planet migration models. A fundamental parameter in assessing formation location is the bulk density - with low-density objects associated with an ice-rich formation environment in the outer solar system and high-density objects typically linked to the warmer inner solar system. Bulk density can only be directly measured during a close fly-by or by determining the mutual orbits of binary asteroid systems. With the aim of determining densities for a statistically significant sample of Trojans and Hildas, we are undertaking an observational campaign to confirm and characterize candidate binary asteroids published in Sonnett et al. (2015). These objects were flagged as binary candidates because their large NEOWISE brightness variations imply shapes so elongated that they are not likely explained by a singular equilibrium rubble pile and instead may be two elongated, gravitationally bound asteroids. We are obtaining densely sampled rotational light curves of these possible binaries to search for light curve features diagnostic of binarity and to determine the orbital properties of any confirmed binary systems by modeling the light curve. We compare the We present an update on this follow-up campaign and comment on future steps.

  11. A Fast Optimization Method for General Binary Code Learning.

    Science.gov (United States)

    Shen, Fumin; Zhou, Xiang; Yang, Yang; Song, Jingkuan; Shen, Heng; Tao, Dacheng

    2016-09-22

    Hashing or binary code learning has been recognized to accomplish efficient near neighbor search, and has thus attracted broad interests in recent retrieval, vision and learning studies. One main challenge of learning to hash arises from the involvement of discrete variables in binary code optimization. While the widely-used continuous relaxation may achieve high learning efficiency, the pursued codes are typically less effective due to accumulated quantization error. In this work, we propose a novel binary code optimization method, dubbed Discrete Proximal Linearized Minimization (DPLM), which directly handles the discrete constraints during the learning process. Specifically, the discrete (thus nonsmooth nonconvex) problem is reformulated as minimizing the sum of a smooth loss term with a nonsmooth indicator function. The obtained problem is then efficiently solved by an iterative procedure with each iteration admitting an analytical discrete solution, which is thus shown to converge very fast. In addition, the proposed method supports a large family of empirical loss functions, which is particularly instantiated in this work by both a supervised and an unsupervised hashing losses, together with the bits uncorrelation and balance constraints. In particular, the proposed DPLM with a supervised `2 loss encodes the whole NUS-WIDE database into 64-bit binary codes within 10 seconds on a standard desktop computer. The proposed approach is extensively evaluated on several large-scale datasets and the generated binary codes are shown to achieve very promising results on both retrieval and classification tasks.

  12. Evolution of close binaries and the formation of pulsars

    International Nuclear Information System (INIS)

    Van Den Heuvel, E.P.J.

    1981-01-01

    The various ways in which compact objects (neutron stars and black holes) may be formed in interacting binary systems are examined. Attention is given to the final evolution of the primary star in a close binary system as a function of the time of Roche-lobe overflow relative to the onset of helium burning, and conditions on primary mass and orbital period leading to the appearance of a compact remnant are noted. Consideration of the fate of the stellar envelope in stars that directly evolve to core collapse indicates that binaries that evolve with conservation of total mass and orbital angular momentum will eventually become systems of two runaway pulsars. In cases of nonconservative evolution, the final state is expected to be a young runaway pulsar with a low- or moderate mass runaway star companion, or a low-mass population I X-ray binary with high space velocity. Compact objects may also be formed when a white dwarf of suitable chemical composition is driven over the Chandrasehkar limit by accretion, resulting in a low-mass X-ray binary

  13. Fusion zone microstructure of laser beam welded directionally solidified Ni3Al-base alloy IC6

    International Nuclear Information System (INIS)

    Ding, R.G.; Ojo, O.A.; Chaturvedi, M.C.

    2006-01-01

    The fusion zone microstructure of laser welded alloy IC6 was examined. Extensive weld-metal cracking was observed to be closely associated with non-equilibrium eutectic-type microconstituents identified as consisting of γ, γ' and NiMo (Y) phases. Their formation has been related to modification of primary solidification path due to reduced solutal microsegregation

  14. Heat affected zone microfissuring in a laser beam welded directionally solidified Ni3Al-base alloy

    International Nuclear Information System (INIS)

    Ojo, O.A.; Ding, R.G.; Chaturvedi, M.C.

    2006-01-01

    The laser beam weld heat affected zone (HAZ) microstructure of a newly developed aerospace alloy, IC 6, was examined. HAZ microfissuring was observed and found to be associated with grain boundary liquation facilitated by subsolidus eutectic-type transformation of the alloy's major phase, γ' precipitates, and interfacial melting of M 6 C-type carbide and (Mo 2 Ni)B 2 -type boride particles

  15. CAFE simulation of columnar-to-equiaxed transition in Al-7wt%Si alloys directionally solidified under microgravity

    Science.gov (United States)

    Liu, D. R.; Mangelinck-Noël, N.; Gandin, Ch-A.; Zimmermann, G.; Sturz, L.; Nguyen Thi, H.; Billia, B.

    2016-03-01

    A two-dimensional multi-scale cellular automaton - finite element (CAFE) model is used to simulate grain structure evolution and microsegregation formation during solidification of refined Al-7wt%Si alloys under microgravity. The CAFE simulations are first qualitatively compared with the benchmark experimental data under microgravity. Qualitative agreement is obtained for the position of columnar to equiaxed transition (CET) and the CET transition mode (sharp or progressive). Further comparisons of the distributions of grain elongation factor and equivalent diameter are conducted and reveal a fair quantitative agreement.

  16. CAFE simulation of columnar-to-equiaxed transition in Al-7wt%Si alloys directionally solidified under microgravity

    International Nuclear Information System (INIS)

    Liu, D R; Mangelinck-Noël, N; Thi, H Nguyen; Billia, B; Gandin, Ch-A; Zimmermann, G; Sturz, L

    2016-01-01

    A two-dimensional multi-scale cellular automaton - finite element (CAFE) model is used to simulate grain structure evolution and microsegregation formation during solidification of refined Al-7wt%Si alloys under microgravity. The CAFE simulations are first qualitatively compared with the benchmark experimental data under microgravity. Qualitative agreement is obtained for the position of columnar to equiaxed transition (CET) and the CET transition mode (sharp or progressive). Further comparisons of the distributions of grain elongation factor and equivalent diameter are conducted and reveal a fair quantitative agreement. (paper)

  17. Influence of dwell times on the thermomechanical fatigue behavior of a directionally solidified Ni-base superalloy

    Czech Academy of Sciences Publication Activity Database

    Guth, S.; Petráš, Roman; Škorík, Viktor; Kruml, Tomáš; Man, Jiří; Lang, K. H.; Polák, Jaroslav

    2015-01-01

    Roč. 80, NOV (2015), s. 426-433 ISSN 0142-1123 R&D Projects: GA MŠk(CZ) EE2.3.30.0063 Institutional support: RVO:68081723 Keywords : Nickel base superalloy * Thermomechanical fatigue * Dwell time * Lifetime behavior * Damage mechanisms Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.162, year: 2015

  18. The Binary Ties that Bind

    Science.gov (United States)

    Rose, Mike

    2008-01-01

    As any reader of "About Campus" knows, binary oppositions contribute to the definitions of institutional types--the trade school versus the liberal arts college, for example. They help define disciplines and subdisciplines and the status differentials among them: consider the difference in intellectual cachet as one moves from linguistics to…

  19. Optimally cloned binary coherent states

    DEFF Research Database (Denmark)

    Mueller, C. R.; Leuchs, G.; Marquardt, Ch

    2017-01-01

    their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal...

  20. Subluminous X-ray binaries

    NARCIS (Netherlands)

    Armas Padilla, M.

    2013-01-01

    The discovery of the first X-ray binary, Scorpius X-1, by Giacconi et al. (1962), marked the birth of X-ray astronomy. Following that discovery, many additional X-ray sources where found with the first generation of X-ray rockets and observatories (e.g., UHURU and Einstein). The short-timescale

  1. Misclassification in binary choice models

    Czech Academy of Sciences Publication Activity Database

    Meyer, B. D.; Mittag, Nikolas

    2017-01-01

    Roč. 200, č. 2 (2017), s. 295-311 ISSN 0304-4076 R&D Projects: GA ČR(CZ) GJ16-07603Y Institutional support: Progres-Q24 Keywords : measurement error * binary choice models * program take-up Subject RIV: AH - Economics OBOR OECD: Economic Theory Impact factor: 1.633, year: 2016

  2. Misclassification in binary choice models

    Czech Academy of Sciences Publication Activity Database

    Meyer, B. D.; Mittag, Nikolas

    2017-01-01

    Roč. 200, č. 2 (2017), s. 295-311 ISSN 0304-4076 Institutional support: RVO:67985998 Keywords : measurement error * binary choice models * program take-up Subject RIV: AH - Economics OBOR OECD: Economic Theory Impact factor: 1.633, year: 2016

  3. Binary logic is rich enough

    International Nuclear Information System (INIS)

    Zapatrin, R.R.

    1992-01-01

    Given a finite ortholattice L, the *-semigroup is explicitly built whose annihilator ortholattice is isomorphic to L. Thus, it is shown that any finite quantum logic is the additive part of a binary logic. Some areas of possible applications are outlined. 7 refs

  4. Properties of rapidly solidified Fe-Cr-Al ribbons for the use as automotive exhaust gas catalyst substrates

    International Nuclear Information System (INIS)

    Emmerich, K.

    1993-01-01

    Metallic honeycomb structures are used as catalyst substrates in automotive exhaust gas systems. This application requires an outstanding corrosion resistance at elevated temperatures of the substrate material. Technical improvements can be achieved by the use of rapid solidification technology for the production of the Fe-Cr-Al ribbons since the Al content can be substantially increased from about 5% Al in the conventionally rolled material to about 12% Al in the rapid solidified ribbon. As a result the lifetime of the ribbon in a higher-temperature corrosion environment is drastically increased. In addition the scale/metal adherance is improved. The impediment of recrystallization in the rapidly solidified ribbons prevents an embrittlement even in carbonizing atmospheres. (orig.)

  5. Evaluation of the performance of solidified commercial low-level wastes in an arid climate

    International Nuclear Information System (INIS)

    Graham, M.J.; Walter, M.B.

    1984-01-01

    Shallow land burial is being used as a disposal method for commercial low-level waste at waste disposal sites in arid (Hanford, Washington) and humid (Barnwell, South Carolina) climatic regions. A field lysimeter facility has been established at Hanford in which to conduct waste-form leaching tests. The primary objective of this research is to determine typical source terms generated by commercial solidified low-level wastes. The field lysimeter facility consists of 10, 3 M deep by 1.8 M diameter, closed-bottomed lysimeters around a central 4 M deep by 4 M diameter instrument caisson. Commercial cement and dow polymer waste samples were removed from 210 L drums and placed in the 1.8 M diameter lysimeters. Two bitumen samples are planned to be emplaced in the facility this year. The central caisson provides access to the instrumentation in the individual lysimeters and allows selective sampling of the soil and waste forms. Suction candles (ceramic cups) placed around the waste will be used to periodically collect soil water samples for chemical analysis. Meteorological data, moisture content, and soil temperature are being automatically monitored at the facility. Characterization of the soils and waste forms have been partially completed. These data consist of moisture release characteristics, particle size distribution, concentrations and distributions of radionuclides in the waste streams, and concentrations of hydrophilic organic species in one of the waste streams

  6. Organic semiconductor rubrene thin films deposited by pulsed laser evaporation of solidified solutions

    Science.gov (United States)

    Majewska, N.; Gazda, M.; Jendrzejewski, R.; Majumdar, S.; Sawczak, M.; Śliwiński, G.

    2017-08-01

    Organic semiconductor rubrene (C42H28) belongs to most preferred spintronic materials because of the high charge carrier mobility up to 40 cm2(V·s)-1. However, the fabrication of a defect-free, polycrystalline rubrene for spintronic applications represents a difficult task. We report preparation and properties of rubrene thin films deposited by pulsed laser evaporation of solidified solutions. Samples of rubrene dissolved in aromatic solvents toluene, xylene, dichloromethane and 1,1-dichloroethane (0.23-1% wt) were cooled to temperatures in the range of 16.5-163 K and served as targets. The target ablation was provided by a pulsed 1064 nm or 266 nm laser. For films of thickness up to 100 nm deposited on Si, glass and ITO glass substrates, the Raman and AFM data show presence of the mixed crystalline and amorphous rubrene phases. Agglomerates of rubrene crystals are revealed by SEM observation too, and presence of oxide/peroxide (C42H28O2) in the films is concluded from matrix-assisted laser desorption/ionization time-of-flight spectroscopic analysis.

  7. Disposal and long-term storage in geological formations of solidified radioactive wastes

    International Nuclear Information System (INIS)

    Shischits, I.

    1996-01-01

    The special depository near Krasnoyarsk contains temporarily about 1,100 tons of spent nuclear fuel (SNF) from WWR- should be solidified and for the most part buried in geological formations. Solid wastes and SNF from RBMK reactors are assumed to be buried as well. For this purpose special technologies and underground constructions are required. They are to be created in the geological plots within the territory of Russian Federation and adjacent areas of CIS, meeting the developed list of requirements. The burial structures will vary greatly depending on the geological formation, the amount of wastes and their isotope composition. The well-known constructions such as deep wells, shafts, mines and cavities can be mentioned. There is a need to design constructions, which have no analog in the world practice. In the course of the Project fulfillment the following work will be conducted: -theoretical work followed by code creation for mathematical simulation of processes; - modelling on the base of prototypes made from equivalent materials with the help of simulators; - bench study; - experiments in real conditions; - examination of massif properties in particular plots using achievements of geophysics, including gamma-gamma density detectors and geo locators. Finally, ecological-economical model will be given for designing burial sites

  8. Evaluation of the performance of solidified commercial low-level wastes in an arid climate

    International Nuclear Information System (INIS)

    Graham, M.J.; Walter, M.B.

    1984-09-01

    Shallow land burial is being used as a disposal method for commercial low-level waste at waste disposal sites in arid (Hanford site near Richland, Washington) and humid (Barnwell, South Carolina) climatic regions. A field lysimeter facility has been established at the Hanford site in which to conduct waste-form leaching tests. The primary objective of this research is to determine typical source terms generated by commercial solidified low-level wastes. The field lysimeter facility consists of ten 3-m-deep by 1.8-m-diameter, closed-bottom lysimeters around a central instrument caisson, 4 m in diameter. Commercial cement and vinyl ester-styrene waste samples were removed from 210-L drums and placed in the 1.8-m-diameter lysimeters. Two bitumen samples are planned to be emplaced in the facility in 1984. The central caisson provides access to the instrumentation in the individual lysimeters and allows selective sampling of the soil and waste forms. Suction candles (ceramic cups) placed around the waste will be used to periodically collect soil water samples for chemical analysis. Meteorological data, moisture content, and soil temperature are automatically monitored at the facility. Characterization of the soils and waste forms have been partially completed. These data consist of moisture release characteristics, particle size distribution, concentrations and distributions of radionuclides in the waste forms, concentrations of radionuclides in the waste streams, and concentrations of hydrophilic organic species in one of the waste steams. 8 references, 3 figures, 5 tables

  9. Synthesis of laser beam rapidly solidified novel surfaces on D2 tool steel

    International Nuclear Information System (INIS)

    Ahmed, B.A.; Rizwan, K.F.; Minhas, J.A.; Waheed-ul-Haq, S.; Shahid, M.

    2011-01-01

    Surface layer of D2 tool steel was subjected to laser surface melting using continuous wave 2.5 kW CO/sub 2/ laser in point source melting mode. The processing parameters were varied to achieve a uniform depth of around 2 mm. Microstructural study revealed epitaxial growth of fine dendritic structure with secondary dendrite arm spacing in the range of 20-25 mu m. The phases in the parent annealed sample were BCC ferrite and chromium rich M7C3 carbide. The major phase after laser treatment was austenite and M7C3. The average hardness of annealed sample was 195 HV which increased to 410 HV after laser melting. Corrosion studies in 2% HCl solution exhibited a drastic improvement in corrosion resistance in laser treated samples. Improvement in properties is attributed to the refinement and uniformity of microstructure in the rapidly solidified surface. The case of a moving heat source was subjected to computer aided simulation to predict the melt depth at different processing conditions in point source melting mode. The calculated depths using the model, in ABAQUS software was found in good agreement with the experimental data. (author)

  10. Preparation and Stability of Inorganic Solidified Foam for Preventing Coal Fires

    Directory of Open Access Journals (Sweden)

    Botao Qin

    2014-01-01

    Full Text Available Inorganic solidified foam (ISF is a novel material for preventing coal fires. This paper presents the preparation process and working principle of main installations. Besides, aqueous foam with expansion ratio of 28 and 30 min drainage rate of 13% was prepared. Stability of foam fluid was studied in terms of stability coefficient, by varying water-slurry ratio, fly ash replacement ratio of cement, and aqueous foam volume alternatively. Light microscope was utilized to analyze the dynamic change of bubble wall of foam fluid and stability principle was proposed. In order to further enhance the stability of ISF, different dosage of calcium fluoroaluminate was added to ISF specimens whose stability coefficient was tested and change of hydration products was detected by scanning electron microscope (SEM. The outcomes indicated that calcium fluoroaluminate could enhance the stability coefficient of ISF and compact hydration products formed in cell wall of ISF; naturally, the stability principle of ISF was proved right. Based on above-mentioned experimental contents, ISF with stability coefficient of 95% and foam expansion ratio of 5 was prepared, which could sufficiently satisfy field process requirements on plugging air leakage and thermal insulation.

  11. Electron microscopy investigations of rapidly solidified Fe-Zr-B-Cu alloys

    International Nuclear Information System (INIS)

    Majumdar, B.; Arvindha Babu, D.; Akhtar, D.

    2010-01-01

    Rapidly solidified Fe-based nanocrystalline soft magnetic materials possess a unique combination of properties i,e high permeability, saturation and Curie temperature and very low coercivity which are otherwise not attainable in conventional soft magnetic materials. The alloys are processed by producing amorphous phase through melt spinning route followed by a partial devitrification for incorporation of nanocrystalline phase in the amorphous matrix. In this paper, detailed electron microscopic investigations of melt spun Fe-Zr-B-Cu alloys are presented. Melt spun ribbons of Fe 99-x-y Zr x BCu 1 alloys with x+y = 11 and x+y = 13 were prepared under different wheel speed conditions and then vacuum annealed for 1 h at different temperatures. The microstructure changes from completely amorphous to a cellular/dendritic bcc solid solution coexisting with the amorphous phase at intercellular/dendritic regions when Zr/B ratio or the process parameters are varied. Annealing leads to the precipitation of nanocrystalline bcc-Fe phase from both amorphous phase and already existing bcc solid solution. (author)

  12. The development of basic glass formulations for solidifying HLW from nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Jiang Yaozhong; Tang Baolong; Zhang Baoshan; Zhou Hui

    1995-01-01

    Basic glass formulations 90U/19, 90U/20, 90Nd/7 and 90Nd/10 applied in electric melting process are developed by using the mathematical model of the viscosity and electric resistance of waste glass. The yellow phase does not occur for basic glass formulations 90U/19 and 90U/20 solidifying HLW from nuclear fuel reprocessing plant when the waste loading is 20%. Under the waste loading is 16%, the process and product properties of glass 90U/19 and 90U/20 come up to or surpass the properties of the same kind of foreign waste glasses, and other properties are about the same to them of foreign waste glasses. The process and product properties of basic glass formulations 90Nd/7 and 90Nd/10 used for the solidification of 'U replaced by Nd' liquid waste are almost similar to them of 90U/19 and 90U/20. These properties fairly meet the requirements of 'joint test' (performed at KfK-INE, Germany). Among these formulations, 90Nd/7 is applied in cold engineering scale electric melting test performed at KfK-INE in Germany. The main process properties of cold test is similar to laboratory results

  13. Leaching behaviour and mechanical properties of copper flotation waste in stabilized/solidified products.

    Science.gov (United States)

    Mesci, Başak; Coruh, Semra; Ergun, Osman Nuri

    2009-02-01

    This research describes the investigation of a cement-based solidification/stabilization process for the safe disposal of copper flotation waste and the effect on cement properties of the addition of copper flotation waste (CW) and clinoptilolite (C). In addition to the reference mixture, 17 different mixtures were prepared using different proportions of CW and C. Physical properties such as setting time, specific surface area and compressive strength were determined and compared to a reference mixture and Turkish standards (TS). Different mixtures with the copper flotation waste portion ranging from 2.5 to 12.5% by weight of the mixture were tested for copper leachability. The results show that as cement replacement materials especially clinoptilolite had clear effects on the mechanical properties. Substitution of 5% copper flotation waste for Portland cement gave a similar strength performance to the reference mixture. Higher copper flotation waste addition such as 12.5% replacement yielded lower strength values. As a result, copper flotation waste and clinoptilolite can be used as cementitious materials, and copper flotation waste also can be safely stabilized/solidified in a cement-based solidification/stabilization system.

  14. Strength, leachability and microstructure characteristics of cement-based solidified plating sludge

    International Nuclear Information System (INIS)

    Asavapisit, Suwimol; Naksrichum, Siripat; Harnwajanawong, Naraporn

    2005-01-01

    The solidification of the stabilized zinc-cyanide plating sludge was carried out using ordinary Portland cement (OPC) and pulverized fuel ash (PFA) as solidification binders. The plating sludge were used at the level of 0%, 10%, 20% and 30% dry weight, and PFA was used to replace OPC at 0%, 10%, 20% and 30% dry weight, respectively. Experimental results showed that a significant reduction in strength was observed when the plating sludge was added to both the OPC and OPC/PFA binders, but the negative effect was minimized when PFA was used as part substitute for OPC. SEM observation reveals that the deposition of the plating sludge on the surface of the clinkers and PFA could be the cause for hydration retardation. In addition, calcium zinc hydroxide hydrate complex and the unreacted di- and tricalcium silicates were the major phases in X-ray diffraction (XRD) patterns of the solidified plating waste hydrated for 28 days, although the retardation effect on hydration reactions but Cr concentration in toxicity characteristic leaching procedure (TCLP) leachates was lower than the U.S. EPA regulatory limit

  15. Testing and evaluation of solidified high-level waste forms. Joint annual progress report 1983

    International Nuclear Information System (INIS)

    Malow, G.

    1985-01-01

    A second joint programme of the European Atomic Community was started in 1981 under the indirect action programme (1980-84), Action No 5 'Testing and evaluation of the properties of various potential materials for immobilizing high activity waste'. The overall objective of the research is to test various European potential solidified high-level radioactive waste forms so as to predict their behaviour after disposal. The most important aspect is to produce data to calculate the activity release from the waste products under the attack of various aqueous solutions. The experiments were partly performed under waste repository relevant conditions and partly under simplified conditions for investigating basic activity release mechanisms. The topics of the programme were: (i) studies of basic leaching mechanisms; (ii) studies of hydrothermal leaching and surface attack of waste glasses; (iii) leach test carried out in contact with granite at low water flow rates; (iv) static leach tests with specimen surrounded by canister and backfill materials; (v) specific isotope leach tests in slowly flowing water; (vi) leach test of actinide spiked samples; (vii) leach tests of highly radioactive samples; (viii) leach tests of alpha radiation stability; (ix) studies of mechanical stability; (x) studies of mineral phases as model compounds and phase relations

  16. Decomposition for the analysis of radionuclides in solidified cement radioactive waste

    International Nuclear Information System (INIS)

    Lee, Jeong Jin; Pyo, Hyung Yeal; Jee, Kwang Yung; Jeon, Jong Seon

    2004-01-01

    Spent ion exchange resins make solid radioactive wastes when mixed with cement as solidifying material that was widely used in securing human environment from radionuclides for at least hundreds years. The cumulative increase of low and medium level radioactive wastes results in capacity problem of temporary storage in some NPPs (Nuclear Power Plants) of Korea around 2008. Radioactive wastes are scheduled to be disposed in a permanent disposal facility in accordance with the Korean Radioactive Wastes Management Program. It is mandatory to identify kinds and concentration of radionuclides immobilized for transporting them from temporary storage in NPPs to disposal facility. Accordingly, the effective sample decomposition prior to radiochemical separation is prerequisite to obtain the analytical data about radionuclides in cement waste forms. The closed-vessel microwave digestion technology among several sample preparation methods is taken into account to decompose cement waste forms. In this study, SRM 1880a (Portland cement) which is known for its certified values was used to optimize decomposition condition of cement waste forms containing nonradioactive ion exchange resins from NPP. With such variables as reagents, time, and power, the variation of the transparency and the color of the solution after closed-vessel microwave digestion can be examine. SRM 1880a is decomposed by suggested digestion procedure and the recoveries of constituents were investigated by ICP-AES and AAS

  17. Short-term thermal response of rapidly solidified Type 304 stainless steel containing helium

    International Nuclear Information System (INIS)

    Clark, D.E.

    1988-06-01

    Type 304 stainless steel was heat treated for short times near its melting point in order to determine its microstructural response to thermal cycles typical of the near heat-affected zones of welding processes. The material was rapidly solidified as a powder by centrifugal atomization in a helium environment and consolidated by hot extrusion. Along with the ingot metallurgy material used for canning the powder prior to hot extrusion, it was heat treated using a Gleeble at temperatures of 1200 and 1300 degree C for times ranging from <1 to 1000 s, and the samples were examined for microstructure and the existence of porosity due to entrapped helium. At higher test temperatures and longer treatment times, the material developed extensive porosity, which was stabilized by the presence of helium and which may also have a role in anchoring grain boundaries and inhibiting grain growth. The powder material. At lower test temperatures and shorter treatment times, grain growth in the γ phase appeared to be restricted in the powder material, possible by the presence of helium. An intermediate temperatures and times, a γ-δ duplex microstructure also restricted grain growth again occurred in the δ microstructure. 9 refs., 14 figs., 3 tabs

  18. Binary operators and their Green's functions

    International Nuclear Information System (INIS)

    Sheff, J.R.

    1982-01-01

    Three topics are considered. First, the Langevin approach to neutron noise is used as a basis and guide to develop solutions and solution techniques for the ChapmanKolmogorov forward equation approach to neutron noise. The approach followed throughout this first part is that of solution by means of Green's functions. A particular form for the binary operator Green's function was picked on the basis of the Langevin method. Second, the basic solution technique using the particular Green's function form mentioned above is proven to be a correct and a general result. It is proven that the binary operator is always separable and that the Green's function could be written as the product of two single operator Green's functions. This is a new result. Third and finally, the forward equation approach of Chapman-Kolmogorov is generalized to include time allowing differential equations for second and higher order correlation functions to be developed directly. The principal result of the last section, the differential equation for correlation function of the neutron density, is new. Its derivation is really outside of or broader than the scope indicated by the title of the paper

  19. Ultrasensitive determination of mercury in human saliva by atomic fluorescence spectrometry based on solidified floating organic drop microextraction

    International Nuclear Information System (INIS)

    Yuan, C.-G.; Wang, J.; Jin, Y.

    2012-01-01

    We report on a new, rapid and simple method for the determination of ultra-trace quantities of mercury ion in human saliva. It is based on solidified floating organic drop microextraction and detection by cold vapor atomic fluorescence spectrometry (CV-AFS). Mercury ion was complexed with diethyldithiocarbamate, and the hydrophobic complex was then extracted into fine droplets of 1-undecanol. By cooling in an ice bath after extraction, the droplets in solution solidify to form a single ball floating on the surface of solution. The solidified micro drop containing the mercury complex was then transferred for determination by CV-AFS. The effects of pH value, concentration of chelating reagent, quantity of 1-undecanol, sample volume, equilibration temperature and time were investigated. Under the optimum conditions, the preconcentration of a 25-mL sample is accomplished with an enrichment factor of 182. The limit of detection is 2.5 ng L -1 . The relative standard deviation for seven replicate determinations at 0.1 ng mL -1 level is 4.1%. The method was applied to the determination of mercury in saliva samples collected from four volunteers. Two volunteers having dental amalgam fillings had 0.4 ng mL -1 mercury in their saliva, whereas mercury was not detectable in the saliva of two volunteers who had no dental fillings. (author)

  20. Precipitation in as-solidified undercooled Ni-Si hypoeutectic alloy: Effect of non-equilibrium solidification

    International Nuclear Information System (INIS)

    Fan Kai; Liu Feng; Yang Gencang; Zhou Yaohe

    2011-01-01

    Highlights: → The solid solubility of Si atom in α-Ni matrix increased with undercooling in the as-solidified sample. → The effect of non-equilibrium solidification on precipitation has been theoretically described. → The nucleation density, the real-time particle size and the precipitation rate are all increased upon annealing. → The precipitate process can be artificially controlled by modifying the initial melt undercooling and the annealing time. - Abstract: Applying glass fluxing and cyclic superheating, high undercooling up to ∼350 K was achieved for Ni-Si hypoeutectic alloy melt. By isothermally annealing the as-solidified alloy subjected to different undercoolings, precipitation behavior of Ni 3 Si particle, at 973 K, was systematically studied. It was found that, the nucleation density and the real-time particle size, as well as the precipitation rate, were all increased, provided the sample was solidified subjected to higher undercooling. This was ascribed mainly to the increased solid solubility of Si atom in α-Ni matrix upon non-equilibrium solidification. On this basis, the non-equilibrium dendrite growth upon solidification and the soft impingement prevailing upon solid-state precipitation have been quantitatively connected. As such, the effect of liquid/solid transformation on subsequent precipitation was described.

  1. Development of methodology to evaluate microbially influenced degradation of cement-solidified low-level radioactive waste forms

    International Nuclear Information System (INIS)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W.

    1994-01-01

    Because of its apparent structural integrity, cement has been widely used in the United States as a binder to solidify Class B and C low-level radioactive waste (LLW). However, the resulting cement preparations are susceptible to failure due to the actions of stress and environment. An environmentally mediated process that could affect cement stability is the action of naturally occurring microorganisms. The US Nuclear Regulatory Commission (NRC), recognizing this eventuality, stated that the effects of microbial action on waste form integrity must be addressed. This paper provides present results from an ongoing program that addresses the effects of microbially influenced degradation (MID) on cement-solidified LLW. Data are provided on the development of an evaluation method using acid-producing bacteria. Results are from work with one type of these bacteria, the sulfur-oxidizing Thiobacillus. This work involved the use of a system in which laboratory- and vendor-manufactured, simulated waste forms were exposed on an intermittent basis to media containing thiobacilli. Testing demonstrated that MID has the potential to severely compromise the structural integrity of ion-exchange resin and evaporator-bottoms waste that is solidified with cement. In addition, it was found that a significant percentage of calcium and other elements were leached from the treated waste forms. Also, the surface pH of the treated specimens decreased to below 2. These conditions apparently contributed to the physical deterioration of simulated waste forms after 60 days of exposure to the thiobacilli

  2. Precipitation in as-solidified undercooled Ni-Si hypoeutectic alloy: Effect of non-equilibrium solidification

    Energy Technology Data Exchange (ETDEWEB)

    Fan Kai [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Liu Feng, E-mail: liufeng@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Yang Gencang; Zhou Yaohe [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)

    2011-08-25

    Highlights: {yields} The solid solubility of Si atom in {alpha}-Ni matrix increased with undercooling in the as-solidified sample. {yields} The effect of non-equilibrium solidification on precipitation has been theoretically described. {yields} The nucleation density, the real-time particle size and the precipitation rate are all increased upon annealing. {yields} The precipitate process can be artificially controlled by modifying the initial melt undercooling and the annealing time. - Abstract: Applying glass fluxing and cyclic superheating, high undercooling up to {approx}350 K was achieved for Ni-Si hypoeutectic alloy melt. By isothermally annealing the as-solidified alloy subjected to different undercoolings, precipitation behavior of Ni{sub 3}Si particle, at 973 K, was systematically studied. It was found that, the nucleation density and the real-time particle size, as well as the precipitation rate, were all increased, provided the sample was solidified subjected to higher undercooling. This was ascribed mainly to the increased solid solubility of Si atom in {alpha}-Ni matrix upon non-equilibrium solidification. On this basis, the non-equilibrium dendrite growth upon solidification and the soft impingement prevailing upon solid-state precipitation have been quantitatively connected. As such, the effect of liquid/solid transformation on subsequent precipitation was described.

  3. Evaluation of physical stability and leachability of Portland Pozzolona Cement (PPC) solidified chemical sludge generated from textile wastewater treatment plants

    International Nuclear Information System (INIS)

    Patel, Hema; Pandey, Suneel

    2012-01-01

    Highlights: ► Stabilization/solidification of chemical sludge from textile wastewater treatment plants using Portland Pozzolona Cement (PPC) containing fly ash. ► Physical engineering (compressive strength and block density) indicates that sludge has potential to be reused for construction purpose after stabilization/solidification. ► Leaching of heavy metals from stabilized/solidified materials were within stipulated limits. ► There is a modification of microstructural properties of PPC with sludge addition as indicated by XRD and SEM patterns. - Abstract: The chemical sludge generated from the treatment of textile dyeing wastewater is a hazardous waste as per Indian Hazardous Waste Management rules. In this paper, stabilization/solidification of chemical sludge was carried out to explore its reuse potential in the construction materials. Portland Pozzolona Cement (PPC) was selected as the binder system which is commercially available cement with 10–25% fly ash interground in it. The stabilized/solidified blocks were evaluated in terms of unconfined compressive strength, block density and leaching of heavy metals. The compressive strength (3.62–33.62 MPa) and block density (1222.17–1688.72 kg/m 3 ) values as well as the negligible leaching of heavy metals from the stabilized/solidified blocks indicate that there is a potential of its use for structural and non-structural applications.

  4. Astronomy of binary and multiple stars

    International Nuclear Information System (INIS)

    Tokovinin, A.A.

    1984-01-01

    Various types of binary stars and methods for their observation are described in a popular form. Some models of formation and evolution of binary and multiple star systems are presented. It is concluded that formation of binary and multiple stars is a regular stage in the process of star production

  5. Coevolution of Binaries and Circumbinary Gaseous Disks

    Science.gov (United States)

    Fleming, David; Quinn, Thomas R.

    2018-04-01

    The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disk, and how the disk and binary interact. The central binary excites resonances in the surrounding protoplanetary disk that drive evolution in both the binary orbital elements and in the disk. To probe how these interactions impact both binary eccentricity and disk structure evolution, we ran N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary disks surrounding binaries based on Kepler 38 for 10^4 binary orbital periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disk via a parametric instability and excite disk eccentricity growth. Eccentric binaries strongly couple to the disk causing eccentricity growth for both the disk and binary. Disks around sufficiently eccentric binaries strongly couple to the disk and develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance (EOLR). This wave corresponds to an alignment of gas particle longitude of periastrons. We find that in all simulations, the binary semi-major axis decays due to dissipation from the viscous disk.

  6. Formation and evolution of compact binaries

    NARCIS (Netherlands)

    Sluijs, Marcel Vincent van der

    2006-01-01

    In this thesis we investigate the formation and evolution of compact binaries. Chapters 2 through 4 deal with the formation of luminous, ultra-compact X-ray binaries in globular clusters. We show that the proposed scenario of magnetic capture produces too few ultra-compact X-ray binaries to explain

  7. Binary Linear-Time Erasure Decoding for Non-Binary LDPC codes

    OpenAIRE

    Savin, Valentin

    2009-01-01

    In this paper, we first introduce the extended binary representation of non-binary codes, which corresponds to a covering graph of the bipartite graph associated with the non-binary code. Then we show that non-binary codewords correspond to binary codewords of the extended representation that further satisfy some simplex-constraint: that is, bits lying over the same symbol-node of the non-binary graph must form a codeword of a simplex code. Applied to the binary erasure channel, this descript...

  8. Permutation Entropy for Random Binary Sequences

    Directory of Open Access Journals (Sweden)

    Lingfeng Liu

    2015-12-01

    Full Text Available In this paper, we generalize the permutation entropy (PE measure to binary sequences, which is based on Shannon’s entropy, and theoretically analyze this measure for random binary sequences. We deduce the theoretical value of PE for random binary sequences, which can be used to measure the randomness of binary sequences. We also reveal the relationship between this PE measure with other randomness measures, such as Shannon’s entropy and Lempel–Ziv complexity. The results show that PE is consistent with these two measures. Furthermore, we use PE as one of the randomness measures to evaluate the randomness of chaotic binary sequences.

  9. Control of broadband optically generated ultrasound pulses using binary amplitude holograms.

    Science.gov (United States)

    Brown, Michael D; Jaros, Jiri; Cox, Ben T; Treeby, Bradley E

    2016-04-01

    In this work, the use of binary amplitude holography is investigated as a mechanism to focus broadband acoustic pulses generated by high peak-power pulsed lasers. Two algorithms are described for the calculation of the binary holograms; one using ray-tracing, and one using an optimization based on direct binary search. It is shown using numerical simulations that when a binary amplitude hologram is excited by a train of laser pulses at its design frequency, the acoustic field can be focused at a pre-determined distribution of points, including single and multiple focal points, and line and square foci. The numerical results are validated by acoustic field measurements from binary amplitude holograms, excited by a high peak-power laser.

  10. Expanding the catalog of binary black-hole simulations: aligned-spin configurations

    Science.gov (United States)

    Chu, Tony; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela; SXS Collaboration

    2015-04-01

    A major goal of numerical relativity is to model the inspiral and merger of binary black holes through sufficiently accurate and long simulations, to enable the successful detection of gravitational waves. However, covering the full parameter space of binary configurations is a computationally daunting task. The SXS Collaboration has made important progress in this direction recently, with a catalog of 174 publicly available binary black-hole simulations [black-holes.org/waveforms]. Nevertheless, the parameter-space coverage remains sparse, even for non-precessing binaries. In this talk, I will describe an addition to the SXS catalog to improve its coverage, consisting of 95 new simulations of aligned-spin binaries with moderate mass ratios and dimensionless spins as high as 0.9. Some applications of these new simulations will also be mentioned.

  11. Angular distribution of binary encounter electrons

    International Nuclear Information System (INIS)

    Liao, C.; Richard, P.; Grabbe, S.

    1993-01-01

    The double differential cross section, DDCS, of the binary encounter electrons (BEe) in 1 MeV/u F q+ + H 2 (q = 4, 6, 8, 9) is measured from 0 to 70 degrees with respect to the beam direction. At 0 degrees the data confirm the decrease of the cross section with increasing projectile charge state. At larger observation angles, the data are in fair agreement with the prediction proposed by Shingal et al. where the ratio of the DDCS for 6+ ions to bare ions is less than 1 for θ lab > 30 degrees and greater than 1 for θ lab q+ . We also observed that the energies of the BEe peak are charge state, q, independent at 0 degrees observation angle, but q dependent at larger observation angles

  12. Classical Cepheid luminosities from binary companions

    International Nuclear Information System (INIS)

    Evans, N.R.

    1991-01-01

    Luminosities for the classical Cepheids Eta Aql, W Sgr, and SU Cas are determined from IUE spectra of their binary companions. Spectral types of the companions are determined from the spectra by comparison with the spectra of standard stars. The absolute magnitude inferred from these spectral types is used to determine the absolute magnitude of the Cepheid, either directly or from the magnitude difference between the two stars. For the temperature range of the companions (A0 V), distinctions of a quarter of a spectral subclass can be made in the comparison between the companions and standard stars. The absolute magnitudes for Eta Aql and W Sgr agree well with the period-luminosity-color relation of Feast and Walker (1987). Random errors are estimated to be 0.3 mag. SU Cas, however, is overluminous for pulsation in the fundamental mode, implying that it is pulsating in an overtone. 58 refs

  13. Dynamics of binary mixtures in inhomogeneous temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Gonnella, G; Piscitelli, A [Dipartimento di Fisica, Universita di Bari and Istituto Nazionale di Fisica Nucleare, Sezione di Bari, via Amendola 173, 70126 Bari (Italy); Lamura, A [Istituto Applicazioni Calcolo, CNR, via Amendola 122/D, 70126 Bari (Italy)

    2008-03-14

    A dynamical description for fluid binary mixtures with variable temperature and concentration gradient contributions to entropy and internal energy is given. By using mass, momentum and energy balance equations together with the standard expression for entropy production, a generalized Gibbs-Duhem relation is obtained which takes into account thermal and concentration gradient contributions. Then an expression for the pressure tensor is derived. As examples of applications, interface behavior and phase separation have been numerically studied in two dimensions neglecting the contributions of the velocity field. In the simplest case with a constant thermal gradient, the growth exponent for the averaged size of domains is found to have the usual value z = 1/3 and the domains appear elongated in the direction of the thermal gradient. When the system is quenched by contact with external walls, the evolution of temperature profiles in the system is shown and the domain morphology is characterized by interfaces perpendicular to the thermal gradient.

  14. A ROSAT Survey of Contact Binary Stars

    Science.gov (United States)

    Geske, M. T.; Gettel, S. J.; McKay, T. A.

    2006-01-01

    Contact binary stars are common variable stars that are all believed to emit relatively large fluxes of X-rays. In this work we combine a large new sample of contact binary stars derived from the ROTSE-I telescope with X-ray data from the ROSAT All Sky Survey (RASS) to estimate the X-ray volume emissivity of contact binary stars in the Galaxy. We obtained X-ray fluxes for 140 contact binaries from the RASS, as well as two additional stars observed by the XMM-Newton observatory. From these data we confirm the emission of X-rays from all contact binary systems, with typical luminosities of approximately 1.0×1030 ergs s-1. Combining calculated luminosities with an estimated contact binary space density, we find that contact binaries do not have strong enough X-ray emission to account for a significant portion of the Galactic X-ray background.

  15. Wide- and contact-binary formation in substructured young stellar clusters

    Science.gov (United States)

    Dorval, J.; Boily, C. M.; Moraux, E.; Roos, O.

    2017-02-01

    We explore with collisional gravitational N-body models the evolution of binary stars in initially fragmented and globally subvirial clusters of stars. Binaries are inserted in the (initially) clumpy configurations so as to match the observed distributions of the field-binary-stars' semimajor axes a and binary fraction versus primary mass. The dissolution rate of wide binaries is very high at the start of the simulations, and is much reduced once the clumps are eroded by the global infall. The transition between the two regimes is sharper as the number of stars N is increased, from N = 1.5 k up to 80 k. The fraction of dissolved binary stars increases only mildly with N, from ≈15 per cent to ≈25 per cent for the same range in N. We repeated the calculation for two initial system mean number densities of 6 per pc3 (low) and 400 per pc3 (high). We found that the longer free-fall time of the low-density runs allows for prolonged binary-binary interactions inside clumps and the formation of very tight (a ≈ 0.01 au) binaries by exchange collisions. This is an indication that the statistics of such compact binaries bear a direct link to their environment at birth. We also explore the formation of wide (a ≳ 5 × 104 au) binaries and find a low (≈0.01 per cent) fraction mildly bound to the central star cluster. The high-precision astrometric mission Gaia could identify them as outflowing shells or streams.

  16. Modeling of zinc solubility in stabilized/solidified electric arc furnace dust

    International Nuclear Information System (INIS)

    Fernandez-Olmo, Ignacio; Lasa, Cristina; Irabien, Angel

    2007-01-01

    Equilibrium models which attempt for the influence of pH on the solubility of metals can improve the dynamic leaching models developed to describe the long-term behavior of waste-derived forms. In addition, such models can be used to predict the concentration of metals in equilibrium leaching tests at a given pH. The aim of this work is to model the equilibrium concentration of Zn from untreated and stabilized/solidified (S/S) electric arc furnace dust (EAFD) using experimental data obtained from a pH-dependence leaching test (acid neutralization capacity, ANC). EAFD is a hazardous waste generated in electric arc furnace steel factories; it contains significant amounts of heavy metals such as Zn, Pb, Cr or Cd. EAFD from a local factory was characterized by X-ray fluorescence (XRF), acid digestion and X-ray diffraction (XRD). Zn and Fe were the main components while the XRD analysis revealed that zincite, zinc ferrite and hematite were the main crystalline phases. Different cement/EAFD formulations ranging from 7 to 20% dry weight of cement were prepared and subjected to the ANC leaching test. An amphoteric behavior of Zn was found from the pH dependence test. To model this behavior, the geochemical model Visual MINTEQ (VMINTEQ) was used. In addition to the geochemical model, an empirical model based on the dissolution of Zn in the acidic zone and the re-dissolution of zinc compounds in the alkaline zone was considered showing a similar prediction than that obtained with VMINTEQ. This empirical model seems to be more appropriate when the metal speciation is unknown, or when if known, the theoretical solid phases included in the database of VMINTEQ do not allow to describe the experimental data

  17. Solidified structure and leaching properties of metallurgical wastewater treatment sludge after solidification/stabilization process.

    Science.gov (United States)

    Radovanović, Dragana Đ; Kamberović, Željko J; Korać, Marija S; Rogan, Jelena R

    2016-01-01

    The presented study investigates solidification/stabilization process of hazardous heavy metals/arsenic sludge, generated after the treatment of the wastewater from a primary copper smelter. Fly ash and fly ash with addition of hydrated lime and Portland composite cement were studied as potential binders. The effectiveness of the process was evaluated by unconfined compressive strength (UCS) testing, leaching tests (EN 12457-4 and TCLP) and acid neutralization capacity (ANC) test. It was found that introduction of cement into the systems increased the UCS, led to reduced leaching of Cu, Ni and Zn, but had a negative effect on the ANC. Gradual addition of lime resulted in decreased UCS, significant reduction of metals leaching and high ANC, due to the excess of lime that remained unreacted in pozzolanic reaction. Stabilization of more than 99% of heavy metals and 90% of arsenic has been achieved. All the samples had UCS above required value for safe disposal. In addition to standard leaching tests, solidificates were exposed to atmospheric conditions during one year in order to determine the actual leaching level of metals in real environment. It can be concluded that the EN 12457-4 test is more similar to the real environmental conditions, while the TCLP test highly exaggerates the leaching of metals. The paper also presents results of differential acid neutralization (d-AN) analysis compared with mineralogical study done by scanning electron microscopy and X-ray diffraction analysis. The d-AN coupled with Eh-pH (Pourbaix) diagrams were proven to be a new effective method for analysis of amorphous solidified structure.

  18. Recycling stabilised/solidified drill cuttings for forage production in acidic soils.

    Science.gov (United States)

    Kogbara, Reginald B; Dumkhana, Bernard B; Ayotamuno, Josiah M; Okparanma, Reuben N

    2017-10-01

    Stabilisation/solidification (S/S), which involves fixation and immobilisation of contaminants using cementitious materials, is one method of treating drill cuttings before final fate. This work considers reuse of stabilised/solidified drill cuttings for forage production in acidic soils. It sought to improve the sustainability of S/S technique through supplementation with the phytoremediation potential of plants, eliminate the need for landfill disposal and reduce soil acidity for better plant growth. Drill cuttings with an initial total petroleum hydrocarbon (TPH) concentration of 17,125 mg kg -1 and low concentrations of metals were treated with 5%, 10%, and 20% cement dosages. The treated drill cuttings were reused in granular form for growing a forage, elephant grass (Pennisetum purpureum), after mixing with uncontaminated soil. The grasses were also grown in uncontaminated soil. The phytoremediation and growth potential of the plants was assessed over a 12-week period. A mix ratio of one part drill cuttings to three parts uncontaminated soil was required for active plant growth. The phytoremediation ability of elephant grass (alongside abiotic losses) reduced the TPH level (up to 8795 mg kg -1 ) in the soil-treated-drill cuttings mixtures below regulatory (1000 mg kg -1 ) levels. There were also decreased concentrations of metals. The grass showed better heights and leaf lengths in soil containing drill cuttings treated with 5% cement dosage than in uncontaminated soil. The results suggest that recycling S/S treated drill cuttings for forage production may be a potential end use of the treated waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Simulation and experiment for oxygen-enriched combustion engine using liquid oxygen to solidify CO2

    Science.gov (United States)

    Liu, Yongfeng; Jia, Xiaoshe; Pei, Pucheng; Lu, Yong; Yi, Li; Shi, Yan

    2016-01-01

    For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techniques of spraying water in the cylinder and optimizing the ignition advance angle. However, due to the water spray nozzle need to be installed on the cylinder, which increases the cylinder head design difficulty and makes the combustion conditions become more complicated. In this paper, a new method is presented to carry out the closing inlet and exhaust system for internal combustion engines. The proposed new method uses liquid oxygen to solidify part of cooled CO2 from exhaust system into dry ice and the liquid oxygen turns into gas oxygen which is sent to inlet system. The other part of CO2 is sent to inlet system and mixed with oxygen, which can reduce the oxygen-enriched combustion detonation tendency and make combustion stable. Computing grid of the IP52FMI single-cylinder four-stroke gasoline-engine is established according to the actual shape of the combustion chamber using KIVA-3V program. The effects of exhaust gas recirculation (EGR) rate are analyzed on the temperatures, the pressures and the instantaneous heat release rates when the EGR rate is more than 8%. The possibility of enclosing intake and exhaust system for engine is verified. The carbon dioxide trapping device is designed and the IP52FMI engine is transformed and the CO2 capture experiment is carried out. The experimental results show that when the EGR rate is 36% for the optimum EGR rate. When the liquid oxygen of 35.80-437.40 g is imported into the device and last 1-20 min, respectively, 21.50-701.30 g dry ice is obtained. This research proposes a new design method which can capture CO2 for vehicular internal combustion engine.

  20. Time-dependent performance of soil mix technology stabilized/solidified contaminated site soils.

    Science.gov (United States)

    Wang, Fei; Wang, Hailing; Al-Tabbaa, Abir

    2015-04-09

    This paper presents the strength and leaching performance of stabilized/solidified organic and inorganic contaminated site soil as a function of time and the effectiveness of modified clays applied in this project. Field trials of deep soil mixing application of stabilization/solidification (S/S) were performed at a site in Castleford in 2011. A number of binders and addictives were applied in this project including Portland cement (PC), ground granulated blastfurnace slag (GGBS), pulverised fuel ash (PFA), MgO and modified clays. Field trial samples were subjected to unconfined compressive strength (UCS), BS CN 12457 batch leaching test and the extraction of total organics at 28 days and 1.5 years after treatment. The results of UCS test show that the average strength values of mixes increased from 0-3250 kPa at 28 days to 250-4250 kPa at 1.5 years curing time. The BS EN 12457 leachate concentrations of all metals were well below their drinking water standard, except Ni in some mixes exceed its drinking water standard at 0.02 mg/l, suggesting that due to varied nature of binders, not all of them have the same efficiency in treating contaminated soil. The average leachate concentrations of total organics were in the range of 20-160 mg/l at 28 days after treatment and reduced to 18-140 mg/l at 1.5 years. In addition, organo clay (OC)/inorgano-organo clay (IOC) slurries used in this field trial were found to have a negative effect on the strength development, but were very effective in immobilizing heavy metals. The study also illustrates that the surfactants used to modify bentonite in this field trail were not suitable for the major organic pollutants exist in the site soil in this project. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Binary evolution and observational constraints

    International Nuclear Information System (INIS)

    Loore, C. de

    1984-01-01

    The evolution of close binaries is discussed in connection with problems concerning mass and angular momentum losses. Theoretical and observational evidence for outflow of matter, leaving the system during evolution is given: statistics on total masses and mass ratios, effects of the accretion of the mass gaining component, the presence of streams, disks, rings, circumstellar envelopes, period changes, abundance changes in the atmosphere. The effects of outflowing matter on the evolution is outlined, and estimates of the fraction of matter expelled by the loser, and leaving the system, are given. The various time scales involved with evolution and observation are compared. Examples of non conservative evolution are discussed. Problems related to contact phases, on mass and energy losses, in connection with entropy changes are briefly analysed. For advanced stages the disruption probabilities for supernova explosions are examined. A global picture is given for the evolution of massive close binaries, from ZAMS, through WR phases, X-ray phases, leading to runaway pulsars or to a binary pulsar and later to a millisecond pulsar. (Auth.)

  2. X rays from radio binaries

    International Nuclear Information System (INIS)

    Apparao, K.M.V.

    1977-01-01

    Reference is made to the radio binary systems CC Cas, AR Lac, β Per (Algol), β Lyr, b Per and Cyg X-1. It is stated that a thermal interpretation of the radiation from Algol requires a much larger x-ray flux than the observed value of 3.8 x 10 -11 erg/cm 2 /sec/keV in the 2 to 6 keV energy range. Observations of some non-thermal flares, together with the small size of the radio source in Algol, indicate that the radio emission is non-thermal in nature. The radio emission is interpreted as synchrotron radiation and it is suggested that the observed x-ray emission is due to inverse Compton scattering of the light of the primary star by the radio electrons. The x-ray emission from other radio binaries is also calculated using this model. The energy for the radio electrons can arise from annihilation of magnetic lines connecting the binary stars, twisted by the rotation of the stars. (U.K.)

  3. Microstructures and phase formation in rapidly solidified Sm-Fe alloys

    International Nuclear Information System (INIS)

    Shield, J.E.; Kappes, B.B.; Meacham, B.E.; Dennis, K.W.; Kramer, M.J.

    2003-01-01

    Sm-Fe-based alloys were produced by melt spinning with various melt spinning parameters and alloying additions. The structural and microstructural evolution varied and strongly depended on processing and alloy composition. The microstructural scale was found to vary from micron to nanometer scale depending on the solidification rate and alloying additions. Additions of Si, Ti, V, Zr and Nb with C were all found to refine the scale, and the degree of refinement was dependent on the atomic size of the alloying agent. The alloying was also found to affect the dynamical aspects of the melt spinning process, although in general the material is characterized by a poor melt stream and pool, which in part contributes to the microstructural variabilities. The alloying additions also suppressed the long-range ordering, leading to formation of the TbCu 7 -type structure. The ordering was recoverable upon heat treatment, although the presence of alloying agents suppressed the recovery process relative to the binary alloy. This was attributed to the presence of Ti (V, Nb, Zr) in solid solution, which limited the diffusion kinetics necessary for ordering. In the binary alloy, the ordering led to the development of antiphase domain structures, with the antiphase boundaries effectively pinning Bloch walls

  4. A binary origin for 'blue stragglers' in globular clusters.

    Science.gov (United States)

    Knigge, Christian; Leigh, Nathan; Sills, Alison

    2009-01-15

    Blue stragglers in globular clusters are abnormally massive stars that should have evolved off the stellar main sequence long ago. There are two known processes that can create these objects: direct stellar collisions and binary evolution. However, the relative importance of these processes has remained unclear. In particular, the total number of blue stragglers found in a given cluster does not seem to correlate with the predicted collision rate, providing indirect support for the binary-evolution model. Yet the radial distributions of blue stragglers in many clusters are bimodal, with a dominant central peak: this has been interpreted as an indication that collisions do dominate blue straggler production, at least in the high-density cluster cores. Here we report that there is a clear, but sublinear, correlation between the number of blue stragglers found in a cluster core and the total stellar mass contained within it. From this we conclude that most blue stragglers, even those found in cluster cores, come from binary systems. The parent binaries, however, may themselves have been affected by dynamical encounters. This may be the key to reconciling all of the seemingly conflicting results found to date.

  5. Measurement of thermoelectric power of Fe-Cu binary alloys

    International Nuclear Information System (INIS)

    Joubouji, Katsuo

    2007-01-01

    In INSS, non-destructive evaluation (NDE) of irradiation embrittlement of low alloy steel using thermoelectric power (TEP) measurement has been considered, as well as NDE of thermal aging of cast duplex stainless steel which has been studied in recent years. Material degradation is evaluated based on a relation between progress of the degradation and change in TEP due to change in material structure caused by the degradation event. So it is necessary for NDE of irradiation embrittlement to measure the change in TEP due to precipitation of Cu contained as an impurity, which is known as one of the reasons for the embrittlement. In this study, TEP of Fe-Cu binary alloys with different Cu content was measured for investigation of the relationship between TEP of the alloys and Cu content. In addition, appropriateness of measuring TEP of Fe-Cu binary alloy in the same way to measure TEP of duplex stainless steel was examined. It was found that increment of Cu contained in the alloys changed TEP in a negative direction and the rate was evaluated as -6.6μV/K/wt%Cu. There were the cases that it took 20 minutes for measurement values to become stable in measurement of Fe-Cu binary alloys. It was much longer than the time taken in measurement of duplex stainless steel. So the measurement time per a point was extended to 60 minutes in case of Fe-Cu binary alloys. (author)

  6. HD271791: dynamical versus binary-supernova ejection scenario

    Science.gov (United States)

    Gvaramadze, V. V.

    2009-05-01

    The atmosphere of the extremely high-velocity (530-920kms-1) early B-type star HD271791 is enriched in α-process elements, which suggests that this star is a former secondary component of a massive tight binary system and that its surface was polluted by the nucleosynthetic products after the primary star exploded in a supernova. It was proposed that the (asymmetric) supernova explosion unbind the system and that the secondary star (HD271791) was released at its orbital velocity in the direction of Galactic rotation. In this Letter, we show that to explain the Galactic rest-frame velocity of HD271791 within the framework of the binary-supernova scenario, the stellar remnant of the supernova explosion (a =750-1200kms-1. We therefore consider the binary-supernova scenario as highly unlikely and instead propose that HD271791 attained its peculiar velocity in the course of a strong dynamical three- or four-body encounter in the dense core of the parent star cluster. Our proposal implies that by the moment of encounter HD271791 was a member of a massive post-supernova binary.

  7. Generation of binary holograms with a Kinect sensor for a high speed color holographic display

    Science.gov (United States)

    Leportier, Thibault; Park, Min-Chul; Yano, Sumio; Son, Jung-Young

    2017-05-01

    The Kinect sensor is a device that enables to capture a real scene with a camera and a depth sensor. A virtual model of the scene can then be obtained with a point cloud representation. A complex hologram can then be computed. However, complex data cannot be used directly because display devices cannot handle amplitude and phase modulation at the same time. Binary holograms are commonly used since they present several advantages. Among the methods that were proposed to convert holograms into a binary format, the direct-binary search (DBS) not only gives the best performance, it also offers the possibility to choose the display parameters of the binary hologram differently than the original complex hologram. Since wavelength and reconstruction distance can be modified, compensation of chromatic aberrations can be handled. In this study, we examine the potential of DBS for RGB holographic display.

  8. Microstructure and mechanical properties of a novel rapidly solidified, high-temperature Al-alloy

    Energy Technology Data Exchange (ETDEWEB)

    Overman, N.R., E-mail: Nicole.Overman@pnnl.gov [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States); Mathaudhu, S.N. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States); University of California, Riverside, 3401 Watkins Dr., Riverside, CA 92521 (United States); Choi, J.P.; Roosendaal, T.J.; Pitman, S. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States)

    2016-02-15

    Rapid solidification (RS) processing, as a production method, offers a variety of unique properties based on far-from-equilibrium microstructures obtained through rapid cooling rates. In this study, we seek to investigate the microstructures and properties of a novel Al-alloy specifically designed for high temperature mechanical stability. Synthesis of, AlFe{sub 11.4}Si{sub 1.8}V{sub 1.6}Mn{sub 0.9} (wt.%), was performed by two approaches: rotating cup atomization (“shot”) and melt spinning (“flake”). These methods were chosen because of their ability to produce alloys with tailored microstructures due to their inherent differences in cooling rate. The as-solidified precursor materials were microstructurally characterized with electron microscopy. The results show that the higher cooling rate flake material exhibited the formation of nanocrystalline regions as well additional phase morphologies not seen in the shot material. Secondary dendritic branching in the flake material was on the order of 0.1–0.25 μm whereas branching in the shot material was 0.5–1.0 μm. Consolidated and extruded material from both precursor materials was mechanically evaluated at both ambient and high (300 °C) temperature. The consolidated RS flake material is shown to exhibit higher strengths than the shot material. The ultimate tensile strength of the melt spun flake was reported as 544.2 MPa at room temperature and 298.0 MPa at 300 °C. These results forecast the ability to design alloys and processing approaches with unique non-equilibrium microstructures with robust mechanical properties at elevated temperatures. - Highlights: • A novel alloy, AlFe{sub 11.4}Si{sub 1.8}V{sub 1.6}Mn{sub 0.9} was fabricated by rapid solidification. • Room temperature yield strength exceeded 500 MPa. • Elevated temperature (300 °C) yield strength exceeded 275 MPa. • Forging, after extrusion of the alloy resulted in microstructural coarsening. • Decreased strength and ductility was

  9. LONG-TERM STABLE EQUILIBRIA FOR SYNCHRONOUS BINARY ASTEROIDS

    International Nuclear Information System (INIS)

    Jacobson, Seth A.; Scheeres, Daniel J.

    2011-01-01

    Synchronous binary asteroids may exist in a long-term stable equilibrium, where the opposing torques from mutual body tides and the binary YORP (BYORP) effect cancel. Interior of this equilibrium, mutual body tides are stronger than the BYORP effect and the mutual orbit semimajor axis expands to the equilibrium; outside of the equilibrium, the BYORP effect dominates the evolution and the system semimajor axis will contract to the equilibrium. If the observed population of small (0.1-10 km diameter) synchronous binaries are in static configurations that are no longer evolving, then this would be confirmed by a null result in the observational tests for the BYORP effect. The confirmed existence of this equilibrium combined with a shape model of the secondary of the system enables the direct study of asteroid geophysics through the tidal theory. The observed synchronous asteroid population cannot exist in this equilibrium if described by the canonical 'monolithic' geophysical model. The 'rubble pile' geophysical model proposed by Goldreich and Sari is sufficient, however it predicts a tidal Love number directly proportional to the radius of the asteroid, while the best fit to the data predicts a tidal Love number inversely proportional to the radius. This deviation from the canonical and Goldreich and Sari models motivates future study of asteroid geophysics. Ongoing BYORP detection campaigns will determine whether these systems are in an equilibrium, and future determination of secondary shapes will allow direct determination of asteroid geophysical parameters.

  10. Molecular Dynamics Simulation of Binary Fluid in a Nanochannel

    International Nuclear Information System (INIS)

    Mullick, Shanta; Ahluwalia, P. K.; Pathania, Y.

    2011-01-01

    This paper presents the results from a molecular dynamics simulation of binary fluid (mixture of argon and krypton) in the nanochannel flow. The computational software LAMMPS is used for carrying out the molecular dynamics simulations. Binary fluids of argon and krypton with varying concentration of atom species were taken for two densities 0.65 and 0.45. The fluid flow takes place between two parallel plates and is bounded by horizontal walls in one direction and periodic boundary conditions are imposed in the other two directions. To drive the flow, a constant force is applied in one direction. Each fluid atom interacts with other fluid atoms and wall atoms through Week-Chandler-Anderson (WCA) potential. The velocity profile has been looked at for three nanochannel widths i.e for 12σ, 14σ and 16σ and also for the different concentration of two species. The velocity profile of the binary fluid predicted by the simulations agrees with the quadratic shape of the analytical solution of a Poiseuille flow in continuum theory.

  11. Activity coefficients of solutes in binary solvents

    International Nuclear Information System (INIS)

    Gokcen, N.A.

    1982-01-01

    The activity coefficients in dilute ternary systems are discussed in detail by using the Margules equations. Analyses of some relevant data at high temperatures show that the sparingly dissolved solutes in binary solvents follow complex behavior even when the binary solvents are very nearly ideal. It is shown that the activity data on the solute or the binary system cannot permit computation of the remaining activities except for the regular solutions. It is also shown that a fourth-order equation is usually adequate in expressing the activity coefficient of a solute in binary solvents at high temperatures. When the activity data for a binary solvent are difficult to obtain in a certain range of composition, the activity data for a sparingly dissolved solute can be used to supplement determination of the binary activities

  12. Pulsar magnetospheres in binary systems

    Science.gov (United States)

    Ershkovich, A. I.; Dolan, J. F.

    1985-01-01

    The criterion for stability of a tangential discontinuity interface in a magnetized, perfectly conducting inviscid plasma is investigated by deriving the dispersion equation including the effects of both gravitational and centrifugal acceleration. The results are applied to neutron star magnetospheres in X-ray binaries. The Kelvin-Helmholtz instability appears to be important in determining whether MHD waves of large amplitude generated by instability may intermix the plasma effectively, resulting in accretion onto the whole star as suggested by Arons and Lea and leading to no X-ray pulsar behavior.

  13. The structures of binary compounds

    CERN Document Server

    Hafner, J; Jensen, WB; Majewski, JA; Mathis, K; Villars, P; Vogl, P; de Boer, FR

    1990-01-01

    - Up-to-date compilation of the experimental data on the structures of binary compounds by Villars and colleagues. - Coloured structure maps which order the compounds into their respective structural domains and present for the first time the local co-ordination polyhedra for the 150 most frequently occurring structure types, pedagogically very helpful and useful in the search for new materials with a required crystal structure. - Crystal co-ordination formulas: a flexible notation for the interpretation of solid-state structures by chemist Bill Jensen. - Recent important advances in unders

  14. Tomographic reconstruction of binary fields

    International Nuclear Information System (INIS)

    Roux, Stéphane; Leclerc, Hugo; Hild, François

    2012-01-01

    A novel algorithm is proposed for reconstructing binary images from their projection along a set of different orientations. Based on a nonlinear transformation of the projection data, classical back-projection procedures can be used iteratively to converge to the sought image. A multiscale implementation allows for a faster convergence. The algorithm is tested on images up to 1 Mb definition, and an error free reconstruction is achieved with a very limited number of projection data, saving a factor of about 100 on the number of projections required for classical reconstruction algorithms.

  15. Microlensing Signature of Binary Black Holes

    Science.gov (United States)

    Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson

    2012-01-01

    We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.

  16. Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO

    OpenAIRE

    Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Ananyeva, A.; Anderson, S. B.; Appert, S.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.

    2017-01-01

    During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that...

  17. Survival of planets around shrinking stellar binaries.

    Science.gov (United States)

    Muñoz, Diego J; Lai, Dong

    2015-07-28

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.

  18. Contact Binaries on Their Way Towards Merging

    Science.gov (United States)

    Gazeas, K.

    2015-07-01

    Contact binaries are the most frequently observed type of eclipsing star system. They are small, cool, low-mass binaries belonging to a relatively old stellar population. They follow certain empirical relationships that closely connect a number of physical parameters with each other, largely because of constraints coming from the Roche geometry. As a result, contact binaries provide an excellent test of stellar evolution, specifically for stellar merger scenarios. Observing campaigns by many authors have led to the cataloging of thousands of contact binaries and enabled statistical studies of many of their properties. A large number of contact binaries have been found to exhibit extraordinary behavior, requiring follow-up observations to study their peculiarities in detail. For example, a doubly-eclipsing quadruple system consisting of a contact binary and a detached binary is a highly constrained system offering an excellent laboratory to test evolutionary theories for binaries. A new observing project was initiated at the University of Athens in 2012 in order to investigate the possible lower limit for the orbital period of binary systems before coalescence, prior to merging.

  19. Hexagonal pixel detector with time encoded binary readout

    International Nuclear Information System (INIS)

    Hoedlmoser, H.; Varner, G.; Cooney, M.

    2009-01-01

    The University of Hawaii is developing continuous acquisition pixel (CAP) detectors for vertexing applications in lepton colliding experiments such as SuperBelle or ILC. In parallel to the investigation of different technology options such as MAPS or SOI, both analog and binary readout concepts have been tested. First results with a binary readout scheme in which the hit information is time encoded by means of a signal shifting mechanism have recently been published. This paper explains the hit reconstruction for such a binary detector with an emphasis on fake hit reconstruction probabilities in order to evaluate the rate capability in a high background environment such as the planned SuperB factory at KEK. The results show that the binary concept is at least comparable to any analog readout strategy if not better in terms of occupancy. Furthermore, we present a completely new binary readout strategy in which the pixel cells are arranged in a hexagonal grid allowing the use of three independent output directions to reduce reconstruction ambiguities. The new concept uses the same signal shifting mechanism for time encoding, however, in dedicated transfer lines on the periphery of the detector, which enables higher shifting frequencies. Detailed Monte Carlo simulations of full size pixel matrices including hit and BG generation, signal generation, and data reconstruction show that by means of multiple signal transfer lines on the periphery the pixel can be made smaller (higher resolution), the number of output channels and the data volume per triggered event can be reduced dramatically, fake hit reconstruction is lowered to a minimum and the resulting effective occupancies are less than 10 -4 . A prototype detector has been designed in the AMS 0.35μm Opto process and is currently under fabrication.

  20. Fabricating binary optics: An overview of binary optics process technology

    Science.gov (United States)

    Stern, Margaret B.

    1993-01-01

    A review of binary optics processing technology is presented. Pattern replication techniques have been optimized to generate high-quality efficient microoptics in visible and infrared materials. High resolution optical photolithography and precision alignment is used to fabricate maximally efficient fused silica diffractive microlenses at lambda = 633 nm. The degradation in optical efficiency of four-phase-level fused silica microlenses resulting from an intentional 0.35 micron translational error has been systematically measured as a function of lens speed (F/2 - F/60). Novel processes necessary for high sag refractive IR microoptics arrays, including deep anisotropic Si-etching, planarization of deep topography and multilayer resist techniques, are described. Initial results are presented for monolithic integration of photonic and microoptic systems.

  1. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    International Nuclear Information System (INIS)

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-01-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission's ''Technical Position on Waste Form'' (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity

  2. Influence of carbonation on the acid neutralization capacity of cements and cement-solidified/stabilized electroplating sludge.

    Science.gov (United States)

    Chen, Quanyuan; Zhang, Lina; Ke, Yujuan; Hills, Colin; Kang, Yanming

    2009-02-01

    Portland cement (PC) and blended cements containing pulverized fuel ash (PFA) or granulated blast-furnace slag (GGBS) were used to solidify/stabilize an electroplating sludge in this work. The acid neutralization capacity (ANC) of the hydrated pastes increased in the order of PC > PC/GGBS > PC/PFA. The GGBS or PFA replacement (80 wt%) reduced the ANC of the hydrated pastes by 30-50%. The ANC of the blended cement-solidified electroplating sludge (cement/sludge 1:2) was 20-30% higher than that of the hydrated blended cement pastes. Upon carbonation, there was little difference in the ANC of the three cement pastes, but the presence of electroplating sludge (cement/sludge 1:2) increased the ANC by 20%. Blended cements were more effective binders for immobilization of Ni, Cr and Cu, compared with PC, whereas Zn was encapsulated more effectively in the latter. Accelerated carbonation improved the immobilization of Cr, Cu and Zn, but not Ni. The geochemical code PHREEQC, with the edited database from EQ3/6 and HATCHES, was used to calculate the saturation index and solubility of likely heavy metal precipitates in cement-based solidification/stabilization systems. The release of heavy metals could be related to the disruption of cement matrices and the remarkable variation of solubility of heavy metal precipitates at different pH values.

  3. Where are the Binaries? Results of a Long-term Search for Radial Velocity Binaries in Proto-planetary Nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Hrivnak, Bruce J.; Lu, Wenxian [Department of Physics and Astronomy, Valparaiso University, Valparaiso, IN 46383 (United States); Steene, Griet Van de [Royal Observatory of Belgium, Astronomy and Astrophysics, Ringlaan 3, Brussels (Belgium); Winckel, Hans Van [Instituut voor Sterrenkunde, K.U. Leuven University, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Sperauskas, Julius [Vilnius University Observatory, Ciurlionio 29 Vilnius 2009 (Lithuania); Bohlender, David, E-mail: bruce.hrivnak@valpo.edu, E-mail: wen.lu@valpo.edu, E-mail: g.vandesteene@oma.be, E-mail: Hans.VanWinckel@ster.kuleuven.be, E-mail: julius.sperauskas@ff.vu.lt, E-mail: David.Bohlender@nrc-cnrc.gc.ca [National Research Council of Canada, Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada)

    2017-09-10

    We present the results of an expanded, long-term radial velocity search (25 years) for evidence of binarity in a sample of seven bright proto-planetary nebulae (PPNe). The goal is to investigate the widely held view that the bipolar or point-symmetric shapes of planetary nebulae (PNe) and PPNe are due to binary interactions. Observations from three observatories were combined from 2007 to 2015 to search for variations on the order of a few years and then combined with earlier observations from 1991 to 1995 to search for variations on the order of decades. All seven show velocity variations due to periodic pulsation in the range of 35–135 days. However, in only one PPN, IRAS 22272+5435, did we find even marginal evidence for multi-year variations that might be due to a binary companion. This object shows marginally significant evidence of a two-year period of low semi-amplitude, which could be due to a low-mass companion, and it also displays some evidence of a much longer period of >30 years. The absence of evidence in the other six objects for long-period radial velocity variations due to a binary companion sets significant constraints on the properties of any undetected binary companions: they must be of low mass, ≤0.2 M {sub ⊙}, or long period, >30 years. Thus the present observations do not provide direct support for the binary hypothesis to explain the shapes of PNe and PPNe and severely constrains the properties of any such undetected companions.

  4. Binary black holes: Spin dynamics and gravitational recoil

    International Nuclear Information System (INIS)

    Herrmann, Frank; Hinder, Ian; Shoemaker, Deirdre M.; Laguna, Pablo; Matzner, Richard A.

    2007-01-01

    We present a study of spinning black hole binaries focusing on the spin dynamics of the individual black holes as well as on the gravitational recoil acquired by the black hole produced by the merger. We consider two series of initial spin orientations away from the binary orbital plane. In one of the series, the spins are antialigned; for the second series, one of the spins points away from the binary along the line separating the black holes. We find a remarkable agreement between the spin dynamics predicted at 2nd post-Newtonian order and those from numerical relativity. For each configuration, we compute the kick of the final black hole. We use the kick estimates from the series with antialigned spins to fit the parameters in the Kidder kick formula, and verify that the recoil in the direction of the orbital angular momentum is ∝sinθ and on the orbital plane ∝cosθ, with θ the angle between the spin directions and the orbital angular momentum. We also find that the black hole spins can be well estimated by evaluating the isolated horizon spin on spheres of constant coordinate radius

  5. BHDD: Primordial black hole binaries code

    Science.gov (United States)

    Kavanagh, Bradley J.; Gaggero, Daniele; Bertone, Gianfranco

    2018-06-01

    BHDD (BlackHolesDarkDress) simulates primordial black hole (PBH) binaries that are clothed in dark matter (DM) halos. The software uses N-body simulations and analytical estimates to follow the evolution of PBH binaries formed in the early Universe.

  6. Main Memory Implementations for Binary Grouping

    OpenAIRE

    May, Norman; Moerkotte, Guido

    2005-01-01

    An increasing number of applications depend on efficient storage and analysis features for XML data. Hence, query optimization and efficient evaluation techniques for the emerging XQuery standard become more and more important. Many XQuery queries require nested expressions. Unnesting them often introduces binary grouping. We introduce several algorithms implementing binary grouping and analyze their time and space complexity. Experiments demonstrate their performance.

  7. Binary Relations as a Foundation of Mathematics

    NARCIS (Netherlands)

    Kuper, Jan; Barendsen, E.; Capretta, V.; Geuvers, H.; Niqui, M.

    2007-01-01

    We describe a theory for binary relations in the Zermelo-Fraenkel style. We choose for ZFCU, a variant of ZFC Set theory in which the Axiom of Foundation is replaced by an axiom allowing for non-wellfounded sets. The theory of binary relations is shown to be equi-consistent ZFCU by constructing a

  8. RELATIONSHIP BETWEEN FLASH POINTS OF SOME BINARY ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    Miscellaneous binary blends containing solvent neutral-150 (SN-150), ... viscosity, the flash point test has always been a standard part of a lubricant's specification. ... between structure and flash points of organic compounds [5-12] and fuels [13, 14]. ... in binary mixtures, the gaps between flash points would be high enough.

  9. The origin of the RS CVn binaries

    International Nuclear Information System (INIS)

    Biermann, P.

    1976-01-01

    Six possible origins for the RS CVn binaries are considered based on the following possibilities. RS CVn binaries might now be either pre-main-sequence or post-main-sequence. A pre-main-sequence binary might not always have been a binary but might have resulted from fission of a rapidly rotating single pre-main-sequence star. The main-sequence counterparts might be either single stars or binaries. To decide which of the six origins is possible, the following observed data for the RS CVn binaries are considered: total mass, total angular momentum, lack of observed connection with regions of star formation, large space density, kinematical age, and the visual companion of WW Dra. In addition lifetimes and space densities of single stars and other types of binaries are considered. The only origin possible is that the RS CVn binaries are in a thermal phase following fission of a main-sequence single star. In this explanation the single star had a rapidly rotating core which became unstable due to the core contraction which made it begin to evolve off the main sequence. The present Be stars might be examples of such parent single stars. (Auth.)

  10. Accreting Double White Dwarf Binaries: Implications for LISA

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki, E-mail: kremer@u.northwestern.edu, E-mail: katelyn.breivik@northwestern.edu, E-mail: vicky@northwestern.edu, E-mail: s.larson@northwestern.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Department of Physics and Astronomy, Northwestern University 2145 Sheridan Road, Evanston, IL 60201 (United States)

    2017-09-10

    We explore the long-term evolution of mass-transferring white dwarf (WD) binaries undergoing both direct-impact and disk accretion and explore implications of such systems to gravitational-wave (GW) astronomy. We cover a broad range of initial component masses and show that these systems, the majority of which lie within the Laser Interferometer Space Antenna ( LISA ) sensitivity range, exhibit prominent negative orbital frequency evolution (chirp) for a significant fraction of their lifetimes. Using a galactic population synthesis, we predict ∼2700 of these systems will be observable with a negative chirp of 0.1 yr{sup −2} by a space-based GW detector like LISA . We also show that detections of mass-transferring double WD systems by LISA may provide astronomers with unique ways of probing the physics governing close compact object binaries.

  11. Mechanism of serrated flow in binary Al-Li alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.; Pink, E. [Austrian Academy of Sciences, Leoben (Austria). Erich-Schmid-Inst. of Solid State Physics; Krol, J. [Polish Academy of Sciences, Krakow (Poland). Alexander-Krupkowski-Inst. of Metallurgy and Materials Science

    1996-09-15

    The work on serrated flow in Al-Li alloys has given rise to a controversy--whether serrations in these alloys are caused by lithium atoms in solid solution or by {delta}{prime}(Al{sub 3}Li)-precipitates. This controversy calls for further work to clarify the mechanism of serrated flow in the Al-Li alloys. Kumar and McShane have shown that in an Al-2.5Li-2Mg-0.14Zr alloy, non-shearable {delta}{prime}-precipitates, which are obtained in the under-aged and peak-aged conditions, might directly initiate serrated flow. However, the latter result was ambiguous because of the presence of other alloying elements, and the need to work on a binary Al-Li alloy was emphasized. The present work discusses the results from the binary Al-Li alloys.

  12. Accreting Double White Dwarf Binaries: Implications for LISA

    Science.gov (United States)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki

    2017-09-01

    We explore the long-term evolution of mass-transferring white dwarf (WD) binaries undergoing both direct-impact and disk accretion and explore implications of such systems to gravitational-wave (GW) astronomy. We cover a broad range of initial component masses and show that these systems, the majority of which lie within the Laser Interferometer Space Antenna (LISA) sensitivity range, exhibit prominent negative orbital frequency evolution (chirp) for a significant fraction of their lifetimes. Using a galactic population synthesis, we predict ˜2700 of these systems will be observable with a negative chirp of 0.1 yr-2 by a space-based GW detector like LISA. We also show that detections of mass-transferring double WD systems by LISA may provide astronomers with unique ways of probing the physics governing close compact object binaries.

  13. Accreting Double White Dwarf Binaries: Implications for LISA

    International Nuclear Information System (INIS)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki

    2017-01-01

    We explore the long-term evolution of mass-transferring white dwarf (WD) binaries undergoing both direct-impact and disk accretion and explore implications of such systems to gravitational-wave (GW) astronomy. We cover a broad range of initial component masses and show that these systems, the majority of which lie within the Laser Interferometer Space Antenna ( LISA ) sensitivity range, exhibit prominent negative orbital frequency evolution (chirp) for a significant fraction of their lifetimes. Using a galactic population synthesis, we predict ∼2700 of these systems will be observable with a negative chirp of 0.1 yr −2 by a space-based GW detector like LISA . We also show that detections of mass-transferring double WD systems by LISA may provide astronomers with unique ways of probing the physics governing close compact object binaries.

  14. Phasor analysis of binary diffraction gratings with different fill factors

    International Nuclear Information System (INIS)

    MartInez, Antonio; Sanchez-Lopez, Ma del Mar; Moreno, Ignacio

    2007-01-01

    In this work, we present a simple analysis of binary diffraction gratings with different slit widths relative to the grating period. The analysis is based on a simple phasor technique directly derived from the Huygens principle. By introducing a slit phasor and a grating phasor, the intensity of the diffracted orders and the grating's resolving power can be easily obtained without applying the usual Fourier transform operations required for these calculations. The proposed phasor technique is mathematically equivalent to the Fourier transform calculation of the diffraction order amplitude, and it can be useful to explain binary diffraction gratings in a simple manner in introductory physics courses. This theoretical analysis is illustrated with experimental results using a liquid crystal device to display diffraction gratings with different fill factors

  15. Phasor analysis of binary diffraction gratings with different fill factors

    Energy Technology Data Exchange (ETDEWEB)

    MartInez, Antonio [Departamento de Ciencia de Materiales, Optica y TecnologIa Electronica, Universidad Miguel Hernandez, 03202 Elche (Spain); Sanchez-Lopez, Ma del Mar [Instituto de BioingenierIa y Departamento de Fisica y Arquitectura de Computadores, Universidad Miguel Hernandez, 03202 Elche (Spain); Moreno, Ignacio [Departamento de Ciencia de Materiales, Optica y TecnologIa Electronica, Universidad Miguel Hernandez, 03202 Elche (Spain)

    2007-09-11

    In this work, we present a simple analysis of binary diffraction gratings with different slit widths relative to the grating period. The analysis is based on a simple phasor technique directly derived from the Huygens principle. By introducing a slit phasor and a grating phasor, the intensity of the diffracted orders and the grating's resolving power can be easily obtained without applying the usual Fourier transform operations required for these calculations. The proposed phasor technique is mathematically equivalent to the Fourier transform calculation of the diffraction order amplitude, and it can be useful to explain binary diffraction gratings in a simple manner in introductory physics courses. This theoretical analysis is illustrated with experimental results using a liquid crystal device to display diffraction gratings with different fill factors.

  16. A classification system for tableting behaviors of binary powder mixtures

    Directory of Open Access Journals (Sweden)

    Changquan Calvin Sun

    2016-08-01

    Full Text Available The ability to predict tableting properties of a powder mixture from individual components is of both fundamental and practical importance to the efficient formulation development of tablet products. A common tableting classification system (TCS of binary powder mixtures facilitates the systematic development of new knowledge in this direction. Based on the dependence of tablet tensile strength on weight fraction in a binary mixture, three main types of tableting behavior are identified. Each type is further divided to arrive at a total of 15 sub-classes. The proposed classification system lays a framework for a better understanding of powder interactions during compaction. Potential applications and limitations of this classification system are discussed.

  17. Influence of binary mask estimation errors on robust speaker identification

    DEFF Research Database (Denmark)

    May, Tobias

    2017-01-01

    Missing-data strategies have been developed to improve the noise-robustness of automatic speech recognition systems in adverse acoustic conditions. This is achieved by classifying time-frequency (T-F) units into reliable and unreliable components, as indicated by a so-called binary mask. Different...... approaches have been proposed to handle unreliable feature components, each with distinct advantages. The direct masking (DM) approach attenuates unreliable T-F units in the spectral domain, which allows the extraction of conventionally used mel-frequency cepstral coefficients (MFCCs). Instead of attenuating....... Since each of these approaches utilizes the knowledge about reliable and unreliable feature components in a different way, they will respond differently to estimation errors in the binary mask. The goal of this study was to identify the most effective strategy to exploit knowledge about reliable...

  18. Setting of cesium residual ratio of molten solidified waste produced in Japan Atomic Power Company Tokai and Tokai No.2 Power Stations

    International Nuclear Information System (INIS)

    2013-02-01

    JNES investigated the appropriateness of a view of the Japan Nuclear Fuel Co. on cesium residual content and the radioactivity measurement precision regarding the molten solidified (with lowered inorganic salt used) radioactive wastes which were produced from Japan Atomic Power Company Tokai and Tokai No. 2 Power Stations. Based on the written performance report from the request and past disposal confirmation experience, a view of the JNFC is confirmed as appropriate that setting of 15% cesium residual ratio for molten solidified with volume ratio larger than 4% and less than 10% cases. (S. Ohno)

  19. Mass Transfer in Mira-Type Binaries

    Directory of Open Access Journals (Sweden)

    Mohamed S.

    2012-06-01

    Full Text Available Detached, symbiotic binaries are generally assumed to interact via Bondi-Hoyle-Littleton (BHL wind accretion. However, the accretion rates and outflow geometries that result from this mass-transfer mechanism cannot adequately explain the observations of the nearest and best studied symbiotic binary, Mira, or the formation of some post-AGB binaries, e.g. barium stars. We propose a new mass-transfer mode for Mira-type binaries, which we call ‘wind Roche-lobe overflow’ (WRLOF, and which we demonstrate with 3D hydrodynamic simulations. Importantly, we show that the circumstellar outflows which result from WRLOF tend to be highly aspherical and strongly focused towards the binary orbital plane. Furthermore, the subsequent mass-transfer rates are at least an order of magnitude greater than the analogous BHL values. We discuss the implications of these results for the shaping of bipolar (proto-planetary nebulae and other related systems.

  20. Logistic chaotic maps for binary numbers generations

    International Nuclear Information System (INIS)

    Kanso, Ali; Smaoui, Nejib

    2009-01-01

    Two pseudorandom binary sequence generators, based on logistic chaotic maps intended for stream cipher applications, are proposed. The first is based on a single one-dimensional logistic map which exhibits random, noise-like properties at given certain parameter values, and the second is based on a combination of two logistic maps. The encryption step proposed in both algorithms consists of a simple bitwise XOR operation of the plaintext binary sequence with the keystream binary sequence to produce the ciphertext binary sequence. A threshold function is applied to convert the floating-point iterates into binary form. Experimental results show that the produced sequences possess high linear complexity and very good statistical properties. The systems are put forward for security evaluation by the cryptographic committees.

  1. Phonons in fcc binary alloys

    International Nuclear Information System (INIS)

    Sharma, Amita; Rathore, R.P.S.

    1992-01-01

    Born-Mayer potential has been modified to account for the unpaired (three body) forces among the common nearest neighbours of the ordered binary fcc alloys i.e. Ni 3 Fe 7 , Ni 5 Fe 5 and Ni 75 Fe 25 . The three body potential is added to the two body form of Morse to formalize the total interaction potential. Measured inverse ionic compressibility, cohesive energy, lattice constant and one measured phonon frequency are used to evaluate the defining parameters of the potential. The potential seeks to bring about the binding among 140 and 132 atoms though pair wise (two body) and non-pair wise (three body) forces respectively. The phonon-dispersion relations obtained by solving the secular equation are compared with the experimental findings on the aforesaid alloys. (author). 19 refs., 3 figs

  2. Insights into the astrophysics of supermassive black hole binaries from pulsar timing observations

    International Nuclear Information System (INIS)

    Sesana, A

    2013-01-01

    Pulsar timing arrays (PTAs) are designed to detect the predicted gravitational wave (GW) background produced by a cosmological population of supermassive black hole (SMBH) binaries. In this contribution, I review the physics of such GW background, highlighting its dependence on the overall binary population, the relation between SMBHs and their hosts, and their coupling with the stellar and gaseous environment. The latter is particularly relevant when it drives the binaries to extreme eccentricities (e > 0.9), which might be the case for stellar-driven systems. This causes a substantial suppression of the low-frequency signal, potentially posing a serious threat to the effectiveness of PTA observations. A future PTA detection will allow us to directly observe for the first time subparsec SMBH binaries on their way to the GW-driven coalescence, providing important answers of the outstanding questions related to the physics underlying the formation and evolution of these spectacular sources. (paper)

  3. Generation of binary holograms for deep scenes captured with a camera and a depth sensor

    Science.gov (United States)

    Leportier, Thibault; Park, Min-Chul

    2017-01-01

    This work presents binary hologram generation from images of a real object acquired from a Kinect sensor. Since hologram calculation from a point-cloud or polygon model presents a heavy computational burden, we adopted a depth-layer approach to generate the holograms. This method enables us to obtain holographic data of large scenes quickly. Our investigations focus on the performance of different methods, iterative and noniterative, to convert complex holograms into binary format. Comparisons were performed to examine the reconstruction of the binary holograms at different depths. We also propose to modify the direct binary search algorithm to take into account several reference image planes. Then, deep scenes featuring multiple planes of interest can be reconstructed with better efficiency.

  4. A coupled analysis of fluid flow, heat transfer and deformation behavior of solidifying shell in continuously cast beam blank

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Eui; Yeo, Tae Jung; Oh, Kyu Hwan; Yoon, Jong Kyu [School of Materials Science and Engineering, Seoul Nat` l Univ., Seoul (Korea, Republic of); Han, Heung Nam [Oxford Center for Advanced Materials and Composites, Department of Materials, Univ. of Oxford (United Kingdom)

    1998-12-31

    A mathematical model for a coupled analysis of fluid flow, heat transfer and deformation behavior in the continuously cast beam blank has been developed. The fluid flow, heat transfer and solidification in the mold region were analyzed with 3-dimensional finite difference method (FDM) based on control volume method. A body fitted coordinate system was introduced for the complex geometry of the beam blank. The effects of turbulence and natural convection of molten steel were taken into account in determining the fluid flow in the strand. The thermo-elasto-plastic deformation behavior in the cast strand and the formation of air gap between the solidifying shell and the mold were analyzed by the finite element method (FEM) using the 2-dimensional slice temperature profile calculated by the FDM. The heat flow between the strand and the mold was evaluated by the coupled analysis between the fluid flow-heat transfer analysis and the thermo-elasto-plastic stress analysis. In order to determine the solid fraction in the mushy zone, the microsegregation of solute element was assessed. The effects of fluid flow on the heat transfer, the solidification of steel and the distribution of shell thickness during the casting of the beam blank were simulated. The deformation behavior of the solidifying shell and the possibility of cracking of the strand were also investigated. The recirculating flows were developed in the regions of the web and the flange tip. The impinging of the inlet flow from the nozzle retarded the growing of solidifying shell in the regions of the fillet and the flange. The air gap between the strand and the mold was formed near the region of the corner of the flange tip. At the initial stage of casting, the probability of the surface cracking was high in the regions of the fillet and the flange tip. After the middle stage of casting, the internal cracking was predicted in the regions of the flange tip, and between the fillet and the flange tip. (author) 38

  5. A coupled analysis of fluid flow, heat transfer and deformation behavior of solidifying shell in continuously cast beam blank

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Eui; Yeo, Tae Jung; Oh, Kyu Hwan; Yoon, Jong Kyu [School of Materials Science and Engineering, Seoul Nat`l Univ., Seoul (Korea, Republic of); Han, Heung Nam [Oxford Center for Advanced Materials and Composites, Department of Materials, Univ. of Oxford (United Kingdom)

    1997-12-31

    A mathematical model for a coupled analysis of fluid flow, heat transfer and deformation behavior in the continuously cast beam blank has been developed. The fluid flow, heat transfer and solidification in the mold region were analyzed with 3-dimensional finite difference method (FDM) based on control volume method. A body fitted coordinate system was introduced for the complex geometry of the beam blank. The effects of turbulence and natural convection of molten steel were taken into account in determining the fluid flow in the strand. The thermo-elasto-plastic deformation behavior in the cast strand and the formation of air gap between the solidifying shell and the mold were analyzed by the finite element method (FEM) using the 2-dimensional slice temperature profile calculated by the FDM. The heat flow between the strand and the mold was evaluated by the coupled analysis between the fluid flow-heat transfer analysis and the thermo-elasto-plastic stress analysis. In order to determine the solid fraction in the mushy zone, the microsegregation of solute element was assessed. The effects of fluid flow on the heat transfer, the solidification of steel and the distribution of shell thickness during the casting of the beam blank were simulated. The deformation behavior of the solidifying shell and the possibility of cracking of the strand were also investigated. The recirculating flows were developed in the regions of the web and the flange tip. The impinging of the inlet flow from the nozzle retarded the growing of solidifying shell in the regions of the fillet and the flange. The air gap between the strand and the mold was formed near the region of the corner of the flange tip. At the initial stage of casting, the probability of the surface cracking was high in the regions of the fillet and the flange tip. After the middle stage of casting, the internal cracking was predicted in the regions of the flange tip, and between the fillet and the flange tip. (author) 38

  6. Neutral hydrogen observations of binary galaxies

    International Nuclear Information System (INIS)

    Moorsel, G.A. van.

    1982-01-01

    The present investigation concerns a detailed neutral hydrogen study of a carefully selected sample of 16 double spiral galaxies with the Westerbork Synthesis Radio Telescope (WSRT). The observational data provide useful material for a number of questions concerning the dynamics of double galaxies, in particular the question of the mass distribution. In Chapter 2 the criteria used to select a sample of double galaxies for observation with the WSRT are discussed. Observing techniques and the reduction of the data using the GIPSY system are described in Chapter 3. Chapters 4 through 7 contain the observational results. In Chapter 8 the method of analysis is described. Masses for the individual galaxies derived from rotation curves are compared with the ''total'' masses estimated from the orbital motion. In this fashion a direct estimate of the amount of dark matter is obtained that avoids the use of mean M/L values. In Chapter 9 a mass estimator for groups is developed in a way analogous to the binary galaxy mass estimator described in Chapter 8. The question of selection effects and the bias of the mass estimator for the point mass model are discussed extensively in Chapter 10. The final results are discussed in Chapter 11. It is shown that the orbital mass exceeds the sum of the individual masses by a large factor for several pairs, indicating either that there is a large amount of dark matter or that something is amiss with the concept of a physical pair. (Auth.)

  7. PERIODIC SIGNALS IN BINARY MICROLENSING EVENTS

    International Nuclear Information System (INIS)

    Guo, Xinyi; Stefano, Rosanne Di; Esin, Ann; Taylor, Jeffrey

    2015-01-01

    Gravitational microlensing events are powerful tools for the study of stellar populations. In particular, they can be used to discover and study a variety of binary systems. A large number of binary lenses have already been found through microlensing surveys and a few of these systems show strong evidence of orbital motion on the timescale of the lensing event. We expect that more binary lenses of this kind will be detected in the future. For binaries whose orbital period is comparable to the event duration, the orbital motion can cause the lensing signal to deviate drastically from that of a static binary lens. The most striking property of such light curves is the presence of quasi-periodic features, which are produced as the source traverses the same regions in the rotating lens plane. These repeating features contain information about the orbital period of the lens. If this period can be extracted, then much can be learned about the lensing system even without performing time-consuming, detailed light-curve modeling. However, the relative transverse motion between the source and the lens significantly complicates the problem of period extraction. To resolve this difficulty, we present a modification of the standard Lomb–Scargle periodogram analysis. We test our method for four representative binary lens systems and demonstrate its efficiency in correctly extracting binary orbital periods

  8. Topological and categorical properties of binary trees

    Directory of Open Access Journals (Sweden)

    H. Pajoohesh

    2008-04-01

    Full Text Available Binary trees are very useful tools in computer science for estimating the running time of so-called comparison based algorithms, algorithms in which every action is ultimately based on a prior comparison between two elements. For two given algorithms A and B where the decision tree of A is more balanced than that of B, it is known that the average and worst case times of A will be better than those of B, i.e., ₸A(n ≤₸B(n and TWA (n≤TWB (n. Thus the most balanced and the most imbalanced binary trees play a main role. Here we consider them as semilattices and characterize the most balanced and the most imbalanced binary trees by topological and categorical properties. Also we define the composition of binary trees as a commutative binary operation, *, such that for binary trees A and B, A * B is the binary tree obtained by attaching a copy of B to any leaf of A. We show that (T,* is a commutative po-monoid and investigate its properties.

  9. Theoretical studies of binaries in astrophysics

    Science.gov (United States)

    Dischler, Johann Sebastian

    This thesis introduces and summarizes four papers dealing with computer simulations of astrophysical processes involving binaries. The first part gives the rational and theoretical background to these papers. In paper I and II a statistical approach to studying eclipsing binaries is described. By using population synthesis models for binaries the probabilities for eclipses are calculated for different luminosity classes of binaries. These are compared with Hipparcos data and they agree well if one uses a standard input distribution for the orbit sizes. If one uses a random pairing model, where both companions are independently picked from an IMF, one finds too feclipsing binaries by an order of magnitude. In paper III we investigate a possible scenario for the origin of the stars observed close to the centre of our galaxy, called S stars. We propose that a cluster falls radially cowards the central black hole. The binaries within the cluster can then, if they have small impact parameters, be broken up by the black hole's tidal held and one of the components of the binary will be captured by the black hole. Paper IV investigates how the onset of mass transfer in eccentric binaries depends on the eccentricity. To do this we have developed a new two-phase SPH scheme where very light particles are at tire outer edge of our simulated star. This enables us to get a much better resolution of the very small mass that is transferred in close binaries. Our simulations show that the minimum required distance between the stars to have mass transfer decreases with the eccentricity.

  10. Binary neutron star merger simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bruegmann, Bernd [Jena Univ. (Germany)

    2016-11-01

    Our research focuses on the numerical tools necessary to solve Einstein's equations. In recent years we have been particularly interested in spacetimes consisting of two neutron stars in the final stages of their evolution. Because of the emission of gravitational radiation, the objects are driven together to merge; the emitted gravitational wave signal is visualized. This emitted gravitational radiation carries energy and momentum away from the system and contains information about the system. Late last year the Laser Interferometer Gravitational-wave Observatory (LIGO) began searches for these gravitational wave signals at a sensitivity at which detections are expected. Although such systems can radiate a significant amount of their total mass-energy in gravitational waves, the gravitational wave signals one expects to receive on Earth are not strong, since sources of gravitational waves are often many millions of light years away. Therefore one needs accurate templates for the radiation one expects from such systems in order to be able to extract them out of the detector's noise. Although analytical models exist for compact binary systems when the constituents are well separated, we need numerical simulation to investigate the last orbits before merger to obtain accurate templates and validate analytical approximations. Due to the strong nonlinearity of the equations and the large separation of length scales, these simulations are computationally demanding and need to be run on large supercomputers. When matter is present the computational cost as compared to pure black hole (vacuum) simulations increases even more due to the additional matter fields. But also more interesting astrophysical phenomena can happen. In fact, there is the possibility for a strong electromagnetic signal from the merger (e.g., a short gamma-ray burst or lower-energy electromagnetic signatures from the ejecta) and significant neutrino emission. Additionally, we can expect that

  11. Morphological variants of carbides of solidification origin in the rapidly solidified powder particles of hypereutectic iron alloy

    International Nuclear Information System (INIS)

    Kusy, M.; Grgac, P.; Behulova, M.; Vyrostkova, A.; Miglierini, M.

    2004-01-01

    The paper deals with the analysis of the morphological variants of solidification microstructures and vanadium rich M 4 C 3 carbide phases in the rapidly solidified (RS) powder particles from hypereutectic Fe-C-Cr-V alloy prepared by the nitrogen gas atomisation. Five main types of solidification microstructures were identified in RS particles: microstructure with globular carbides, microstructure with globular and star-like carbides, microstructure with primary carbides in the centres of eutectic colonies, microstructure with eutectic colonies without primary carbides and microstructure with eutectic spherulites. Based on the morphological features of carbide phases and the thermal history of RS particles, the microstructures were divided into two groups - microstructures morphologically affected and non-affected during the post-recalescence period of solidification. Thermophysical reasons for the morphologically different M 4 C 3 carbide phases development in the RS powder particles are discussed

  12. Effect of processing on the microstructural development in a rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Ranganathan, S.; Ojha, S.N.

    1993-01-01

    An Al 80 Fe 10 Si 6 alloy has been rapidly solidified using melt spinning, gas atomization and spray forming processes. The effect of processing techniques on the microstructural characteristics of the alloy has ben evaluated. The melt spun alloy has shown an icosahedral quasicrystalline phase surrounded by a rational approximant structure of the icosahedral phase. The rational approximant structure has been identified as a crystalline cubic silicide phase. The atomized powders have exhibited cellular and dendritic morphology depending on the size of particles. In addition, the second phase particles of the silicide phase are observed to decorate the cell boundaries and interdendritic regions. In contrast, the alloy processed by spray deposition has revealed an equiaxed solidification morphology with a uniform dispersion of find silicon phase inside the grain. The origin of the microstructure in the alloy processed by these techniques is discussed. The results are compared wherever possible with the commercially available Al-Fe-V-Si alloys

  13. Tensile behavior change depending on the microstructure of a Fe-Cu alloy produced from rapidly solidified powder

    International Nuclear Information System (INIS)

    Kakisawa, Hideki; Minagawa, Kazumi; Halada, Kohmei

    2003-01-01

    The relationship between consolidating temperature and the tensile behavior of iron alloy produced from Fe-Cu rapidly solidified powder is investigated. Fe-Cu powder fabricated by high-pressure water atomization was consolidated by heavy rolling at 873-1273 K. Microstructural changes were observed and tensile behavior was examined. Tensile behavior varies as the consolidating temperature changes, and these temperature-dependent differences depend on the morphology of the microstructure on the order of micrometers. The sample consolidated at 873 K shows a good strength/elongation balance because the powder microstructure and primary powder boundaries are maintained. The samples consolidated at the higher temperatures have a microstructure of recrystallized grains, and these recrystallized samples show the conventional relationship between tensile behavior and grain size in ordinal bulk materials

  14. Hydration products and mechanical properties of hydroceramics solidified waste for simulated Non-alpha low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Wang Jin; Hong Ming; Wang Junxia; Li Yuxiang; Teng Yuancheng; Wu Xiuling

    2011-01-01

    In this paper, simulated non-alpha low and intermediate level radioactive wastes was handled as curing object and that of 'alkali-slag-coal fly ash-metakaolin' hydroceramics waste forms were prepared by hydrothermal synthesis method. The hydration products were analyzed by X ray diffraction. The composition of hydrates and the compressive strength of waste forms were determined and measured. The results indicate that the main crystalline phase of hydration products were analcite when the temperature was 150 to 180 degree C and the salt content ratio was 0.10 to 0.30. Analcite diffraction peaks in hydration products is increasing when the temperature was raised and the reaction time prolonged. Strength test results show that the solidified waste forms have superior compressive strength. The compressive strength gradually decreased with the increase in salt content ratio in waste forms. (authors)

  15. Characterization of solidified radioactive wastes produced at Montalto di Castro BWR plant with reference to the site storage

    International Nuclear Information System (INIS)

    Donato, A.; Ricci, G.; Pace, A.

    1985-01-01

    The cement solidification of the Montalto di Castro BWR plant radwastes has been studied both from the point of view of the mixtures of formulation and of the product characterization. Five radwaste types and mixtures of them have been taken into consideration, determining the best chemical formulations starting from the compressive strenght as leading parameter. The solidified products have been characterized from the point of view of the freeze and thawing resistance, the water immersion resistance, the leachability, the dimensional changes and the free standing water. All the tests have been performed taking into account the real site conditions, so the leaching tests and the water immersion tests have been carried out using sea water and table water as leachant

  16. Shipment and Disposal of Solidified Organic Waste (Waste Type IV) to the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    D'Amico, E. L; Edmiston, D. R.; O'Leary, G. A.; Rivera, M. A.; Steward, D. M.

    2006-01-01

    In April of 2005, the last shipment of transuranic (TRU) waste from the Rocky Flats Environmental Technology Site to the WIPP was completed. With the completion of this shipment, all transuranic waste generated and stored at Rocky Flats was successfully removed from the site and shipped to and disposed of at the WIPP. Some of the last waste to be shipped and disposed of at the WIPP was waste consisting of solidified organic liquids that is identified as Waste Type IV in the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC) document. Waste Type IV waste typically has a composition, and associated characteristics, that make it significantly more difficult to ship and dispose of than other Waste Types, especially with respect to gas generation. This paper provides an overview of the experience gained at Rocky Flats for management, transportation and disposal of Type IV waste at WIPP, particularly with respect to gas generation testing. (authors)

  17. Variance in binary stellar population synthesis

    Science.gov (United States)

    Breivik, Katelyn; Larson, Shane L.

    2016-03-01

    In the years preceding LISA, Milky Way compact binary population simulations can be used to inform the science capabilities of the mission. Galactic population simulation efforts generally focus on high fidelity models that require extensive computational power to produce a single simulated population for each model. Each simulated population represents an incomplete sample of the functions governing compact binary evolution, thus introducing variance from one simulation to another. We present a rapid Monte Carlo population simulation technique that can simulate thousands of populations in less than a week, thus allowing a full exploration of the variance associated with a binary stellar evolution model.

  18. Galactic binaries with eLISA

    OpenAIRE

    Nelemans, G.

    2013-01-01

    I review what eLISA will see from Galactic binaries -- double stars with orbital periods less than a few hours and white dwarf (or neutron star/black hole) components. I discuss the currently known binaries that are guaranteed (or verification) sources and explain why the expected total number of eLISA Galactic binaries is several thousand, even though there are large uncertainties in our knowledge of this population, in particular that of the interacting AM CVn systems. I very briefly sketch...

  19. A study on crystalline phases present in the as-solidified and crystallized microstructures in Zr53Cu21Al10Ni8Ti8 alloy

    International Nuclear Information System (INIS)

    Neogy, S.; Tewari, R.; Srivastava, D.; Dey, G.K.

    2011-01-01

    In the present study the as-solidified and crystallized microstructures of Zr 53 Cu 21 Al 10 Ni 8 Ti 8 alloy have been examined in detail. Solidification was carried out by melt spinning, suction casting and copper mould casting techniques. The last technique yielded a partially crystalline microstructure, whereas, the other two techniques resulted in amorphous microstructures. (author)

  20. Analysis of Light Gathering Abilities of Dynamically Solidified Micro-lenses, and Their Implementation to Improve Sensitivity of Fluorescent PCR Micro-detectors.

    Science.gov (United States)

    Wu, Jian; Guo, Wei; Wang, Chunyan; Yu, Kuanxin; Chen, Tao; Li, Yinghui

    2015-06-01

    Fluorescent polymerase chain reaction (PCR) is becoming the preferred method of quantitative analysis due to its high specificity and sensitivity. We propose to use a new kind of micro-lens, dynamically solidified with optic glue, to improve the sensitivity of fluorescent PCR micro-detector. We developed light ray track equations for these lenses and used them to calculate relative light intensity distribution curve for stimulation lenses and illumination point probability distribution curve for detection lenses. We manufactured dynamically solidified micro-lenses using optic glue NOA61, and measured their light gathering ability. Lenses with radius/thickness (R/H) ratio of 4 reached light focusing ratio of 3.85 (stimulation lens) and photon collection efficiency of 0.86 (detection lens). We then used dynamically solidified lenses in PCR fluorescence micro-detector and analyzed their effect on the detector sensitivity. We showed that the use of dynamically solidified micro-lenses with R/H = 4 resulted in over 4.4-fold increased sensitivity of the detector.

  1. Experimental study on the properties of drum-packed, cement solidified waste package of pre and after sea dumping test of sea depth 30m and 100m

    International Nuclear Information System (INIS)

    Maki, Yasuro; Abe, Hirotoshi; Hattori, Seiichi

    1976-01-01

    Japan Marine Science and Technology Center has been tackling with the development of the monitoring system to confirm the soundness of drum-packed, cement-solidified low level radioactive waste (the package) during falling and after reaching at sea bed when it is dumped into sea. The test was carried out at Sagami Bay of 30 m and 100 m sea depth using non-radioactive packages. The observation of the falling behaviour of packages in sea was carried out by taking photographs of the motion of packages with an underwater 16 mm movie camera and an underwater industrial TV (ITV), and the observation of the soundness and the area of packages scattered on sea bed was carried out with an underwater ITV and an underwater 70 mm snap camera which were set up on the frame. The proportion of cement-solidified waste was decided so that the uni-axial compressive strength of the cement-solidified waste satisfies the condition of ''The tentative guideline''. Prior to tests at sea, hydrostatic pressure test of packages are carried out on land. After that, core specimens were sampled to obtain the uniaxial compressive strength from packages and were tested. After sea dumping tests, 6 packages were recovered from sea bed, and the soundness were tested. As the results, the deformation and damage of drums and cement solidified waste packages did not occur at all. (Kako, I.)

  2. A novel asynchronous access method with binary interfaces

    Directory of Open Access Journals (Sweden)

    Torres-Solis Jorge

    2008-10-01

    Full Text Available Abstract Background Traditionally synchronous access strategies require users to comply with one or more time constraints in order to communicate intent with a binary human-machine interface (e.g., mechanical, gestural or neural switches. Asynchronous access methods are preferable, but have not been used with binary interfaces in the control of devices that require more than two commands to be successfully operated. Methods We present the mathematical development and evaluation of a novel asynchronous access method that may be used to translate sporadic activations of binary interfaces into distinct outcomes for the control of devices requiring an arbitrary number of commands to be controlled. With this method, users are required to activate their interfaces only when the device under control behaves erroneously. Then, a recursive algorithm, incorporating contextual assumptions relevant to all possible outcomes, is used to obtain an informed estimate of user intention. We evaluate this method by simulating a control task requiring a series of target commands to be tracked by a model user. Results When compared to a random selection, the proposed asynchronous access method offers a significant reduction in the number of interface activations required from the user. Conclusion This novel access method offers a variety of advantages over traditionally synchronous access strategies and may be adapted to a wide variety of contexts, with primary relevance to applications involving direct object manipulation.

  3. DISTANCES TO FOUR SOLAR NEIGHBORHOOD ECLIPSING BINARIES FROM ABSOLUTE FLUXES

    International Nuclear Information System (INIS)

    Wilson, R. E.; Van Hamme, W.

    2009-01-01

    Eclipsing binary (EB)-based distances are estimated for four solar neighborhood EBs by means of the Direct Distance Estimation (DDE) algorithm. Results are part of a project to map the solar neighborhood EBs in three dimensions, independently of parallaxes, and provide statistical comparisons between EB and parallax distances. Apart from judgments on adopted temperature and interstellar extinction, DDE's simultaneous light-velocity solutions are essentially objective and work as well for semidetached (SD) and overcontact binaries as for detached systems. Here, we analyze two detached and two SD binaries, all double lined. RS Chamaeleontis is a pre-main-sequence (MS), detached EB with weak δ Scuti variations. WW Aurigae is detached and uncomplicated, except for having high metallicity. RZ Cassiopeiae is SD and has very clear δ Scuti variations and several peculiarities. R Canis Majoris (R CMa) is an apparently simple but historically problematic SD system, also with weak δ Scuti variations. Discussions include solution rules and strategies, weighting, convergence, and third light problems. So far there is no indication of systematic band dependence among the derived distances, so the adopted band-calibration ratios seem consistent. Agreement of EB-based and parallax distances is typically within the overlapped uncertainties, with minor exceptions. We also suggest an explanation for the long-standing undermassiveness problem of R CMa's hotter component, in terms of a fortuitous combination of low metallicity and evolution slightly beyond the MS.

  4. Precessing Black Hole Binaries and Their Gravitational Radiation

    Directory of Open Access Journals (Sweden)

    László Á. Gergely

    2018-02-01

    Full Text Available The first and second observational runs of Advanced Laser Interferometer Gravitational-wave Observatory (LIGO have marked the first direct detections of gravitational waves, either from black hole binaries or, in one case, from coalescing neutron stars. These observations opened up the era of gravitational wave astronomy, but also of gravitational wave cosmology, in the form of an independent derivation of the Hubble constant. They were equally important to prove false a plethora of modified gravity theories predicting gravitational wave propagation speed different from that of light. For a continued and improved testing of general relativity, the precise description of compact binary dynamics, not only in the final coalescence phase but also earlier, when precessional effects dominate, are required. We report on the derivation of the full secular dynamics for compact binaries, valid over the precessional time-scale, in the form of an autonomous closed system of differential equations for the set of spin angles and periastron. The system can be applied for mapping the parameter space for the occurrence of the spin flip-flop effect and for more accurately analyzing the spin-flip effect, which could explain the formation of X-shaped radio galaxies.

  5. Accuracy of Binary Black Hole waveforms for Advanced LIGO searches

    Science.gov (United States)

    Kumar, Prayush; Barkett, Kevin; Bhagwat, Swetha; Chu, Tony; Fong, Heather; Brown, Duncan; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela

    2015-04-01

    Coalescing binaries of compact objects are flagship sources for the first direct detection of gravitational waves with LIGO-Virgo observatories. Matched-filtering based detection searches aimed at binaries of black holes will use aligned spin waveforms as filters, and their efficiency hinges on the accuracy of the underlying waveform models. A number of gravitational waveform models are available in literature, e.g. the Effective-One-Body, Phenomenological, and traditional post-Newtonian ones. While Numerical Relativity (NR) simulations provide for the most accurate modeling of gravitational radiation from compact binaries, their computational cost limits their application in large scale searches. In this talk we assess the accuracy of waveform models in two regions of parameter space, which have only been explored cursorily in the past: the high mass-ratio regime as well as the comparable mass-ratio + high spin regime.s Using the SpEC code, six q = 7 simulations with aligned-spins and lasting 60 orbits, and tens of q ∈ [1,3] simulations with high black hole spins were performed. We use them to study the accuracy and intrinsic parameter biases of different waveform families, and assess their viability for Advanced LIGO searches.

  6. Dixie Valley Bottoming Binary Unit

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Dale [Terra-Gen Sierra Holdings, LLC, Reno, NV (United States)

    2014-12-21

    This binary plant is the first air cooled, high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a hydrocarbon based cycle are not necessary. The unit is largely modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. The Air Cooled Condensers (ACC), equipment piping, and Balance of Plant (BOP) piping were constructed at site. This project further demonstrates the technical feasibility of using low temperature brine for geothermal power utilization. The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

  7. The symbiotics as binary stars

    International Nuclear Information System (INIS)

    Plavec, M.J.

    1982-01-01

    The author envisages at least three models that can give a symbiotic object: He has called them, respectively, the PN symbiotic, the Algol symbiotic, and the novalike symbiotic. Their properties are briefly discussed. The most promising model is one of a binary system in the second stage of mass transfer, actually at the beginning of it: The cool component is a red giant ascending the asymptotic branch, expanding but not yet filling its critical lobe. The hot star is a subdwarf located in the same region of the Hertzsprung-Russell diagram as the central stars of planetary nebulae. It may be closely related to them, or it may be a helium star, actually a remnant of an Algol primary which underwent the first stage of mass transfer. In these cases, accretion on this star may not play a significant role (PN symbiotic). Perhaps more often, the subdwarf is a ''rejuvenated'' degenerate dwarf whose nuclear burning shells were ignited and are maintained by accretion of material coming from the red giant in the form of a stellar wind. Eruptions are often inevitable: this is the novalike symbiotic. A third alternative is a system in the first stage of mass transfer, where the photons needed for ionization of the nebula come from an accretion disk surrounding a main sequence star: an Algol symbiotic. In spite of considerable observational effort, the symbiotics are known so poorly that it is hard to decide between the models, or even decide if all three can actually exist. (Auth.)

  8. Binary nucleation kinetics. III. Transient behavior and time lags

    International Nuclear Information System (INIS)

    Wyslouzil, B.E.; Wilemski, G.

    1996-01-01

    Transient binary nucleation is more complex than unary because of the bidimensionality of the cluster formation kinetics. To investigate this problem qualitatively and quantitatively, we numerically solved the birth-death equations for vapor-to-liquid phase transitions. Our previous work showed that the customary saddle point and growth path approximations are almost always valid in steady state gas phase nucleation and only fail if the nucleated solution phase is significantly nonideal. Now, we demonstrate that in its early transient stages, binary nucleation rarely, if ever, occurs via the saddle point. This affects not only the number of particles forming but their composition and may be important for nucleation in glasses and other condensed mixtures for which time scales are very long. Before reaching the state of saddle point nucleation, most binary systems pass through a temporary stage in which the region of maximum flux extends over a ridge on the free energy surface. When ridge crossing nucleation is the steady state solution, it thus arises quite naturally as an arrested intermediate state that normally occurs in the development of saddle point nucleation. While the time dependent and steady state distributions of the fluxes and concentrations for each binary system are strongly influenced by the gas composition and species impingement rates, the ratio of nonequilibrium to equilibrium concentrations has a quasiuniversal behavior that is determined primarily by the thermodynamic properties of the liquid mixture. To test our quantitive results of the transient behavior, we directly calculated the time lag for the saddle point flux and compared it with the available analytical predictions. Although the analytical results overestimate the time lag by factors of 1.2-5, they should be adequate for purposes of planning experiments. We also found that the behavior of the saddle point time lag can indicate when steady state ridge crossing nucleation will occur

  9. Potential assessment of using fly ash as a binding agent for stabilization and solidification of dredged material; Potentialbedoemning av flygaskor som bindemedelskomponent foer stabilisering och solidifiering (s/s) av muddermassor

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelmsson, Anna; Holm, Goeran; Lagerlund, Johan; Maijala, Aino; Macsik, Josef

    2010-04-15

    Over the next few years, about 200 000-800 000 m3 of contaminated sediments, with a muddy, slimy texture, high water ratio and low strength, shall be dredged annually in the development of ports and maintenance dredging of navigable waterways. Dumping at sea is limited since the dredged materials are contaminated. Land disposal requires transports and land area and is thus high in costs. In the construction of new port areas, large volumes of crushed rock, etc. are normally used as construction filling materials. These materials can be replaced by stabilised and solidified dredged materials, with modified geotechnical properties. The method of stabilising/solidifying (s/s) contaminated dredged materials has been used internationally for a long period of time, and, in more recent years, also in the Nordic countries. In Sweden, for instance, the Port of Gaevle and the Port of Oxeloesund have received permissions to reuse s/s-treated contaminated dredged materials in the port structures. Reuse of the stabilised/solidified masses in a geotechnical structure is supported by the new Framework Directive (2008/98/EC) on waste where great emphasis is placed on recycling. Within the project, fly ashes were inventoried with respect to suitability and availability. Five fly ashes, both individual fly ashes and mixtures of different fly ashes, were investigated in the laboratory as a binder component in a binder mix consisting of 50% cement, 20% Merit 5000 and 30% fly ash. Sediment from the Port of Gaevle were stabilised with a binder mixture amount of 150 kg/m3. Produced samples were examined in terms of strength, permeability and leaching. An assessment of the fly ashes' potential was performed based on technological, environmental and economical aspects, as well as market demand and the acceptance of stabilised and solidified dredged materials as construction material. The results show that fly ash, together in a binder mixture with construction cement and slag cement

  10. Pulsars in binary systems: probing binary stellar evolution and general relativity.

    Science.gov (United States)

    Stairs, Ingrid H

    2004-04-23

    Radio pulsars in binary orbits often have short millisecond spin periods as a result of mass transfer from their companion stars. They therefore act as very precise, stable, moving clocks that allow us to investigate a large set of otherwise inaccessible astrophysical problems. The orbital parameters derived from high-precision binary pulsar timing provide constraints on binary evolution, characteristics of the binary pulsar population, and the masses of neutron stars with different mass-transfer histories. These binary systems also test gravitational theories, setting strong limits on deviations from general relativity. Surveys for new pulsars yield new binary systems that increase our understanding of all these fields and may open up whole new areas of physics, as most spectacularly evidenced by the recent discovery of an extremely relativistic double-pulsar system.

  11. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    International Nuclear Information System (INIS)

    Haghighipour, Nader; Kaltenegger, Lisa

    2013-01-01

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results

  12. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Haghighipour, Nader [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Kaltenegger, Lisa [MPIA, Koenigstuhl 17, Heidelberg, D-69117 (Germany)

    2013-11-10

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.

  13. General simulation algorithm for autocorrelated binary processes.

    Science.gov (United States)

    Serinaldi, Francesco; Lombardo, Federico

    2017-02-01

    The apparent ubiquity of binary random processes in physics and many other fields has attracted considerable attention from the modeling community. However, generation of binary sequences with prescribed autocorrelation is a challenging task owing to the discrete nature of the marginal distributions, which makes the application of classical spectral techniques problematic. We show that such methods can effectively be used if we focus on the parent continuous process of beta distributed transition probabilities rather than on the target binary process. This change of paradigm results in a simulation procedure effectively embedding a spectrum-based iterative amplitude-adjusted Fourier transform method devised for continuous processes. The proposed algorithm is fully general, requires minimal assumptions, and can easily simulate binary signals with power-law and exponentially decaying autocorrelation functions corresponding, for instance, to Hurst-Kolmogorov and Markov processes. An application to rainfall intermittency shows that the proposed algorithm can also simulate surrogate data preserving the empirical autocorrelation.

  14. General simulation algorithm for autocorrelated binary processes

    Science.gov (United States)

    Serinaldi, Francesco; Lombardo, Federico

    2017-02-01

    The apparent ubiquity of binary random processes in physics and many other fields has attracted considerable attention from the modeling community. However, generation of binary sequences with prescribed autocorrelation is a challenging task owing to the discrete nature of the marginal distributions, which makes the application of classical spectral techniques problematic. We show that such methods can effectively be used if we focus on the parent continuous process of beta distributed transition probabilities rather than on the target binary process. This change of paradigm results in a simulation procedure effectively embedding a spectrum-based iterative amplitude-adjusted Fourier transform method devised for continuous processes. The proposed algorithm is fully general, requires minimal assumptions, and can easily simulate binary signals with power-law and exponentially decaying autocorrelation functions corresponding, for instance, to Hurst-Kolmogorov and Markov processes. An application to rainfall intermittency shows that the proposed algorithm can also simulate surrogate data preserving the empirical autocorrelation.

  15. Observations of new Wolf-Rayet binaries

    International Nuclear Information System (INIS)

    Niemela, V.S.

    1982-01-01

    The author reports here preliminary results of spectrographic observations for three southern WR stars, whose binary nature had not been previously verified: HDE 320102, CD -45 0 4482, HD 62910. The observations were carried out at the Cerro Tololo Inter-American Observatory, Chile, mostly with the Cassegrain spectrograph with IT attached to the 1-m reflector. These spectrograms were secured on Kodak IIIaJ emulsion, and have a dispersion of 45 A/mm. The results suggest that HDE 320102 must be a double-lined 05-7 + WN3 spectroscopic binary, that CD -45 0 4482 appears to be a single-lined spectroscopic binary and that HD 62910 may be a binary. (Auth.)

  16. Diffusion in ordered binary solid systems

    International Nuclear Information System (INIS)

    Stolwijk, N.A.

    1980-01-01

    This thesis contains contributions to the field of diffusion in ordered binary solid systems. An extensive experimental investigation of the self diffusion in CoGa is presented. The results of these diffusion measurements strongly suggest that a substantial part of the atomic migration is caused by a new type of defect. A quantitative description of the atomic displacements via this defect is given. Finally computer simulations are presented of diffusion and ordering in binary solid systems. (Auth.)

  17. An Introduction to Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Andersen, Henrik Reif

    1996-01-01

    This note is a short introduction to Binary Decision Diagrams (BDDs). It provides some background knowledge and describes the core algorithms. It is used in the course "C4340 Advanced Algorithms" at the Technical University of Denmark, autumn 1996.......This note is a short introduction to Binary Decision Diagrams (BDDs). It provides some background knowledge and describes the core algorithms. It is used in the course "C4340 Advanced Algorithms" at the Technical University of Denmark, autumn 1996....

  18. Fast optimization of binary clusters using a novel dynamic lattice searching method

    International Nuclear Information System (INIS)

    Wu, Xia; Cheng, Wen

    2014-01-01

    Global optimization of binary clusters has been a difficult task despite of much effort and many efficient methods. Directing toward two types of elements (i.e., homotop problem) in binary clusters, two classes of virtual dynamic lattices are constructed and a modified dynamic lattice searching (DLS) method, i.e., binary DLS (BDLS) method, is developed. However, it was found that the BDLS can only be utilized for the optimization of binary clusters with small sizes because homotop problem is hard to be solved without atomic exchange operation. Therefore, the iterated local search (ILS) method is adopted to solve homotop problem and an efficient method based on the BDLS method and ILS, named as BDLS-ILS, is presented for global optimization of binary clusters. In order to assess the efficiency of the proposed method, binary Lennard-Jones clusters with up to 100 atoms are investigated. Results show that the method is proved to be efficient. Furthermore, the BDLS-ILS method is also adopted to study the geometrical structures of (AuPd) 79 clusters with DFT-fit parameters of Gupta potential

  19. Asteroseismic effects in close binary stars

    Science.gov (United States)

    Springer, Ofer M.; Shaviv, Nir J.

    2013-09-01

    Turbulent processes in the convective envelopes of the Sun and stars have been shown to be a source of internal acoustic excitations. In single stars, acoustic waves having frequencies below a certain cut-off frequency propagate nearly adiabatically and are effectively trapped below the photosphere where they are internally reflected. This reflection essentially occurs where the local wavelength becomes comparable to the pressure scale height. In close binary stars, the sound speed is a constant on equipotentials, while the pressure scale height, which depends on the local effective gravity, varies on equipotentials and may be much greater near the inner Lagrangian point (L1). As a result, waves reaching the vicinity of L1 may propagate unimpeded into low-density regions, where they tend to dissipate quickly due to non-linear and radiative effects. We study the three-dimensional propagation and enhanced damping of such waves inside a set of close binary stellar models using a WKB approximation of the acoustic field. We find that these waves can have much higher damping rates in close binaries, compared to their non-binary counterparts. We also find that the relative distribution of acoustic energy density at the visible surface of close binaries develops a ring-like feature at specific acoustic frequencies and binary separations.

  20. Structural classification and a binary structure model for superconductors

    Institute of Scientific and Technical Information of China (English)

    Dong Cheng

    2006-01-01

    Based on structural and bonding features, a new classification scheme of superconductors is proposed to classify conductors can be partitioned into two parts, a superconducting active component and a supplementary component.Partially metallic covalent bonding is found to be a common feature in all superconducting active components, and the electron states of the atoms in the active components usually make a dominant contribution to the energy band near the Fermi surface. Possible directions to explore new superconductors are discussed based on the structural classification and the binary structure model.

  1. Using binary statistics in Taurus-Auriga to distinguish between brown dwarf formation processes

    Science.gov (United States)

    Marks, M.; Martín, E. L.; Béjar, V. J. S.; Lodieu, N.; Kroupa, P.; Manjavacas, E.; Thies, I.; Rebolo López, R.; Velasco, S.

    2017-08-01

    Context. One of the key questions of the star formation problem is whether brown dwarfs (BDs) form in the manner of stars directly from the gravitational collapse of a molecular cloud core (star-like) or whether BDs and some very low-mass stars (VLMSs) constitute a separate population that forms alongside stars comparable to the population of planets, for example through circumstellar disk (peripheral) fragmentation. Aims: For young stars in Taurus-Auriga the binary fraction has been shown to be large with little dependence on primary mass above ≈ 0.2 M⊙, while for BDs the binary fraction is computations. A small amount of dynamical processing of the stellar component was accounted for as appropriate for the low-density Taurus-Auriga embedded clusters. Results: The binary fraction declines strongly in the transition region between star-like and peripheral formation, exhibiting characteristic features. The location of these features and the steepness of this trend depend on the mass limits for star-like and peripheral formation. Such a trend might be unique to low density regions, such as Taurus, which host binary populations that are largely unprocessed dynamically in which the binary fraction is large for stars down to M-dwarfs and small for BDs. Conclusions: The existence of a strong decline in the binary fraction - primary mass diagram will become verifiable in future surveys on BD and VLMS binarity in the Taurus-Auriga star-forming region. The binary fraction - primary mass diagram is a diagnostic of the (non-)continuity of star formation along the mass scale, the separateness of the stellar and BD populations, and the dominant formation channel for BDs and BD binaries in regions of low stellar density hosting dynamically unprocessed populations.

  2. R package to estimate intracluster correlation coefficient with confidence interval for binary data.

    Science.gov (United States)

    Chakraborty, Hrishikesh; Hossain, Akhtar

    2018-03-01

    The Intracluster Correlation Coefficient (ICC) is a major parameter of interest in cluster randomized trials that measures the degree to which responses within the same cluster are correlated. There are several types of ICC estimators and its confidence intervals (CI) suggested in the literature for binary data. Studies have compared relative weaknesses and advantages of ICC estimators as well as its CI for binary data and suggested situations where one is advantageous in practical research. The commonly used statistical computing systems currently facilitate estimation of only a very few variants of ICC and its CI. To address the limitations of current statistical packages, we developed an R package, ICCbin, to facilitate estimating ICC and its CI for binary responses using different methods. The ICCbin package is designed to provide estimates of ICC in 16 different ways including analysis of variance methods, moments based estimation, direct probabilistic methods, correlation based estimation, and resampling method. CI of ICC is estimated using 5 different methods. It also generates cluster binary data using exchangeable correlation structure. ICCbin package provides two functions for users. The function rcbin() generates cluster binary data and the function iccbin() estimates ICC and it's CI. The users can choose appropriate ICC and its CI estimate from the wide selection of estimates from the outputs. The R package ICCbin presents very flexible and easy to use ways to generate cluster binary data and to estimate ICC and it's CI for binary response using different methods. The package ICCbin is freely available for use with R from the CRAN repository (https://cran.r-project.org/package=ICCbin). We believe that this package can be a very useful tool for researchers to design cluster randomized trials with binary outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Origin of very-short orbital-period binary systems

    International Nuclear Information System (INIS)

    Miyaji, S.

    1983-01-01

    Recent observations of four close binaries have established that there is a group of very-short orbital-period (VSOP) binaries whose orbital periods are less than 60 minutes. The VSOP binaries consist of both X-ray close binaries and cataclysmic variables. Their orbital periods are too short to have a main-sequence companion. However, four binaries, none of which belongs to any globular cluster, are too abundant to be explained by the capturing mechanism of a white dwarf. Therefore it seemed to be worthwhile to present an evolutionary scenario from an original binary system which can be applied for all VSOP binaries. (Auth.)

  4. Coatings for directional eutectics

    Science.gov (United States)

    Rairden, J. R.; Jackson, M. R.

    1976-01-01

    Coatings developed to provide oxidation protection for the directionally-solidified eutectic alloy NiTaC-B (4.4 weight percent Cr) were evaluated. Of seven Co-, Fe- and Ni-base coatings that were initially investigated, best resistance to cyclic oxidation was demonstrated by duplex coatings fabricated by depositing a layer of NiCrAl(Y) by vacuum evaporation from an electron beam source followed by deposition of an Al overlayer using the pack cementation process. It was found that addition of carbon to the coating alloy substantially eliminated the problem of fiber denudation in TaC-type eutectic alloys. Burner rig cycled NiTaC-B samples coated with Ni-20Cr-5Al-0.1C-0.1Y+Al and rupture-tested at 1100 deg C performed as well as or better than uncoated, vacuum cycled and air-tested NiTaC-13; however, a slight degradation with respect to uncoated material was noted in air-stress rupture tests at 870 deg C for both cycled and uncycled samples.

  5. Effect of permeable flow on cyclic layering in solidifying magma bodies: Insights from an analog experiment of diffusion-precipitation systems

    Science.gov (United States)

    Toramaru, A.; Yamauchi, S.

    2012-04-01

    Characteristic structures such as rhythmic layering, cress cumulate, cross bedding, perpendicular feldspar rock etc, are commonly observed in layered intrusion or shallow magmatic intrusions. These structures result from complex processes including thermal and compositional diffusions, crystallization, crystal settling, convection and interaction among three phases (crystals, bubble, melt). In order to understand how the differentiation proceeds in solidifying magma bodies from each characteristic structure together with chemical signatures, it is necessary to evaluate the relative importance among these elemental processes on structures. As an attempt to evaluate the effect of advection on a diffusion-related structure, we carried out an analog experiment of Liesegang system using lead-iodide (PbI2) crystallization in agar media which have been normally used to prohibit convection. In the ordinary Liesegang band formation experiments including only diffusion and crystallization kinetics without any advection and convection, the precipitation bands develop with regular spacing following a geometric progression due to two-component diffusion and reaction with supersaturation. This type of banding structure has been advocated as the same type of cyclic layering or vesicle layering (a sort of rhythmic layering) in dykes or sills. In order to see the effect of one-directional advection on Liesegang band, we apply the electric field (5 V to 25 V for a distance 15 cm) along the concentration gradient in agar media, thereby counteracting flows of lead anion Pb2+ and iodide ion I- are driven at constant velocities. The flows of anions and ions are equivalent to the permeable flows in porous media of crystal mush. The resultant precipitation structures exhibit very curious banding structure in which band spacings do not change with distance, are nearly constant and quite narrow, depending on the voltage, unlike those in ordinary Liesegang bands in which band spacings

  6. Binaries and triples among asteroid pairs

    Science.gov (United States)

    Pravec, Petr; Scheirich, Peter; Kušnirák, Peter; Hornoch, Kamil; Galád, Adrián

    2015-08-01

    Despite major achievements obtained during the past two decades, our knowledge of the population and properties of small binary and multiple asteroid systems is still far from advanced. There is a numerous indirect evidence for that most small asteroid systems were formed by rotational fission of cohesionless parent asteroids that were spun up to the critical frequency presumably by YORP, but details of the process are lacking. Furthermore, as we proceed with observations of more and more binary and paired asteroids, we reveal new facts that substantially refine and sometimes change our understanding of the asteroid systems. One significant new finding we have recently obtained is that primaries of many asteroid pairs are actually binary or triple systems. The first such case found is (3749) Balam (Vokrouhlický, ApJL 706, L37, 2009). We have found 9 more binary systems among asteroid pairs within our ongoing NEOSource photometric project since October 2012. They are (6369) 1983 UC, (8306) Shoko, (9783) Tensho-kan, (10123) Fideoja, (21436) Chaoyichi, (43008) 1999 UD31, (44620) 1999 RS43, (46829) 1998 OS14 and (80218) 1999 VO123. We will review their characteristics. These paired binaries as we call them are mostly similar to binaries in the general ("background") population (of unpaired asteroids), but there are a few trends. The paired binaries tend to have larger secondaries with D_2/D_1 = 0.3 to 0.5 and they also tend to be wider systems with 8 of the 10 having orbital periods between 30 and 81 hours, than average among binaries in the general population. There may be also a larger fraction of triples; (3749) Balam is a confirmed triple, having a larger close and a smaller distant satellite, and (8306) Shoko and (10123) Fideoja are suspect triples as they show additional rotational lightcurve components with periods of 61 and 38.8 h that differ from the orbital period of 36.2 and 56.5 h, respectively. The unbound secondaries tend to be of the same size or

  7. Close-binary central stars of planetary nebulae

    International Nuclear Information System (INIS)

    Bond, H.E.; Grauer, A.D.

    1987-01-01

    Recent observations of PN central stars identified as binary systems are reviewed. The theoretical significance of binary central stars is discussed, and the characteristics of UU Sge, V 477 Lyr, MT Ser, LSS 2018, VW Pyx, and the central star of HFG 1 are briefly summarized. All of these binaries are shown to have periods less than 1 day, and it is estimated that about 10 percent of all binary central stars are close binaries. 27 references

  8. HST Observations of Astrophysically Important Visual Binaries

    Science.gov (United States)

    Bond, Howard

    2015-10-01

    We propose to continue our long-term program of astrometry of close visual binaries, with the primary goal of determining purely dynamical masses for 3 important main-sequence stars and 9 white dwarfs (WDs). A secondary aim is to set limits on third bodies in the systems down to planetary mass. Three of our targets are naked-eye stars with much fainter companions that are extremely difficult to image from the ground. Our other 2 targets are double WDs, whose small separations and faintness likewise make them difficult to measure using ground-based techniques. Observations have been completed for a 3rd double WD.The bright stars, to be imaged with WFC3, are: (1) Procyon (P = 40.83 yr), containing a bright F star and a much fainter WD companion. With the continued monitoring proposed here, we will obtain masses to an accuracy of better than 1%, providing a testbed for theories of both Sun-like stars and WDs. (2) Sirius (P = 50.14 yr), an A-type star also having a faint WD companion, Sirius B, the nearest and brightest of all WDs. (3) Mu Cas (P = 21.08 yr), a nearby metal-deficient G dwarf for which accurate masses will lead to the stars' helium contents, with cosmological implications. The faint double WDs, to be observed with FGS, are: (1) G 107-70 (P = 18.84 yr), and (2) WD 1818+126 (P = 12.19 yr). Our astrometry of these systems will add 4 accurate masses to the handful of WD masses that are directly known from dynamical measurements. The FGS measurements will also provide precise parallaxes for the systems, a necessary ingredient in the mass determinations.

  9. Enhanced photovoltaic performance and long-term stability of dye-sensitized solar cells by incorporating SiO{sub 2} nanoparticles in binary ionic liquid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hsin-Fang; Wu, Jhih-Lin; Hsu, Po-Ya [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Tung, Yung-Liang [Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 30013, Taiwan, ROC (China); Ouyang, Fan-Yi [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Kai, Ji-Jung, E-mail: jjkai@ess.nthu.edu.tw [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2013-02-01

    Hydrophilic SiO{sub 2} nanoparticles in a binary ionic liquid (bi-IL) consisting of 1-propyl-3-methylimidazolium iodide (PMII) and 1-ethyl-3-methyl-imidazolium dicyanimide (EMIDCA) facilitated electron transfer and solidified the electrolyte for a dye-sensitized solar cell (DSC). We investigated the dependence of charge transport and photovoltaic performance on the composition of bi-IL electrolytes with varied ratio of SiO{sub 2} nanoparticles. The electrochemical impedance spectra revealed a decreased resistance to charge transfer at the Pt counter electrode (R{sub ct1}) when SiO{sub 2} (up to 2.0 wt.%) was added, improving the photovoltaic parameters. The DSC based on a TiO{sub 2} nanocrystalline film (thickness 14.2 μm) with a composite ionic gel electrolyte of EMIDCA/PMII bi-IL (33 vol.% of EMIDCA) incorporating SiO{sub 2} (2 wt.%) exhibited a power conversion efficiency of 5.28% under simulated solar illumination (AM 1.5 G, 100 mW cm{sup −} {sup 2}). The durability of DSC with a SiO{sub 2} solidified electrolyte was superior to that of a liquid one, exhibiting good stability at 60 °C in darkness during an accelerated test for 1000 h. - Highlights: ► SiO{sub 2} nanoparticles were introduced in a binary ionic liquid electrolyte. ► Effect of various ratios of SiO{sub 2} nanoparticles in gel electrolytes was studied. ► Mechanism of charge transfer with addition of SiO{sub 2} nanoparticles was discussed. ► An enhanced solar to electric energy conversion efficiency of 5.28% was achieved. ► Thermal stability of a quasi-solid state dye-sensitized solar cell was improved.

  10. Detecting gravitational waves from precessing binaries of spinning compact objects: Adiabatic limit

    International Nuclear Information System (INIS)

    Buonanno, Alessandra; Chen Yanbei; Vallisneri, Michele

    2003-01-01

    Black-hole (BH) binaries with single-BH masses m=(5-20)M · , moving on quasicircular orbits, are among the most promising sources for first-generation ground-based gravitational-wave (GW) detectors. Until now, the development of data-analysis techniques to detect GWs from these sources has been focused mostly on nonspinning BHs. The data-analysis problem for the spinning case is complicated by the necessity to model the precession-induced modulations of the GW signal, and by the large number of parameters needed to characterize the system, including the initial directions of the spins, and the position and orientation of the binary with respect to the GW detector. In this paper we consider binaries of maximally spinning BHs, and we work in the adiabatic-inspiral regime to build families of modulated detection templates that (i) are functions of very few physical and phenomenological parameters, (ii) model remarkably well the dynamical and precessional effects on the GW signal, with fitting factors on average > or approx. 0.97, (iii) but, however, might require increasing the detection thresholds, offsetting at least partially the gains in the fitting factors. Our detection-template families are quite promising also for the case of neutron-star-black-hole binaries, with fitting factors on average ≅0.93. For these binaries we also suggest (but do not test) a further template family, which would produce essentially exact waveforms written directly in terms of the physical spin parameters

  11. Analysis of a Rapidly Solidified High-Phosphorus Austenitic Steel Containing an Amorphous Phase.

    Science.gov (United States)

    1981-12-01

    electrodeposited nickel by a combination of Jet electro- polishing and ion-beam milling. Specimens were observed in a Vacuum Generators HB-5 scanning...the cell walls in these powders is one of suppressed crystal growth rather than nucleation , since the glass is formed in direct contact with the...Cohen, this Symposium. 5. T. F. Kelly, Ph.D. Thesis , MIT, February 1982. 6. C. V. Thompson, A. L. Greer, and A. J. Drehman, Proc. 4th Intl. Conf

  12. Directed line liquids

    International Nuclear Information System (INIS)

    Kamien, R.D.

    1992-01-01

    This thesis is devoted to the study of ensembles of dense directed lines. These lines are principally to be thought of as polymers, though they also have the morphology of flux lines in high temperature superconductors, strings of colloidal spheres in electrorheological fluids and the world lines of quantum mechanical bosons. The authors discuss how directed polymer melts, string-like formations in electrorheological and ferro-fluids, flux lines in high temperature superconductors and the world lines of quantum mechanical bosons all share similar descriptions. They study a continuous transition in all of these systems, and then study the critical mixing properties of binary mixtures of directed polymers through the renormalization group. They predict the exponents for a directed polymer blend consolute point and a novel two-phase superfluid liquid-gas critical point

  13. Do stellar clusters form fewer binaries? Using moderate separation binaries to distinguish between nature and nurture

    Science.gov (United States)

    Reiter, Megan

    2017-08-01

    Fewer wide-separation binaries are found in dense stellar clusters than in looser stellar associations. It is therefore unclear whether feedback in clusters prevents the formation of multiple systems or dynamical interactions destroy them. Measuring the prevalence of close, bound binary systems provide a key test to distinguish between these possibilities. Systems with separations of 10-50 AU will survive interactions in the cluster environment, and therefore are more representative of the natal population of multiple systems. By fitting a double-star PSF, we will identify visual binaries in the Orion Nebula with separations as small as 0.03. At the distance of Orion, this corresponds to a physical separation of 12 AU, effectively closing the observational gap in the binary separation distribution left between known visual and spectroscopic binaries (>65 AU or PhD thesis.

  14. Serial binary interval ratios improve rhythm reproduction.

    Science.gov (United States)

    Wu, Xiang; Westanmo, Anders; Zhou, Liang; Pan, Junhao

    2013-01-01

    Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8), non-binary integer (1:3:5:6), and non-integer (1:2.3:5.3:6.4) ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.

  15. Serial binary interval ratios improve rhythm reproduction

    Directory of Open Access Journals (Sweden)

    Xiang eWu

    2013-08-01

    Full Text Available Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8, non-binary integer (1:3:5:6, and non-integer (1:2.3:5.3:6.4 ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.

  16. Beyond binaries : a way forward for comparativeeducation

    Directory of Open Access Journals (Sweden)

    Marianne Larsen

    2012-09-01

    Full Text Available Binary discourses shape and produce the stories we construct about the field of comparative education. In the first part of this article, I review a set of binary discourses that have characterized social science research since the Enlightenment, including: quantitative-qualitative, nomotheticidiographic, inductive-deductive, and practice-theory. We can think of each of these binaries at opposite ends of a set of spectrums. In the second section of the paper, I show some of the ways in which these binaries have influenced the ways that we write and talk about research within the field of comparative education. I refer to the notion of binary discourses and the productive capacity of these discourses to shape our field. I then outline some critiques of these binaries to demonstrate the inherent limitations of binary discourses, and why we need to move beyond binaries in our research, and in the histories about our field. Finally, I present some tentative conclusions on ways to get ourselves out of the trap of binary thinking.Los discursos binarios moldean y producen los argumentos que construimos sobre la disciplina de la Educación Comparada. En la primera parte de este artículo, analizo un conjunto de discursos binarios que han caracterizado la investigación en Ciencias Sociales desde la Ilustración, incluyendo la cuantitativa-cualitativa, nomotética-idiográfica, inductivadeductiva, y la práctica-teoría. Podemos pensar sobre cada uno de estos discursos binarios como argumentos en los polos de un conjunto de posibilidades. En la segunda sección del artículo, revelo algunos modos en los que estos discursos binarios han influenciado las formas a través de las cuales escribimos y analizamos la investigación en el ámbito de la Educación Comparada. Analizo la noción de discursos binarios y la capacidad productiva de estos discursos de impactar nuestra ciencia. Seguidamente expongo algunas críticas de estos discursos binarios con el

  17. The binary white dwarf LHS 3236

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Hugh C.; Dahn, Conard C.; Canzian, Blaise; Guetter, Harry H.; Levine, Stephen E.; Luginbuhl, Christian B.; Monet, Alice K. B.; Stone, Ronald C.; Subasavage, John P.; Tilleman, Trudy; Walker, Richard L. [US Naval Observatory, 10391 West Naval Observatory Road, Flagstaff, AZ 86001-8521 (United States); Dupuy, Trent J.; Liu, Michael C. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Hartkopf, William I. [US Naval Observatory, 3450 Massachusetts Avenue, N.W., Washington, DC 20392-5420 (United States); Ireland, Michael J. [Department of Physics and Astronomy, Macquarie University, New South Wales, NSW 2109 (Australia); Leggett, S. K., E-mail: hch@nofs.navy.mil [Gemini Observatory, 670 N. Aohoku Place, Hilo, HI 96720 (United States)

    2013-12-10

    The white dwarf LHS 3236 (WD1639+153) is shown to be a double-degenerate binary, with each component having a high mass. Astrometry at the U.S. Naval Observatory gives a parallax and distance of 30.86 ± 0.25 pc and a tangential velocity of 98 km s{sup –1}, and reveals binary orbital motion. The orbital parameters are determined from astrometry of the photocenter over more than three orbits of the 4.0 yr period. High-resolution imaging at the Keck Observatory resolves the pair with a separation of 31 and 124 mas at two epochs. Optical and near-IR photometry give a set of possible binary components. Consistency of all data indicates that the binary is a pair of DA stars with temperatures near 8000 and 7400 K and with masses of 0.93 and 0.91 M {sub ☉}; also possible is a DA primary and a helium DC secondary with temperatures near 8800 and 6000 K and with masses of 0.98 and 0.69 M {sub ☉}. In either case, the cooling ages of the stars are ∼3 Gyr and the total ages are <4 Gyr. The combined mass of the binary (1.66-1.84 M {sub ☉}) is well above the Chandrasekhar limit; however, the timescale for coalescence is long.

  18. Investigating Dark Energy with Black Hole Binaries

    International Nuclear Information System (INIS)

    Mersini-Houghton, Laura; Kelleher, Adam

    2009-01-01

    The accelerated expansion of the universe is ascribed to the existence of dark energy. Black holes accrete dark energy. The accretion induces a mass change proportional to the energy density and pressure of the background dark energy fluid. The time scale during which the mass of black holes changes considerably is long relative to the age of the universe, thus beyond detection possibilities. We propose to take advantage of the modified black hole masses for exploring the equation of state w[z] of dark energy, by investigating the evolution of supermassive black hole binaries on a dark energy background. Deriving the signatures of dark energy accretion on the evolution of binaries, we find that dark energy imprints on the emitted gravitational radiation and on the changes in the orbital radius of the binary can be within detection limits for certain supermassive black hole binaries. This talk describes how binaries can provide a useful tool in obtaining complementary information on the nature of dark energy.

  19. Star formation history: Modeling of visual binaries

    Science.gov (United States)

    Gebrehiwot, Y. M.; Tessema, S. B.; Malkov, O. Yu.; Kovaleva, D. A.; Sytov, A. Yu.; Tutukov, A. V.

    2018-05-01

    Most stars form in binary or multiple systems. Their evolution is defined by masses of components, orbital separation and eccentricity. In order to understand star formation and evolutionary processes, it is vital to find distributions of physical parameters of binaries. We have carried out Monte Carlo simulations in which we simulate different pairing scenarios: random pairing, primary-constrained pairing, split-core pairing, and total and primary pairing in order to get distributions of binaries over physical parameters at birth. Next, for comparison with observations, we account for stellar evolution and selection effects. Brightness, radius, temperature, and other parameters of components are assigned or calculated according to approximate relations for stars in different evolutionary stages (main-sequence stars, red giants, white dwarfs, relativistic objects). Evolutionary stage is defined as a function of system age and component masses. We compare our results with the observed IMF, binarity rate, and binary mass-ratio distributions for field visual binaries to find initial distributions and pairing scenarios that produce observed distributions.

  20. Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G; Allocca, A.; Almoubayyed, H.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Becsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, D J; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, J.G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S. S. Y.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, Laura; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Costa, C. F. Da Silva; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; De, S.; Debra, D.; Deelman, E; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.A.; Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M. Di; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Alvarez, M. Dovale; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.J.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, A.S.P.; Gonzalez, Idelmis G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.A.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kefelian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.E.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, S.W.; Kim, Y.M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kraemer, H.C.; Kringel, V.; Krishnan, B.; Krolak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang-Cheol, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, W. H.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lueck, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Hernandez, I. Magana; Magana-Sandoval, F.; Zertuche, L. Magana; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P.G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Gutierrez-Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Castro-Perez, J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosinska, D.; Ross, M. P.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, Perminder S; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A.; Shahriar, M. S.; Shao, L.P.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, António Dias da; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, R. J. E.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tapai, M.; Taracchini, A.; Taylor, J. A.; Taylor, W.R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; Van Beuzekom, Martin; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasuth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Vicere, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y. -F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, G.W.K.; Worden, J.; Wright, J.L.; Wu, D.S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrozny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.

    2017-01-01

    During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves

  1. EVOLUTION OF THE BINARY FRACTION IN DENSE STELLAR SYSTEMS

    International Nuclear Information System (INIS)

    Fregeau, John M.; Ivanova, Natalia; Rasio, Frederic A.

    2009-01-01

    Using our recently improved Monte Carlo evolution code, we study the evolution of the binary fraction in globular clusters. In agreement with previous N-body simulations, we find generally that the hard binary fraction in the core tends to increase with time over a range of initial cluster central densities for initial binary fractions ∼<90%. The dominant processes driving the evolution of the core binary fraction are mass segregation of binaries into the cluster core and preferential destruction of binaries there. On a global scale, these effects and the preferential tidal stripping of single stars tend to roughly balance, leading to overall cluster binary fractions that are roughly constant with time. Our findings suggest that the current hard binary fraction near the half-mass radius is a good indicator of the hard primordial binary fraction. However, the relationship between the true binary fraction and the fraction of main-sequence stars in binaries (which is typically what observers measure) is nonlinear and rather complicated. We also consider the importance of soft binaries, which not only modify the evolution of the binary fraction, but can also drastically change the evolution of the cluster as a whole. Finally, we briefly describe the recent addition of single and binary stellar evolution to our cluster evolution code.

  2. Electric melting furnace of solidifying radioactive waste by utilizing magnetic field and melting method

    International Nuclear Information System (INIS)

    Igarashi, Hiroshi.

    1990-01-01

    An electric melting furnace for solidification of radioactive wastes utilizing magnetic fields in accordance with the present invention comprises a plurality of electrodes supplying AC current to molten glass in a glass melting furnace and a plurality of magnetic poles for generating AC magnetic fields. Interactions between the current and the magnetic field, generated forces in the identical direction in view of time in the molten glass. That is, forces for promoting the flow of molten glass in the melting furnace are resulted due to the Fleming's left-hand rule. As a result, the following effects can be obtained. (1) The amount of heat ransferred from the molten glass to the starting material layer on the molten surface is increased to improve the melting performance. (2) For an identical melting performance, the size and the weight of the melting furnace can be reduced to decrease the amount of secondary wastes when the apparatus-life is exhausted. (3) Bottom deposits can be suppressed and prevented from settling and depositing to the reactor bottom by the promoted flow in the layer. (4) Further, the size of auxiliary electrodes for directly supplying electric current to heat the molten glass near the reactor bottom can be decreased. (I.S.)

  3. Hybrid Black-Hole Binary Initial Data

    Science.gov (United States)

    Mundim, Bruno C.; Kelly, Bernard J.; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela

    2010-01-01

    "Traditional black-hole binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al. [Class. Quantum Grav. 27:114005 (2010)], a new binary black-hole initial data with radiation contents derived in the post-Newtonian (PN) calculations was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesired features; the unphysical horizon mass loss and the large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features."

  4. Optimized reversible binary-coded decimal adders

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal; Glück, Robert

    2008-01-01

    Abstract Babu and Chowdhury [H.M.H. Babu, A.R. Chowdhury, Design of a compact reversible binary coded decimal adder circuit, Journal of Systems Architecture 52 (5) (2006) 272-282] recently proposed, in this journal, a reversible adder for binary-coded decimals. This paper corrects and optimizes...... their design. The optimized 1-decimal BCD full-adder, a 13 × 13 reversible logic circuit, is faster, and has lower circuit cost and less garbage bits. It can be used to build a fast reversible m-decimal BCD full-adder that has a delay of only m + 17 low-power reversible CMOS gates. For a 32-decimal (128-bit....... Keywords: Reversible logic circuit; Full-adder; Half-adder; Parallel adder; Binary-coded decimal; Application of reversible logic synthesis...

  5. A binary mixture operated heat pump

    International Nuclear Information System (INIS)

    Hihara, E.; Saito, T.

    1991-01-01

    This paper evaluates the performance of possible binary mixtures as working fluids in high- temperature heat pump applications. The binary mixtures, which are potential alternatives of fully halogenated hydrocarbons, include HCFC142b/HCFC22, HFC152a/HCFC22, HFC134a/HCFC22. The performance of the mixtures is estimated by a thermodynamic model and a practical model in which the heat transfer is considered in heat exchangers. One of the advantages of binary mixtures is a higher coefficient of performance, which is caused by the small temperature difference between the heat-sink/-source fluid and the refrigerant. The mixture HCFC142b/HCFC22 is promising from the stand point of thermodynamic performance

  6. TIDAL NOVAE IN COMPACT BINARY WHITE DWARFS

    International Nuclear Information System (INIS)

    Fuller, Jim; Lai Dong

    2012-01-01

    Compact binary white dwarfs (WDs) undergoing orbital decay due to gravitational radiation can experience significant tidal heating prior to merger. In these WDs, the dominant tidal effect involves the excitation of outgoing gravity waves in the inner stellar envelope and the dissipation of these waves in the outer envelope. As the binary orbit decays, the WDs are synchronized from outside in (with the envelope synchronized first, followed by the core). We examine the deposition of tidal heat in the envelope of a carbon-oxygen WD and study how such tidal heating affects the structure and evolution of the WD. We show that significant tidal heating can occur in the star's degenerate hydrogen layer. This layer heats up faster than it cools, triggering runaway nuclear fusion. Such 'tidal novae' may occur in all WD binaries containing a CO WD, at orbital periods between 5 minutes and 20 minutes, and precede the final merger by 10 5 -10 6 years.

  7. Compact binary hashing for music retrieval

    Science.gov (United States)

    Seo, Jin S.

    2014-03-01

    With the huge volume of music clips available for protection, browsing, and indexing, there is an increased attention to retrieve the information contents of the music archives. Music-similarity computation is an essential building block for browsing, retrieval, and indexing of digital music archives. In practice, as the number of songs available for searching and indexing is increased, so the storage cost in retrieval systems is becoming a serious problem. This paper deals with the storage problem by extending the supervector concept with the binary hashing. We utilize the similarity-preserving binary embedding in generating a hash code from the supervector of each music clip. Especially we compare the performance of the various binary hashing methods for music retrieval tasks on the widely-used genre dataset and the in-house singer dataset. Through the evaluation, we find an effective way of generating hash codes for music similarity estimation which improves the retrieval performance.

  8. Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy

    International Nuclear Information System (INIS)

    Matsuda, M.; Ii, S.; Kawamura, Y.; Ikuhara, Y.; Nishida, M.

    2005-01-01

    The long-period stacking order (LPSO) structures in rapidly solidified Mg 97 Zn 1 Y 2 alloy have been studied by conventional and high-resolution transmission electron microscopes (HRTEMs). There are four kinds of stacking sequences in the LPSO structures, i.e., 18R of ABABABCACACABCBCBC, 14H of ACBCBABABABCBC, 10H of ABACBCBCAB and 24R of ABABABABCACACACABCBCBCBC. The 18R structure is dominantly observed in the present study. The rest three are occasionally observed in places. The 10H and 24R structures are recently discovered. The lattice constants of 18R(1-bar 1-bar -bar 1-bar 1-bar -bar 2) 3 , 14H(2-bar -bar 1-bar 2-bar -bar 1-bar 1-bar -bar 1-bar 1-bar -bar 2-bar 1-bar -bar 2), 10H(1-bar 3-bar -bar 1-bar 1-bar -bar 3-bar 1-bar ) and 24R(1-bar 1-bar -bar 1-bar 1-bar -bar 1-bar 1-bar -bar 2) 3 structures are estimated to be a=0.320nm and c=4.678nm, a=0.325nm and c=3.694nm, a=0.325nm and c=2.603nm, a=0.322nm and c=6.181nm for the hexagonal structure, respectively

  9. Long-term reactive transport modelling of stabilized/solidified waste: from dynamic leaching tests to disposal scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Windt, Laurent de [Ecole des Mines de Paris, CG-Hydrodynamics and Reaction Group, 35 R. St-Honore, 77300 Fontainebleau (France)]. E-mail: laurent.dewindt@ensmp.fr; Badreddine, Rabia [INERIS, Direction des Risques Chroniques, Unite Dechets et Sites Pollues, Parc Technologique Alata BP 2, 60550 Verneuil-en-Halatte (France); Lagneau, Vincent [Ecole des Mines de Paris, CG-Hydrodynamics and Reaction Group, 35 R. St-Honore, 77300 Fontainebleau (France)

    2007-01-31

    Environmental impact assessment of hazardous waste disposal relies, among others, on standardized leaching tests characterized by a strong coupling between diffusion and chemical processes. In that respect, this study shows that reactive transport modelling is a useful tool to extrapolate laboratory results to site conditions characterized by lower solution/solid (L/S) ratios, site specific geometry, infiltration, etc. A cement solidified/stabilized (S/S) waste containing lead is investigated as a typical example. The reactive transport model developed in a previous study to simulate the initial state of the waste as well as laboratory batch and dynamic tests is first summarized. Using the same numerical code (HYTEC), this model is then integrated to a simplified waste disposal scenario assuming a defective cover and rain water infiltration. The coupled evolution of the S/S waste chemistry and the pollutant plume migration are modelled assessing the importance of the cracking state of the monolithic waste. The studied configurations correspond to an undamaged and fully sealed system, a few main fractures between undamaged monoliths and, finally, a dense crack-network in the monoliths. The model considers the potential effects of cracking, first the increase of rain water and carbon dioxide infiltration and, secondly, the increase of L/S ratio and reactive surfaces, using either explicit fracture representation or dual porosity approaches.

  10. High damping Al-Fe-Mo-Si/Zn-Al composites produced by rapidly solidified powder metallurgy process

    International Nuclear Information System (INIS)

    Li, P.Y.; Dai, S.L.; Chai, S.C.; Li, Y.R.

    2000-01-01

    The metallic materials commonly used in aircraft and aerospace fields, such as aluminum and titanium alloys, steels, etc., show extremely low damping capacity (usually of the order of or less than 10 -3 ). Thus, some problems related to vibration may emerge and influence the reliability, safety and life of airplanes, satellites, etc. It has been reported that almost two thirds of errors for rockets and satellites are related to vibration and noise. One effective way to solve these vibration-related problems is to adopt high damping metallic materials. Conventional high damping alloys exhibit damping capacity above 10 -2 , however, their densities are usually great than 5 x 10 3 kg m -3 , or their strengths are less than 200 MPa (for alloys based on dislocation damping), making them impossible to be applied to aircraft and aerospace areas. Recently, some low-density high-damping metal/metal composites based on aluminum and high damping alloys have been developed in Beijing Institute of Aeronautical Materials (BIAM) by the rapidly solidified power metallurgy process. This paper aims to report the properties of the composites based on a high temperature Al-Fe-Mo-Si alloy and a high damping Zn-Al alloy, and compare them with that of 2618-T61 alloy produced by the ingot metallurgy process

  11. Effect of Trace Ce on Microstructure and Properties of Near-rapidly Solidified Al-Zn-Mg-Cu Alloys

    Directory of Open Access Journals (Sweden)

    HUANG Gao-ren

    2018-03-01

    Full Text Available Through using DSC, XRD, SEM, EDS, static tensile test and other analysis methods of materials, the effect of trace Ce on microstructure and properties of near-rapidly solidified Al-Zn-Mg-Cu alloy was studied in order to find out rational homogenizing heat treatment process. The results show that Ce plays a role of refining grain and purifying molten alloy. The addition of Ce reduces dendritic spacing, refines the grain structures, eliminates dispersed shrinkage. The addition of Ce reduces the initial melting point of low melting eutectic phases by 3℃, under the same homogenization conditions. Trace Ce promotes the dissolution of low melting eutectic phases into the matrix, which improves the effect of homogenization. Homogenization temperatures of alloy A should be lower than 480℃and alloy B should be lower than 470℃; the addition of Ce decreases the homogenization temperature and improves the homogenization effect. The addition of Ce also greatly increases the tensile strength of the alloys.

  12. Mechanism of nucleation and growth of hydrogen porosity in solidifying A356 aluminum alloy: an analytical solution

    International Nuclear Information System (INIS)

    Li, K.-D.; Chang, Edward

    2004-01-01

    This study derives an analytical solution for the mechanism of nucleation and growth of hydrogen pore in the solidifying A356 aluminum alloy. A model of initial transient hydrogen redistribution in the growing dendritic grain is used to modify the lever rule for the mechanism of nucleation of pore. The model predicts the fraction of solid at nucleation, the temperature range of nucleation, the radius of hydrogen diffusion cell, and the supersaturation of hydrogen needed for nucleation. The role of solidus velocity in nucleation is explained. The parameters calculated from the model of nucleation are used for analyzing the mechanism of kinetic diffusion-controlled growth of pore, in which the mathematical transformations of variables are introduced. With the transformations, it is argued that the diffusion problem involving the liquid and solid phases during solidification could be treated as a classic problem of precipitation in the single-phase medium treated by Ham or Avrami. The analytical solution for the nucleation of pore is compared with the mechanism of macrosegregation. The predicted volume percent of porosity and radius of pore based on the mechanism of growth of pore is discussed with respect to the thermodynamic solution, the published experimental data, the numerical solutions, and the role of interdendritic fluid flow governed by Darcy's law

  13. Evolution of the microstructure and nanohardness of Ti-48 at.%Al alloy solidified under high pressure

    International Nuclear Information System (INIS)

    Wang, Hongwei; Zhu, Dongdong; Zou, Chunming; Wei, Zunjie

    2012-01-01

    Highlights: → The microstructure of Ti-48Al alloy changes under high pressure. → With increasing pressure, the amount of γ s phase decreases. → High pressure leads to the decreasing of lamellar spacing. → The nanohardness of lamellar structure increases with pressure. -- Abstract: In this work the microstructure and nanohardness of Ti-48 at.%Al alloy solidified under different pressures (normal pressure, 2 GPa, 4 GPa) were experimental investigated by using a tungsten-carbide six-anvil apparatus. The results indicate that high pressure does not change the phase constitution of Ti-48 at.%Al alloy. However, the microstructure changes under high pressure. With increasing pressure, the volume fraction of interdendritic γ (γ s ) phase decreases and Al concentration in lamellae increases. When the pressure is 4 GPa, there is only a little γ s embedded in lamellar structure. The volume fraction of γ s phase is approximately 17.0% for normal pressure, 8.73% for 2 GPa, 0.69% for 4 GPa. The lamellar spacings also decrease with pressure, which are 495 nm, 345 nm, 227 nm under normal pressure, 2 GPa, 4 GPa, respectively. The change in nanohardness was discussed based on the microstructural observations. It shows a certain increase of the nanohardness as the pressure increases from normal pressure to 4 GPa. When the pressure is 4 GPa, the nanohardness increases by 50.2% compared with that of normal pressure.

  14. Sensitive determination of cadmium using solidified floating organic drop microextraction-slotted quartz tube-flame atomic absorption spectroscopy.

    Science.gov (United States)

    Akkaya, Erhan; Chormey, Dotse Selali; Bakırdere, Sezgin

    2017-09-20

    In this study, solidified floating organic drop microextraction (SFODME) by 1-undecanol was combined with slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) for the determination of cadmium at trace levels. Formation of a complex with 4,4'-dimethyl-2,2'-bipyridine facilitated the extraction of cadmium from aqueous solutions. Several chemical variables were optimized in order to obtain high extraction outputs. Parameters such as concentration of the ligand, pH, and amount of buffer solution were optimized to enhance the formation of cadmium complex. The SFODME method was assisted by dispersion of extractor solvent into aqueous solutions using 2-propanol. Under the optimum extraction and instrumental conditions, the limit of detection and limit of quantitation values obtained for cadmium using the combined methods (SFODME-SQT-FAAS) were found to be 0.4 and 1.3 μg L -1 , respectively. Matrix effects on the method were also examined for tap water and wastewater, and spiked recovery results were found to be very satisfactory. Graphical Abstract SFODME-SQT-FAAS system for sensitive determination of cadmium.

  15. Effect of grain refiner on intermetallic phase formation in directional solidification of 6xxx series wrought Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sha, G.; O' Reilly, K.; Cantor, B. [Oxford Univ. (United Kingdom). Centre for Adv. Mat. and Composites; Hamerton, R.; Worth, J.

    2000-07-01

    The effect of a grain refiner on the formation of intermetallic phases in a directionally solidified (Bridgman grown) model 6xxx series wrought Al alloy has been investigated using X-ray diffractometry (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). A base alloy with and without Al-Ti-B grain refiner was directionally solidified in a Bridgman furnace at growth velocities in the range of 5-120 mm/min. In both cases, the Fe-containing intermetallic phases present were found to be mainly {alpha}-AlFeSi and {beta}-AlFeSi. However, in the alloy with grain refiner solidified at 5mm/min, Al{sub 13}Fe{sub 4} was also observed. Quantitative XRD results indicated that the addition of Al-Ti-B grain refiner has a strong influence on the relative quantities of intermetallic phases forming during solidification at different growth velocities, which was also confirmed by TEM observations. TEM observations also show that depending on where the {beta}-AlFeSi particles solidified e.g. grain boundaries or triple grain junctions, the size and morphology of the particles may change dramatically. TiB{sub 2} particles were observed to nucleate {beta}-AlFeSi at low and high growth velocities in the 6xxx series Al alloys. (orig.)

  16. Reconciliation with non-binary species trees.

    Science.gov (United States)

    Vernot, Benjamin; Stolzer, Maureen; Goldman, Aiton; Durand, Dannie

    2008-10-01

    Reconciliation extracts information from the topological incongruence between gene and species trees to infer duplications and losses in the history of a gene family. The inferred duplication-loss histories provide valuable information for a broad range of biological applications, including ortholog identification, estimating gene duplication times, and rooting and correcting gene trees. While reconciliation for binary trees is a tractable and well studied problem, there are no algorithms for reconciliation with non-binary species trees. Yet a striking proportion of species trees are non-binary. For example, 64% of branch points in the NCBI taxonomy have three or more children. When applied to non-binary species trees, current algorithms overestimate the number of duplications because they cannot distinguish between duplication and incomplete lineage sorting. We present the first algorithms for reconciling binary gene trees with non-binary species trees under a duplication-loss parsimony model. Our algorithms utilize an efficient mapping from gene to species trees to infer the minimum number of duplications in O(|V(G) | x (k(S) + h(S))) time, where |V(G)| is the number of nodes in the gene tree, h(S) is the height of the species tree and k(S) is the size of its largest polytomy. We present a dynamic programming algorithm which also minimizes the total number of losses. Although this algorithm is exponential in the size of the largest polytomy, it performs well in practice for polytomies with outdegree of 12 or less. We also present a heuristic which estimates the minimal number of losses in polynomial time. In empirical tests, this algorithm finds an optimal loss history 99% of the time. Our algorithms have been implemented in NOTUNG, a robust, production quality, tree-fitting program, which provides a graphical user interface for exploratory analysis and also supports automated, high-throughput analysis of large data sets.

  17. The influence of Si and V on the kinetics of phase transformation and microstructure of rapidly solidified Al-Fe-Zr alloys

    OpenAIRE

    Karpe B.; Kosec B.; Nagode A.; Bizjak M.

    2013-01-01

    The influence of Si and V on the precipitation kinetics of the rapidly solidified (RS) Al-Fe-Zr alloys is presented. Precipitation kinetics and microstructural development of RS Al-Fe-Zr alloys with Si or V addition have been investigated by the combination of four point electrical resistance measurement, optical microscopy, transmition electron microscopy (TEM) and scanning electron microscopy (SEM). For verification of the electrical resistivity measurement results differential scanni...

  18. Microlensing Binaries Discovered through High-magnification Channel

    DEFF Research Database (Denmark)

    Shin, I.-G.; Choi, J.-Y.; Park, S.-Y.

    2012-01-01

    Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of eight binary-lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010. The perturba......Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of eight binary-lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010...

  19. On the accuracy of Hipparcos using binary stars as a calibration tool

    Energy Technology Data Exchange (ETDEWEB)

    Docobo, J. A.; Andrade, M., E-mail: joseangel.docobo@usc.es, E-mail: manuel.andrade@usc.es [R. M. Aller Astronomical Observatory, University of Santiago de Compostela (USC), Santiago de Compostela E-15782, Galiza, P.O. Box 197 (Spain)

    2015-02-01

    Stellar binary systems, specifically those that present the most accurate available orbital elements, are a reliable tool to test the accuracy of astrometric observations. We selected all 35 binaries with these characteristics. Our objective is to provide standard uncertainties for the positions and parallaxes measured by Hipparcos relative to this trustworthy set, as well as to check supposed correlations between several parameters (measurement residuals, positions, magnitudes, and parallaxes). In addition, using the high-confidence subset of visual–spectroscopic binaries, we implemented a validation test of the Hipparcos trigonometric parallaxes of binary systems that allowed the evaluation of their reliability. Standard and non-standard statistical analysis techniques were applied in order to achieve well-founded conclusions. In particular, errors-in-variables models such as the total least-squares method were used to validate Hipparcos parallaxes by comparison with those obtained directly from the orbital elements. Previously, we executed Thompson's τ technique in order to detect suspected outliers in the data. Furthermore, several statistical hypothesis tests were carried out to verify if our results were statistically significant. A statistically significant trend indicating larger Hipparcos angular separations with respect to the reference values in 5.2 ± 1.4 mas was found at the 10{sup −8} significance level. Uncertainties in the polar coordinates θ and ρ of 1.°8 and 6.3 mas, respectively, were estimated for the Hipparcos observations of binary systems. We also verified that the parallaxes of binary systems measured in this mission are absolutely compatible with the set of orbital parallaxes obtained from the most accurate orbits at least at the 95% confidence level. This methodology allows us to better estimate the accuracy of Hipparcos observations of binary systems. Indeed, further application to the data collected by Gaia should yield a

  20. Binary Black Hole Mergers from Field Triples: Properties, Rates, and the Impact of Stellar Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Antonini, Fabio [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astrophysics, Northwestern University, Evanston, IL 60208 (United States); Toonen, Silvia [Astronomical Institute Anton Pannekoek, University of Amsterdam, P.O. Box 94249, 1090 GE, Amsterdam (Netherlands); Hamers, Adrian S. [Institute for Advanced Study, School of Natural Sciences, Einstein Drive, Princeton, NJ 08540 (United States)

    2017-06-01

    We consider the formation of binary black hole (BH) mergers through the evolution of field massive triple stars. In this scenario, favorable conditions for the inspiral of a BH binary are initiated by its gravitational interaction with a distant companion, rather than by a common-envelope phase invoked in standard binary evolution models. We use a code that follows self-consistently the evolution of massive triple stars, combining the secular triple dynamics (Lidov–Kozai cycles) with stellar evolution. After a BH triple is formed, its dynamical evolution is computed using either the orbit-averaged equations of motion, or a high-precision direct integrator for triples with weaker hierarchies for which the secular perturbation theory breaks down. Most BH mergers in our models are produced in the latter non-secular dynamical regime. We derive the properties of the merging binaries and compute a BH merger rate in the range (0.3–1.3) Gpc{sup −3} yr{sup −1}, or up to ≈2.5 Gpc{sup −3} yr{sup −1} if the BH orbital planes have initially random orientation. Finally, we show that BH mergers from the triple channel have significantly higher eccentricities than those formed through the evolution of massive binaries or in dense star clusters. Measured eccentricities could therefore be used to uniquely identify binary mergers formed through the evolution of triple stars. While our results suggest up to ≈10 detections per year with Advanced-LIGO, the high eccentricities could render the merging binaries harder to detect with planned space based interferometers such as LISA.