WorldWideScience

Sample records for directional thermal infrared

  1. Measurement of directional thermal infrared emissivity of vegetation and soils

    Energy Technology Data Exchange (ETDEWEB)

    Norman, J.M. [Wisconsin Univ., Madison, WI (United States). Dept. of Soil Science; Balick, L.K. [EG and G Energy Measurements, Inc., Las Vegas, NV (United States)

    1995-10-01

    A new method has been developed for measuring directional thermal emissivity as a function of view angle for plant canopies and soils using two infrared thermometers each sensitive to a different wavelength band. By calibrating the two infrared thermometers to 0.1C consistency, canopy directional emissivity can be estimated with typical errors less than 0.005 in the 8--14 um wavelength band, depending on clarity of the sky and corrections for CO{sub 2} absorption by the atmosphere. A theoretical justification for the method is developed along with an error analysis. Laboratory measurements were used to develop corrections for CO{sub 2}, absorption and a field calibration method is used to obtain the necessary 0.1C consistency for relatively low cost infrared thermometers. The emissivity of alfalfa (LAI=2.5) and corn (LAI=3.2) was near 0.995 and independent of view angle. Individual corn leaves had an emissivity of 0.97. A wheat (LAI=3.0) canopy had an emissivity of 0.985 at nadir and 0.975 at 75 degree view angle. The canopy emissivity values tend to be higher than values in the literature, and are useful for converting infrared thermometer measurements to kinetic temperature and interpreting satellite thermal observations.

  2. Study on thermal infrared emission directionality over crop canopies with TIR camera imagery

    Institute of Scientific and Technical Information of China (English)

    柳钦火; 顾行法; 李小文; 田国良; 余涛; F.Jacob; J.F.Hanocq; M.Friedl; A.H.Strahler

    2000-01-01

    In order to investigate directionality of thermal infrared emission from crop canopies, a wide-angle thermal video camera (INFRAMETRICS) equipped with an 80?FOV lens was mounted on a small aircraft and used to acquire thermal imagery along several different flight traces. Accordingly, multi-angle directional brightness temperatures were acquired at different view angles for individual pixel. The flight experiment was carried out from January 1997 to October 1997 over a 5 kmx5 km flat agricultural area, located near Avignon, southeastern France.This paper presents results from analyses performed using these data including instrument calibration, radiometric correction, atmospheric correction, temperature temporal adjustment, geometric matching and registration of images. Results are presented for different thermal infrared emission patterns of different surface types including bare soil, wheat, maize and sunflower at different growth stages.

  3. Study on thermal infrared emission directionality over crop canopies with TIR camera imagery

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to investigate directionality of thermal infrared emission from crop canopies,a wide-angle thermal video camera (INFRAMETRICS) equipped with an 80o FOV lens was mounted on a small aircraft and used to acquire thermal imagery along several different flight traces.Accordingly,multi-angle directional brightness temperatures were acquired at different view angles for individual pixel.The flight experiment was carried out from January 1997 to October 1997 over a 5 km×5 km flat agricultural area,located near Avignon,southeastern France.This paper presents results from analyses performed using these data including instrument calibration,radiometric correction,atmospheric correction,temperature temporal adjustment,geometric matching and registration of images.Results are presented for different thermal infrared emission patterns of different surface types including bare soil,wheat,maize and sunflower at different growth stages.

  4. Directional Characteristics of Thermal-Infrared Beaming from Atmosphereless Planetary Surfaces - A New Thermophysical Model

    CERN Document Server

    Rozitis, Ben

    2012-01-01

    We present a new rough-surface thermophysical model (Advanced Thermophysical Model or ATPM) that describes the observed directional thermal emission from any atmosphereless planetary surface. It explicitly incorporates partial shadowing, scattering of sunlight, selfheating and thermal-infrared beaming (re-radiation of absorbed sunlight back towards the Sun as a result of surface roughness). The model is verified by accurately reproducing ground-based directional thermal emission measurements of the lunar surface using surface properties that are consistent with the findings of the Apollo missions and roughness characterised by an RMS slope of ~32 degrees. By considering the wide range of potential asteroid surface properties, the model implies a beaming effect that cannot be described by a simple parameter or function. It is highly dependent on the illumination and viewing angles as well as surface thermal properties and is predominantly caused by macroscopic rather than microscopic roughness. Roughness alter...

  5. Thermal infrared remote sensing for riverscape analysis of water temperature heterogeneity: current research and future directions

    Science.gov (United States)

    Dugdale, S.; Hannah, D. M.; Malcolm, I.; Bergeron, N.; St-Hilaire, A.

    2016-12-01

    Climate change will increase summer water temperatures in northern latitude rivers. It is likely that this will have a negative impact on fish species such as salmonids, which are sensitive to elevated temperatures. Salmonids currently avoid heat stress by opportunistically using cool water zones that arise from the spatio-temporal mosaic of thermal habitats present within rivers. However, there is a general lack of information about the processes driving this thermal habitat heterogeneity or how these spatio-temporal patterns might vary under climate change. In this paper, we document how thermal infrared imaging has previously been used to better understand the processes driving river temperature patterns. We then identify key knowledge gaps that this technology can help to address in the future. First, we demonstrate how repeat thermal imagery has revealed the role of short-term hydrometeorological variability in influencing longitudinal river temperature patterns, showing that precipitation depth is strongly correlated with the degree of longitudinal temperature heterogeneity. Second, we document how thermal infrared imagery of a large watershed in Eastern Canada has shed new light on the landscape processes driving the spatial distribution of cool water patches, revealing that the distribution of cool patches is strongly linked to channel confinement, channel curvature and the proximity of dry tributary valleys. Finally, we detail gaps in current understanding of spatio-temporal patterns of river temperature heterogeneity. We explain how advances in unmanned aerial vehicle technology and deterministic temperature modelling will be combined to address these current limitations, shedding new light on the landscape processes driving geographical variability in patterns of river temperature heterogeneity. We then detail how such advances will help to identify rivers that will be resilient to future climatic warming, improving current and future strategies for

  6. Thermal infrared anomalies of several strong earthquakes.

    Science.gov (United States)

    Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.

  7. Infrared thermal imaging in connective tissue diseases.

    Science.gov (United States)

    Chojnowski, Marek

    2017-01-01

    Infrared thermal imaging (IRT) is a non-invasive, non-contact technique which allows one to measure and visualize infrared radiation. In medicine, thermal imaging has been used for more than 50 years in various clinical settings, including Raynaud's phenomenon and systemic sclerosis. Imaging and quantification of surface body temperature provides an indirect measure of the microcirculation's overall performance. As such, IRT is capable of confirming the diagnosis of Raynaud's phenomenon, and, with additional cold or heat challenge, of differentiating between the primary and secondary condition. In systemic sclerosis IRT has a potential role in assessing disease activity and monitoring treatment response. Despite certain limitations, thermal imaging can find a place in clinical practice, and with the introduction of small, low-cost infrared cameras, possibly become a part of routine rheumatological evaluation.

  8. Thermal infrared sensors theory, optimisation and practice

    CERN Document Server

    Budzier, Helmut

    2010-01-01

    The problems involved in designing optimal infrared (IR) measuring systems under given conditions are commensurately complex. The optical set-up and radiation conditions, the interaction between sensor and irradiation and the sensor itself, determine the operation of the sensor system. Simple calculations for solving these problems without any understanding of the causal relationships are not possible. Thermal Infrared Sensors offers a concise explanation of the basic physical and photometric fundamentals needed for the consideration of these interactions. It depicts the basics of

  9. Thermal infrared remote sensing sensors, methods, applications

    CERN Document Server

    Kuenzer, Claudia

    2013-01-01

    This book provides a comprehensive overview of the state of the art in the field of thermal infrared remote sensing. Temperature is one of the most important physical environmental variables monitored by earth observing remote sensing systems. Temperature ranges define the boundaries of habitats on our planet. Thermal hazards endanger our resources and well-being. In this book renowned international experts have contributed chapters on currently available thermal sensors as well as innovative plans for future missions. Further chapters discuss the underlying physics and image processing techni

  10. Thermal analysis of a linear infrared lamp

    Energy Technology Data Exchange (ETDEWEB)

    Nakos, J.T.

    1982-01-01

    A theoretical and experimental analysis of an infrared lamp is presented based on radiant heat transfer theory. The analysis is performed on a specific type of linear lamp which has a coiled tungsten filament surrounded by a fused quartz envelope. The purpose of the study was to model the lamp thermally, not electrically, to arrive at a better understanding of the operation of the lamp.

  11. Infrared microcalorimetric spectroscopy using uncooled thermal detectors

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, P.G. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy]|[Oak Ridge National Lab., TN (United States); Rajic, S.; Datskou, I.; Egert, C.M. [Oak Ridge National Lab., TN (United States)

    1997-10-01

    The authors have investigated a novel infrared microcalorimetric spectroscopy technique that can be used to detect the presence of trace amounts of target molecules. The chemical detection is accomplished by obtaining the infrared photothermal spectra of molecules absorbed on the surface of an uncooled thermal detector. Traditional gravimetric based chemical detectors (surface acoustic waves, quartz crystal microbalances) require highly selective coatings to achieve chemical specificity. In contrast, infrared microcalorimetric based detection requires only moderately specific coatings since the specificity is a consequence of the photothermal spectrum. They have obtained infrared photothermal spectra for trace concentrations of chemical analytes including diisopropyl methylphosphonate (DIMP), 2-mercaptoethanol and trinitrotoluene (TNT) over the wavelength region2.5 to 14.5 {micro}m. They found that in the wavelength region 2.5 to 14.5 {micro}m DIMP exhibits two strong photothermal peaks. The photothermal spectra of 2-mercaptoethanol and TNT exhibit a number of peaks in the wavelength region 2.5 to 14.5 {micro}m and the photothermal peaks for 2-mercaptoethanol are in excellent agreement with infrared absorption peaks present in its IR spectrum. The photothermal response of chemical detectors based on microcalorimetric spectroscopy has been found to vary reproducibly and sensitively as a consequence of adsorption of small number of molecules on a detector surface followed by photon irradiation and can be used for improved chemical characterization.

  12. Studies of planetary boundary layer by infrared thermal imagery

    Energy Technology Data Exchange (ETDEWEB)

    Albina, Bogdan; Dimitriu, Dan Gheorghe, E-mail: dimitriu@uaic.ro; Gurlui, Silviu Octavian, E-mail: dimitriu@uaic.ro [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi (Romania); Cazacu, Marius Mihai [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and Department of Physics, Gheorghe Asachi Technical University of Iasi, 59A Mangeron Blvd., 700 (Romania); Timofte, Adrian [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and National Meteorological Administration, Regional Forecast Center Bacau, 1 Cuza Voda Str., 60 (Romania)

    2014-11-24

    The IR camera is a relatively novel device for remote sensing of atmospheric thermal processes from the Planetary Boundary Layer (PBL) based on measurements of the infrared radiation. Infrared radiation is energy radiated by the motion of atoms and molecules on the surface of aerosols, when their temperature is more than absolute zero. The IR camera measures directly the intensity of radiation emitted by aerosols which is converted by an imaging sensor into an electric signal, resulting a thermal image. Every image pixel that corresponds to a specific radiance is pre-processed to identify the brightness temperature. The thermal infrared imaging radiometer used in this study, NicAir, is a precision radiometer developed by Prata et al. The device was calibrated for the temperature range of 270–320 K and using a calibration table along with image processing software, important information about variations in temperature can be extracted from acquired IR images. The PBL is the lowest layer of the troposphere where the atmosphere interacts with the ground surfaces. The importance of PBL lies in the fact that it provides a finite but varying volume in which pollutants can disperse. The aim of this paper is to analyze the PBL altitude and thickness variations over Iasi region using the IR imaging camera as well as its behavior from day to night and thermal processes occurring in PBL.

  13. Direct and inverse problems of infrared tomography

    DEFF Research Database (Denmark)

    Sizikov, Valery S.; Evseev, Vadim; Fateev, Alexander

    2016-01-01

    The problems of infrared tomography-direct (the modeling of measured functions) and inverse (the reconstruction of gaseous medium parameters)-are considered with a laboratory burner flame as an example of an application. The two measurement modes are used: active (ON) with an external IR source...

  14. Buildings Research using Infrared Imaging Radiometers with Laboratory Thermal Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Brent; Arasteh, Dariush

    1999-01-12

    Infrared thermal imagers are used at Lawrence Berkeley National Laboratory to study heat transfer through components of building thermal envelopes. Two thermal chambers maintain steady-state heat flow through test specimens under environmental conditions for winter heating design. Infrared thermography is used to map surface temperatures on the specimens' warm side. Features of the quantitative thermography process include use of external reference emitters, complex background corrections, and spatial location markers. Typical uncertainties in the data are {+-} 0.5 C and 3 mm. Temperature controlled and directly measured external reference emitters are used to correct data from each thermal image. Complex background corrections use arrays of values for background thermal radiation in calculating temperatures of self-viewing surfaces. Temperature results are used to validate computer programs that predict heat flow including Finite-Element Analysis (FEA) conduction simulations and conjugate Computational Fluid Dynamics (CFD) simulations. Results are also used to study natural convection surface heat transfer. Example data show the distribution of temperatures down the center line of an insulated window.

  15. Aeolian system dynamics derived from thermal infrared data

    Science.gov (United States)

    Scheidt, Stephen Paul

    Thermal infrared (TIR) remote-sensing and field-based observations were used to study aeolian systems, specifically sand transport pathways, dust emission sources and Saharan atmospheric dust. A method was developed for generating seamless and radiometrically accurate mosaics of thermal infrared data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument. Using a combination of high resolution thermal emission spectroscopy results of sand samples and mosaic satellite data, surface emissivity was derived to map surface composition, which led to improvement in the understanding of sand accumulation in the Gran Desierto of northern Sonora, Mexico. These methods were also used to map sand transport pathways in the Sahara Desert, where the interaction between sand saltation and dust emission sources was explored. The characteristics and dynamics of dust sources were studied at White Sands, NM and in the Sahara Desert. At White Sands, an application was developed for studying the response of dust sources to surface soil moisture based on the relationship between soil moisture, apparent thermal inertia and the erosion potential of dust sources. The dynamics of dust sources and the interaction with sand transport pathways were also studied, focusing on the Bodele Depression of Chad and large dust sources in Mali and Mauritania. A dust detection algorithm was developed using ASTER data, and the spectral emissivity of observed atmospheric dust was related to the dust source area in the Sahara. At the Atmospheric Observatory (IZO) in Tenerife, Spain where direct measurement of the Saharan Air Layer could be made, the cycle of dust events occurring in July 2009 were examined. From the observation tower at the IZO, measurements of emitted longwave atmospheric radiance in the TIR wavelength region were made using a Forward Looking Infrared Radiometer (FLIR) handheld camera. The use of the FLIR to study atmospheric dust from the Saharan is a

  16. Human ear detection in the thermal infrared spectrum

    Science.gov (United States)

    Abaza, Ayman; Bourlai, Thirimachos

    2012-06-01

    In this paper the problem of human ear detection in the thermal infrared (IR) spectrum is studied in order to illustrate the advantages and limitations of the most important steps of ear-based biometrics that can operate in day and night time environments. The main contributions of this work are two-fold: First, a dual-band database is assembled that consists of visible and thermal profile face images. The thermal data was collected using a high definition middle-wave infrared (3-5 microns) camera that is capable of acquiring thermal imprints of human skin. Second, a fully automated, thermal imaging based ear detection method is developed for real-time segmentation of human ears in either day or night time environments. The proposed method is based on Haar features forming a cascaded AdaBoost classifier (our modified version of the original Viola-Jones approach1 that was designed to be applied mainly in visible band images). The main advantage of the proposed method, applied on our profile face image data set collected in the thermal-band, is that it is designed to reduce the learning time required by the original Viola-Jones method from several weeks to several hours. Unlike other approaches reported in the literature, which have been tested but not designed to operate in the thermal band, our method yields a high detection accuracy that reaches ~ 91.5%. Further analysis on our data set yielded that: (a) photometric normalization techniques do not directly improve ear detection performance. However, when using a certain photometric normalization technique (CLAHE) on falsely detected images, the detection rate improved by ~ 4%; (b) the high detection accuracy of our method did not degrade when we lowered down the original spatial resolution of thermal ear images. For example, even after using one third of the original spatial resolution (i.e. ~ 20% of the original computational time) of the thermal profile face images, the high ear detection accuracy of our method

  17. Development of practical thermal infrared hyperspectral imaging system

    Science.gov (United States)

    Wang, Jianyu; Li, Chunlai; Lv, Gang; Yuan, Liyin; Liu, Enguang; Jin, Jian; Ji, Hongzhen

    2014-11-01

    As an optical remote sensing equipment, the thermal infrared hyperspectral imager operates in the thermal infrared spectral band and acquires about 180 wavebands in range of 8.0~12.5μm. The field of view of this imager is 13° and the spatial resolution is better than 1mrad. Its noise equivalent temperature difference (NETD) is less than 0.2K@300K(average). 1 The influence of background radiation of the thermal infrared hyperspectral imager,and a simulation model of simplified background radiation is builded. 2 The design and implementationof the Cryogenic Optics. 3 Thermal infrared focal plane array (FPA) and special dewar component for the thermal infrared hyperspectral imager. 4 Parts of test results of the thermal infrared hyperspectral imager.The hyperspectral imaging system is China's first success in developing this type of instrument, whose flight validation experiments have already been embarked on. The thermal infrared hyperspectral data acquired will play an important role in fields such as geological exploration and air pollutant identification.

  18. A bi-directional gap model for simulating the directional thermal radiance of row crops

    Institute of Scientific and Technical Information of China (English)

    CHEN; Liangfu; (陈良富); LIU; Qinhuo; (柳钦火); FAN; Wenjie; (范闻捷); LI; Xiaowen; (李小文); XIAO; Qing; (肖青); YAN; Guangjian; (闫广建); TIAN; Guoliang; (田国良)

    2002-01-01

    Row crops are a kind of typical vegetation canopy between discrete canopy and continuous canopy. Kimes et al. studied the directional thermal radiation of row crops using the geometrical optical model, which simplified row structure as "box" and neglected the gap among foliage and did not consider the emissivity effects. In this work we take account of the gaps along illumination and viewing directions and propose a bi-direction gap model on the basis of the idea of gap probability of discrete vegetation canopy introduced by "Li-Strahler" and inter-correlation of continuous vegetation developed by Kuusk. It can be used to explain "hot spot" effects in thermal infrared region. The gap model has been validated by field experiment on winter wheat planted in shape of rows and results show that the gap model is better than Kimes' model in describing the directionality of thermal infrared emission for row crops.

  19. Infrared landmine detection and thermal model analysis

    NARCIS (Netherlands)

    Schwering, P.B.W.; Kokonozi, A.; Carter, L.J.; Lensen, H.A.; Franken, E.M.

    2001-01-01

    Infrared imagers are capable of the detection of surface laid mines. Several sensor fused land mine detection systems make use of metal detectors, ground penetrating radar and infrared imagers. Infrared detection systems are sensitive to apparent temperature contrasts and their detection capabilitie

  20. Proposal of novel measurement method for thermal diffusivity from infrared thermal movie

    Science.gov (United States)

    Okamoto, Yoichi; Watanabe, Shin; Ogata, Kento; Hiramatsu, Koji; Miyazaki, Hisashi; Morimoto, Jun

    2017-05-01

    A brand new thermal diffusivity measurement method was developed. In this new noncontact and absolute measurement method, thermal diffusivity was measured from infrared movie data. The model of one-dimensional thermal conduction was constructed by taking into account the thermal flow other than one-dimensional thermal conduction in the sample. On the basis of this thermal conduction model, the analytical equation for calculating thermal diffusivity was derived. A single-crystal sapphire plate was used as a test specimen for the new method. The test specimen was arranged to cause one-dimensional heat conduction. Infrared movies were taken by using an infrared camera at room temperature. Then, thermal diffusivity was numerically calculated from the acquired movie data using the analytical equation. It was experimentally demonstrated that thermal diffusivity was measured with an accuracy of around 10% error, from an infrared movie of a single-crystal sapphire sample.

  1. Observed Asteroid Surface Area in the Thermal Infrared

    Science.gov (United States)

    Nugent, C. R.; Mainzer, A.; Masiero, J.; Wright, E. L.; Bauer, J.; Grav, T.; Kramer, E.; Sonnett, S.

    2017-02-01

    The rapid accumulation of thermal infrared observations and shape models of asteroids has led to increased interest in thermophysical modeling. Most of these infrared observations are unresolved. We consider what fraction of an asteroid’s surface area contributes the bulk of the emitted thermal flux for two model asteroids of different shapes over a range of thermal parameters. The resulting observed surface in the infrared is generally more fragmented than the area observed in visible wavelengths, indicating high sensitivity to shape. For objects with low values of the thermal parameter, small fractions of the surface contribute the majority of thermally emitted flux. Calculating observed areas could enable the production of spatially resolved thermal inertia maps from non-resolved observations of asteroids.

  2. Comparison between IASI and GOSAT retrievals in the thermal infrared

    Science.gov (United States)

    Payan, S.; Camy-peyret, C.; Bureau, J.; Shiomi, K.

    2012-04-01

    GOSAT (Greenhouse Gases Observing SATellite) is a satellite dedicated to the study of greenhouses gases. It carries an infrared Fourier transform spectrometer (The Thermal and Near Infrared Sensor for Carbon Observation Fourier-Transform Spectrometer or TANSO-FTS), which acquires spectra in 4 bands, located in the Near-Infrared (NIR), ShortWave Infrared (SWIR) and Thermal Infrared (TIR). An imager (CAI: Cloud and Aerosols imager) enables to gain information on clouds and aerosols, and this information is used to improve the quality of CO2 and CH4 retrievals. IASI (Infrared Atmospheric Sounding Interferometer) designed by CNES for Eumetsat is carried by the MetOp-A satellite. It is used for operational meteorology and is also interesting for greenhouse gases as well as for atmospheric chemistry and climate. We looked for close spatial and temporal coincidences between IASI and TANSO-FTS nadir spectra. Due to the respective orbits of MetOp-A and GOSAT, this is only achieved at high latitudes. We compared the surface temperature, CO2, CH4, N2O and O3 mixing ratios retrieved from TANSO-FTS and from IASI spectra. We used the [940;980] cm-1 window for CO2 (laser band), [1240;1320] cm-1 for CH4, [1140;1200] cm-1 for N2O, and [980;1100] cm-1 for O3. Since IASI is considered as a reference for radiometric calibrations, we compared the surface temperatures retrieved by GOSAT and IASI in these different windows to assess the GOSAT radiometric calibration. The GOSAT/IASI comparison is done on surface temperature rather than on raw radiances because the different instrumental noise and spectral resolution of these instruments make a direct comparison of the radiances more difficult. The use of different spectral windows enabled us to explore the spectral dependence of the TANSO-FTS radiometric calibration. Cloud-free and spatially homogenous fields of view (IFOVs) were selected using CAI images. Finally, we will show the potential to further improve the results using the

  3. Infrared thermography: A non-invasive window into thermal physiology.

    Science.gov (United States)

    Tattersall, Glenn J

    2016-12-01

    Infrared thermography is a non-invasive technique that measures mid to long-wave infrared radiation emanating from all objects and converts this to temperature. As an imaging technique, the value of modern infrared thermography is its ability to produce a digitized image or high speed video rendering a thermal map of the scene in false colour. Since temperature is an important environmental parameter influencing animal physiology and metabolic heat production an energetically expensive process, measuring temperature and energy exchange in animals is critical to understanding physiology, especially under field conditions. As a non-contact approach, infrared thermography provides a non-invasive complement to physiological data gathering. One caveat, however, is that only surface temperatures are measured, which guides much research to those thermal events occurring at the skin and insulating regions of the body. As an imaging technique, infrared thermal imaging is also subject to certain uncertainties that require physical modelling, which is typically done via built-in software approaches. Infrared thermal imaging has enabled different insights into the comparative physiology of phenomena ranging from thermogenesis, peripheral blood flow adjustments, evaporative cooling, and to respiratory physiology. In this review, I provide background and guidelines for the use of thermal imaging, primarily aimed at field physiologists and biologists interested in thermal biology. I also discuss some of the better known approaches and discoveries revealed from using thermal imaging with the objective of encouraging more quantitative assessment.

  4. Thermal Infrared Remote Sensing of the Yellowstone Geothermal System

    Science.gov (United States)

    Vaughan, R. G.; Keszthelyi, L. P.; Heasler, H.; Jaworowski, C.; Lowenstern, J. B.; Schneider, D. J.

    2009-12-01

    The Yellowstone National Park (YNP) geothermal system is one of the largest in the world, with thousands of individual thermal features ranging in size from a few centimeters to tens of meters across, (e.g., fumaroles, geysers, mud pots and hot spring pools). Together, large concentrations of these thermal features make up dozens of distinct thermal areas, characterized by sparse vegetation, hydrothermally altered rocks, and usually either sinter, travertine, or acid sulfate alteration. The temperature of these thermal features generally ranges from ~30 to ~93 oC, which is the boiling temperature of water at the elevation of Yellowstone. In-situ temperature measurements of various thermal features are sparse in both space and time, but they show a dynamic time-temperature relationship. For example, as geysers erupt and send pulses of warm water down slope, the warm water cools rapidly and is then followed by another pulse of warm water, on time scales of minutes. The total heat flux from the Park’s thermal features has been indirectly estimated from chemical analysis of Cl- flux in water flowing from Yellowstone’s rivers. We are working to provide a more direct measurement, as well as estimates of time variability, of the total heat flux using satellite multispectral thermal infrared (TIR) remote sensing data. Over the last 10 years, NASA’s orbiting ASTER and MODIS instruments have acquired hundreds and thousands of multispectral TIR images, respectively, over the YNP area. Compared with some volcanoes, Yellowstone is a relatively low-temperature geothermal system, with low thermal contrast to the non-geothermal surrounding areas; therefore we are refining existing techniques to extract surface temperature and thermal flux information. This task is complicated by issues such as, during the day, solar heated surfaces may be warmer than nearby geothermal features; and there is some topographic (elevation) influence on surface temperatures, even at night. Still

  5. Plant species discrimination using emissive thermal infrared imaging spectroscopy

    Science.gov (United States)

    Rock, Gilles; Gerhards, Max; Schlerf, Martin; Hecker, Christoph; Udelhoven, Thomas

    2016-12-01

    Discrimination of plant species in the optical reflective domain is somewhat limited by the similarity of their reflectance spectra. Spectral characteristics in the visible to shortwave infrared (VSWIR) consist of combination bands and overtones of primary absorption bands, situated in the Thermal Infrared (TIR) region and therefore resulting in broad spectral features. TIR spectroscopy is assumed to have a large potential for providing complementary information to VSWIR spectroscopy. So far, in the TIR, plants were often considered featureless. Recently and following advances in sensor technology, plant species were discriminated based on specific emissivity signatures by Ullah et al. (2012) using directional-hemispherical reflectance (DHR) measurements in the laboratory. Here we examine if an accurate discrimination of plant species is equally possible using emissive thermal infrared imaging spectroscopy, an explicit spatial technique that is faster and more flexible than non-imaging measurements. Hyperspectral thermal infrared images were acquired in the 7.8⿿11.56 μm range at 40 nm spectral resolution (@10 μm) using a TIR imaging spectrometer (Telops HyperCam-LW) on seven plants each, of eight different species. The images were radiometrically calibrated and subjected to temperature and emissivity separation using a spectral smoothness approach. First, retrieved emissivity spectra were compared to laboratory reference spectra and then subjected to species discrimination using a random forest classifier. Second, classification results obtained with emissivity spectra were compared to those obtained with VSWIR reflectance spectra that had been acquired from the same leaf samples. In general, the mean emissivity spectra measured by the TIR imaging spectrometer showed very good agreement with the reference spectra (average Nash-Sutcliffe-Efficiency Index = 0.64). In species discrimination, the resulting accuracies for emissivity spectra are highly dependent on

  6. Stream Temperature Estimation From Thermal Infrared Images

    Science.gov (United States)

    Handcock, R. N.; Kay, J. E.; Gillespie, A.; Naveh, N.; Cherkauer, K. A.; Burges, S. J.; Booth, D. B.

    2001-12-01

    Stream temperature is an important water quality indicator in the Pacific Northwest where endangered fish populations are sensitive to elevated water temperature. Cold water refugia are essential for the survival of threatened salmon when events such as the removal of riparian vegetation result in elevated stream temperatures. Regional assessment of stream temperatures is limited by sparse sampling of temperatures in both space and time. If critical watersheds are to be properly managed it is necessary to have spatially extensive temperature measurements of known accuracy. Remotely sensed thermal infrared (TIR) imagery can be used to derive spatially distributed estimates of the skin temperature (top 100 nm) of streams. TIR imagery has long been used to estimate skin temperatures of the ocean, where split-window techniques have been used to compensate for atmospheric affects. Streams are a more complex environment because 1) most are unresolved in typical TIR images, and 2) the near-bank environment of stream corridors may consist of tall trees or hot rocks and soils that irradiate the stream surface. As well as compensating for atmospheric effects, key problems to solve in estimating stream temperatures include both subpixel unmixing and multiple scattering. Additionally, fine resolution characteristics of the stream surface such as evaporative cooling due to wind, and water surface roughness, will effect measurements of radiant skin temperatures with TIR devices. We apply these corrections across the Green River and Yakima River watersheds in Washington State to assess the accuracy of remotely sensed stream surface temperature estimates made using fine resolution TIR imagery from a ground-based sensor (FLIR), medium resolution data from the airborne MASTER sensor, and coarse-resolution data from the Terra-ASTER satellite. We use linear spectral mixture analysis to isolate the fraction of land-leaving radiance originating from unresolved streams. To compensate the

  7. Validating an infrared thermal switch as a novel access technology

    Directory of Open Access Journals (Sweden)

    Memarian Negar

    2010-08-01

    Full Text Available Abstract Background Recently, a novel single-switch access technology based on infrared thermography was proposed. The technology exploits the temperature differences between the inside and surrounding areas of the mouth as a switch trigger, thereby allowing voluntary switch activation upon mouth opening. However, for this technology to be clinically viable, it must be validated against a gold standard switch, such as a chin switch, that taps into the same voluntary motion. Methods In this study, we report an experiment designed to gauge the concurrent validity of the infrared thermal switch. Ten able-bodied adults participated in a series of 3 test sessions where they simultaneously used both an infrared thermal and conventional chin switch to perform multiple trials of a number identification task with visual, auditory and audiovisual stimuli. Participants also provided qualitative feedback about switch use. User performance with the two switches was quantified using an efficiency measure based on mutual information. Results User performance (p = 0.16 and response time (p = 0.25 with the infrared thermal switch were comparable to those of the gold standard. Users reported preference for the infrared thermal switch given its non-contact nature and robustness to changes in user posture. Conclusions Thermal infrared access technology appears to be a valid single switch alternative for individuals with disabilities who retain voluntary mouth opening and closing.

  8. Infrared Thermal Imaging as a Tool in University Physics Education

    Science.gov (United States)

    Mollmann, Klaus-Peter; Vollmer, Michael

    2007-01-01

    Infrared thermal imaging is a valuable tool in physics education at the university level. It can help to visualize and thereby enhance understanding of physical phenomena from mechanics, thermal physics, electromagnetism, optics and radiation physics, qualitatively as well as quantitatively. We report on its use as lecture demonstrations, student…

  9. On diagnosis measurement under dynamic loading of ball bearing using numerical thermal analysis and infrared thermography

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Dong Pyo; Kim, Ho Jong [School of Mechanical System Engineering, Chonbuk Nationa University, Jeonju (Korea, Republic of); Kim, Won Tae [School of Mechanical and Automotive Engineering, Kongju National University, Kongju (Korea, Republic of)

    2013-08-15

    With the modern machinery towards the direction of high-speed development, the thermal issues of mechanical transmission system and its components is increasingly important. Ball bearing is one of the main parts in rotating machinery system, and is a more easily damaged part. In this paper, bearing thermal fault detection is investigated in details Using infrared thermal imaging technology to the operation state of the ball bearing, a preliminary thermal analysis, and the use of numerical simulation technology by finite element method(FEM) under thermal conditions of the bearing temperature field analysis, initially identified through these two technical analysis, bearing a temperature distribution in the normal state and failure state. It also shows the reliability of the infrared thermal imaging technology with valuable suggestions for the future bearing fault detection.

  10. Near-surface Thermal Infrared Imaging of a Mixed Forest

    Science.gov (United States)

    Aubrecht, D. M.; Helliker, B. R.; Richardson, A. D.

    2014-12-01

    Measurement of an organism's temperature is of basic physiological importance and therefore necessary for ecosystem modeling, yet most models derive leaf temperature from energy balance arguments or assume it is equal to air temperature. This is because continuous, direct measurement of leaf temperature outside of a controlled environment is difficult and rarely done. Of even greater challenge is measuring leaf temperature with the resolution required to understand the underlying energy balance and regulation of plant processes. To measure leaf temperature through the year, we have mounted a high-resolution, thermal infrared camera overlooking the canopy of a temperate deciduous forest. The camera is co-located with an eddy covariance system and a suite of radiometric sensors. Our camera measures longwave thermal infrared (λ = 7.5-14 microns) using a microbolometer array. Suspended in the canopy within the camera FOV is a matte black copper plate instrumented with fine wire thermocouples that acts as a thermal reference for each image. In this presentation, I will discuss the challenges of continuous, long-term field operation of the camera, as well as measurement sensitivity to physical and environmental parameters. Based on this analysis, I will show that the uncertainties in converting radiometric signal to leaf temperature are well constrained. The key parameter for minimizing uncertainty is the emissivity of the objects being imaged: measuring the emissivity to within 0.01 enables leaf temperature to be calculated to within 0.5°C. Finally, I will present differences in leaf temperature observed amongst species. From our two-year record, we characterize high frequency, daily, and seasonal thermal signatures of leaves and crowns, in relation to environmental conditions. Our images are taken with sufficient spatial and temporal resolution to quantify the preferential heating of sunlit portions of the canopy and the cooling effect of wind gusts. Future work will

  11. Infrared Observations Of Saturn's Rings : Azimuthal Variations And Thermal Modeling

    Science.gov (United States)

    Leyrat, C.; Spilker, L. J.; Altobelli, N.; Pilorz, S.; Ferrari, C.; Edgington, S. G.; Wallis, B. D.; Nugent, C.; Flasar, M.

    2007-12-01

    Saturn's rings represent a collection of icy centimeter to meter size particles with their local dynamic dictated by self gravity, mutual collisions, surface roughness and thickness of the rings themselves. The infrared observations obtained by the CIRS infrared spectrometer on board Cassini over the last 3.5 year contain informations on the local dynamic, as the thermal signature of planetary rings is influenced both by the ring structure and the particle properties. The ring temperature is very dependent on the solar phase angle (Spilker et al., this issue), and on the local hour angle around Saturn, depending on whether or not particles' visible hemispheres are heated by the Sun. The geometric filling factor, which can be estimated from CIRS spectra, is less dependent on the local hour angle, suggesting that the non isothermal behavior of particles' surfaces have low impact, but it is very dependent on the spacecraft elevation for the A and C rings. The ring small scale structure can be explored using CIRS data. Variations of the filling factor with the local hour angle relative to the spacecraft azimuth reveals self-gravity wakes. We derive morphological parameters of such wakes in both A and B rings assuming that wakes can be modeled either by regularly spaced bars with infinite or finite optical depth. Our results indicates that wakes in the A ring are almost flat, with a ratio height/width ≈ 0.44 ± 0.16 and with a pitch angle relative to the orbital motion direction of ≍ 27deg. This is consistent with UVIS (Colwell et al., 2006) and VIMS data (Hedman et al., 2007). Such models are more difficult to constrain in the B ring, but small variations of the filling factor indicate that the pitch angle decreases drastically in this ring. We also present a new thermal bar model to explain azimuthal variations of temperatures in the A ring. We compare results with previous ring thermal models of spherical particles. The Cassini/CIRS azimuthal scans data set is

  12. Thermal interpretation of infrared dynamics in de Sitter

    Science.gov (United States)

    Rigopoulos, Gerasimos

    2016-07-01

    The infrared dynamics of a light, minimally coupled scalar field in de Sitter spacetime with Ricci curvature R = 12H2, averaged over horizon sized regions of physical volume VH = (4π/3)(1/H)3, can be interpreted as Brownian motion in a medium with de Sitter temperature TDS = hbarH/2π. We demonstrate this by directly deriving the effective action of scalar field fluctuations with wavelengths larger than the de Sitter curvature radius and generalizing Starobinsky's seminal results on stochastic inflation. The effective action describes stochastic dynamics and the fluctuating force drives the field to an equilibrium characterized by a thermal Gibbs distribution at temperature TDS which corresponds to a de Sitter invariant state. Hence, approach towards this state can be interpreted as thermalization. We show that the stochastic kinetic energy of the coarse-grained description corresponds to the norm of ∂μphi and takes a well defined value per horizon volume ½langle(∇phi)2rangle = - ½TDS/VH. This approach allows for the non-perturbative computation of the de Sitter invariant stress energy tensor langleTμνrangle for an arbitrary scalar potential.

  13. Wavelength-selective and diffuse infrared thermal emission mediated by magnetic polaritons from silicon carbide metasurfaces

    Science.gov (United States)

    Yang, Yue; Taylor, Sydney; Alshehri, Hassan; Wang, Liping

    2017-07-01

    In the present study, we experimentally demonstrate the spectrally coherent and diffuse thermal emission by exciting magnetic polaritons in SiC metasurfaces fabricated by the focused ion beam technique. Spectral emittance characterized by using an infrared microscope coupled to a Fourier transform spectrometer clearly shows a wavelength-selective emission peak as high as 0.8. Numerical simulations including emittance spectra and contour plot of electromagnetic field distribution were carried out to verify and understand the underlying mechanism of magnetic polaritons. The metasurfaces were further shown to be direction and polarization independent. The results would facilitate metasurfaces for applications like radiative thermal management and infrared sensing.

  14. The use of thermal infrared images in geologic mapping

    Science.gov (United States)

    Kahle, A. B.

    1982-01-01

    Thermal infrared image data can be used as an aid to geologic mapping. Broadband thermal data between 8 and 13 microns is used to measure surface temperature, from which surface thermal properties can be inferred. Data from aircraft multispectral scanners at Pisgah, California which include a broadband thermal channel along with several visible and near-IR spectral channels permit better discrimination between rock type units than the same data set without the thermal data. Data from the HCMM satellite and from aircraft thermal scanners also make it possible to monitor moisture changes in Death Valley, California. Multispectral data in the same 8-13 micron wavelength range can be used to discriminate between surface materials with different spectral emission characteristics, as demonstrated with both aircraft scanner and ground spectrometer data.

  15. High speed heterodyne infrared thermography applied to thermal diffusivity identification

    Science.gov (United States)

    Pradere, C.; Clerjaud, L.; Batsale, J. C.; Dilhaire, S.

    2011-05-01

    We have combined InfraRed thermography and thermal wave techniques to perform microscale, ultrafast (microsecond) temperature field measurements. The method is based on an IR camera coupled to a microscope and synchronized to the heat source by means of phase locked function generators. The principle is based on electronic stroboscopic sampling where the low IR camera acquisition frequency facq (25 Hz) undersamples a high frequency thermal wave. This technique permits the measurement of the emissive thermal response at a (microsecond) short time scale (microsecond) with the full frame mode of the IR camera with a spatial thermal resolution of 7 μm. Then it becomes possible to study 3D transient heat transfer in heterogeneous and high thermal conductive thin layers. Thus it is possible for the first time in our knowledge to achieve temperature field measurements in heterogeneous media within a wide range of time domains. The IR camera is now a suitable instrument for multiscale thermal analysis.

  16. Sea surface temperature mapping using a thermal infrared scanner

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Pandya, R.M.; Mathur, K.M.; Charyulu, R.J.K.; Rao, L.V.G.

    1 metre water column below the sea surface. A thermal infrared scanner developed by the Space Applications Centre (ISRO), Ahmedabad was operated on board R.V. Gaveshani in April/May 1984 for mapping SST over the eastern Arabian Sea. SST values...

  17. Infrared thermal imaging for automated detection of diabetic foot complications

    NARCIS (Netherlands)

    Netten, van Jaap J.; Baal, van Jeff G.; Liu, Chanjuan; Heijden, van der Ferdi; Bus, Sicco A.

    2013-01-01

    Background: Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the ap

  18. Thermal Infrared Spectroscopy of Saturn and Titan from Cassini

    Science.gov (United States)

    Jennings, Donald E.; Brasunas, J. C.; Carlson, R. C.; Flasar, F. M.; Kunde, V. G.; Mamoutkine, A. A.; Nixon, A.; Pearl, J. C.; Romani, P. N.; Simon-Miller, A. A.; Bjoraker, G. L.

    2009-01-01

    The Cassini spacecraft completed its nominal mission at Saturn in 2008 and began its extended mission. Cassini carries the Composite Infrared Spectrometer (CIRS); a Fourier transform spectrometer that measures the composition, thermal structure and dynamics of the atmospheres of Saturn and Titan, and also the temperatures of other moons and the rings.

  19. BOOK REVIEW: Infrared Thermal Imaging: Fundamentals, Research and Applications Infrared Thermal Imaging: Fundamentals, Research and Applications

    Science.gov (United States)

    Planinsic, Gorazd

    2011-09-01

    Ten years ago, a book with a title like this would be interesting only to a narrow circle of specialists. Thanks to rapid advances in technology, the price of thermal imaging devices has dropped sharply, so they have, almost overnight, become accessible to a wide range of users. As the authors point out in the preface, the growth of this area has led to a paradoxical situation: now there are probably more infrared (IR) cameras sold worldwide than there are people who understand the basic physics behind them and know how to correctly interpret the colourful images that are obtained with these devices. My experience confirms this. When I started using the IR camera during lectures on the didactics of physics, I soon realized that I needed more knowledge, which I later found in this book. A wide range of potential readers and topical areas provides a good motive for writing a book such as this one, but it also represents a major challenge for authors, as compromises in the style of writing and choice of topics are required. The authors of this book have successfully achieved this, and indeed done an excellent job. This book addresses a wide range of readers, from engineers, technicians, and physics and science teachers in schools and universities, to researchers and specialists who are professionally active in the field. As technology in this area has made great progress in recent times, this book is also a valuable guide for those who opt to purchase an infrared camera. Chapters in this book could be divided into three areas: the fundamentals of IR thermal imaging and related physics (two chapters); IR imaging systems and methods (two chapters) and applications, including six chapters on pedagogical applications; IR imaging of buildings and infrastructure, industrial applications, microsystems, selected topics in research and industry, and selected applications from other fields. All chapters contain numerous colour pictures and diagrams, and a rich list of relevant

  20. Infrared thermal imaging fundamentals, research and applications

    CERN Document Server

    Vollmer, Michael

    2011-01-01

    This richly illustrated hands-on guide is designed for researchers, teachers and practitioners. The huge selection of examples taken from science, basic teaching of physics, practical applications in industry and a variety of other disciplines spanning the range from medicine to volcano research allows readers to pick those that come closest to their own individual task at hand. Following a look at the fundamentals of IR thermal imaging, properties of the imaging systems, as well as basic and advanced methods, the book goes on to discuss IR imaging applications in teaching, research and indust

  1. Infrared characterization of thermal gradients on disc brakes

    Science.gov (United States)

    Panier, Stephane; Dufrenoy, Philippe; Bremond, Pierre

    2003-04-01

    The heat generated in frictional organs like brakes and clutches induces thermal distortions which may lead to localized contact areas and hot spots developments. Hot spots are high thermal gradients on the rubbing surface. They count among the most dangerous phenomena in frictional organs leading to damage, early failure and unacceptable braking performances such as brake fade or undesirable low frequency vibrations called hot judder. In this paper, an experimental study of hot spots occurrence in railway disc brakes is reported on. The aim of this study was to better classify and to explain the thermal gradients appearance on the surface of the disc. Thermograph measurements with an infrared camera have been carried out on the rubbing surface of brake discs on a full-scale test bench. The infrared system was set to take temperature readings in snap shot mode precisely synchronized with the rotation of the disc. Very short integration time allows reducing drastically haziness of thermal images. Based on thermographs, a classification of hot-spots observed in disc brakes is proposed. A detailed investigation of the most damaging thermal gradients, called macroscopic hot spots (MHS) is given. From these experimental researches, a scenario of hot spots occurrence is suggested step by step. Thanks to infrared measurements at high frequency with high resolution, observations give new highlights on the conditions of hot spots appearance. Comparison of the experimental observations with the theoretical approaches is finally discussed.

  2. A novel technique to monitor thermal discharges using thermal infrared imaging.

    Science.gov (United States)

    Muthulakshmi, A L; Natesan, Usha; Ferrer, Vincent A; Deepthi, K; Venugopalan, V P; Narasimhan, S V

    2013-09-01

    Coastal temperature is an important indicator of water quality, particularly in regions where delicate ecosystems sensitive to water temperature are present. Remote sensing methods are highly reliable for assessing the thermal dispersion. The plume dispersion from the thermal outfall of the nuclear power plant at Kalpakkam, on the southeast coast of India, was investigated from March to December 2011 using thermal infrared images along with field measurements. The absolute temperature as provided by the thermal infrared (TIR) images is used in the Arc GIS environment for generating a spatial pattern of the plume movement. Good correlation of the temperature measured by the TIR camera with the field data (r(2) = 0.89) make it a reliable method for the thermal monitoring of the power plant effluents. The study portrays that the remote sensing technique provides an effective means of monitoring the thermal distribution pattern in coastal waters.

  3. Infrared Thermal Imaging System on a Mobile Phone

    Directory of Open Access Journals (Sweden)

    Fu-Feng Lee

    2015-04-01

    Full Text Available A novel concept towards pervasively available low-cost infrared thermal imaging system lunched on a mobile phone (MTIS was proposed and demonstrated in this article. Through digestion on the evolutional development of milestone technologies in the area, it can be found that the portable and low-cost design would become the main stream of thermal imager for civilian purposes. As a representative trial towards this important goal, a MTIS consisting of a thermal infrared module (TIM and mobile phone with embedded exclusive software (IRAPP was presented. The basic strategy for the TIM construction is illustrated, including sensor adoption and optical specification. The user-oriented software was developed in the Android environment by considering its popularity and expandability. Computational algorithms with non-uniformity correction and scene-change detection are established to optimize the imaging quality and efficiency of TIM. The performance experiments and analysis indicated that the currently available detective distance for the MTIS is about 29 m. Furthermore, some family-targeted utilization enabled by MTIS was also outlined, such as sudden infant death syndrome (SIDS prevention, etc. This work suggests a ubiquitous way of significantly extending thermal infrared image into rather wide areas especially health care in the coming time.

  4. Mid-Infrared Reflectance Imaging of Thermal-Barrier Coatings

    Science.gov (United States)

    Edlridge, Jeffrey I.; Martin, Richard E.

    2009-01-01

    An apparatus for mid-infrared reflectance imaging has been developed as means of inspecting for subsurface damage in thermal-barrier coatings (TBCs). The apparatus is designed, more specifically, for imaging the progression of buried delamination cracks in plasma-sprayed yttria-stabilized zirconia coatings on turbine-engine components. Progression of TBC delamination occurs by the formation of buried cracks that grow and then link together to produce eventual TBC spallation. The mid-infrared reflectance imaging system described here makes it possible to see delamination progression that is invisible to the unaided eye, and therefore give sufficiently advanced warning before delamination progression adversely affects engine performance and safety. The apparatus (see figure) includes a commercial mid-infrared camera that contains a liquid-nitrogen-cooled focal plane indium antimonide photodetector array, and imaging is restricted by a narrow bandpass centered at wavelength of 4 microns. This narrow wavelength range centered at 4 microns was chosen because (1) it enables avoidance of interfering absorptions by atmospheric OH and CO2 at 3 and 4.25 microns, respectively; and (2) the coating material exhibits maximum transparency in this wavelength range. Delamination contrast is produced in the midinfrared reflectance images because the introduction of cracks into the TBC creates an internal TBC/air-gap interface with a high diffuse reflectivity of 0.81, resulting in substantially higher reflectance of mid-infrared radiation in regions that contain buried delamination cracks. The camera is positioned a short distance (.12 cm) from the specimen. The mid-infrared illumination is generated by a 50-watt silicon carbide source positioned to the side of the mid-infrared camera, and the illumination is collimated and reflected onto the specimen by a 6.35-cm-diameter off-axis paraboloidal mirror. Because the collected images are of a steady-state reflected intensity (in

  5. THERMAL INFRARED INSPECTION OF ROOF INSULATION USING UNMANNED AERIAL VEHICLES

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2015-08-01

    Full Text Available UAVs equipped with high-resolution thermal cameras provide an excellent investigative tool used for a multitude of building-specific applications, including roof insulation inspection. We have presented in this study a relative thermographic calibration algorithm and a superpixel Markov Random Field model to address problems in thermal infrared inspection of roof insulation using UAVs. The relative thermographic radiometric calibration algorithm is designed to address the autogain problem of the thermal camera. Results show the algorithm can enhance the contrast between warm and cool areas on the roof surface in thermal images, and produces more constant thermal signatures of different roof insulations or surfaces, which could facilitate both visual interpretation and computer-based thermal anomaly detection. An automatic thermal anomaly detection algorithm based on superpixel Markov Random Field is proposed, which is more computationally efficient than pixel based MRF, and can potentially improve the production throughput capacity and increase the detection accuracy for thermal anomaly detection. Experimental results show the effectiveness of the proposed method.

  6. Space-Based Thermal Infrared Studies of Asteroids

    CERN Document Server

    Mainzer, A; Trilling, D

    2015-01-01

    Large-area surveys operating at mid-infrared wavelengths have proven to be a valuable means of discovering and characterizing minor planets. Through the use of radiometric models, it is possible to derive physical properties such as diameters, albedos, and thermal inertia for large numbers of objects. Modern detector array technology has resulted in a significant improvement in spatial resolution and sensitivity compared with previous generations of space-based infrared telescopes, giving rise to a commensurate increase in the number of objects that have been observed at these wavelengths. Space-based infrared surveys of asteroids therefore offer an effective means of rapidly gathering information about small body populations' orbital and physical properties. The AKARI, WISE/NEOWISE, Spitzer, and Herschel missions have significantly increased the number of minor planets with well-determined diameters and albedos.

  7. Human suspicious activity recognition in thermal infrared video

    Science.gov (United States)

    Hossen, Jakir; Jacobs, Eddie; Chowdhury, Fahmida K.

    2014-10-01

    Detecting suspicious behaviors is important for surveillance and monitoring systems. In this paper, we investigate suspicious activity detection in thermal infrared imagery, where human motion can be easily detected from the background regardless of the lighting conditions and colors of the human clothing and surfaces. We use locally adaptive regression kernels (LARK) as patch descriptors, which capture the underlying local structure of the data exceedingly well, even in the presence of significant distortions. Patch descriptors are generated for each query patch and for each database patch. A statistical approach is used to match the query activity with the database to make the decision of suspicious activity. Human activity videos in different condition such as, walking, running, carrying a gun, crawling, and carrying backpack in different terrains were acquired using thermal infrared camera. These videos are used for training and performance evaluation of the algorithm. Experimental results show that the proposed approach achieves good performance in suspicious activity recognition.

  8. Thermal imaging method to visualize a hidden painting thermally excited by far infrared radiations

    Science.gov (United States)

    Davin, T.; Wang, X.; Chabane, A.; Pawelko, R.; Guida, G.; Serio, B.; Hervé, P.

    2015-06-01

    The diagnosis of hidden painting is a major issue for cultural heritage. In this paper, a non-destructive active infrared thermographic technique was considered to reveal paintings covered by a lime layer. An extended infrared spectral range radiation was used as the excitation source. The external long wave infrared energy source delivered to the surface is then propagated through the material until it encounters a painting zone. Due to several thermal effects, the sample surface then presents non-uniformity patterns. Using a high sensitive infrared camera, the presence of covered pigments can thus be highlighted by the analysis of the non-stationary phenomena. Reconstituted thermal contrast images of mural samples covered by a lime layer are shown.

  9. The Thermal Infrared Sensor on the Landsat Data Continuity Mission

    Science.gov (United States)

    Reuter, Dennis; Richardson, Cathy; Irons, James; Allen, Rick; Anderson, Martha; Budinoff, Jason; Casto, Gordon; Coltharp, Craig; Finneran, Paul; Forsbacka, Betsy; Hale, Taylor; Jennings, Tom; Jhabvala, Murzy; Lunsford, Allen; Magnuson, Greg; Mills, Rick; Morse, Tony; Otero, Veronica; Rohrbach, Scott; Smith, Ramsey; Sullivan, Terry; Tesfaye, Zelalem; Thome, Kurtis; Unger, Glenn; Whitehouse, Paul

    2010-01-01

    The Landsat Data Continuity Mission (LDCM), a joint NASA and USGS mission, is scheduled for launch in December, 2012. The LDCM instrument payload will consist of the Operational Land Imager (OLI), provided by Ball Aerospace and Technology Corporation (BATC} under contract to NASA and the Thermal Infrared Sensor (TIRS), provided by NASA's Goddard Space Flight Center (GSFC). This paper outlines the design of the TIRS instrument and gives an example of its application to monitoring water consumption by measuring evapotranspiration.

  10. Systems Analysis for Thermal Infrared ` THz Torch' Applications

    Science.gov (United States)

    Hu, Fangjing; Sun, Jingye; Brindley, Helen E.; Liang, Xiaoxin; Lucyszyn, Stepan

    2015-05-01

    The ` THz Torch' concept was recently introduced by the authors for providing secure wireless communications over short distances within the thermal infrared (10-100 THz). Unlike conventional systems, thermal infrared can exploit front-end thermodynamics with engineered blackbody radiation. For the first time, a detailed power link budget analysis is given for this new form of wireless link. The mathematical modeling of a short end-to-end link is provided, which integrates thermodynamics into conventional signal and noise power analysis. As expected from the Friis formula for noise, it is found that the noise contribution from the pyroelectric detector dominates intrinsic noise. From output signal and noise voltage measurements, experimental values for signal-to-noise ratio (SNR) are obtained and compared with calculated predictions. As with conventional communications systems, it is shown for the first time that the measured SNR and measured bit error rate found with this thermodynamics-based system resembles classical empirical models. Our system analysis can serve as an invaluable tool for the development of thermal infrared systems, accurately characterizing each individual channel and, thus, enables the performance of multi-channel ` THz Torch' systems to be optimized.

  11. Thermal Performance of Building Roof with Infrared Reflective Coatings

    Institute of Scientific and Technical Information of China (English)

    SHEN Hui; TAN Hong-wei; KATSUO MIKI; LIU Xiao-yu

    2009-01-01

    This paper investigated the applicability and effects of infrared reflective coating on energy con-sumption of factory building in hot summer and warm winter zone. It first resorted to theoretical calculation, which demonstrated the beneficial effects of infrared reflective coating on reducing building energy consumption. Then it analyzed a field measurement done on two identical rooms respectively with ordinary coated roof and in-frared reflective coated roof from November 2006 to October 2007, on a 24h basis. The measured data include exterior and interior roof surface temperature, indoor air temperature, and indoor globe temperature. The relat-ed weather data is from a weather station near the measured area. The continuous measurement has been accom-plished in southern China, and the measured data indicate that roof surface temperature and heat gain are signifi-cantly decreased in summer while slight negative effects in winter are induced by adopting infrared reflective coating. Thus it is simple and applicable to reduce building energy consumption in this area by applying infrared reflective coating. Regress equation between reduced roof thermal property, such as surface temperature and heat gain, and reduction in absorbed solar radiation shows their highly linear relationship. Based on the mea-sured data, it is estimated that the reduced power consumption is 3.45 kWh/m2·month in June.

  12. Detecting small groundwater discharge springs using handheld thermal infrared imagery.

    Science.gov (United States)

    Röper, Tania; Greskowiak, Janek; Massmann, Gudrun

    2014-01-01

    Ground-based handheld thermal infrared imagery was used for the detection of small-scale groundwater springs at the northwestern beach of Spiekeroog Island (northwest Germany). The surveys and in situ measurements of electric conductivity were carried out from shortly before to shortly after low tide along the low water line. Several brackish groundwater discharge springs with a diameter of 1-2 cm were observed along the beach at a distance of 2-3 m above the low water line. The high fresh water portion in the discharging water derives from the fresh water lens in the center of the island. During cold weather, the springs were identified by a significantly increased temperature (3-5 °C higher) and a lower electric conductivity (30 mS/cm). During warmer weather conditions, an inverse temperature contrast was observed. The measurements confirm the applicability of thermal imagery for the detection of small-scale groundwater discharge locations as an extension to the established method of aerial thermal scans and prove the existence of submarine groundwater seeps in porous systems. A ground-based handheld thermal infrared imagery survey enables a precise installation of sampling devices as, for example, seepage meters. © 2013, National Ground Water Association.

  13. Estimation of soil and vegetation temperatures with multiangular thermal infrared observations: IMGRASS, HEIFE, and SGP 1997 experiments

    NARCIS (Netherlands)

    Menenti, M.; Jia, L.; Li, Z.L.; Djepa, V.; Wang, J.; Stoll, M.P.; Su, Z.; Rast, M.

    2001-01-01

    The potential of directional observations in the thermal infrared region for land surface studies is a largely uncharted area of research. The availability of the dual-view Along Track Scanning Radiometer (ATSR) observations led to explore new opportunities in this direction. In the context of studi

  14. Combined use of visible, reflected infrared, and thermal infrared images for mapping Hawaiian lava flows

    Science.gov (United States)

    Abrams, Michael; Abbott, Elsa; Kahle, Anne

    1991-01-01

    The weathering of Hawaiian basalts is accompanied by chemical and physical changes of the surfaces. These changes have been mapped using remote sensing data from the visible and reflected infrared and thermal infrared wavelength regions. They are related to the physical breakdown of surface chill coats, the development and erosion of silica coatings, the oxidation of mafic minerals, and the development of vegetation cover. These effects show systematic behavior with age and can be mapped using the image data and related to relative ages of pahoehoe and aa flows. The thermal data are sensitive to silica rind development and fine structure of the scene; the reflectance data show the degree of oxidation and differentiate vegetation from aa and cinders. Together, data from the two wavelength regions show more than either separately. The combined data potentially provide a powerful tool for mapping basalt flows in arid to semiarid volcanic environments.

  15. Genetic inverse algorithm for retrieval of component temperature of mixed pixel by multi-angle thermal infrared remote sensing data

    Institute of Scientific and Technical Information of China (English)

    XU; Xiru; (徐希孺); CHEN; Liangfu; (陈良富); ZHUANG; Jiali; (庄家礼)

    2001-01-01

    After carefully studying the results of retrieval of land surface temperature(LST) by multi-channel thermal infrared remote sensing data, the authors of this paper point out that its accuracy and significance for applications are seriously damaged by the high correlation coefficient among multi-channel information and its disablement of direct retrieval of component temperature. Based on the model of directional radiation of non-isothermal mixed pixel, the authors point out that multi-angle thermal infrared remote sensing can offer the possibility to directly retrieve component temperature, but it is also a multi-parameter synchronous inverse problem. The results of digital simulation and field experiments show that the genetic inverse algorithm (GIA) is an effective method to fulfill multi-parameter synchronous retrieval. So it is possible to realize retrieval of component temperature with error less than 1K by multi-angle thermal infrared remote sensing data and GIA.

  16. Roof heat loss detection using airborne thermal infrared imagery

    Science.gov (United States)

    Kern, K.; Bauer, C.; Sulzer, W.

    2012-12-01

    As part of the Austrian and European attempt to reduce energy consumption and greenhouse gas emissions, thermal rehabilitation and the improvement of the energy efficiency of buildings became an important topic in research as well as in building construction and refurbishment. Today, in-situ thermal infrared measurements are routinely used to determine energy loss through the building envelope. However, in-situ thermal surveys are expensive and time consuming, and in many cases the detection of the amount and location of waste heat leaving building through roofs is not possible with ground-based observations. For some years now, a new generation of high-resolution thermal infrared sensors makes it possible to survey heat-loss through roofs at a high level of detail and accuracy. However, to date, comparable studies have mainly been conducted on buildings with uniform roof covering and provided two-dimensional, qualitative information. This pilot study aims to survey the heat-loss through roofs of the buildings of the University of Graz (Austria) campus by using high-resolution airborne thermal infrared imagery (TABI 1800 - Thermal Airborne Broadband imager). TABI-1800 acquires data in a spectral range from 3.7 - 4.8 micron, a thermal resolution of 0.05 °C and a spatial resolution of 0.6 m. The remote sensing data is calibrated to different roof coverings (e.g. clay shingle, asphalt shingle, tin roof, glass) and combined with a roof surface model to determine the amount of waste heat leaving the building and to identify hot spots. The additional integration of information about the conditions underneath the roofs into the study allows a more detailed analysis of the upward heat flux and is a significant improvement of existing methods. The resulting data set provides useful information to the university facility service for infrastructure maintenance, especially in terms of attic and roof insulation improvements. Beyond that, the project is supposed to raise public

  17. Thermal Infrared Observations and Thermophysical Modeling of Phobos

    Science.gov (United States)

    Smith, Nathan Michael; Edwards, Christopher Scott; Mommert, Michael; Trilling, David E.; Glotch, Timothy

    2016-10-01

    Mars-observing spacecraft have the opportunity to study Phobos from Mars orbit, and have produced a sizeable record of observations using the same instruments that study the surface of the planet below. However, these observations are generally infrequent, acquired only rarely over each mission.Using observations gathered by Mars Global Surveyor's (MGS) Thermal Emission Spectrometer (TES), we can investigate the fine layer of regolith that blankets Phobos' surface, and characterize its thermal properties. The mapping of TES observations to footprints on the Phobos surface has not previously been undertaken, and must consider the orientation and position of both MGS and Phobos, and TES's pointing mirror angle. Approximately 300 fully resolved observations are available covering a significant subset of Phobos' surface at a variety of scales.The properties of the surface regolith, such as grain size, density, and conductivity, determine how heat is absorbed, transferred, and reradiated to space. Thermophysical modeling allows us to simulate these processes and predict, for a given set of assumed parameters, how the observed thermal infrared spectra will appear. By comparing models to observations, we can constrain the properties of the regolith, and see how these properties vary with depth, as well as regionally across the Phobos surface. These constraints are key to understanding how Phobos formed and evolved over time, which in turn will help inform the environment and processes that shaped the solar system as a whole.We have developed a thermophysical model of Phobos adapted from a model used for unresolved observations of asteroids. The model has been modified to integrate thermal infrared flux across each observed portion of Phobos. It will include the effects of surface roughness, temperature-dependent conductivity, as well as radiation scattered, reflected, and thermally emitted from the Martian surface. Combining this model with the newly-mapped TES

  18. Investigation of anisotropic thermal transport in polymers using infrared thermography

    Science.gov (United States)

    Nieto Simavilla, David; Venerus, David; Schieber, Jay

    2014-03-01

    During manufacturing, the anisotropic nature of thermal transport in flowing polymers plays an important role in the final properties of materials. In our laboratory, we have investigated anisotropic thermal conductivity in polymers subjected to deformation using an optical technique based on Forced Rayleigh Scattering (FRS). For over a decade, our setup has been the only one capable of testing the linear relationship between anisotropy in thermal conductivity and stress, known as the stress-thermal rule. In order to overcome some of the limitations in the optical properties of materials inherent to FRS, we have recently developed a complementary technique based on infrared thermography (IRT). We validate IRT technique by comparing measurements of anisotropy in thermal conductivity on crosslinked networks against those obtained with FRS. The main advantage of IRT method is that, it allows us to study optically thick materials, including polymers that are prone to strain induced crystallization. Additionally, examination of IRT transient state experiments enables us to study the effect of deformation on other properties such as specific heat capacity.

  19. Robust pedestrian detection by combining visible and thermal infrared cameras.

    Science.gov (United States)

    Lee, Ji Hoon; Choi, Jong-Suk; Jeon, Eun Som; Kim, Yeong Gon; Le, Toan Thanh; Shin, Kwang Yong; Lee, Hyeon Chang; Park, Kang Ryoung

    2015-05-05

    With the development of intelligent surveillance systems, the need for accurate detection of pedestrians by cameras has increased. However, most of the previous studies use a single camera system, either a visible light or thermal camera, and their performances are affected by various factors such as shadow, illumination change, occlusion, and higher background temperatures. To overcome these problems, we propose a new method of detecting pedestrians using a dual camera system that combines visible light and thermal cameras, which are robust in various outdoor environments such as mornings, afternoons, night and rainy days. Our research is novel, compared to previous works, in the following four ways: First, we implement the dual camera system where the axes of visible light and thermal cameras are parallel in the horizontal direction. We obtain a geometric transform matrix that represents the relationship between these two camera axes. Second, two background images for visible light and thermal cameras are adaptively updated based on the pixel difference between an input thermal and pre-stored thermal background images. Third, by background subtraction of thermal image considering the temperature characteristics of background and size filtering with morphological operation, the candidates from whole image (CWI) in the thermal image is obtained. The positions of CWI (obtained by background subtraction and the procedures of shadow removal, morphological operation, size filtering, and filtering of the ratio of height to width) in the visible light image are projected on those in the thermal image by using the geometric transform matrix, and the searching regions for pedestrians are defined in the thermal image. Fourth, within these searching regions, the candidates from the searching image region (CSI) of pedestrians in the thermal image are detected. The final areas of pedestrians are located by combining the detected positions of the CWI and CSI of the thermal

  20. Proximity and Gaze Influences Facial Temperature: A Thermal Infrared Imaging Study.

    Directory of Open Access Journals (Sweden)

    Stephanos eIoannou

    2014-08-01

    Full Text Available Direct gaze and interpersonal proximity are known to lead to changes in psycho-physiology, behaviour and brain function. We know little, however, about subtler facial reactions such as rise and fall in temperature, which may be sensitive to contextual effects and functional in social interactions. Using thermal infrared imaging cameras 18 female adult participants were filmed at two interpersonal distances (intimate and social and two gaze conditions (averted and direct. The order of variation in distance was counterbalanced: half the participants experienced a female experimenter’s gaze at the social distance first before the intimate distance (a socially ‘normal’ order and half experienced the intimate distance first and then the social distance (an odd social order. At both distances averted gaze always preceded direct gaze. We found strong correlations in thermal changes between six areas of the face (forehead, chin, cheeks, nose, maxilliary and periorbital regions for all experimental conditions and developed a composite measure of thermal shifts for all analyses. Interpersonal proximity led to a thermal rise, but only in the ‘normal’ social order. Direct gaze, compared to averted gaze, led to a thermal increase at both distances with a stronger effect at intimate distance, in both orders of distance variation. Participants reported direct gaze as more intrusive than averted gaze, especially at the intimate distance. These results demonstrate the powerful effects of another person’s gaze on psycho-physiological responses, even at a distance and independent of context.

  1. Thermal infrared exploration in the Carlin trend, northern Nevada

    Science.gov (United States)

    Watson, K.; Kruse, F.A.; Hummer-Miller, S.

    1990-01-01

    Experimental Thermal Infrared Multispectral Scanner (TIMS) aircraft data have been acquired for the Rodeo Creek NE 7 1/2 minute quadrangle, Eureka County, northern Nevada, covering the Carlin gold mine. A simple model has been developed to extract spectral emissivities for mapping surface lithology and alteration based on the physical properties of geologic materials. Emissivity-ratio images were prepared that allow generalized lithologic discrimination, identification of areas with high silica content, and the first reported detection of the carbonate secondary rest-strahlen feature. -from Authors

  2. Terrestrial Applications of the Thermal Infrared Sensor, TIRS

    Science.gov (United States)

    Smith, Ramsey L.; Thome, Kurtis; Richardson, Cathleen; Irons, James; Reuter, Dennis

    2009-01-01

    Landsat satellites have acquired single-band thermal images since 1978. The next satellile in the heritage, Landsat Data Continuity Mission (LDCM), is scheduled to launch in December 2012. LDCM will contain the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), where TIRS operates in concert with, but independently of OLI. This paper will provide an overview of the remote sensing instrument TIRS. The T1RS instrument was designed at National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) where it will be fabricated and calibrated as well. Protecting the integrity of the Scientific Data that will be collected from TIRS played a strong role in definition of the calibration test equipment and procedures used for the optical, radiometric, and spatial calibration. The data that will be produced from LCDM will continue to be used world wide for environment monitoring and resource management.

  3. Reliability Design and Electro-Thermal-Optical Simulation of Bridge-Style Infrared Thermal Emitters

    Directory of Open Access Journals (Sweden)

    Peng Zhou

    2016-09-01

    Full Text Available Designs and simulations of silicon-based micro-electromechanical systems (MEMS infrared (IR thermal emitters for gas sensing application are presented. The IR thermal emitter is designed as a bridge-style hotplate (BSH structure suspended on a silicon frame for realizing a good thermal isolation between hotplate and frame. For investigating the reliability of BSH structure, three kinds of fillet structures were designed in the contact corner between hotplate and frame. A 3-dimensional finite element method (3D-FEM is used to investigate the electro-thermal, thermal-mechanical, and thermal-optical properties of BSH IR emitter using software COMSOLTM (COMSOL 4.3b, COMSOL Inc., Stockholm, Sweden. The simulation results show that the BSH with oval fillet has the lowest stress distribution and smoothest flows of stress streamlines, while the BSH with square fillet has the highest temperature and stress distribution. The thermal-optical and thermal-response simulations further indicate that the BSH with oval fillet is the optimal design for a reliable IR thermal emitter in spite of having slight inadequacies in emission intensity and modulation bandwidth in comparison with other two structures.

  4. Landsat 8 thermal infrared sensor geometric characterization and calibration

    Science.gov (United States)

    Storey, James C.; Choate, Michael J.; Moe, Donald

    2014-01-01

    The Landsat 8 spacecraft was launched on 11 February 2013 carrying two imaging payloads: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The TIRS instrument employs a refractive telescope design that is opaque to visible wavelengths making prelaunch geometric characterization challenging. TIRS geometric calibration thus relied heavily on on-orbit measurements. Since the two Landsat 8 payloads are complementary and generate combined Level 1 data products, the TIRS geometric performance requirements emphasize the co-alignment of the OLI and TIRS instrument fields of view and the registration of the OLI reflective bands to the TIRS long-wave infrared emissive bands. The TIRS on-orbit calibration procedures include measuring the TIRS-to-OLI alignment, refining the alignment of the three TIRS sensor chips, and ensuring the alignment of the two TIRS spectral bands. The two key TIRS performance metrics are the OLI reflective to TIRS emissive band registration accuracy, and the registration accuracy between the TIRS thermal bands. The on-orbit calibration campaign conducted during the commissioning period provided an accurate TIRS geometric model that enabled TIRS Level 1 data to meet all geometric accuracy requirements. Seasonal variations in TIRS-to-OLI alignment have led to several small calibration parameter adjustments since commissioning.

  5. Infrared-Transparent Visible-Opaque Fabrics for Wearable Personal Thermal Management

    CERN Document Server

    Tong, Jonathan K; Boriskina, Svetlana V; Loomis, James; Xu, Yanfei; Chen, Gang

    2015-01-01

    Personal cooling technologies locally control the temperature of an individual rather than a large space, thus providing personal thermal comfort while supplementing cooling loads in thermally regulated environments. This can lead to significant energy and cost savings. In this study, a new approach to personal cooling was developed using an infrared-transparent visible-opaque fabric (ITVOF), which provides passive cooling via the transmission of thermal radiation emitted by the human body directly to the environment. Here, we present a conceptual framework to thermally and optically design an ITVOF. Using a heat transfer model, the fabric was found to require a minimum infrared (IR) transmittance of 0.644 and a maximum IR reflectance of 0.2 to ensure thermal comfort at ambient temperatures as high as 26.1oC (79oF). To meet these requirements, an ITVOF design was developed using synthetic polymer fibers with an intrinsically low IR absorptance. These fibers were then structured to minimize IR reflection via w...

  6. The facial expression of schizophrenic patients applied with infrared thermal facial image sequence

    National Research Council Canada - National Science Library

    Bo-Lin Jian; Chieh-Li Chen; Wen-Lin Chu; Min-Wei Huang

    2017-01-01

    .... Thus, this study used non-contact infrared thermal facial images (ITFIs) to analyze facial temperature changes evoked by different emotions in moderately and markedly ill schizophrenia patients...

  7. Thermal surveillance of active volcanoes. [infrared scanner recordings of thermal anomalies of Mt. Baker volcano

    Science.gov (United States)

    Friedman, J. D. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. By the end of 1973, aerial infrared scanner traverses for thermal anomaly recordings of all Cascade Range volcanoes were essentially completed. Amplitude level slices of the Mount Baker anomalies were completed and compiled at a scale of 1:24,000, thus producing, for the first time, an accurate map of the distribution and intensity of thermal activity on Mount Baker. The major thermal activity is concentrated within the crater south of the main summit and although it is characterized by intensive solfataric activity and warm ground, it is largely subglacial, causing the development of sizable glacier perforation features. The outgoing radiative flux from the east breach anomalies is sufficient to account for the volume of ice melted to form the glacier perforations. DCP station 6251 has been monitoring a thermally anomalous area on the north slope of Mount Baker. The present thermal activity of Mount Baker accounts for continuing hydrothermal alteration in the crater south of the main summit and recurrent debris avalanches from Sherman Peak on its south rim. The infrared anomalies mapped as part of the experiment SR 251 are considered the basic evidence of the subglacial heating which was the probable triggering mechanism of an avalanche down Boulder Glacier on August 20-21, 1973.

  8. Thermal Infrared Imager on Hayabusa2: Science and Development

    Science.gov (United States)

    Okada, Tatsuaki

    2015-04-01

    Thermal Infrared Imager TIR was developed and calibrated for Haya-busa2 asteroid explorer, aiming at the investigation of thermo-physical properties of C-class near-Earth sub-km sized asteroid (162173) 1999JU3. TIR is based on the 2D micro-bolometer array with germani-um lens to image the surface of asteroid in 8 to 12 μm wavelength (1), measuring the thermal emission off the asteroid surface. Its field of view is 16° x 12° with 328 x 248 pixels. At least 40 (up to 100) images will be taken during asteroid rotation once a week, mainly from the Home Position which is about 20km sunward from asteroid surface. Therefore TIR will image the whole asteroid with spatial resolution of scien-tific objectives of TIR include the mapping of asteroid surface condi-tions (regional distribution of thermal inertia), since the surface physical conditions are strongly correlated with thermal inertia. It is so informa-tive on understanding the re-accretion or surface sedimentation process-es of the asteroid to be the current form. TIR data will be used for searching for those sites having the typical particle size of 1mm for best sample collection, and within the proper thermal condition for space-craft safe operation. After launch of Hayabusa2, TIR has been tested successfully, covering from -100 to 150 °C using a single parameter settings (2). This implies that TIR is actually able to map the surface other than the sunlit areas. Performance of TIR was found basically the same as those in the pre-launch test, when the temperature of TIR is well controlled. References: (1) Fukuhara T. et al., (2011) Earth Planet. Space 63, 1009-1018; (2) Okada T. et al., (2015) Lunar Planet. Sci. Conf. 46, #1331.

  9. High resolution thermal infrared mapping of Martian channels

    Science.gov (United States)

    Craddock, R. A.; Greeley, R.; Christensen, P. R.

    1987-01-01

    Viking Infrared Thermal Mapper (IRTM) high resolution (2 to 5 km) data were compiled and compared to Viking Visual Imaging Subsystem (VIS) data and available 1:5M geologic maps for several Martian channels including Dao, Harmakhis, Mangala, Shalbatana, and Simud Valles in an effort to determine the surface characteristics and the processes active during and after the formation of these channels. Results show a dominance of aeolian processes active in and around the channels. These processes have left materials thick enough to mask any genuine channel deposits. Results also indicate that very comparable Martian channels and their surrounding terrain are blanketed by deposits which are homogeneous in their thermal inertia values. However, optimum IRTM data does not cover the entire Martian surface and because local deposits of high thermal inertia material may not be large enough in areal extent or may be in an unfavorable location on the planet, a high resolution data track may not always occur over these deposits. Therefore, aeolian processes may be even more active than the IRTM data tracts can always show.

  10. Thermal conductivity of a film of single walled carbon nanotubes measured with infrared thermal imager

    Science.gov (United States)

    Feng, Ya; Inoue, Taiki; Xiang, Rong; Chiashi, Shohei; Maruyama, Shigeo

    Heat dissipation has restricted the modern miniaturization trend with the development of electronic devices. Theoretically proven to be with high axial thermal conductivity, single walled carbon nanotubes (SWNT) have long been expected to cool down the nanoscale world. Even though the tube-tube contact resistance limits the capability of heat transfer of the bulk film, the high intrinsic thermal conductivity of SWNT still glorify the application of films of SWNT network as a thermal interface material. In this work, we proposed a new method to straightly measure the thermal conductivity of SWNT film. We bridged two cantilevered Si thin plate with SWNT film, and kept a steady state heat flow in between. With the infrared camera to record the temperature distribution, the Si plates with known thermal conductivity can work as a reference to calculate the heat flux going through the SWNT film. Further, the thermal conductivity of the SWNT film can be obtained through Fourier's law after deducting the effect of thermal radiation. The sizes of the structure, the heating temperature, the vacuum degree and other crucial impact factors are carefully considered and analyzed. The author Y. F. was supported through the Advanced Integration Science Innovation Education and Research Consortium Program by the Ministry of Education, Culture, Sport, Science and Technology.

  11. Neural networks for identifying drunk persons using thermal infrared imagery.

    Science.gov (United States)

    Koukiou, Georgia; Anastassopoulos, Vassilis

    2015-07-01

    Neural networks were tested on infrared images of faces for discriminating intoxicated persons. The images were acquired during controlled alcohol consumption by forty-one persons. Two different experimental approaches were thoroughly investigated. In the first one, each face was examined, location by location, using each time a different neural network, in order to find out those regions that can be used for discriminating a drunk from a sober person. It was found that it was mainly the face forehead that changed thermal behaviour with alcohol consumption. In the second procedure, a single neural structure was trained on the whole face. The discrimination performance of this neural structure was tested on the same face, as well as on unknown faces. The neural networks presented high discrimination performance even on unknown persons, when trained on the forehead of the sober and the drunk person, respectively. Small neural structures presented better generalisation performance.

  12. Unmanned ground vehicle perception using thermal infrared cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellutta, Paolo; Sherwin, Gary W.

    2011-05-01

    The ability to perform off-road autonomous navigation at any time of day or night is a requirement for some unmanned ground vehicle (UGV) programs. Because there are times when it is desirable for military UGVs to operate without emitting strong, detectable electromagnetic signals, a passive only terrain perception mode of operation is also often a requirement. Thermal infrared (TIR) cameras can be used to provide day and night passive terrain perception. TIR cameras have a detector sensitive to either mid-wave infrared (MWIR) radiation (3-5μm) or long-wave infrared (LWIR) radiation (7-14μm). With the recent emergence of high-quality uncooled LWIR cameras, TIR cameras have become viable passive perception options for some UGV programs. The Jet Propulsion Laboratory (JPL) has used a stereo pair of TIR cameras under several UGV programs to perform stereo ranging, terrain mapping, tree-trunk detection, pedestrian detection, negative obstacle detection, and water detection based on object reflections. In addition, we have evaluated stereo range data at a variety of UGV speeds, evaluated dual-band TIR classification of soil, vegetation, and rock terrain types, analyzed 24 hour water and 12 hour mud TIR imagery, and analyzed TIR imagery for hazard detection through smoke. Since TIR cameras do not currently provide the resolution available from megapixel color cameras, a UGV's daytime safe speed is often reduced when using TIR instead of color cameras. In this paper, we summarize the UGV terrain perception work JPL has performed with TIR cameras over the last decade and describe a calibration target developed by General Dynamics Robotic Systems (GDRS) for TIR cameras and other sensors.

  13. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellutta, Paolo; Sherwin, Gary W.

    2011-01-01

    The ability to perform off-road autonomous navigation at any time of day or night is a requirement for some unmanned ground vehicle (UGV) programs. Because there are times when it is desirable for military UGVs to operate without emitting strong, detectable electromagnetic signals, a passive only terrain perception mode of operation is also often a requirement. Thermal infrared (TIR) cameras can be used to provide day and night passive terrain perception. TIR cameras have a detector sensitive to either mid-wave infrared (MWIR) radiation (3-5?m) or long-wave infrared (LWIR) radiation (8-12?m). With the recent emergence of high-quality uncooled LWIR cameras, TIR cameras have become viable passive perception options for some UGV programs. The Jet Propulsion Laboratory (JPL) has used a stereo pair of TIR cameras under several UGV programs to perform stereo ranging, terrain mapping, tree-trunk detection, pedestrian detection, negative obstacle detection, and water detection based on object reflections. In addition, we have evaluated stereo range data at a variety of UGV speeds, evaluated dual-band TIR classification of soil, vegetation, and rock terrain types, analyzed 24 hour water and 12 hour mud TIR imagery, and analyzed TIR imagery for hazard detection through smoke. Since TIR cameras do not currently provide the resolution available from megapixel color cameras, a UGV's daytime safe speed is often reduced when using TIR instead of color cameras. In this paper, we summarize the UGV terrain perception work JPL has performed with TIR cameras over the last decade and describe a calibration target developed by General Dynamics Robotic Systems (GDRS) for TIR cameras and other sensors.

  14. A low cost thermal infrared hyperspectral imager for small satellites

    Science.gov (United States)

    Crites, S. T.; Lucey, P. G.; Wright, R.; Garbeil, H.; Horton, K. A.

    2011-06-01

    The traditional model for space-based earth observations involves long mission times, high cost, and long development time. Because of the significant time and monetary investment required, riskier instrument development missions or those with very specific scientific goals are unlikely to successfully obtain funding. However, a niche for earth observations exploiting new technologies in focused, short lifetime missions is opening with the growth of the small satellite market and launch opportunities for these satellites. These low-cost, short-lived missions provide an experimental platform for testing new sensor technologies that may transition to larger, more long-lived platforms. The low costs and short lifetimes also increase acceptable risk to sensors, enabling large decreases in cost using commercial off the shelf (COTS) parts and allowing early-career scientists and engineers to gain experience with these projects. We are building a low-cost long-wave infrared spectral sensor, funded by the NASA Experimental Project to Stimulate Competitive Research program (EPSCOR), to demonstrate the ways in which a university's scientific and instrument development programs can fit into this niche. The sensor is a low-mass, power efficient thermal hyperspectral imager with electronics contained in a pressure vessel to enable the use of COTS electronics, and will be compatible with small satellite platforms. The sensor, called Thermal Hyperspectral Imager (THI), is based on a Sagnac interferometer and uses an uncooled 320x256 microbolometer array. The sensor will collect calibrated radiance data at long-wave infrared (LWIR, 8-14 microns) wavelengths in 230-meter pixels with 20 wavenumber spectral resolution from a 400-km orbit.

  15. A low cost thermal infrared hyperspectral imager for small satellites

    Science.gov (United States)

    Crites, S. T.; Lucey, P. G.; Wright, R.; Garbeil, H.; Horton, K. A.; Wood, M.

    2012-06-01

    The growth of the small satellite market and launch opportunities for these satellites is creating a new niche for earth observations that contrasts with the long mission durations, high costs, and long development times associated with traditional space-based earth observations. Low-cost, short-lived missions made possible by this new approach provide an experimental platform for testing new sensor technologies that may transition to larger, more long-lived platforms. The low costs and short lifetimes also increase acceptable risk to sensors, enabling large decreases in cost using commercial off-the-shelf (COTS) parts and allowing early-career scientists and engineers to gain experience with these projects. We are building a low-cost long-wave infrared spectral sensor, funded by the NASA Experimental Project to Stimulate Competitive Research program (EPSCoR), to demonstrate ways in which a university's scientific and instrument development programs can fit into this niche. The sensor is a low-mass, power-efficient thermal hyperspectral imager with electronics contained in a pressure vessel to enable use of COTS electronics and will be compatible with small satellite platforms. The sensor, called Thermal Hyperspectral Imager (THI), is based on a Sagnac interferometer and uses an uncooled 320x256 microbolometer array. The sensor will collect calibrated radiance data at long-wave infrared (LWIR, 8-14 microns) wavelengths in 230 meter pixels with 20 wavenumber spectral resolution from a 400 km orbit. We are currently in the laboratory and airborne testing stage in order to demonstrate the spectro-radiometric quality of data that the instrument provides.

  16. TIRCIS: thermal infrared compact imaging spectrometer for small satellite applications

    Science.gov (United States)

    Wright, Robert; Lucey, Paul; Crites, Sarah; Garbeil, Harold; Wood, Mark; Pilger, Eric; Gabrieli, Andrea; Honniball, Casey

    2016-10-01

    Measurements of reflectance or emittance in tens of narrow, contiguous wavebands, allow for the derivation of laboratory quality spectra remotely, from which the chemical composition and physical properties of targets can be determined. Although spaceborne (e.g. EO-1 Hyperion) hyperspectral data in the 0.4-2.5 micron (VSWIR) region are available, the provision of equivalent data in the log-wave infrared has lagged behind, there being no currently operational high spatial resolution LWIR imaging spectrometer on orbit. TIRCIS (Thermal Infra-Red Compact Imaging Spectrometer), uses a Fabry-Perot interferometer, an uncooled microbolometer array, and push-broom scanning to acquire hyperspectral image data. Radiometric calibration is provided by blackbody targets while spectral calibration is achieved using monochromatic light sources. The instrument has a mass of <15 kg and dimensions of 53 cm × 25 cm ♢ 22 cm, and has been designed to be compatible with integration into a micro-satellite platform. (A precursor to this instrument was launched onboard a 55 kg microsatellite in October 2015). The optical design yields a 120 m ground sample size given an orbit of 500 km. Over the wavelength interval of 7.5 to 14 microns up to 50 spectral samples are possible. Measured signal-to-noise ratios range from peak values of 500:1 to 1500:1, for source temperature of 10 to 100°C.

  17. Exploring the Saturn System in the Thermal Infrared: The Composite Infrared Spectrometer

    Science.gov (United States)

    Flasar, F. M.; Kunde, V. g.; Abbas, M. M.; Achterberg, R. K.; Ade, P.; Barucci, A.; Bezard, B.; Bjoraker, G. L.; Brasunas, J. C.; Calcutt, S.

    2004-01-01

    The Composite Inbred Spectrometer (CIRS) is a remote-sensing Fourier Transform Spectrometer on the Cassini orbiter that measures thermal radiation over two decades in wave number, from 10 to 1400 cm (1 mm to 7pm), with a spectral resolution that can be set from 0.5 to 20 cm. The far in portion of the spectrum (10 - 600 cm) is measured with a polarizing interferometer having thermopile detectors with a common 4-mrad field of view. The middle infrared portion is measured with a traditional Michelson interferometer having two focal planes (600 - 1100cm, 1100-1400 cm). Each focal plane is composed of a 1x10 array of HgCdTe detectors, each detector having a 0.3-mrad field of view. CIRS observations will provide three-dimensional maps of temperature, gas composition, and aerosols/condensates of the atmospheres of Titan and Saturn with good vertical and horizontal resolution, from deep in their tropospheres to high in their mesospheres. CIRS ability to observe atmospheres in the limb viewing mode (in addition to nadir) offers the opportunity to provide accurate and highly resolved vertical profiles of these atmospheric variables. The ability to observe with high-spectral resolution should facilitate the identification of new constituents. CIRS will also map the thermal and compositional properties of the surfaces of Saturn's icy satellites. It will similarly map Saturn's rings, characterizing their formation and evolution. The combination of broad spectral range, programmable spectral resolution, the small detector fields of view, and an orbiting spacecraft platform will allow CIRS to observe the Saturnian system in the thermal infrared at a level of detail not previously achieved.

  18. Direct thermal imaging of circumstellar discs and exo-planets

    Science.gov (United States)

    Pantin, Eric; Siebenmorgen, Ralf; Cavarroc, Celine; Sterzik, Michael F.

    2008-07-01

    The phase A study of a mid infrared imager and spectrograph for the European Extremely Large Telescope (E-ELT), called METIS, was endorsed in May 2008. Two key science drivers of METIS are: a) direct thermal imaging of exo-planets and b) characterization of circumstellar discs from the early proto-planetary to the late debris phase. Observations in the 10μm atmospheric window (N band) require a contrast ratio between stellar light and emitted photons from the exo-planet or the disc of ~ 105. At shorter wavelengths the contrast between star and reflected light from the planet-disc system exceeds >~ 107 posing technical challenges. By means of end-to-end detailed simulations we demonstrate that the superb spatial resolution of a 42m telescope in combination with stellar light rejection methods such as coronagraphic or differential imaging will allow detections at 10μm for a solar type system down to a star-planet separation of 0.1" and a mass limit for irradiated planets of 1 Jupiter (MJ) mass. In case of self-luminous planets observations are possible further out e.g. at the separation limit of JWST of ~ 0.7", METIS will detect planets >~5MJ. This allows to derive a census of all such exo-planets by means of thermal imaging in a volume limited sample of up to 6pc. In addition, METIS will provide the possibility to study the chemical composition of atmospheres of exo-planets using spectroscopy at moderate spectral resolution (λ/Δλ ~ 100) for the brightest targets. Based on detailed performance and sensitivity estimates, we demonstrate that a mid-infrared instrument on an ELT is perfectly suited to observe gravitationally created structures such as gaps in proto- and post- planetary discs, in a complementary way to space missions (e.g. JWST, SOFIA) and ALMA which can only probe the cold dust emission further out.

  19. Exoplanet Community Report on Direct Infrared Imaging of Exoplanets

    Science.gov (United States)

    Danchi, William C.; Lawson, Peter R.

    2009-01-01

    Direct infrared imaging and spectroscopy of exoplanets will allow for detailed characterization of the atmospheric constituents of more than 200 nearby Earth-like planets, more than is possible with any other method under consideration. A flagship mission based on larger passively cooled infrared telescopes and formation flying technologies would have the highest angular resolution of any concept under consideration. The 2008 Exoplanet Forum committee on Direct Infrared Imaging of Exoplanets recommends: (1) a vigorous technology program including component development, integrated testbeds, and end-to-end modeling in the areas of formation flying and mid-infrared nulling; (2) a probe-scale mission based on a passively cooled structurally connected interferometer to be started within the next two to five years, for exoplanetary system characterization that is not accessible from the ground, and which would provide transformative science and lay the engineering groundwork for the flagship mission with formation flying elements. Such a mission would enable a complete exozodiacal dust survey (<1 solar system zodi) in the habitable zone of all nearby stars. This information will allow for a more efficient strategy of spectral characterization of Earth-sized planets for the flagship missions, and also will allow for optimization of the search strategy of an astrometric mission if such a mission were delayed due to cost or technology reasons. (3) Both the flagship and probe missions should be pursued with international partners if possible. Fruitful collaboration with international partners on mission concepts and relevant technology should be continued. (4) Research and Analysis (R&A) should be supported for the development of preliminary science and mission designs. Ongoing efforts to characterize the the typical level of exozodiacal light around Sun-like stars with ground-based nulling technology should be continued.

  20. Exoplanet Community Report on Direct Infrared Imaging of Exoplanets

    Science.gov (United States)

    Danchi, William C.; Lawson, Peter R.

    2009-01-01

    Direct infrared imaging and spectroscopy of exoplanets will allow for detailed characterization of the atmospheric constituents of more than 200 nearby Earth-like planets, more than is possible with any other method under consideration. A flagship mission based on larger passively cooled infrared telescopes and formation flying technologies would have the highest angular resolution of any concept under consideration. The 2008 Exoplanet Forum committee on Direct Infrared Imaging of Exoplanets recommends: (1) a vigorous technology program including component development, integrated testbeds, and end-to-end modeling in the areas of formation flying and mid-infrared nulling; (2) a probe-scale mission based on a passively cooled structurally connected interferometer to be started within the next two to five years, for exoplanetary system characterization that is not accessible from the ground, and which would provide transformative science and lay the engineering groundwork for the flagship mission with formation flying elements. Such a mission would enable a complete exozodiacal dust survey (<1 solar system zodi) in the habitable zone of all nearby stars. This information will allow for a more efficient strategy of spectral characterization of Earth-sized planets for the flagship missions, and also will allow for optimization of the search strategy of an astrometric mission if such a mission were delayed due to cost or technology reasons. (3) Both the flagship and probe missions should be pursued with international partners if possible. Fruitful collaboration with international partners on mission concepts and relevant technology should be continued. (4) Research and Analysis (R&A) should be supported for the development of preliminary science and mission designs. Ongoing efforts to characterize the the typical level of exozodiacal light around Sun-like stars with ground-based nulling technology should be continued.

  1. Steady-state sinusoidal thermal characterization at chip level by internal infrared-laser deflection

    Energy Technology Data Exchange (ETDEWEB)

    Perpina, Xavier; Jorda, Xavier; Vellvehi, Miquel [Centre Nacional de Microelectronica (IMB-CNM-CSIC), Campus UAB, 08193 Bellaterra, Barcelona (Spain); Altet, Josep [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Barcelona 08034 (Spain); Mestres, NarcIs [Institut de Ciencia dels Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Barcelona (Spain)

    2008-08-07

    A new approach is reported for thermally characterizing microelectronic devices and integrated circuits under a steady-state sinusoidal regime by internal infrared-laser deflection (IIR-LD). It consists of extracting the amplitude and phase Bode plots of the temperature profile inside the chip (depth-resolved measurements in the frequency domain). As a consequence, not only are the IIR-LD performances significantly improved (accuracy, robustness to noise, control of boundary conditions and heat flux confinement) but also the direct temperature measurement is feasible when thin regions are inspected and thermal parameters can be easily extracted (thermal diffusivity). In order to show the efficiency of this technique, a thermal test chip (TTC) is used. The TTC is thermally excited by imposing a cosine-like voltage waveform. As a result, a vertical temperature profile inside the die is obtained depending on the heating frequency. Repeating this procedure at several frequencies, the frequency response of the chip internal temperature profile is derived. By comparing the experimental results with the model predictions, good agreement is achieved. This technique allows evaluation of the thermal behaviour at the chip level; also it could be useful for failure analysis.

  2. Thermal Interpretation of Infrared Dynamics in de Sitter

    CERN Document Server

    Rigopoulos, Gerasimos

    2016-01-01

    The infrared dynamics of a light, minimally coupled scalar field in de Sitter spacetime with Ricci curvature $R=12H$, averaged over horizon sized regions of physical volume $V_H=\\frac{4\\pi}{3}\\left(\\frac{1}{H}\\right)^3$, can be interpreted as Brownian motion in a medium with de Sitter temperature $T_{DS}=\\frac{\\hbar H}{2\\pi}$. We demonstrate this by employing path integral techniques, deriving the effective action of scalar field fluctuations with wavelengths larger than the de Sitter curvature radius and generalizing Starobinsky's seminal results on stochastic inflation. The effective action describes stochastic dynamics and the fluctuating force drives the field to an equilibrium characterized by a thermal Gibbs distribution at temperature $T_{DS}$ which corresponds to a de Sitter invariant state. Hence, approach towards this state can be interpreted as thermalization. We show that the stochastic kinetic energy of the coarse-grained description corresponds to the norm of $\\partial_\\mu\\phi$ and takes a well ...

  3. Infrared

    Science.gov (United States)

    Vollmer, M.

    2013-11-01

    underlying physics. There are now at least six different disciplines that deal with infrared radiation in one form or another, and in one or several different spectral portions of the whole IR range. These are spectroscopy, astronomy, thermal imaging, detector and source development and metrology, as well the field of optical data transmission. Scientists working in these fields range from chemists and astronomers through to physicists and even photographers. This issue presents examples from some of these fields. All the papers—though some of them deal with fundamental or applied research—include interesting elements that make them directly applicable to university-level teaching at the graduate or postgraduate level. Source (e.g. quantum cascade lasers) and detector development (e.g. multispectral sensors), as well as metrology issues and optical data transmission, are omitted since they belong to fundamental research journals. Using a more-or-less arbitrary order according to wavelength range, the issue starts with a paper on the physics of near-infrared photography using consumer product cameras in the spectral range from 800 nm to 1.1 µm [1]. It is followed by a series of three papers dealing with IR imaging in spectral ranges from 3 to 14 µm [2-4]. One of them deals with laboratory courses that may help to characterize the IR camera response [2], the second discusses potential applications for nondestructive testing techniques [3] and the third gives an example of how IR thermal imaging may be used to understand cloud cover of the Earth [4], which is the prerequisite for successful climate modelling. The next two papers cover the vast field of IR spectroscopy [5, 6]. The first of these deals with Fourier transform infrared spectroscopy in the spectral range from 2.5 to 25 µm, studying e.g. ro-vibrational excitations in gases or optical phonon interactions within solids [5]. The second deals mostly with the spectroscopy of liquids such as biofuels and special

  4. Infrared thermal imaging of rat somatosensory cortex with whisker stimulation.

    Science.gov (United States)

    Suzuki, Takashi; Ooi, Yasuhiro; Seki, Junji

    2012-04-01

    The present study aims to validate the applicability of infrared (IR) thermal imaging for the study of brain function through experiments on the rat barrel cortex. Regional changes in neural activity within the brain produce alterations in local thermal equilibrium via increases in metabolic activity and blood flow. We studied the relationship between temperature change and neural activity in anesthetized rats using IR imaging to visualize stimulus-induced changes in the somatosensory cortex of the brain. Sensory stimulation of the vibrissae (whiskers) was given for 10 s using an oscillating whisker vibrator (5-mm deflection at 10, 5, and 1 Hz). The brain temperature in the observational region continued to increase significantly with whisker stimulation. The mean peak recorded temperature changes were 0.048 ± 0.028, 0.054 ± 0.036, and 0.097 ± 0.015°C at 10, 5, and 1 Hz, respectively. We also observed that the temperature increase occurred in a focal spot, radiating to encompass a larger region within the contralateral barrel cortex region during single-whisker stimulation. Whisker stimulation also produced ipsilateral cortex temperature increases, which were localized in the same region as the pial arterioles. Temperature increase in the barrel cortex was also observed in rats treated with a calcium channel blocker (nimodipine), which acts to suppress the hemodynamic response to neural activity. Thus the location and area of temperature increase were found to change in accordance with the region of neural activation. These results indicate that IR thermal imaging is viable as a functional quantitative neuroimaging technique.

  5. Provisional maps of thermal areas in Yellowstone National Park, based on satellite thermal infrared imaging and field observations

    Science.gov (United States)

    Vaughan, R. Greg; Heasler, Henry; Jaworowski, Cheryl; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.

    2014-01-01

    Maps that define the current distribution of geothermally heated ground are useful toward setting a baseline for thermal activity to better detect and understand future anomalous hydrothermal and (or) volcanic activity. Monitoring changes in the dynamic thermal areas also supports decisions regarding the development of Yellowstone National Park infrastructure, preservation and protection of park resources, and ensuring visitor safety. Because of the challenges associated with field-based monitoring of a large, complex geothermal system that is spread out over a large and remote area, satellite-based thermal infrared images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to map the location and spatial extent of active thermal areas, to generate thermal anomaly maps, and to quantify the radiative component of the total geothermal heat flux. ASTER thermal infrared data acquired during winter nights were used to minimize the contribution of solar heating of the surface. The ASTER thermal infrared mapping results were compared to maps of thermal areas based on field investigations and high-resolution aerial photos. Field validation of the ASTER thermal mapping is an ongoing task. The purpose of this report is to make available ASTER-based maps of Yellowstone’s thermal areas. We include an appendix containing the names and characteristics of Yellowstone’s thermal areas, georeferenced TIFF files containing ASTER thermal imagery, and several spatial data sets in Esri shapefile format.

  6. The added value of a visible channel to a geostationary thermal infrared instrument to monitor ozone for air quality

    National Research Council Canada - National Science Library

    Hache, E; Attié, J.-L; Tourneur, C; Ricaud, P; Coret, L; Lahoz, W. A; El Amraoui, L; Josse, B; Hamer, P; Warner, J; Liu, X; Chance, K; Höpfner, M; Spurr, R; Natraj, V; Kulawik, S; Eldering, A; Orphal, J

    2014-01-01

    ...) in the thermal infrared (GEO TIR) and (2) in the thermal infrared and the visible (GEO TIR+VIS). These configurations are compared against each other, and also against an ozone reference state and a priori ozone information...

  7. Thermal infrared hyperspectral imaging from vehicle-carried instrumentation

    Science.gov (United States)

    Kirkland, Laurel E.; Herr, Kenneth C.; Adams, Paul M.; McAfee, John; Salisbury, John

    2002-09-01

    Stand-off identification in the field using thermal infrared spectrometers (hyperspectral) is a maturing technique for gases and aerosols. However, capabilities to identify solid-phase materials on the surface lag substantially, particularly for identification in the field without benefit of ground truth (e.g. for "denied areas"). Spectral signatures of solid phase materials vary in complex and non-intuitive ways, including non-linear variations with surface texture, particle size, and intimate mixing. Also, in contrast to airborne or satellite measurements, reflected downwelling radiance strongly affects the signature measured by field spectrometers. These complex issues can confound interpretations or cause a misidentification in the field. Problems that remain particularly obstinate are (1) low ambiguity identification when there is no accompanying ground truth (e.g. measurements of denied areas, or Mars surface by the 2003 Mars lander spectrometer); (2) real- or near real-time identification, especially when a low ambiguity answer is critical; (3) identification of intimate mixtures (e.g. two fine powders mixed together) and targets composed of very small particles (e.g. aerosol fallout dust, some tailings); and (4) identification of non-diffuse targets (e.g. smooth coatings such as paint and desert varnish), particularly when measured at a high emission angle. In most studies that focus on gas phase targets or specific manmade targets, the solid phase background signatures are called "clutter" and are thrown out. Here we discuss our field spectrometer images measured of test targets that were selected to include a range of particle sizes, diffuse, non-diffuse, high, and low reflectance materials. This study was designed to identify and improve understanding of the issues that complicate stand-off identification in the field, with a focus on developing identification capabilities to proceed without benefit of ground truth. This information allows both improved

  8. Estimating Clothing Thermal Insulation Using an Infrared Camera

    Directory of Open Access Journals (Sweden)

    Jeong-Hoon Lee

    2016-03-01

    Full Text Available In this paper, a novel algorithm for estimating clothing insulation is proposed to assess thermal comfort, based on the non-contact and real-time measurements of the face and clothing temperatures by an infrared camera. The proposed method can accurately measure the clothing insulation of various garments under different clothing fit and sitting postures. The proposed estimation method is investigated to be effective to measure its clothing insulation significantly in different seasonal clothing conditions using a paired t-test in 99% confidence interval. Temperatures simulated with the proposed estimated insulation value show closer to the values of actual temperature than those with individual clothing insulation values. Upper clothing’s temperature is more accurate within 3% error and lower clothing’s temperature is more accurate by 3.7%~6.2% error in indoor working scenarios. The proposed algorithm can reflect the effect of air layer which makes insulation different in the calculation to estimate clothing insulation using the temperature of the face and clothing. In future, the proposed method is expected to be applied to evaluate the customized passenger comfort effectively.

  9. Infrared thermal wave non-destructive detection for the internal structure of metal Buddha head

    Science.gov (United States)

    Zhang, He-Nan; Zhang, Zhen-Wei; Lei, Yong; Qu, Liang; Gao, Fei; Feng, Li-Chun

    2016-01-01

    Objective This paper depicts a testing technology of nondestructive infrared imaging for acquiring internal structure information of metal Buddha head. Methods applying active infrared thermal imaging nondestructive testing technology Results Data which was collected by IR camera was processed, the typical time thermograph and the curve of logarithmic temperature-time can be. get information of relative thickness in metal Buddha face. Conclusion Infrared thermal imaging technology can be detect the inside information of metal Buddha head . It is feasible to conserve heritage in infrared imaging method.

  10. Landsat-8 Thermal Infrared Sensor (TIRS Vicarious Radiometric Calibration

    Directory of Open Access Journals (Sweden)

    Julia A. Barsi

    2014-11-01

    Full Text Available Launched in February 2013, the Landsat-8 carries on-board the Thermal Infrared Sensor (TIRS, a two-band thermal pushbroom imager, to maintain the thermal imaging capability of the Landsat program. The TIRS bands are centered at roughly 10.9 and 12 μm (Bands 10 and 11 respectively. They have 100 m spatial resolution and image coincidently with the Operational Land Imager (OLI, also on-board Landsat-8. The TIRS instrument has an internal calibration system consisting of a variable temperature blackbody and a special viewport with which it can see deep space; a two point calibration can be performed twice an orbit. Immediately after launch, a rigorous vicarious calibration program was started to validate the absolute calibration of the system. The two vicarious calibration teams, NASA/Jet Propulsion Laboratory (JPL and the Rochester Institute of Technology (RIT, both make use of buoys deployed on large water bodies as the primary monitoring technique. RIT took advantage of cross-calibration opportunity soon after launch when Landsat-8 and Landsat-7 were imaging the same targets within a few minutes of each other to perform a validation of the absolute calibration. Terra MODIS is also being used for regular monitoring of the TIRS absolute calibration. The buoy initial results showed a large error in both bands, 0.29 and 0.51 W/m2·sr·μm or −2.1 K and −4.4 K at 300 K in Band 10 and 11 respectively, where TIRS data was too hot. A calibration update was recommended for both bands to correct for a bias error and was implemented on 3 February 2014 in the USGS/EROS processing system, but the residual variability is still larger than desired for both bands (0.12 and 0.2 W/m2·sr·μm or 0.87 and 1.67 K at 300 K. Additional work has uncovered the source of the calibration error: out-of-field stray light. While analysis continues to characterize the stray light contribution, the vicarious calibration work proceeds. The additional data have not changed

  11. Extraction of thermal parameters of microbolometer infrared detectors using electrical measurement

    Science.gov (United States)

    Karunasiri, R. P. G.; Xu, Gu; Chen, G. X.; Sridhar, U.

    1998-10-01

    The performance of microbolometer infrared sensors is typically characterized by its thermal time constant, heat capacitance, and thermal conductance. Therefore, the determination of these parameters accurately and efficiently is of considerable interest for the design and operation of microbolometer infrared sensors. Usually, the thermal time constant is obtained by measuring the frequency response of microbolometers under infrared excitation and the thermal conductance and capacity are extracted using electrical measurement. In this paper, a technique is described to extract all three parameters using a single electrical measurement. In the measurement, we have employed a Wheatstone Bridge consisting of a bolometer and three reference resistors. The resistance of the bolometer changes as a result of self-heating under an external bias which in turn generates an output voltage across the Bridge. The time dependence of the output voltage was used to extract thermal parameters of the bolometer. We believe this technique is useful in determining the thermal parameters of microbolometer based sensors.

  12. Use of thermal infrared pictures for retrieving intertidal DEM by the waterline method: advantages and limitations

    Science.gov (United States)

    Gaudin, D.; Delacourt, C.; Allemand, P.

    2010-12-01

    Digital Elevation Models (DEM) of the intertidal zones have a growing interest for ecological and land development purposes. They are also a fundamental tool for monitoring current sedimentary movements in those low energy environments. Such DEMs have to be constructed with a centimetric resolution as the topographic changes are not predictable and as sediment displacements are weak. Direct construction of DEM by GPS in these muddy environment is difficult: photogrammetric techniques are not efficient on uniform coloured surfaces and terrestrial laser scans are difficult to stabilize on the mud, due to humidity. In this study, we propose to improve and to apply the waterline method to retrieve DEMs in intertidal zones. This technique is based on monitoring accurately the boundary between sand and water during a whole tide rise with thermal infrared images. The DEM is made by stacking all these lines calibrated by an immersed pressure sensor. Using thermal infrared pictures, instead of optical ones, improves the detection of the waterline, since mud and water have very different responses to sun heating and a large emissivity contrast. However, temperature retrieving from thermal infrared data is not trivial, since the luminance of an object is the sum of a radiative part and a reflexive part, whose relative proportions are given by the emissivity. In the following equation, B accounts for the equivalent blackbody luminance, and Linc is the incident luminance : Ltot}=L{rad}+L_{refl=ɛ B+(1-ɛ )Linc The infrared waterline technique has been used for the monitoring of a beach located on the Aber Benoit, 8.5km away from the open sea. The site is mainly constituted of mud, and waves are very small (less than one centimeter high), which are the ideal conditions for using the waterline method. A few measurements have been made to make differential heigh maps of sediments. We reached a mean resolution of 2cm and a vertical accuracy better than one centimeter. The results

  13. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ran, E-mail: jliubme@tsinghua.edu.cn, E-mail: liuran@tsinghua.edu.cn; Liu, Jing, E-mail: jliubme@tsinghua.edu.cn, E-mail: liuran@tsinghua.edu.cn [Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China); Wang, Jia [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2015-07-15

    Hyperthermia (42-46°C), treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR) based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl) than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.

  14. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    Directory of Open Access Journals (Sweden)

    Ran Liu

    2015-07-01

    Full Text Available Hyperthermia (42-46°C, treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.

  15. Component temperatures inversion for remote sensing pixel based on directional thermal radiation model

    Institute of Scientific and Technical Information of China (English)

    王锦地; 李小文; 孙晓敏; 刘强

    2000-01-01

    When the remote sensing pixel is composed of multiple components and a non-isothermal surface, its directional signature of thermal-infrared radiation is mainly determined by the 3D structure of the pixel. In this paper, we present our simple directional thermal radiation model to describe the relation between the pixel thermal emission and the pixel’s component parameters, and invert the model to get the component temperatures. For the inversion algorithm, we focus on how to use the information of given observations in a more effective way. The information content in data space and parameter space is defined, and the transferring of information content in inversion procedure is studied. Our forward model and inversion method are validated using indoor directional measurement data.

  16. Component temperatures inversion for remote sensing pixel based on directional thermal radiation model

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    When the remote sensing pixel is composed of multiple components and a non-isothermal surface,its directional signature of thermal-infrared radiation is mainly determined by the 3D structure of the pixel.In this paper,we present our simple directional thermal radiation model to describe the relation between the pixel thermal emission and the pixel's component parameters,and invert the model to get the component temperatures.For the inversion algorithm,we focus on how to use the information of given observations in a more effective way.The information content in data space and parameter space is defined,and the transferring of information content in inversion procedure is studied.Our forward model and inversion method are validated using indoor directional measurement data.

  17. Mako airborne thermal infrared imaging spectrometer: performance update

    Science.gov (United States)

    Hall, Jeffrey L.; Boucher, Richard H.; Buckland, Kerry N.; Gutierrez, David J.; Keim, Eric R.; Tratt, David M.; Warren, David W.

    2016-09-01

    The Aerospace Corporation's sensitive Mako thermal infrared imaging spectrometer, which operates between 7.6 and 13.2 microns at a spectral sampling of 44 nm, and flies in a DeHavilland DHC-6 Twin Otter, has undergone significant changes over the past year that have greatly increased its performance. A comprehensive overhaul of its electronics has enabled frame rates up to 3255 Hz and noise reductions bringing it close to background-limited. A replacement diffraction grating whose peak efficiency was tuned to shorter wavelength, coupled with new AR coatings on certain key optics, has improved the performance at the short wavelength end by a factor of 3, resulting in better sensitivity for methane detection, for example. The faster frame rate has expanded the variety of different scan schemes that are possible, including multi-look scans in which even sizeable target areas can be scanned multiple times during a single overpass. Off-nadir scanning to +/-56.4° degrees has also been demonstrated, providing an area scan rate of 33 km2/minute for a 2-meter ground sampling distance (GSD) at nadir. The sensor achieves a Noise Equivalent Spectral Radiance (NESR) of better than 0.6 microflicks (μf, 10-6 W/sr/cm2/μm) in each of the 128 spectral channels for a typical airborne dataset in which 4 frames are co-added. An additional improvement is the integration of a new commercial 3D stabilization mount which is significantly better at compensating for aircraft motions and thereby maintains scan performance under quite turbulent flying conditions. The new sensor performance and capabilities are illustrated.

  18. Is the aerosol emission detectable in the thermal infrared?

    Science.gov (United States)

    Hollweg, H.-D.; Bakan, S.; Taylor, J. P.

    2006-08-01

    The impact of aerosols on the thermal infrared radiation can be assessed by combining observations and radiative transfer calculations. Both have uncertainties, which are discussed in this paper. Observational uncertainties are obtained for two FTIR instruments operated side by side on the ground during the LACE 1998 field campaign. Radiative transfer uncertainties are assessed using a line-by-line model taking into account the uncertainties of the HITRAN 2004 spectroscopic database, uncertainties in the determination of the atmospheric profiles of water vapor and ozone, and differences in the treatment of the water vapor continuum absorption by the CKD 2.4.1 and MT_CKD 1.0 algorithms. The software package OPAC was used to describe the optical properties of aerosols for climate modeling. The corresponding radiative signature is a guideline to the assessment of the uncertainty ranges of observations and models. We found that the detection of aerosols depends strongly on the measurement accuracy of atmospheric profiles of water vapor and ozone and is easier for drier conditions. Within the atmospheric window, only the forcing of downward radiation at the surface by desert aerosol emerges clearly from the uncertainties of modeling and FTIR measurement. Urban and polluted continental aerosols are only partially detectable depending on the wave number and on the atmospheric water vapor amount. Simulations for the space-borne interferometer IASI show that only upward radiation above transported mineral dust aloft emerges out of the uncertainties. The detection of aerosols with weak radiative impact by FTIR instruments like ARIES and OASIS is made difficult by noise as demonstrated by the signal to noise ratio for clean continental aerosols. Altogether, the uncertainties found suggest that it is difficult to detect the optical depths of nonmineral and unpolluted aerosols.

  19. A review on the application of medical infrared thermal imaging in hands

    Science.gov (United States)

    Sousa, Elsa; Vardasca, Ricardo; Teixeira, Sérgio; Seixas, Adérito; Mendes, Joaquim; Costa-Ferreira, António

    2017-09-01

    Infrared Thermal (IRT) imaging is a medical imaging modality to study skin temperature in real time, providing physiological information about the underlining structures. One of the most accessible body sites to be investigated using such imaging method is the hands, which can reflect valuable information about conditions affecting the upper limbs. The aim of this review is to acquaint the successful applications of IRT in the hands with a medical scope, opening horizons for future applications based in the achieved results. A systematic literature review was performed in order to assess in which applications medical IRT imaging was applied to the hands. The literature search was conducted in the reference databases: PubMed, Scopus and ISI Web of Science, making use of keywords (hand, thermography, infrared imaging, thermal imaging) combination that were present at the title and abstract. No temporal restriction was made. As a result, 4260 articles were identified, after removal of duplicates, 3224 articles remained and from first title and abstract filtering, a total of 388 articles were considered. After application of exclusion criteria (non-availability, non-clinical applications, reviews, case studies, written in other languages than English and using liquid crystal thermography), 146 articles were considered for this review. It can be verified that thermography provides useful diagnostic and monitoring information of conditions that directly or indirectly related to hands, as well as aiding in the treatment assessment. Trends and future challenges for IRT applications on hands are provided to stimulate researchers and clinicians to explore and address them.

  20. Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is an advanced Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System (ATTIREOIS). ATTIREOIS sensor payload consists of two sets of...

  1. An experiment using mid and thermal infrared in quantum remote sensing

    Institute of Scientific and Technical Information of China (English)

    BI; Siwen; HAN; Jixia

    2006-01-01

    The concept of quantum remote sensing and the differences between quantum remote sensing and remote sensing is introduced, an experiment about the uses of mid and thermal infrared in quantum remote sensing is described and results are analyzed.

  2. Infrared Thermal Analysis and Individual Differences in Skin Temperature Asymmetry in Rett Syndrome.

    Science.gov (United States)

    Symons, Frank J; Byiers, Breanne; Hoch, John; Dimian, Adele; Barney, Chantel; Feyma, Timothy; Beisang, Arthur

    2015-08-01

    We evaluated the feasibility of using a portable infrared thermal camera to quantify the degree of thermal dysregulation (cold hands/feet) and test for naturally occurring within-patient skin temperature asymmetry in Rett syndrome. Infrared thermal images were acquired passively from 15 patients (mean age = 13.7 years, range 4-47) with clinical diagnoses of Rett. Images were acquired using a FLIR T400 infrared thermal camera (still images recorded at 5 Hz, resolution of 320 × 240 pixels, thermal sensitivity = 0.05 °C; capture session lasted approximately 3 minutes). The infrared thermal camera was orthogonal to the body part (hands, feet) and positioned approximately 1 meter from the skin's surface. There were large intraindividual left/right differences in temperature. Seven (47%) and eight (53%) patients had statistically significant (P thermal asymmetry may reflect prolonged activity of the sympathetic nervous system and individual differences in sympathetic regulation. As clinical trials emerge and endpoints are considered, portable infrared thermal camera may provide one noninvasive means of evaluating changes in sympathetic regulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Evaluation of aerial thermal infrared remote sensing to identify groundwater-discharge zones in the Meduxnekeag River, Houlton, Maine

    Science.gov (United States)

    Culbertson, Charles W.; Huntington, Thomas G.; Caldwell, James M.; O'Donnell, Cara

    2014-01-01

    Residents of the area near Houlton, Maine, have observed seasonal episodic blooms of algae and documented elevated concentrations of fecal-coliform bacteria and inorganic nutrients and low dissolved oxygen concentrations in the Meduxnekeag River. Although point and nonpoint sources of urban and agricultural runoff likely contribute to water-quality impairment, the role of shallow groundwater inflows in delivering such contaminants to the Meduxnekeag River has not been well understood. To provide information about possible groundwater inflows to the river, airborne thermal infrared videography was evaluated as a means to identify and classify thermal anomalies in a 25-mile reach of the mainstem and tributaries of the Meduxnekeag River near Houlton, Maine. The U.S. Geological Survey, in cooperation with the Houlton Band of Maliseet Indians, collected thermal infrared images from a single-engine, fixed-wing aircraft during flights on December 3–4, 2003, and November 26, 2004. Eleven thermal anomalies were identified on the basis of data from the December 2003 flight and 17 from the November 2004 flight, which covered the same reaches of stream. Following image analysis, characterization, and prioritization, the georeferenced infrared images of the thermal anomalies were compared to features on topographic maps of the study area. The mapped anomalies were used to direct observations on the ground to confirm discharge locations and types of inflow. The variations in grayscale patterns on the images were thus confirmed as representing shallow groundwater-discharge zones (seeps), outfalls of treated wastewater, or ditches draining runoff from impervious surfaces.

  4. An accurate retrieval of leaf water content from mid to thermal infrared spectra using continuous wavelet analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Saleem, E-mail: ullah19488@itc.nl [Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Skidmore, Andrew K. [Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Naeem, Mohammad [Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM), KPK (Pakistan); Schlerf, Martin [Centre de Recherche Public-Gabriel Lippmann (CRPGL), L-4422 Belvaux (Luxembourg)

    2012-10-15

    Leaf water content determines plant health, vitality, photosynthetic efficiency and is an important indicator of drought assessment. The retrieval of leaf water content from the visible to shortwave infrared spectra is well known. Here for the first time, we estimated leaf water content from the mid to thermal infrared (2.5-14.0 {mu}m) spectra, based on continuous wavelet analysis. The dataset comprised 394 spectra from nine plant species, with different water contents achieved through progressive drying. To identify the spectral feature most sensitive to the variations in leaf water content, first the Directional Hemispherical Reflectance (DHR) spectra were transformed into a wavelet power scalogram, and then linear relations were established between the wavelet power scalogram and leaf water content. The six individual wavelet features identified in the mid infrared yielded high correlations with leaf water content (R{sup 2} = 0.86 maximum, 0.83 minimum), as well as low RMSE (minimum 8.56%, maximum 9.27%). The combination of four wavelet features produced the most accurate model (R{sup 2} = 0.88, RMSE = 8.00%). The models were consistent in terms of accuracy estimation for both calibration and validation datasets, indicating that leaf water content can be accurately retrieved from the mid to thermal infrared domain of the electromagnetic radiation. -- Highlights: Black-Right-Pointing-Pointer The mid and thermal infrared spectra are sensitive to variation in leaf water content. Black-Right-Pointing-Pointer Continuous wavelet analysis detected the variation caused by leaf water content. Black-Right-Pointing-Pointer The selected wavelet features are highly correlated with leaf water content. Black-Right-Pointing-Pointer Mid wave and thermal infrared spectra have the potential to estimate leaf water content.

  5. Performance evaluation of four directional emissivity analytical models with thermal SAIL model and airborne images.

    Science.gov (United States)

    Ren, Huazhong; Liu, Rongyuan; Yan, Guangjian; Li, Zhao-Liang; Qin, Qiming; Liu, Qiang; Nerry, Françoise

    2015-04-01

    Land surface emissivity is a crucial parameter in the surface status monitoring. This study aims at the evaluation of four directional emissivity models, including two bi-directional reflectance distribution function (BRDF) models and two gap-frequency-based models. Results showed that the kernel-driven BRDF model could well represent directional emissivity with an error less than 0.002, and was consequently used to retrieve emissivity with an accuracy of about 0.012 from an airborne multi-angular thermal infrared data set. Furthermore, we updated the cavity effect factor relating to multiple scattering inside canopy, which improved the performance of the gap-frequency-based models.

  6. Fabrication of metasurface-based infrared absorber structures using direct laser write lithography

    Science.gov (United States)

    Fanyaeu, Ihar; Mizeikis, Vygantas

    2016-03-01

    We report fabrication and optical properties of ultra-thin polarization-invariant electromagnetic absorber metasurface for infra-red spectral. The absorber structure, which uses three-dimensional architecture is based on single-turn metallic helices arranged into a periodic square lattice on a metallic substrate, is expected to exhibit total resonant absorption due to balanced coupling between resonances of the helices. The structure was designed using numerical simulations aiming to tune the total absorption resonance to infra-red wavelength range by appropriately downscaling the unit cell of the structure, and taking into account dielectric dispersion and losses of the metal. The designed structures were subsequently fabricated using femtosecond direct laser write technique in a dielectric photoresist, and subsequent metallisation by gold sputtering. In accordance with the expectations, the structure was found to exhibit resonant absorption centred near the wavelength of 6 - 9 µm, with peak absorption in excess of 82%. The absorber metasurface may be applied in various areas of science and technology, such as harvesting infra-red radiation in thermal detectors and energy converters.

  7. INFRARED THERMAL IMAGE STUDY ON THE FOREWARNING OF COAL AND SANDSTONE FAILURE UNDER LOAD

    Institute of Scientific and Technical Information of China (English)

    吴立新; 王金庄

    1997-01-01

    In the experimental study, AGE-782 thermal instrument was used to detect the infrared radiation variation of coal and sandstone (wave-length range 3.6~5.5 μm was used). It's discovered that coal and sandstone failure under load have three kinds of infrared thermal features as well as infrared forewarning messages. That are: (1) temperature rises gradually but drops before failure ; (2) temperature rises gradually but quickly rises before failure; (3) first rises,then drops and lower temperature emerges before failure. The further researches and the prospect of micro-wave remote sensing detection .on ground pressure is also discussed.

  8. Identifying varnished rocks on Mars using thermal infrared spectroscopy

    Science.gov (United States)

    Hibbitts, C. A.; Gillespie, A.; Hansen, G. B.

    2004-12-01

    Thermal infrared (TIR) spectroscopy is widely implemented in attempts to determine the composition of the Mars's surface. Discoveries include basaltic rocks, possible andesites, and hematite-rich terrains associated with areas of probable hydrothermal alteration [Bandfield et al., 2000; Christensen et al., 2001; Glotch et al., 2004]. Some of the basaltic rocks appear to be covered by either a weathering rind or a varnish. The presence of a varnish would be interesting because it is believed to form through multiple wetting and drying events [reference]. The presence of these coatings can potentially be identified through unique nonlinear effects where both the substrate and varnish have strong spectral features. For example, varnished terrestrial quartz-rich rocks have a low-emissivity ~8.4-micron reststrahlan band diagnostic of a silicate-rich substrate which remains present while the longer wavelength reststrahlen band is obscured by the clay-rich varnish. In general, this non-linearity will conform to the Beer-Lambert Law, with additional reflection and scattering terms, so that the light emitted from the varnished stone will be similar to I=Io e-ax, where `Io' is the light emitted from a bare substrate, `a' is the absorption constant for the varnish coating, and `x' is the thickness of the coating. If the effect were linear, as expected for dusty surfaces [Johnson et al., 2002] or discrete patches of rock and clay, the emissivity of the emitted light would, at all wavelengths, possess equal contributions from the varnish and substrate; thus the clay feature would not completely dominate the longwave reststrahlan band without also erasing the shortwave reststrahlan band. After having theoretically determined a nonlinear at some wavelengths is probable, we have focused on laboratory spectral analyses of terrestrial varnished rocks. We have collected over 100 varnished stones from various pavements and unvarnished stones from other surfaces and have acquired over

  9. Evaluation of Infrared Images by Using a Human Thermal Model

    Science.gov (United States)

    2001-10-25

    thermal environmental history have been recorded. In this case, the thermal environmental history could be estimated from the behavior of a subject... environmental history and physiological condition history. An advantage of the evaluation of IR images using the thermal model is to provide

  10. New Frontiers for Applications of Thermal Infrared Imaging Devices: Computational Psychopshysiology in the Neurosciences.

    Science.gov (United States)

    Cardone, Daniela; Merla, Arcangelo

    2017-05-05

    Thermal infrared imaging has been proposed, and is now used, as a tool for the non-contact and non-invasive computational assessment of human autonomic nervous activity and psychophysiological states. Thanks to a new generation of high sensitivity infrared thermal detectors and the development of computational models of the autonomic control of the facial cutaneous temperature, several autonomic variables can be computed through thermal infrared imaging, including localized blood perfusion rate, cardiac pulse rate, breath rate, sudomotor and stress responses. In fact, all of these parameters impact on the control of the cutaneous temperature. The physiological information obtained through this approach, could then be used to infer about a variety of psychophysiological or emotional states, as proved by the increasing number of psychophysiology or neurosciences studies that use thermal infrared imaging. This paper presents a review of the principal achievements of thermal infrared imaging in computational psychophysiology, focusing on the capability of the technique for providing ubiquitous and unwired monitoring of psychophysiological activity and affective states. It also presents a summary on the modern, up-to-date infrared sensors technology.

  11. NMR and Infrared Study of Thermal Oxidation of cis-1, 4-Polybutadiene

    Science.gov (United States)

    Gemmer, Robert V.; Golub, Morton A.

    1978-01-01

    A study of the microstructural changes occuring in CB during thermal, uncatalyzed oxidation was carried out. Although the oxidation of CB is accompanied by extensive crosslinking with attendant insolubilization, it was found possible to follow the oxidation of solid CB directly with C-13 NMR spectroscopy. The predominant products appearing in the C-13 NMR spectra of oxidized CB are epoxides. The presence of lesser amounts of alcohols, peroxides, and carbonyl structures was adduced from complementary infrared and NMR spectra of soluble extracts obtained from the oxidized, crosslinked CB. This distribution of functional groups contrasts with that previously reported for the autooxidation of 1,4-polyisoprene. The difference was rationalized in terms of the relative stabilities of intermediate radical species involved in the autoxidation of CB and 1,4-polyisoprene.

  12. Physics Based Modeling and Rendering of Vegetation in the Thermal Infrared

    Science.gov (United States)

    Smith, J. A.; Ballard, J. R., Jr.

    1999-01-01

    We outline a procedure for rendering physically-based thermal infrared images of simple vegetation scenes. Our approach incorporates the biophysical processes that affect the temperature distribution of the elements within a scene. Computer graphics plays a key role in two respects. First, in computing the distribution of scene shaded and sunlit facets and, second, in the final image rendering once the temperatures of all the elements in the scene have been computed. We illustrate our approach for a simple corn scene where the three-dimensional geometry is constructed based on measured morphological attributes of the row crop. Statistical methods are used to construct a representation of the scene in agreement with the measured characteristics. Our results are quite good. The rendered images exhibit realistic behavior in directional properties as a function of view and sun angle. The root-mean-square error in measured versus predicted brightness temperatures for the scene was 2.1 deg C.

  13. Optimization Design of Thermal Conduction Enhanced PCM Plates for Simulating the Infrared Signature of Steel Plate

    Institute of Scientific and Technical Information of China (English)

    YE Hong; JIANG Li-feng

    2008-01-01

    Phase change material (PCM) can be used to prepare the infrared false targets for realizing all-weather passive infrared decoy, but its low thermal conductivity is a great blockage to the simulation of the infrared signature of thick metal plates. For that reason, a method of simulating the infrared signature of thick steel plates by thermal conduction enhanced PCM, including the aluminum fins, is proposed. A physical and mathematic model is set up, and the infrared signature simulation of thick steel plate is investigated numerically. The effects of the distribution density and thickness of fins and the thickness of PCM plate on the simulation results are discussed, and the reasonable construction parameters of PCM plates used to simulate the steel plates of different thickness are obtained.

  14. Producing Mosaiced Infrared Data on Natural Hazards for Real-time Emergency Management using UAS and Thermal Infrared Cameras

    Science.gov (United States)

    Hatfield, M. C.; Webley, P. W.; Saiet, E., II

    2015-12-01

    Unmanned aerial systems (UAS) provide a unique capability for emergency management and real-time hazard assessment with access to hazardous environments that maybe off limits for manned aircraft while reducing the risk to personnel and loss of ground assets. When dealing with hazards, such as forest fires and volcanic eruptions, there is a need to assess the location of the fire/flow front and where best to assign ground personnel to reduce the risk to local populations and infrastructure. Thermal infrared cameras provide the ideal tool to detect subtle changes in the developing fire/flow front while providing data 24/7. There are limits to the detecting capabilities of these cameras given the wavelengths used and image resolution available. Given the large thermal contrast between the hot flow front and surrounding landscape then the data can be used to map out the location and changes seen as the front of the flow/fire advances. To map the complete hazard then either the UAS has to be flown at an altitude to capture the event in one image or the data has to be mosaiced together. Higher altitudes lead to coarser resolution imagery and therefore we will show how thermal infrared data can be mosaiced to provide the highest spatial resolution map of the hazard. We will present results using different UAS and thermal cameras including adding neutral density filters to detect hotter thermal targets. Timely generation of these mosaiced maps in a real-time environment is critical for those assessing the ongoing event and we will show how these maps can be generated quickly with the necessary spatial and thermal accuracy while discussing the requirements needed to generate thermal infrared maps of the hazardous events that are both useful for quick real-time assessment and also for further investigation in research projects.

  15. An airborne thematic thermal infrared and electro-optical imaging system

    Science.gov (United States)

    Sun, Xiuhong; Shu, Peter

    2011-08-01

    This paper describes an advanced Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System (ATTIREOIS) and its potential applications. ATTIREOIS sensor payload consists of two sets of advanced Focal Plane Arrays (FPAs) - a broadband Thermal InfraRed Sensor (TIRS) and a four (4) band Multispectral Electro-Optical Sensor (MEOS) to approximate Landsat ETM+ bands 1,2,3,4, and 6, and LDCM bands 2,3,4,5, and 10+11. The airborne TIRS is 3-axis stabilized payload capable of providing 3D photogrammetric images with a 1,850 pixel swathwidth via pushbroom operation. MEOS has a total of 116 million simultaneous sensor counts capable of providing 3 cm spatial resolution multispectral orthophotos for continuous airborne mapping. ATTIREOIS is a complete standalone and easy-to-use portable imaging instrument for light aerial vehicle deployment. Its miniaturized backend data system operates all ATTIREOIS imaging sensor components, an INS/GPS, and an e-Gimbal™ Control Electronic Unit (ECU) with a data throughput of 300 Megabytes/sec. The backend provides advanced onboard processing, performing autonomous raw sensor imagery development, TIRS image track-recovery reconstruction, LWIR/VNIR multi-band co-registration, and photogrammetric image processing. With geometric optics and boresight calibrations, the ATTIREOIS data products are directly georeferenced with an accuracy of approximately one meter. A prototype ATTIREOIS has been configured. Its sample LWIR/EO image data will be presented. Potential applications of ATTIREOIS include: 1) Providing timely and cost-effective, precisely and directly georeferenced surface emissive and solar reflective LWIR/VNIR multispectral images via a private Google Earth Globe to enhance NASA's Earth science research capabilities; and 2) Underflight satellites to support satellite measurement calibration and validation observations.

  16. Heterodyne Spectroscopy in the Thermal Infrared Region: A Window on Physics and Chemistry

    Science.gov (United States)

    Kostiuk, Theodor

    2004-01-01

    The thermal infrared region contains molecular bands of many of the most important species in gaseous astronomical sources. True shapes and frequencies of emission and absorption spectral lines from these constituents of planetary and stellar atmospheres contain unique information on local temperature and abundance distribution, non-thermal effects, composition, local dynamics and winds. Heterodyne spectroscopy in the thermal infrared can remotely measure true line shapes in relatively cool and thin regions and enable the retrieval of detailed information about local physics and chemistry. The concept and techniques for heterodyne detection will be discussed including examples of thermal infrared photomixers and instrumentation used in studies of several astronomical sources. Use of heterodyne detection to study non-LTE phenomena, planetary aurora, minor planetary species and gas velocities (winds) will be discussed. A discussion of future technological developments and relation to space flight missions will be addressed.

  17. Thermal Evaluation of Scorched Graphite-Epoxy Panels by Infrared Scanning

    OpenAIRE

    Slifka, A. J.; Hall, T.; Boltz, E. S.

    2003-01-01

    A simple measurement system is described for evaluating damage to graphite-epoxy panels, such as those used in high-performance aircraft. The system uses a heating laser and infrared imaging system to measure thermal performance. Thermal conductivity or diffusivity is a sensitive indicator of damage in materials, allowing this thermal measurement to show various degrees of damage in graphite-epoxy composites. Our measurements track well with heat-flux damage to graphite epoxy panels. This mea...

  18. Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals

    OpenAIRE

    Didierjean, Julien; Hérault, Emilie; Balembois, François; Georges, Patrick

    2008-01-01

    International audience; We present a thermal conductivity measurement method for laser crystals based on thermal mapping of the crystal face by an infrared camera. Those measurements are performed under end-pumping of the laser crystal and during laser operation. The calculation of the fraction of pump power converted into heat is therefore simplified, and it is possible to link easily the temperature in the crystal to the thermal conductivity. We demonstrate the efficiency of this measuremen...

  19. Thermal comfort index and infrared temperatures for lambs subjected to different environmental conditions

    Directory of Open Access Journals (Sweden)

    Tiago do Prado Paim

    2014-10-01

    Full Text Available There is an abundance of thermal indices with different input parameters and applicabilities. Infrared thermography is a promising technique for evaluating the response of animals to the environment and differentiating between genetic groups. Thus, the aim of this study was to evaluate superficial body temperatures of lambs from three genetic groups under different environmental conditions, correlating these with thermal comfort indices. Forty lambs (18 males and 22 females from three genetic groups (Santa Inês, Ile de France × Santa Inês and Dorper × Santa Inês were exposed to three climatic conditions: open air, housed and artificial heating. Infrared thermal images were taken weekly at 6h, 12h and 21h at the neck, front flank, rear flank, rump, nose, skull, trunk and eye. Four thermal comfort indices were calculated using environmental measurements including black globe temperature, air humidity and wind speed. Artificial warming, provided by infrared lamps and wind protection, conserved and increased the superficial body temperature of the lambs, thus providing lower daily thermal ranges. Artificial warming did not influence daily weight gain or mortality. Skin temperatures increased along with increases in climatic indices. Again, infrared thermography is a promising technique for evaluating thermal stress conditions and differentiating environments. However, the use of thermal imaging for understanding animal responses to environmental conditions requires further study.

  20. Non-thermal DNA damage of cancer cells using near-infrared irradiation.

    Science.gov (United States)

    Tanaka, Yohei; Tatewaki, Naoto; Nishida, Hiroshi; Eitsuka, Takahiro; Ikekawa, Nobuo; Nakayama, Jun

    2012-08-01

    Previously, we reported that near-infrared irradiation that simulates solar near-infrared irradiation with pre- and parallel-irradiational cooling can non-thermally induce cytocidal effects in cancer cells. To explore these effects, we assessed cell viability, DNA damage response pathways, and the percentage of mitotic cancer cells after near-infrared treatment. Further, we evaluated the anti-cancer effects of near-infrared irradiation compared with doxorubicin in xenografts in nude mice by measuring tumor volume and assessing protein phosphorylation by immunoblot analysis. The cell viability of A549 lung adenocarcinoma cells was significantly decreased after three rounds of near-infrared irradiation at 20 J/cm(2). Apoptotic cells were observed in near-infrared treated cells. Moreover, near-infrared treatment increased the phosphorylation of ataxia-telangiectasia mutated (ATM) at Ser(1981), H2AX at Ser(139), Chk1 at Ser(317), structural maintenance of chromosome (SMC) 1 at Ser(966), and p53 at Ser(15) in A549 cells compared with control. Notably, near-infrared treatment induced the formation of nucleic foci of γH2AX. The percentage of mitotic A549 cells, as measured by histone H3 phosphorylation, decreased significantly after three rounds of near-infrared irradiation at 20 J/cm(2). Both near-infrared and doxorubicin inhibited the tumor growth of MDA-MB435 melanoma cell xenografts in nude mice and increased the phosphorylation of p53 at Ser(15), Chk1 at Ser(317), SMC1 at Ser(966), and H2AX at Ser(139) compared with control mice. These results indicate that near-infrared irradiation can non-thermally induce cytocidal effects in cancer cells as a result of activation of the DNA damage response pathway. The near-infrared irradiation schedule used here reduces discomfort and side effects. Therefore, this strategy may have potential application in the treatment of cancer.

  1. Huanglongbing (citrus greening) detection using visible, near infrared and thermal imaging techniques.

    Science.gov (United States)

    Sankaran, Sindhuja; Maja, Joe Mari; Buchanon, Sherrie; Ehsani, Reza

    2013-02-06

    This study demonstrates the applicability of visible-near infrared and thermal imaging for detection of Huanglongbing (HLB) disease in citrus trees. Visible-near infrared (440-900 nm) and thermal infrared spectral reflectance data were collected from individual healthy and HLB-infected trees. Data analysis revealed that the average reflectance values of the healthy trees in the visible region were lower than those in the near infrared region, while the opposite was the case for HLB-infected trees. Moreover, 560 nm, 710 nm, and thermal band showed maximum class separability between healthy and HLB-infected groups among the evaluated visible-infrared bands. Similarly, analysis of several vegetation indices indicated that the normalized difference vegetation index (NDVI), Vogelmann red-edge index (VOG) and modified red-edge simple ratio (mSR) demonstrated good class separability between the two groups. Classification studies using average spectral reflectance values from the visible, near infrared, and thermal bands (13 spectral features) as input features indicated that an average overall classification accuracy of about 87%, with 89% specificity and 85% sensitivity could be achieved with classification models such as support vector machine for trees with symptomatic leaves.

  2. Huanglongbing (Citrus Greening Detection Using Visible, Near Infrared and Thermal Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Reza Ehsani

    2013-02-01

    Full Text Available This study demonstrates the applicability of visible-near infrared and thermal imaging for detection of Huanglongbing (HLB disease in citrus trees. Visible-near infrared (440–900 nm and thermal infrared spectral reflectance data were collected from individual healthy and HLB-infected trees. Data analysis revealed that the average reflectance values of the healthy trees in the visible region were lower than those in the near infrared region, while the opposite was the case for HLB-infected trees. Moreover, 560 nm, 710 nm, and thermal band showed maximum class separability between healthy and HLB-infected groups among the evaluated visible-infrared bands. Similarly, analysis of several vegetation indices indicated that the normalized difference vegetation index (NDVI, Vogelmann red-edge index (VOG and modified red-edge simple ratio (mSR demonstrated good class separability between the two groups. Classification studies using average spectral reflectance values from the visible, near infrared, and thermal bands (13 spectral features as input features indicated that an average overall classification accuracy of about 87%, with 89% specificity and 85% sensitivity could be achieved with classification models such as support vector machine for trees with symptomatic leaves.

  3. Directional heat transport through thermal reflection meta-device

    Science.gov (United States)

    Hu, Run; Zhou, Shuling; Shu, Weicheng; Xie, Bin; Ma, Yupu; Luo, Xiaobing

    2016-12-01

    Directional heat transfer may be hard to realize due to the fact that heat transfer is diffusive. In this paper, we try to take one step forward based on the transformation thermodynamics. A special structure and meta-device is proposed to "reflect" the heat flow directionally-just like the mirror to the light beam, in which the heat flow just one-time changes the direction rather than gradually changing the directions in isotropic materials. The benefits of such thermal reflection meta-device are discussed by comparing the corresponding thermal resistance with the same structures of isotropic materials. The proposed meta-device is verified to possess the low thermal resistance and high heat transfer ability with least energy loss, and can be made by nature-existing isotropic materials with specific structures.

  4. Static and dynamic thermal infrared signatures measured during the FESTER experiment: first results

    Science.gov (United States)

    Gunter, W. H.; February, F.; Seiffer, D. P.; Eisele, C.

    2016-10-01

    The First European South African Experiment (FESTER) was conducted over about a 10 month period at the Institute of Maritime Technology (IMT) in False Bay, South Africa. One of the principal goals was recording of static and dynamic thermal infrared signatures under different environmental conditions for both validations of existing thermal equilibrium signature prediction codes, but also to aid development of dynamic thermal signature models. A small scientific work boat (called Sea Lab) was used as the principal target and sensor platform. Painted metal plates of different thicknesses were also used as infrared targets on-board Sea Lab to study static/dynamic thermal signatures and were also fitted with pyrgeometers, pyrometers and iButton temperature sensors/loggers. First results focused on the variable of thermal signatures as function of environmental conditions and the accuracy of calculated source temperatures (from measured radiometric temperatures) compared to the physical temperature measurements of the plates.

  5. Thermal Infrared Signatures and Heat Fluxes of Sea Foam

    Science.gov (United States)

    2015-01-13

    Santa Barbara Infrared model 11104). A visible band camera (Point Grey Flea 3, resolution and fov) provided reference images of the foam layer from...theoretical modeling and experimental results from the frog 2003 field experiment, IEEE Transactions on Geoscience and Remote Sensing, 43, 5. Jeong

  6. An accurate retrieval of leaf water content from mid to thermal infrared spectra using continuous wavelet analysis.

    Science.gov (United States)

    Ullah, Saleem; Skidmore, Andrew K; Naeem, Mohammad; Schlerf, Martin

    2012-10-15

    Leaf water content determines plant health, vitality, photosynthetic efficiency and is an important indicator of drought assessment. The retrieval of leaf water content from the visible to shortwave infrared spectra is well known. Here for the first time, we estimated leaf water content from the mid to thermal infrared (2.5-14.0 μm) spectra, based on continuous wavelet analysis. The dataset comprised 394 spectra from nine plant species, with different water contents achieved through progressive drying. To identify the spectral feature most sensitive to the variations in leaf water content, first the Directional Hemispherical Reflectance (DHR) spectra were transformed into a wavelet power scalogram, and then linear relations were established between the wavelet power scalogram and leaf water content. The six individual wavelet features identified in the mid infrared yielded high correlations with leaf water content (R(2)=0.86 maximum, 0.83 minimum), as well as low RMSE (minimum 8.56%, maximum 9.27%). The combination of four wavelet features produced the most accurate model (R(2)=0.88, RMSE=8.00%). The models were consistent in terms of accuracy estimation for both calibration and validation datasets, indicating that leaf water content can be accurately retrieved from the mid to thermal infrared domain of the electromagnetic radiation.

  7. Robust pedestrian detection by combining visible and thermal infrared cameras

    National Research Council Canada - National Science Library

    Lee, Ji Hoon; Choi, Jong-Suk; Jeon, Eun Som; Kim, Yeong Gon; Le, Toan Thanh; Shin, Kwang Yong; Lee, Hyeon Chang; Park, Kang Ryoung

    2015-01-01

    .... However, most of the previous studies use a single camera system, either a visible light or thermal camera, and their performances are affected by various factors such as shadow, illumination change...

  8. Infrared Thermography Assessment of Thermal Bridges in Building Envelope: Experimental Validation in a Test Room Setup

    Directory of Open Access Journals (Sweden)

    Francesco Bianchi

    2014-10-01

    Full Text Available Thermal infrared imaging is a valuable tool to perform non-destructive qualitative tests and to investigate buildings envelope thermal-energy behavior. The assessment of envelope thermal insulation, ventilation, air leakages, and HVAC performance can be implemented through the analysis of each thermogram corresponding to an object surface temperature. Thermography also allows the identification of thermal bridges in buildings’ envelope that, together with windows and doors, constitute one of the weakest component increasing thermal losses. A quantitative methodology was proposed in previous researches by the authors in order to evaluate the effect of such weak point on the energy balance of the whole building. In the present work, in-field experimental measurements were carried out with the purpose of evaluating the energy losses through the envelope of a test room experimental field. In-situ thermal transmittance of walls, ceiling and roof were continuously monitored and each element was characterized by its own thermal insulation capability. Infrared thermography and the proposed quantitative methodology were applied to assess the energy losses due to thermal bridges. The main results show that the procedure confirms to be a reliable tool to quantify the incidence of thermal bridges in the envelope thermal losses.

  9. Biodegradable starch-based films containing saturated fatty acids: thermal, infrared and raman spectroscopic characterization

    Directory of Open Access Journals (Sweden)

    Marcelo M. Nobrega

    Full Text Available Biodegradable films of thermoplastic starch and poly (butylene adipate co-terephthalate (PBAT containing fatty acids were characterized thermally and with infrared and Raman spectroscopies. The symmetrical character of the benzene ring in PBAT provided a means to illustrate the difference between these spectroscopic techniques, because a band appeared in the Raman spectrum but not in the infrared. The thermal analysis showed three degradation stages related to fatty acids, starch and PBAT. The incorporation of saturated fatty acids with different molecular mass (caproic, lauric and stearic did not change the nature of the chemical bonds among the components in the blends of starch, PBAT and glycerol, according to the thermal analysis, infrared and Raman spectroscopies.

  10. Improved methods for measuring thermal parameters of liquid samples using photothermal infrared radiometry

    Science.gov (United States)

    Kuriakose, Maju; Depriester, Michael; Dadarlat, Dorin; Sahraoui, Abdelhak Hadj

    2013-02-01

    High accuracy, non-contact measuring methods for finding thermal properties of liquid samples using photothermal infrared radiometry (PTR) are presented. The use of transparent windows to confine micro volume liquid samples and the implementation of front and/or back signal detection procedures helped the successful implementation of the PTR technique for measuring liquids with high proficiency. We present two configurations, the so-called back-front photothermal infrared radiometry and back photothermal infrared radiometry to find thermal diffusivity and thermal effusivity of liquid samples. Sensitivity studies and error analyses included prove the robustness of each method. As an illustration of the temperature and electric field varying studies, we have included the experimental results on a 5CB (4-cyano-4‧-pentylbiphenyl) liquid crystal.

  11. USING OF THE MULTITEMPORAL THERMAL INFRARED SATELLITE IMAGERY FOR NATURAL AREAS MAPPING (CASE OF MENDELEEV VOLCANO

    Directory of Open Access Journals (Sweden)

    M. Y. Grishchenko

    2014-01-01

    Full Text Available In the paper authors examine the mountain group of Mendeleev volcano situated on the Kunashir island, Kuril archipelago, Russia. Ground observations were led to examine the vegetation cover of the area as well as its typical landscapes. The other type of used data is Landsat imagery. Images were combined into multitemporal thermal infrared and multispectral pictures, which were classified to reveal the heterogeneity of the study area. Ground observations and comparison of the classification results with landscape map derive that the multitemporal thermal infrared image classification result describes better the vegetation cover structure of the area and particularity of its typical landscapes distribution. It leads to the proposition that miltitemporal thermal infrared imagery can be used to refine landscape and vegetation cover contours. 

  12. Infrared Radiant Temperatures in the Alpine/Periglacial Environment as Related to Thermal Remote Sensing,

    Science.gov (United States)

    remote sensing in the alpine/periglacial environment. Techniques of ground truth observations were tested by which a researcher might determine the usefulness of infrared scanning to his study without the financial investment of airborne remote sensing on a trial-and-error basis. Also, an attempt was made to determine the environmental controls upon radiant temperature by monitoring changing patterns of radiant temperature relative to changing meteorologic conditions. Observations of both actual and thermal infrared radiant temperatures were made

  13. Direct Measurement of Thermal Fluctuation of High-Q Pendulum

    CERN Document Server

    Agatsuma, Kazuhiro; Yamamoto, Kazuhiro; Ohashi, Masatake; Kawamura, Seiji; Miyoki, Shinji; Miyakawa, Osamu; Telada, Souichi; Kuroda, Kazuaki

    2009-01-01

    We achieved for the first time a direct measurement of the thermal fluctuation of a pendulum in an off-resonant region using a laser interferometric gravitational wave detector. These measurements have been well identified for over one decade by an agreement with a theoretical prediction, which was derived by a fluctuation-dissipation theorem. Thermal fluctuation is dominated by the contribution of resistances in coil-magnet actuator circuits. When we tuned these resistances, the noise spectrum also changed according to a theoretical prediction. The measured thermal noise level corresponds to a high quality factor on the order of 10^5 of the pendulum.

  14. Thermal infrared emissivity spectrum and its characteristics of crude oil slick covered seawater.

    Science.gov (United States)

    Xiong, Pan; Gu, Xing-Fai; Yu, Taol; Meng, Qing-Yan; Li, Jia-Guoi; Shi, Ji-xiang; Cheng, Yang; Wang, Liang; Liu, Wen-Song; Liu, Qi-Yuei; Zhao, Li-Min

    2014-11-01

    Detecting oil slick covered seawater surface using the thermal infrared remote sensing technology exists the advantages such as: oil spill detection with thermal infrared spectrum can be performed in the nighttime which is superior to visible spectrum, the thermal infrared spectrum is superior to detect the radiation characteristics of both the oil slick and the seawater compared to the mid-wavelength infrared spectrum and which have great potential to detect the oil slick thickness. And the emissivity is the ratio of the radiation of an object at a given temperature in normal range of the temperature (260-320 K) and the blackbody radiation under the same temperature , the emissivity of an object is unrelated to the temperature, but only is dependent with the wavelength and material properties. Using the seawater taken from Bohai Bay and crude oil taken from Gudao oil production plant of Shengli Oilfield in Dongying city of Shandong Province, an experiment was designed to study the characteristics and mechanism of thermal infrared emissivity spectrum of artificial crude oil slick covered seawater surface with its thickness. During the experiment, crude oil was continuously dropped into the seawater to generate artificial oil slick with different thicknesses. By adding each drop of crude oil, we measured the reflectivity of the oil slick in the thermal infrared spectrum with the Fourier transform infrared spectrometer (102F) and then calculated its thermal infrared emissivity. The results show that the thermal infrared emissivity of oil slick changes significantly with its thickness when oil slick is relatively thin (20-120 μm), which provides an effective means for detecting the existence of offshore thin oil slick In the spectrum ranges from 8 to 10 μm and from 13. 2 to 14 μm, there is a steady emissivity difference between the seawater and thin oil slick with thickness of 20 μm. The emissivity of oil slick changes marginally with oil slick thickness and

  15. The TUBIN nanosatellite mission for wildfire detection in thermal infrared

    Science.gov (United States)

    Barschke, Merlin F.; Bartholomäus, Julian; Gordon, Karsten; Lehmann, Marc; Brieß, Klaus

    2017-06-01

    The increasing number of wildfires has significant impact on the Earth's climate system. Furthermore, they cause severe economic damage in many parts of the world. While different land and airborne wildfire detection and observation systems are in use in some areas of the world already, spaceborne systems offer great potential regarding global and continuous observation. TUBIN is a proof-of-concept mission to demonstrate the capabilities of a nanosatellite carrying lightweight infrared microbolometer arrays for spaceborne detection of wildfires and other high-temperature events. To this end, TUBIN carries two infrared microbolometers complemented by a CMOS imager. The TUBIN space segment is based on the TUBiX20 nanosatellite platform of Technische Universität Berlin and is the first mission that implements the full-scale attitude determination and control system of TUBiX20. Thereby, the TUBIN mission will demonstrate the platform's ability to support a challenging Earth observation mission.

  16. Infrared Real-time Thermal System Based on DSP

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An infrared real-time imaging system using DSP(digital signal processor) as the kernel of digital signal processing board is presented. In this system, the imaging difference and nonuniformity correction method is developed on the chip taking advantage of DSP with high speed. The method combines hardware and software together, so that the difficulty for realizing such a method with other hardware can be overcome.

  17. Application of satellite infrared data for mapping of thermal plume contamination in coastal ecosystem of Korea.

    Science.gov (United States)

    Ahn, Yu-Hwan; Shanmugam, Palanisamy; Lee, Jae-Hak; Kang, Yong Q

    2006-03-01

    The 5900 MW Younggwang nuclear power station on the west coast of Korea discharges warm water affecting coastal ecology [KORDI report (2003). Wide area observation of the impact of the operation of Younggwang nuclear power plant 5 and 6, No. BSPI 319-00-1426-3, KORDI, Seoul, Korea]. Here the spatial and temporal characteristics of the thermal plume signature of warm water are reported from a time series (1985-2003) of space-borne, thermal infrared data from Landsat and National Oceanic and Atmospheric Administration (NOAA) satellites. Sea surface temperature (SST) were characterized using advanced very high resolution radiometer data from the NOAA satellites. These data demonstrated the general pattern and extension of the thermal plume signature in the Younggwang coastal areas. In contrast, the analysis of SST from thematic mapper data using the Landsat-5 and 7 satellites provided enhanced information about the plume shape, dimension and direction of dispersion in these waters. The thermal plume signature was detected from 70 to 100 km to the south of the discharge during the summer monsoon and 50 to 70 km to the northwest during the winter monsoon. The mean detected plume temperature was 28 degrees C in summer and 12 degrees C in winter. The DeltaT varied from 2 to 4 degrees C in winter and 2 degrees C in summer. These values are lower than the re-circulating water temperature (6-9 degrees C). In addition the temperature difference between tidal flats and offshore (SSTtidal flats - SSToffsore) was found to vary from 5.4 to 8.5 degrees C during the flood tides and 3.5 degrees C during the ebb tide. The data also suggest that water heated by direct solar radiation on the tidal flats during the flood tides might have been transported offshore during the ebb tide. Based on these results we suggest that there is an urgent need to protect the health of Younggwang coastal marine ecosystem from the severe thermal impact by the large quantity of warm water discharged from

  18. Plasmonic-Field Interactions at Nanoparticle Interfaces for Infrared Thermal-Shielding Applications Based on Transparent Oxide Semiconductors.

    Science.gov (United States)

    Matsui, Hiroaki; Furuta, Shinya; Hasebe, Takayuki; Tabata, Hitoshi

    2016-05-11

    This paper describes infrared plasmonic responses in three-dimensional (3D) assembled films of In2O3:Sn nanoparticles (NPs). The introduction of surface modifications to NPs can facilitate the production of electric-field interactions between NPs due to the creation of narrow crevices in the NP interfaces. In particular, the electric-field interactions along the in-plane and out-of-plane directions in the 3D assembled NP films allow for resonant splitting of plasmon excitations to the quadrupole and dipole modes, thereby realizing selective high reflections in the near- and mid-infrared range, respectively. The origins of these plasmonic properties were revealed from electric-field distributions calculated by electrodynamic simulations that agreed well with experimental results. The interparticle gaps and their derived plasmon couplings play an important role in producing high reflective performances in assembled NP films. These 3D assemblies of NPs can be further extended to produce large-size flexible films with high infrared reflectance, which simultaneously exhibit microwave transmittance essential for telecommunications. This study provides important insights for harnessing infrared optical responses using plasmonic technology for the fabrication of infrared thermal-shielding applications.

  19. Determination of Thermal Diffusivity of Austenitic Steel Using Pulsed Infrared Thermography

    Directory of Open Access Journals (Sweden)

    Kochanowski K.

    2014-10-01

    Full Text Available The simple method of determining thermal diffusivity of solid materials at room temperature using the pulsed infrared thermography (IRT is proposed. The theoretical basis of the method and experimental results are presented. The study was conducted on austenitic steel 316L. Theobtained results show that the thermal diffusivity value of the tested steel determined by means of pulsed infrared thermography is very approximate to the values given in the literature, obtained by using more complicated methods. The differences between these values are 0.5%.

  20. Detection of leaks in buried rural water pipelines using thermal infrared images

    Science.gov (United States)

    Eidenshink, Jeffery C.

    1985-01-01

    Leakage is a major problem in many pipelines. Minor leaks called 'seeper leaks', which generally range from 2 to 10 m3 per day, are common and are difficult to detect using conventional ground surveys. The objective of this research was to determine whether airborne thermal-infrared remote sensing could be used in detecting leaks and monitoring rural water pipelines. This study indicates that such leaks can be detected using low-altitude 8.7- to 11.5. micrometer wavelength, thermal infrared images collected under proper conditions.

  1. The surface roughness of (433) Eros as measured by thermal-infrared beaming

    Science.gov (United States)

    Rozitis, B.

    2017-01-01

    In planetary science, surface roughness is regarded to be a measure of surface irregularity at small spatial scales, and causes the thermal-infrared beaming effect (i.e. re-radiation of absorbed sunlight back towards to the Sun). Typically, surface roughness exhibits a degeneracy with thermal inertia when thermophysical models are fitted to disc-integrated thermal-infrared observations of asteroids because of this effect. In this work, it is demonstrated how surface roughness can be constrained for near-Earth asteroid (433) Eros (i.e. the target of NASA's NEAR Shoemaker mission) when using the Advanced Thermophysical Model with thermal-infrared observations taken during an `almost pole-on' illumination and viewing geometry. It is found that the surface roughness of (433) Eros is characterized by an rms slope of 38 ± 8° at the 0.5-cm spatial scale associated with its thermal-infrared beaming effect. This is slightly greater than the rms slope of 25 ± 5° implied by the NEAR Shoemaker laser ranging results when extrapolated to this spatial scale, and indicates that other surface shaping processes might operate, in addition to collisions and gravity, at spatial scales under one metre in order to make asteroid surfaces rougher. For other high-obliquity asteroids observed during `pole-on' illumination conditions, the thermal-infrared beaming effect allows surface roughness to be constrained when the sub-solar latitude is greater than 60°, and if the asteroids are observed at phase angles of less than 40°. They will likely exhibit near-Earth asteroid thermal model beaming parameters that are lower than expected for a typical asteroid at all phase angles up to 100°.

  2. The Surface Roughness of (433) Eros as Measured by Thermal-Infrared Beaming

    CERN Document Server

    Rozitis, Ben

    2016-01-01

    In planetary science, surface roughness is regarded to be a measure of surface irregularity at small spatial scales, and causes the thermal-infrared beaming effect (i.e. re-radiation of absorbed sunlight back towards to the Sun). Typically, surface roughness exhibits a degeneracy with thermal inertia when thermophysical models are fitted to disc-integrated thermal-infrared observations of asteroids because of this effect. In this work, it is demonstrated how surface roughness can be constrained for near-Earth asteroid (433) Eros (i.e. the target of NASA's NEAR Shoemaker mission) when using the Advanced Thermophysical Model with thermal-infrared observations taken during an "almost pole-on" illumination and viewing geometry. It is found that the surface roughness of (433) Eros is characterised by an RMS slope of 38 $\\pm$ 8{\\deg} at the 0.5-cm spatial scale associated with its thermal-infrared beaming effect. This is slightly greater than the RMS slope of 25 $\\pm$ 5{\\deg} implied by the NEAR Shoemaker laser ran...

  3. Warping-based co-registration of thermal infrared images: Study of factors influencing its applicability

    Science.gov (United States)

    Cardone, D.; Pinti, P.; Di Donato, L.; Merla, A.

    2017-06-01

    A relevant issue for processing biomedical thermal imaging data is the availability of tools for objective and quantitative comparison of images across different conditions or subjects. To this goal, a solution can be offered by projecting the thermal distribution data onto a fictitious template to obtain a common reference for comparison across cases or subjects. In this preliminary study, we tested the feasibility of applying a warping procedure on infrared thermal images. Fifteen thermal images of checkerboard were recorded at three different distances and five different angles in order to evaluate which factor mostly influences the warping accuracy. The accuracy of three different warping transformation models (local weighted mean (LWM), polynomial, affine) was tested by comparing the positioning error between users' selected fiduciary points on each thermal image and their corresponding reference position assigned on the template image. Fifteen users, divided into three groups upon on their experience in thermal imaging processing, participated in this study in order to evaluate the effect of experience in applying a warping procedure to the analysis of thermal infrared images. The most relevant factor influencing the positioning and thermal errors is the acquisition distance, while the users' level of experience and the inclination angle do not seem to play the same importance. Comparing the three transformations, the LWM seems to be the best in terms of minimizing the two categories of errors. This preliminary work helps to understand the limits and the possibilities of applying warping techniques for objective, quantitative and automatic thermal image comparisons.

  4. Broad spectrum infrared thermal desorption of wipe-based explosive and narcotic samples for trace mass spectrometric detection.

    Science.gov (United States)

    Forbes, Thomas P; Staymates, Matthew; Sisco, Edward

    2017-08-07

    Wipe collected analytes were thermally desorbed using broad spectrum near infrared heating for mass spectrometric detection. Employing a twin tube filament-based infrared emitter, rapid and efficiently powered thermal desorption and detection of nanogram levels of explosives and narcotics was demonstrated. The infrared thermal desorption (IRTD) platform developed here used multi-mode heating (direct radiation and secondary conduction from substrate and subsequent convection from air) and a temperature ramp to efficiently desorb analytes with vapor pressures across eight orders of magnitude. The wipe substrate experienced heating rates up to (85 ± 2) °C s(-1) with a time constant of (3.9 ± 0.2) s for 100% power emission. The detection of trace analytes was also demonstrated from complex mixtures, including plastic-bonded explosives and exogenous narcotics, explosives, and metabolites from collected artificial latent fingerprints. Manipulation of the emission power and duration directly controlled the heating rate and maximum temperature, enabling differential thermal desorption and a level of upstream separation for enhanced specificity. Transitioning from 100% power and 5 s emission duration to 25% power and 30 s emission enabled an order of magnitude increase in the temporal separation (single seconds to tens of seconds) of the desorption of volatile and semi-volatile species within a collected fingerprint. This mode of operation reduced local gas-phase concentrations, reducing matrix effects experienced with high concentration mixtures. IRTD provides a unique platform for the desorption of trace analytes from wipe collections, an area of importance to the security sector, transportation agencies, and customs and border protection.

  5. Variability of Thermal Infrared Emission from Near-Earth Asteroids

    NARCIS (Netherlands)

    Taylor, Patrick A.; Howell, E. S.; Magri, C.; Vervack, R. J.; Nolan, M. C.; Fernandez, Y. R.; Rivkin, A. S.; Mueller, M.

    2009-01-01

    We have measured thermal emission between 2 and 4 microns for several near-Earth asteroids (NEAs) of different taxonomic types with SpeX on the NASA IRTF. Initial results for individual P-, V-, and E-type NEAs were presented at last year's meeting (Howell et al., 2008). Here we present results for t

  6. Compensating the Degradation of Near-Infrared Absorption of Black Silicon Caused by Thermal Annealing

    OpenAIRE

    Wang, Yanchao; Gao, Jinsong; Yang, Haigui; Wang, Xiaoyi; Shen, Zhenfeng

    2016-01-01

    We propose the use of thin Ag film deposition to remedy the degradation of near-infrared (NIR) absorption of black Si caused by high-temperature thermal annealing. A large amount of random and irregular Ag nanoparticles are formed on the microstructural surface of black Si after Ag film deposition, which compensates the degradation of NIR absorption of black Si caused by thermal annealing. The formation of Ag nanoparticles and their contributions to NIR absorption of black Si are discussed in...

  7. Compensating the Degradation of Near-Infrared Absorption of Black Silicon Caused by Thermal Annealing.

    Science.gov (United States)

    Wang, Yanchao; Gao, Jinsong; Yang, Haigui; Wang, Xiaoyi; Shen, Zhenfeng

    2016-12-01

    We propose the use of thin Ag film deposition to remedy the degradation of near-infrared (NIR) absorption of black Si caused by high-temperature thermal annealing. A large amount of random and irregular Ag nanoparticles are formed on the microstructural surface of black Si after Ag film deposition, which compensates the degradation of NIR absorption of black Si caused by thermal annealing. The formation of Ag nanoparticles and their contributions to NIR absorption of black Si are discussed in detail.

  8. Thermal Field Analysis and Simulation of an Infrared Belt Furnace Used for Solar Cells

    OpenAIRE

    Bai Lu; Liang Zongcun; Shen Hui

    2014-01-01

    During solar cell firing, volatile organic compounds (VOC) and a small number of metal particles were removed using the gas flow. When the gas flow was disturbed by the thermal field of infrared belt furnace and structure, the metal particles in the discharging gas flow randomly adhered to the surface of solar cell, possibly causing contamination. Meanwhile, the gas flow also affected the thermal uniformity of the solar cell. In this paper, the heating mechanism of the solar cell caused by ra...

  9. Infrared, X-ray and thermal analysis of praseodym soaps

    Energy Technology Data Exchange (ETDEWEB)

    Mehrotra, K.N.; Sharma, M.; Gahlaut, A.S. (Agra Univ., Dept. of Chemistry (India))

    Infrared spectra tests have shown that fatty acids exist with a dimeric structure through hydrogen bonding between two molecules of fatty acids whereas metal-to-oxygen bonds in metal soaps have an ionic character but the bonds are not purely ionic. X-ray diffraction tests confirm that praseodymium soaps have a double layer structure with molecular axes slightly inclined to the basal plane. It is concluded that the decomposition reaction of praseodymium soaps is kinetically of zero order and the activation energy for the process lies in the range of 1 to 10 kcal mole[sup -1]. (orig.).

  10. Inspection of calandria front area of Wolsung NPP using technique of mapping thermal infrared image into CCD image

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Kim, Chang Hoi; Seo, Yong Chil; Choi, Young Soo; Kim, Seung Ho [Advance Robotics Teams, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2002-11-15

    This paper describes the enhanced inspection performance of a thermal infrared camera for monitoring abnormal conditions of calandria reactor area of Wolsung nuclear power plant. Thermal infrared camera have poor image qualities compared to commercial CCD cameras, as in contrast, brightness, and resolution. To compensate the poor image quality problems associated with the thermal infrared camera, the technique of mapping thermal infrared image into real ccd image is proposed. The mobile robot KAEROT/m2, loaded with sensor head system at the mast, is entered to monitor leakage of heavy water and thermal abnormality of the calandria reactor area in overhaul period. The sensor head system is composed of thermal infrared camera and ccd camera in parallel. When thermal abnormality on observation points and areas of calandria reactor area is occurred, unusual hot image taken from thermal infrared camera is superimposed on real CCD image. In this inspection experiment, more accurate positions of thermal abnormalities on calandria reactor area can be estimated by using technique of mapping thermal infrared image into CCD image, which include characters arranged in MPOQ order.

  11. Enhanced spectrum superluminescent diodes fabricated by infrared laser rapid thermal annealing

    Science.gov (United States)

    Beal, Romain; Moumanis, Khalid; Aimez, Vincent; Dubowski, Jan J.

    2013-12-01

    We report on the fabrication of superluminescent diodes (SLD) from a graded bandgap quantum well intermixed (QWI) material obtained by an infrared laser rapid thermal annealing (IR Laser-RTA) technique. The processed semiconductor wafer consisted of an InGaAs/InGaAsP/InP (001) QW laser heterostructure originally emitting at 1.55 μm. The combined beams of a 150 W laser diode operating at 980 nm and a 30 W Nd:YAG laser operating at 1064 nm are used to heat the sample. While the laser diode is used for back-side heating of the wafer, the Nd:YAG laser beam is swept along the sample surface, resulting in temperature gradient changing in the direction perpendicular to the scan. This contactless RTA approach, allowed to obtain a graded bandgap material that was employed for the fabrication of SLD devices with a broadened emission bandwidth. The lasing effect in a series of 3 mm long broad area injection diodes was suppressed by tilting their facets by 7.5° with respect to the [110] direction. The best SLD devices had their FWHM (full-width-at-half-maximum) emission increased by 33% in comparison to the FWHM of 36 nm observed for devices made from the as grown material at an equal output power of 0.8 mW.

  12. Infrared Thermal Imaging During Ultrasonic Aspiration of Bone

    Science.gov (United States)

    Cotter, D. J.; Woodworth, G.; Gupta, S. V.; Manandhar, P.; Schwartz, T. H.

    Ultrasonic surgical aspirator tips target removal of bone in approaches to tumors or aneurysms. Low profile angled tips provide increased visualization and safety in many high risk surgical situations that commonly were approached using a high speed rotary drill. Utilization of the ultrasonic aspirator for bone removal raised questions about relative amount of local and transmitted heat energy. In the sphenoid wing of a cadaver section, ultrasonic bone aspiration yielded lower thermal rise in precision bone removal than rotary mechanical drills, with maximum temperature of 31 °C versus 69 °C for fluted and 79 °C for diamond drill bits. Mean ultrasonic fragmentation power was about 8 Watts. Statistical studies using tenacious porcine cranium yielded mean power levels of about 4.5 Watts to 11 Watts and mean temperature of less than 41.1 °C. Excessively loading the tip yielded momentary higher power; however, mean thermal rise was less than 8 °C with bone removal starting at near body temperature of about 37 °C. Precision bone removal and thermal management were possible with conditions tested for ultrasonic bone aspiration.

  13. On the joint use of IASI and GOSAT retrievals in the thermal infrared

    Science.gov (United States)

    Bureau, J.; Payan, S.; Camy-Peyret, C.; Clerbaux, C.; Coheur, P.; Hurtmans, D.; Hadji-Lazaro, J.; Bauduin, S.; George, M.

    2012-12-01

    GOSAT (Greenhouse Gases Observing SATellite) is a satellite dedicated to the study of greenhouses gases. It carries an infrared Fourier transform spectrometer (Thermal And Near infrared Sensor for carbon Observation-Fourier Transform Spectrometer or TANSO-FTS), which acquires spectra in 4 bands, located in the Near-Infrared (NIR), ShortWave Infrared (SWIR) and Thermal Infrared (TIR). An imager (Cloud and Aerosol Imager or TANSO-CAI) enables to gain information on clouds and aerosols, and this information is used to improve the quality of CO2 and CH4 retrievals. IASI (Infrared Atmospheric Sounding Interferometer) designed by CNES for Eumetsat is carried by the MetOp-A satellite. It is used for operational meteorology and is also interesting for greenhouse gases as well as for atmospheric chemistry and climate. We looked for close spatial and temporal coincidences with six TCCON sites where high resolution FTIR measurements are performed routinely. Cloud-free and spatially homogeneous fields of view (IFOVs) were selected using CAI images. The TCCON retrieved VMR profiles have been used as reference and compared with those we retrieved from coincident measurements of GOSAT and IASI. We used the [1240;1320] cm-1 window for CH4, and the [980;1100] cm-1 window for O3 retrieval. Finally, we will highlight the potential to further improve the results using the synergy between measurements in the TIR and the SWIR spectral domains.

  14. Postdispersion system for astronomical observations with Fourier transform spectrometers in the thermal infrared

    Science.gov (United States)

    Wiedermann, Guenter; Jennings, D. E.; Hanel, R. H.; Kunde, V. G.; Moseley, S. H.

    1989-01-01

    A postdispersion system for astronomical observations with Fourier transform spectrometers in the thermal infrared has been developed which improves the sensitivity of radiation noise limited observations by reducing the spectral range incident on the detector. Special attention is given to the first-generation blocked impurity band detector. Planetary, solar, and stellar observations are reported.

  15. Retrieval of leaf water content spanning the visible to thermal infrared spectra

    CSIR Research Space (South Africa)

    Ullah, S

    2014-05-01

    Full Text Available The objective of this study was to investigate the entire spectra (from visible to the thermal infrared; 0.390 µm -14.0 µm) to retrieve leaf water content in a consistent manner. Narrow-band spectral indices (calculated from all possible two band...

  16. Thermal infrared imaging of the temporal variability in stomatal conductance for fruit trees

    Science.gov (United States)

    Struthers, Raymond; Ivanova, Anna; Tits, Laurent; Swennen, Rony; Coppin, Pol

    2015-07-01

    Repeated measurements using thermal infrared remote sensing were used to characterize the change in canopy temperature over time and factors that influenced this change on 'Conference' pear trees (Pyrus communis L.). Three different types of sensors were used, a leaf porometer to measure leaf stomatal conductance, a thermal infrared camera to measure the canopy temperature and a meteorological sensor to measure weather variables. Stomatal conductance of water stressed pear was significantly lower than in the control group 9 days after stress began. This decrease in stomatal conductance reduced transpiration, reducing evaporative cooling that increased canopy temperature. Using thermal infrared imaging with wavelengths between 7.5 and13 μm, the first significant difference was measured 18 days after stress began. A second order derivative described the average rate of change of the difference between the stress treatment and control group. The average rate of change for stomatal conductance was 0.06 (mmol m-2 s-1) and for canopy temperature was -0.04 (°C) with respect to days. Thermal infrared remote sensing and data analysis presented in this study demonstrated that the differences in canopy temperatures between the water stress and control treatment due to stomata regulation can be validated.

  17. Mapping Acid Sulfate Alteration of Basaltic Andesite with Thermal Infrared Data

    Science.gov (United States)

    Vaughan, R. G.; Calvin, W. M.; Hook, S. J.; Taranik, J. V.

    2002-01-01

    Airborne thermal infrared multi- and hyperspectral data sets are used to map sulfate alteration of basaltic andesites near Reno, NV. Alteration includes quartz-alunite, jarosite and a number of clay minerals such as kaolinite and montmorillonite. Additional information is contained in the original extended abstract.

  18. A Novel Measuring Method of Emissivity in the Thermal Infrared Region

    OpenAIRE

    松井, 松長; 宮武, 将浩; マツイ, マツナガ; ミヤタケ, マサヒロ; Matsunaga, MATSUI; Masahiro, MIYATAKE

    1981-01-01

    The purpose of this note is to propose a new method for measuring emissivity in the thermal infrared region of opaque or partially transparent bodies at or near room temperature. This method differs from Buettner-Kern method in the point that it makes no use of two different lids of a very high and very low emissivity.

  19. Rapid microplate, green method for high-throughput evaluation of vinegar acidity using thermal infrared enthalpimetry.

    Science.gov (United States)

    Tischer, Bruna; Oliveira, Alessandra Stangherlin; Ferreira, Daniele de Freitas; Menezes, Cristiano Ragagnin; Duarte, Fábio Andrei; Wagner, Roger; Barin, Juliano Smanioto

    2017-01-15

    Infrared thermal imaging was combined with disposable microplates to perform enthalpimetric analysis using an infrared camera to monitor temperature without contact. The proposed thermal infrared enthalpimetry (TIE) method was used to determine the total, fixed and volatile acidities of vinegars. Sample preparation and analysis were performed in the same vessel, avoiding excessive sample handling and reducing energy expenditure by more than ten times. The results agreed with those of the conventional method for different kinds of vinegars, with values of 1.7%, and 2.3% for repeatability and intermediate precision, respectively. A linear calibration curve was obtained from 0.040 to 1.30molL(-1). The proposed method provided rapid results (within 10s) for four samples simultaneously, a sample throughput of up to 480 samples per hour. In addition, the method complies with at least eight of twelve recommendations for green analytical chemistry, making TIE a promising tool for routine vinegar analysis.

  20. Exploring the use of thermal infrared imaging in human stress research.

    Directory of Open Access Journals (Sweden)

    Veronika Engert

    Full Text Available High resolution thermal infrared imaging is a pioneering method giving indices of sympathetic activity via the contact-free recording of facial tissues (thermal imprints. Compared to established stress markers, the great advantage of this method is its non-invasiveness. The goal of our study was to pilot the use of thermal infrared imaging in the classical setting of human stress research. Thermal imprints were compared to established stress markers (heart rate, heart rate variability, finger temperature, alpha-amylase and cortisol in 15 participants undergoing anticipation, stress and recovery phases of two laboratory stress tests, the Cold Pressor Test and the Trier Social Stress Test. The majority of the thermal imprints proved to be change-sensitive in both tests. While correlations between the thermal imprints and established stress markers were mostly non-significant, the thermal imprints (but not the established stress makers did correlate with stress-induced mood changes. Multivariate pattern analysis revealed that in contrast to the established stress markers the thermal imprints could not disambiguate anticipation, stress and recovery phases of both tests. Overall, these results suggest that thermal infrared imaging is a valuable method for the estimation of sympathetic activity in the stress laboratory setting. The use of this non-invasive method may be particularly beneficial for covert recordings, in the study of special populations showing difficulties in complying with the standard instruments of data collection and in the domain of psychophysiological covariance research. Meanwhile, the established stress markers seem to be superior when it comes to the characterization of complex physiological states during the different phases of the stress cycle.

  1. Relic density computations at NLO: infrared finiteness and thermal correction

    CERN Document Server

    Beneke, Martin; Hryczuk, Andrzej

    2014-01-01

    There is an increasing interest in accurate dark matter relic density predictions, which requires next-to-leading order (NLO) calculations. The method applied up to now uses zero-temperature NLO calculations of annihilation cross sections in the standard Boltzmann equation for freeze-out, and is conceptually problematic, since it ignores the finite-temperature infrared (IR) divergences from soft and collinear radiation and virtual effects. We address this problem systematically by starting from non-equilibrium quantum field theory, and demonstrate on a realistic model that soft and collinear temperature-dependent divergences cancel in the collision term. Our analysis provides justification for the use of the freeze-out equation in its conventional form and determines the leading finite-temperature correction to the annihilation cross section. This turns out to have a remarkably simple structure.

  2. Analyzing the thermal regime of power supply units in portable betatrons by using infrared thermography

    Directory of Open Access Journals (Sweden)

    Simonova O.S.

    2017-01-01

    Full Text Available Potentials of infrared thermography in analyzing a thermal regime of the 7.5 MeV betatron power supply are discussed. Both the heating rate and thermal inertia of particular electronic components have been evaluated by processing pixel-based temperature histories. The data treatment has been performed by using the original ThermoFit Pro software to illustrate that some advanced processing algorithms, such as the Fourier transform and principle component analysis, are valuable in identifying thermal dynamics of particular power supply parts.

  3. Determination of the optical and the thermal properties of an absorbing medium by using infrared thermometry

    Science.gov (United States)

    Yang, Seung-Jin; Baek, Jun-Hyeok; Kim, Seung-Eun; Kwon, Min-Ki; Park, Jong-Rak; Yeom, Dong-Il; Kim, Ji-Sun; Baek, Jin-Young; Kim, Hyung-Sik; Jun, Jae-Hoon; Chung, Soon-Cheol

    2016-12-01

    Spatiotemporal changes in the surface temperature of an absorbing medium irradiated by using 532-nm laser pulses were measured using an infrared camera. Relevant numerical simulations of the heat transfer equation were performed. The simulations showed that the maximum temperature increase was linearly proportional to the absorption coefficient with no dependence on the thermal conductivity and that the decay time constant depended on both the absorption coefficient and the thermal conductivity. The absorption coefficient and the thermal conductivity of the medium were determined by fitting the simulated results for the maximum temperature increase and decay time constant to the measured results.

  4. Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals.

    Science.gov (United States)

    Didierjean, Julien; Herault, Emilie; Balembois, François; Georges, Patrick

    2008-06-09

    We present a thermal conductivity measurement method for laser crystals based on thermal mapping of the crystal face by an infrared camera. Those measurements are performed under end-pumping of the laser crystal and during laser operation. The calculation of the fraction of pump power converted into heat is therefore simplified, and it is possible to link easily the temperature in the crystal to the thermal conductivity. We demonstrate the efficiency of this measurement method with a Nd:YAG crystal, before using it to compare Nd:YVO(4) and Nd:GdVO(4) crystals.

  5. Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Peragut, Florian; De Wilde, Yannick, E-mail: yannick.dewilde@espci.fr [ESPCI ParisTech, PSL Research University, CNRS, Institut Langevin, 1 rue Jussieu, F-75005, Paris (France); Brubach, Jean-Blaise; Roy, Pascale [Société Civile Synchrotron SOLEIL, L' Orme des Merisiers, St-Aubin BP48, 91192 Gif-sur-Yvette Cedex (France)

    2014-06-23

    We demonstrate the coupling of a scattering near-field scanning optical microscope combined with a Fourier transform infrared spectrometer. The set-up operates using either the near-field thermal emission from the sample itself, which is proportional to the electromagnetic local density of states, or with an external infrared synchrotron source, which is broadband and highly brilliant. We perform imaging and spectroscopy measurements with sub-wavelength spatial resolution in the mid-infrared range on surfaces made of silicon carbide and gold and demonstrate the capabilities of the two configurations for super-resolved near-field mid-infrared hyperspectral imaging and that the simple use of a properly chosen bandpass filter on the detector allows one to image the spatial distribution of materials with sub-wavelength resolution by studying the contrast in the near-field images.

  6. Identifying plant species using mid-wave infrared (2.5-6µm) and thermal infrared (8-14µm) emissivity spectra

    NARCIS (Netherlands)

    Ullah, S.; Schlerf, M.; Skidmore, A.K.; Hecker, C.

    2012-01-01

    Plant species discrimination using remote sensing is generally limited by the similarity of their reflectance spectra in the visible, NIR and SWIR domains. Laboratory measured emissivity spectra in the mid infrared (MIR; 2.5µm-6µm) and the thermal infrared (TIR; 8µm-14µm) domain of different plant s

  7. Physiology-based face recognition in the thermal infrared spectrum.

    Science.gov (United States)

    Buddharaju, Pradeep; Pavlidis, Ioannis T; Tsiamyrtzis, Panagiotis; Bazakos, Mike

    2007-04-01

    The current dominant approaches to face recognition rely on facial characteristics that are on or over the skin. Some of these characteristics have low permanency can be altered, and their phenomenology varies significantly with environmental factors (e.g., lighting). Many methodologies have been developed to address these problems to various degrees. However, the current framework of face recognition research has a potential weakness due to its very nature. We present a novel framework for face recognition based on physiological information. The motivation behind this effort is to capitalize on the permanency of innate characteristics that are under the skin. To establish feasibility, we propose a specific methodology to capture facial physiological patterns using the bioheat information contained in thermal imagery. First, the algorithm delineates the human face from the background using the Bayesian framework. Then, it localizes the superficial blood vessel network using image morphology. The extracted vascular network produces contour shapes that are characteristic to each individual. The branching points of the skeletonized vascular network are referred to as Thermal Minutia Points (TMPs) and constitute the feature database. To render the method robust to facial pose variations, we collect for each subject to be stored in the database five different pose images (center, midleft profile, left profile, midright profile, and right profile). During the classification stage, the algorithm first estimates the pose of the test image. Then, it matches the local and global TMP structures extracted from the test image with those of the corresponding pose images in the database. We have conducted experiments on a multipose database of thermal facial images collected in our laboratory, as well as on the time-gap database of the University of Notre Dame. The good experimental results show that the proposed methodology has merit, especially with respect to the problem of

  8. Thermal Imaging with Novel Infrared Focal Plane Arrays and Quantitative Analysis of Thermal Imagery

    Science.gov (United States)

    Gunapala, S. D.; Rafol, S. B.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Soibel, A.; Ting, D. Z.; Tidrow, Meimei

    2012-01-01

    We have developed a single long-wavelength infrared (LWIR) quantum well infrared photodetector (QWIP) camera for thermography. This camera has been used to measure the temperature profile of patients. A pixel coregistered simultaneously reading mid-wavelength infrared (MWIR)/LWIR dual-band QWIP camera was developed to improve the accuracy of temperature measurements especially with objects with unknown emissivity. Even the dualband measurement can provide inaccurate results due to the fact that emissivity is a function of wavelength. Thus we have been developing a four-band QWIP camera for accurate temperature measurement of remote object.

  9. Demonstration of dual-band infrared thermal imaging for bridge inspection. Phase II, final report

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, P.F.; Del Grande, N.K.; Schaich, P.C.

    1996-03-01

    Developing and implementing methods of effective bridge rehabilitation is a major issue for the Federal Highway Administration (FHWA). The nation spends $5 billion annually to replace, rehabilitate or construct new bridges. According to the National Bridge Inventory, over 100,000 U.S. bridges are structurally deficient. About 40,000 of these bridges have advanced deck deterioration. The most common causes of serious deck deterioration is delamination. Delaminations result when steel reinforcements within the bridge deck corrode, creating gaps that separate the concrete into layers. A reliable inspection technology, capable of identifying delaminations, would represent a power new tool in bridge maintenance. To date, most bridge inspections rely on human interpretation of surface visual features of chain dragging. These methods are slow, disruptive, unreliable and raise serious safety concerns. Infrared thermal imaging detects subsurface delaminations and surface clutter, which is introduced by foreign material on the roadway. Typically, foreign material which is not always evident on a video tape image, produces a unique IR reflectance background unlike the thermal response of a subsurface delamination. Lawrence Livermore National Laboratory (LLNL) uses dual-band infrared (DBIR) thermal imaging to identify and remove nonthermal IR reflectance backgrounds from foreign material on the roadway. DBIR methods improve the performance of IR thermal imaging by a factor of ten, compared to single-band infrared (SBIR) methods. DBIR thermal imaging allows precise temperature measurement to reliably locate bridge deck delaminations and remove wavelength-dependent emissivity variations due to foreign material on the roadway.

  10. Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor.

    Science.gov (United States)

    Asano, Takashi; Suemitsu, Masahiro; Hashimoto, Kohei; De Zoysa, Menaka; Shibahara, Tatsuya; Tsutsumi, Tatsunori; Noda, Susumu

    2016-12-01

    Control of the thermal emission spectra of emitters will result in improved energy utilization efficiency in a broad range of fields, including lighting, energy harvesting, and sensing. In particular, it is challenging to realize a highly selective thermal emitter in the near-infrared-to-visible range, in which unwanted thermal emission spectral components at longer wavelengths are significantly suppressed, whereas strong emission in the near-infrared-to-visible range is retained. To achieve this, we propose an emitter based on interband transitions in a nanostructured intrinsic semiconductor. The electron thermal fluctuations are first limited to the higher-frequency side of the spectrum, above the semiconductor bandgap, and are then enhanced by the photonic resonance of the structure. Theoretical calculations indicate that optimized intrinsic Si rod-array emitters with a rod radius of 105 nm can convert 59% of the input power into emission of wavelengths shorter than 1100 nm at 1400 K. It is also theoretically indicated that emitters with a rod radius of 190 nm can convert 84% of the input power into emission of emissivity of 0.77 at a wavelength of 790 nm and a very low background emissivity of <0.02 to 0.05 at 1100 to 7000 nm, under operation at 1273 K. Use of a nanostructured intrinsic semiconductor that can withstand high temperatures is promising for the development of highly efficient thermal emitters operating in the near-infrared-to-visible range.

  11. Characteristics of Turbulent Airflow Deduced from Rapid Surface Thermal Fluctuations: An Infrared Surface Anemometer

    Science.gov (United States)

    Aminzadeh, Milad; Breitenstein, Daniel; Or, Dani

    2017-07-01

    The intermittent nature of turbulent airflow interacting with the surface is readily observable in fluctuations of the surface temperature resulting from the thermal imprints of eddies sweeping the surface. Rapid infrared thermography has recently been used to quantify characteristics of the near-surface turbulent airflow interacting with the evaporating surfaces. We aim to extend this technique by using single-point rapid infrared measurements to quantify properties of a turbulent flow, including surface exchange processes, with a view towards the development of an infrared surface anemometer. The parameters for the surface-eddy renewal (α and β ) are inferred from infrared measurements of a single-point on the surface of a heat plate placed in a wind tunnel with prescribed wind speeds and constant mean temperatures of the surface. Thermally-deduced parameters are in agreement with values obtained from standard three-dimensional ultrasonic anemometer measurements close to the plate surface (e.g., α = 3 and β = 1/26 (ms)^{-1} for the infrared, and α = 3 and β = 1/19 (ms)^{-1} for the sonic-anemometer measurements). The infrared-based turbulence parameters provide new insights into the role of surface temperature and buoyancy on the inherent characteristics of interacting eddies. The link between the eddy-spectrum shape parameter α and the infrared window size representing the infrared field of view is investigated. The results resemble the effect of the sampling height above the ground in sonic anemometer measurements, which enables the detection of larger eddies with higher values of α . The physical basis and tests of the proposed method support the potential for remote quantification of the near-surface momentum field, as well as scalar-flux measurements in the immediate vicinity of the surface.

  12. Method for measuring weld temperature using an infrared thermal imaging camera

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Chan Seung [Chosun University of Science and Technology, Gwangju (Korea, Republic of); Kim, Kyeong Suk; Chang, Ho Seob [Chosun University, Gwangju (Korea, Republic of)

    2014-08-15

    In this paper, a method is tested to measure temperatures in high-temperature welds. Protective glass was installed between an infrared thermal imaging camera and a heat source, and temperature compensation was applied to the measuring instruments. When the temperature of halogen lamps was taken in real-time and measured by the thermal camera, the temperature was found to be almost invariant with the distance between the camera and heat source. The temperature range could be predicted, through correlations with the thickness of the protective glass and the measured distance. This study suggests that the temperature measurement of welds obtained by using an infrared thermal imaging camera is valid, through experimental testing of heat sources.

  13. Physical characterisation of near-Earth asteroid (1620) Geographos. Reconciling radar and thermal-infrared observations

    CERN Document Server

    Rozitis, Ben

    2014-01-01

    The Yarkovsky (orbital drift) and YORP (spin state change) effects play important roles in the dynamical and physical evolution of asteroids. Thermophysical modelling of these observed effects, and of thermal-infrared observations, allows a detailed physical characterisation of an individual asteroid to be performed. We perform a detailed physical characterisation of near-Earth asteroid (1620) Geographos, a potential meteor stream source and former spacecraft target, using the same techniques as previously used in Rozitis et al. (2013) for (1862) Apollo. We use the advanced thermophysical model (ATPM) on published light-curve, radar, and thermal-infrared observations to constrain the thermophysical properties of Geographos. The derived properties are used to make detailed predictions of the Yarkovsky orbital drift and YORP rotational acceleration, which are then compared against published measurements to determine Geographos's bulk density. We find that Geographos has a thermal inertia of 340 +140/-100 J m-2 ...

  14. Time calibration of thermal rolling shutter infrared cameras

    Science.gov (United States)

    Peeters, J.; Louarroudi, E.; De Greef, D.; Vanlanduit, S.; Dirckx, J. J. J.; Steenackers, G.

    2017-01-01

    The working principle of nearly all uncooled microbolometer thermal imaging systems is based on the rolling shutter principle. This results in time delays between rows giving rise to distorted and blurred images which are difficult to correlate with, for example instantaneous numerical simulation results for nondestructive evaluation. Until today high-end and high-cost thermal cameras need to be used for instantaneous measurements. Furthermore, quantitative defect evaluation on average conductive materials is difficult to perform as a result of the rolling shutter blur of the uncooled cameras. In this contribution, a time delay compensation method is designed. The developed algorithm is described and a measurement routine is elaborated to measure the inter- and intra-frame delays between two pixels. Finally, an artificial global shutter image sequence is developed using linear interpolation between the original fluctuating frames. We will show that by applying our proposed method, the intra-frame delay can be predicted and compensated with an accuracy of 16 μs . Besides, there is only made use of low-cost equipment to provide a straight-forward methodology which makes it applicable for the further integration of low-cost microbolometers in industry. This means that we have made the application of low-cost microbolometers feasible for instantaneous measurements.

  15. Mid and thermal infrared remote sensing at the Jet Propulsion Laboratory

    Science.gov (United States)

    Johnson, William R.; Hook, Simon J.

    2016-05-01

    The mid and thermal infrared (MTIR) for the Earth surface is defined between 3 and 14µm. In the outer solar system, objects are colder and their Planck response shifts towards longer wavelengths. Hence for these objects (e.g. icy moons, polar caps, comets, Europa), the thermal IR definition usually stretches out to 50µm and beyond. Spectroscopy has been a key part of this scientific exploration because of its ability to remotely determine elemental and mineralogical composition. Many key gas species such as methane, ammonia, sulfur, etc. also have vibrational bands which show up in the thermal infrared spectrum above the background response. Over the past few decades, the Jet Propulsion Laboratory has been building up a portfolio of technology to capture the MTIR for various scientific applications. Three recent sensors are briefly reviewed: The airborne Hyperspectral thermal emission spectrometer (HyTES), the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) and Mars Climate Sounder (MCS)/DIVINER. Each of these sensors utilize a different technology to provide a remote sensing product based on MTIR science. For example, HyTES is a push-brooming hyperspectral imager which utilizes a large format quantum well infrared photodetector (QWIP). The goal is to transition this to a new complementary barrier infrared photodetector (CBIRD) with a similar long wave cut-off and increased sensitivity. ECOSTRESS is a push-whisk Mercury Cadmium Telluride (MCT) based high speed, multi-band, imager which will eventually observe and characterize plant/vegetation functionality and stress index from the International Space Station (ISS) across the contiguous United States (CONUS). MCS/DIVINER utilizes thermopile technology to capture the thermal emission from the polar caps and shadow regions of the moon. Each sensor utilizes specific JPL technology to capture unique science.

  16. Resin Material Dependence of Pit Shape in Thermal Direct Mastering

    Science.gov (United States)

    Sakai, Toshihiko; Shimo, Masanori; Takamori, Nobuyuki; Murakami, Yoshiteru; Takahashi, Akira

    2007-06-01

    We report the resin material dependence of the shape of pits obtained by thermal direct mastering (TDM), which is a heat-mode mastering method utilizing the thermal decomposition of resins. By applying suitable resins, both circular and crescent pits can be obtained by TDM. This difference in shape was considered to originate from the temperature difference between the glass transition temperature and the thermal decomposition temperature of the resins. The resin with a relatively small temperature difference was suitable for the fabrication of the circular pits and random patterns, and the resin with a large temperature difference was suitable for the fabrication of the crescent pits and monotone patterns with high linear density. By using a deep ultraviolet (DUV) laser mastering system with a wavelength of 257 nm and a numerical aperture of 0.90, a monotone pattern of 40-nm-length pits was fabricated by applying a novolak-type resin with a relatively large temperature difference.

  17. Thermal Infrared Remote Sensing for Analysis of Landscape Ecological Processes: Methods and Applications

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.

    1998-01-01

    Thermal Infrared (TIR) remote sensing data can provide important measurements of surface energy fluxes and temperatures, which are integral to understanding landscape processes and responses. One example of this is the successful application of TIR remote sensing data to estimate evapotranspiration and soil moisture, where results from a number of studies suggest that satellite-based measurements from TIR remote sensing data can lead to more accurate regional-scale estimates of daily evapotranspiration. With further refinement in analytical techniques and models, the use of TIR data from airborne and satellite sensors could be very useful for parameterizing surface moisture conditions and developing better simulations of landscape energy exchange over a variety of conditions and space and time scales. Thus, TIR remote sensing data can significantly contribute to the observation, measurement, and analysis of energy balance characteristics (i.e., the fluxes and redistribution of thermal energy within and across the land surface) as an implicit and important aspect of landscape dynamics and landscape functioning. The application of TIR remote sensing data in landscape ecological studies has been limited, however, for several fundamental reasons that relate primarily to the perceived difficulty in use and availability of these data by the landscape ecology community, and from the fragmentation of references on TIR remote sensing throughout the scientific literature. It is our purpose here to provide evidence from work that has employed TIR remote sensing for analysis of landscape characteristics to illustrate how these data can provide important data for the improved measurement of landscape energy response and energy flux relationships. We examine the direct or indirect use of TIR remote sensing data to analyze landscape biophysical characteristics, thereby offering some insight on how these data can be used more robustly to further the understanding and modeling of

  18. Method for measuring thermal properties using a long-wavelength infrared thermal image

    Science.gov (United States)

    Walker, Charles L.; Costin, Laurence S.; Smith, Jody L.; Moya, Mary M.; Mercier, Jeffrey A.

    2007-01-30

    A method for estimating the thermal properties of surface materials using long-wavelength thermal imagery by exploiting the differential heating histories of ground points in the vicinity of shadows. The use of differential heating histories of different ground points of the same surface material allows the use of a single image acquisition step to provide the necessary variation in measured parameters for calculation of the thermal properties of surface materials.

  19. Thermal cycling reliability of indirect hybrid HgCdTe infrared detectors

    Science.gov (United States)

    Chen, Xing; He, Kai; Wang, Jian-xin; Zhang, Qin-yao

    2013-09-01

    Thermal cycling reliability is one of the most important issues whether the HgCdTe infrared focal plane array detectors can be applied to both military and civil fields. In this paper, a 3D finite element model for indirect hybrid HgCdTe infrared detectors is established. The thermal stress distribution and thermally induced warpage of the detector assembly as a function of the distance between the detector chip and Si-ROIC, the thickness and the materials properties of electrical lead board in cryogenic temperature are analyzed. The results show that all these parameters have influences on the thermal stress distribution and warpage of the detector assembly, especially the coefficient of thermal expansion(CTE) of electrical lead board. The thermal stress and warpage in the assembly can be avoided or minimized by choosing the appropriate electrical lead board. Additionally, the warpage of some indirect hybrid detectors assembly samples is measured in experiment. The experimental results are in good agreement with the simulation results, which verifies that the results are calculated by finite element method are reasonable.

  20. Thermal removal from near-infrared imaging spectroscopy data of the Moon

    Science.gov (United States)

    Clark, R.N.; Pieters, C.M.; Green, R.O.; Boardman, J.W.; Petro, N.E.

    2011-01-01

    In the near-infrared from about 2 ??m to beyond 3 ??m, the light from the Moon is a combination of reflected sunlight and emitted thermal emission. There are multiple complexities in separating the two signals, including knowledge of the local solar incidence angle due to topography, phase angle dependencies, emissivity, and instrument calibration. Thermal emission adds to apparent reflectance, and because the emission's contribution increases over the reflected sunlight with increasing wavelength, absorption bands in the lunar reflectance spectra can be modified. In particular, the shape of the 2 ??m pyroxene band can be distorted by thermal emission, changing spectrally determined pyroxene composition and abundance. Because of the thermal emission contribution, water and hydroxyl absorptions are reduced in strength, lowering apparent abundances. It is important to quantify and remove the thermal emission for these reasons. We developed a method for deriving the temperature and emissivity from spectra of the lunar surface and removing the thermal emission in the near infrared. The method is fast enough that it can be applied to imaging spectroscopy data on the Moon. Copyright ?? 2011 by the American Geophysical Union.

  1. Thermal infrared remote sensing of surface features for renewable resource applications

    Science.gov (United States)

    Welker, J. E.

    1981-01-01

    The subjects of infrared remote sensing of surface features for renewable resource applications is reviewed with respect to the basic physical concepts involved at the Earth's surface and up through the atmosphere, as well as the historical development of satellite systems which produce such data at increasingly greater spatial resolution. With this general background in hand, the growth of a variety of specific renewable resource applications using the developing thermal infrared technology are discussed, including data from HCMM investigators. Recommendations are made for continued growth in this field of applications.

  2. [Study on estimation of deserts soil total phosphorus content from thermal-infrared emissivity].

    Science.gov (United States)

    Hou, Yan-jun; Tiyip, Tashpolat; Zhang, Fei; Sawut, Mamat; Nurmemet, Ilyas

    2015-02-01

    Soil phosphorus provides nutrient elements for plants, is one of important parameters for evaluating soil quality. The traditional method for soil total phosphorus content (STPC) measurement is not effective and time-consuming. However, remote sensing (RS) enables us to determine STPC in a fast and efficient way. Studies on the estimation of STPC in near-infrared spectroscopy have been developed by scholars, but model accuracy is still poor due to the low absorption coefficient and unclear absorption peak of soil phosphorus in near-infrared. In order to solve the deficiency which thermal-infrared emissivity estimate desert soil total phosphorus content, and could improve precision of estimation deserts soil total phosphorus. In this paper, characteristics of soil thermal-infrared emissivity are analyzed on the basis of laboratory processing and spectral measurement of deserts soil samples from the eastern Junggar Basin. Furthermore, thermal-infrared emissivity based RS models for STPC estimation are established and accuracy assessed. Results show that: when STPC is higher than 0.200 g x kg(-1), the thermal-infrared emissivity increases with the increase of STPC on the wavelength between 8.00 microm and 13 microm, and the emissivity is more sensitive to STPC on the wavelength between 9.00 and 9.6 microm; the estimate mode based on multiple stepwise regression was could not to estimate deserts soil total phosphorus content from thermal-infrared emissivity because the estimation effects of them were poor. The estimation accuracy of model based on partial least squares regression is higher than the model based on multiple stepwise regression. However, the accuracy of second-order differential estimation model based on partial least square regression is higher than based on multiple stepwise regression; The first differential of continuous remove estimation model based on partial least squares regression is the best model with R2 of correction and verification are up to

  3. Thermal infrared mapping of the Leidenfrost drop evaporation

    Science.gov (United States)

    Wciślik, Sylwia

    2016-09-01

    The paper presents an author complementary study on the Leidenfrost drop evaporation. The research was conducted under ambient conditions and in the film boiling regime. Large water drops were placed on the copper substrate of the constant temperature Tw ranging from 297.6 to 404oC. The initial single drop diameter and its mass was D0 ≈ 1cm and m0 ≈ 1g respectively. One of the obtained results, for each Tw are the drop thermal images versus time. They were used to calculate an average temperature over the drop upper surface (Td). For an exemplary heating surface temperature of Tw = 297.6oC the average drop temperature is approximately 11oC lower than the saturation one and equals Td = 88,95oC. This value is estimated for the first 200s of evaporation and with time step size Δt = 0,5s. The drop upper surface temperature is highly variable and indicates strong convection inside it. This is due to the complex nature of heat and mass transfer. The maximum standard deviation from Td = 88,95oC is SD = 1.21.

  4. New dust opacity mapping from Viking Infrared Thermal Mapper data

    Science.gov (United States)

    Martin, Terry Z.; Richardson, Mark I.

    1993-01-01

    Global dust opacity mapping for Mars has been carried forward using the approach described by Martin (1986) for Viking IR Thermal Mapper data. New maps are presented for the period from the beginning of Viking observations, until Ls 210 deg in 1979 (1.36 Mars years). This range includes the second and more extensive planet-encircling dust storm observed by Viking, known as storm 1977b. Improvements in approach result in greater time resolution and smaller noise than in the earlier work. A strong local storm event filled the Hellas basin at Ls 170 deg, prior to the 1977a storm. Dust is retained in equatorial regions following the 1977b storm far longer than in mid-latitudes. Minor dust events appear to raise the opacity in northern high latitudes during northern spring. Additional mapping with high time resolution has been done for the periods of time near the major storm origins in order to search for clues to the mechanism of storm initiation. The first evidence of the start of the 1977b storm is pushed back to Ls 274.2 deg, preceding signs of the storm in images by about 15 hours.

  5. A novel high-temperature furnace for combined in situ synchrotron X-ray diffraction and infrared thermal imaging to investigate the effects of thermal gradients upon the structure of ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, James B.; Brown, Leon D.; Jervis, Rhodri; Taiwo, Oluwadamilola O.; Millichamp, Jason; Mason, Thomas J.; Neville, Tobias P. [UCL, London WC1E 7JE (United Kingdom); Eastwood, David S. [Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA (United Kingdom); University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Reinhard, Christina [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Lee, Peter D. [Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA (United Kingdom); University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Brett, Daniel J. L.; Shearing, Paul R., E-mail: p.shearing@ucl.ac.uk [UCL, London WC1E 7JE (United Kingdom)

    2014-08-15

    A combined X-ray diffraction and thermal imaging technique is described to investigate the effect of thermal gradients on high-temperature composite materials. A new technique combining in situ X-ray diffraction using synchrotron radiation and infrared thermal imaging is reported. The technique enables the application, generation and measurement of significant thermal gradients, and furthermore allows the direct spatial correlation of thermal and crystallographic measurements. The design and implementation of a novel furnace enabling the simultaneous thermal and X-ray measurements is described. The technique is expected to have wide applicability in material science and engineering; here it has been applied to the study of solid oxide fuel cells at high temperature.

  6. Probable satellite thermal infrared anomaly before the Zhangbei MS=6.2 earthquake on January 10, 1998

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper used the thermal infrared data of the satellite NOAA-AAVHRR of the north part of North China (113°~119° E, 38°~42° N), and processed the remote sensing data through radiation adjustment, geometric adjustment and so on by the software "The Monitoring and Fast Process System of Earthquake Precursor Thermal Infrared Anomaly", inversed the earth surface temperature. Some disturbances effect had been excluded, and thermal infrared temperature anomaly had been extracted by the picture difference method. The Zhangbei MS=6.2 earthquake is used as the example in the paper, so that in the paper thermal infrared characteristics on time-space before earthquake and the relationship between the anomaly and the earthquake prediction have been summarized.Within more than ten days before the Zhangbei earthquake, the thermal infrared anomaly had emerged widely along Zhangjiakou-Bohai seismic belt, and the anomalous region seemed like a belt and it is also consistent with the tectonic background there; the anomaly expanded from the outside toward the earthquake focus, but the focus lay at the edge of the thermal infrared region. So it is possible to explore a new anomaly observation method for earthquake prediction by observing and studying the satellite thermal infrared anomaly before big earthquakes happen.

  7. Planck 2015 results. XXIII. The thermal Sunyaev-Zeldovich effect--cosmic infrared background correlation

    CERN Document Server

    Ade, P A R; Arnaud, M; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartlett, J G; Bartolo, N; Battaner, E; Benabed, K; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bock, J J; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Burigana, C; Butler, R C; Calabrese, E; Catalano, A; Chamballu, A; Chiang, H C; Christensen, P R; Churazov, E; Clements, D L; Colombo, L P L; Combet, C; Comis, B; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Ducout, A; Dupac, X; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Finelli, F; Flores-Cacho, I; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Galeotta, S; Galli, S; Ganga, K; Génova-Santos, R T; Giard, M; Giraud-Héraud, Y; Gjerløw, E; González-Nuevo, J; Górski, K M; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Hansen, F K; Harrison, D L; Helou, G; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, A H; Jaffe, T R; Jones, W C; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Langer, M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leonardi, R; Levrier, F; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Maggio, G; Maino, D; Mak, D S Y; Mandolesi, N; Mangilli, A; Maris, M; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Melchiorri, A; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Nati, F; Natoli, P; Noviello, F; Novikov, D; Novikov, I; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Partridge, B; Pasian, F; Pearson, T J; Perdereau, O; Perotto, L; Pettorino, V; Piacentini, F; Piat, M; Pierpaoli, E; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Pratt, G W; Prunet, S; Puget, J -L; Rachen, J P; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Ristorcelli, I; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Scott, D; Spencer, L D; Stolyarov, V; Stompor, R; Sunyaev, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Wehus, I K; Welikala, N; Yvon, D; Zacchei, A; Zonca, A

    2015-01-01

    We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared emission produced by dusty galaxies inside these clusters and demonstrate that the infrared emission is about 50% more extended than the tSZ effect. Modelling the emission with a Navarro--Frenk--White profile, we find that the radial profile concentration parameter is $c_{500} = 1.00^{+0.18}_{-0.15}$. This indicates that infrared galaxies in the outskirts of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (i) using a catalogue of confirmed clusters detected in Planck data; (ii) using an all-sky tSZ map built from Planck frequency maps; and (iii) using cross-spe...

  8. Lossless image compression technique for infrared thermal images

    Science.gov (United States)

    Allred, Lloyd G.; Kelly, Gary E.

    1992-07-01

    The authors have achieved a 6.5-to-one image compression technique for thermal images (640 X 480, 1024 colors deep). Using a combination of new and more traditional techniques, the combined algorithm is computationally simple, enabling `on-the-fly' compression and storage of an image in less time than it takes to transcribe the original image to or from a magnetic medium. Similar compression has been achieved on visual images by virtue of the feature that all optical devices possess a modulation transfer function. As a consequence of this property, the difference in color between adjacent pixels is a usually small number, often between -1 and +1 graduations for a meaningful color scheme. By differentiating adjacent rows and columns, the original image can be expressed in terms of these small numbers. A simple compression algorithm for these small numbers achieves a four to one image compression. By piggy-backing this technique with a LZW compression or a fixed Huffman coding, an additional 35% image compression is obtained, resulting in a 6.5-to-one lossless image compression. Because traditional noise-removal operators tend to minimize the color graduations between adjacent pixels, an additional 20% reduction can be obtained by preprocessing the image with a noise-removal operator. Although noise removal operators are not lossless, their application may prove crucial in applications requiring high compression, such as the storage or transmission of a large number or images. The authors are working with the Air Force Photonics Technology Application Program Management office to apply this technique to transmission of optical images from satellites.

  9. Quantifying stream thermal regimes at management-pertinent scales: combining thermal infrared and stationary stream temperature data in a novel modeling framework.

    Science.gov (United States)

    Vatland, Shane J.; Gresswell, Robert E.; Poole, Geoffrey C.

    2015-01-01

    Accurately quantifying stream thermal regimes can be challenging because stream temperatures are often spatially and temporally heterogeneous. In this study, we present a novel modeling framework that combines stream temperature data sets that are continuous in either space or time. Specifically, we merged the fine spatial resolution of thermal infrared (TIR) imagery with hourly data from 10 stationary temperature loggers in a 100 km portion of the Big Hole River, MT, USA. This combination allowed us to estimate summer thermal conditions at a relatively fine spatial resolution (every 100 m of stream length) over a large extent of stream (100 km of stream) during during the warmest part of the summer. Rigorous evaluation, including internal validation, external validation with spatially continuous instream temperature measurements collected from a Langrangian frame of reference, and sensitivity analyses, suggests the model was capable of accurately estimating longitudinal patterns in summer stream temperatures for this system Results revealed considerable spatial and temporal heterogeneity in summer stream temperatures and highlighted the value of assessing thermal regimes at relatively fine spatial and temporal scales. Preserving spatial and temporal variability and structure in abiotic stream data provides a critical foundation for understanding the dynamic, multiscale habitat needs of mobile stream organisms. Similarly, enhanced understanding of spatial and temporal variation in dynamic water quality attributes, including temporal sequence and spatial arrangement, can guide strategic placement of monitoring equipment that will subsequently capture variation in environmental conditions directly pertinent to research and management objectives.

  10. Analysis of thermal degradation of organic light-emitting diodes with infrared imaging and impedance spectroscopy.

    Science.gov (United States)

    Kwak, Kiyeol; Cho, Kyoungah; Kim, Sangsig

    2013-12-02

    We propose a route to examine the thermal degradation of organic light-emitting diodes (OLEDs) with infrared (IR) imaging and impedance spectroscopy. Four different OLEDs with tris (8-hydroxyquinolinato) aluminum are prepared in this study for the analysis of thermal degradation. Our comparison of the thermal and electrical characteristics of these OLEDs reveals that the real-time temperatures of these OLEDs obtained from the IR images clearly correlate with the electrical properties and lifetimes. The OLED with poor electrical properties shows a fairly high temperature during the operation and a considerably short lifetime. Based on the correlation of the real-time temperature and the performance of the OLEDs, the impedance results suggest different thermal degradation mechanisms for each of the OLEDs. The analysis method suggested in this study will be helpful in developing OLEDs with higher efficiency and longer lifetime.

  11. Infrared thermal mapping of the martian surface and atmosphere: first results.

    Science.gov (United States)

    Kieffer, H H; Chase, S C; Miner, E D; Palluconi, F D; Münch, G; Neugebauer, G; Martin, T Z

    1976-08-27

    The Viking infrared thermal mapper measures the thermal emission of the martian surface and atmosphere and the total reflected sunlight. With the high resolution and dense coverage being achieved, planetwide thermal structure is apparent at large and small scales. The thermal behavior of the best-observed areas, the landing sites, cannot be explained by simple homogeneous models. The data contain clear indications for the relevance of additional factors such as detailed surface texture and the occurrence of clouds. Areas in the polar night have temperatures distinctly lower than the CO(2) condensation point at the surface pressure. This observation implies that the annual atmospheric condensation is less than previously assumed and that either thick CO(2) clouds exist at the 20-kilometer level or that the polar atmosphere is locally enriched by noncondensable gases.

  12. Infrared thermal mapping of the Martian surface and atmosphere - First results

    Science.gov (United States)

    Kieffer, H. H.; Martin, T. Z.; Chase, S. C., Jr.; Miner, E. D.; Palluconi, F. D.; Muench, G.; Neugebauer, G.

    1976-01-01

    The Viking infrared thermal mapper measures the thermal emission of the Martian surface and atmosphere and the total reflected sunlight. With the high resolution and dense coverage being achieved, planetwide thermal structure is apparent at large and small scales. The thermal behavior of the best-observed areas, the landing sites, cannot be explained by simple homogeneous models. The data contain clear indications for the relevance of additional factors such as detailed surface texture and the occurrence of clouds. Areas in the polar night have temperatures distinctly lower than the CO2 condensation point at the surface pressure. This observation implies that the annual atmospheric condensation is less than previously assumed and that either thick CO2 clouds exist at the 20-kilometer level or that the polar atmosphere is locally enriched by noncondensable gases.

  13. Planck 2015 results: XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Arnaud, M.

    2016-01-01

    We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared...... data; (ii) using an all-sky tSZ map built from Planck frequency maps; and (iii) using cross-spectra between Planck frequency maps. With the three different methods, we detect the tSZ-CIB cross-power spectrum at significance levels of (i) 6σ; (ii) 3σ; and (iii) 4σ. We model the tSZ-CIB cross...

  14. Infrared Thermography as Applied to Thermal Testing of Power Systems Circuit Boards.

    Science.gov (United States)

    Miles, Jonathan James

    All operational electronic equipment dissipates some amount of energy in the form of infrared radiation. Faulty electronic components on a printed circuit board can be categorized as hard (functional) or soft (latent functional). Hard faults are those which are detected during a conventional manufacturing electronic test process. Soft failures, in contrast, are those which are undetectable through conventional testing, but which manifest themselves after a product has been placed into service. Such field defective modules ultimately result in operational failure and subsequently enter a manufacturer's costly repair process. While thermal imaging systems are being used increasingly in the electronic equipment industry as a product-testing tool, applications have primarily been limited to product design or repair processes, with minimal use in a volume manufacturing environment. Use of thermal imaging systems in such an environment has mostly been limited to low-volume products or random screening of high-volume products. Thermal measurements taken in a manufacturing environment are often taken manually, thus defeating their capability of rapid data acquisition and constraining their full potential in a high-volume manufacturing process. Integration of a thermal measurement system with automated testing equipment is essential for optimal use of expensive infrared measurement tools in a high-volume manufacturing environment. However, such a marriage presents problems with respect to both existing manufacturing test processes and infrared measurement techniques. Methods are presented in this dissertation to test automatically for latent faults, those which elude detection during conventional electronic testing, on printed circuit boards. These methods are intended for implementation in a volume manufacturing environment and involve the application of infrared imaging tools. Successful incorporation of infrared testing into existing test processes requires that: PASS

  15. A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies

    Science.gov (United States)

    Hook, Simon J.; Gabell, A. R.; Green, A. A.; Kealy, P. S.

    1992-01-01

    This article evaluates three techniques developed to extract emissivity information from multispectral thermal infrared data. The techniques are the assumed Channel 6 emittance model, thermal log residuals, and alpha residuals. These techniques were applied to calibrated, atmospherically corrected thermal infrared multispectral scanner (TIMS) data acquired over Cuprite, Nevada in September 1990. Results indicate that the two new techniques (thermal log residuals and alpha residuals) provide two distinct advantages over the assumed Channel 6 emittance model. First, they permit emissivity information to be derived from all six TIMS channels. The assumed Channel 6 emittance model only permits emissivity values to be derived from five of the six TIMS channels. Second, both techniques are less susceptible to noise than the assumed Channel 6 emittance model. The disadvantage of both techniques is that laboratory data must be converted to thermal log residuals or alpha residuals to facilitate comparison with similarly processed image data. An additional advantage of the alpha residual technique is that the processed data are scene-independent unlike those obtained with the other techniques.

  16. Advances in Front-end Enabling Technologies for Thermal Infrared ` THz Torch' Wireless Communications

    Science.gov (United States)

    Hu, Fangjing; Lucyszyn, Stepan

    2016-09-01

    The thermal (emitted) infrared frequency bands (typically 20-40 and 60-100 THz) are best known for remote sensing applications that include temperature measurement (e.g. non-contacting thermometers and thermography), night vision and surveillance (e.g. ubiquitous motion sensing and target acquisition). This unregulated part of the electromagnetic spectrum also offers commercial opportunities for the development of short-range secure communications. The ` THz Torch' concept, which fundamentally exploits engineered blackbody radiation by partitioning thermally generated spectral radiance into pre-defined frequency channels, was recently demonstrated by the authors. The thermal radiation within each channel can be independently pulse-modulated, transmitted and detected, to create a robust form of short-range secure communications within the thermal infrared. In this paper, recent progress in the front-end enabling technologies associated with the THz Torch concept is reported. Fundamental limitations of this technology are discussed; possible engineering solutions for further improving the performance of such thermal-based wireless links are proposed and verified either experimentally or through numerical simulations. By exploring a raft of enabling technologies, significant enhancements to both data rate and transmission range can be expected. With good engineering solutions, the THz Torch concept can exploit nineteenth century physics with twentieth century multiplexing schemes for low-cost twenty-first century ubiquitous applications in security and defence.

  17. The correlation of multi-angle thermal infrared data and the choice of optimal view angles

    Institute of Scientific and Technical Information of China (English)

    FAN; Wenjie; XU; Xiru

    2004-01-01

    Based on the matrix formula of thermal infrared radiant system, the components temperature can be retrieved by the inversive matrix. Around the stability problem of retrieved result, the research work we did was focused on (i) the correlation of (wk,j) which is the key to affect the retrieval accuracy, (ii) a general method which can help us find the number of retrievable parameters and evaluate the retrieval error before its performance, (iii) the choice of "optimal viewing angle group" based on the formula of absolute error propagation. The row winter wheat field was chosen as an example. The results can provide a theoretical basis for multi-angle thermal infrared remote sensing and components temperature retrieval.

  18. Multispectral thermal infrared mapping of the 1 October 1988 Kupaianaha flow field, Kilauea volcano, Hawaii

    Science.gov (United States)

    Realmuto, Vincent J.; Hon, Ken; Kahle, Anne B.; Abbott, Elsa A.; Pieri, David C.

    1992-01-01

    Multispectral thermal infrared radiance measurements of the Kupaianaha flow field were acquired with the NASA airborne Thermal Infrared Multispectral Scanner (TIMS) on the morning of 1 October 1988. The TIMS data were used to map both the temperature and emissivity of the surface of the flow field. The temperature map depicted the underground storage and transport of lava. The presence of molten lava in a tube or tumulus resulted in surface temperatures that were at least 10 C above ambient. The temperature map also clearly defined the boundaries of hydrothermal plumes which resulted from the entry of lava into the ocean. The emissivity map revealed the boundaries between individual flow units within the Kupaianaha field. Distinct spectral anomalies, indicative of silica-rich surface materials, were mapped near fumaroles and ocean entry sites. This apparent enrichment in silica may have resulted from an acid-induced leaching of cations from the surfaces of glassy flows.

  19. Use of infrared thermography in detection, remediation, and commissioning of thermal comfort problems in office buildings

    Science.gov (United States)

    Colantonio, Antonio

    2001-03-01

    Thermal comfort complaints within work places are one of the leading causes of workforce productivity loss within office environments. Generally, mechanical systems are relied on to provide adequate indoor environments. In many situations, these systems cannot provide suitable work environments due to unacceptable asymmetrical radiant temperature conditions found in exterior zones of building interiors. Public Works and Government Services Canada (PWGSC) has developed methodologies using infrared technology to assist building and office managers in reducing thermal comfort complaints and improve workforce productivity. Detection, verification, remediation and commissioning of solutions are easily and effectively carried out with the assistance of infrared radiometers and proper inspection and analysis procedures. This paper will outline two case studies and detail methodologies used in each case.

  20. The Thermal Infrared Sensor (TIRS on Landsat 8: Design Overview and Pre-Launch Characterization

    Directory of Open Access Journals (Sweden)

    Dennis C. Reuter

    2015-01-01

    Full Text Available The Thermal Infrared Sensor (TIRS on Landsat 8 is the latest thermal sensor in that series of missions. Unlike the previous single-channel sensors, TIRS uses two channels to cover the 10–12.5 micron band. It is also a pushbroom imager; a departure from the previous whiskbroom approach. Nevertheless, the instrument requirements are defined such that data continuity is maintained. This paper describes the design of the TIRS instrument, the results of pre-launch calibration measurements and shows an example of initial on-orbit science performance compared to Landsat 7.

  1. Micro-Scale Thermal Imaging of Organic and Polymeric Materials with Cooled and Uncooled Infrared Cameras

    Directory of Open Access Journals (Sweden)

    J. Morikawa

    2012-01-01

    Full Text Available The emissivity corrected thermal imaging combined with a real-time direct imposed-signal system on the freezing of biological cells is presented, which makes it possible to visualize the exothermic latent heat at a minus temperature. The applicability of the uncooled micro bolometer (thermal detector to the micro-scale thermal analysis on the phase transitions of organic and polymeric materials is discussed in comparison with the photon detector, equipped with the optics originally designed.

  2. Life cycle monitoring of lithium-ion polymer batteries using cost-effective thermal infrared sensors with applications for lifetime prediction

    Science.gov (United States)

    Zhou, Xunfei; Malik, Anav; Hsieh, Sheng-Jen

    2017-05-01

    Lithium-ion batteries have become indispensable parts of our lives for their high-energy density and long lifespan. However, failure due to from abusive usage conditions, flawed manufacturing processes, and aging and adversely affect battery performance and even endanger people and property. Therefore, battery cells that are failing or reaching their end-of-life need to be replaced. Traditionally, battery lifetime prediction is achieved by analyzing data from current, voltage and impedance sensors. However, such a prognostic system is expensive to implement and requires direct contact. In this study, low-cost thermal infrared sensors were used to acquire thermographic images throughout the entire lifetime of small scale lithium-ion polymer batteries (410 cycles). The infrared system (non-destructive) took temperature readings from multiple batteries during charging and discharging cycles of 1C. Thermal characteristics of the batteries were derived from the thermographic images. A time-dependent and spatially resolved temperature mapping was obtained and quantitatively analyzed. The developed model can predict cycle number using the first 10 minutes of surface temperature data acquired through infrared imaging at the beginning of the cycle, with an average error rate of less than 10%. This approach can be used to correlate thermal characteristics of the batteries with life cycles, and to propose cost-effective thermal infrared imaging applications in battery prognostic systems.

  3. Determination of thermal contact conductance in vacuum-bagged thermoplastic prepreg stacks using infrared thermography

    Science.gov (United States)

    Baumard, Théo; De Almeida, Olivier; Menary, Gary; Le Maoult, Yannick; Schmidt, Fabrice; Bikard, Jérôme

    2016-10-01

    The infrared heating of a vacuum-bagged, thermoplastic prepreg stack of glass/PA66 was studied to investigate the influence of vacuum level on thermal contact resistance between plies. A higher vacuum level was shown experimentally to decrease the transverse heat transfer efficiency, indicating that considering only the effect of heat conduction at the plies interfaces is not sufficient to predict the temperature distribution. An inverse analysis was used to retrieve the contact resistance coefficients as a function of vacuum pressure.

  4. An Autonomous System to Take Angular Thermal-Infrared Measurements for Validating Satellite Products

    OpenAIRE

    Raquel Niclòs; José A. Valiente; Maria J. Barberà; César Coll

    2015-01-01

    An autonomous system for field land surface temperature (LST) measurements taken at different observation angles was developed to be deployed easily at any conventional meteorological tower station. The system permits ground-truth data to be acquired on a continuous basis, and angularly scans land and sky hemispheres with a single thermal-infrared (TIR) radiometer. This paper describes the autonomous angular system and the methodology to assess ground-truth LST and relative-to-nadir emissivit...

  5. SPATIOTEMPORAL EVALUATION OF NOCTURNAL COLD AIR DRAINAGE OVER A SIMPLE SLOPE USING THERMAL INFRARED IMAGERY

    Directory of Open Access Journals (Sweden)

    V. Ikani

    2016-06-01

    The results show that thermal imagery can be used to characterize and understand the microclimate related to the occurrence of radiation frost in the agricultural field. This study provided the opportunity to track the cold air drainage flow and pooling of cold air in low lying areas. The infrared analysis demonstrated that nocturnal drainage flow displayed continuous variation in terms of space and time in response to microscale slope heterogeneities. In addition, the analysis highlighted the periodic aspect for cold air drainage flow.

  6. Near-infrared emission from ZnO nanorods grown by thermal evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tu [Advanced Institute of Science and Technology (AIST), Hanoi University of Science and Technology (HUST), 01 Dai Co Viet, Hanoi (Viet Nam); Tuan, N.T. [College of Science, Cantho University, 3/2, Ninh Kieu, Cantho (Viet Nam); Nguyen, Van Dung; Cuong, N.D.; Kien, N.D.T.; Huy, P.T. [Advanced Institute of Science and Technology (AIST), Hanoi University of Science and Technology (HUST), 01 Dai Co Viet, Hanoi (Viet Nam); Nguyen, Van Hieu [International Training Institute for Material Sciences, Hanoi University of Science and Technology (HUST), 01 Dai Co Viet, Hanoi (Viet Nam); Nguyen, D.H., E-mail: hung.nguyenduy@hust.edu.vn [Advanced Institute of Science and Technology (AIST), Hanoi University of Science and Technology (HUST), 01 Dai Co Viet, Hanoi (Viet Nam)

    2014-12-15

    We report the growth of ZnO nanorods on Si/SiO{sub 2} subtrates by the thermal evaporation method at different distances (substrate temperatures) from vapor source to substrates. SEM images showed that morphologies of nanorods were significantly affected by distance from the substrate to vapor source. Energy dispersive X-ray spectroscopy (EDS) spectra present change of the ratio of zinc to oxygen in ZnO nanostructures as the substrate temperature varied. X-ray diffraction patterns revealed that the prepared ZnO nanorods are preferentially oriented in the c-axis at lower substrate temperature. The shift towards small angle of the XRD pattern peaks is consistent with the presence of the redundant zinc and the lack oxygen in the ZnO lattice. The photoluminescence (PL) spectra of the ZnO nanorods show beside the near band edge UV emission, a very broad emission ranges from green to near-infrared (NIR). The NIR emission is interpreted as due to the transition of carriers between radiative recombination centers related to Zn interstitials and oxygen interstitials. - Highlights: • ZnO nanorods were grown by thermal evaporation method at different temperatures. • Morphologies of ZnO nanorods were strongly affected by substrate temperature. • The depth level emission presents broad bands from green to infrared region simultaneously. • The depth level emitting at long wavelength region enhances as reducing growth temperature. • Near-infrared emission from ZnO nanorods grown by thermal evaporation method.

  7. Objective assessment of biomagnetic devices and alternative clinical therapies using infrared thermal imaging

    Science.gov (United States)

    Rockley, Graham J.

    2001-03-01

    The overwhelming introduction of magnetic devices and other alternative therapies into the health care market prompts the need for objective evaluation of these techniques through the use of infrared thermal imaging. Many of these therapies are reported to promote the stimulation of blood flow or the relief of pain conditions. Infrared imaging is an efficient tool to assess such changes in the physiological state. Therefore, a thermal imager can help document and substantiate whether these therapies are in fact providing an effective change to the local circulation. Thermal images may also indicate whether the change is temporary or sustained. As a specific case example, preliminary findings will be presented concerning the use of magnets and the effect they have on peripheral circulation. This will include a discussion of the recommended protocols for this type of infrared testing. This test model can be applied to the evaluation of other devices and therapeutic procedures which are reputed to affect circulation such as electro acupuncture, orthopedic footwear and topical ointments designed to relieve pain or inflammation.

  8. M-type asteroids in the mid-infrared: thermal inertias and emissivity spectra

    Science.gov (United States)

    Landsman, Zoe A.; Emery, Joshua P.; Campins, Humberto

    2016-10-01

    The M-type asteroid taxon has been inferred to contain metallic asteroids. This inference comes mainly from spectral analogy to iron meteorites and from the observation of high radar albedos among M-types. There is, nevertheless, evidence for significant compositional diversity within the M-type population. Spectral signatures of both high-temperature silicates (λ~0.9 μm) and hydrated minerals (λ~3 μm) are common in this group. The nature of the M-types is, therefore, still not well understood. In order to further test the hypothesis that many M-types are metallic, we have undertaken an observational study at mid-infrared wavelengths (5.2 – 38 μm). Our aim is to characterize the silicate composition and the thermal properties of a sample of M-type asteroids. If metallic, we expect relatively high thermal inertia and an absence of silicate emissivity features. The spectra we analyze were measured with the InfraRed Spectrograph (IRS) on the Spitzer Space Telescope. We present emissivity spectra and the initial results of thermophysical modeling, including derived thermal inertias. We chose our sample because these asteroids have also been observed at complementary wavelengths, such as visible, near-infrared and radar, which places further constraints on the interpretation of our results.

  9. Use of infrared cameras for monitoring and research at Costa Rican volcanoes and thermal features

    Science.gov (United States)

    Ramirez, C. J.; Mora-Amador, R.; González, G.

    2012-12-01

    Since November 2010, the Costa Rican volcanoes and hot springs began monitored and research by 5 infrared cameras, 4 steady fixed FLIR A320 and 1 portable FLIR P660. All the A320's are located on different settings depending on the volcano or the constant use. At Turrialba volcano 2 of the cameras are set permanent at the crater rim, focused on the new vents formed on January 2010 and 2012, from there at ≈500m it is possible to monitor 24/7 the temperature of the gases from the new vents plus the direction and speed of the plumes, that data helps the improve of the use of equipment like Mini-DOAS, MultiGas or FTIR; at Poás volcano the camera is permanent fixed on a bunker structure located at ≈650m from the active hyperacid hot lagoon, from there it is possible to cover the complete crater with the use of a wide angle lens, that way is safely to track phreatic eruptions, observe convective cells from the lagoon, fumaroles activity, as well as temperature, direction and speed of the gas plume. Finally the last A320 is set for temporary set up, so far is being used on places like Arenal volcano because of the changing of the pattern of the lava flows and gas plume, also at Rincón de la Vieja crater rim because so far is difficult to set up a permanent camera, and finally to do over flights on active volcanoes. The FLIR P660, it has been used to carry out periodic measurements of specific thermal spots. At Turrialba and Poás volcanoes, it is possible to get closer views, measuring more precise inaccessible high temperature fumaroles like the new vents at Turrialba or the ones at Poás dome, places that can reach temperatures of more than 600°C, also is being a lot of support to track lagoon convection cells (61°C), fumaroles migration, lagoon phreatic eruptions (130°C), and better characterization of hot springs, small hot lagoons, and mud pools, with temperatures of ≈ 90C that allow the life of extreme organisms to survive. The use of the thermal cameras

  10. Direct steam generation (DSG) solar thermal power plant in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Sukchai, Sukruedee; Chramsa-ard, Wisut; Sonsaree, Sorawit; Boonsu, Rungrudee [Naresuan Univ., Phitsanulok (Thailand). School of Renewable Energy Technology; Krueger, Joachim; Pandian, Yuvaraj [Solarlite GmbH, Duckwitz (Germany)

    2012-07-01

    In 2010, the total electricity consumption in Thailand was 149,301 GWh, increased by 10.5% compared with that in the previous year. The economic sector accounting for the highest share of national electricity consumption was the industrial sector, holding a share of 46%; while the household and commercial sectors accounted for a share of 22% and 15% respectively. The electricity is generated from natural gas, coal, oil, hydro, import and other of 72%, 18%, 0.4%, 3%, 4%, and 2% respectively. In the past, the Electricity Generating Authority of Thailand (EGAT) was the sole power producer. Later, the government had formulated a policy promoting the private sector role in the power generation sector in order to encourage competition in the generation business. Currently, it is resulting in a growing number of Very Small Power Producers (VSPP), using renewable energy as main fuel, supplying power to the grid. In this presentation, general background and situation of solar thermal power plant (DSG) in Thailand will be presented. The resource potential which presented by solar map for the central, north and northeast parts of the country is quite clear sky that receive the highest direct normal irradiation of 1,350 - 1,400 kWh/m{sup 2}-year stand for 43% of the total areas of the country. Together with the high direct normal irradiation is received during summer from January to April about 14-17 MJ/m{sup 2}-day. The first of solar thermal power plant in Thailand is presented. Solar energy development that is one of renewable energy promotion program in the nation master plan has been reviewed and discussed to indicate the recommendation. Barriers as educational, technical and financial to promote solar thermal power plant is also presented. From the investigation, this presentation proposes some idea to be the guideline for policy setting, overcome the solar thermal power plant barrier in Thailand. (orig.)

  11. 3D-FEM electrical-thermal-mechanical analysis and experiment of Si-based MEMS infrared emitters

    Science.gov (United States)

    Wang, Xiang; Wang, Na; Chen, Ran-Bin; San, Hai-Sheng; Chen, Xu-Yuan

    2016-11-01

    Designs, simulations, and fabrications of silicon-based MEMS infrared (IR) emitters for gas sensing application are presented. A 3D finite element method (3D-FEM) was used to analyze the coupled electrical-thermal-mechanical properties of a bridge hotplate structure (BHS) IR emitter and closed hotplate structure (CHS) IR emitter using Joule heating and thermal expansion models of COMSOL™. The IR absorptions of n- and p-silicon were calculated for the design of self-heating structure. The BHS and CHS IR emitters were fabricated synchronously using micro-electromechanical systems technology for a direct performance comparison. Both types of IR emitters were characterized by electrical and optical measurements. The experimental results show that BHS IR emitters have higher radiation density, lower power consumption, and faster frequency-response than CHS IR emitters due to the use of a thermal isolation structure and self-heating structure. Meanwhile, the simulated results agree well with the corresponding measured results, which indicate that the 3D-FEM-model is effective and can be used in the optimal design of electro-thermal devices.

  12. Near-infrared thermal emission from near-Earth asteroids: Aspect-dependent variability

    CERN Document Server

    Moskovitz, Nicholas A; DeMeo, Francesca E; Binzel, Richard P; Endicott, Thomas; Yang, Bin; Howell, Ellen S; Vervack, Ronald J; Fernandez, Yanga R

    2016-01-01

    Here we explore a technique for constraining physical properties of near-Earth asteroids (NEAs) based on variability in thermal emission as a function of viewing aspect. We present case studies of the low albedo, near-Earth asteroids (285263) 1998 QE2 and (175706) 1996 FG3. The Near-Earth Asteroid Thermal Model (NEATM) is used to fit signatures of thermal emission in near-infrared (0.8 - 2.5 micron) spectral data. This analysis represents a systematic study of thermal variability in the near-IR as a function of phase angle. The observations of QE2 imply that carefully timed observations from multiple viewing geometries can be used to constrain physical properties like retrograde versus prograde pole orientation and thermal inertia. The FG3 results are more ambiguous with detected thermal variability possibly due to systematic issues with NEATM, an unexpected prograde rotation state, or a surface that is spectrally and thermally heterogenous. This study highlights the potential diagnostic importance of high ph...

  13. Near-infrared thermal emission from near-Earth asteroids: Aspect-dependent variability

    Science.gov (United States)

    Moskovitz, Nicholas A.; Polishook, David; DeMeo, Francesca E.; Binzel, Richard P.; Endicott, Thomas; Yang, Bin; Howell, Ellen S.; Vervack, , Ronald J.; Fernández, Yanga R.

    2017-03-01

    Here we explore a technique for constraining physical properties of near-Earth asteroids (NEAs) based on variability in thermal emission as a function of viewing aspect. We present case studies of the low albedo, near-Earth asteroids (285263) 1998 QE2 and (175706) 1996 FG3. The Near-Earth Asteroid Thermal Model (NEATM) is used to fit signatures of thermal emission in near-infrared (0.8 - 2.5 μm) spectral data. This analysis represents a systematic study of thermal variability in the near-IR as a function of phase angle. The observations of QE2 imply that carefully timed observations from multiple viewing geometries can be used to constrain physical properties like retrograde versus prograde pole orientation and thermal inertia. The FG3 results are more ambiguous with detected thermal variability possibly due to systematic issues with NEATM, an unexpected prograde rotation state, or a surface that is spectrally and thermally heterogenous. This study highlights the potential diagnostic importance of high phase angle thermal measurements on both sides of opposition. We find that the NEATM thermal beaming parameters derived from our near-IR data tend to be of order10's of percent higher than parameters from ensemble analyses of longer wavelength data sets. However, a systematic comparison of NEATM applied to data in different wavelength regimes is needed to understand whether this offset is simply a reflection of small number statistics or an intrinsic limitation of NEATM when applied to near-IR data. With the small sample presented here, it remains unclear whether NEATM modeling at near-IR wavelengths can robustly determine physical properties like pole orientation and thermal inertia.

  14. Simultaneous fNIRS and thermal infrared imaging during cognitive task reveal autonomic correlates of prefrontal cortex activity

    Science.gov (United States)

    Pinti, Paola; Cardone, Daniela; Merla, Arcangelo

    2015-12-01

    Functional Near Infrared-Spectroscopy (fNIRS) represents a powerful tool to non-invasively study task-evoked brain activity. fNIRS assessment of cortical activity may suffer for contamination by physiological noises of different origin (e.g. heart beat, respiration, blood pressure, skin blood flow), both task-evoked and spontaneous. Spontaneous changes occur at different time scales and, even if they are not directly elicited by tasks, their amplitude may result task-modulated. In this study, concentration changes of hemoglobin were recorded over the prefrontal cortex while simultaneously recording the facial temperature variations of the participants through functional infrared thermal (fIR) imaging. fIR imaging provides touch-less estimation of the thermal expression of peripheral autonomic. Wavelet analysis revealed task-modulation of the very low frequency (VLF) components of both fNIRS and fIR signals and strong coherence between them. Our results indicate that subjective cognitive and autonomic activities are intimately linked and that the VLF component of the fNIRS signal is affected by the autonomic activity elicited by the cognitive task. Moreover, we showed that task-modulated changes in vascular tone occur both at a superficial and at larger depth in the brain. Combined use of fNIRS and fIR imaging can effectively quantify the impact of VLF autonomic activity on the fNIRS signals.

  15. Material loss angles from direct measurements of broadband thermal noise

    CERN Document Server

    Principe, Maria; Pierro, Vincenzo; DeSalvo, Riccardo; Taurasi, Ilaria; Villar, Akira E; Black, Eric D; Libbrecht, Kenneth G; Michel, Christophe; Morgado, Nazario; Pinard, Laurent

    2015-01-01

    We estimate the loss angles of the materials currently used in the highly reflective test-mass coatings of interferometric detectors of gravitational waves, namely Silica, Tantala, and Ti-dop ed Tantala, from direct measurement of coating thermal noise in an optical interferometer testbench, the Caltech TNI. We also present a simple predictive theory for the material properties of amorphous glassy oxide mixtures, which gives results in good agreement with our measurements on Ti-doped Tantala. Alternative measure ment methods and results are reviewed, and some critical issues are discussed.

  16. Computational imaging from non-uniform degradation of staggered TDI thermal infrared imager.

    Science.gov (United States)

    Sun, Tao; Liu, Jian Guo; Shi, Yan; Chen, Wangli; Qin, Qianqing; Zhang, Zijian

    2015-09-21

    For the Time Delay Integration (TDI) staggered line-scanning thermal infrared imager, a Computational Imaging (CI) approach is developed to achieve higher spatial resolution images. After a thorough analysis of the causes of non-uniform image displacement and degradation for multi-channel staggered TDI arrays, the study aims to approach one-dimensional (1D) sub-pixel displacement estimation and superposition of images from time-division multiplexing scanning lines. Under the assumption that a thermal image is 2D piecewise C(2) smooth, a sparse-and-smooth deconvolution algorithm with L1-norm regularization terms combining the first and second order derivative operators is proposed to restore high frequency components and to suppress aliasing simultaneously. It is theoretically and experimentally demonstrated, with simulation and airborne thermal infrared images, that this is a state-of-the-art practical CI method to reconstruct clear images with higher frequency components from raw thermal images that are subject to instantaneous distortion and blurring.

  17. Early Analysis of Landsat-8 Thermal Infrared Sensor Imagery of Volcanic Activity

    Directory of Open Access Journals (Sweden)

    Matthew Blackett

    2014-03-01

    Full Text Available The Landsat-8 satellite of the Landsat Data Continuity Mission was launched by the National Aeronautics and Space Administration (NASA in April 2013. Just weeks after it entered active service, its sensors observed activity at Paluweh Volcano, Indonesia. Given that the image acquired was in the daytime, its shortwave infrared observations were contaminated with reflected solar radiation; however, those of the satellite’s Thermal Infrared Sensor (TIRS show thermal emission from the volcano’s summit and flanks. These emissions detected in sensor’s band 10 (10.60–11.19 µm have here been quantified in terms of radiant power, to confirm reports of the actual volcanic processes operating at the time of image acquisition, and to form an initial assessment of the TIRS in its volcanic observation capabilities. Data from band 11 have been neglected as its data have been shown to be unreliable at the time of writing. At the instant of image acquisition, the thermal emission of the volcano was found to be 345 MW. This value is shown to be on the same order of magnitude as similarly timed NASA Earth Observing System (EOS Moderate Resolution Imaging Spectroradiometer thermal observations. Given its unique characteristics, the TIRS shows much potential for providing useful, detailed and accurate volcanic observations in the future.

  18. Adjusted normalized emissivity method for surface temperature and emissivity retrieval from optical and thermal infrared remote sensing data

    OpenAIRE

    Coll Company, César; Valor i Micó, Enric; Caselles Miralles, Vicente; Niclòs Corts, Raquel

    2003-01-01

    A methodology for the retrieval of surface temperatures and emissivities combining visible, near infrared and thermal infrared remote sensing data was applied to Digital Airborne Imaging Spectrometer (DAIS) data and validated with coincident ground measurements acquired in a multiyear experiment held in an agricultural site in Barrax, Spain. The Adjusted Normalized Emissivity Method (ANEM) is based on the use of visible and near infrared data to estimate the vegetation cover and model the max...

  19. Modification of a neuronal network direction using stepwise photo-thermal etching of an agarose architecture

    Directory of Open Access Journals (Sweden)

    Jimbo Yasuhiko

    2004-07-01

    Full Text Available Abstract Control over spatial distribution of individual neurons and the pattern of neural network provides an important tool for studying information processing pathways during neural network formation. Moreover, the knowledge of the direction of synaptic connections between cells in each neural network can provide detailed information on the relationship between the forward and feedback signaling. We have developed a method for topographical control of the direction of synaptic connections within a living neuronal network using a new type of individual-cell-based on-chip cell-cultivation system with an agarose microchamber array (AMCA. The advantages of this system include the possibility to control positions and number of cultured cells as well as flexible control of the direction of elongation of axons through stepwise melting of narrow grooves. Such micrometer-order microchannels are obtained by photo-thermal etching of agarose where a portion of the gel is melted with a 1064-nm infrared laser beam. Using this system, we created neural network from individual Rat hippocampal cells. We were able to control elongation of individual axons during cultivation (from cells contained within the AMCA by non-destructive stepwise photo-thermal etching. We have demonstrated the potential of our on-chip AMCA cell cultivation system for the controlled development of individual cell-based neural networks.

  20. A practical algorithm for estimating surface soil moisture using combined optical and thermal infrared data

    Science.gov (United States)

    Leng, Pei; Song, Xiaoning; Duan, Si-Bo; Li, Zhao-Liang

    2016-10-01

    Surface soil moisture (SSM) is a critical variable for understanding the energy and water exchange between the land and atmosphere. A multi-linear model was recently developed to determine SSM using ellipse variables, namely, the center horizontal coordinate (x0), center vertical coordinate (y0), semi-major axis (a) and rotation angle (θ), derived from the elliptical relationship between diurnal cycles of land surface temperature (LST) and net surface shortwave radiation (NSSR). However, the multi-linear model has a major disadvantage. The model coefficients are calculated based on simulated data produced by a land surface model simulation that requires sufficient meteorological measurements. This study aims to determine the model coefficients directly using limited meteorological parameters rather than via the complicated simulation process, decreasing the dependence of the model coefficients on meteorological measurements. With the simulated data, a practical algorithm was developed to estimate SSM based on combined optical and thermal infrared data. The results suggest that the proposed approach can be used to determine the coefficients associated with all ellipse variables based on historical meteorological records, whereas the constant term varies daily and can only be determined using the daily maximum solar radiation in a prediction model. Simulated results from three FLUXNET sites over 30 cloud-free days revealed an average root mean square error (RMSE) of 0.042 m3/m3 when historical meteorological records were used to synchronously determine the model coefficients. In addition, estimated SSM values exhibited generally moderate accuracies (coefficient of determination R2 = 0.395, RMSE = 0.061 m3/m3) compared to SSM measurements at the Yucheng Comprehensive Experimental Station.

  1. Investigation on reduced thermal models for simulating infrared images in fusion devices

    Science.gov (United States)

    Gerardin, J.; Aumeunier, M.-H.; Firdaouss, M.; Gardarein, J.-L.; Rigollet, F.

    2016-09-01

    In fusion facilities, the in-vessel wall receives high heat flux density up to 20 MW/m2. The monitoring of in-vessel components is usually ensured by infra-red (IR) thermography but with all-metallic walls, disturbance phenomenon as reflections may lead to inaccurate temperature estimates, potentially endangering machine safety. A full predictive photonic simulation is then used to assess accurately the IR measurements. This paper investigates some reduced thermal models (semi-infinite wall, thermal quadrupole) to predict the surface temperature from the particle loads on components for a given plasma scenario. The results are compared with a reference 3D Finite Element Method (Ansys Mechanical) and used as input for simulating IR images. The performances of reduced thermal models are analysed by comparing the resulting IR images.

  2. Thermal study of the Missouri River in North Dakota using infrared imagery

    Science.gov (United States)

    Crosby, Orlo A.

    1971-01-01

    Studies of infrared imagery obtained from aircraft at 305- to 1,524- meter altitudes indicate the feasibility of monitoring thermal changes attributable to the operation of thermal-electric plants and storage reservoirs, as well as natural phenomena such as tributary inflow and ground-water seeps, in large rivers. No identifiable sources of ground-water inflow below t he surface of the river could be found in the imagery. The thermal patterns from the generating plants and the major tri butary inflow are readily apparent in imagery obtained from an altitude of 305 meters. Though the patterns are generally discernible in the imagery from 1,067-meter and 1,524-meter altitudes, there is not sufficient ground resolution to make any but the most general qualitative analyses. The quality of the imagery varied with land-water temperature relations as well as with instrument properties.

  3. Design of mct1024×1 short wave infrared thermal camera

    Science.gov (United States)

    Jian, Xian Zhong; Zhang, Su Ying

    2005-10-01

    A thermal camera consists of 1024-element MCT line wavelength IRFPA with reading electrocircuit made in china. It is presented the composing of this infrared thermal camera and some key question of this thermal camera: 1) nonuniformity correction; 2) Correction of lines and rows. With same axial transmission optics and a 1-D equality angle scanner and 1024X1600 pixels per frame.the scan efficiency of the sensor is over 88% and the half periods of scanner is 5 seconds. we developed a IR instrument. the main technic target is followed: optics calibre: 90 mm, focus: 270.6 mm, identifiaction ratio:170 urad, wave band: 2-2.5um, the half period: 5 second, NEΔρ: 0.8%.

  4. Assessing Consistency in Radiated Thermal Output of Beef Steers by Infrared Thermography

    Directory of Open Access Journals (Sweden)

    Nigel Cook

    2016-07-01

    Full Text Available Measurements of radiated thermal output are claimed to reflect the metabolic efficiency of mammals. This is important in food-producing animals because a measure of metabolic efficiency may translate to desirable characteristics, such as growth efficiency or residual feed intake, and permit the grouping of animals by metabolic characteristics that can be more precisely managed. This study addresses the question of whether radiated thermal parameters are characteristic of individual animals under normal and metabolically-challenging conditions. Consistency in radiated thermal output was demonstrated over a period of four weeks on condition that a sufficiently representative sample of measurements could be made on individual animals. The study provided evidence that infrared thermography could be used as an automated, rapid, and reliable tool for assessing thermoregulatory processes.

  5. [Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].

    Science.gov (United States)

    Tang, Ming-fang; Yin, Yi-hua

    2015-05-01

    To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.

  6. Synegies Between Visible/Near-Infrared Imaging Spectrometry and the Thermal Infrared in an Urban Environment: An Evaluation of the Hyperspectral Infrared Imager (HYSPIRI) Mission

    Science.gov (United States)

    Roberts, Dar A.; Quattrochi, Dale A.; Hulley, Glynn C.; Hook, Simon J.; Green, Robert O.

    2012-01-01

    A majority of the human population lives in urban areas and as such, the quality of urban environments is becoming increasingly important to the human population. Furthermore, these areas are major sources of environmental contaminants and sinks of energy and materials. Remote sensing provides an improved understanding of urban areas and their impacts by mapping urban extent, urban composition (vegetation and impervious cover fractions), and urban radiation balance through measures of albedo, emissivity and land surface temperature (LST). Recently, the National Research Council (NRC) completed an assessment of remote sensing needs for the next decade (NRC, 2007), proposing several missions suitable for urban studies, including a visible, near-infrared and shortwave infrared (VSWIR) imaging spectrometer and a multispectral thermal infrared (TIR) instrument called the Hyperspectral Infrared Imagery (HyspIRI). In this talk, we introduce the HyspIRI mission, focusing on potential synergies between VSWIR and TIR data in an urban area. We evaluate potential synergies using an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and MODIS-ASTER (MASTER) image pair acquired over Santa Barbara, United States. AVIRIS data were analyzed at their native spatial resolutions (7.5m VSWIR and 15m TIR), and aggregated 60 m spatial resolution similar to HyspIRI. Surface reflectance was calculated using ACORN and a ground reflectance target to remove atmospheric and sensor artifacts. MASTER data were processed to generate estimates of spectral emissivity and LST using Modtran radiative transfer code and the ASTER Temperature Emissivity Separation algorithm. A spectral library of common urban materials, including urban vegetation, roofs and roads was assembled from combined AVIRIS and field-measured reflectance spectra. LST and emissivity were also retrieved from MASTER and reflectance/emissivity spectra for a subset of urban materials were retrieved from co-located MASTER and

  7. Real-Time Monitoring of Occupants’ Thermal Comfort through Infrared Imaging: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Boris Pavlin

    2017-02-01

    Full Text Available Thermally comfortable indoor environments are of great importance, as modern lifestyles often require people to spend more than 20 h per day indoors. Since most of the thermal comfort models use a variety of different environmental and personal factors that need to be measured or estimated, real-time and continuous assessment of thermal comfort is often not practically feasible. This work presents a cheap and non-invasive approach based on infrared imaging for monitoring the occupants’ thermal sensation and comfort in real time. Thanks to a mechatronic device developed by the authors, the imaging is performed on the forehead skin, selected because it is always exposed to the environment and, thus, facilitating the monitoring activity in a non-invasive manner. Tests have been performed in controlled conditions on ten subjects to assess the hypothesis that the forehead temperature is correlated with subjects’ thermal sensation. This allows the exploitation of this quantity as a base for a simple monitoring of thermal comfort, which could later be tuned with an extensive experimental campaign.

  8. Evaluation of the cellulite using a thermal infra-red camera.

    Science.gov (United States)

    Nkengne, A; Papillon, A; Bertin, C

    2013-02-01

    Cellulite is usually related to alterations of the microcirculation. Measuring the skin temperature is a mean to assess the skin microvascular plexus. A three-step clinical study was performed in order to develop and to validate the use of an infrared thermal camera for measuring cellulite severity. Thermal images of the thigh were recorded and processed to quantify the thermal homogeneity. The proposed protocol was then validated in three steps. Firstly, the parameters which could influence the skin temperature were identified throw a design of experiment. Secondly, the repeatability and reproducibility of the method was estimated (five subjects, four investigators and five experiments). Finally, thermal images and clinical grading of cellulite was performed on 39 women (21-68 years old), and the correlation between these methods was assessed. All parameters describing the thermal homogeneity were found repeatable and reproducible. The strongest correlation between thermal results and the clinical assessment were observed for Sa (R = 0.53, P cellulite. © 2012 John Wiley & Sons A/S.

  9. Thermal signature analysis of human face during jogging activity using infrared thermography technique

    Science.gov (United States)

    Budiarti, Putria W.; Kusumawardhani, Apriani; Setijono, Heru

    2016-11-01

    Thermal imaging has been widely used for many applications. Thermal camera is used to measure object's temperature above absolute temperature of 0 Kelvin using infrared radiation emitted by the object. Thermal imaging is color mapping taken using false color that represents temperature. Human body is one of the objects that emits infrared radiation. Human infrared radiations vary according to the activity that is being done. Physical activities such as jogging is among ones that is commonly done. Therefore this experiment will investigate the thermal signature profile of jogging activity in human body, especially in the face parts. The results show that the significant increase is found in periorbital area that is near eyes and forehand by the number of 7.5%. Graphical temperature distributions show that all region, eyes, nose, cheeks, and chin at the temperature of 28.5 - 30.2°C the pixel area tends to be constant since it is the surrounding temperature. At the temperature of 30.2 - 34.7°C the pixel area tends to increase, while at the temperature of 34.7 - 37.1°C the pixel area tends to decrease because pixels at temperature of 34.7 - 37.1°C after jogging activity change into temperature of 30.2 - 34.7°C so that the pixel area increases. The trendline of jogging activity during 10 minutes period also shows the increasing of temperature. The results of each person also show variations due to physiological nature of each person, such as sweat production during physical activities.

  10. Radiometric Cross-Calibration of the HJ-1B IRS in the Thermal Infrared Spectral Band

    Science.gov (United States)

    Sun, K.

    2012-12-01

    The natural calamities occur continually, environment pollution and destruction in a severe position on the earth presently, which restricts societal and economic development. The satellite remote sensing technology has an important effect on improving surveillance ability of environment pollution and natural calamities. The radiometric calibration is precondition of quantitative remote sensing; which accuracy decides quality of the retrieval parameters. Since the China Environment Satellite (HJ-1A/B) has been launched successfully on September 6th, 2008, it has made an important role in the economic development of China. The satellite has four infrared bands; and one of it is thermal infrared. With application fields of quantitative remote sensing in china, finding appropriate calibration method becomes more and more important. Many kinds of independent methods can be used to do the absolute radiometric calibration. In this paper, according to the characteristic of thermal infrared channel of HJ-1B thermal infrared multi-spectral camera, the thermal infrared spectral band of HJ-1B IRS was calibrated using cross-calibration methods based on MODIS data. Firstly, the corresponding bands of the two sensors were obtained. Secondly, the MONDTRAN was run to analyze the influences of different spectral response, satellite view zenith angle, atmosphere condition and temperature on the match factor. In the end, their band match factor was calculated in different temperature, considering the dissimilar band response of the match bands. Seven images of Lake Qinghai in different time were chosen as the calibration data. On the basis of radiance of MODIS and match factor, the IRS radiance was calculated. And then the calibration coefficients were obtained by linearly regressing the radiance and the DN value. We compared the result of this cross-calibration with that of the onboard blackbody calibration, which consistency was good.The maximum difference of brightness temperature

  11. Planck 2015 results. XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation

    Science.gov (United States)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Churazov, E.; Clements, D. L.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maggio, G.; Maino, D.; Mak, D. S. Y.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Welikala, N.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-08-01

    We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared emission produced by dusty galaxies inside these clusters and demonstrate that the infrared emission is about 50% more extended than the tSZ effect. Modelling the emission with a Navarro-Frenk-White profile, we find that the radial profile concentration parameter is c500 = 1.00+0.18-0.15 . This indicates that infrared galaxies in the outskirts of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (i) using a catalogue of confirmed clusters detected in Planck data; (ii) using an all-sky tSZ map built from Planck frequency maps; and (iii) using cross-spectra between Planck frequency maps. With the three different methods, we detect the tSZ-CIB cross-power spectrum at significance levels of (i) 6σ; (ii) 3σ; and (iii) 4σ. We model the tSZ-CIB cross-correlation signature and compare predictions with the measurements. The amplitude of the cross-correlation relative to the fiducial model is AtSZ-CIB = 1.2 ± 0.3. This result is consistent with predictions for the tSZ-CIB cross-correlation assuming the best-fit cosmological model from Planck 2015 results along with the tSZ and CIB scaling relations.

  12. Thermal imaging during infrared final cooking of semi-processed cylindrical meat product

    Science.gov (United States)

    Kor, Gamze; Icier, Filiz

    2016-11-01

    The temperature measurements during the infrared cooking of the semi-cooked cylindrical minced beef product (koefte) were taken by both contact (thermocouples) and non-contact (thermal imaging) techniques. The meat product was semi-cooked till its core temperature reached up to 75 °C by ohmic heating applied at 15.26 V/cm voltage gradient. Then, infrared cooking was applied as a final cooking method at different combinations of heat fluxes (3.7, 5.7 and 8.5 kW/m2), applied distances (10.5, 13.5 and 16.5 cm) and applied durations (4, 8 and 12 min). The average surface temperature increased as the heat flux and the applied duration increased but the applied distance decreased. The temperature distribution of the surface during infrared cooking was determined successfully by non-contact measurements. The temperature homogeneity varied between 0.77 and 0.86. The process condition of 8.5 kW/m2 for 8 min resulted in core temperature greater than 75 °C, which was essential for safe production of ready-to-eat (RTE) meat products. Thermal imaging was much more convenient method for minimizing the point measurement mistakes and determining temperature distribution images more clear and visual.

  13. Temperature and directional dependences of the infrared dielectric function of free standing silicon nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Kazan, M.; Bruyant, A.; Sedaghat, Z.; Arnaud, L.; Blaize, S.; Royer, P. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, Universite de Technologie de Troyes, CNRS FRE 2848, 12 Rue Marie Curie, 10010 Troyes, Cedex (France)

    2011-03-15

    An approach to calculate the infrared dielectric function of semiconductor nanostructures is presented and applied to silicon (Si) nanowires (NW's). The phonon modes symmetries and frequencies are calculated by means of the elastic continuum medium theory. The modes strengths and damping are calculated from a model for lattice dynamics and perturbation theory. The data are used in anisotropic Lorentz oscillator model to generate the temperature and directional dependences of the infrared dielectric function of free standing Si NW's. Our results showed that in the direction perpendicular to the NW axis, the complex dielectric function is identical to that of bulk Si. However, along the NW axis, the infrared dielectric function is a strong function of the wavelength. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Optical assembly of a visible through thermal infrared multispectral imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Henson, T. [Sandia National Labs., Albuquerque, NM (United States); Bender, S.; Byrd, D. [Los Alamos National Labs., NM (United States). NIS Div.; Rappoport, W.; Shen, G.Y. [Raytheon Optical Systems, Inc., Danbury, CT (United States)

    1998-06-01

    The Optical Assembly (OA) for the Multispectral Thermal Imager (MTI) program has been fabricated, assembled, and successfully tested for its performance. It represents a major milestone achieved towards completion of this earth observing E-O imaging sensor that is to be operated in low earth orbit. Along with its wide-field-of-view (WFOV), 1.82{degree} along-track and 1.38{degree} cross-track, and comprehensive on-board calibration system, the pushbroom imaging sensor employs a single mechanically cooled focal plane with 15 spectral bands covering a wavelength range from 0.45 to 10.7 {micro}m. The OA has an off-axis three-mirror anastigmatic (TMA) telescope with a 36-cm unobscured clear aperture. The two key performance criteria, 80% enpixeled energy in the visible and radiometric stability of 1% 1{sigma} in the visible/near-infrared (VNIR) and short wavelength infrared (SWIR), of 1.45% 1{sigma} in the medium wavelength infrared (MWIR), and of 0.53% 1{sigma} long wavelength infrared (LWIR), as well as its low weight (less than 49 kg) and volume constraint (89 cm x 44 cm x 127 cm) drive the overall design configuration of the OA and fabrication requirements.

  15. Identification of the epoxy curing mechanism under isothermal conditions by thermal analysis and infrared spectroscopy

    Science.gov (United States)

    Yamasaki, Hideki; Morita, Shigeaki

    2014-07-01

    A curing reaction of bisphenol A diglycidyl ether epoxy resin with 4,4‧-diaminodicyclohexyl methane hardener was investigated by means of modulated differential scanning calorimetry (MDSC), thermal scanning rheometer (TSR), near-infrared (NIR) and mid-infrared (MIR) spectroscopy. The relation between change in the physical properties and molecular structures during the isothermal curing reaction were studied. MDSC and NIR results corroborated vitrification with the secondary to tertiary amine conversion; the process afforded a three-dimensional cross-linking structure. TSR estimation of the gelation point was corroborated with the NIR-determined maximum concentration of the generated secondary amine. Two-dimensional correlation spectroscopy confirmed that reaction between the primary amine and epoxy occurred more rapidly than any other functional group reaction. The ether groups were generated at the early stage of the curing reaction, and their formation occurred immediately with the generation of hydroxyl groups.

  16. Application of Infrared Thermal Imaging in a Violinist with Temporomandibular Disorder.

    Science.gov (United States)

    Clemente, M; Coimbra, D; Silva, A; Aguiar Branco, C; Pinho, J C

    2015-12-01

    Temporomandibular disorders (TMD) consist of a group of pathologies that affect the masticatory muscles, temporomandibular joints (TMJ), and/or related structures. String instrumentalists, like many orchestra musicians, can spend hours with head postures that may influence the biomechanical behavior of the TMJ and the muscles of the craniocervicomandibular complex (CCMC). The adoption of abnormal postures acquired during performance by musicians can lead to muscular hyperactivity of the head and cervical muscles, with the possible appearance of TMD. Medical infrared thermography is a non-invasive procedure that can monitor the changes in the superficial tissue related to blood circulation and may serve as a complement to the clinical examination. The objective of this study was to use infrared thermography to evaluate, in one subject, the cutaneous thermal changes adjacent to the CCMC that occur before, during, and after playing a string instrument.

  17. Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement

    Science.gov (United States)

    Huang, Wei-Lun; Hsiao, Hui-Hsin; Tang, Ming-Ru; Lee, Si-Chen

    2016-08-01

    This paper presents a triple-wavelength infrared plasmonic thermal emitter using a periodic arrangement of hybrid dielectric materials within a tri-layer metal/dielectric/metal structure. The proposed arrangement makes it possible to sustain multiple resonance of localized surface plasmons (LSP), thereby providing an additional degree of freedom by which to vary the resonant wavelengths in the medium infrared region. Variations in the effective refractive index due to the different modal distribution within dielectric gratings results in multiple LSP resonances, and the resonant wavelengths can be easily tuned by altering the compositions of hybrid dielectric materials. The measured dispersion relation diagram and the finite difference time domain simulation indicated that the resonances were localized. They also indicate that the magnetic fields generated by the multiple LSP modes exhibit distribution patterns similar to that of a standing wave in the periodic arrangement of the hybrid dielectric layer, each of which presents an emission peak corresponding to a different modal order.

  18. Relationship among eye temperature measured using digital infrared thermal imaging and vaginal and rectal temperatures in hair sheep and cattle

    Science.gov (United States)

    Digital infrared thermal imaging (DITI) using a thermal camera has potential to be a useful tool for the production animal industry. Thermography has been used in both humans and a wide range of animal species to measure body temperature as a method to detect injury or inflammation. The objective of...

  19. Developing a thermal characteristic index for lithology identification using thermal infrared remote sensing data

    Science.gov (United States)

    Wei, Jiali; Liu, Xiangnan; Ding, Chao; Liu, Meiling; Jin, Ming; Li, Dongdong

    2017-01-01

    In remote sensing petrology fields, studies have mainly concentrated on spectroscopy remote sensing research, and methods to identify minerals and rocks are mainly based on the analysis and enhancement of spectral features. Few studies have reported the application of thermodynamics for lithology identification. This paper aims to establish a thermal characteristic index (TCI) to explore rock thermal behavior responding to defined environmental systems. The study area is located in the northern Qinghai Province, China, on the northern edge of the Qinghai-Tibet Plateau, where mafic-ultramafic rock, quartz-rich rock, alkali granite rock and carbonate rock are well exposed; the pixel samples of these rocks and vegetation were obtained based on relevant indices and geological maps. The scatter plots of TCI indicate that mafic-ultramafic rock and quartz-rich rock can be well extracted from other surface objects when interference from vegetation is lower. On account of the complexity of environmental systems, three periods of TCI were used to construct a three-dimensional scatter plot, named the multi-temporal thermal feature space (MTTFS) model. Then, the Bayes discriminant analysis algorithm was applied to the MTTFS model to extract rocks quantitatively. The classification accuracy of mafic-ultramafic rock is more than 75% in both training data and test data, which suggests TCI can act as a sensitive indicator to distinguish rocks and the MTTFS model can accurately extract mafic-ultramafic rock from other surface objects. We deduce that the use of thermodynamics is promising in lithology identification when an effective index is constructed and an appropriated model is selected.

  20. Measurement of thermal properties of magnetic nanoparticles using infrared thermal microscopy

    DEFF Research Database (Denmark)

    Kim, Jae Young; Chang, Ki Soo; Kook, Myung Ho

    2013-01-01

    Magnetic nanoparticles (MNPs) are considered promising for biomedical applications such as hyperthermia treatment and disease diagnosis owing to their distinctive thermal properties. For these applications, it is essential to screen the temperature distribution in the targeted disease site. This ...... temperature was observed using lock-in thermography for a small amount of MNPs distributed around the lesion. This suggests that the proposed microthermography technique can be used for diagnosis and screening in the early stage of a disease. © 2013 Elsevier B.V. All rights reserved....

  1. Thermal Field Analysis and Simulation of an Infrared Belt Furnace Used for Solar Cells

    Directory of Open Access Journals (Sweden)

    Bai Lu

    2014-01-01

    Full Text Available During solar cell firing, volatile organic compounds (VOC and a small number of metal particles were removed using the gas flow. When the gas flow was disturbed by the thermal field of infrared belt furnace and structure, the metal particles in the discharging gas flow randomly adhered to the surface of solar cell, possibly causing contamination. Meanwhile, the gas flow also affected the thermal uniformity of the solar cell. In this paper, the heating mechanism of the solar cell caused by radiation, convection, and conduction during firing was analyzed. Afterward, four 2-dimensional (2D models of the furnace were proposed. The transient thermal fields with different gas inlets, outlets, and internal structures were simulated. The thermal fields and the temperature of the solar cell could remain stable and uniform when the gas outlets were installed at the ends and in the middle of the furnace, with the gas inlets being distributed evenly. To verify the results, we produced four types of furnaces according to the four simulated results. The experimental results indicated that the thermal distribution of the furnace and the characteristics of the solar cells were consistent with the simulation. These experiments improved the efficiency of the solar cells while optimizing the solar cell manufacturing equipment.

  2. Thermal Modeling of Direct Digital Melt-Deposition Processes

    Science.gov (United States)

    Cooper, K. P.; Lambrakos, S. G.

    2011-02-01

    Additive manufacturing involves creating three-dimensional (3D) objects by depositing materials layer-by-layer. The freeform nature of the method permits the production of components with complex geometry. Deposition processes provide one more capability, which is the addition of multiple materials in a discrete manner to create "heterogeneous" objects with locally controlled composition and microstructure. The result is direct digital manufacturing (DDM) by which dissimilar materials are added voxel-by-voxel (a voxel is volumetric pixel) following a predetermined tool-path. A typical example is functionally gradient material such as a gear with a tough core and a wear-resistant surface. The inherent complexity of DDM processes is such that process modeling based on direct physics-based theory is difficult, especially due to a lack of temperature-dependent thermophysical properties and particularly when dealing with melt-deposition processes. In order to overcome this difficulty, an inverse problem approach is proposed for the development of thermal models that can represent multi-material, direct digital melt deposition. This approach is based on the construction of a numerical-algorithmic framework for modeling anisotropic diffusivity such as that which would occur during energy deposition within a heterogeneous workpiece. This framework consists of path-weighted integral formulations of heat diffusion according to spatial variations in material composition and requires consideration of parameter sensitivity issues.

  3. Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2

    Science.gov (United States)

    Okada, Tatsuaki; Fukuhara, Tetsuya; Tanaka, Satoshi; Taguchi, Makoto; Imamura, Takeshi; Arai, Takehiko; Senshu, Hiroki; Ogawa, Yoshiko; Demura, Hirohide; Kitazato, Kohei; Nakamura, Ryosuke; Kouyama, Toru; Sekiguchi, Tomohiko; Hasegawa, Sunao; Matsunaga, Tsuneo; Wada, Takehiko; Takita, Jun; Sakatani, Naoya; Horikawa, Yamato; Endo, Ken; Helbert, Jörn; Müller, Thomas G.; Hagermann, Axel

    2016-09-01

    The thermal infrared imager TIR onboard Hayabusa2 has been developed to investigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to provide information on surface physical properties and conditions for sampling site selection as well as the assessment of safe landing operations. TIR is based on a two-dimensional uncooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akatsuki (Fukuhara et al., 2011). TIR takes images of thermal infrared emission in 8 to 12 μm with a field of view of 16 × 12° and a spatial resolution of 0.05° per pixel. TIR covers the temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K. Temperature accuracy is within 2 K or better for summed images, and the relative accuracy or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for the well-calibrated temperature range. TIR takes a couple of images with shutter open and closed, the corresponding dark frame, and provides a true thermal image by dark frame subtraction. Data processing involves summation of multiple images, image processing including the StarPixel compression (Hihara et al., 2014), and transfer to the data recorder in the spacecraft digital electronics (DE). We report the scientific and mission objectives of TIR, the requirements and constraints for the instrument specifications, the designed instrumentation and the pre-flight and in-flight performances of TIR, as well as its observation plan during the Hayabusa2 mission.

  4. Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2

    Science.gov (United States)

    Okada, Tatsuaki; Fukuhara, Tetsuya; Tanaka, Satoshi; Taguchi, Makoto; Imamura, Takeshi; Arai, Takehiko; Senshu, Hiroki; Ogawa, Yoshiko; Demura, Hirohide; Kitazato, Kohei; Nakamura, Ryosuke; Kouyama, Toru; Sekiguchi, Tomohiko; Hasegawa, Sunao; Matsunaga, Tsuneo; Wada, Takehiko; Takita, Jun; Sakatani, Naoya; Horikawa, Yamato; Endo, Ken; Helbert, Jörn; Müller, Thomas G.; Hagermann, Axel

    2017-07-01

    The thermal infrared imager TIR onboard Hayabusa2 has been developed to investigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to provide information on surface physical properties and conditions for sampling site selection as well as the assessment of safe landing operations. TIR is based on a two-dimensional uncooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akatsuki (Fukuhara et al., 2011). TIR takes images of thermal infrared emission in 8 to 12 μm with a field of view of 16 × 12° and a spatial resolution of 0.05° per pixel. TIR covers the temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K. Temperature accuracy is within 2 K or better for summed images, and the relative accuracy or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for the well-calibrated temperature range. TIR takes a couple of images with shutter open and closed, the corresponding dark frame, and provides a true thermal image by dark frame subtraction. Data processing involves summation of multiple images, image processing including the StarPixel compression (Hihara et al., 2014), and transfer to the data recorder in the spacecraft digital electronics (DE). We report the scientific and mission objectives of TIR, the requirements and constraints for the instrument specifications, the designed instrumentation and the pre-flight and in-flight performances of TIR, as well as its observation plan during the Hayabusa2 mission.

  5. A study on correlativity between Qinghai-Tibet Plateau thermal infrared remote sensing data and underground temperature

    Institute of Scientific and Technical Information of China (English)

    HAN; Liqun; BI; Siwen; SONG; Shixin

    2006-01-01

    Based on an analysis of the correlativity between Qinghai-Tibet Plateau thermal infrared remote sensing data (QPTIRSD) and underground temperature field distribution, the main factors which obviously influence underground-layer temperatures were derived. Using neural network technology, a model was built to compute underground temperatures via parameters out of the inversion of thermal infrared remote sensing (TIRS) and then analyze the correlativity between above-ground parameters and underground temperatures. This method offers a new way to apply TIRS in monitoring the suture zone of a large-area massif as well as to research structural thermal anomalies.

  6. Aerial visible-thermal infrared hyperspectral feature extraction technology and its application to object identification

    Science.gov (United States)

    Jie-lin, Zhang; Jun-hu, Wang; Mi, Zhou; Yan-ju, Huang; Ding, Wu

    2014-03-01

    Based on aerial visible-thermal infrared hyperspectral imaging system (CASI/SASI/TASI) data, field spectrometer data and multi-source geological information, this paper utilizes the hyperspectral data processing and feature extraction technology to identify uranium mineralization factors, the spectral features of typical tetravalent, hexavalent uranium minerals and mineralization factors are established, and hyperspectral logging technology for drill cores and trench also are developed, the relationships between radioactive intensity and spectral characteristics are built. Above methods have been applied to characterize uranium mineralization setting of granite-type and sandstone-type uranium deposits in south and northwest China, the successful outcomes of uranium prospecting have been achieved.

  7. Utilization of Thermal Infrared Image for Inversion of Winter Wheat Yield and Biomass

    Institute of Scientific and Technical Information of China (English)

    DU Wen-yong; HE Xiong-kui; ZHANG Lu-da; HU Zhen-fang; Shamaila Z; ZENG Ai-jun; SONG Jian-li; LIU Ya-jia; Wolfram S; Joachim M

    2011-01-01

    The present paper utilizes thermal infrared image for inversion of winter wheat yield and biomass with different technology of irrigation (drip irrigation, sprinkler irrigation, flood irrigation). It is the first time that thermal infrared image is used for predicting the winter wheat yield and biomass. The temperature of crop and background was measured by thermal infrared image. It is necessary to get the crop background separation index (CBSILL ,CBSIH ), which can be used for distinguishing the crop value from the image. CBSIL. and CBSIH (the temperature when the leaves are wet adequately; the temperature when the stomata of leaf is closed completely) are the threshold values. The temperature of crop ranged from CBSI1. to CBSIH. Then the ICWSI was calculated based on relevant theoretical method. The value of stomata leaf has strong negative correlation with ICWSI proving the reliable value of ICWSI. In order to construct the high accuracy simulation model, the samples were divided into two parts. One was used for constructing the simulation model, the other for checking the accuracy of the model. Such result of the model was concluded as: (1) As for the simulation model of soil moisture, the correlation coefficient (R2) is larger than 0. 887 6, the average of relative error (Er) ranges from 13.33% to 16. 88%; (2) As for the simulation model of winter wheat yield, drip irrigation (0.887 6,16.89%, -0. 12), sprinkler irrigation (0. 970 0, 14.85%, -0. 12), flood irrigation (0. 969 0, 18. 87%,-0. 18), with the values ofR2, Er and CRM listed in the parentheses followed by the individual term. (3) As for winter wheat biomass, drip irrigation (0. 980 0, 13.70%, -0.13), sprinkler irrigation (0. 95, 13.15%,-0.14), flood irrigation (0. 970 0, 14.48%, -0.13), and the values in the parentheses are demonstrated the same as above. Both the CRM and Er are shown to be very low values, which points to the accuracy and reliability of the model investigated. The

  8. Three years of harvest with the vector vortex coronagraph in the thermal infrared

    CERN Document Server

    Absil, Olivier; Karlsson, Mikael; Carlomagno, Brunella; Christiaens, Valentin; Defrère, Denis; Delacroix, Christian; Castella, Bruno Femenia; Forsberg, Pontus; Girard, Julien; Gonzalez, Carlos A Gomez; Habraken, Serge; Hinz, Philip M; Huby, Elsa; Jolivet, Aïssa; Matthews, Keith; Milli, Julien; de Xivry, Gilles Orban; Pantin, Eric; Piron, Pierre; Reggiani, Maddalena; Ruane, Garreth J; Serabyn, Eugene; Surdej, Jean; Tristram, Konrad R W; Catalan, Ernesto Vargas; Wertz, Olivier; Wizinowich, Peter

    2016-01-01

    For several years, we have been developing vortex phase masks based on sub-wavelength gratings, known as Annular Groove Phase Masks. Etched onto diamond substrates, these AGPMs are currently designed to be used in the thermal infrared (ranging from 3 to 13 {\\mu}m). Our AGPMs were first installed on VLT/NACO and VLT/VISIR in 2012, followed by LBT/LMIRCam in 2013 and Keck/NIRC2 in 2015. In this paper, we review the development, commissioning, on-sky performance, and early scientific results of these new coronagraphic modes and report on the lessons learned. We conclude with perspectives for future developments and applications.

  9. Mapping alluvial fans in Death Valley, California, using multichannel thermal infrared images

    Science.gov (United States)

    Gillespie, A. R.; Kahle, A. B.; Pallluconi, F. D.

    1984-01-01

    Alluvial fans have been mapped in Death Valley, California using NASA's 8-12 micron six-channel airborne Thermal Infrared Multispectral Scanner (TIMS). Both composition and relative age differences were recognized. Age unit boundries are generally consistent with those obtained by conventional mapping. Composition was verified by field investigation and comparison with existing geologic maps. Bedrock and its young derived fan gravels have similar emissivities. The original composition of the fans is modified by differential erosion and weathering, permitting relative age mapping with TIMS.

  10. A model for μ-biomimetic thermal infrared sensors based on the infrared receptors of Melanophila acuminata.

    Science.gov (United States)

    Siebke, Georg; Holik, Peter; Schmitz, Sam; Schmitz, Helmut; Lacher, Manfred; Steltenkamp, Siegfried

    2014-09-01

    Beetles of the genus Melanophila acuminata detect forest fires from distances as far as 130 km with infrared-sensing organs. Inspired by this extremely sensitive biological device, we are developing an IR sensor that operates at ambient temperature using MEMS technology. The sensor consists of two liquid-filled chambers that are connected by a micro-fluidic system. Absorption of IR radiation by one of these chambers leads to heating and expansion of a liquid. The increasing pressure deflects a membrane covered by one electrode of a plate capacitor. The micro-fluidic system and the second chamber represent a fluidic low-pass filter, preventing slow, but large pressure changes. However, the strong frequency dependence of the filter demands a precise characterization of its properties. Here, we present a theoretical model that describes the frequency-dependent response of the sensor based on material properties and geometrical dimensions. Our model is divided into four distinct parts that address different aspects of the sensor. The model describes the frequency-dependent behaviour of the fluidic filter and a thermal low-pass filter as well as saturation effects at low frequencies. This model allows the calculation of optimal design parameters, and thereby provides the foundation for the development of such a sensor.

  11. A statistical approach to the thermal analysis at fumarole fields using infrared images

    Science.gov (United States)

    Pisciotta, Antonino; Diliberto, Iole Serena

    2016-04-01

    In the last decades, volcanology has evolved significantly, allowing for an improved understanding of volcanic processes preceding, accompanying and following eruptive events. Thermal imaging data, especially when used together with other monitoring techniques (such as seismicity, GPS measurements, and gas emissions), help to determine the nature of volcanic hazards. Between 2013 and 2015, four thermal surveys of the Vulcano Fossa fumarole field have been carried out. The fluid geochemistry of the target area and the time variation of the maximum temperature of the fluids released by the steaming vents have been well defined during the last decades and a great amount of scientific papers discussing interpretative models of the hydrothermal and magmatic systems feeding the fumaroles are available. The sequences of thermal images were recorded from a fixed view point 400 m (38°24.111' N 14°57.721' E), using a handheld infrared camera. The field surveys aimed to define the areal extension of thermal anomalies. The probability plots revealed different populations of data in each survey. The temperature space variability can be inferred to variable components of heat transport (radiative, convective, conductive) participating in the heat exchange occurring at the ground surface. The variation of shallow permeability of the ground and of the thermal capacity of the exposed surfaces are the main causes of space variability of exposed surfaces. The enlargement of the exhaling area and/or an increase of thermal anomaly surrounding the main fumarole vents (due to steam heating from the bottom source) can highlight significant increases of thermal release even when the maximum temperature of fumarole fluids falls. It has occurred in the last years in the fumarole in the inner slope, like FA fumarole where t dropped from 700°C in 1993 to the actual 250 °C but at the same time the area of steam emission abruptly changed. Responding to thermodynamic basic principles the

  12. Anomalous subsurface thermal behavior in tissue mimics upon near infrared irradiation mediated photothermal therapy.

    Science.gov (United States)

    Ghosh, Soham; Sahoo, Nilamani; Sajanlal, P R; Sarangi, Nirod Kumar; Ramesh, Nivarthi; Panda, Tapobrata; Pradeep, T; Das, Sarit Kumar

    2014-03-01

    Photothermal therapy using (Near Infrared) NIR region of EM spectrum is a fast emerging technology for cancer therapy. Different types of nanoparticles may be used for enhancing the treatment. Though the treatment protocols are developed based on experience driven estimated temperature increase in the tissue, it is not really known what spatiotemporal thermal behavior in the tissue is. In this work, this thermal behavior of tissue models is investigated with and without using nanoparticles. An increased temperature inside tissue compared to surface is observed which is counter intuitive from the present state of knowledge. It is shown from fiber level microstructure that this increased temperature leads to enhanced damage at the deeper parts of biomaterials. Nanoparticles can be utilized to control this temperature increase spatially. A multiple scattering based physical model is proposed to explain this counterintuitive temperature rise inside tissue. The results show promising future for better understanding and standardizing the protocols for photothermal therapy.

  13. Measurement of the in-plane thermal conductivity by steady-state infrared thermography

    CERN Document Server

    Greppmair, Anton; Saxena, Nitin; Gerstberger, Caroline; Müller-Buschbaum, Peter; Stutzmann, Martin; Brandt, Martin S

    2016-01-01

    We demonstrate a simple and quick method for the measurement of the in-plane thermal conductance of thin films via steady-state IR thermography. The films are suspended above a hole in an opaque substrate and heated by a homogeneous visible light source. The temperature distribution of the thin films is captured via infrared microscopy and fitted to the analytical expression obtained for the specific hole geometry in order to obtain the in-plane thermal conductivity. For thin films of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate post-treated with ethylene glycol and of polyimide we find conductivities of 1.0 W/mK and 0.4 W/mK at room temperature, respectively. These results are in very good agreement with literature values, validating the method developed.

  14. Thermal runaway in polyimide at high electric field probed by infrared thermography

    Science.gov (United States)

    Diaham, Sombel; Belijar, Guillaume; Locatelli, Marie-Laure; Lebey, Thierry

    2015-03-01

    An original way for characterizing dielectrics under high electric field and high temperature based on the coupling between electric current measurements and real-time fast infrared (IR) thermography is demonstrated. Particularly, the Joule heating phenomenon at high field is quantified by 2D-temperature cartography in a polyimide (PI) film set at an initial temperature of 300 °C through IR observations of the polarized electrode. 2D-temperature cartography highlights the temperature increase with increasing the electric field. The thermal runway occurs prior to the dielectric breakdown from an electric field threshold of 140-150 V/μm. This corresponds to a dissipated volume power density between 2 and 5 mW/μm3. Such values report the limit of the electro-thermal equilibrium in PI film.

  15. Digital Infrared Thermal Imaging of Crape Myrtle Leaves Infested with Sooty Mold

    Directory of Open Access Journals (Sweden)

    Jiyeon Kim

    2016-12-01

    Full Text Available The spatial patterns for temperature distribution on crape myrtle leaves infested with sooty mold were investigated using a digital infrared thermal imaging camera. The mean temperatures of the control and sooty regions were 26.98°C and 28.44°C, respectively. In the thermal images, the sooty regions appeared as distinct spots, indicating that the temperatures in these areas were higher than those in the control regions on the same leaves. This suggests that the sooty regions became warmer than their control regions on the adaxial leaf surface. Neither epidermal penetration nor cell wall dissolution by the fungus was observed on the adaxial leaf surface. It is likely that the high temperature of black leaves have an increased cooling load. To our knowledge, this is the first report on elevated temperatures in sooty regions, and the results show spatial heterogeneity in temperature distribution across the leaf surface.

  16. Photothermal and infrared thermography characterizations of thermal diffusion in hydroxyapatite materials

    Science.gov (United States)

    Bante-Guerra, J.; Conde-Contreras, M.; Trujillo, S.; Martinez-Torres, P.; Cruz-Jimenez, B.; Quintana, P.; Alvarado-Gil, J. J.

    2009-02-01

    Non destructive analysis of hydroxyapatite materials is an active research area mainly in the study of dental pieces and bones due to the importance these pieces have in medicine, archeology, dentistry, forensics and anthropology. Infrared thermography and photothermal techniques constitute highly valuable tools in those cases. In this work the quantitative analysis of thermal diffusion in bones is presented. The results obtained using thermographic images are compared with the ones obtained from the photothermal radiometry. Special emphasis is done in the analysis of samples with previous thermal damage. Our results show that the treatments induce changes in the physical properties of the samples. These results could be useful in the identification of the agents that induced modifications of unknown origin in hydroxyapatite structures.

  17. [Quantitative estimation of CaO content in surface rocks using hyperspectral thermal infrared emissivity].

    Science.gov (United States)

    Zhang, Li-Fu; Zhang, Xue-Wen; Huang, Zhao-Qiang; Yang, Hang; Zhang, Fei-Zhou

    2011-11-01

    The objective of the present paper is to study the quantitative relationship between the CaO content and the thermal infrared emissivity spectra. The surface spectral emissivity of 23 solid rocks samples were measured in the field and the first derivative of the spectral emissivity was also calculated. Multiple linear regression (MLR), principal component analysis (PCR) and partial least squares regression (PLSR) were modeled and the regression results were compared. The results show that there is a good relationship between CaO content and thermal emissivity spectra features; emissivities become lower when CaO content increases in the 10.3-13 mm region; the first derivative spectra have a better predictive ability compared to the original emissivity spectra.

  18. Prospective for graphene based thermal mid-infrared light emitting devices

    Directory of Open Access Journals (Sweden)

    L. M. Lawton

    2014-08-01

    Full Text Available We have investigated the spatial and spectral characteristics of mid-infrared thermal emission from large area Chemical Vapor Deposition (CVD graphene, transferred onto SiO2/Si, and show that the emission is broadly that of a grey-body emitter, with emissivity values of approximately 2% and 6% for mono- and multilayer graphene. For the currents used, which could be sustained for over one hundred hours, the emission peaked at a wavelength of around 4 μm and covered the characteristic absorption of many important gases. A measurable modulation of thermal emission was obtained even when the drive current was modulated at frequencies up to 100 kHz.

  19. Near-field thermal radiative emission of materials demonstrating near infrared surface polariton resonance

    Science.gov (United States)

    Petersen, Spencer Justin

    Surface polariton mediated near-field radiative transfer exceeds the blackbody limit by orders of magnitude and is quasimonochromatic. Thermophotovoltaic (TPV) power generation consists of converting thermal radiation into useful electrical energy and exhibits a peak performance near the TPV cell bandgap, which is typically located within the near infrared bandwidth. Therefore, an ideal emission source for a nanoscale gap TPV device, in which the emitter and cell are separated by no more than one peak emitted wavelength, will sustain surface polariton resonance at or near the TPV cell bandgap in the near infrared. To date, few materials have been identified that satisfy this requirement. The first objective of this dissertation is to theoretically explore dielectric Mie resonance-based (DMRB) electromagnetic metamaterials for the potential to sustain near infrared surface polariton resonance. Electromagnetic metamaterials are composite media, consisting of subwavelength, repeating unit structures called "meta-atoms." The microscopic configuration of the meta-atom can be engineered, dictating the effective macroscale electromagnetic properties of the bulk metamaterial, including the surface polariton resonance wavelength. DMRB metamaterials consist of dielectric nanoparticles within a host medium and are analyzed using an effective medium theory. The local density of electromagnetic states, an indicator of possibly harvestable energy near an emitting surface, is calculated for two DMRB metamaterials: spherical nanoparticles of 1) silicon carbide, and 2) silicon embedded in a host medium. Results show that the surface polariton resonance of these metamaterials is tunable and, for the silicon metamaterial only, is found in the near infrared bandwidth, making it a viable candidate for use in a nano-TPV device. In order to demonstrate the practicality thereof, the second objective is to fabricate and characterize DMRB metamaterials. Specimens are fabricated by hand

  20. Non-Destructive Evaluation of Polyolefin Thermal Aging Using Infrared Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, Leonard S.; Shin, Yongsoon; Simmons, Kevin L.

    2017-04-19

    Fourier transform infrared (FTIR) spectroscopy is an information-rich method that reveals chemical bonding near the surface of polymer composites. FTIR can be used to verify composite composition, identify chemical contaminants and expose composite moisture content. Polymer matrix changes due to thermal exposure including loss of additives, chain scission, oxidation and changes in crystallinity may also be determined using FTIR spectra. Portable handheld instruments using non-contact reflectance or surface contact attenuated total reflectance (ATR) may be used for non-destructive evaluation (NDE) of thermal aging in polymer and composite materials of in-service components. We report the use of ATR FTIR to track oxidative thermal aging in ethylene-propylene rubber (EPR) and chlorinated polyethylene (CPE) materials used in medium voltage nuclear power plant electrical cable insulation and jacketing. Mechanical property changes of the EPR and CPE materials with thermal degradation for correlation with FTIR data are tracked using indenter modulus (IM) testing. IM is often used as a local NDE metric of cable jacket health. The FTIR-determined carbonyl index was found to increase with IM and may be a valuable NDE metric with advantages over IM for assessing cable remaining useful life.

  1. Non-destructive evaluation of polyolefin thermal aging using infrared spectroscopy

    Science.gov (United States)

    Fifield, Leonard S.; Shin, Yongsoon; Simmons, Kevin L.

    2017-04-01

    Fourier transform infrared (FTIR) spectroscopy is an information-rich method that reveals chemical bonding near the surface of polymer composites. FTIR can be used to verify composite composition, identify chemical contaminants and expose composite moisture content. Polymer matrix changes due to thermal exposure including loss of additives, chain scission, oxidation and changes in crystallinity may also be determined using FTIR spectra. Portable handheld instruments using non-contact reflectance or surface contact attenuated total reflectance (ATR) may be used for nondestructive evaluation (NDE) of thermal aging in polymer and composite materials of in-service components. We report the use of ATR FTIR to track oxidative thermal aging in ethylene-propylene rubber (EPR) and chlorinated polyethylene (CPE) materials used in medium voltage nuclear power plant electrical cable insulation and jacketing. Mechanical property changes of the EPR and CPE materials with thermal degradation for correlation with FTIR data are tracked using indenter modulus (IM) testing. IM is often used as a local NDE metric of cable jacket health. The FTIR-determined carbonyl index was found to increase with IM and may be a valuable NDE metric with advantages over IM for assessing cable remaining useful life.

  2. Thermal stability of high concentration lysozyme across varying pH: A Fourier Transform Infrared study

    Directory of Open Access Journals (Sweden)

    Sathyadevi Venkataramani

    2013-01-01

    Full Text Available Aim: The current work is aimed at understanding the effect of pH on the thermal stability of hen egg white lysozyme (HEWL at high concentration (200 mg/mL. Materials and Methods: Fourier Transform Infrared (FTIR Spectroscopy with modified hardware and software to overcome some of the traditional challenges like water subtraction, sample evaporation, proper purging etc., are used in this study. Results: HEWL was subjected to thermal stress at pH 3.0-7.0 between 25°C and 95°C and monitored by FTIR spectroscopy. Calculated T m values showed that the enzyme exhibited maximum thermal stability at pH 5.0. Second derivative plots constructed in the amide I region suggested that at pH 5.0 the enzyme possessed higher amount of α-helix and lower amount of aggregates, when compared to other pHs. Conclusions: Considering the fact that HEWL has attractive applications in various industries and being processed under different experimental conditions including high temperatures, our work is able to reveal the reason behind the pH dependent thermal stability of HEWL at high concentration, when subjected to heat denaturation. In future, studies should aim at using various excipients that may help to increase the stability and activity of the enzyme at this high concentration.

  3. Infrared thermographic SAR measurements of interstitial hyperthermia applicators: errors due to thermal conduction and convection.

    Science.gov (United States)

    Sherar, M D; Gladman, A S; Davidson, S R H; Easty, A C; Joy, M L

    2004-08-01

    Thermal conduction and convection were examined as sources of error in thermographically measured SAR patterns of an interstitial microwave hyperthermia applicator. Measurements were performed in a layered block of muscle-equivalent phantom material using an infrared thermographic technique with varying heating duration. There was a 52.7% reduction in maximum SAR and 75.5% increase in 50% iso-SAR contour area for a 60-s heating duration relative to a 10-s heating duration. A finite element model of heat transfer in an homogeneous medium was used to model conductive and convective heat transfer during the thermographic measurement. Thermal conduction artefacts were found to significantly distort thermographically measured SAR patterns. Convective cooling, which occurs when phantom layers are exposed for thermal image acquisition, was found to significantly affect the magnitude, but not the spatial distribution, of thermographically measured SAR patterns. Results from this investigation suggest that the thermal diffusion artefacts can be minimized if the duration of the applied power pulse is restricted to 10 s or less.

  4. Frequency and Spatial Domains Adaptive-based Enhancement Technique for Thermal Infrared Images

    Directory of Open Access Journals (Sweden)

    Debasis Chaudhuri

    2014-09-01

    Full Text Available Low contrast and noisy image limits the amount of information conveyed to the user. With the proliferation of digital imagery and computer interface between man-and-machine, it is now viable to consider digital enhancement in the image before presenting it to the user, thus increasing the information throughput. With better contrast, target detection and discrimination can be improved. The paper presents a sequence of filtering operations in frequency and spatial domains to improve the quality of the thermal infrared (IR images. Basically, two filters – homomorphic filter followed by adaptive Gaussian filter are applied to improve the quality of the thermal IR images. We have systematically evaluated the algorithm on a variety of images and carefully compared it with the techniques presented in the literature. We performed an evaluation of three filter banks such as homomorphic, Gaussian 5×5 and the proposed method, and we have seen that the proposed method yields optimal PSNR for all the thermal images. The results demonstrate that the proposed algorithm is efficient for enhancement of thermal IR images.Defence Science Journal, Vol. 64, No. 5, September 2014, pp.451-457, DOI:http://dx.doi.org/10.14429/dsj.64.6873

  5. 65 Cybele in the thermal infrared: Multiple observations and thermophysical analysis

    CERN Document Server

    Blommaert, J

    2004-01-01

    We investigated the physical and thermal properties of 65 Cybele}, one of the largest main-belt asteroids. Based on published and recently obtained thermal infrared observations, including ISO measurements, we derived through thermophysical modelling (TPM) a size of 302x290x232 km (+/- 4 %) and an geometric visible albedo of 0.050+/-0.005. Our model of a regolith covered surface with low thermal inertia and "default" roughness describes the wavelengths and phase angle dependent thermal aspects very well. Before/after opposition effect and beaming behaviour can be explained in that way. We found a constant emissivity of 0.9 at wavelengths up to about 100 micron and lower values towards the submillimetre range, indicating a grain size distribution dominated by 200 micron particle sizes. The spectroscopic analysis revealed an emissivity increase between 8.0 and 9.5 micron. We compared this emissivity behaviour with the Christiansen features of carbonaceous chondrite meteorites, but a conclusive identification wa...

  6. Global trends in lake surface temperatures observed using multi-sensor thermal infrared imagery

    Science.gov (United States)

    Schneider, Philipp; Hook, Simon J.; Radocinski, Robert G.; Corlett, Gary K.; Hulley, Glynn C.; Schladow, S. Geoffrey; Steissberg, Todd E.

    2010-05-01

    Recent research has shown that the temperature of lakes and other inland water bodies does not only act as a good indicator of climate variability but under certain conditions can even increase more rapidly than the regional air temperature. Further investigation of this phenomenon in particular and of the interaction between lake temperature and climate variability in general requires extensive observations of lake temperature on a global scale. Current in situ records are limited in their spatial and/or temporal coverage and are thus insufficient for this task. However, a nearly 30-year archive of satellite-derived thermal infrared imagery from multiple sensors is available at this point and can be used to fill this data gap. We describe research on utilizing the existing archive of spaceborne thermal infrared imagery to generate multi-decadal time series of lake surface temperature for 170 of the largest lakes worldwide. The data used for this purpose includes imagery from the Advanced Very High Resolution Radiometers (AVHRR), the series of (Advanced) Along-Track Scanning Radiometers ((A)ATSR), and the Moderate Resolution Imaging Spectroradiometer (MODIS). Used in combination, these data sets offer a gapless time series of daily to near-daily thermal infrared retrievals from 1981 through present. In this contribution we demonstrate using comprehensive in situ data at Lake Tahoe, California/Nevada, that lake water surface temperature can be estimated using these sensors with an accuracy of up to 0.2 K. We further show that accurate continuous time series of water surface temperature can be derived from the data and that these time series can be used to detect significant trends in the temporal thermal behavior of lakes and other inland water bodies worldwide. Complementing our recent case study for lakes in California and Nevada for which a rapid increase in mean nighttime summertime lake surface temperatures of 0.11 K per year on average was found, we present

  7. Robust vehicle detection even in poor visibility conditions using infrared thermal images and its application to road traffic flow monitoring

    Science.gov (United States)

    Iwasaki, Yoichiro; Kawata, Shinya; Nakamiya, Toshiyuki

    2011-08-01

    We propose an algorithm for detecting vehicle positions and their movements by using thermal images obtained through an infrared thermography camera. The infrared thermography camera offers high contrast images even in poor visibility conditions like snow and thick fog. The proposed algorithm specifies the area of moving vehicles based on the standard deviations of pixel values along the time direction of spatio-temporal images. It also specifies vehicle positions by applying the pattern recognition algorithm which uses Haar-like features per frame of the images. Moreover, to increase the accuracy of vehicle detection, correction procedures for misrecognition of vehicles are employed. The results of our experiments at three different temperatures show that the information about both vehicle positions and their movements can be obtained by combining those two kinds of detection, and the vehicle detection accuracy is 96.2%. Moreover, the proposed algorithm detects the vehicles robustly in the 222 continuous frames taken in poor visibility conditions like snow and thick fog. As an application of the algorithm, we also propose a method for estimating traffic flow conditions based on the results obtained by the algorithm. By using the method for estimating traffic flow conditions, automatic traffic flow monitoring can be achieved.

  8. Ground-based infrared surveys: imaging the thermal fields at volcanoes and revealing the controlling parameters.

    Science.gov (United States)

    Pantaleo, Michele; Walter, Thomas

    2013-04-01

    Temperature monitoring is a widespread procedure in the frame of volcano hazard monitoring. Indeed temperature changes are expected to reflect changes in volcanic activity. We propose a new approach, within the thermal monitoring, which is meant to shed light on the parameters controlling the fluid pathways and the fumarole sites by using infrared measurements. Ground-based infrared cameras allow one to remotely image the spatial distribution, geometric pattern and amplitude of fumarole fields on volcanoes at metre to centimetre resolution. Infrared mosaics and time series are generated and interpreted, by integrating geological field observations and modeling, to define the setting of the volcanic degassing system at shallow level. We present results for different volcano morphologies and show that lithology, structures and topography control the appearance of fumarole field by the creation of permeability contrasts. We also show that the relative importance of those parameters is site-dependent. Deciphering the setting of the degassing system is essential for hazard assessment studies because it would improve our understanding on how the system responds to endogenous or exogenous modification.

  9. Fabrication of bundle-structured tube-leaky optical fibers for infrared thermal imaging

    Science.gov (United States)

    Kobayashi, T.; Katagiri, T.; Matsuura, Y.

    2017-02-01

    Bundled glass tubular fibers were fabricated by glass drawing technique for endoscopic infrared-thermal imaging. The bundle fibers were made of borosilicate glass and have a structure like a photonic crystal fiber having multiple hollow cores. Fabricated fibers have a length of 90 cm and each pixel sizes are less than 80 μm. By setting the thickness of glass wall to a quarter-wavelength optical thickness, light is confined in the air core as a leaky mode with a low loss owing to the interference effect of the thin glass wall and this type of hollow-core fibers is known as tube leaky fibers. The transmission losses of bundled fibers were firstly measured and it was found that bundled tube-leaky fibers have reasonably low transmission losses in spite of the small pixel size. Then thermal images were delivered by the bundled fibers combining with an InSb infrared camera. Considering applications with rigid endoscopes, an imaging system composed of a 30-cm long fiber bundle and a half-ball lens with a diameter of 2 mm was fabricated. By using this imaging system, a metal wire with a thickness of 200 μm was successfully observed and another test showed that the minimum detected temperature was 32.0 °C and the temperature resolution of the system was around 0.7 °C.

  10. [Validation of HJ-1B thermal infrared channels onboard radiometric calibration based on spectral response differences].

    Science.gov (United States)

    Liu, Li; Fu, Qiao-yan; Shi, Ting-ting; Wang, Ai-chun; Zhang, Xue-wen

    2014-08-01

    Since HJ-1B was launched, 7 sets of blackbody data have been used to calculate onboard calibration coefficients, but the research work on the validation of coefficients is rare. According to the onboard calibration principle, calibration coefficients of HJ-1B thermal infrared channel on Sep 14th, 2009 were calculated with the half-width, moments and look-up table methods. MODIS was selected for the reference sensor, and algorithms of spectral match were improved between the HJ-1B thermal infrared channel and MODIS 31, 32 channels based on the spectral response divergence. The relationship of top of atmosphere (TOA) radiance between the remote sensors was calculated, based on which the surface leaving brightness temperature was calculated by Planck function to validate the brightness temperature calculated through the onboard calibration coefficients. The equivalent brightness temperature calculated by spectral response divergence method is 285.97 K, and the inversion brightness temperature calculated by half-width, moments and look-up table methods is 288.77, 274.52 and 285.97 K respectively. The difference between the inversion brightness temperature and the equivalent brightness temperature is 2.8, -11.46 and 0.02 K, respectively, which demonstrate that onboard calibration coefficients calculated by the look-up table method has better precision and feasibility.

  11. Evaluation of Radiometric Performance for the Thermal Infrared Sensor Onboard Landsat 8

    Directory of Open Access Journals (Sweden)

    Huazhong Ren

    2014-12-01

    Full Text Available The radiometric performance of remotely-sensed images is important for the applications of such data in monitoring land surface, ocean and atmospheric status. One requirement placed on the Thermal Infrared Sensor (TIRS onboard Landsat 8 was that the noise-equivalent change in temperature (NEΔT should be ≤0.4 K at 300 K for its two thermal infrared bands. In order to optimize the use of TIRS data, this study investigated the on-orbit NEΔT of the TIRS two bands from a scene-based method using clear-sky images over uniform ground surfaces, including lake, deep ocean, snow, desert and Gobi, as well as dense vegetation. Results showed that the NEΔTs of the two bands were 0.051 and 0.06 K at 300 K, which exceeded the design specification by an order of magnitude. The effect of NEΔT on the land surface temperature (LST retrieval using a split window algorithm was discussed, and the estimated NEΔT could contribute only 3.5% to the final LST error in theory, whereas the required NEΔT could contribute up to 26.4%. Low NEΔT could improve the application of TIRS images. However, efforts are needed in the future to remove the effects of unwanted stray light that appears in the current TIRS images.

  12. Dark and background response stability for the Landsat 8 Thermal Infrared Sensor

    Science.gov (United States)

    Vanderwerff, Kelly; Montanaro, Matthew

    2012-01-01

    The Thermal Infrared Sensor (TIRS) is a pushbroom sensor that will be a part of the Landsat Data Continuity Mission (LDCM), which is a joint mission between NASA and the USGS. The TIRS instrument will continue to collect the thermal infrared data that are currently being collected by the Thematic Mapper and the Enhanced Thematic Mapper Plus on Landsats 5 and 7, respectively. One of the key requirements of the new sensor is that the dark and background response be stable to ensure proper data continuity from the legacy Landsat instruments. Pre launch testing of the instrument has recently been completed at the NASA Goddard Space Flight Center (GSFC), which included calibration collects that mimic those that will be performed on orbit. These collects include images of a cold plate meant to simulate the deep space calibration source as viewed by the instrument in flight. The data from these collects give insight into the stability of the instrument’s dark and background response, as well as factors that may cause these responses to vary. This paper quantifies the measured background and dark response of TIRS as well as its stability.

  13. Object detection utilizing a linear retrieval algorithm for thermal infrared imagery

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, M.S. [Arizona State Univ., Tempe, AZ (United States)

    1996-11-01

    Thermal infrared (TIR) spectroscopy and remote sensing have been proven to be extremely valuable tools for mineralogic discrimination. One technique for sub-pixel detection and data reduction, known as a spectral retrieval or unmixing algorithm, will prove useful in the analysis of data from scheduled TIR orbital instruments. This study represents the first quantitative attempt to identify the limits of the model, specifically concentrating on the TIR. The algorithm was written and applied to laboratory data, testing the effects of particle size, noise, and multiple endmembers, then adapted to operate on airborne Thermal Infrared Multispectral Scanner data of the Kelso Dunes, CA, Meteor Crater, AZ, and Medicine Lake Volcano, CA. Results indicate that linear spectral unmixmg can produce accurate endmember detection to within an average of 5%. In addition, the effects of vitrification and textural variations were modeled. The ability to predict mineral or rock abundances becomes extremely useful in tracking sediment transport, decertification, and potential hazard assessment in remote volcanic regions. 26 refs., 3 figs.

  14. Developing selective mining capability for longwall shearers using thermal infrared-based seam tracking

    Institute of Scientific and Technical Information of China (English)

    Jonathon C. Ralston; Andrew D.Strange

    2013-01-01

    Longwall mining continues to remain the most efficient method for underground coal recovery.A key aspect in achieving safe and productive longwall mining is to ensure that the shearer is always correctly positioned within the coal seam.At present,this machine positioning task is the role of longwall personnel who must simultaneously monitor the longwall coal face and the shearer's cutting drum position to infer the geological trends of the coal seam.This is a labour intensive task which has negative impacts on the consistency and quality of coal production.As a solution to this problem,this paper presents a sensing method to automatically track geological coal seam features on the longwall face,known as marker bands,using thermal infrared imaging.These non-visible marker bands are geological features that link strongly to the horizontal trends present in layered coal seams.Tracking these line-like features allows the generation of a vertical datum that can be used to maintain the shearer in a position for optimal coal extraction.Details on the theory of thermal infrared imaging are given,as well as practical aspects associated with machine-based implementation underground.The feature detection and tracking tasks are given with real measurements to demonstrate the efficacy of the approach.The outcome is important as it represents a new selective mining capability to help address a long-standing limitation in longwall mining operations.

  15. Use of infrared thermal imaging to diagnose health of Ammopiptanthus mongolicus in northwestern China

    Institute of Scientific and Technical Information of China (English)

    Weijie Yuan; Yi Yu; Yongde Yue; Ji Wang; Fengchun Zhang; Xiaohong Dang

    2015-01-01

    Population of the rare and endangered species Ammopiptanthus mongolicus (Maxim.) Cheng f. declined rapidly in China’s arid region and Central Asia. There is an urgent need to protect this species, which is particularly important in maintaining biodiversity throughout the arid region of northwestern China. By analyzing the infrared thermal images based on plant-transpiration transfer coef-ficient (hat) and photosynthetic parameters, we made quantitative and accurate diagnoses of the plant growth and health status of A. mongolicus. Using an LI-COR6400 photosynthesis system, we measured the net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr). Infrared thermal images obtained in the field were processed by ENVI4.8 software to calculate surface tem-peratures of the plant subjects. We found that the plant transpiration transfer coefficient of A. mongolicus was in the order of old plants [young plants [intermediate-aged plants. Declining health levels of young, intermediate, and old plants were divided into three categories:\\0.4, 0.4–0.7, and [0.7. The coefficient showed a significant negative correlation with Tr, Gs, and Pn, indicating that they can simultaneously reflect the state of plant growth. By estab-lishing hat and photosynthetic parameters in regression model Y=a-blnx, we can accurately diagnose plant growth and decline of plant health conditions.

  16. Determination of physical properties of the asteroid (41) Daphne from interferometric observations in the thermal infrared

    CERN Document Server

    Matter, Alexis; Ligori, Sebastiano; Crouzet, Nicolas; Tanga, Paolo

    2011-01-01

    We describe interferometric observations of the asteroid (41) Daphne in the thermal infrared obtained with the Mid-Infrared Interferometric Instrument (MIDI) of the Very Large Telescope Interferometer (VLTI). We derived the size and the surface thermal properties of (41) Daphne by means of a thermophysical model (TPM), which is used for the interpretation of interferometric data for the first time. From our TPM analysis, we derived a volume equivalent diameter for (41) Daphne of 189 km, using a non-convex 3-D shape model derived from optical lightcurves and adaptive optics images (B. Carry, private communication). On the other hand, when using the convex shape of Kaasalainen et al. (2002. Icarus 159, 369-395) in our TPM analysis, the resulting volume equivalent diameter of (41) Daphne is between 194 and 209 km, depending on the surface roughness. The shape of the asteroid is used as an a priori information in our TPM analysis. No attempt is made to adjust the shape to the data. Only the size of the asteroid a...

  17. First Use of an Airborne Thermal Infrared Hyperspectral Scanner for Compositional Mapping

    Science.gov (United States)

    Kirkland, Laurel; Herr, Kenneth; Keim, Eric; Adams, Paul; Salisbury, John; Hackwell, John; Treiman, Allan

    2002-01-01

    In May 1999, the airborne thermal infrared hyperspectral imaging system, Spatially Enhanced Broadband Array Spectrograph System (SEBASS), was flown over Mon-non Mesa, NV, to provide the first test of such a system for geological mapping. Several types of carbonate deposits were identified using the 11.25 microns band. However, massive calcrete outcrops exhibited weak spectral contrast, which was confirmed by field and laboratory measurements. Because the weathered calcrete surface appeared relatively smooth in hand specimen, this weak spectral contrast was unexpected. Here we show that microscopic roughness not readily apparent to the eye has introduced both a cavity effect and volume scattering to reduce spectral contrast. The macroroughness of crevices and cobbles may also have a significant cavity effect. The diminished spectral contrast is important because it places higher signal-to-noise ratio (SNR) requirements for spectroscopic detection and identification. This effect should be factored into instrumentation planning and interpretations, especially interpretations without benefit of ground truth. SEBASS had the required high SNR and spectral resolution to allow us to demonstrate for the first time the ability of an airborne hyperspectral thermal infrared scanner to detect and identify spectrally subtle materials.

  18. Synergies between Visible/Near-Infrared imaging spectrometry and the Thermal Infrared in an urban environment: An evaluation of the Hyperspectral Infrared Imager (HyspIRI) mission

    Science.gov (United States)

    Roberts, D. A.; Quattrochi, D. A.; Hulley, G. C.; Hook, S.; Green, R. O.

    2011-12-01

    More than half of humanity lives in urban areas, projected to exceed 80% by 2015. Urban areas are major sources of environmental contaminants and sinks of energy and materials. Globally, remote sensing contributes to improved understanding of urban impacts through mapping urban extent, vegetation and impervious cover fractions and urban energy balance including albedo, emissivity and land surface temperature (LST). HyspIRI is a NRC "Decadal Survey" mission combining a visible, near-infrared and shortwave infrared (VSWIR) imaging spectrometer with a multispectral thermal infrared (TIR) instrument . Potential synergies between VSWIR and TIR data were explored using analogous airborne data acquired over Santa Barbara in June, 2008. These data were analyzed at their native spatial resolutions (7.5m VSWIR and 15m TIR), and aggregated 60 m spatial resolution similar to HyspIRI. A spectral library of common urban materials (e.g., grass, trees, soil, roofs, roads) was built from field and airborne-measured spectra . LST and emissivity were also retrieved from the airborne data. Co-located pixels from airborne data were used to generate reflectance/emissivity spectra for a subset of urban materials. Multiple Endmember Spectral Mixture Analysis (MESMA) was used to map fractions of impervious, soil, green vegetation (GV) and non-photosynthetic vegetation (NPV) at the different spatial resolutions and to compare the fractional estimates across spatial scales. Surface energy parameters, including albedo, vegetation cover fraction, broadband emissivity and LST were also determined for urban and natural land-cover classes in the region. Fractions were validated using 1m digital photography. GV and NPV Fractions were highly correlated with validation data at all spatial scales, producing a near 1:1 relationship but with a 0.95) including vegetation, water and asphalt, and low emissivity surfaces (types, beach sands and senesced grass. Residential and commercial areas showed a

  19. Research on the aero-thermal effects by 3D analysis model of the optical window of the infrared imaging guidance

    Science.gov (United States)

    Xu, Bo; Li, Lin; Zhu, Ying

    2014-11-01

    Researches on hypersonic vehicles have been a hotspot in the field of aerospace because of the pursuits for higher speed by human being. Infrared imaging guidance is playing a very important role in modern warfare. When an Infrared Ray(IR) imaging guided missile is flying in the air at high speed, its optical dome suffers from serious aero-optic effects because of air flow. The turbulence around the dome and the thermal effects of the optical window would cause disturbance to the wavefront from the target. Therefore, detected images will be biased, dithered and blurred, and the capabilities of the seeker for detecting, tracking and recognizing are weakened. In this paper, methods for thermal and structural analysis with Heat Transfer and Elastic Mechanics are introduced. By studying the aero-thermal effects and aero-thermal radiation effects of the optical window, a 3D analysis model of the optical window is established by using finite element method. The direct coupling analysis is employed as a solving strategy. The variation regularity of the temperature field is obtained. For light with different incident angles, the influence on the ray propagation caused by window deformation is analyzed with theoretical calculation and optical/thermal/structural integrated analysis method respectively.

  20. Atmospheric transmission and thermal background emission in the mid-infrared at Mauna Kea

    Science.gov (United States)

    Otárola, A.; Richter, M.; Packham, C.; Chun, M.

    2015-04-01

    We present results of a preliminary study intended to quantitatively estimate the atmospheric transmission and thermal background emission in the mid-infrared (MIR), 7 μm - 26 μm, at the 13N TMT site in Mauna Kea. This is in the interest of supporting the planning of MIR instrumentation for the posible second-generation of astronomical instruments for the Thirty Meter Telescope (TMT) project. Mauna Kea, located at high altitude (4,050 m above sea level), enjoys natural conditions that make it an outstanding location for astronomical observations in the mid-infrared. The goal of this work is to produce a dataset and model that shows the atmospheric transmission and thermal emission for two cases of precipitable water vapor (PWV), a low value of 0.3 mm, and at 1.5 mm which represent near median conditions at the site. Besides, and driven by the interest of the MIR community to exploit the daily twilight times, we look at the specific atmospheric conditions around twilight as a function of season. The best conditions are found for cold and dry winter days, and in particular the morning twilight offers the best conditions. The analysis of PWV data, shows the median value for the site (all year conditions between 6:00 PM and 7:30AM) is 1.8 mm and that periods of water vapor lower than 1.0 mm are common, these supports the opportunity and discovery potential of the TMT project in the mid-infrared bands.

  1. Application of high-resolution thermal infrared sensors for geothermal exploration at the Salton Sea, California

    Science.gov (United States)

    Reath, K. A.; Ramsey, M.; Tratt, D. M.

    2010-12-01

    The Salton Sea geothermal field straddles the southeast margin of the Salton Sea in California, USA. This field includes approximately 20km2 of mud volcanoes and mud pots and centered on the Mullet Island thermal anomaly. The area has been previously exploited for geothermal power; there are currently seven power plants in the area that produce 1000 MW. The field itself is relatively un-vegetated, which provides for unfettered detection of the surface mineralogy, radiant heat, and emitted gases using air and spaceborne thermal infrared (TIR) sensors. On March 26, 2009, the airborne Spatially Enhanced Broadband Array Spectrograph System (SEBASS) sensor was flown over the Salton Sea-Mullet Island area. SEBASS has a spectral resolution of 128 bands in the 7.5-14.5 micron spectral region and a spatial resolution of 1m/pixel from the 3000-ft altitude flown for this study. A large portion of the Calipatria Fault, a NW/SE-trending geothermally active fault that bisects the Mullet Island thermal anomaly, was imaged during this flight and several thermal/mineralogical anomalies were noted. The orbital Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) has only 5 spectral bands at 90m/pixel resolution, but has acquired dozens of visible and TIR datasets over the geothermal field in the 10-year history of the instrument. The thermal-temporal trend of this dataset has been analyzed, and the November 2008 image studied in detail for comparison to SEBASS. The land-leaving TIR radiance data were separated into brightness temperature and surface emissivity. TIR emissivity data are unique to each mineral and a TIR mineral spectral library was used to determine their presence on the ground. Various mineral maps were created showing the distribution surrounding the most active geothermal features. The higher spectral/spatial resolution SEBASS data were used to validate the lower spectral/spatial resolution ASTER data (as well as the higher resolution laboratory TIR

  2. Pre- and Post-Launch Spatial Quality of the Landsat 8 Thermal Infrared Sensor

    Directory of Open Access Journals (Sweden)

    Brian N. Wenny

    2015-02-01

    Full Text Available The Thermal Infrared Sensor (TIRS for the Landsat 8 platform was designed and built at NASA Goddard Space Flight Center (GSFC. TIRS data will extend the data record for thermal observations from the heritage Landsat sensors, dating back to the launch of Landsat 4 in 1982. The two-band (10.9 and 12.0 μm pushbroom sensor with a 185 km-wide swath uses a staggered arrangement of quantum well infrared photodetector (QWIPs arrays. The required spatial resolution is 100 m for TIRS, with the assessment of crop moisture and water resources being science drivers for that resolution. The evaluation of spatial resolution typically relies on a straight knife-edge technique to determine the spatial edge response of a detector system, and such an approach was implemented for TIRS. Flexibility in the ground calibration equipment used for TIRS thermal-vacuum chamber testing also made possible an alternate strategy that implemented a circular target moved in precise sub-pixel increments across the detectors to derive the edge response. On-orbit, coastline targets were developed to evaluate the spatial response performance. Multiple targets were identified that produced similar results to one another. Even though there may be a slight bias in the point spread function (PSF/modulation transfer function (MTF estimates towards poorer performance using this approach, it does have the ability to track relative changes for monitoring long-term instrument status. The results for both pre- and post-launch response analysis show general good agreement and consistency with edge slope along-track values of 0.53 and 0.58 pre- and post-launch and across-track values 0f 0.59 and 0.55 pre- and post-launch.

  3. Retrieving Land Surface Temperature and Emissivity from Multispectral and Hyperspectral Thermal Infrared Instruments

    Science.gov (United States)

    Hook, Simon; Hulley, Glynn; Nicholson, Kerry

    2017-04-01

    Land Surface Temperature and Emissivity (LST&E) data are critical variables for studying a variety of Earth surface processes and surface-atmosphere interactions such as evapotranspiration, surface energy balance and water vapor retrievals. LST&E have been identified as an important Earth System Data Record (ESDR) by NASA and many other international organizations Accurate knowledge of the LST&E is a key requirement for many energy balance models to estimate important surface biophysical variables such as evapotranspiration and plant-available soil moisture. LST&E products are currently generated from sensors in low earth orbit (LEO) such as the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua satellites as well as from sensors in geostationary Earth orbit (GEO) such as the Geostationary Operational Environmental Satellites (GOES) and airborne sensors such as the Hyperspectral Thermal Emission Spectrometer (HyTES). LST&E products are generated with varying accuracies depending on the input data, including ancillary data such as atmospheric water vapor, as well as algorithmic approaches. NASA has identified the need to develop long-term, consistent, and calibrated data and products that are valid across multiple missions and satellite sensors. We will discuss the different approaches that can be used to retrieve surface temperature and emissivity from multispectral and hyperspectral thermal infrared sensors using examples from a variety of different sensors such as those mentioned, and planned new sensors like the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) and the Hyperspectral Infrared Imager (HyspIRI). We will also discuss a project underway at NASA to develop a single unified product from some the individual sensor products and assess the errors associated with the product.

  4. Quantum Well Infrared Photodetectors:the Basic Design and New Research Directions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The basic design principles and parameters of GaAs/AlGaAs quantum well infrared photodetectors (QWIP) are reviewed.Furthermore new research directions,devices and applications suited for QWIPs are discussed.These include monolithic integration of QWIPs with GaAs based electronic and optoelectronic devices,high frequency and high speed QWIPs and applications,multicolor and multispectral detectors,and p-type QWIPs.

  5. Feedback Direct Injection Current Readout For Infrared Charge-Coupled Devices

    Science.gov (United States)

    Kubo, Kazuya; Wakayama, Hiroyuki; Kajihara, Nobuyuki; Awamoto, Kenji; Miyamoto, Yoshihiro

    1990-01-01

    We are proposing current readout for infrared charge coupled devices (IRCCDs) which can operate at higher temperatures. Feedback direct injection (FDI) consists of a simple amplifier of gain, AFDI was used in a medium-wavelength IRCCD operating at a high temperature. We made a 64-element HgCdTe linear IRCCD using FDI. The device operates at 195 K with an NETD of 0.5 K.

  6. Thermal territories of the abdomen after caesarean section birth: infrared thermography and analysis.

    Science.gov (United States)

    Childs, C; Siraj, M R; Fair, F J; Selvan, A N; Soltani, H; Wilmott, J; Farrell, T

    2016-09-01

    To develop and refine qualitative mapping and quantitative analysis techniques to define 'thermal territories' of the post-partum abdomen, the caesarean section site and the infected surgical wound. In addition, to explore women's perspectives on thermal imaging and acceptability as a method for infection screening. Prospective feasibility study undertaken at a large University teaching hospital, Sheffield UK. Infrared thermal imaging of the abdomen was undertaken at the bedside on the first two days after elective caesarean section. Target recruitment: six women in each of three body mass index (BMI) categories (normal, 18.5-24.9 kg/m²; overweight 25-29.9 kg/m²; obese ≥30 kg/m²). Additionally, women presenting to the ward with wound infection were eligible for inclusion in the study. Perspectives on the use of thermal imaging and its practicality were also explored via semi-structured interviews and analysed using thematic content analysis. We recruited 20 women who had all undergone caesarean section. From the booking BMI, eight women were obese (including two women with infected wounds), seven women were overweight and five women had a normal BMI. Temperature (ºC) profiling and pixel clustering segmentation (hierarchical clustering-based segmentation, HCS) revealed characteristic features of thermal territories between scar and adjacent regions. Differences in scar thermal intensity profiles exist between healthy scars and infected wounds; features that have potential for wound surveillance. The maximum temperature differences (∆T) between healthy skin and the wound site exceed 2º C in women with established wound infection. At day two, two women had a scar thermogram with features observed in the 'infected' wound thermogram. Thermal imaging at early and later times after caesarean birth is feasible and acceptable. Women reported potential benefits of the technique for future wound infection screening. Thermal intensity profiling and HCS for pixel

  7. Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    2008-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.

  8. Shape memory nanocomposite of poly(L-lactic acid/graphene nanoplatelets triggered by infrared light and thermal heating

    Directory of Open Access Journals (Sweden)

    S. Lashgari

    2016-04-01

    Full Text Available In this study, the effect of graphene nanoplatelets (GNPs on the shape memory properties of poly(L-lactic acid (PLLA was studied. In addition to thermal activation, the possibility of infrared actuating of thermo-responsive shape memory PLLA/GNPs nanocomposite was investigated. The incorporated GNPs were expected to absorb infrared wave’s energy and activate shape memory PLLA/GNPs. Different techniques such as differential scanning calorimetry (DSC, wide-angle X-ray diffraction (WAXD, field emission gun scanning electron microscope (FEG-SEM and dynamic mechanical thermal analysis (DMTA were used to characterize samples. DSC and WAXD results indicated that GNPs augmented crystallinity due to nucleating effect of graphene particles. GNPs improved both thermal and infrared activating shape memory properties along with faster response. Pure shape memory PLLA was slightly responsive to infrared light and its infrared actuated shape recovery ratio was 86% which increased to more than 95% with loading of GNPs. Drastic improvement in the crystallinity was obtained in nanocomposites with lower GNPs contents (0.5 and 1 wt% due to finer dispersion of graphene which resulted in more prominent mechanical and shape memory properties enhancement. Infrared activated shape memory PLLA/GNPs nanocomposites can be developed for wireless remote shape control of smart medical and bio-systems.

  9. Study on infrared differential thermal non-destructive testing technology of the permeability of hot mix asphalt pavements

    Science.gov (United States)

    Wang, Duanyi; Shi, Jicun

    2017-06-01

    In order to non-destructive test (NDT) the permeability coefficient of hot mix asphalt (HMA) pavements fast, A methodology for assessing the permeability coefficient was proposed by infrared differential thermal testing of pavement after rain. The relationship between permeability coefficient and air voids of HMA specimen deter-mined. Finite element method (FEM) models were built to calculate the surface temperature difference with different exposure time after precipitation. Simulated solar radiation source and fully saturated plate specimens were set in laboratory, tests verify that the different exposure time the specimen surface temperature difference. Infrared differential thermal detection permeable pavement hardware and corresponding software developed. Based on many test results, the evaluation index and criteria of permeability coefficient of HMA pavements tested by infrared differential thermal were developed. The results showed that: There is correlation between air voids and permeability coefficient of HMA specimen. Permeability coefficient of HMA pavements can be determined by different surface temperature at different exposure time. 9:00 am - 14:00 pm is the best time to detect permeability coefficient by infrared differential thermal NDT. Permeable asphalt pavement permeability can be achieved by infrared detector quickly and continuously, a lane testing; Per the permeable assessment criteria, in-place pavements permeability coefficients can be accurately evaluated.

  10. An On-Line Method for Thermal Diffusivity Detection of Thin Films Using Infrared Video

    Directory of Open Access Journals (Sweden)

    Dong Huilong

    2016-03-01

    Full Text Available A novel method for thermal diffusivity evolution of thin-film materials with pulsed Gaussian beam and infrared video is reported. Compared with common pulse methods performed in specialized labs, the proposed method implements a rapid on-line measurement without producing the off-centre detection error. Through mathematical deduction of the original heat conduction model, it is discovered that the area s, which is encircled by the maximum temperature curve rTMAX(θ, increases linearly over elapsed time. The thermal diffusivity is acquired from the growth rate of the area s. In this study, the off-centre detection error is avoided by performing the distance regularized level set evolution formulation. The area s was extracted from the binary images of temperature variation rate, without inducing errors from determination of the heat source centre. Thermal diffusivities of three materials, 304 stainless steel, titanium, and zirconium have been measured with the established on-line detection system, and the measurement errors are: −2.26%, −1.07%, and 1.61% respectively.

  11. Mineralogy of S-complex Asteroids using Reflectance and Thermal Infrared Spectroscopy

    Science.gov (United States)

    Lindsay, S. S.; Emery, J. P.; Marchis, F.; Enriquez, E.; Assafin, M.

    2013-12-01

    The S-type asteroids display an astounding diversity in mineralogy. They range from monomineralic olivine to complex olivine/pyroxene assemblages to basaltic assemblages. These materials are thought to be representative of an entire range of bodies that span essentially unmelted to bodies that experienced complete melting and igneous differentiation. Hence, the diverse silicate mineralogy for the S-type asteroids traces the thermal history of the asteroids a few Myr after formation. As such, determining the composition of S-type asteroids is a powerful investigative tool for understanding the post-accretionary thermal evolution, partial melting, and differentiation of the asteroids in the early Solar System. Moreover, the Sq and S(IV) are thought to be the parent bodies of ordinary chondrites (OCs), and therefore represent essentially unmelted or un-thermally processed materials. The mineralogy of these relatively unprocessed asteroids thus provide a window into investigating primitive Solar System materials, which were the building blocks of the terrestrial planets. The mineralogy of S-complex asteroids is typically determined using the 1- and 2-μm absorption bands related to olivine and pyroxene. Comparing the band centers, depths, and areas of these two features (i.e., band analysis) to calibrated laboratory data yields the general silicate mineralogy. Based on the near-infrared (NIR) band analysis, the S-type asteroids can be divided into seven subtypes, S(I - VII), with S(I)s being monomineralic olivine (mantle matieral), S(IV)s being analogous to OCs (primitive silicate material), and S(VII)s being basaltic material (igneously processed crustal material). The mid-infrared (MIR) thermal emission from asteroid surfaces exhibits a suite of silicate features due to Si-O stretching and O-Si-O bending vibrations near 10 and 18 μm, respectively. Marchis et al. (2012) demonstrated that the S-type asteroids exhibit diversity in their MIR emission. We seek to examine

  12. Determination of the fatigue limit of an austempered ductile iron using thermal infrared imagry

    Science.gov (United States)

    Geraci, Alberto L.; La Rosa, Guido; Risitano, Antonino; Grech, Maurice

    1995-12-01

    Previous work by the authors showed that the endurance limit of specimens, or mechanical components, can be predicted using thermal infrared imagery. The new technique enables the determination of the fatigue strength limit in a comparatively short period of time (few thousands cycles), and using very few specimens (theoretically only 1). The present work applies this technique to rotating-bending test specimens of austempered ductile iron, an alloy whose fatigue limit is, due to the high scatter dispersion of the data points and the long testing period required, generally difficult to determine by the traditional technique. This material exhibited higher fatigue strength than the familiar nodular cast iron. This was confirmed by the results derived from the traditional Wohler test and the new technique, and supported by the data gathered from literature.

  13. Calibration of the Thermal Infrared Sensor on the Landsat Data Continuity Mission

    Science.gov (United States)

    Thome, K; Reuter, D.; Lunsford, D.; Montanaro, M.; Smith, J.; Tesfaye, Z.; Wenny, B.

    2011-01-01

    The Landsat series of satellites provides the longest running continuous data set of moderate-spatial-resolution imagery beginning with the launch of Landsat 1 in 1972 and continuing with the 1999 launch of Landsat 7 and current operation of Landsats 5 and 7. The Landsat Data Continuity Mission (LDCM) will continue this program into a fourth decade providing data that are keys to understanding changes in land-use changes and resource management. LDCM consists of a two-sensor platform comprised of the Operational Land Imager (OLI) and Thermal Infrared Sensors (TIRS). A description of the applications and design of the TIRS instrument is given as well as the plans for calibration and characterization. Included are early results from preflight calibration and a description of the inflight validation.

  14. Mapping the Piute Mountains, CA with Thermal Infrared Multispectral Scanner (TIMS)

    Science.gov (United States)

    Hook, S. J.; Karlstrom, K. E.; Miller, C. F.; McCaffrey, K. J. W.

    1993-01-01

    Thermal Infrared Multispectral Scanner (TIMS) data were acquired in 1990 over the PiuteMountains, California to evaluate their usefulness for lithologic mapping in an area ofmetamorphosed, structurally complex, igneous and sedimentary rocks. The data were calibrated,atmospherically corrected, and emissivity variations extracted from them. There was an excellentvisual correlation between the units revealed in the TIMS data and the recent mapping in the easternside of the area. It was also possible to correct, improve and extend the recent map. For example,several areas of amphibolite were identified in the TIMS data that had been incorrectly mapped asgranodioritic gneiss, and the presence of a swarm of mafic dikes, of which only a few had previouslybeen identified, was revealed...

  15. Thermal infrared as a tool to detect tree water stress in a coniferous forest

    Science.gov (United States)

    Nourtier, M.; Chanzy, A.; Bes, B.; Davi, H.; Hanocq, J. F.; Mariotte, N.; Sappe, G.

    2009-04-01

    In the context of climatic change, species area may move and so, a study of forest species vulnerability is on interest. In Mediterranean regions, trees can suffer of water stress due to drought during summer. Responses to environmental constraints are delayed in forest so it is necessary to anticipate risks in order to adapt management. It would be therefore interesting to localize areas where trees might be vulnerable to water stress. To detect such areas, the idea developed in this study is to map the severity of water stress, which may be linked to soil. Because vegetation surface temperature is linked to transpiration and so to water stress, the relevance of thermal infrared as a tool to detect water stress was explored. Past studies about surface temperature of forests at the planting scale did not lead to conclusive results. At this scale, important spatial and temporal variations of surface temperature, with a magnitude of about 10°C, can be registered but there is possibly a sizeable contribution of the undergrowth (Duchemin, 1998a, 1998b). In the other hand, important stress are not detectable, probably due to meteorological conditions (Pierce et al., 1990). During spring and summer 2008, an experimentation was carried out on the silver fir (Abies alba) forest of Mont Ventoux (south of France) to evaluate temporal variations at tree scale of the surface temperature in relation to water stress and climatic conditions. Two sites and three trees were chosen for measurements of surface temperature with a view to have different levels of water stress. Transpiration deficit is characterised by the ratio of actual transpiration to potential transpiration which is computed by the ISBA model (Noilhan et al., 1989) implemented by climatic observations made at the top of tree canopy. Sap flow measurements needed to calculate this ratio were completed on different trees of the sites. Climatic datas also allows building reference temperature and then surface

  16. Thermal Structure of Jupiter's Infrared Hotspots and Plumes in the Northern Equatorial Region

    Science.gov (United States)

    Fletcher, Leigh N.; Orton, Glenn S.; Rogers, John H.; Greathouse, Thomas K.; Momary, Thomas W.; Giles, Rohini Sara; Melin, Henrik; Sinclair, James; Irwin, Patrick Gerard Joseph; Vedovato, Marco

    2016-10-01

    The most prominent features of Jupiter's northern equatorial region are the visibly dark, 5-µm-bright 'hotspots' that move rapidly eastward on the southern edge of the North Equatorial Belt (NEB, Allison 1990, doi:10.1016/0019-1035(90)90069-L). We combine high-resolution thermal-infrared (5-20 µm) imaging from VLT/VISIR and IRTF/SpeX with spatially resolved spectroscopy from IRTF/TEXES to examine the thermal and chemical conditions in the equatorial region during the 2015-2016 apparition. The high spatial resolution permits the first detailed cross-comparison of thermal and visible-albedo conditions within the hotspots. We find that: (i) cloud-clearing within the hotspots creates 8.6-µm bright patches that are broader and more diffuse than their 5-µm counterparts; (ii) cloudy, cool cells ("plumes") in the northern Equatorial Zone are ammonia-rich and dark in the 5- and 8-12 µm range; (iii) the hotspots sometimes demonstrate a westward tilt with altitude in the 0.1-0.8 bar region (Fletcher et al., 2016, doi:10.1016/j.icarus.2016.06.008); and (iv) blue-grey streaks on the southeastern edges of these ammonia-rich cells are also cloud free and bright at 5-12 µm. This regular longitudinal pattern of cloudy cells and cloud-free hotspots is consistent with condensation of NH3-rich air as it ascends in cells, and subsidence of dry, volatile-depleted air in the hotspots. The westward tilt of the NEB hotspots with height that was detected in 2014 (but not in 2016) supports the equatorial Rossby-wave hypothesis for the NEB pattern. This equatorial wave is distinct from those in the upper troposphere during the 2015-16 NEB expansion event (Orton et al., DPS/EPSC 2016). The cells and hotspots observed in the thermal-IR are the same type as those detected at near-IR wavelengths by Galileo/NIMS (Baines et al. 2002, doi:10.1006/icar.2002.6901) and in the radio, probing the deep atmosphere (de Pater et al., 2016, doi:10.1126/science.aaf2210), suggesting a coherent structure

  17. Nanocomposites for high-speed optical modulators and plasmonic thermal mid-infrared emitters

    Science.gov (United States)

    Demir, Veysi

    Demand for high-speed optical modulators and narrow-bandwidth infrared thermal emitters for numerous applications continues to rise and new optical devices are needed to deal with massive data flows, processing powers, and fabrication costs. Conventional techniques are usually hindered by material limitations or electronic interconnects and advances in organic nanocomposite materials and their integration into photonic integrated circuits (PICs) have been acknowledged as a promising alternative to single crystal techniques. The work presented in this thesis uses plasmonic and magneto-optic effects towards the development of novel optical devices for harnessing light and generating high bandwidth signals (>40GHz) at room and cryogenic temperatures (4.2°K). Several publications have resulted from these efforts and are listed at the end of the abstract. In our first published research we developed a narrow-bandwidth mid-infrared thermal emitter using an Ag/dielectric/Ag thin film structure arranged in hexagonal planar lattice structures. PECVD produced nanoamorphous carbon (NAC) is used as a dielectric layer. Spectrally tunable (>2 mum) and narrow bandwidth (dielectric constant and loss tangent of MAPTMS sol-gel films were measured over a wide range of microwave frequencies. The test structures were prepared by spin-coating sol-gel films onto metallized glass substrates. The dielectric properties of the sol-gel were probed with several different sets of coplanar waveguides (CPWs) electroplated onto sol-gel films. The dielectric constant and loss-tangent of these films were determined to be ˜3.1 and 3 x 10-3 at 35GHz. These results are very promising indicating that sol-gels are viable cladding materials for high-speed electro-optic polymer modulators (>40GHz).

  18. Thermal and Infrared Studies of Garnierite from the Soroako Nickeliferous Laterite Deposit, Sulawesi, Indonesia

    Directory of Open Access Journals (Sweden)

    Sufriadin Sufriadin

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v7i2.137Mineralogical characterization of some garnierite samples from Soroako have been conducted using X-ray diffraction, thermal analysis, and infrared spectroscopy methods. XRD patterns reveal the samples mainly containing the mixture of kerolite (talc-like phase and serpentine with minor smectite, sepiolite, and silica. Thermal analyses of garnierite samples indicated by DTA curves are in good agreement with patterns that have been reported in literature. Three endothermic peaks normally occur in the ranges between 58º C and <800º C illustrating three steps of weight losses: adsorbed, bound, and hydroxyl/crystal water. One additional weight loss in low temperature region of sepiolite is corresponding to the lost of zeolitic water. Infrared spectra appeared in 3800 - 3200 cm-1 region generally exhibit broad absorption bands, indicating low crystallinities of studied samples and can be assigned to the presence of hydroxyl group bonded to octahedral coordination mainly Mg atom. The bands observed at 1660 cm-1, 1639 cm-1, 1637 cm-1, and 1633 cm-1 in all samples indicate water molecules. FTIR spectra displaying the strong bands at 1045 cm-1, 1038 cm-1, and 1036 cm-1 could be related to the presence of Si-O-Si bonds linking to tetrahedral coordination. The strong absorption bands appeared at 511 cm-1, 505 cm-1, 499 cm-1, and 496 cm-1 in respective samples are attributed to divalent cation bonds (e.g. Mg, Ni-O. Both TG/DTA and FTIR seem to be the powerful tool in diagnosing the crystal chemistry of garnierite which is mainly composed of phyllosilicate minerals.

  19. A Near-Infrared and Thermal Imager for Mapping Titan's Surface Features

    Science.gov (United States)

    Aslam, S.; Hewagma, T.; Jennings, D. E.; Nixon, C.

    2012-01-01

    Approximately 10% of the solar insolation reaches the surface of Titan through atmospheric spectral windows. We will discuss a filter based imaging system for a future Titan orbiter that will exploit these windows mapping surface features, cloud regions, polar storms. In the near-infrared (NIR), two filters (1.28 micrometer and 1.6 micrometer), strategically positioned between CH1 absorption bands, and InSb linear array pixels will explore the solar reflected radiation. We propose to map the mid, infrared (MIR) region with two filters: 9.76 micrometer and 5.88-to-6.06 micrometers with MCT linear arrays. The first will map MIR thermal emission variations due to surface albedo differences in the atmospheric window between gas phase CH3D and C2H4 opacity sources. The latter spans the crossover spectral region where observed radiation transitions from being dominated by thermal emission to solar reflected light component. The passively cooled linear arrays will be incorporated into the focal plane of a light-weight thin film stretched membrane 10 cm telescope. A rad-hard ASIC together with an FPGA will be used for detector pixel readout and detector linear array selection depending on if the field-of-view (FOV) is looking at the day- or night-side of Titan. The instantaneous FOV corresponds to 3.1, 15.6, and 31.2 mrad for the 1, 5, and 10 micrometer channels, respectively. For a 1500 km orbit, a 5 micrometer channel pixel represents a spatial resolution of 91 m, with a FOV that spans 23 kilometers, and Titan is mapped in a push-broom manner as determined by the orbital path. The system mass and power requirements are estimated to be 6 kg and 5 W, respectively. The package is proposed for a polar orbiter with a lifetime matching two Saturn seasons.

  20. In situ, simultaneous thermal imaging and infrared molecular emission studies of solid oxide fuel cell electrodes

    Science.gov (United States)

    Kirtley, J. D.; Qadri, S. N.; Steinhurst, D. A.; Owrutsky, J. C.

    2016-12-01

    Various in situ probes of solid oxide fuel cells (SOFCs) have advanced recently to provide detailed, real time data regarding materials and chemical processes that relate to device performance and degradation. These techniques offer insights into complex fuel chemistry at the anode in particular, especially in the context of model predictions. However, cell-to-cell variations can hinder mechanistic interpretations of measurements from separate, independent techniques. The present study describes an in situ technique that for the first time simultaneously measures surface temperature changes using near infrared thermal imaging and gas species using Fourier-transform infrared emission spectra at the anodes of operating SOFCs. Electrolyte-supported SOFCs with Ni-based anodes are operated at 700 °C with internal, dry-reformed methane at 75% maximum current and at open circuit voltage (OCV) while electrochemical and optical measurements are collected. At OCV, more cooling is observed coincident with more CO reforming products. Under load, CO decreases while the anode cools less, especially near the current collectors. The extent of cooling is more sensitive to polarization for electrolyte-supported cells because their anodes are thinner relative to anode-supported cells. This study exemplifies how this duplex technique can be a useful probe of electrochemical processes in SOFCs.

  1. New Asia Dust Storm Detection Method Based on the Thermal Infrared Spectral Signature

    Directory of Open Access Journals (Sweden)

    Hui Xu

    2014-12-01

    Full Text Available As hyperspectral instruments can provide the detailed spectral information, a new spectral similarity method for detecting and differentiating dust from non-dust scenes using the Atmospheric Infrared Sounder (AIRS observations has been developed. The detection is based on a pre-defined Dust Spectral Similarity Index (DSSI, which was calculated from the accumulated brightness temperature differences between selected 16 AIRS observation channels, in the thermal infrared region of 800–1250 cm−1. It has been demonstrated that DSSI can effectively separate the dust from non-dust by elevating dust signals. For underlying surface covered with dust, the DSSI tends to show values close to 1.0. However, the values of DSSI for clear sky surfaces or clouds (ice and water are basically lower than those of dust, as their spectrums have significant differences with dust. To evaluate this new simple DSSI dust detection algorithm, several Asia dust events observed in northern China were analyzed, and the results agree favorably with those from the Moderate resolution Imaging Spectro radiometer (MODIS and Cloud Aerosol LiDAR with Orthogonal Polarization (CALIOP observations.

  2. Optimum thermal infrared bands for mapping general rock type and temperature from space

    Science.gov (United States)

    Holmes, Q. A.; Nueesch, D. R.; Vincent, R. K.

    1980-01-01

    A study was carried out to determine quantitatively the number and location of spectral bands required to perform general rock type discrimination from spaceborne imaging sensors using only thermal infrared measurements. Beginning with laboratory spectra collected under idealized conditions from relatively well-characterized homogeneous samples, a radiative transfer model was used to transform ground exitance values into the corresponding spectral radiance at the top of the atmosphere. Taking sensor noise into account, analysis of these data revealed that three 1 micron wide spectral bands would permit independent estimations of rock type and sample temperature from a satellite infrared multispectral scanner. This study, which ignores the mixing of terrain elements within the instantaneous field of view of a satellite scanner, indicates that the location of three spectral bands at 8.1-9.1, 9.5-10.5, and 11.0-12.0 microns, and the employment of appropriate preprocessing to minimize atmospheric effects makes it possible to predict general rock type and temperature for a variety of atmospheric states and temperatures.

  3. Evapotranspiration from Airborne Simulators as a Proxy Datasets for NASA's ECOSTRESS mission - A new Thermal Infrared Instrument on the International Space Station

    Science.gov (United States)

    Guillevic, P. C.; Hulley, G. C.; Hook, S. J.; Olioso, A.; Sanchez, J. M.; Drewry, D.; Running, S. W.; Fisher, J. B.

    2014-12-01

    Surface evapotranspiration (ET) represents the loss of water from the Earth's surface both by soil evaporation and vegetation transpiration processes. ET is a key climate variable linking the water, carbon, and energy cycles, and is very sensitive to changes in atmospheric forcing and soil water content. The response of ET to water and heat stress directly affects the surface energy balance and temperature which can be measured by thermal infrared remote sensing observations. The NASA ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) will be deployed in 2019 to address critical questions on plant-water dynamics, ecosystem productivity and future ecosystem changes with climate through an optimal combination of thermal infrared measurements in 5 spectral bands between 8-12 µm with pixel sizes of 38×57 m and an average revisit of 5 days over the contiguous United States at varying times of day. Two instruments capable of providing proxy datasets are the MODIS/ASTER (MASTER) airborne simulator and Hyperspectral Thermal Emissions Spectrometer (HyTES). This study is focused on estimating evapotranspiration using shortwave and thermal infrared remote sensing observations from these instruments. The thermal infrared data from MASTER/HyTES is used as a proxy dataset for ECOSTRESS to demonstrate the capability of the future spaceborne system to derive ET and water stress information from thermal based retrievals of land surface temperature. MASTER and HyTES data collected from 2004 to present over the Western United States at different seasons are used to test and evaluate different ET algorithms using ground-based measurements. Selected algorithms are 1) explicitly based on surface energy budget calculation or 2) based on the Penman-Monteith equation and use information on land surface temperature to estimate the surface resistance to convective fluxes. We use ground data from the Fluxnet and Ameriflux networks, and from permanent validation

  4. The gap probability model for canopy thermal infrared emission with non-scattering approximation

    Institute of Scientific and Technical Information of China (English)

    牛铮; 柳钦火; 高彦春; 张庆员; 王长耀

    2000-01-01

    To describe canopy emitting thermal radiance precisely and physically is one of the key researches in retrieving land surface temperature (LSI) over vegetation-covered regions by remote sensing technology. This work is aimed at establishing gap probability models to describe the thermal emission characteristics in continuous plant, including the basic model and the sunlit model. They are suitable respectively in the nighttime and in the daytime. The sunlit model is the basic model plus a sunlit correcting item which takes the hot spot effect into account. The researches on the directional distribution of radiance and its relationship to canopy structural parameters, such as the leaf area index (LAI) and leaf angle distribution (LAD), were focused. The characteristics of directional radiance caused by temperature differences among components in canopy, such as those between leaf and soil, and between sunlit leaf or soil and shadowed leaf or soil, were analyzed. A well fitting between experimental data an

  5. Temperature Effects on the Wind Direction Measurement of 2D Solid Thermal Wind Sensors

    National Research Council Canada - National Science Library

    Chen, Bei; Zhu, Yan-Qing; Yi, Zhenxiang; Qin, Ming; Huang, Qing-An

    2015-01-01

    For a two-dimensional solid silicon thermal wind sensor with symmetrical structure, the wind speed and direction information can be derived from the output voltages in two orthogonal directions, i.e...

  6. Jupiter's auroral-related thermal infrared emission from IRTF-TEXES

    Science.gov (United States)

    Sinclair, James; Orton, Glenn; Greathouse, Thomas; Fletcher, Leigh; Irwin, Patrick

    2015-11-01

    Auroral processes on Jupiter can be observed at a large range of wavelengths. Charged particles of the solar wind are deflected by Jupiter’s magnetic field and penetrate the atmosphere at high latitudes. This results in ion and/or electron precipitation, which produces emission at X-ray, UV, visible, near-infrared and even radio wavelengths. These observations indicate three distinct features of the aurora: 1) filament-like oval structures fixed at the magnetic poles (~80°W (System III) in the south, ~180°W in the north), 2) spatially-continuous but transient aurora that fill these oval regions and 3) discrete spots associated with the magnetic footprints of Io and other Galilean satellites. However, observations in the thermal infrared indicate the aurora also modify the neutral atmosphere. Enhanced emission of CH4 is observed coincident with the auroral ovals and indicates heightened stratospheric temperatures possibly as a result of joule heating by the influx of charged particles. Stronger emission is also observed of C2H2, C2H4, C2H6 and even C6H6 though previous work has struggled to determine whether this is a temperature or compositional effect. In order to quantify the auroral effects on the neutral atmosphere and to support the 2016 Juno mission (which has no thermal infrared instrument) we have performed a retrieval analysis of IRTF-TEXES (Texas Echelon Cross Echelle Spectrograph, 5- to 25-μm) spectra obtained on Dec 11th 2014 near solar maximum. The instrument slit was scanned east-west across high latitudes in each hemisphere and Jupiter’s rotation was used to obtain ~360° longitudinal coverage. Spectra of H2 S(1), CH4, C2H2, C2H4 and C2H6 emission were measured at a resolving power of R = 85000, allowing a large vertical range in the atmosphere (100 - 0.001 mbar) to be sounded. Preliminary retrievals of the vertical temperature profile from H2 S(1) and CH4 measurements at 60°N, 180°W (on aurora), in comparison to 60°N, 60°W (quiescent

  7. Effects of varying environmental conditions on emissivity spectra of bulk lunar soils: Application to Diviner thermal infrared observations of the Moon

    Science.gov (United States)

    Donaldson Hanna, K. L.; Greenhagen, B. T.; Patterson, W. R.; Pieters, C. M.; Mustard, J. F.; Bowles, N. E.; Paige, D. A.; Glotch, T. D.; Thompson, C.

    2017-02-01

    Currently, few thermal infrared measurements exist of fine particulate (Moon and other airless bodies. In this work, we present thermal infrared emissivity measurements of a suite of well-characterized Apollo lunar soils and a fine particulate (Moon for future laboratory measurements and to better interpret lunar surface compositions as observed by Diviner.

  8. Recognition of Thermal Images of Direct Current Motor with Application of Area Perimeter Vector and Bayes Classifier

    Directory of Open Access Journals (Sweden)

    Glowacz Adam

    2015-06-01

    Full Text Available Infrared thermography can measure the temperature of a surface remotely. In this article authors present a diagnostic method of incipient fault detection. The proposed approach is based on pattern recognition. It uses monochrome thermal images of the rotor with the application of an area perimeter vector and a Bayes classifier. The investigations have been carried out for direct current motor without faults and motor with shorted rotor coils. The measurements were performed in the laboratory. The efficiency of recognition using the area perimeter vector and the Bayes classifier was 100 %. The investigations show that the method based on recognition of thermal images can be profitable for engineers. The proposed method can be applied in mining, metallurgy, fuel industry and in factories where electrical motors are used.

  9. The structure-directed effect of Al-based metal–organic frameworks on fabrication of alumina by thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dandan, E-mail: liudandan_upc@126.com [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corp. (CNPC), China University of Petroleum (East China), Qingdao 266580 (China); Dai, Fangna, E-mail: fndai@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corp. (CNPC), China University of Petroleum (East China), Qingdao 266580 (China); Collage of Science, China University of Petroleum (East China), Qingdao 266580 (China); Tang, Zhe, E-mail: tangzhe1983@163.com [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corp. (CNPC), China University of Petroleum (East China), Qingdao 266580 (China); Liu, Yunqi, E-mail: liuyq@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corp. (CNPC), China University of Petroleum (East China), Qingdao 266580 (China); Liu, Chenguang, E-mail: cgliu@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corp. (CNPC), China University of Petroleum (East China), Qingdao 266580 (China)

    2015-05-15

    Highlights: • We use Al-MOFs as precursor in the fabrication process of mesoporous alumina by thermal treatment. • The obtained mesoporous alumina has dual pore system and five-fold aluminum. • The aluminum building units in the precursor show structure-directed effect on the formation of alumina. - Abstract: In this work, the block-shaped Al-based metal–organic frameworks (Al-MOFs) MIL-53 have been synthesized by hydrothermal method. To detect the correlation between the structure of Al-MOFs and the formation of alumina, the ligands are eliminated by thermal treatment. MIL-53 and the calcination products were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscopy (TEM), nitrogen adsorption–desorption and solid-state {sup 27}Al nuclear magnetic resonance ({sup 27}Al NMR). It was found that after calcination, the block-shaped Al-MOFs precursor turns into high-crystallinity mesoporous alumina nanosheets, and the thermal treatment product γ-alumina possesses a dual pore system and a large surface area (146 m{sup 2}/g), with five-fold aluminum. During the thermal treatment process, the structure of MIL-53 and its secondary building units have structure-directed effect in the formation of alumina.

  10. Multispectral Thermal Infrared Mapping of Sulfur Dioxide Plumes: A Case Study from the East Rift Zone of Kilauea Volcano, Hawaii

    Science.gov (United States)

    Realmuto, V. J.; Sutton, A. J.; Elias, T.

    1996-01-01

    The synoptic perspective and rapid mode of data acquisition provided by remote sensing are well-suited for the study of volcanic SO2 plumes. In this paper we describe a plume-mapping procedure that is based on image data acquired with NASA's airborne Thermal Infrared Multispectral Scanner (TIMS).

  11. Experimental investigation of thermal loading of a horizontal thin plate using infrared camera

    Directory of Open Access Journals (Sweden)

    M.Y. Abdollahzadeh Jamalabadi

    2014-07-01

    Full Text Available This study reports the results of experimental investigations of the characteristics of thermal loading of a thin plate by discrete radiative heat sources. The carbon–steel thin plate is horizontally located above the heat sources. Temperature distribution of the plate is measured using an infrared camera. The effects of various parameters, such as the Rayleigh number, from 107 to 1011, the aspect ratio, from 0.05 to 0.2, the distance ratio, from 0.05 to 0.2, the number of heaters, from 1 to 24, the thickness ratio, from 0.003 to 0.005, and the thermal radiative emissivity, from 0.567 to 0.889 on the maximum temperature and the length of uniform temperature region on a thin plate are explored. The results indicate that the most effective parameters on the order of impact on the maximum temperature is Rayleigh number, the number of heat sources, the distance ratio, the aspect ratio, the surface emissivity, and the plate thickness ratio. Finally, the results demonstrated that there is an optimal distance ratio to maximize the region of uniform temperature on the plate.

  12. Suitable features selection for monitoring thermal condition of electrical equipment using infrared thermography

    Science.gov (United States)

    Huda, A. S. N.; Taib, S.

    2013-11-01

    Monitoring the thermal condition of electrical equipment is necessary for maintaining the reliability of electrical system. The degradation of electrical equipment can cause excessive overheating, which can lead to the eventual failure of the equipment. Additionally, failure of equipment requires a lot of maintenance cost, manpower and can also be catastrophic- causing injuries or even deaths. Therefore, the recognition processof equipment conditions as normal and defective is an essential step towards maintaining reliability and stability of the system. The study introduces infrared thermography based condition monitoring of electrical equipment. Manual analysis of thermal image for detecting defects and classifying the status of equipment take a lot of time, efforts and can also lead to incorrect diagnosis results. An intelligent system that can separate the equipment automatically could help to overcome these problems. This paper discusses an intelligent classification system for the conditions of equipment using neural networks. Three sets of features namely first order histogram based statistical, grey level co-occurrence matrix and component based intensity features are extracted by image analysis, which are used as input data for the neural networks. The multilayered perceptron networks are trained using four different training algorithms namely Resilient back propagation, Bayesian Regulazation, Levenberg-Marquardt and Scale conjugate gradient. The experimental results show that the component based intensity features perform better compared to other two sets of features. Finally, after selecting the best features, multilayered perceptron network trained using Levenberg-Marquardt algorithm achieved the best results to classify the conditions of electrical equipment.

  13. Experimental exploration to thermal infrared imaging for detecting the transient process of solid impact

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the analysis and the comparison of stress pattern analysis by thermal emission (SPATE) and remote sensing rock mechanics (RSRM), the idea to detect the transient process of solid impact with thermal infrared (TIR) imaging technology is introduced. By means of TVS-8100MKII T IR imaging system, which has high recording speed, high space distinguishability and high temperature sensibility, TIR imaging experiments on free falling steel ball impacting on marble, granite, concrete, steel, organic-glass and wood plate are conducted. It was discovered that: (i) the target's TIR temperature increases remarkably after impact; (ii) when ball's size is not changed, the variation amplitude of target's TIR temperature proportionally increases with the ball's potential energy or falling height; (iii) the variation amplitude of target's TIR temperature is involved with the material type and the surface glabrous condition of the target, and the amplitudes are in order as concrete, unpolished marble, steel plate, wood plate, polished granite, polished marble and organic-glass plate; and (iv) the TIR radiation of fragile targets decreases gradually after impact, while there is delayed TIR radiation strengthening for plastic target. It is deduced that once the relational runctions and technical parameters, which are involved with certain impact body and target material, are set up through experimental study, the remote detection and back analysis based on TIR imaging for the transient process of solid impact will be no problem. Besides, there is also important scientific meaning for the omen mechanics study and satellite TIR detection and prediction for structural earthquake.

  14. Thermal Infrared Emission Spectra of Terrestrial Exoplanets Influenced by Multi-layer Clouds

    Science.gov (United States)

    Schreier, Franz; Vasquez, Mayte; Gimeno Garcia, Sebastian; Kitzmann, Daniel

    2016-04-01

    Clouds play an important role in the radiative transfer of planetary atmospheres: they are key elements of the climate system and influence the planet's spectral appearance. Given the thousands of exoplanets discovered so far, including some dozens of Earth-sized exoplanets, the feasibility of remote sensing of exoplanet atmospheres is attracting increasing attention. Here we present a study of the thermal emission of cloud-covered Earth-like exoplanets orbiting in the habitable zone of F, G, K, and M-type stars. A line-by-line model for molecular absorption has been coupled to a discrete ordinate multiple scattering radiative transfer solver. Pressure, temperature, and molecular concentration profiles were taken from a consistent radiative-convective climate model including a parameterized cloud description (Kitzmann et al., A&A, 2010). The main focus of the current work is the impact of multi-layer clouds on emission spectra in the thermal infrared. The effects of low-level water clouds and high level ice clouds simultaneously on signatures of H2O, CO2, O3, etc will be studied for various resolutions. Furthermore, comparisons with spectra resulting from a low-resolution code will be shown.

  15. Lunar crater ejecta: Physical properties revealed by radar and thermal infrared observations

    Science.gov (United States)

    Ghent, R. R.; Carter, L. M.; Bandfield, J. L.; Tai Udovicic, C. J.; Campbell, B. A.

    2016-07-01

    We investigate the physical properties, and changes through time, of lunar impact ejecta using radar and thermal infrared data. We use data from two instruments on the Lunar Reconnaissance Orbiter (LRO) - the Diviner thermal radiometer and the Miniature Radio Frequency (Mini-RF) radar instrument - together with Earth-based radar observations. We use this multiwavelength intercomparison to constrain block sizes and to distinguish surface from buried rocks in proximal ejecta deposits. We find that radar-detectable rocks buried within the upper meter of regolith can remain undisturbed by surface processes such as micrometeorite bombardment for >3 Gyr. We also investigate the thermophysical properties of radar-dark haloes, comprised of fine-grained, rock-poor ejecta distal to the blocky proximal ejecta. Using Diviner data, we confirm that the halo material is depleted in surface rocks, but show that it is otherwise thermophysically indistinct from background regolith. We also find that radar-dark haloes, like the blocky ejecta, remain visible in radar observations for craters with ages >3 Ga, indicating that regolith overturn processes cannot replenish their block populations on that timescale.

  16. Airborne Thermal Infrared Multispectral Scanner (TIMS) images over disseminated gold deposits, Osgood Mountains, Humboldt County, Nevada

    Science.gov (United States)

    Krohn, M. Dennis

    1986-01-01

    The U.S. Geological Survey (USGS) acquired airborne Thermal Infrared Multispectral Scanner (TIMS) images over several disseminated gold deposits in northern Nevada in 1983. The aerial surveys were flown to determine whether TIMS data could depict jasperoids (siliceous replacement bodies) associated with the gold deposits. The TIMS data were collected over the Pinson and Getchell Mines in the Osgood Mountains, the Carlin, Maggie Creek, Bootstrap, and other mines in the Tuscarora Mountains, and the Jerritt Canyon Mine in the Independence Mountains. The TIMS data seem to be a useful supplement to conventional geochemical exploration for disseminated gold deposits in the western United States. Siliceous outcrops are readily separable in the TIMS image from other types of host rocks. Different forms of silicification are not readily separable, yet, due to limitations of spatial resolution and spectral dynamic range. Features associated with the disseminated gold deposits, such as the large intrusive bodies and fault structures, are also resolvable on TIMS data. Inclusion of high-resolution thermal inertia data would be a useful supplement to the TIMS data.

  17. A Temperature and Emissivity Separation Algorithm for Landsat-8 Thermal Infrared Sensor Data

    Directory of Open Access Journals (Sweden)

    Songhan Wang

    2015-08-01

    Full Text Available On-board the Landsat-8 satellite, the Thermal Infrared Sensor (TIRS, which has two adjacent thermal channels centered roughly at 10.9 and 12.0 μm, has a great benefit for the land surface temperature (LST retrieval. The single-channel algorithm (SC and split-window algorithm (SW have been applied to retrieve the LST from TIRS data, which need the land surface emissivity (LSE as prior knowledge. Due to the big challenge of determining the LSE, this study develops a temperature and emissivity separation algorithm which can simultaneously retrieve the LST and LSE. Based on the laboratory emissivity spectrum data, the minimum-maximum emissivity difference module (MMD module for TIRS data is developed. Then, an emissivity log difference method (ELD method is developed to maintain the emissivity spectrum shape in the iterative process, which is based on the modified Wien’s approximation. Simulation results show that the root-mean-square-errors (RMSEs are below 0.7 K for the LST and below 0.015 for the LSE. Based on the SURFRAD ground measurements, further evaluation demonstrates that the average absolute error of the LST is about 1.7 K, which indicated that the algorithm is capable of retrieving the LST and LSE simultaneously from TIRS data with fairly good results.

  18. Comparison of broadband and hyperspectral thermal infrared imaging of buried threat objects

    Science.gov (United States)

    McFee, John E.; Achal, Steve B.; Diaz, Alejandra U.; Faust, Anthony A.

    2013-06-01

    Previous research by many groups has shown that broad-band thermal infrared (TIR) imagers can detect buried explosive threat devices, such as unexploded ordnance (UXO), landmines and improvised explosive devices (IEDs). Broad-band detection measures the apparent temperature - an average over the wave band of the product of the true soil surface temperature and the emissivity. Broad-band detection suffers from inconsistent performance (low signal, high clutter rates), due in part to diurnal variations, environmental and meteorological conditions, and soil surface effects. It has been suggested that hyperspectral TIR imaging might have improved performance since it can, in principle, allow extraction of the wavelength-dependent emissivity and the true soil surface temperature. This would allow the surface disturbance effects to be separated from the soil column (bulk) effects. A significant, and as yet unanswered, question is whether hyperspectral TIR images provide better detection capability (higher probability of detection and/or lower false alarm rate) than do broad-band thermal images. TIR hyperspectral image data of threat objects, buried and surface-laid in bare soil, were obtained in arid, desert-like conditions over full diurnal cycles for several days. Regions of interest containing threat objects and backgrounds were extracted throughout the time period. Simulated broad-band images were derived from the hyperspectral images. The diurnal variation of the images was studied. Hyperspectral was found to provide some advantage over broad-band imaging in detection of buried threat objects for the limited data set studied.

  19. Assessment and Correction of on-Orbit Radiometric Calibration for FY-3 VIRR Thermal Infrared Channels

    Directory of Open Access Journals (Sweden)

    Na Xu

    2014-03-01

    Full Text Available FengYun-3 (FY-3 Visible Infrared Radiometer (VIRR, along with its predecessor, Multispectral Visible Infrared Scanning Radiometer (MVISR, onboard FY-1C&D have had continuous global observation more than 14 years. This data record is valuable for weather prediction, climate monitoring, and environment research. Data quality is vital for satellite data assimilations in Numerical Weather Prediction (NWP and quantitative remote sensing applications. In this paper, the accuracies of radiometric calibration for VIRR onboard FY-3A and FY-3B, in thermal infrared (TIR channels, are evaluated using the Low Earth Orbit (LEO-LEO simultaneous nadir overpass intercalibration method. Hyperspectral and high-quality observations from Infrared Atmosphere Sounding Instrument (IASI onboard METOP-A are used as reference. The biases of VIRR measurements with respect to IASI over one-and-a-half years indicate that the TIR calibration accuracy of FY-3B VIRR is better than that of FY-3A VIRR. The brightness temperature (BT measured by FY-3A/VIRR is cooler than that measured by IASI with monthly mean biases ranging from −2 K to −1 K for channel 4 and −1 K to 0.2 K for channel 5. Measurements from FY-3B/VIRR are more consistent with that from IASI, and the annual mean biases are 0.84 ± 0.16 K and −0.66 ± 0.18 K for channels 4 and 5, respectively. The BT biases of FY-3A/VIRR show scene temperature-dependence and seasonal variation, which are not found from FY-3B/VIRR BT biases. The temperature-dependent biases are shown to be attributed to the nonlinearity of detectors. New nonlinear correction coefficients of FY-3A/VIRR TIR channels are reevaluated using various collocation samples. Verification results indicate that the use of the new nonlinear correction can greatly correct the scene temperature-dependent and systematic biases.

  20. Directional infrared emission resulting from cascade population inversion and four-wave mixing in Rb vapor.

    Science.gov (United States)

    Akulshin, Alexander; Budker, Dmitry; McLean, Russell

    2014-02-15

    Directional infrared emission at 1.37 and 5.23 μm is generated in Rb vapors that are stepwise excited by low-power cw resonant light. The radiation at 5.23 μm originating from amplified spontaneous emission on the 5D(5/2)→6P(3/2) transition and wave mixing consists of forward- and backward-directed components with distinctive spectral and spatial properties. Diffraction-limited light at 1.37 μm generated in the copropagating direction only is a product of parametric wave mixing around the 5P(3/2)→5D(5/2)→6P(3/2)→6S(1/2)→5P(3/2) transition loop. This highly nondegenerate mixing process involves one externally applied and two internally generated optical fields. Similarities between wave mixing generated blue and 1.37 μm light are demonstrated.

  1. Can we detect water stressed areas in forest thanks thermal infrared remote sensing?

    Science.gov (United States)

    Nourtier, Marie; Chanzy, André; Bes, Bernard; Mariotte, Nicolas

    2010-05-01

    In Mediterranean and mountainous areas, an increase of mortality in forest is observed after important drought events. In the context of climate changes, a study of the impact of drought stress on forest is necessary. In order to detect water stress over the whole forest at different periods of the year, we propose the use of a spatialisable indicator, easily measurable: crown surface temperature. As previous works were not conclusive concerning the potentiality of this indicator in forest (Duchemin, 1998a, 1998b, Pierce et al., 1990), we set up an experimentation to study the surface temperature evolution linked to the transpiration at tree scale, during the spring and summer periods on silver fir (Abies alba) forest of Mont Ventoux (south of France). At the same time, several thermal infrared images of the mountainside were acquired corresponding to different levels of transpiration. The signal of surface temperature is studying via the evolution of the difference between measured surface temperature and calculated surface temperature for a tree at maximum transpiration rate. At tree scale, there is a difference of 4 °C of amplitude in the signal of surface temperature between maximum and zero transpiration conditions. The difficulty resides in taking into account the influence of climatic conditions, source of variability in the signal uncorrelated with transpiration evolution. Indices of surface temperature, built to include this influence of climatic conditions, permit to reduce this variability. Another source of variability lies in the percentage of branches present in the area of measurement. Indeed branches have a thermal dynamic differing from the needles one and, considering comparison between trees, the percentage of branches varies. At the mountainside scale, contrasted areas in terms of surface temperature indices are observable. By comparing different dates, corresponding to different levels of drought, it is possible to locate areas with precocious

  2. Directional thermal conductivity of stator winding, endwinding, and iron core of small induction motor

    Energy Technology Data Exchange (ETDEWEB)

    Ha, K.P. [Seoul National University Graduate School, Seoul (Korea); Kauh, S.K. [Seoul National University, Seoul (Korea)

    1999-04-01

    Stator winding and endwinding are hot spots of a induction motor, and their temperature are heavily affected by the thermal conductivity of stator winding, endwinding and iron core. Hence, thermal conductivity evaluation of those materials is very important and the present study proposed prediction schemes for directional thermal conductivity of stator winding, endwinding, and iron core of a small induction motor. Longitudinal thermal conductivity of stator winding is evaluated by serial model, and transversal thermal conductivity is by Lewis and Nielson's model. Thermal conductivity of endwinding can be obtained by rotational transform of thermal conductivity tensor. And thermal conductivity of iron core is evaluated by serial model and parallel model. In the evaluation of the thermal conductivity of iron core, it was assumed that the contact resistance between the core plates plays 80% role in total resistance. This requires more detailed analysis. (author). 11 refs., 5 figs., 3 tabs.

  3. An Autonomous System to Take Angular Thermal-Infrared Measurements for Validating Satellite Products

    Directory of Open Access Journals (Sweden)

    Raquel Niclòs

    2015-11-01

    Full Text Available An autonomous system for field land surface temperature (LST measurements taken at different observation angles was developed to be deployed easily at any conventional meteorological tower station. The system permits ground-truth data to be acquired on a continuous basis, and angularly scans land and sky hemispheres with a single thermal-infrared (TIR radiometer. This paper describes the autonomous angular system and the methodology to assess ground-truth LST and relative-to-nadir emissivity data from system measurements. Ground-truth LSTs were used to validate satellite-retrieved LST products at two experimental sites (rice crop and shrubland areas. The relative-to-nadir emissivity values were used to analyze the anisotropy of surface emissive properties over thermally-homogeneous covers. The EOS-MODIS MOD11_L2/MYD11_L2 LST product was evaluated and shown to work within expected uncertainties (<2.0 K when tested against the system data. A slight underestimation of around −0.15 K was observed, which became greater for the off-nadir observation angles at the shrubland site. The system took angular measurements for the different seasonal homogeneous covers at the rice crop site. These measurements showed emissivity angular anisotropies, which were in good agreement with previously published data. The dual-view ENVISAT-AATSR data reproduced them, and revealed that the system data collected for thermally-homogeneous surfaces could be used to test future satellite TIR sensors with multi-angular or bi-angular capabilities, like the forthcoming SLSTR on board Copernicus Sentinel-3A.

  4. Maximizing the Use of Satellite Thermal Infrared Data for Advancing Land Surface Temperature Analysis

    Science.gov (United States)

    Weng, Q.; Fu, P.; Gao, F.

    2014-12-01

    Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. These studies require thermal infrared (TIR) images at both high temporal and spatial resolution to retrieve LST. However, currently, no single satellite sensors can deliver TIR data at both high temporal and spatial resolution. Thus, various algorithms/models have been developed to enhance the spatial or the temporal resolution of TIR data, but rare of those can enhance both spatial and temporal details. This paper presents a new data fusion algorithm for producing Landsat-like LST data by blending daily MODIS and periodic Landsat TM datasets. The original Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) was improved and modified for predicting thermal radiance and LST data by considering annual temperature cycle (ATC) and urban thermal landscape heterogeneity. The technique of linear spectral mixture analysis was employed to relate the Landsat radiance with the MODIS one, so that the temporal changes in radiance can be incorporated in the fusion model. This paper details the theoretical basis and the implementation procedures of the proposed data fusion algorithm, Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT). A case study was conducted that predicted LSTs of five dates in 2005 from July to October in Los Angeles County, California. The results indicate that the prediction accuracy for the whole study area ranged from 1.3 K to 2 K. Like existing spatio-temporal data fusion models, the SADFAT method has a limitation in predicting LST changes that were not recorded in the MODIS and/or Landsat pixels due to the model assumption.

  5. Contact printing for direct metallic pattern transfer based on pulsed infrared laser heating

    Science.gov (United States)

    Chen, Chun-Hung; Lee, Yung-Chun

    2007-07-01

    This paper reports a novel contact printing method which can transfer patterned metallic films directly from a mold to a substrate, based on applied contact pressure and infrared pulse laser heating. Experiments have been carried out using a 1064 nm pulsed Nd:YAG laser to demonstrate the feasibility of the proposed method. Chromium (Cr) films of 70 nm thickness with both array-dot patterns and linear grating patterns of typically 500 nm feature sizes are successfully transferred. The transferred Cr patterns can serve as an etching mask for the subsequent etching on the substrate. The potential for applying this method to nano-patterning and nano-fabrication is addressed.

  6. Determining directional emissivity: Numerical estimation and experimental validation by using infrared thermography

    Science.gov (United States)

    Peeters, J.; Ribbens, B.; Dirckx, J. J. J.; Steenackers, G.

    2016-07-01

    Little research has examined that inaccurate estimations of directional emissivity form a major challenge during both passive and active thermographic measurements. Especially with the increasing use of complex curved shapes and the growing precision of thermal cameras, these errors limit the accuracy of the thermal measurements. In this work we developed a technique to estimate the directional emissivity using updated numerical simulations. The reradiation on concave surfaces is examined by thermal imaging of a homogeneous heated curved metal and nylon test sample. We used finite element modelling to predict the reradiation of concave structures in order to calculate the parameters of an approximating formula for the emissivity dependent on the angle to the normal vector on each element. The differences between experimental and numerical results of the steel test sample are explained using electron microscopy imaging and the validation on different materials. The results suggest that it is possible to determine the errors of thermal imaging testing of complex shapes using a numerical model.

  7. Direct measurement of thermal expansion in unsaturated soils

    OpenAIRE

    Pintado Llurba, Xavier; Lloret Morancho, Antonio

    2010-01-01

    A method designed to measure the thermal dilatation coefficient of unsaturated soils is presented. It is based on the ASTM 4535-85 standard with some important considerations taken into account. A number of tests following this methodology were performed on unsaturated swelling clay. Thermal dilatation coefficients were measured over a temperature range from 25 to 65°C for material dry densities and saturation degrees varying between 16–17 kN/m3 and 60–95%, respectively. The results are so...

  8. The gap probability model for canopy thermal infrared emission with non-scattering approximation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To describe canopy emitting thermal radiance precisely and physically is one of the key researches in retrieving land surface temperature (LST) over vegetation-covered regions by remote sensing technology.This work is aimed at establishing gap probability models to describe the thermal emission characteristics in continuous plant,including the basic model and the sunlit model.They are suitable respectively in the nighttime and in the daytime.The sunlit model is the basic model plus a sunlit correcting item which takes the hot spot effect into account.The researches on the directional distribution of radiance and its relationship to canopy structural parameters,such as the leaf area index (LAI) and leaf angle distribution (LAD),were focused.The characteristics of directional radiance caused by temperature differences among components in canopy,such as those between leaf and soil,and between sunlit leaf or soil and shadowed leaf or soil,were analyzed.A well fitting between experimental data and the theoretical calculations shows that the models are able to illustrate the canopy thermal emission generally.

  9. A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices

    Science.gov (United States)

    Pusch, Andreas; de Luca, Andrea; Oh, Sang S.; Wuestner, Sebastian; Roschuk, Tyler; Chen, Yiguo; Boual, Sophie; Ali, Zeeshan; Phillips, Chris C.; Hong, Minghui; Maier, Stefan A.; Udrea, Florin; Hopper, Richard H.; Hess, Ortwin

    2015-12-01

    The application of plasmonics to thermal emitters is generally assisted by absorptive losses in the metal because Kirchhoff’s law prescribes that only good absorbers make good thermal emitters. Based on a designed plasmonic crystal and exploiting a slow-wave lattice resonance and spontaneous thermal plasmon emission, we engineer a tungsten-based thermal emitter, fabricated in an industrial CMOS process, and demonstrate its markedly improved practical use in a prototype non-dispersive infrared (NDIR) gas-sensing device. We show that the emission intensity of the thermal emitter at the CO2 absorption wavelength is enhanced almost 4-fold compared to a standard non-plasmonic emitter, which enables a proportionate increase in the signal-to-noise ratio of the CO2 gas sensor.

  10. European Directions for Hypersonic Thermal Protection Systems and Hot Structures

    Science.gov (United States)

    Glass, David E.

    2007-01-01

    This presentation will overview European Thermal Protection Systems (TPS) and Hot Structures activities in Europe. The Europeans have a lot of very good work going on in the area. The presentation will discuss their emphasis on focused technology development for their flight vehicles.

  11. Characterization of Lunar Soils Using a Thermal Infrared Microscopic Spectral Imaging System

    Science.gov (United States)

    Crites, S. T.; Lucey, P. G.

    2010-12-01

    Lunar Reconnaissance Orbiter's Diviner radiometer has provided the planetary science community with a large amount of thermal infrared spectral data. This data set offers rich opportunities for lunar science, but interpretation of the data is complicated by the limited data on lunar materials. While spectra of pure terrestrial minerals have been used effectively for Mars applications, lunar minerals and glasses have been affected by space weathering processes that may alter their spectral properties in important ways. For example, mineral grains acquire vapor deposited coatings, and agglutinate glass contains abundant nanophase iron as a result of exposure to the space environment. Producing mineral separates in sufficient quantities (at least tens of mg) for spectral characterization is painstaking, time consuming and labor intensive; as an alternative we have altered an infrared hyperspectral imaging system developed for remote sensing under funding from the Planetary Instrument Definition and Development program (PIDDP) to enable resolved microscopic spectral imaging. The concept is to characterize the spectral properties of individual grains in lunar soils, enabling a wide range of spectral behaviors of components to be measured rapidly. The instrument, sensitive from 8 to 15 microns at 15 wavenumber resolution, images a field of view of 8 millimeters at 30 micron resolution and scans at a rate of about 1 mm/second enabling relatively large areas to be scanned rapidly. Our experiments thus far use a wet-sieved 90-150 um size fraction with the samples arrayed on a heated substrate in a single layer in order to prevent spectral interactions between grains. We have begun with pure mineral separates, and unsurprisingly we find that the individual mineral grain emission spectra of a wide range of silicates are very similar to spectra of coarse grained powders. We have begun to obtain preliminary data on lunar soils as well. We plan to continue imaging of lunar soils

  12. A new paradigm of oral cancer detection using digital infrared thermal imaging

    Science.gov (United States)

    Chakraborty, M.; Mukhopadhyay, S.; Dasgupta, A.; Banerjee, S.; Mukhopadhyay, S.; Patsa, S.; Ray, J. G.; Chaudhuri, K.

    2016-03-01

    Histopathology is considered the gold standard for oral cancer detection. But a major fraction of patient pop- ulation is incapable of accessing such healthcare facilities due to poverty. Moreover, such analysis may report false negatives when test tissue is not collected from exact cancerous location. The proposed work introduces a pioneering computer aided paradigm of fast, non-invasive and non-ionizing modality for oral cancer detection us- ing Digital Infrared Thermal Imaging (DITI). Due to aberrant metabolic activities in carcinogenic facial regions, heat signatures of patients are different from that of normal subjects. The proposed work utilizes asymmetry of temperature distribution of facial regions as principle cue for cancer detection. Three views of a subject, viz. front, left and right are acquired using long infrared (7:5 - 13μm) camera for analysing distribution of temperature. We study asymmetry of facial temperature distribution between: a) left and right profile faces and b) left and right half of frontal face. Comparison of temperature distribution suggests that patients manifest greater asymmetry compared to normal subjects. For classification, we initially use k-means and fuzzy k-means for unsupervised clustering followed by cluster class prototype assignment based on majority voting. Average classification accuracy of 91:5% and 92:8% are achieved by k-mean and fuzzy k-mean framework for frontal face. The corresponding metrics for profile face are 93:4% and 95%. Combining features of frontal and profile faces, average accuracies are increased to 96:2% and 97:6% respectively for k-means and fuzzy k-means framework.

  13. Improving spatio-temporal resolution of infrared images to detect thermal activity of defect at the surface of inorganic glass

    Science.gov (United States)

    Corvec, Guillaume; Robin, Eric; Le Cam, Jean-Benoît; Sangleboeuf, Jean-Christophe; Lucas, Pierre

    2016-07-01

    This paper proposes a noise suppression methodology to improve the spatio-temporal resolution of infrared images. The methodology is divided in two steps. The first one consists in removing the noise from the temporal signal at each pixel. Three basic temporal filters are considered for this purpose: average filter, cost function minimization (FIT) and short time Fast Fourier Transform approach (STFFT). But while this step effectively reduces the temporal signal noise at each pixel, the infrared images may still appear noisy. This is due to a random distribution of a residual offset value of pixels signal. Hence in the second step, the residual offset is identified by considering thermal images for which no mechanical loading is applied. In this case, the temperature variation field is homogeneous and the value of temperature variation at each pixel is theoretically equal to zero. The method is first tested on synthetic images built from infrared computer-generated images combined with experimental noise. The results demonstrate that this approach permits to keep the spatial resolution of infrared images equal to 1 pixel. The methodology is then applied to characterize thermal activity of a defect at the surface of inorganic glass submitted to cyclic mechanical loading. The three basic temporal filters are quantitatively compared and contrasted. Results obtained demonstrate that, contrarily to a basic spatio-temporal approach, the denoising method proposed is suitable to characterize low thermal activity combined to strong spatial gradients induced by cyclic heterogeneous deformations.

  14. [Application study of the thermal infrared emissivity spectra in the estimation of salt content of saline soil].

    Science.gov (United States)

    Xia, Jun; Tashpolat, Tiyip; Mamat, Sawut; Zhang, Fei; Han, Gui-Hong

    2012-11-01

    Studying of soil salinization is of great significance for agricultural production in arid area oasis, thermal infrared remote sensing technology provides a new technology and method in this field. Authors used Fourier transform infrared spectrometer to measure the oasis saline soil in field, employed iterative spectrally smooth temperature/emissivity separation algorithm (ISSTES) to separate temperature and emissivity, and acquired the thermal infrared emissivity data of the saline soil. Through researching the emissivity spectral feature of saline soil, and concluded that soil emissivity will reduce with the increasing of salt content from 8 to 13 microm, so emissivity spectra is more sensitive to salt factor from 8 to 9.5 microm. Then, analyzed the correlation between original emissivity spectra and its first derivative, second derivative and normalized ratio with salt content, the result showed that they have a negative correlation relationship between soil emissivity and salt content, and the correlation between emissivity first derivative and salt content is highest, reach to 0.724 2, the corresponding bands are from 8.370 745-8.390 880 microm. Finally, established the quadratic function regression model, its determination coefficient is 0.741 4, and root mean square error is 0.235 5, the result explained that the approach of using thermal infrared emissivity to retrieve the salt content of saline soil is feasible.

  15. W/Cu thin film infrared reflector for TiNxOy based selective solar absorber with high thermal stability

    Science.gov (United States)

    Zhang, J.; Chen, T. P.; Liu, Y. C.; Liu, Z.; Yang, H. Y.

    2017-05-01

    The W/Cu thin film structure is deposited by magnetron sputtering to form the infrared reflector for the TiNxOy based selective solar absorber (SSA) that can be used in the low- and middle-temperature applications. The structural, chemical, and optical properties of the SSA layers that experienced thermal annealing at different temperatures for various durations have been investigated with the characterization techniques, including X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy, spectroscopic ellipsometry, and spectrophotometry. Without a W layer, the reflectance in both visible and infrared ranges of the SSA increases as a result of the crystallization of the Cu layer at elevated temperatures. With a W layer with appropriate film thickness, the increase of the reflectance in the visible range can be suppressed to maintain a high solar absorptance, whereas a high infrared reflectance can be maintained to achieve a low thermal emittance. It is shown that for the SiO2-TiNxOy-W-Cu-Glass SSA with a 15 nm W thin film, thermal annealing can significantly reduce the thermal emittance to a low value (e.g., 4.4% at the temperature of 400 °C for annealing at 400 °C for 6 h), whereas the solar absorptance can be maintained at a high value (e.g., 92.2% for the annealing at 400 °C for 6 h).

  16. Hyperspectral Thermal Infrared Analysis of the Salton Sea, CA Geothermal Field

    Science.gov (United States)

    Reath, K. A.; Ramsey, M. S.

    2011-12-01

    The Salton Sea Geothermal Field is an active 20 km2 region in southern California, which lies along the Calipatria Fault; an offshoot of the San Andreas Fault. Several geothermal fields (including the Davis-Schrimpf and Sandbar fields) and ten power plants generating 340 MW lie within this region. In order to better understand the mineral and thermal distribution of the surface, hyperspectral thermal infrared (TIR) data were acquired by Aerospace Corporation using the Spatially Enhanced Broadband Array Spectrograph System (SEABSS) airborne sensor on March 26, 2009 and April 6, 2010. SEBASS collects 128 wavelength channels at 1 meter spatial resolution, from which a new and more accurate interpretation was produced of the surface mineralogy of the geothermal fields and surrounding areas. Such data are rarely available for this type of scientific analysis and enabled the identification of mineral assemblages associated with geothermally-active areas. These minerals include anhydrite, gypsum, as well as an unknown mineral with a unique TIR wavelength feature at 8.2 μm. Comparing the 2009 and 2010 data, this unknown mineral varies in abundance and spatial distribution likely due to changes in rainfall. Samples rich in this mineral were collected from an area identified in the SEBASS data and analyzed in the laboratory using high resolution TIR emission spectroscopy. The same spectral absorption feature was found confirming the mineral's presence. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) were performed on one of the samples in order to positively identify this mineral and further constrain the TIR analysis. By using the combination of airborne and laboratory spectroscopy, detailed and temporally-variable patterns of the surface mineralogy were ultimately produced. This work has the potential to be used at other geothermal sites to better characterize transient mineralogy, understand the influence of surface and ground water in these systems, and

  17. Thermal imager fixed pattern noise prediction using a characterization of the infrared detector

    Science.gov (United States)

    Mariani, Paolo; Zatti, Stefano; Giunti, Claudio; Sozzi, Barbara; Guadagnoli, Emanuele; Porta, Antonio

    2014-12-01

    Cooled infrared detectors are typically characterized by well-known electro-optical parameters: responsivity, noise equivalent temperature difference, shot noise, 1/f noise, and so on. Particularly important for staring arrays is also the residual fixed pattern noise (FPN) that can be obtained after the application of the nonuniformity correction (NUC) algorithm. A direct measure of this parameter is usually hard to define because the residual FPN strongly depends, other than on the detector, on the choice of the NUC algorithm and the operative scenario. We introduce three measurable parameters: instability, nonlinearity, and a residual after a polynomial fitting of the detector response curve, and we demonstrate how they are related to the residual FPN after the application of an NUC (the relationship with three common correction algorithms is discussed). A comparison with experimental data is also presented and discussed.

  18. The Prototype HyspIRI Thermal Infrared Radiometer (PHyTIR): A High Speed, Multispectral, Thermal Instrument Development in Support of HyspIRI-TIR

    Science.gov (United States)

    Hook, Simon

    2011-01-01

    The Prototype HyspIRI Thermal Infrared Radiometer (PHyTIR) is being developed as part of the risk reduction activities associated with the Hyperspectral Infrared Imager (HyspIRI). The HyspIRI mission was recommended by the National Research Council Decadal Survey and includes a visible shortwave infrared (SWIR) pushboom spectrometer and a multispectral whiskbroom thermal infrared (TIR) imager. Data from the HyspIRI mission will be used to address key science questions related to the Solid Earth and Carbon Cycle and Ecosystems focus areas of the NASA Science Mission Directorate. The HyspIRI TIR system will have 60m ground resolution, better than 200mK noise equivalent delta temperature (NEDT), 0.5C absolute temperature resolution with a 5-day repeat from LEO orbit. PHyTIR addresses the technology readiness level (TRL) of certain key subsystems of the TIR imager, primarily the detector assembly and scanning mechanism. PHyTIR will use Mercury Cadmium Telluride (MCT) technology at the focal plane and operate in time delay integration mode. A custom read out integrated circuit (ROIC) will provide the high speed readout hence allowing the high data rates needed for the 5 day repeat. PHyTIR will also demonstrate a newly developed interferometeric metrology system. This system will provide an absolute measurement of the scanning mirror to an order of magnitude better than conventional optical encoders. This will minimize the reliance on ground control points hence minimizing post-processing (e.g. geo-rectification computations).

  19. Identification of thermal properties distribution in building wall using infrared thermography

    Science.gov (United States)

    Brouns, Jordan; Dumoulin, Jean

    2016-04-01

    [1] L. Ibos, J-P. Monchau, V. Feuillet, Y. Candau, A comparative study of in-situ measurement methods of a building wall thermal resistance using infrared thermography, in Proc. SPIE 9534, Twelfth International Conference on Quality Control by Artificial Vision 2015, 95341I (April 30, 2015); doi:10.1117/12.2185126 [2] Nassiopoulos, A., Bourquin, F., On-site building walls characterization, Numerical Heat Transfer, Part A : Applications, 63(3) :179 :200, 2013 [3] J. Brouns, Développement d'outils numériques pour l'audit énergétique des bâtiments, PhD thesis, Université Paris-Est, SIE, 2014 [4] J.-L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Book, Dunod editor, 1968.

  20. Sea ice thickness analyses for the Bohai Sea using MODIS thermal infrared imagery

    Institute of Scientific and Technical Information of China (English)

    ZENG Tao; SHI Lijian; MARKO Makynen; CHENG Bin; ZOU Juhong; ZHANG Zhiping

    2016-01-01

    Level ice thickness distribution pattern in the Bohai Sea in the winter of 2009–2010 was investigated in this paper using MODIS night-time thermal infrared imagery. The cloud cover in the imagery was masked out manually. Level ice thickness was calculated using MODIS ice surface temperature and an ice surface heat balance equation. Weather forcing data was from the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses. The retrieved ice thickness agreed reasonable well within situ observations from two off-shore oil platforms. The overall bias and the root mean square error of the MODIS ice thickness are –1.4 cm and 3.9 cm, respectively. The MODIS results under cold conditions (air temperature < –10°C) also agree with the estimated ice growth from Lebedev and Zubov models. The MODIS ice thickness is sensitive to the changes of the sea ice and air temperature, in particular when the sea ice is relatively thin. It is less sensitive to the wind speed. Our method is feasible for the Bohai Sea operational ice thickness analyses during cold freezing seasons.

  1. Ground-based analysis of volcanic ash plumes using a new multispectral thermal infrared camera approach

    Science.gov (United States)

    Williams, D.; Ramsey, M. S.

    2015-12-01

    Volcanic plumes are complex mixtures of mineral, lithic and glass fragments of varying size, together with multiple gas species. These plumes vary in size dependent on a number of factors, including vent diameter, magma composition and the quantity of volatiles within a melt. However, determining the chemical and mineralogical properties of a volcanic plume immediately after an eruption is a great challenge. Thermal infrared (TIR) satellite remote sensing of these plumes is routinely used to calculate the volcanic ash particle size variations and sulfur dioxide concentration. These analyses are commonly performed using high temporal, low spatial resolution satellites, which can only reveal large scale trends. What is lacking is a high spatial resolution study specifically of the properties of the proximal plumes. Using the emissive properties of volcanic ash, a new method has been developed to determine the plume's particle size and petrology in spaceborne and ground-based TIR data. A multispectral adaptation of a FLIR TIR camera has been developed that simulates the TIR channels found on several current orbital instruments. Using this instrument, data of volcanic plumes from Fuego and Santiaguito volcanoes in Guatemala were recently obtained Preliminary results indicate that the camera is capable of detecting silicate absorption features in the emissivity spectra over the TIR wavelength range, which can be linked to both mineral chemistry and particle size. It is hoped that this technique can be expanded to isolate different volcanic species within a plume, validate the orbital data, and ultimately to use the results to better inform eruption dynamics modelling.

  2. Thermal Infrared Sky Background for a High-Arctic Mountain Observatory

    CERN Document Server

    Steinbring, Eric

    2016-01-01

    Nighttime zenith sky spectral brightness in the 3.3 to 20 micron wavelength region is reported for an observatory site nearby Eureka, on Ellesmere Island in the Canadian High Arctic. Measurements derive from an automated Fourier-transform spectrograph which operated continuously there over three consecutive winters. During that time the median through the most transparent portion of the Q window was 460 Jy/square-arcsec, falling below 32 Jy/square-arcsec in N band, and to sub-Jansky levels by M and shortwards; reaching only 36 mJy/square-arcsec within L. Nearly six decades of twice-daily balloonsonde launches from Eureka, together with contemporaneous meteorological data plus a simple model allows characterization of background stability and extrapolation into K band. This suggests the study location has dark skies across the whole thermal infrared spectrum, typically sub-200 micro-Jy/square-arcsec at 2.4 microns. That background is comparable to South Pole, and more than an order of magnitude less than estim...

  3. Toward quantitative aerial thermal infrared thermography for energy conservation in the built environment

    Science.gov (United States)

    Allinson, David; Medjdoub, Benachir; Wilson, Robin

    2005-03-01

    The UK Home Energy Conservation Act puts a duty on local authorities to develop strategies to improve energy efficiency in all public and private sector housing in order to tackle fuel poverty and reduce carbon dioxide emissions. The City of Nottingham, UK turned to aerial Thermal InfraRed Thermography (TIRT) to try and identify households where energy savings can be made. In this paper, existing literature is reviewed to explain the limitations of aerial TIRT for energy conservation in the built environment and define the techniques required to overcome them. This includes the range of suitable meteorological conditions at the time of the survey, the use of ground truth data, the need to account for all radiation paths and losses when calculating roof surface temperature and the assumptions that must be made when calculating insulation levels. Atmospheric calibration, roof surface emissivity and sky view factor must also be determined by some means and approaches to these problems are reviewed from the wider literature. Error analysis and benchmarking are important if the technique is to be validated and these are discussed with reference to the literature. A methodology for determining the thickness of loft insulation for residential buildings in the city of Nottingham, UK using aerial TIRT data within a GIS software environment is proposed.

  4. Infrared matrix isolation study of the thermal and photochemical reactions of ozone with trimethylgallium.

    Science.gov (United States)

    Sriyarathne, H Dushanee M; Gudmundsdottir, Anna D; Ault, Bruce S

    2015-03-26

    The thermal and photochemical reactions of (CH3)3Ga and O3 have been explored using a combination of matrix isolation, infrared spectroscopy, and theoretical calculations. Experimental data using twin jet deposition and theoretical calculations demonstrate the formation of multiple product species after deposition, annealing to 35 K, and UV irradiation of the matrices. The products were identified as (CH3)2GaOCH3, (CH3)2GaCH2OH, (CH3)(CH3O)Ga(OCH3), (CH3)2GaCHO, and (CH3)Ga(OCH3)(CH2OH). Product identifications were confirmed by annealing and irradiation behavior, (18)O substitution experiments, and high level theoretical calculations. Merged jet deposition led to a number of stable late reaction products, including C2H6, CH3OH, and H2CO. A white solid film was also noted on the walls of the merged (flow reactor) region of the deposition system, likely due to the formation of Ga2O3.

  5. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder

    Directory of Open Access Journals (Sweden)

    C. Clerbaux

    2009-08-01

    Full Text Available Atmospheric remote sounding from satellites is an essential component of the observational strategy deployed to monitor atmospheric pollution and changing composition. The IASI nadir looking thermal infrared sounder onboard MetOp will provide 15 years of global scale observations for a series of key atmospheric species, with unprecedented spatial sampling and coverage. This paper gives an overview of the instrument's capability for measuring atmospheric composition in the perspective of chemistry and air quality. The assessment is made in terms of species, accuracy and vertical information. Global distributions are presented for CO, CH4, O3 (total and tropospheric, HNO3, NH3, and volcanic SO2. Local distributions of organic species measured during fire events, such as C2H4, CH3OH, HCOOH, and PAN are also shown. For each species or process, the link is made to specialized papers in this issue.

  6. Thermal Infrared Sky Background for a High-Arctic Mountain Observatory

    Science.gov (United States)

    Steinbring, Eric

    2017-01-01

    Nighttime zenith sky spectral brightness in the 3.3-20 μm wavelength region is reported for an observatory site nearby Eureka on Ellesmere Island in the Canadian High Arctic. Measurements are derived from an automated Fourier-transform spectrograph that operated there continuously over three consecutive winters. During that time, the median through the most transparent portion of the Q window was 460 {Jy} {{arcsec}}-2, falling below 32 {Jy} {{arcsec}}-2 in the N band, and to sub-Jansky levels by M and shortward, reaching only 36 {mJy} {{arcsec}}-2 within L. Nearly six decades of twice-daily balloonsonde launches from Eureka, together with contemporaneous meteorological data plus a simple model, allows characterization of background stability and extrapolation into K band. This suggests that the study location has dark skies across the whole thermal infrared spectrum, typically sub-200 μ {Jy} {{arcsec}}-2 at 2.4 μm. That background is comparable to South Pole and more than an order of magnitude less than estimates for the best temperate astronomical sites, all at much higher elevation. Considerations relevant to future facilities, including for polar transient surveys, are discussed.

  7. Modelling the correlation between the thermal Sunyaev Zel'dovich effect and the cosmic infrared background

    CERN Document Server

    Addison, Graeme E; Spergel, David N

    2012-01-01

    We show how the correlation between the thermal Sunyaev Zel'dovich effect (tSZ) from galaxy clusters and dust emission from cosmic infrared background (CIB) sources can be calculated in a halo model framework. Using recent tSZ and CIB models, we find that the size of the tSZ x CIB cross-correlation is approximately 10 per cent at 150 GHz. The contribution to the total angular power spectrum is of order -1 \\mu K^2 at ell=3000, however, this value is uncertain by a factor of two to three, primarily because of CIB source modelling uncertainties. We expect the large uncertainty in this component to degrade upper limits on the kinematic Sunyaev Zel'dovich effect (kSZ), due to similarity in the frequency dependence of the tSZ x CIB and kSZ across the frequency range probed by current Cosmic Microwave Background missions. We also find that the degree of tSZ x CIB correlation is higher for mm x sub-mm spectra than mm x mm, because more of the sub-mm CIB originates at lower redshifts (z<2), where most tSZ clusters ...

  8. Thermal impact of near-infrared laser in advanced noninvasive optical brain imaging.

    Science.gov (United States)

    Nourhashemi, Mina; Mahmoudzadeh, Mahdi; Wallois, Fabrice

    2016-01-01

    The propagation of laser light in human tissues is an important issue in functional optical imaging. We modeled the thermal effect of different laser powers with various spot sizes and different head tissue characteristics on neonatal and adult quasirealistic head models. The photothermal effect of near-infrared laser (800 nm) was investigated by numerical simulation using finite-element analysis. Our results demonstrate that the maximum temperature increase on the brain for laser irradiance between 0.127 (1 mW) and [Formula: see text] (100 mW) at a 1 mm spot size, ranged from 0.0025°C to 0.26°C and from 0.03°C to 2.85°C at depths of 15.9 and 4.9 mm in the adult and neonatal brain, respectively. Due to the shorter distance of the head layers from the neonatal head surface, the maximum temperature increase was higher in the neonatal brain than in the adult brain. Our results also show that, at constant power, spot size changes had a lesser heating effect on deeper tissues. While the constraints for safe laser irradiation to the brain are dictated by skin safety, these results can be useful to optimize laser parameters for a variety of laser applications in the brain. Moreover, combining simulation and adequate in vitro experiments could help to develop more effective optical imaging to avoid possible tissue damage.

  9. Application of near-infrared spectroscopy to predict sweetpotato starch thermal properties and noodle quality

    Institute of Scientific and Technical Information of China (English)

    LU Guo-quan; HUANG Hua-hong; ZHANG Da-peng

    2006-01-01

    Sweetpotato starch thermal properties and its noodle quality were analyzed using a rapid predictive method based on near-infrared spectroscopy (NIRS). This method was established based on a total of 93 sweetpotato genotypes with diverse genetic background. Starch samples were scanned by NIRS and analyzed for quality properties by reference methods. Results of statistical modelling indicated that NIRS was reasonably accurate in predicting gelatinization onset temperature (To) (standard error of prediction SEP=2.014 ℃, coefficient of determination RSQ=0.85), gelatinization peak temperature (Tp) (SEP=1.371 ℃,RSQ=0.89), gelatinization temperature range (Tr) (SEP=2.234 ℃, RSQ=0.86), and cooling resistance (CR) (SEP=0.528,RSQ=0.89). Gelatinization completion temperature (Tc), enthalpy of gelatinization (△H), cooling loss (CL) and swelling degree (SWD), were modelled less well with RSQ between 0.63 and 0.84. The present results suggested that the NIRS based method was sufficiently accurate and practical for routine analysis of sweetpotato starch and its noodle quality.

  10. Hot spots in energetic materials generated by infrared and ultrasound, detected by thermal imaging microscopy.

    Science.gov (United States)

    Chen, Ming-Wei; You, Sizhu; Suslick, Kenneth S; Dlott, Dana D

    2014-02-01

    We have observed and characterized hot spot formation and hot-spot ignition of energetic materials (EM), where hot spots were created by ultrasonic or long-wavelength infrared (LWIR) exposure, and were detected by high-speed thermal microscopy. The microscope had 15-20 μm spatial resolution and 8.3 ms temporal resolution. LWIR was generated by a CO2 laser (tunable near 10.6 μm or 28.3 THz) and ultrasound by a 20 kHz acoustic horn. Both methods of energy input created spatially homogeneous energy fields, allowing hot spots to develop spontaneously due to the microstructure of the sample materials. We observed formation of hot spots which grew and caused the EM to ignite. The EM studied here consisted of composite solids with 1,3,5-trinitroperhydro-1,3,5-triazine crystals and polymer binders. EM simulants based on sucrose crystals in binders were also examined. The mechanisms of hot spot generation were different with LWIR and ultrasound. With LWIR, hot spots were most efficiently generated within the EM crystals at LWIR wavelengths having longer absorption depths of ∼25 μm, suggesting that hot spot generation mechanisms involved localized absorbing defects within the crystals, LWIR focusing in the crystals or LWIR interference in the crystals. With ultrasound, hot spots were primarily generated in regions of the polymer binder immediately adjacent to crystal surfaces, rather than inside the EM crystals.

  11. Application of near-infrared spectroscopy to predict sweetpotato starch thermal properties and noodle quality*

    Science.gov (United States)

    Lu, Guo-quan; Huang, Hua-hong; Zhang, Da-peng

    2006-01-01

    Sweetpotato starch thermal properties and its noodle quality were analyzed using a rapid predictive method based on near-infrared spectroscopy (NIRS). This method was established based on a total of 93 sweetpotato genotypes with diverse genetic background. Starch samples were scanned by NIRS and analyzed for quality properties by reference methods. Results of statistical modelling indicated that NIRS was reasonably accurate in predicting gelatinization onset temperature (T o) (standard error of prediction SEP=2.014 °C, coefficient of determination RSQ=0.85), gelatinization peak temperature (T p) (SEP=1.371 °C, RSQ=0.89), gelatinization temperature range (T r) (SEP=2.234 °C, RSQ=0.86), and cooling resistance (CR) (SEP=0.528, RSQ=0.89). Gelatinization completion temperature (T c), enthalpy of gelatinization (ΔH), cooling loss (CL) and swelling degree (SWD), were modelled less well with RSQ between 0.63 and 0.84. The present results suggested that the NIRS based method was sufficiently accurate and practical for routine analysis of sweetpotato starch and its noodle quality. PMID:16691642

  12. Application methods of infrared thermal images in the health care field of traditional Chinese medicine

    Science.gov (United States)

    Li, Ziru; Zhang, Xusheng

    2008-12-01

    Infrared thermal imaging (ITI) is the potential imaging technique for the health care field of traditional Chinese medicine (TCM). Successful application demands obeying the characteristics and regularity of the ITI of human body and designing rigorous trials. First, the influence of time must be taken into account as the ITI of human body varies with time markedly. Second, relative magnitude is preferred to be the index of the image features. Third, scatter diagrams and the method of least square could present important information for evaluating the health care effect. A double-blind placebo-controlled randomized trial was undertaken to study the influences of Shengsheng capsule, one of the TCM health food with immunity adjustment function, on the ITI of human body. The results showed that the effect of Shengsheng capsule to people with weak constitution or in the period of being weak could be reflected objectively by ITI. The relative efficacy rate was 81.3% for the trial group and 30.0% for the control group, there was significant difference between the two groups (P=0.003). So the sensitivity and objectivity of ITI are of great importance to the health care field of TCM.

  13. The Critical Need for Future Mid-Resolution Thermal Infrared Satellite Sensors

    Science.gov (United States)

    Vincent, R. K.

    2006-12-01

    Eight future applications of data from mid-resolution thermal infrared satellite sensors are suggested, from least to most significant as follows: 8. Map thin ice unsafe for ice-fishing in the Great Lakes as a warning to winter fishermen; 7. Map ammonia plumes to locate large ammonia stockpiles (Homeland Security) and to monitor concentrated animal feeding operations (CAFOs); 6. Map types of surface algae in ocean, lakes, and rivers, especially those containing surface diatoms; 5. Monitor urban heat islands to determine the cooling affects of painting visibly dark surfaces with bright paints or coatings; 4. Map rock-types and soil-types of non- vegetated regions world-wide, a task which ASTER cannot complete in its current lifetime; 3. Detect surface warming of rocks under increased stress and pressure as an earthquake precursor; 2. Map pollutant gases, especially sulfur dioxide, which is important both for smokestack monitoring and volcanic eruption precursors; 1. Map methane escape into the atmosphere from methane clathrate destabilization as a key warning of imminent and drastic temperature rises in the troposphere. Each of these applications will be briefly discussed and past examples will be given for most of them.

  14. Mapping the distribution of vesicular textures on silicic lavas using the Thermal Infrared Multispectral Scanner

    Science.gov (United States)

    Ondrusek, Jaime; Christensen, Philip R.; Fink, Jonathan H.

    1993-01-01

    To investigate the effect of vesicularity on TIMS (Thermal Infrared Multispectral Scanner) imagery independent of chemical variations, we studied a large rhyolitic flow of uniform composition but textural heterogeneity. The imagery was recalibrated so that the digital number values for a lake in the scene matched a calculated ideal spectrum for water. TIMS spectra for the lava show useful differences in coarsely and finely vesicular pumice data, particularly in TIMS bands 3 and 4. Images generated by ratioing these bands accurately map out those areas known from field studies to be coarsely vesicular pumice. These texture-related emissivity variations are probably due to the larger vesicles being relatively deeper and separated by smaller septa leaving less smooth glass available to give the characteristic emission of the lava. In studies of inaccessible lava flows (as on Mars) areas of coarsely vesicular pumice must be identified and avoided before chemical variations can be interpreted. Remotely determined distributions of vesicular and glassy textures can also be related to the volatile contents and potential hazards associated with the emplacement of silicic lava flows on Earth.

  15. Using thermal infrared imagery produced by unmanned air vehicles to evaluate locations of ecological road structures

    Directory of Open Access Journals (Sweden)

    Sercan Gülci

    2016-07-01

    Full Text Available The aerial photos and satellite images are widely used and cost efficient data for monitoring and analysis of large areas in forestry activities. Nowadays, accurate and high resolution remote sensing data can be generated for large areas by using Unmanned Aerial Vehicles (UAV integrated with sensors working in various spectral bands. Besides, the UAV systems (UAVs have been used in interdisciplinary studies to produce data of large scale forested areas for desired time periods (i.e. in different seasons or different times of a day. In recent years, it has become more important to conduct studies on determination of wildlife corridors for controlling and planning of habitat fragmentation of wild animals that need vast living areas. The wildlife corridors are a very important base for the determination of a road network planning and placement of ecological road structures (passages, as well as for the assessment of special and sensitive areas such as riparian zones within the forest. It is possible to evaluate wildlife corridors for large areas within a shorter time by using data produced by ground measurements, and remote sensing and viewer systems (i.e. photo-trap, radar and etc., as well as by using remote sensing data generated by UAVs. Ecological behaviors and activities (i.e. sheltering, feeding, mating, etc. of wild animals vary spatially and temporally. Some species are active in their habitats at day time, while some species are active during the night time. One of the most effective methods for evaluation of night time animals is utilizing heat sensitive thermal cameras that can be used to collect thermal infrared images with the night vision feature. When the weather conditions are suitable for a flight, UAVs assist for determining location of corridors effectively and accurately for moving wild animals at any time of the day. Then, the most suitable locations for ecological road structures can be determined based on wildlife corridor

  16. Influence of the errors in an infrared camera on the estimation of thermal conductivity and thermal capacity of a gypsum plaster sample

    Science.gov (United States)

    Santana Magnani, Fábio; Nunes Tavares da Silva, Renata

    2013-03-01

    The present work studies how the errors of infrared cameras propagate during the estimation of thermophysical parameters. The errors in the camera were determined experimentally, and varied with both position and temperature. The thermal conductivity and thermal capacity were estimated by comparing the experimental and computational temperature evolution as a gypsum plaster sample was left to cool naturally in the air. For each study, one of the parameters was varied until the simulated temperature curve was adjusted to the experimental curve using the Levenberg-Marquardt Algorithm. We concluded that for the thermal capacity, there is a strong correlation between the error in the camera and the error of the parameter, which was not so clear in the case of the thermal conductivity. Another important conclusion is that the variation of the thermal conductivity presents a better adjustment of the curves even though the error in the estimated parameter was higher, indicating that reasonable results in the minimization process do not necessarily assure a good estimation. As a final conclusion, we stress the importance of using calibrated cameras, since in the extreme cases a mean deviation of 1.46 °C in the camera represented an error of 15% on the thermal capacity and a mean deviation of 0.81 °C in the camera represented an error of 25% on the thermal conductivity.

  17. Observations of directional thermal soaring preference in vultures

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Observations are made by the author of this report on the horizontal direction of rotation by two groups of vultures after they have achieved a circling glide path...

  18. Aircraft engine-mounted camera system for long wavelength infrared imaging of in-service thermal barrier coated turbine blades

    Science.gov (United States)

    Markham, James; Cosgrove, Joseph; Scire, James; Haldeman, Charles; Agoos, Ian

    2014-12-01

    This paper announces the implementation of a long wavelength infrared camera to obtain high-speed thermal images of an aircraft engine's in-service thermal barrier coated turbine blades. Long wavelength thermal images were captured of first-stage blades. The achieved temporal and spatial resolutions allowed for the identification of cooling-hole locations. The software and synchronization components of the system allowed for the selection of any blade on the turbine wheel, with tuning capability to image from leading edge to trailing edge. Its first application delivered calibrated thermal images as a function of turbine rotational speed at both steady state conditions and during engine transients. In advance of presenting these data for the purpose of understanding engine operation, this paper focuses on the components of the system, verification of high-speed synchronized operation, and the integration of the system with the commercial jet engine test bed.

  19. Experimental Determination of the Thermal Parameters of Carbon Fiber-Composite Materials Exposed to Fire by Infrared Imaging Pulse Thermography

    Science.gov (United States)

    Sánchez-Carballido, S.; Justo-María, C.; Meléndez, J.; Cortés, F.; López, F.; López del Cerro, F. J.

    2013-09-01

    A new procedure adapted from the classical one performed by Parker et al. has been developed to extend it to insulating plates (carbon fiber-reinforced composites). The measurement system consists of an infrared camera synchronized with a flash lamp. This method has been implemented to obtain the thermal parameters of the samples in different states of degradation by fire. The method is based on experimental-theory adjustment to obtain the intrinsic thermal parameters: thermal diffusivity, thermal conductivity, and volumetric heat capacity. In addition, the method has required development of a theoretical model accounting for the cooling losses significant for insulating plates. The results have been validated by comparison between the experimental data and those provided by a heat transfer model.

  20. A Software Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data

    Directory of Open Access Journals (Sweden)

    Benjamin Tardy

    2016-08-01

    Full Text Available Land surface temperature (LST is an important variable involved in the Earth’s surface energy and water budgets and a key component in many aspects of environmental research. The Landsat program, jointly carried out by NASA and the USGS, has been recording thermal infrared data for the past 40 years. Nevertheless, LST data products for Landsat remain unavailable. The atmospheric correction (AC method commonly used for mono-window Landsat thermal data requires detailed information concerning the vertical structure (temperature, pressure and the composition (water vapor, ozone of the atmosphere. For a given coordinate, this information is generally obtained through either radio-sounding or atmospheric model simulations and is passed to the radiative transfer model (RTM to estimate the local atmospheric correction parameters. Although this approach yields accurate LST data, results are relevant only near this given coordinate. To meet the scientific community’s demand for high-resolution LST maps, we developed a new software tool dedicated to processing Landsat thermal data. The proposed tool improves on the commonly-used AC algorithm by incorporating spatial variations occurring in the Earth’s atmosphere composition. The ERA-Interim dataset (ECMWFmeteorological organization was used to retrieve vertical atmospheric conditions, which are available at a global scale with a resolution of 0.125 degrees and a temporal resolution of 6 h. A temporal and spatial linear interpolation of meteorological variables was performed to match the acquisition dates and coordinates of the Landsat images. The atmospheric correction parameters were then estimated on the basis of this reconstructed atmospheric grid using the commercial RTMsoftware MODTRAN. The needed surface emissivity was derived from the common vegetation index NDVI, obtained from the red and near-infrared (NIR bands of the same Landsat image. This permitted an estimation of LST for the entire

  1. What happens to the initial planar instability when the thermal gradient is increased during directional solidification?

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi-Jun; Wang Jin-Cheng; Li Jun-Jie; Yang Gen-Cang; Zhou Yao-He

    2011-01-01

    The positive thermal gradient is one of the most important parameters during directional solidification.The increase of the thermal gradient usually stabilizes the planar interface in the steady state analysis.However,in the initial transient range of planar instability,the thermal gradient presents complicated effects.Time-dependent analysis shows that the increase of the thermal gradient can enhance both the stabilizing effects and the destabilizing effects on a planar interface.The incubation time first decreases and then increases with the increase of the thermal gradient.Moreover,the initial average wavelength always increases with the thermal gradient increasing,contrary to the effect of the thermal gradient on the steady cellular/dendritic spacing.This reveals the types of spacing adjustment after planar instability.

  2. Stray light test station for measuring point source transmission and thermal background of visible and infrared sensors

    Science.gov (United States)

    Peterson, Gary L.

    2008-08-01

    Breault Research Organization has designed and built a stray light test station. The station measures the point source transmission and background thermal irradiance of visible and infrared sensors. Two beam expanders, including a large 0.89 meter spherical mirror, expand and collimate light from laser sources at 0.658 and 10.6 µm. The large mirror is mounted on a gimbal to illuminate sensors at off-axis angles from 0° to 10°, and azimuths from 0° to 180°. Sensors with apertures as large as 0.3 meters can be tested with the existing facility. The large mirror is placed within a vacuum chamber so cryogenic infrared sensors can be tested in a vacuum environment. A dark cryogenic cold plate can be translated into the field of view of a sensor to measure its background thermal irradiance.

  3. Research on the Compression Algorithm of the Infrared Thermal Image Sequence Based on Differential Evolution and Double Exponential Decay Model

    Directory of Open Access Journals (Sweden)

    Jin-Yu Zhang

    2014-01-01

    Full Text Available This paper has proposed a new thermal wave image sequence compression algorithm by combining double exponential decay fitting model and differential evolution algorithm. This study benchmarked fitting compression results and precision of the proposed method was benchmarked to that of the traditional methods via experiment; it investigated the fitting compression performance under the long time series and improved model and validated the algorithm by practical thermal image sequence compression and reconstruction. The results show that the proposed algorithm is a fast and highly precise infrared image data processing method.

  4. Near infrared emission from molecule-like silver clusters confined in zeolite A assisted by thermal activation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hui, E-mail: linh8112@163.com; Imakita, Kenji; Rong Gui, Sa Chu; Fujii, Minoru, E-mail: fujii@eedept.kobe-u.ac.jp [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan)

    2014-07-07

    Strong and broad near infrared (NIR) emission peaked at ~855 nm upon optimal excitation at 342 nm has been observed from molecule-like silver clusters (MLSCs) confined in zeolite A assisted by thermal activation. To the best of our knowledge, this is the first observation of NIR emission peaked at longer than 800 nm from MLSCs confined in solid matrices. The decay time of the NIR emission is over 10 μs, which indicates that it is a spin-forbidden transition. The ~855 nm NIR emission shows strong dependence on the silver loading concentration and the thermal activation temperature.

  5. Development of a direct push based in-situ thermal conductivity measurement system

    Science.gov (United States)

    Chirla, Marian Andrei; Vienken, Thomas; Dietrich, Peter; Bumberger, Jan

    2016-04-01

    Heat pump systems are commonly utilized in Europe, for the exploitation of the shallow geothermal potential. To guarantee a sustainable use of the geothermal heat pump systems by saving resources and minimizing potential negative impacts induced by temperature changes within soil and groundwater, new geothermal exploration methods and tools are required. The knowledge of the underground thermal properties is a necessity for a correct and optimum design of borehole heat exchangers. The most important parameter that indicates the performance of the systems is thermal conductivity of the ground. Mapping the spatial variability of thermal conductivity, with high resolution in the shallow subsurface for geothermal purposes, requires a high degree of technical effort to procure adequate samples for thermal analysis. A collection of such samples from the soil can disturb sample structure, so great care must be taken during collection to avoid this. Factors such as transportation and sample storage can also influence measurement results. The use of technologies like Thermal Response Test (TRT) require complex mechanical and electrical systems for convective heat transport in the subsurface and longer monitoring times, often three days. Finally, by using thermal response tests, often only one integral value is obtained for the entire coupled subsurface with the borehole heat exchanger. The common thermal conductivity measurement systems (thermal analyzers) can perform vertical thermal conductivity logs only with the aid of sample procurement, or by integration into a drilling system. However, thermal conductivity measurements using direct push with this type of probes are not possible, due to physical and mechanical limitations. Applying vertical forces using direct push technology, in order to penetrate the shallow subsurface, can damage the probe and the sensors systems. The aim of this study is to develop a new, robust thermal conductivity measurement probe, for direct

  6. Temperature Effects on the Wind Direction Measurement of 2D Solid Thermal Wind Sensors

    Directory of Open Access Journals (Sweden)

    Bei Chen

    2015-11-01

    Full Text Available For a two-dimensional solid silicon thermal wind sensor with symmetrical structure, the wind speed and direction information can be derived from the output voltages in two orthogonal directions, i.e., the north-south and east-west. However, the output voltages in these two directions will vary linearly with the ambient temperature. Therefore, in this paper, a temperature model to study the temperature effect on the wind direction measurement has been developed. A theoretical analysis has been presented first, and then Finite Element Method (FEM simulations have been performed. It is found that due to symmetrical structure of the thermal wind sensor, the temperature effects on the output signals in the north-south and east-west directions are highly similar. As a result, the wind direction measurement of the thermal wind sensor is approximately independent of the ambient temperature. The experimental results fit the theoretical analysis and simulation results very well.

  7. Temperature Effects on the Wind Direction Measurement of 2D Solid Thermal Wind Sensors.

    Science.gov (United States)

    Chen, Bei; Zhu, Yan-Qing; Yi, Zhenxiang; Qin, Ming; Huang, Qing-An

    2015-11-30

    For a two-dimensional solid silicon thermal wind sensor with symmetrical structure, the wind speed and direction information can be derived from the output voltages in two orthogonal directions, i.e., the north-south and east-west. However, the output voltages in these two directions will vary linearly with the ambient temperature. Therefore, in this paper, a temperature model to study the temperature effect on the wind direction measurement has been developed. A theoretical analysis has been presented first, and then Finite Element Method (FEM) simulations have been performed. It is found that due to symmetrical structure of the thermal wind sensor, the temperature effects on the output signals in the north-south and east-west directions are highly similar. As a result, the wind direction measurement of the thermal wind sensor is approximately independent of the ambient temperature. The experimental results fit the theoretical analysis and simulation results very well.

  8. Diagnosis of Breast Cancer using a Combination of Genetic Algorithm and Artificial Neural Network in Medical Infrared Thermal Imaging

    Directory of Open Access Journals (Sweden)

    Hossein Ghayoumi zadeh

    2013-03-01

    Full Text Available Introduction This study is an effort to diagnose breast cancer by processing the quantitative and qualitative information obtained from medical infrared imaging. The medical infrared imaging is free from any harmful radiation and it is one of the best advantages of the proposed method. By analyzing this information, the best diagnostic parameters among the available parameters are selected and its sensitivity and precision in cancer diagnosis is improved by utilizing genetic algorithm and artificial neural network. Materials and Methods In this research, the necessary information is obtained from thermal imaging of 200 people, and 8 diagnostic parameters are extracted from these images by the research team. Then these 8 parameters are used as input of our proposed combinatorial model which is formed using artificial neural network and genetic algorithm. Results Our results have revealed that comparison of the breast areas; thermal pattern and kurtosis are the most important parameters in breast cancer diagnosis from proposed medical infrared imaging. The proposed combinatorial model with a 50% sensitivity, 75% specificity and, 70% accuracy shows good precision in cancer diagnosis. Conclusion The main goal of this article is to describe the capability of infrared imaging in preliminary diagnosis of breast cancer. This method is beneficial to patients with and without symptoms. The results indicate that the proposed combinatorial model produces optimum and efficacious parameters in comparison to other parameters and can improve the capability and power of globalizing the artificial neural network. This will help physicians in more accurate diagnosis of this type of cancer.

  9. Long-Term Volcanic Activity at Shiveluch Volcano: Nine Years of ASTER Spaceborne Thermal Infrared Observations  

    Directory of Open Access Journals (Sweden)

    Adam Carter

    2010-11-01

    Full Text Available Shiveluch (Kamchatka, Russia is the most active andesitic volcano of the Kuril-Kamchatka arc, typically exhibiting near-continual high-temperature fumarolic activity and periods of exogenous lava dome emplacement punctuated by discrete large explosive eruptions. These eruptions can produce large pyroclastic flow (PF deposits, which are common on the southern flank of the volcano. Since 2000, six explosive eruptions have occurred that generated ash fall and PF deposits. Over this same time period, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER instrument has been acquiring image-based visible/near infrared (VNIR, short wave infrared (SWIR and thermal infrared (TIR data globally, with a particular emphasis on active volcanoes. Shiveluch was selected as an ASTER target of interest early in the mission because of its frequent activity and potential impact to northern Pacific air transportation. The north Pacific ASTER archive was queried for Shiveluch data and we present results from 2000 to 2009 that documents three large PF deposits emplaced on 19 May 2001, 9 May 2004, and 28 February 2005. The long-term archive of infrared data provides an excellent record on the changing activity and eruption state of the volcano.

  10. Mapping temperature and radiant geothermal heat flux anomalies in the Yellowstone geothermal system using ASTER thermal infrared data

    Science.gov (United States)

    Vaughan, R. Greg; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.; Jaworowski, Cheryl; Heasler, Henry

    2012-01-01

    The purpose of this work was to use satellite-based thermal infrared (TIR) remote sensing data to measure, map, and monitor geothermal activity within the Yellowstone geothermal area to help meet the missions of both the U.S. Geological Survey Yellowstone Volcano Observatory and the Yellowstone National Park Geology Program. Specifically, the goals were to: 1) address the challenges of remotely characterizing the spatially and temporally dynamic thermal features in Yellowstone by using nighttime TIR data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 2) estimate the temperature, geothermal radiant emittance, and radiant geothermal heat flux (GHF) for Yellowstone’s thermal areas (both Park wide and for individual thermal areas). ASTER TIR data (90-m pixels) acquired at night during January and February, 2010, were used to estimate surface temperature, radiant emittance, and radiant GHF from all of Yellowstone’s thermal features, produce thermal anomaly maps, and update field-based maps of thermal areas. A background subtraction technique was used to isolate the geothermal component of TIR radiance from thermal radiance due to insolation. A lower limit for the Yellowstone’s total radiant GHF was established at ~2.0 GW, which is ~30-45% of the heat flux estimated through geochemical (Cl-flux) methods. Additionally, about 5 km2 was added to the geodatabase of mapped thermal areas. This work provides a framework for future satellite-based thermal monitoring at Yellowstone as well as exploration of other volcanic / geothermal systems on a global scale.

  11. Thermal effects in rapid directional solidification - Linear theory

    Science.gov (United States)

    Huntley, D. A.; Davis, S. H.

    1993-01-01

    We study the morphological instability of the planar solid/liquid interface for a unidirectionally-solidified dilute binary mixture. We use a model developed by Boettinger et al. (1985, 1986), Aziz (1982), and Jackson et al. (1980), which allows for nonequilibrium effects on the interface through velocity-dependent segregation and attachment kinetics. Two types of instabilities are found in the linear stability analysis: (1) a cellular instability, and (2) an oscillatory instability driven by disequilibrium effects. Merchant and Davis (1990) characterized these instabilities subject to the frozen-temperature approximation (FTA). The present work relaxes the FTA by including the effects of latent heat and the full temperature distribution. Thermal effects slightly postpone the onset of the cellular instability but dramatically postpone the onset of the oscillatory instability; however, the absolute-stability conditions, at which at high speed the cellular and oscillatory instabilities are suppressed, remain unchanged from the FTA.

  12. The Use of Thermal Infra-Red Imaging to Detect Delayed Onset Muscle Soreness

    Science.gov (United States)

    Al-Nakhli, Hani H.; Petrofsky, Jerrold S.; Laymon, Michael S.; Berk, Lee S.

    2012-01-01

    proteins have been documented 6,16, in addition to the high risks sometimes associated with invasive techniques. Therefore, in the current investigation, we tested a thermal infra-red (IR) imaging technique of the skin above the exercised muscle to detect the associated muscle soreness. Infra-red thermography has been used, and found to be successful in detecting different types of diseases and infections since the 1950’s17. But surprisingly, near to nothing has been done on DOMS and changes in skin temperature. The main purpose of this investigation was to examine changes in DOMS using this safe and non-invasive technique. PMID:22297829

  13. Thermophysical modeling of asteroids from WISE thermal infrared data - Significance of the shape model and the pole orientation uncertainties

    CERN Document Server

    Hanuš, Josef; Ďurech, Josef; Alí-Lagoa, Victor

    2015-01-01

    In the analysis of thermal infrared data of asteroids by means of thermophysical models (TPMs) it is a common practice to neglect the uncertainty of the shape model and the rotational state, which are taken as an input for the model. Here, we present a novel method of investigating the importance of the shape model and the pole orientation uncertainties in the thermophysical modeling - the varied shape TPM (VS-TPM). Our method uses optical photometric data to generate various shape models that map the uncertainty in the shape and the rotational state. The TPM procedure is then run for all these shape models. We apply the implementation of the classical TPM as well as our VS-TPM to the convex shape models of several asteroids together with their thermal infrared data acquired by the NASA's Wide-field Infrared Survey Explorer (WISE) and compare the results. These show that the uncertainties of the shape model and the pole orientation can be very important (e.g., for the determination of the thermal inertia) and...

  14. Size-of-source Effect in Infrared Thermometers with Direct Reading of Temperature

    Science.gov (United States)

    Manoi, A.; Saunders, P.

    2017-07-01

    The size-of-source effect (SSE) for six infrared (IR) thermometers with direct reading of temperature was measured in this work. The alternative direct method for SSE determination, where the aperture size is fixed and the measurement distance is varied, was used in this study. The experimental equivalence between the usual and the alternative direct methods is presented. The magnitudes of the SSE for different types of IR thermometers were investigated. The maxima of the SSE were found to be up to 5 %, 8 %, and 28 % for focusable, closed-focus, and open-focus thermometers, respectively. At 275°C, an SSE of 28 % corresponds to 52°C, indicating the severe effect on the accuracy of this type of IR thermometer. A method to realize the calibration conditions used by the manufacturer, in terms of aperture size and measurement distance, is discussed and validated by experimental results. This study would be of benefit to users in choosing the best IR thermometer to match their work and for calibration laboratories in selecting the technique most suitable for determining the SSE.

  15. An Unmanned Airship Thermal Infrared Remote Sensing System for Low-Altitude and High Spatial Resolution Monitoring of Urban Thermal Environments: Integration and an Experiment

    Directory of Open Access Journals (Sweden)

    Peng Ren

    2015-10-01

    Full Text Available Satellite remote sensing data that lacks spatial resolution and timeliness is of limited ability to access urban thermal environment on a micro scale. This paper presents an unmanned airship low-altitude thermal infrared remote sensing system (UALTIRSS, which is composed of an unmanned airship, an onboard control and navigation subsystem, a task subsystem, a communication subsystem, and a ground-base station. Furthermore, an experimental method and an airborne-field experiment for collecting land surface temperature (LST were designed and conducted. The LST pattern within 0.8-m spatial resolution and with root mean square error (RMSE value of 2.63 °C was achieved and analyzed in the study region. Finally, the effects of surface types on the surrounding thermal environment were analyzed by LST profiles. Results show that the high thermal resolution imagery obtained from UALTIRSS can provide more detailed thermal information, which are conducive to classify fine urban material and assess surface urban heat island (SUHI. There is a significant positive correlation between the average LST of profiles and the percent impervious surface area (ISA% with R2 around 0.917. Overall, UALTIRSS and the retrieval method were proved to be low-cost and feasible for studying micro urban thermal environments.

  16. The 1.6 micron near infrared nuclei of 3C radio galaxies: Jets, thermal emission or scattered light?

    CERN Document Server

    Baldi, R D; Capetti, A; Sparks, W; Macchetto, F D; O'Dea, C P; Axon, D J; Baum, S A; Quillen, A C

    2010-01-01

    Using HST NICMOS 2 observations we have measured 1.6-micron near infrared nuclear luminosities of 100 3CR radio galaxies with z<0.3, by modeling and subtracting the extended emission from the host galaxy. We performed a multi-wavelength statistical analysis (including optical and radio data) of the properties of the nuclei following classification of the objects into FRI and FRII, and LIG (low-ionization galaxies), HIG (high-ionization galaxies) and BLO (broad-lined objects) using the radio morphology and optical spectra, respectively. The correlations among near infrared, optical, and radio nuclear luminosity support the idea that the near infrared nuclear emission of FRIs has a non-thermal origin. Despite the difference in radio morphology, the multi-wavelength properties of FRII LIG nuclei are statistically indistinguishable from those of FRIs, an indication of a common structure of the central engine. All BLOs show an unresolved near infrared nucleus and a large near infrared excess with respect to FRI...

  17. A Useful Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data

    Science.gov (United States)

    Rivalland, Vincent; Tardy, Benjamin; Huc, Mireille; Hagolle, Olivier; Marcq, Sébastien; Boulet, Gilles

    2016-04-01

    Land Surface temperature (LST) is a critical variable for studying the energy and water budgets at the Earth surface, and is a key component of many aspects of climate research and services. The Landsat program jointly carried out by NASA and USGS has been providing thermal infrared data for 40 years, but no associated LST product has been yet routinely proposed to community. To derive LST values, radiances measured at sensor-level need to be corrected for the atmospheric absorption, the atmospheric emission and the surface emissivity effect. Until now, existing LST products have been generated with multi channel methods such as the Temperature/Emissivity Separation (TES) adapted to ASTER data or the generalized split-window algorithm adapted to MODIS multispectral data. Those approaches are ill-adapted to the Landsat mono-window data specificity. The atmospheric correction methodology usually used for Landsat data requires detailed information about the state of the atmosphere. This information may be obtained from radio-sounding or model atmospheric reanalysis and is supplied to a radiative transfer model in order to estimate atmospheric parameters for a given coordinate. In this work, we present a new automatic tool dedicated to Landsat thermal data correction which improves the common atmospheric correction methodology by introducing the spatial dimension in the process. The python tool developed during this study, named LANDARTs for LANDsat Automatic Retrieval of surface Temperature, is fully automatic and provides atmospheric corrections for a whole Landsat tile. Vertical atmospheric conditions are downloaded from the ERA Interim dataset from ECMWF meteorological organization which provides them at 0.125 degrees resolution, at a global scale and with a 6-hour-time step. The atmospheric correction parameters are estimated on the atmospheric grid using the commercial software MODTRAN, then interpolated to 30m resolution. We detail the processing steps

  18. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: organic carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2014-11-01

    Organic carbon (OC) can constitute 50% or more of the mass of atmospheric particulate matter. Typically, the organic carbon concentration is measured using thermal methods such as Thermal-Optical Reflectance (TOR) from quartz fiber filters. Here, methods are presented whereby Fourier Transform Infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE or Teflon) filters are used to accurately predict TOR OC. Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filters. To develop and test the method, FT-IR absorbance spectra are obtained from 794 samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites sampled during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to artifact-corrected TOR OC. The FTIR spectra are divided into calibration and test sets by sampling site and date which leads to precise and accurate OC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), low bias (0.02 μg m-3, all μg m-3 values based on the nominal IMPROVE sample volume of 32.8 m-3), low error (0.08 μg m-3) and low normalized error (11%). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision and accuracy to collocated TOR measurements. FT-IR spectra are also divided into calibration and test sets by OC mass and by OM / OC which reflects the organic composition of the particulate matter and is obtained from organic functional group composition; this division also leads to precise and accurate OC predictions. Low OC concentrations have higher bias and normalized error due to TOR analytical errors and artifact correction errors, not due to the range of OC mass of the samples in the calibration set. However, samples with low OC mass can be used to predict samples with high OC mass indicating that the

  19. Thermal regimes and effusive trends at Nyamuragira volcano (DRC) from MODIS infrared data

    Science.gov (United States)

    Coppola, D.; Cigolini, C.

    2013-08-01

    Nyamuragira volcano is one of the most active African volcanoes. Eruptions have been occurring every 3-4 years throughout the last century. Here, we analyse satellite infrared data, collected by MODIS sensor to estimate the volcanic radiative power (VRP, in W) and energy (VRE; in J) released during the 2001, 2002, 2004, 2006-2007, 2010 and 2011-2012 eruptions. Based on the statistical distribution of VRP measurements, we found that thermal emissions at Nyamuragira fall into three distinct radiating regimes. The high-radiating regime occurs during the emplacement of poorly insulated lava flows and characterise most of the effusive activity. The moderate-radiating regime is associated with open-vent activity (Strombolian explosions and/or lava lake activity) eventually accompanied by the emplacement of short-lived and well-insulated flows. A third radiating regime (low-radiating regime) occurs during periods, which may last weeks to months, that follow each eruption and are associated with the cooling of the effused lava flows. By applying the radiant density approach to MODIS-derived VRP we also estimated the time-averaged lava discharge rates (TADR; in m3 s-1) and we analysed the effusive trends of the above eruptions. We found that the transition between the effusive and open-vent activity typically takes place when TADR reduces to low values (<5 m3 s-1) and marks a change in the eruptive style of the volcano. Finally, we observed a clear correlation between the volume of erupted lava and its cooling time. This suggests that the average thickness of the analysed lava flows is more variable than previously thought and sheds light on the uncertainty in calculating erupted volumes assuming that lava flow areas have uniform thickness.

  20. Single band atmospheric correction tool for thermal infrared data: application to Landsat 7 ETM+

    Science.gov (United States)

    Galve, Joan Miquel; Coll, César; Sánchez, Juan Manuel; Valor, Enric; Niclòs, Raquel; Pérez-Planells, Lluís.; Doña, Carolina; Caselles, Vicente

    2016-10-01

    Atmospheric correction of Thermal Infrared (TIR) remote sensing data is a key process in order to obtain accurate land surface temperatures (LST). Single band atmospheric correction methods are used for sensors provided with a single TIR band. Which employs a radiative transfer model using atmospheric profiles over the study area as inputs to estimate the atmospheric transmittances and emitted radiances. Currently, TIR data from Landsat 5-TM, Landsat 7-ETM+ and Landsat 8-TIRS can be atmospherically corrected using the on-line Atmospheric Correction Parameter Calculator (ACPC, http://atmcorr.gsfc.nasa.gov). For specific geographical coordinates and observation time, the ACPC provides the atmospheric transmittance, and both upwelling and downwelling radiances, which are calculated from MODTRAN4 radiative transfer simulations with NCEP atmospheric profiles as inputs. Since the ACPC provides the atmospheric parameters for a single location, it does not account for their eventual variability within the full Landsat scene. The new Single Band Atmospheric Correction (SBAC) tool provides the geolocated atmospheric parameters for every pixel taking into account their altitude. SBAC defines a three-dimensional grid with 1°×1° latitude/longitude spatial resolution, corresponding to the location of NCEP profiles, and 13 altitudes from sea level to 5000 meters. These profiles are entered in MODTRAN5 to calculate the atmospheric parameters corresponding to a given pixel are obtained by weighted spatial interpolation in the horizontal dimensions and linear interpolation in the vertical dimension. In order to compare both SBAC and ACPC tools, we have compared with ground measurements the Landsat-7/ETM+ LST obtained using both tools over the Valencia ground validation site.

  1. Multiphoton dissociation and thermal unimolecular reactions induced by infrared lasers. [REAMPA code

    Energy Technology Data Exchange (ETDEWEB)

    Dai, H.L.

    1981-04-01

    Multiphoton dissociation (MPD) of ethyl chloride was studied using a tunable 3.3 ..mu..m laser to excite CH stretches. The absorbed energy increases almost linearly with fluence, while for 10 ..mu..m excitation there is substantial saturation. Much higher dissociation yields were observed for 3.3 ..mu..m excitation than for 10 ..mu..m excitation, reflecting bottlenecking in the discrete region of 10 ..mu..m excitation. The resonant nature of the excitation allows the rate equations description for transitions in the quasicontinuum and continuum to be extended to the discrete levels. Absorption cross sections are estimated from ordinary ir spectra. A set of cross sections which is constant or slowly decreasing with increasing vibrational excitation gives good fits to both absorption and dissociation yield data. The rate equations model was also used to quantitatively calculate the pressure dependence of the MPD yield of SF/sub 6/ caused by vibrational self-quenching. Between 1000-3000 cm/sup -1/ of energy is removed from SF/sub 6/ excited to approx. > 60 kcal/mole by collision with a cold SF/sub 6/ molecule at gas kinetic rate. Calculation showed the fluence dependence of dissociation varies strongly with the gas pressure. Infrared multiphoton excitation was applied to study thermal unimolecular reactions. With SiF/sub 4/ as absorbing gas for the CO/sub 2/ laser pulse, transient high temperature pulses were generated in a gas mixture. IR fluorescence from the medium reflected the decay of the temperature. The activation energy and the preexponential factor of the reactant dissociation were obtained from a phenomenological model calculation. Results are presented in detail. (WHK)

  2. Directly measuring of thermal pulse transfer in one-dimensional highly aligned carbon nanotubes.

    Science.gov (United States)

    Zhang, Guang; Liu, Changhong; Fan, Shoushan

    2013-01-01

    Using a simple and precise instrument system, we directly measured the thermo-physical properties of one-dimensional highly aligned carbon nanotubes (CNTs). A kind of CNT-based macroscopic materials named super aligned carbon nanotube (SACNT) buckypapers was measured in our experiment. We defined a new one-dimensional parameter, the "thermal transfer speed" to characterize the thermal damping mechanisms in the SACNT buckypapers. Our results indicated that the SACNT buckypapers with different densities have obviously different thermal transfer speeds. Furthermore, we found that the thermal transfer speed of high-density SACNT buckypapers may have an obvious damping factor along the CNTs aligned direction. The anisotropic thermal diffusivities of SACNT buckypapers could be calculated by the thermal transfer speeds. The thermal diffusivities obviously increase as the buckypaper-density increases. For parallel SACNT buckypapers, the thermal diffusivity could be as high as 562.2 ± 55.4 mm(2)/s. The thermal conductivities of these SACNT buckypapers were also calculated by the equation k = Cpαρ.

  3. Change detection and characterization of volcanic activity using ground based low-light and near infrared cameras to monitor incandescence and thermal signatures

    Science.gov (United States)

    Harrild, Martin; Webley, Peter; Dehn, Jonathan

    2015-04-01

    Knowledge and understanding of precursory events and thermal signatures are vital for monitoring volcanogenic processes, as activity can often range from low level lava effusion to large explosive eruptions, easily capable of ejecting ash up to aircraft cruise altitudes. Using ground based remote sensing techniques to monitor and detect this activity is essential, but often the required equipment and maintenance is expensive. Our investigation explores the use of low-light cameras to image volcanic activity in the visible to near infrared (NIR) portion of the electromagnetic spectrum. These cameras are ideal for monitoring as they are cheap, consume little power, are easily replaced and can provide near real-time data. We focus here on the early detection of volcanic activity, using automated scripts, that capture streaming online webcam imagery and evaluate image pixel brightness values to determine relative changes and flag increases in activity. The script is written in Python, an open source programming language, to reduce the overall cost to potential consumers and increase the application of these tools across the volcanological community. In addition, by performing laboratory tests to determine the spectral response of these cameras, a direct comparison of collocated low-light and thermal infrared cameras has allowed approximate eruption temperatures and effusion rates to be determined from pixel brightness. The results of a field campaign in June, 2013 to Stromboli volcano, Italy, are also presented here. Future field campaigns to Latin America will include collaborations with INSIVUMEH in Guatemala, to apply our techniques to Fuego and Santiaguito volcanoes.

  4. In-Flight Validation of Mid and Thermal Infrared Remotely Sensed Data Using the Lake Tahoe and Salton Sea Automated Validation Sites

    Science.gov (United States)

    Hook, Simon J.

    2008-01-01

    The presentation includes an introduction, Lake Tahoe site layout and measurements, Salton Sea site layout and measurements, field instrument calibration and cross-calculations, data reduction methodology and error budgets, and example results for MODIS. Summary and conclusions are: 1) Lake Tahoe CA/NV automated validation site was established in 1999 to assess radiometric accuracy of satellite and airborne mid and thermal infrared data and products. Water surface temperatures range from 4-25C.2) Salton Sea CA automated validation site was established in 2008 to broaden range of available water surface temperatures and atmospheric water vapor test cases. Water surface temperatures range from 15-35C. 3) Sites provide all information necessary for validation every 2 mins (bulk temperature, skin temperature, air temperature, wind speed, wind direction, net radiation, relative humidity). 4) Sites have been used to validate mid and thermal infrared data and products from: ASTER, AATSR, ATSR2, MODIS-Terra, MODIS-Aqua, Landsat 5, Landsat 7, MTI, TES, MASTER, MAS. 5) Approximately 10 years of data available to help validate AVHRR.

  5. Unimolecular thermal decomposition of phenol and d5-phenol: Direct observation of cyclopentadiene formation via cyclohexadienone

    Science.gov (United States)

    Scheer, Adam M.; Mukarakate, Calvin; Robichaud, David J.; Nimlos, Mark R.; Carstensen, Hans-Heinrich; Barney Ellison, G.

    2012-01-01

    The pyrolyses of phenol and d5-phenol (C6H5OH and C6D5OH) have been studied using a high temperature, microtubular (μtubular) SiC reactor. Product detection is via both photon ionization (10.487 eV) time-of-flight mass spectrometry and matrix isolation infrared spectroscopy. Gas exiting the heated reactor (375 K-1575 K) is subject to a free expansion after a residence time in the μtubular reactor of approximately 50-100 μs. The expansion from the reactor into vacuum rapidly cools the gas mixture and allows the detection of radicals and other highly reactive intermediates. We find that the initial decomposition steps at the onset of phenol pyrolysis are enol/keto tautomerization to form cyclohexadienone followed by decarbonylation to produce cyclopentadiene; C6H5OH → c-C6H6 = O → c-C5H6 + CO. The cyclopentadiene loses a H atom to generate the cyclopentadienyl radical which further decomposes to acetylene and propargyl radical; c-C5H6 → c-C5H5 + H → HC≡CH + HCCCH2. At higher temperatures, hydrogen loss from the PhO-H group to form phenoxy radical followed by CO ejection to generate the cyclopentadienyl radical likely contributes to the product distribution; C6H5O-H → C6H5O + H → c-C5H5 + CO. The direct decarbonylation reaction remains an important channel in the thermal decomposition mechanisms of the dihydroxybenzenes. Both catechol (o-HO-C6H4-OH) and hydroquinone (p-HO-C6H4-OH) are shown to undergo decarbonylation at the onset of pyrolysis to form hydroxycyclopentadiene. In the case of catechol, we observe that water loss is also an important decomposition channel at the onset of pyrolysis.

  6. A Mars Analog for Wet-Based Glacial Alteration of Volcanic Terrains: Thermal Infrared Remote Sensing at Three Sisters, Oregon, U.S.A.

    Science.gov (United States)

    Rutledge, A. M.; Scudder, N. A.; Horgan, B.; Rampe, E. B.

    2016-09-01

    This study characterizes wet-based glacial weathering products at a volcanic Mars analog site using thermal infrared remote sensing. Decorrelation stretches are used to examine the geographic relationships between compositional units.

  7. Temperature Effects on the Wind Direction Measurement of 2D Solid Thermal Wind Sensors

    OpenAIRE

    Bei Chen; Yan-Qing Zhu; Zhenxiang Yi; Ming Qin; Qing-An Huang

    2015-01-01

    For a two-dimensional solid silicon thermal wind sensor with symmetrical structure, the wind speed and direction information can be derived from the output voltages in two orthogonal directions, i.e., the north-south and east-west. However, the output voltages in these two directions will vary linearly with the ambient temperature. Therefore, in this paper, a temperature model to study the temperature effect on the wind direction measurement has been developed. A theoretical analysis has been...

  8. Characterization of the 3D distribution of ozone and coarse aerosols in the Troposphere using IASI thermal infrared satellite observations

    Science.gov (United States)

    Cuesta, J.; Eremenko, M.; Dufour, G.; Hoepfner, M.; Orphal, J.

    2012-04-01

    Both tropospheric ozone and aerosols significantly affect air quality in megacities during pollution events. Moreover, living conditions may be seriously aggravated when such agglomerations are affected by wildfires (e.g. Russian fires over Moscow in 2010), which produce smoke and pollutant precursors, or even during dense desert dust outbreaks (e.g. recurrently over Beijing or Cairo). Moreover, since aerosols diffuse and absorb solar radiation, they have a direct impact on the photochemical production of tropospheric ozone. These interactions during extreme events of high aerosol loads are nowadays poorly known, even though they may significantly affect the tropospheric photochemical equilibrium. In order to address these issues, we have developed a new retrieval technique to jointly characterize the 3D distribution of both tropospheric ozone and coarse aerosols, using spaceborne observations of the infrared spectrometer IASI onboard MetOp-A satellite. Our methodology is based on the inversion of Earth radiance spectra in the atmospheric window from 8 to 12 μm measured by IASI and a «Tikhonov-Philipps»-type regularisation with constraints varying in altitude (as in [Eremenko et al., 2008, GRL; Dufour et al., 2010 ACP]) to simultaneously retrieve ozone profiles, aerosol optical depths at 10 μm and aerosol layer effective heights. Such joint retrieval prevents biases in the ozone profile retrieval during high aerosol load conditions. Aerosol retrievals using thermal infrared radiances mainly account for desert dust and the coarse fraction of biomass burning aerosols. We use radiances from 15 micro-windows within the 8-12 μm atmospheric window, which were carefully chosen (following [Worden et al., 2006 JGR]) for extracting the maximum information on aerosols and ozone and minimizing contamination by other species. We use the radiative transfer code KOPRA, including line-by-line calculations of gas absorption and single scattering for aerosols [Hoepfner et al

  9. A direct differential method for measuring thermal conductivity of thin films

    Science.gov (United States)

    Zeng, Yuqiang; Marconnet, Amy

    2017-04-01

    Over the past two decades, significant progress in the thermal metrology for thin films and wires has enabled new understanding of the thermal conductivity of nanostructures. However, a large variation in the measured thermal conductivity of similar nanostructured samples has been observed. In addition to potential differences from sample-to-sample, measurement uncertainty contributes to the observed variation in measured properties. Many now standard micro/nanoscale thermal measurement techniques require extensive calibration of the properties of the substrate and support structures and this calibration contributes to uncertainty. Within this work, we develop a simple, direct differential electrothermal measurement of thermal conductivity of micro/nanoscale sample films by extending conventional steady state electrothermal approaches. Specifically, we leverage a cross-beam measurement structure consisting of a suspended, composite heater beam (metal on silicon) with the sample structure (silicon) extending at a right angle from the center of the heater beam, in a configuration similar to the T-type measurements used for fibers and nanotubes. To accurately resolve the thermal conductivity of the sample, the steady-state Joule heating response of the cross-beam structure is measured. Then, the sample is detached from the heater beam with a Focused Ion Beam (FIB) tool enabling direct characterization of the composite heater beam thermal properties. The differential measurement of the structure before and after FIB cut enables direct extraction of the sample thermal conductivity. The effectiveness of this differential measurement technique is demonstrated by measuring thermal conductivity of a 200 nm silicon layer. Additionally, this new method enables investigation of the accuracy of conventional approaches for extracting sample thermal conductivity with the composite beam structure and conventional comparative approaches. The results highlight the benefits of the

  10. Study of variations in soil water potential with the incorporation of charcoal and carbon nanotubes through infrared thermal images

    Science.gov (United States)

    Villaseñor-Mora, Carlos; González-Vega, Arturo; Hernández, Víctor H.

    2016-09-01

    Different concentrations of charcoal and carbon nanotubes were incorporated in different mix types of soil samples, these were previously chemically characterized, and physically grain standardized, then the water potential was measured by traditional procedures, which need to consider the water composition and the soil salinity to achieve an accurate measurement, and by infrared thermal images where the water potential was correlated with the superficial emissivity. It was observed that the organic incorporation increases the water potential but it depends of soil gradation, a biggest increment of the water potential was observed in a poorly graded soil than that observed in a well graded soil; the nanotubes in low concentrations do not present considerable changes in the water potential, and in high concentrations the cost is not profitable. It was analyzed the minimum concentration changes of charcoal and nanotubes in the soil that can be measured with thermal emissivity, and the deepness at which the infrared thermal images can measure, also it was studied the rate of water drain in the different soils, and the ability of follow this with thermal sequence of images.

  11. In situ characterization of thermal conductivities of irradiated solids by using ion beam heating and infrared imaging

    Science.gov (United States)

    Mondrik, Nicholas; Gigax, Jonathan; Wang, Xuemei; Price, Lloyd; Wei, Chaochen; Shao, Lin

    2014-08-01

    We propose a method to characterize thermal properties of ion irradiated materials. This method uses an ion beam as a heating source to create a hot spot on sample surface. Infrared imaging is used as a surface temperature mapping tool to record hot zone spreading. Since ion energy, ion flux, and ion penetration depth can be precisely controlled, the beam heating data is highly reliable and repeatable. Using a high speed infrared camera to capture lateral spreading of the hot zone, thermal diffusivity can be readily extracted. The proposed method has advantages in studying radiation induced thermal property changes, for which radiation damage can be introduced by using an irradiating beam over a relatively large beam spot and beam heating can be introduced by using a focused testing beam over a relatively small beam spot. These two beams can be switched without breaking vacuum. Thus thermal conductivity changes can be characterized in situ with ion irradiation. The feasibility of the technique is demonstrated on a single crystal quartz substrate.

  12. Photogenerating Silver Nanoparticles and Polymer Nanocomposites by Direct Activation in the Near Infrared

    Directory of Open Access Journals (Sweden)

    Lavinia Balan

    2012-01-01

    Full Text Available This work reports on an improvement of the photochemically assisted synthesis of silver nanoparticles by direct photoreduction of AgNO3 with a laser source emitting in the near infrared range (NIR. For this, polymethine dyes were used as the photoactive agents. Both the effects of central chain structure and activation intensity were investigated. The reduction kinetics was followed up by UV-Vis spectroscopy, and the particles size was evaluated by transmission electron microscopy. The results showed that light intensity affects both the average size and size distribution of Ag nanoparticles generated through this process. The particles can also be generated in situ in a photopolymerizable formulation so that metal/polymer nanocomposites become available through a one-step photoassisted process on the basis of NIR activation. The process described herein is very fast (seconds to a few minutes, and it readily lends itself to automatization for mass production of micro-optical elements implemented directly onto integrated NIR sources.

  13. An intercomparison of available soil moisture estimates from thermal infrared and passive microwave remote sensing and land surface modeling

    Science.gov (United States)

    Hain, Christopher R.; Crow, Wade T.; Mecikalski, John R.; Anderson, Martha C.; Holmes, Thomas

    2011-08-01

    Remotely sensed soil moisture studies have mainly focused on retrievals using active and passive microwave (MW) sensors, which provide measurements that are directly related to soil moisture (SM). MW sensors have obvious advantages such as the ability to retrieve through nonprecipitating cloud cover which provides shorter repeat cycles. However, MW sensors offer coarse spatial resolution and suffer from reduced retrieval skill over moderate to dense vegetation. A unique avenue for filling these information gaps is to exploit the retrieval of SM from thermal infrared (TIR) observations, which can provide SM information under vegetation cover and at significantly higher resolutions than MW. Previously, an intercomparison of TIR-based and MW-based SM has not been investigated in the literature. Here a series of analyses are proposed to study relationships between SM products during a multiyear period (2003-2008) from a passive MW retrieval (AMSR-E), a TIR based model (ALEXI), and a land surface model (Noah) over the continental United States. The three analyses used in this study include (1) a spatial anomaly correlation analysis, (2) a temporal correlation analysis, and (3) a triple collocation error estimation technique. In general, the intercomparison shows that the TIR and MW methods provide complementary information about the current SM state. TIR can provide SM information over moderate to dense vegetation, a large information gap in current MW methods, while serving as an additional independent source of SM information over low to moderate vegetation. The complementary nature of SM information from MW and TIR sensors implies a potential for integration within an advanced SM data assimilation system.

  14. Applicability of the Thermal Infrared Spectral Region for the Prediction of Soil Properties Across Semi-Arid Agricultural Landscapes

    Directory of Open Access Journals (Sweden)

    Sabine Chabrillat

    2012-10-01

    Full Text Available In this study we tested the feasibility of the thermal infrared (TIR wavelength region (within the atmospheric window between 8 and 11.5 μm together with the traditional solar reflective wavelengths for quantifying soil properties for coarse-textured soils from the Australian wheat belt region. These soils have very narrow ranges of texture and organic carbon contents. Soil surface spectral signatures were acquired in the laboratory, using a directional emissivity spectrometer (μFTIR in the TIR, as well as a bidirectional reflectance spectrometer (ASD FieldSpec for the solar reflective wavelengths (0.4–2.5 μm. Soil properties were predicted using multivariate analysis techniques (partial least square regression. The spectra were resampled to operational imaging spectroscopy sensor characteristics (HyMAP and TASI-600. To assess the relevance of specific wavelength regions in the prediction, the drivers of the PLS models were interpreted with respect to the spectral characteristics of the soils’ chemical and physical composition. The study revealed the potential of the TIR (for clay: R2 = 0.93, RMSEP = 0.66% and for sand: R2 = 0.93, RMSEP = 0.82% and its combination with the solar reflective region (for organic carbon: R2 = 0.95, RMSEP = 0.04% for retrieving soil properties in typical soils of semi-arid regions. The models’ drivers confirmed the opto-physical base of most of the soils’ constituents (clay minerals, silicates, iron oxides, and emphasizes the TIR’s advantage for soils with compositions dominated by quartz and kaolinite.

  15. Synergetic use of SAR and Thermal Infrared data to study the physical properties of the lunar surface

    Science.gov (United States)

    Saran, Sriram; Das, Anup; Mohan, Shiv; Chakraborty, Manab

    2014-11-01

    The surface layer of the Moon preserves vital evidences of lunar impact and cratering processes due to the absence of any Aeolian and fluvial erosion processes acting on it. By examining these evidences, which are recorded throughout the evolutionary history of the Moon, several basic aspects of lunar science can be understood, and this has direct relevance to the surfaces of other airless bodies within the solar system. In this study, rock abundance data obtained from Thermal Infrared (TIR) observations and radar Circular Polarization Ratio (CPR) data sets obtained from polarimetric SAR observations were correlated at some sample sites on the lunar surface. Preliminary results yielded qualitative and quantitative estimates for surface rock abundances. Except at distal ejecta deposits of young, bright craters a general correlation was observed between the two datasets. Mixed results were observed from the impact melt flows where the situation is complex due to the possible subsurface-volume and volume-subsurface interactions of the radar waves. But the flow features were clearly separated from the interior and ejecta regions of their parent craters in terms of CPR and rock abundances. The extent and distributions of pyroclastic deposits and dark haloed regions could not be distinctly identified at the resolution of datasets utilized. Near Gerasimovich D crater, the Diviner Radiometer has provided the first TIR observations of a newly discovered impact melt flow which was not visible in the optical imagery. This facilitated the first ever quantitative comparisons of the radar CPR and rock abundance values near such a region. Also, significant differences in spatial patterns between the radar and rock concentration data sets were observed, owing to the differences in the sensitivity of the two observations.

  16. Thermal radiative and thermodynamic properties of solid and liquid uranium and plutonium carbides in the visible-near infrared range

    CERN Document Server

    Fisenko, Anatoliy I

    2016-01-01

    The knowledge of thermal radiative and thermodynamic properties of uranium and plutonium carbides under extreme conditions is essential for designing a new metallic fuel materials for next generation of a nuclear reactor. The present work is devoted to the study of the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides at their melting/freezing temperatures. The Stefan-Boltzmann law, total energy density, number density of photons, Helmholtz free energy density, internal energy density, enthalpy density, entropy density, heat capacity at constant volume, pressure, and normal total emissivity are calculated using experimental data for the frequency dependence of the normal spectral emissivity of liquid and solid uranium and plutonium carbides in the visible-near infrared range. It is shown that the thermal radiative and thermodynamic functions of uranium carbide have a slight difference during liquid-to-solid transition. Unlike UC, such a difference between these ...

  17. Direct contact droplet heat exchangers for thermal management in space

    Science.gov (United States)

    Bruckner, A. P.; Hertzberg, A.

    1982-01-01

    A liquid droplet heat exchanger for space applications is described which transfers heat between a gas and a liquid metal dispersed into droplets. The ability of the droplet heat exchanger to transfer heat between two media in direct contact over a wide temperature range circumvents many of the material limitations of conventional tube-type heat exchangers and does away with complicated plumbing systems and their tendency toward single point failure. Droplet heat exchangers offer large surface to volume ratios in a compact geometry, very low gas pressure drop, and high effectiveness. The application of the droplet heat exchanger in a high temperature Brayton cycle is discussed to illustrate its performance and operational characteristics.

  18. Satellite Thermal Infrared Earthquake Precursor to the Wenchuan Ms 8.0 Earthquake in Sichuan, China, and its Analysis on Geo-dynamics

    Institute of Scientific and Technical Information of China (English)

    WEI Lejun; GUO Jianfeng; LIU Jianhua; LU Zhenquan; LI Haibing; CAI Hui

    2009-01-01

    Based on an interpretation and study of the satellite remote-sensing images of FY-2C thermal infrared 1st wave band (10.3-11.3 μm) designed in China, the authors found that there existed obvious and isolated satellite thermal infrared anomalies before the 5.12 Wenchuan Ms 8.0 Earthquake. These anomalies had the following characteristics: (1) The precursor appeared rather early: on March 18, 2008, I.e., 55 days before the earthquake, thermal infrared anomalies began to occur; (2) The anomalies experienced quite many and complex evolutionary stages: the satellite thermal infrared anomalies might be divided into five stages, whose manifestations were somewhat different from each other. The existence of so many anomaly stages was probably observed for the first time in numerous cases of satellite thermal infrared research on earthquakes; (3) Each stage lasted quite a long time, with the longest one spanning 13 days; (4) An evident geothermal anomaly gradient was distributed along the Longmen seismic fracture zone, and such a phenomenon might also be discovered for the first time in satellite thermal infrared earthquake research. This discovery is therefore of great guiding and instructive significance in the study of the earthquake occurrence itself and the trend of the post-earthquake phenomena.

  19. Temperature Distribution and Thermal Deformation of the Crystallization Roller Based on the Direct Thermal-Structural Coupling Method

    Science.gov (United States)

    Pan, Liping; He, Zhu; Li, Baokuan; Zhou, Kun; Sun, Ke

    2017-03-01

    The temperature distribution and the thermal deformation of the crystallization roller have a significant effect on the forming process of the thin steel strip. Finite element analysis has been used to simulate the temperature distribution and the thermal deformation in a crystallization roller through the direct thermal-structural coupling analysis method. Various parameters, such as different rotational velocities, diverse locations of cooling water pipes, and typical velocities of cooling water have been systematically investigated. It is found that the temperature and the equivalent stress of the outer surface reach the steady state after 30 s of rotations, and they are influenced remarkably by the factors of rotational velocity and cooling water pipe depth. Meanwhile, the radial displacement approaches the steady state after 300 s of revolutions and is significantly affected by the cooling water velocity.

  20. Temperature Distribution and Thermal Deformation of the Crystallization Roller Based on the Direct Thermal-Structural Coupling Method

    Science.gov (United States)

    Pan, Liping; He, Zhu; Li, Baokuan; Zhou, Kun; Sun, Ke

    2016-12-01

    The temperature distribution and the thermal deformation of the crystallization roller have a significant effect on the forming process of the thin steel strip. Finite element analysis has been used to simulate the temperature distribution and the thermal deformation in a crystallization roller through the direct thermal-structural coupling analysis method. Various parameters, such as different rotational velocities, diverse locations of cooling water pipes, and typical velocities of cooling water have been systematically investigated. It is found that the temperature and the equivalent stress of the outer surface reach the steady state after 30 s of rotations, and they are influenced remarkably by the factors of rotational velocity and cooling water pipe depth. Meanwhile, the radial displacement approaches the steady state after 300 s of revolutions and is significantly affected by the cooling water velocity.

  1. INFRARED EMISSION BY DUST AROUND lambda BOOTIS STARS : DEBRIS DISKS OR THERMALLY EMITTING NEBULAE?

    NARCIS (Netherlands)

    Martinez-Galarza, J. R.; Kamp, I.; Su, K. Y. L.; Gaspar, A.; Rieke, G.; Mamajek, E. E.

    2009-01-01

    We present a model that describes stellar infrared excesses due to heating of the interstellar (IS) dust by a hot star passing through a diffuse IS cloud. This model is applied to six. Bootis stars with infrared excesses. Plausible values for the IS medium (ISM) density and relative velocity between

  2. The impact of subcellular location on the near infrared-mediated thermal ablation of cells by targeted carbon nanotubes

    Science.gov (United States)

    Murali, Vasanth S.; Wang, Ruhung; Mikoryak, Carole A.; Pantano, Paul; Draper, Rockford K.

    2016-10-01

    Single-walled carbon nanotubes (SWNTs) are used in the near infrared (NIR)-mediated thermal ablation of tumor cells because they efficiently convert absorbed NIR light into heat. Despite the therapeutic potential of SWNTs, there have been no published studies that directly quantify how many SWNTs need be associated with a cell to achieve a desired efficiency of killing, or what is the most efficient subcellular location of SWNTs for killing cells. Herein we measured dose response curves for the efficiency of killing correlated to the measured amounts of folate-targeted SWNTs that were either on the surface or within the vacuolar compartment of normal rat kidney cells. Folate-targeted SWNTs on the cell surface were measured after different concentrations of SWNTs in medium were incubated with cells for 30 min at 4 °C. Folate-targeted SWNTs within the vacuolar compartments were measured after cells were incubated with different concentrations of SWNTs in medium for 6 h at 37 °C. It was observed that a SWNT load of ∼13 pg/cell when internalized was sufficient to kill 90% of the cells under standardized conditions of NIR light irradiation. When ∼3.5 pg/cell of SWNTs were internalized within the endosomal/lysosomal compartments, ∼50% of the cells were killed, but when ∼3.5 pg/cell of SWNTs were confined to the cell surface only ∼5% of the cells were killed under the same NIR irradiation conditions. The SWNT subcellular locations were verified using Raman imaging of SWNTs merged with fluorescence images of known subcellular markers. To our knowledge, this is the first time that SWNT amounts at known subcellular locations have been correlated with a dose-normalized efficacy of thermal ablation and the results support the idea that SWNTs confined to the plasma membrane are not as effective in NIR-mediated cell killing as an equivalent amount of SWNTs when internalized within the endosomal/lysosomal vesicles.

  3. Characteristics of puffing activity revealed by ground-based, thermal infrared imaging: the example of Stromboli Volcano (Italy)

    Science.gov (United States)

    Gaudin, Damien; Taddeucci, Jacopo; Scarlato, Piergiorgio; Harris, Andrew; Bombrun, Maxime; Del Bello, Elisabetta; Ricci, Tullio

    2017-03-01

    Puffing, i.e., the frequent (1 s ca.) release of small (0.1-10 m3), over-pressurized pockets of magmatic gases, is a typical feature of open-conduit basaltic volcanoes worldwide. Despite its non-trivial contribution to the degassing budget of these volcanoes and its recognized role in volcano monitoring, detection and metering tools for puffing are still limited. Taking advantage of the recent developments in high-speed thermal infrared imaging, we developed a specific processing algorithm to detect the emission of individual puffs and measure their duration, size, volume, and apparent temperature at the vent. As a test case, we applied our method at Stromboli Volcano (Italy), studying "snapshots" of 1 min collected in the years 2012, 2013, and 2014 at several vents. In all 3 years, puffing occurred simultaneously at three or more vents with variable features. At the scale of the single vent, a direct relationship links puff temperature and radius, suggesting that the apparent temperature is mostly a function of puff thickness, while the real gas temperature is constant for all puffs. Once released in the atmosphere, puffs dissipate in less than 20 m. On a broader scale, puffing activity is highly variable from vent to vent and year to year, with a link between average frequency, temperature, and volume from 136 puffs per minute, 600 K above ambient temperature, 0.1 m3, and the occasional ejection of pyroclasts to 20 puffs per minute, 3 K above ambient, 20 m3, and no pyroclasts. Frequent, small, hot puffs occur at random intervals, while as the frequency decreases and size increases, an increasingly longer minimum interval between puffs, up to 0.5 s, appears. These less frequent and smaller puffs also display a positive correlation between puff volume and the delay from the previous puff. Our results suggest an important role of shallow bubble coalescence in controlling puffing activity. The smaller and more frequent puffing at "hotter" vents is in agreement with

  4. Photogeologic and thermal infrared reconnaissance surveys of the Los Negritos-Ixtlan de los Hervores geothermal area, Michoacan, Mexico

    Science.gov (United States)

    Gomez, Valle R.; Friedman, J.D.; Gawarecki, S.J.; Banwell, C.J.

    1970-01-01

    New techniques, involving interpretation of panchromatic, ektachrome and ektachrome infrared aerographic photogaphs and thermographic infrared imagery recording emission from the earth's surface in middle and far infrared wavelengths (3-5??m and 8-14??m), are being introduced in geothermal investigations in Mexico to identify outstanding structural and geologic features in a rapid and economical manner. The object of this work is to evaluate the new airborne infrared techniques and equipment as a complement to the data obtained from panchromatic aerial photography. This project is part of the Mexican remote sensing program of natural resources carried out under the auspices of the Comision Nacional del Espacio Exterior and in which the Research Institute (Instituto de Investigaciones de la Industria Electrica) is actively participating. The present study was made cooperatively with the U.S. National Aeronautics and Space Administration and the U.S. Geological Survey. The Los Negritos-Ixtlan de los Hervores geothermal fields are located east of Lake Chapala at the intersection of the Sierra Madre occidental and the west-central segment of the neovolcanic axis of Mexico. The two principal zones of hydrothermal activity occur in a tectonic trench filled with lake sediments of the Quaternary intercalated with Quaternary and Holocene volcanic rocks and characterized by an intricate system of block-fault tectonics, part of the Chapala-Acambay tectonic system, along which there has been volcanic activity in modern time. Surface manifestations of geothermal activity consist of relatively high heat flow and hot springs, small geysers and small steam vents aligned along an E-W axis at Ixtlan, possibly at the intersection of major fault trends and mud volcanoes and hot pools aligned NE-SW at Los Negritos. More than 20 exit points of thermal waters are shown on infrared imagery to be aligned along an extension of the Ixtlan fault between Ixtlan and El Salitre. A narrow zone of

  5. Thermal performance of direct contact heat exchangers for mixed hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, L. Jr.; Coswami, D.Y.; Demuth, O.J.; Mines, G.

    1985-01-01

    This paper describes a physical and a mathematical model for evaluating the tray efficiencies for a direct contact heat exchanger (DCHX). The model is then used to determine the efficiencies for tests conducted on a 60kW sieve tray DCHX as heat is transferred from a geofluid (brine) to a working fluid (mixed hydrocarbons). It is assumed that there are three distinct regions in the column based on the state of the working fluid, as follows: Region I - Preheating with no vaporization; Region II - Preheating with moderate vaporization; and Region III - Major vaporization. The boundaries of these regions can be determined from the experimental data. In the model, mass balance and energy balance is written for a tray ''N'' in each of these regions. Finally, the ''tray efficiency'' or ''heat transfer'' effectiveness of the tray is calculated based on the definition that it is the ratio of the actual heat transfer to the maximum possible, thermodynamically.

  6. Feature Selection for Intelligent Firefighting Robot Classification of Fire, Smoke, and Thermal Reflections Using Thermal Infrared Images

    National Research Council Canada - National Science Library

    Kim, Jong-Hwan; Jo, Seongsik; Lattimer, Brian Y

    2016-01-01

    ... tasks [1-5]. One task is locating a fire inside of a structure outside the robot field of view (FOV). Fire, smoke, and their thermal reflections can be clues to determine a heading that will ul...

  7. Monitoring the Impacts of Severe Drought on Southern California Chaparral Species using Hyperspectral and Thermal Infrared Imagery

    Directory of Open Access Journals (Sweden)

    Austin R. Coates

    2015-10-01

    Full Text Available Airborne hyperspectral and thermal infrared imagery acquired in 2013 and 2014, the second and third years of a severe drought in California, were used to assess drought impacts on dominant plant species. A relative green vegetation fraction (RGVF calculated from 2013–2014 Airborne Visible Infrared Imaging Spectrometer (AVIRIS data using linear spectral unmixing revealed seasonal and multi-year changes relative to a pre-drought 2011 reference AVIRIS image. Deeply rooted tree species and tree species found in mesic areas showed the least change in RGVF. Coastal sage scrub species demonstrated the highest seasonal variability, as well as a longer-term decline in RGVF. Ceanothus species were apparently least well-adapted to long-term drought among chaparral species, showing persistent declines in RGVF over 2013 and 2014. Declining RGVF was associated with higher land surface temperature retrieved from MODIS-ASTER Airborne Simulator (MASTER data. Combined collection of hyperspectral and thermal infrared imagery may offer new opportunities for mapping and monitoring drought impacts on ecosystems.

  8. Calibration of a thin metal foil for infrared imaging video bolometer to estimate the spatial variation of thermal diffusivity using a photo-thermal technique.

    Science.gov (United States)

    Pandya, Shwetang N; Peterson, Byron J; Sano, Ryuichi; Mukai, Kiyofumi; Drapiko, Evgeny A; Alekseyev, Andrey G; Akiyama, Tsuyoshi; Itomi, Muneji; Watanabe, Takashi

    2014-05-01

    A thin metal foil is used as a broad band radiation absorber for the InfraRed imaging Video Bolometer (IRVB), which is a vital diagnostic for studying three-dimensional radiation structures from high temperature plasmas in the Large Helical Device. The two-dimensional (2D) heat diffusion equation of the foil needs to be solved numerically to estimate the radiation falling on the foil through a pinhole geometry. The thermal, physical, and optical properties of the metal foil are among the inputs to the code besides the spatiotemporal variation of temperature, for reliable estimation of the exhaust power from the plasma illuminating the foil. The foil being very thin and of considerable size, non-uniformities in these properties need to be determined by suitable calibration procedures. The graphite spray used for increasing the surface emissivity also contributes to a change in the thermal properties. This paper discusses the application of the thermographic technique for determining the spatial variation of the effective in-plane thermal diffusivity of the thin metal foil and graphite composite. The paper also discusses the advantages of this technique in the light of limitations and drawbacks presented by other calibration techniques being practiced currently. The technique is initially applied to a material of known thickness and thermal properties for validation and finally to thin foils of gold and platinum both with two different thicknesses. It is observed that the effect of the graphite layer on the estimation of the thermal diffusivity becomes more pronounced for thinner foils and the measured values are approximately 2.5-3 times lower than the literature values. It is also observed that the percentage reduction in thermal diffusivity due to the coating is lower for high thermal diffusivity materials such as gold. This fact may also explain, albeit partially, the higher sensitivity of the platinum foil as compared to gold.

  9. Developing a dual assimilation approach for thermal infrared and passive microwave soil moisture retrievals

    Science.gov (United States)

    Hain, Christopher Ryan

    Soil moisture plays a vital role in the partitioning of sensible and latent heat fluxes in the surface energy budget and the lack of a dense spatial and temporal network of ground-based observations provides a challenge to the initialization of the true soil moisture state in numerical weather prediction simulations. The retrieval of soil moisture using observations from both satellite-based thermal-infrared (TIR) and passive microwave (PM) sensors has been developed (Anderson et al., 2007; Hain et al., 2009; Jackson, 1993; Njoku et al., 2003). The ability of the TIR and microwave observations to diagnose soil moisture conditions within different layers of the soil profile provides an opportunity to use each in a synergistic data assimilation approach towards the goal of diagnosing the true soil moisture state from surface to root-zone. TIR and PM retrievals of soil moisture are compared to soil moisture estimates provided by a retrospective Land Information System (LIS) simulation using the NOAH LSM during the time period of 2003--2008. The TIR-based soil moisture product is provided by a retrieval of soil moisture associated with surface flux estimates from the Atmosphere-Land-Exchange-Inversion (ALEXI) model (Anderson et al., 1997; Mecikalski et al., 1999; Hain et al., 2009). The PM soil moisture retrieval is provided by the Vrijie Universiteit Amsterdam (VUA)-NASA surface soil moisture product. The VUA retrieval is based on the findings of Owe et al. (2001; 2008) using the Land Surface Parameter model (LPRM), which uses one dual polarized channel (6.925 or 10.65 GHz) for a dual-retrieval of surface soil moisture and vegetation water content. In addition, retrievals of ALEXI (TIR) and AMSR-E (PM) soil moisture are assimilated within the Land Information System using the NOAH LSM. A series of data assimilation experiments is completed with the following configuration: (a) no assimilation, (b) only ALEXI soil moisture, (c) only AMSR-E soil moisture, and (d) ALEXI

  10. Lessons Learned During Instrument Testing for the Thermal Infrared Sensor (TIRS)

    Science.gov (United States)

    Peabody, Hume L.; Otero, Veronica; Neuberger, David

    2013-01-01

    The Themal InfraRed Sensor (TIRS) instrument, set to launch on the Landsat Data Continuity Mission in 2013, features a passively cooled telescope and IR detectors which are actively cooled by a two stage cryocooler. In order to proceed to the instrument level test campaign, at least one full functional test was required, necessitating a thermal vacuum test to sufficiently cool the detectors and demonstrate performance. This was fairly unique in that this test occurred before the Pre Environmental Review, but yielded significant knowledge gains before the planned instrument level test. During the pre-PER test, numerous discrepancies were found between the model and the actual hardware, which were revealed by poor correlation between model predictions and test data. With the inclusion of pseudo-balance points, the test also provided an opportunity to perform a pre-correlation to test data prior to the instrument level test campaign. Various lessons were learned during this test related to modeling and design of both the flight hardware and the Ground Support Equipment and test setup. The lessons learned in the pre-PER test resulted in a better test setup for the nstrument level test and the completion of the final instrument model correlation in a shorter period of time. Upon completion of the correlation, the flight predictions were generated including the full suite of off-nominal cases, including some new cases defined by the spacecraft. For some of these ·new cases, some components now revealed limit exceedances, in particular for a portion of the hardware that could not be tested due to its size and chamber limitations.. Further lessons were learned during the completion of flight predictions. With a correlated detalled instrument model, significant efforts were made to generate a reduced model suitable for observatory level analyses. This proved a major effort both to generate an appropriate network as well as to convert to the final model to the required

  11. On-Orbit Radiometric Performance of the Landsat 8 ThermalInfrared Sensor

    Directory of Open Access Journals (Sweden)

    Matthew Montanaro

    2014-11-01

    Full Text Available The Thermal Infrared Sensor (TIRS requirements for noise, stability, and uniformity were designed to ensure the radiometric integrity of the data products. Since the launch of Landsat 8 in February 2013, many of these evaluations have been based on routine measurements of the onboard calibration sources, which include a variable-temperature blackbody and a deep space view port. The noise equivalent change in temperature (NEdT of TIRS data is approximately 0.05 K @ 300 K in both bands, exceeding requirements by about a factor of 8 and Landsat 7 ETM+ performance by a factor of 3. Coherent noise is not readily apparent in TIRS data. No apparent change in the detector linearization has been observed. The radiometric stability of the TIRS instrument over the period between radiometric calibrations (about 40 min is less than one count of dark current and the variation in terms of radiance is less than 0.015 \\(W/m^2/sr/\\mu m\\ (or 0.13 K at 300 K, easily meeting the short term stability requirements. Long term stability analysis has indicated a degradation of about 0.2% or less per year. The operational calibration is only updated using the biases taken every orbit, due to the fundamental stability of the instrument. By combining the data from two active detector rows per band, 100% detector operability is maintained for the instrument. No trends in the noise, operability, or short term radiometric stability are apparent over the mission life. The uniformity performance is more difficult to evaluate as scene-varying banding artifacts have been observed in Earth imagery. Analyses have shown that stray light is affecting the recorded signal from the Earth and inducing the banding depending on the content of the surrounding Earth surface. As the stray light effects are stronger in the longer wavelength TIRS band11 (12.0 \\(\\mu m\\, the uniformity is better in the shorter wavelength band10 (10.9 \\(\\mu m\\. Both bands have exceptional noise and

  12. Technique for separating the galactic thermal radio emission from the non-thermal component by means of the associated infrared emission

    Energy Technology Data Exchange (ETDEWEB)

    Broadbent, A.; Osborne, J.L.; Haslam, C.G.T.

    1989-03-15

    A detailed correlation is shown to exist between the IRAS 60-..mu..m band emission from the galactic disc and the radio continuum emission measured with a similar angular resolution by previous authors at 11 cm and 6 cm. A major part of the radio continuum at these frequencies is from thermal bremsstrahlung, and the detailed correlation with the 60-..mu..m band emission shows that an important fraction of the latter must be associated with H II regions (not only the compact regions but also the extended low-density regions). To reveal this component more clearly, the infrared emission from H I-associated dust has been modelled in detail and subtracted from both the 60-and 100-..mu..m band observations. The 60-..mu..m band emission is a sufficiently good tracer of the thermal component of the radio continuum emission that it can be used to separate this from the synchrotron component.

  13. Potential of the future thermal infrared space-borne sensor IASI-NG to monitor lower tropospheric ozone

    Directory of Open Access Journals (Sweden)

    P. Sellitto

    2012-09-01

    Full Text Available The lower tropospheric (LT ozone concentration is a key factor for air quality (AQ. Observing efficiently LT ozone from space is crucial to monitor and better understand pollution phenomena occurring from inter-continental to local scales, and that have a proven noxious effect on the human health and the biosphere. The Infrared Atmospheric Sounder Interferometer (IASI flies on MetOp-A spacecraft and is planned to be launched in the next future as part of the other MetOp modules, i.e. MetOp-B and C. IASI has demonstrated to have the capability to single out the LT ozone signal only at favourable conditions, i.e. in presence of high thermal contrast scenarios. New generation satellite instruments are being designed to address several pressing geophysical issues, including a better observation capability of LT ozone. IASI-NG (New Generation, now having reached the accomplishment of design phase-A for launch in the 2020 timeframe as part of the EPS-SG (EUMETSAT Polar System-Second Generation, formerly post-EPS mission, may render feasible a better observation of AQ in terms of LT ozone. To evaluate the added-value brought by IASI-NG in this context, we developed a pseudo-observation simulator, including a direct simulator of thermal infrared spectra and a full inversion scheme to retrieve ozone concentration profiles. We produced one month (August 2009 of tropospheric ozone pseudo-observations based on both IASI and IASI-NG instrumental configurations. We compared the pseudo-observations and we found a clear improvement of LT ozone (up to 6 km altitude pseudo-observations quality for IASI-NG. The estimated total error is expected to be more than 35% smaller at 5 km, and 20% smaller for the LT ozone column. The total error on the LT ozone column is, on average, lower than 10% for IASI-NG. IASI-NG is expected to have a significantly better vertical sensitivity (monthly average degrees of freedom surface-6 km of 0.70 and to be sensitive at lower

  14. Predicting ambient aerosol thermal-optical reflectance (TOR) measurements from infrared spectra: organic carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2015-03-01

    Organic carbon (OC) can constitute 50% or more of the mass of atmospheric particulate matter. Typically, organic carbon is measured from a quartz fiber filter that has been exposed to a volume of ambient air and analyzed using thermal methods such as thermal-optical reflectance (TOR). Here, methods are presented that show the feasibility of using Fourier transform infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE or Teflon) filters to accurately predict TOR OC. This work marks an initial step in proposing a method that can reduce the operating costs of large air quality monitoring networks with an inexpensive, non-destructive analysis technique using routinely collected PTFE filter samples which, in addition to OC concentrations, can concurrently provide information regarding the composition of organic aerosol. This feasibility study suggests that the minimum detection limit and errors (or uncertainty) of FT-IR predictions are on par with TOR OC such that evaluation of long-term trends and epidemiological studies would not be significantly impacted. To develop and test the method, FT-IR absorbance spectra are obtained from 794 samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least-squares regression is used to calibrate sample FT-IR absorbance spectra to TOR OC. The FTIR spectra are divided into calibration and test sets by sampling site and date. The calibration produces precise and accurate TOR OC predictions of the test set samples by FT-IR as indicated by high coefficient of variation (R2; 0.96), low bias (0.02 μg m-3, the nominal IMPROVE sample volume is 32.8 m3), low error (0.08 μg m-3) and low normalized error (11%). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision to collocated TOR measurements. FT-IR spectra are also

  15. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: elemental carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2015-06-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as Thermal-Optical Reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier Transform Infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure tested and developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FTIR spectra are divided into calibration and test sets. Two calibrations are developed, one which is developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a~uniform distribution of low EC mass samples (EC TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of variation (R2; 0.96), no bias (0.00 μg m-3, concentration value based on the nominal IMPROVE sample volume of 32.8 m-3), low error (0.03 μg m-3) and reasonable normalized error (21 %). These performance metrics can be achieved with various degrees of spectral pretreatment

  16. Surface Temperature Mapping of the University of Northern Iowa Campus Using High Resolution Thermal Infrared Aerial Imageries.

    Science.gov (United States)

    Savelyev, Alexander; Sugumaran, Ramanathan

    2008-08-25

    The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixelto-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds.

  17. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity

    OpenAIRE

    Da-Young Kang; Cheolho Kim; Gyurim Park; Jun Hyuk Moon

    2015-01-01

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the...

  18. Usefulness of Infrared Thermal Imaging Camera for Screening of Postoperative Surgical Site Infection after the Nuss Procedure

    Directory of Open Access Journals (Sweden)

    Kenya Fujita

    2013-01-01

    Full Text Available Introduction and Objective. The Nuss procedure is widely used in the treatment of pectus excavatum worldwide. Postoperative pectus bar infection is one of the most serious complications associated with this procedure. Therefore, early detection of signs of implant infection is very important. However, this is difficult, and effective methods have yet to be established. Methods. We use a handheld infrared thermal imaging camera to screen patients for postoperative infection following the Nuss procedure. Here, we report a 28-year-old man with recurrent postoperative (Ravitch procedure pectus excavatum. Results. Infrared thermography camera clearly indicated slight cellulitis in the right chest. Conclusion. Our technique may assist in preventing postoperative bar infection and removal caused by severe bar infection. Furthermore, this camera is potentially suitable for many situations in infection monitoring following subcutaneous implant surgery.

  19. Comparison of direct (X-ray diffraction and infrared spectrophotometry) and indirect (infrared spectrophotometry) methods for the analysis of alpha-quartz in airborne dusts.

    Science.gov (United States)

    Kauffer, E; Masson, A; Moulut, J C; Lecaque, T; Protois, J C

    2005-11-01

    In this study, the alpha-quartz contents measured by different analytical techniques (X-ray diffraction, direct method; and infrared spectrophotometry, direct and indirect methods) were compared. The analyses were carried out on filters sampled in an industrial setting by means of a Dorr-Oliver cyclone. To verify the methodology used, filters loaded with pure alpha-quartz were also analysed. By and large, the agreement between the two direct methods was close on average, but on the basis of a comparison of the individual results, considerable differences exist. In absolute value, the mean relative deviation between the two techniques was infrared) were on average 13% lower than the results obtained by the two direct methods with a more important difference (23%) for samples where calcite was identified by X-ray diffraction in comparison with those where it was not (8%). This underestimation, which was not owing to dust losses during preparation, is probably explained by the elimination of organic compounds during dust calcinations or by the transformation of mineral compounds. The indirect method introduces additional sample handling operations with more risk of material loss. When the quantity of calcined material was <0.4 mg, the weighing operations necessary to correct any losses of material resulted in considerable variability. In terms of overall uncertainty, it would be better in this case not to carry out correction and to employ an operating mode favouring the recovery of a maximum of material while accepting a bias of about 5-7%.

  20. High spatial resolution infrared imaging of L1551-IRS 5 - Direct observations of its circumstellar envelope

    Science.gov (United States)

    Moneti, Andrea; Forrest, William J.; Pipher, Judith L.; Woodward, Charles E.

    1988-01-01

    Images of L1551-IRS 5 were obtained at 1.65, 2.2, and 3.8 microns using the University of Rochester's Infrared Array Camera. It is found that IRS 5 is spatially resolved, and that it is elongated: the observed FWHM size of IRS 5 is 4.1 x 2.8 arcsec-squared at 2.2 microns. These observations are interpreted in terms of a flattened circumstellar envelope that is viewed from about 18 deg above its equatorial plane, a configuration that has been treated theoretically by Lefevre et al. In this model the central star is not seen directly, but only light scattered toward the observer from the visible polar region, where the envelope is thinnest, is observed. It is deduced that the envelope has a diameter of 1000 AU, a molecular hydrogen density of greater than or approximately equal to 4 x 10 to the 6th/cu cm, and a mass of greater than or approximately equal to 0.02 M solar mass, which results in an extinction of Av greater than about 33 mag to the central source.

  1. High spatial resolution infrared imaging of L1551-IRS 5 - Direct observations of its circumstellar envelope

    Science.gov (United States)

    Moneti, Andrea; Forrest, William J.; Pipher, Judith L.; Woodward, Charles E.

    1988-01-01

    Images of L1551-IRS 5 were obtained at 1.65, 2.2, and 3.8 microns using the University of Rochester's Infrared Array Camera. It is found that IRS 5 is spatially resolved, and that it is elongated: the observed FWHM size of IRS 5 is 4.1 x 2.8 arcsec-squared at 2.2 microns. These observations are interpreted in terms of a flattened circumstellar envelope that is viewed from about 18 deg above its equatorial plane, a configuration that has been treated theoretically by Lefevre et al. In this model the central star is not seen directly, but only light scattered toward the observer from the visible polar region, where the envelope is thinnest, is observed. It is deduced that the envelope has a diameter of 1000 AU, a molecular hydrogen density of greater than or approximately equal to 4 x 10 to the 6th/cu cm, and a mass of greater than or approximately equal to 0.02 M solar mass, which results in an extinction of Av greater than about 33 mag to the central source.

  2. Direct Visualization of Excited-State Symmetry Breaking Using Ultrafast Time-Resolved Infrared Spectroscopy.

    Science.gov (United States)

    Dereka, Bogdan; Rosspeintner, Arnulf; Li, Zhiquan; Liska, Robert; Vauthey, Eric

    2016-04-01

    Most symmetric quadrupolar molecules designed for two-photon absorption behave as dipolar molecules in the S1 electronic excited state. This is usually explained by a breakup of the symmetry in the excited state. However, the origin of this process and its dynamics are still not fully understood. Here, excited-state symmetry breaking in a quadrupolar molecule with a D-π-A-π-D motif, where D and A are electron donating and accepting units, is observed in real time using ultrafast transient infrared absorption spectroscopy. The nature of the relaxed S1 state was found to strongly depend on the solvent polarity: (1) in nonpolar solvents, it is symmetric and quadrupolar; (2) in weakly polar media, the quadrupolar state observed directly after excitation transforms to a symmetry broken S1 state with one arm bearing more excitation than the other; and (3) in highly polar solvents, the excited state evolves further to a purely dipolar S1 state with the excitation localized entirely on one arm. The time scales associated with the transitions between these states coincide with those of solvation dynamics, indicating that symmetry breaking is governed by solvent fluctuations.

  3. Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials

    Science.gov (United States)

    Campione, Salvatore; Marquier, Francois; Hugonin, Jean-Paul; Ellis, A. Robert; Klem, John F.; Sinclair, Michael B.; Luk, Ting S.

    2016-01-01

    The development of novel thermal sources that control the emission spectrum and the angular emission pattern is of fundamental importance. In this paper, we investigate the thermal emission properties of semiconductor hyperbolic metamaterials (SHMs). Our structure does not require the use of any periodic corrugation to provide monochromatic and directional emission properties. We show that these properties arise because of epsilon-near-zero conditions in SHMs. The thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the SHM. Furthermore, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy of hyperbolic metamaterials.

  4. Investigation on the Thermal Conductivity of 3-Dimensional and 4-Directional Braided Composites

    Institute of Scientific and Technical Information of China (English)

    Liu Zhenguo; Zhang Haiguo; Lu Zixing; Li Diansen

    2007-01-01

    It is vital to choose a factual and reasonable micro-structural model of braided composites for improving the calculating precision of thermal property of 3-D braided composites by finite element method (FEM). On the basis of new microstructure model of braided composites proposed recently, the model of FEM calculation for thermal conductivity of 3-dimennsional and 4-directional braided composites is set up in this paper. The curves of coefficient of effective thermal conductivity versus fiber volume ratio and interior braiding angle are obtained. Furthermore, comparing the results of FEM with the available experimental data, the reasonability and veracity of calculation are confirmed at the same time.

  5. Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials

    Science.gov (United States)

    Campione, Salvatore; Marquier, Francois; Hugonin, Jean-Paul; Ellis, A. Robert; Klem, John F.; Sinclair, Michael B.; Luk, Ting S.

    2016-10-01

    The development of novel thermal sources that control the emission spectrum and the angular emission pattern is of fundamental importance. In this paper, we investigate the thermal emission properties of semiconductor hyperbolic metamaterials (SHMs). Our structure does not require the use of any periodic corrugation to provide monochromatic and directional emission properties. We show that these properties arise because of epsilon-near-zero conditions in SHMs. The thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the SHM. Furthermore, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy of hyperbolic metamaterials.

  6. In-line monitoring of thermal degradation of PHA during melt-processing by Near-Infrared spectroscopy.

    Science.gov (United States)

    Montano-Herrera, Liliana; Pratt, Steven; Arcos-Hernandez, Monica V; Halley, Peter J; Lant, Paul A; Werker, Alan; Laycock, Bronwyn

    2014-06-25

    Polyhydroxyalkanoate (PHA) biopolymer processing is often challenged by low thermal stability, meaning that the temperatures and time for which these polymers can be processed is restrictive. Considering the sensitivity of PHA to processing conditions, there is a demand for in-line monitoring of the material behaviour in the melt. This paper investigates the application of Near-Infrared (NIR) spectroscopy for monitoring the thermal degradation of PHAs during melt-processing. Two types of materials were tested: two mixed culture PHAs extracted from biomass produced in laboratory and pilot scale after an acidic pre-treatment, and two commercially available materials derived from pure culture production systems. Thermal degradation studies were carried out in a laboratory scale extruder with conical twin screws connected to a NIR spectrometer by a fibre optic to allow in situ monitoring. Multivariate data analysis methods were applied for assessing thermal degradation kinetics and predicted the degree of degradation as measured by (1)H NMR (proton nuclear magnetic resonance spectroscopy). The pre-treated mixed culture PHAs were found to be more thermally stable when compared with the commercial pure culture PHAs as demonstrated by NIR, (1)H NMR and GPC (gel permeation chromatography).

  7. Thermal radiative and thermodynamic properties of solid and liquid uranium and plutonium carbides in the visible-near-infrared range

    Science.gov (United States)

    Fisenko, Anatoliy I.; Lemberg, Vladimir F.

    2016-09-01

    The knowledge of thermal radiative and thermodynamic properties of uranium and plutonium carbides under extreme conditions is essential for designing a new metallic fuel materials for next generation of a nuclear reactor. The present work is devoted to the study of the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides at their melting/freezing temperatures. The Stefan-Boltzmann law, total energy density, number density of photons, Helmholtz free energy density, internal energy density, enthalpy density, entropy density, heat capacity at constant volume, pressure, and normal total emissivity are calculated using experimental data for the frequency dependence of the normal spectral emissivity of liquid and solid uranium and plutonium carbides in the visible-near infrared range. It is shown that the thermal radiative and thermodynamic functions of uranium carbide have a slight difference during liquid-to-solid transition. Unlike UC, such a difference between these functions have not been established for plutonium carbide. The calculated values for the normal total emissivity of uranium and plutonium carbides at their melting temperatures is in good agreement with experimental data. The obtained results allow to calculate the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides for any size of samples. Based on the model of Hagen-Rubens and the Wiedemann-Franz law, a new method to determine the thermal conductivity of metals and carbides at the melting points is proposed.

  8. Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe

    Science.gov (United States)

    Cuesta, J.; Eremenko, M.; Liu, X.; Dufour, G.; Cai, Z.; Hoepfner, M.; von Clarmann, T.; Sellitto, P.; Foret, G.; Gaubert, B.; Beekmann, M.; Orphal, J. J.; Chance, K.; Spurr, R. J.; Flaud, J.

    2013-12-01

    Lowermost tropospheric ozone is a major factor determining air quality, which directly affects human health in megacities and causes damages to ecosystems. Monitoring tropospheric ozone is a key societal issue which can be addressed at the regional scale by spaceborne observation. However, current satellite retrievals of tropospheric ozone using uncoupled either ultraviolet (UV) or thermal infrared (TIR) observations show limited sensitivity to ozone at the lowermost troposphere (LMT, up to 3 km asl of altitude above sea level), which is the major concern for air quality. In this framework, we have developed a new multispectral approach for observing lowermost tropospheric ozone from space by synergism of atmospheric TIR radiances observed by IASI and earth UV reflectances measured by GOME-2. Both instruments are onboard the series of MetOp satellites (in orbit since 2006 and expected until 2022) and their scanning capabilities offer global coverage every day, with a relatively fine ground pixel resolution (12-km-diameter pixels spaced by 25 km for IASI at nadir). Our technique uses altitude-dependent Tikhonov-Phillips-type constraints, which optimize sensitivity to lower tropospheric ozone. It integrates the VLIDORT and KOPRA radiative transfer codes for simulating UV reflectance and TIR radiance, respectively. We have used our method to analyze real observations over Europe during an ozone pollution episode in the summer of 2009. The results show that the multispectral synergism of IASI (TIR) and GOME-2 (UV) enables the observation of the spatial distribution of ozone plumes in the LMT, in good agreement with the CHIMERE regional chemistry-transport model. In this case study, when high ozone concentrations extend vertically above 3 km asl, they are similarly observed over land by both the multispectral and IASI retrievals. On the other hand, ozone plumes located below 3 km asl are only clearly depicted by the multispectral retrieval (both over land and over ocean

  9. Analysis of Viking infrared thermal mapping data of Mars. The effects of non-ideal surfaces on the derived thermal properties of Mars

    Science.gov (United States)

    Muhleman, D. O.; Jakosky, B. M.

    1979-01-01

    The thermal interia of the surface of Mars varies spatially by a factor of eight. This is attributable to changes in the average particle size of the fine material, the surface elevation, the atmospheric opacity due to dust, and the fraction of the surface covered by rocks and fine material. The effects of these non-ideal properties on the surface temperatures and derived thermal inertias are modeled, along with the the effects of slopes, CO2 condensed onto the surface, and layering of fine material upon solid rock. The non-ideal models are capable of producing thermal behavior similar to that observed by the Viking Infrared Thermal Mapper, including a morning delay in the post-dawn temperature rise and an enhanced cooling in the afternoon relative to any ideal, homogeneous model. The enhanced afternoon cooling observed at the Viking-1 landing site is reproduced by the non-ideal models while that atop Arsia Mons volcano is not, but may be attributed to the observing geometry.

  10. Directional Phonon Suppression Function as a Tool for the Identification of Ultralow Thermal Conductivity Materials

    Science.gov (United States)

    Romano, Giuseppe; Kolpak, Alexie M.

    2017-03-01

    Boundary-engineering in nanostructures has the potential to dramatically impact the development of materials for high- efficiency conversion of thermal energy directly into electricity. In particular, nanostructuring of semiconductors can lead to strong suppression of heat transport with little degradation of electrical conductivity. Although this combination of material properties is promising for thermoelectric materials, it remains largely unexplored. In this work, we introduce a novel concept, the directional phonon suppression function, to unravel boundary-dominated heat transport in unprecedented detail. Using a combination of density functional theory and the Boltzmann transport equation, we compute this quantity for nanoporous silicon materials. We first compute the thermal conductivity for the case with aligned circular pores, confirming a significant thermal transport degradation with respect to the bulk. Then, by analyzing the information on the directionality of phonon suppression in this system, we identify a new structure of rectangular pores with the same porosity that enables a four-fold decrease in thermal transport with respect to the circular pores. Our results illustrate the utility of the directional phonon suppression function, enabling new avenues for systematic thermal conductivity minimization and potentially accelerating the engineering of next-generation thermoelectric devices.

  11. Sub-kHz linewidth narrowing of a mid-infrared OPO idler frequency by direct cavity stabilization

    CERN Document Server

    Ricciardi, I; Parisi, M; Maddaloni, P; Santamaria, L; De Natale, P; De Rosa, M

    2015-01-01

    We stabilize the idler frequency of a singly-resonant optical parametric oscillator directly to the resonance of a mid-infrared Fabry-P\\'erot reference cavity. This is accomplished by the Pound-Drever-Hall locking scheme, controlling either the pump laser or the resonant signal frequency. A residual relative frequency noise power spectral density below 10$^3$ Hz$^2$/Hz is reached, with a Gaussian linewidth of 920 Hz over 100 ms, which demonstrates the potential for reaching spectral purity down to the Hz level by locking the optical parametric oscillator against a mid-infrared cavity with state-of-the-art superior performance.

  12. Modeling angular-dependent spectral emissivity of snow and ice in the thermal infrared atmospheric window.

    Science.gov (United States)

    Hori, Masahiro; Aoki, Teruo; Tanikawa, Tomonori; Hachikubo, Akihiro; Sugiura, Konosuke; Kuchiki, Katsuyuki; Niwano, Masashi

    2013-10-20

    A model of angular-dependent emissivity spectra of snow and ice in the 8-14 μm atmospheric window is constructed. Past field research revealed that snow emissivity varies depending on snow grain size and the exitance angle. Thermography images acquired in this study further revealed that not only welded snow particles such as sun crust, but also disaggregated particles such as granular snow and dendrite crystals exhibit high reflectivity on their crystal facets, even when the bulk snow surface exhibits blackbody-like behavior as a whole. The observed thermal emissive behaviors of snow particles suggest that emissivity of the bulk snow surface can be expressed by a weighted sum of two emissivity components: those of the specular and blackbody surfaces. Based on this assumption, a semi-empirical emissivity model was constructed; it is expressed by a linear combination of specular and blackbody surfaces' emissivities with a weighting parameter characterizing the specularity of the bulk surface. Emissivity spectra calculated using the model succeeded in reproducing the past in situ measured directional spectra of various snow types by employing a specific weighting parameter for each snow type.

  13. Effect of metal stress on the thermal infrared emission of soybeans: A greenhouse experiment - Possible utility in remote sensing

    Science.gov (United States)

    Suresh, R.; Schwaller, M. R.; Foy, C. D.; Weidner, J. R.; Schnetzler, C. S.

    1989-01-01

    Manganese-sensitive forest and manganese-tolerant lee soybean cultivars were subjected to differential manganese stress in loring soil in a greenhouse experiment. Leaf temperature measurements were made using thermistors for forest and lee. Manganese-stressed plants had higher leaf temperatures than control plants in both forest and lee. Results of this experiment have potential applications in metal stress detection using remote sensing thermal infrared data over large areas of vegetation. This technique can be useful in reconnaissance mineral exploration in densely-vegetated regions where conventional ground-based methods are of little help.

  14. Encapsulation of paclitaxel into a bio-nanocomposite. A study combining inelastic neutron scattering to thermal analysis and infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Martins Murillo L.

    2015-01-01

    Full Text Available The anticancer drug paclitaxel was encapsulated into a bio-nanocomposite formed by magnetic nanoparticles, chitosan and apatite. The aim of this drug carrier is to provide a new perspective against breast cancer. The dynamics of the pure and encapsulated drug were investigated in order to verify possible molecular changes caused by the encapsulation, as well as to follow which interactions may occur between paclitaxel and the composite. Fourier transformed infrared spectroscopy, thermal analysis, inelastic and quasi-elastic neutron scattering experiments were performed. These very preliminary results suggest the successful encapsulation of the drug.

  15. Development of a thermal evaporation cell for gas-phase infrared absorption spectroscopy of compounds with low volatility.

    Science.gov (United States)

    Ingram, John M; Fountain, Augustus W

    2007-11-01

    To facilitate in-depth hazard prediction models, we must understand the spectral properties of expulsion plumes from conventional weapon attacks. Precise data on the spectral absorption of three chemical weapon agent simulants, in the infrared regime, are required to properly determine the mass of simulant in expulsion plumes from field demonstrations and small scale tests. Data for triethyl phosphate (a Soman simulant), triethyl phosphite (a Sarin simulant), and tributyl phosphate (a VX simulant) are presented. A thermal evaporation cell was designed and built that incorporated features that are not commercially available.

  16. Theoretical Investigation and Experimental Verification of Passive Simulation of Metal Plate Infrared Thermal Characteristics with That of PCM

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A one-dimensional thermophysical model is used to investigate the simulation of the infrared thermal signature of mental plate with phase change material(PCM) plate theoretically. The optimized parameters are obtained by the theoretical calculations. Based on the calculation results, a kind of organic PCM is selected to experimentally verify the model, and the good match between the theoretical and experimental results is achieved. The results of this investigation provide the design rules and key materials for the application of PCMs in false target.

  17. Research Prowess in Retrieving Land Surface Temperature Based on Thermal Infrared Remote Sensing Technologies%热红外遥感反演地表温度研究进展

    Institute of Scientific and Technical Information of China (English)

    陈桥驿; 蔡宜泳

    2013-01-01

    介绍在遥感技术支持下用热红外波段反演地表温度的各种方法及其优缺点和适用情况;总结目前通道法反演地表温度的问题所在,引出其研究新方向:组分温度反演;最后,对热红外遥感反演地表温度作出总结和提出展望.%The methods of retrieving land surface temperature based on thermal infrared remote sensing technologies were introduced. The features of the methods and application range were also discussed. The disadvantages in the channel algorithm of retrieving land surface temperature were summarized. The new direction of component temperature retrieving was introduced. Finally, retrieving land surface temperature based on thermal infrared remote sensing temperature was summarized and forecasted.

  18. Analysis of Vegetation Within A Semi-Arid Urban Environment Using High Spatial Resolution Airborne Thermal Infrared Remote Sensing Data

    Science.gov (United States)

    Quattrochi, Dale A.; Ridd, Merrill K.

    1998-01-01

    High spatial resolution (5 m) remote sensing data obtained using the airborne Thermal Infrared Multispectral Scanner (TIMS) sensor for daytime and nighttime have been used to measure thermal energy responses for 2 broad classes and 10 subclasses of vegetation typical of the Salt Lake City, Utah urban landscape. Polygons representing discrete areas corresponding to the 10 subclasses of vegetation types have been delineated from the remote sensing data and are used for analysis of upwelling thermal energy for day, night, and the change in response between day and night or flux, as measured by the TIMS. These data have been used to produce three-dimensional graphs of energy responses in W/ sq m for day, night, and flux, for each urban vegetation land cover as measured by each of the six channels of the TIMS sensor. Analysis of these graphs provides a unique perspective for both viewing and understanding thermal responses, as recorded by the TIMS, for selected vegetation types common to Salt Lake City. A descriptive interpretation is given for each of the day, night, and flux graphs along with an analysis of what the patterns mean in reference to the thermal properties of the vegetation types surveyed in this study. From analyses of these graphs, it is apparent that thermal responses for vegetation can be highly varied as a function of the biophysical properties of the vegetation itself, as well as other factors. Moreover, it is also seen where vegetation, particularly trees, has a significant influence on damping or mitigating the amount of thermal radiation upwelling into the atmosphere across the Salt Lake City urban landscape. Published by Elsevier Science Ltd.

  19. Direct observation of free-exciton thermalization in quantum-well structures

    DEFF Research Database (Denmark)

    Umlauff, M.; Hoffmann, J.; Kalt, H.

    1998-01-01

    We report on a direct observation of free-exciton thermalization in quantum-well structures. A narrow energy distribution of free 1s excitons is created in ZnSe-based quantum wells by emission of one LO phonon after optical excitation of the continuum stales with picosecond laser pulses. The subs......We report on a direct observation of free-exciton thermalization in quantum-well structures. A narrow energy distribution of free 1s excitons is created in ZnSe-based quantum wells by emission of one LO phonon after optical excitation of the continuum stales with picosecond laser pulses...

  20. Cavern/Vault Disposal Concepts and Thermal Calculations for Direct Disposal of 37-PWR Size DPCs

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Clayton, Daniel James [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This report provides two sets of calculations not presented in previous reports on the technical feasibility of spent nuclear fuel (SNF) disposal directly in dual-purpose canisters (DPCs): 1) thermal calculations for reference disposal concepts using larger 37-PWR size DPC-based waste packages, and 2) analysis and thermal calculations for underground vault-type storage and eventual disposal of DPCs. The reader is referred to the earlier reports (Hardin et al. 2011, 2012, 2013; Hardin and Voegele 2013) for contextual information on DPC direct disposal alternatives.

  1. Retrieval of volcanic ash particle size, mass and optical depth from a ground-based thermal infrared camera

    Science.gov (United States)

    Prata, A. J.; Bernardo, C.

    2009-09-01

    Volcanoes can emit fine-sized ash particles (1-10 μm radii) into the atmosphere and if they reach the upper troposphere or lower stratosphere, these particles can have deleterious effects on the atmosphere and climate. If they remain within the lowest few kilometers of the atmosphere, the particles can lead to health effects in humans and animals and also affect vegetation. It is therefore of some interest to be able to measure the particle size distribution, mass and other optical properties of fine ash once suspended in the atmosphere. A new imaging camera working in the infrared region between 7-14 μm has been developed to detect and quantify volcanic ash. The camera uses passive infrared radiation measured in up to five spectral channels to discriminate ash from other atmospheric absorbers (e.g. water molecules) and a microphysical ash model is used to invert the measurements into three retrievable quantities: the particle size distribution, the infrared optical depth and the total mass of fine particles. In this study we describe the salient characteristics of the thermal infrared imaging camera and present the first retrievals from field studies at an erupting volcano. An automated ash alarm algorithm has been devised and tested and a quantitative ash retrieval scheme developed to infer particle sizes, infrared optical depths and mass in a developing ash column. The results suggest that the camera is a useful quantitative tool for monitoring volcanic particulates in the size range 1-10 μm and because it can operate during the night, it may be a very useful complement to other instruments (e.g. ultra-violet spectrometers) that only operate during daylight.

  2. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    Science.gov (United States)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  3. Detection of coastal and submarine discharge on the Florida Gulf Coast with an airborne thermal-infrared mapping system

    Science.gov (United States)

    Raabe, Ellen; Stonehouse, David; Ebersol, Kristin; Holland, Kathryn; Robbins, Lisa

    2011-01-01

    Along the Gulf Coast of Florida north of Tampa Bay lies a region characterized by an open marsh coast, low topographic gradient, water-bearing limestone, and scattered springs. The Floridan aquifer system is at or near land surface in this region, discharging water at a consistent 70-72°F. The thermal contrast between ambient water and aquifer discharge during winter months can be distinguished using airborne thermal-infrared imagery. An airborne thermal-infrared mapping system was used to collect imagery along 126 miles of the Gulf Coast from Jefferson to Levy County, FL, in March 2009. The imagery depicts a large number of discharge locations and associated warm-water plumes in ponds, creeks, rivers, and nearshore waters. A thermal contrast of 6°F or more was set as a conservative threshold for identifying sites, statistically significant at the 99% confidence interval. Almost 900 such coastal and submarine-discharge locations were detected, averaging seven to nine per mile along this section of coast. This represents approximately one hundred times the number of previously known discharge sites in the same area. Several known coastal springs in Taylor and Levy Counties were positively identified with the imagery and were used to estimate regional discharge equivalent to one 1st-order spring, discharging 100 cubic feet per second or more, for every two miles of coastline. The number of identified discharge sites is a conservative estimate and may represent two-thirds of existing features due to low groundwater levels at time of overflight. The role of aquifer discharge in coastal and estuarine health is indisputable; however, mapping and quantifying discharge in a complex karst environment can be an elusive goal. The results of this effort illustrate the effectiveness of the instrument and underscore the influence of coastal springs along this stretch of the Florida coast.

  4. Direct measurement of thermal conductivity in solid iron at planetary core conditions.

    Science.gov (United States)

    Konôpková, Zuzana; McWilliams, R Stewart; Gómez-Pérez, Natalia; Goncharov, Alexander F

    2016-06-02

    The conduction of heat through minerals and melts at extreme pressures and temperatures is of central importance to the evolution and dynamics of planets. In the cooling Earth's core, the thermal conductivity of iron alloys defines the adiabatic heat flux and therefore the thermal and compositional energy available to support the production of Earth's magnetic field via dynamo action. Attempts to describe thermal transport in Earth's core have been problematic, with predictions of high thermal conductivity at odds with traditional geophysical models and direct evidence for a primordial magnetic field in the rock record. Measurements of core heat transport are needed to resolve this difference. Here we present direct measurements of the thermal conductivity of solid iron at pressure and temperature conditions relevant to the cores of Mercury-sized to Earth-sized planets, using a dynamically laser-heated diamond-anvil cell. Our measurements place the thermal conductivity of Earth's core near the low end of previous estimates, at 18-44 watts per metre per kelvin. The result is in agreement with palaeomagnetic measurements indicating that Earth's geodynamo has persisted since the beginning of Earth's history, and allows for a solid inner core as old as the dynamo.

  5. Direct measurement of thermal conductivity in solid iron at planetary core conditions

    Science.gov (United States)

    Konôpková, Zuzana; McWilliams, R. Stewart; Gómez-Pérez, Natalia; Goncharov, Alexander F.

    2016-06-01

    The conduction of heat through minerals and melts at extreme pressures and temperatures is of central importance to the evolution and dynamics of planets. In the cooling Earth’s core, the thermal conductivity of iron alloys defines the adiabatic heat flux and therefore the thermal and compositional energy available to support the production of Earth’s magnetic field via dynamo action. Attempts to describe thermal transport in Earth’s core have been problematic, with predictions of high thermal conductivity at odds with traditional geophysical models and direct evidence for a primordial magnetic field in the rock record. Measurements of core heat transport are needed to resolve this difference. Here we present direct measurements of the thermal conductivity of solid iron at pressure and temperature conditions relevant to the cores of Mercury-sized to Earth-sized planets, using a dynamically laser-heated diamond-anvil cell. Our measurements place the thermal conductivity of Earth’s core near the low end of previous estimates, at 18-44 watts per metre per kelvin. The result is in agreement with palaeomagnetic measurements indicating that Earth’s geodynamo has persisted since the beginning of Earth’s history, and allows for a solid inner core as old as the dynamo.

  6. Unimolecular Thermal Decomposition of Phenol and d5-Phenol: Direct Observation of Cyclopentadiene Formation via Cyclohexadienone

    Energy Technology Data Exchange (ETDEWEB)

    Scheer, A. M.; Mukarakate, C.; Robichaud, D. J.; Nimlos, M. R.; Carstensen, H. H.; Barney, E. G.

    2012-01-28

    The pyrolyses of phenol and d{sub 5}-phenol (C{sub 6}H{sub 5}OH and C{sub 6}D{sub 5}OH) have been studied using a high temperature, microtubular ({mu}tubular) SiC reactor. Product detection is via both photon ionization (10.487 eV) time-of-flight mass spectrometry and matrix isolation infrared spectroscopy. Gas exiting the heated reactor (375 K-1575 K) is subject to a free expansion after a residence time in the {mu}tubular reactor of approximately 50-100 {micro}s. The expansion from the reactor into vacuum rapidly cools the gas mixture and allows the detection of radicals and other highly reactive intermediates. We find that the initial decomposition steps at the onset of phenol pyrolysis are enol/keto tautomerization to form cyclohexadienone followed by decarbonylation to produce cyclopentadiene; C{sub 6}H{sub 5}OH {yields} c-C{sub 6}H{sub 6} = O {yields} c-C{sub 5}H{sub 6} + CO. The cyclopentadiene loses a H atom to generate the cyclopentadienyl radical which further decomposes to acetylene and propargyl radical; c-C{sub 5}H{sub 6} {yields} c-C{sub 5}H{sub 5} + H {yields} HC {triple_bond} CH + HCCCH{sub 2}. At higher temperatures, hydrogen loss from the PhO-H group to form phenoxy radical followed by CO ejection to generate the cyclopentadienyl radical likely contributes to the product distribution; C{sub 6}H{sub 5}O-H {yields} C{sub 6}H{sub 5}O + H {yields} c-C{sub 5}H{sub 5} + CO. The direct decarbonylation reaction remains an important channel in the thermal decomposition mechanisms of the dihydroxybenzenes. Both catechol (o-HO-C{sub 6}H{sub 4}-OH) and hydroquinone (p-HO-C{sub 6}H{sub 4}-OH) are shown to undergo decarbonylation at the onset of pyrolysis to form hydroxycyclopentadiene. In the case of catechol, we observe that water loss is also an important decomposition channel at the onset of pyrolysis.

  7. Micro-spec: an Integrated Direct-detection Spectrometer for Far-infrared Space Telescopes

    Science.gov (United States)

    Cataldo, Giuseppe; Hsieh, Wen-Ting; Huang, Wei-Chung; Moseley, S. Harvey; Stevenson, Thomas R.; Wollack, Edward J.

    2014-01-01

    The far-infrared and submillimeter portions of the electromagnetic spectrum provide a unique view of the astrophysical processes present in the early universe. Our ability to fully explore this rich spectral region has been limited, however, by the size and cost of the cryogenic spectrometers required to carry out such measurements.Micro-Spec (µ-Spec) is a high-sensitivity, direct-detection spectrometer concept working in the 450-1000 (micrometers) wavelength range which will enable a wide range of flight missions that would otherwise be challenging due tothe large size of current instruments with the required spectral resolution and sensitivity. The spectrometer design utilizes two internal antenna arrays, one for transmitting and one for receiving, superconducting microstrip transmission lines for power division and phase delay, and an array of microwave kinetic inductance detectors (MKIDs) to achieve these goals. The instrument will be integrated on a approximately 10 sq cm silicon chip and can therefore become an important capability under the low background conditions accessible via space and high-altitude borne platforms. In this paper, an optical design methodology for micro-Spec is presented, with particular attention given to its two-dimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the maximization of the instrument resolving power and minimization of the RMS phase error on the instrument focal plane. This two-step optimization can generate geometrical configurations given specific requirements on spectrometer size, operating spectral range and performance.Two point designs with resolving power of 260 and 520 and an RMS phase error less than approximately 0.004 radians were developed for initial demonstration and will be the basis of future instruments with resolving power up to about 1200.

  8. Micro-Spec: an Integrated, Direct-Detection Spectrometer for Far-Infrared and Submillimeter Astronomy

    Science.gov (United States)

    Cataldo, Giuseppe

    2014-01-01

    The far-infrared and submillimeter portions of the electromagnetic spectrum provide a unique view of the astrophysical processes present in the early universe. Our ability to fully explore this rich spectral region has been limited, however, by the size and cost of the cryogenic spectrometers required to carry out such measurements. Micro-Spec (u-Spec) is a high-sensitivity, direct-detection spectrometer concept working in the 450-1000 micromillimeter wavelength range which will enable a wide range of flight missions that would otherwise be challenging due to the large size of current instruments with the required spectral resolution and sensitivity. The spectrometer design utilizes two internal antenna arrays, one for transmitting and one for receiving, superconducting microstrip transmission lines for power division and phase delay, and an array of microwave kinetic inductance detectors (MKIDs) to achieve these goals. The instrument will be integrated on a approximately 10 square cm silicon chip and can therefore become an important capability under the low background conditions accessible via space and high-altitude borne platforms. In this paper, an optical design methodology for Micro-Spec is presented, with particular attention given to its twodimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the maximization of the instrument resolving power and minimization of the RMS phase error on the instrument focal plane. This two-step optimization can generate geometrical configurations given specific requirements on spectrometer size, operating spectral range and performance. A point design with resolving power of 257, an RMS phase error less than 0.1 radians and four stigmatic points was developed for initial demonstration and will be the basis of future instruments with resolving power up to about 1200.

  9. Ceramic thermal wind sensor based on advanced direct chip attaching package

    Science.gov (United States)

    Lin, Zhou; Ming, Qin; Shengqi, Chen; Bei, Chen

    2014-07-01

    An advanced direct chip attaching packaged two-dimensional ceramic thermal wind sensor is studied. The thermal wind sensor chip is fabricated by metal lift-off processes on the ceramic substrate. An advanced direct chip attaching (DCA) packaging is adopted and this new packaged method simplifies the processes of packaging further. Simulations of the advanced DCA packaged sensor based on computational fluid dynamics (CFD) model show the sensor can detect wind speed and direction effectively. The wind tunnel testing results show the advanced DCA packaged sensor can detect the wind direction from 0° to 360° and wind speed from 0 to 20 m/s with the error less than 0.5 m/s. The nonlinear fitting based least square method in Matlab is used to analyze the performance of the sensor.

  10. The effect of linear imperfection in [001] direction on the thermal properties of silver crystal

    Directory of Open Access Journals (Sweden)

    J Davoodi

    2013-09-01

    Full Text Available  The aim of this investigation was to calculate the thermal properties of silver crystal in the presence of linear imperfection. The simulations were performed by molecular dynamics simulation technique in NPT as well as NVT ensemble based on quantum Sutton-Chen many body potential. The thermal properties including cohesive energy, melting temperature, isobaric heat capacity and thermal expansion of imperfect silver crystal were calculated and compared to those of the perfect crystal. Moreover, the quantities such as radial distribution function, order parameter and lindemann index were calculated in order to obtain information on crystal structure and disorder in atoms. All calculations were done both with liner imperfection in [001] direction and without imperfection at different temperature. The simulation results show that cohesive energy, linear thermal expansion coefficient increase and melting temperature, latent heat of fusion decrease with increasing linear imperfection. Also, the results show that linear imperfection has no effect on the heat capacity.

  11. Issues and future direction of thermal-hydraulics research and development in nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Saha, P., E-mail: pradip.saha@ge.com [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Aksan, N. [GRNSPG Group, University of Pisa (Italy); Andersen, J. [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Yan, J. [Westinghouse Electric Co., Columbia, SC (United States); Simoneau, J.P. [AREVA, Lyon (France); Leung, L. [Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada); Bertrand, F. [CEA, DEN, DER, F-13108 Saint-Paul-Lez-Durance (France); Aoto, K.; Kamide, H. [Japan Atomic Energy Agency, Chiyoda-ku, Tokyo (Japan)

    2013-11-15

    The paper archives the proceedings of an expert panel discussion on the issues and future direction of thermal-hydraulic research and development in nuclear power reactors held at the NURETH-14 conference in Toronto, Canada, in September 2011. Thermal-hydraulic issues related to both operating and advanced reactors are presented. Advances in thermal-hydraulics have significantly improved the performance of operating reactors. Further thermal-hydraulics research and development is continuing in both experimental and computational areas for operating reactors, reactors under construction or ready for near-term deployment, and advanced Generation-IV reactors. As the computing power increases, the fine-scale multi-physics computational models, coupled with the systems analysis code, are expected to provide answers to many challenging problems in both operating and advanced reactor designs.

  12. Wavelength- or Polarization-Selective Thermal Infrared Detectors for Multi-Color or Polarimetric Imaging Using Plasmonics and Metamaterials.

    Science.gov (United States)

    Ogawa, Shinpei; Kimata, Masafumi

    2017-05-04

    Wavelength- or polarization-selective thermal infrared (IR) detectors are promising for various novel applications such as fire detection, gas analysis, multi-color imaging, multi-channel detectors, recognition of artificial objects in a natural environment, and facial recognition. However, these functions require additional filters or polarizers, which leads to high cost and technical difficulties related to integration of many different pixels in an array format. Plasmonic metamaterial absorbers (PMAs) can impart wavelength or polarization selectivity to conventional thermal IR detectors simply by controlling the surface geometry of the absorbers to produce surface plasmon resonances at designed wavelengths or polarizations. This enables integration of many different pixels in an array format without any filters or polarizers. We review our recent advances in wavelength- and polarization-selective thermal IR sensors using PMAs for multi-color or polarimetric imaging. The absorption mechanism defined by the surface structures is discussed for three types of PMAs-periodic crystals, metal-insulator-metal and mushroom-type PMAs-to demonstrate appropriate applications. Our wavelength- or polarization-selective uncooled IR sensors using various PMAs and multi-color image sensors are then described. Finally, high-performance mushroom-type PMAs are investigated. These advanced functional thermal IR detectors with wavelength or polarization selectivity will provide great benefits for a wide range of applications.

  13. Wavelength- or Polarization-Selective Thermal Infrared Detectors for Multi-Color or Polarimetric Imaging Using Plasmonics and Metamaterials

    Directory of Open Access Journals (Sweden)

    Shinpei Ogawa

    2017-05-01

    Full Text Available Wavelength- or polarization-selective thermal infrared (IR detectors are promising for various novel applications such as fire detection, gas analysis, multi-color imaging, multi-channel detectors, recognition of artificial objects in a natural environment, and facial recognition. However, these functions require additional filters or polarizers, which leads to high cost and technical difficulties related to integration of many different pixels in an array format. Plasmonic metamaterial absorbers (PMAs can impart wavelength or polarization selectivity to conventional thermal IR detectors simply by controlling the surface geometry of the absorbers to produce surface plasmon resonances at designed wavelengths or polarizations. This enables integration of many different pixels in an array format without any filters or polarizers. We review our recent advances in wavelength- and polarization-selective thermal IR sensors using PMAs for multi-color or polarimetric imaging. The absorption mechanism defined by the surface structures is discussed for three types of PMAs—periodic crystals, metal-insulator-metal and mushroom-type PMAs—to demonstrate appropriate applications. Our wavelength- or polarization-selective uncooled IR sensors using various PMAs and multi-color image sensors are then described. Finally, high-performance mushroom-type PMAs are investigated. These advanced functional thermal IR detectors with wavelength or polarization selectivity will provide great benefits for a wide range of applications.

  14. Design concepts and options for the Thermal Infrared Imager (TIRI) as part of ESA's Asteroid Impact Mission.

    Science.gov (United States)

    Bowles, Neil; Calcutt, Simon; Licandro, Javier; Reyes, Marcos; Delbo, Marco; Donaldson Hanna, Kerri; Arnold, Jessica; Howe, Chris

    2016-04-01

    ESA's Asteroid Impact Mission (AIM) is being studied as part of the joint ESA/NASA AIDA mission for launch in 2020. AIDA's primary mission is to investigate the effect of a kinetic impactor on the secondary component of the binary asteroid 65803 Didymos in late 2022. AIM will characterise the Didymos system and monitor the response of the binary system to the impact. A multi-spectral, thermal-infrared imaging instrument (TIRI) will be an essential component of AIM's remote sensing payload, as it will provide key information on the nature of the surfaces (e.g. presence or absence of materials, degree of compaction, and rock abundance of the regolith) of both components in the Didymos system. The temperature maps provided by TIRI will be important for navigation and spacecraft health and safety for proximity/lander operations. By measuring the asteroids' diurnal thermal responses (thermal inertia) and their surface compositions via spectral signatures, TIRI will provide information on the origin and evolution of the binary system. In this presentation we will discuss possible instrument design for TIRI, exploring options that include imaging spectroscopy to broadband imaging. By using thermal models and compositional analogues of the Didymos system we will show how the performance of each design option compares to the wider scientific goals of the AIDA/AIM mission.

  15. Robust Vehicle Detection under Various Environmental Conditions Using an Infrared Thermal Camera and Its Application to Road Traffic Flow Monitoring

    Directory of Open Access Journals (Sweden)

    Toshiyuki Nakamiya

    2013-06-01

    Full Text Available We have already proposed a method for detecting vehicle positions and their movements (henceforth referred to as “our previous method” using thermal images taken with an infrared thermal camera. Our experiments have shown that our previous method detects vehicles robustly under four different environmental conditions which involve poor visibility conditions in snow and thick fog. Our previous method uses the windshield and its surroundings as the target of the Viola-Jones detector. Some experiments in winter show that the vehicle detection accuracy decreases because the temperatures of many windshields approximate those of the exterior of the windshields. In this paper, we propose a new vehicle detection method (henceforth referred to as “our new method”. Our new method detects vehicles based on tires’ thermal energy reflection. We have done experiments using three series of thermal images for which the vehicle detection accuracies of our previous method are low. Our new method detects 1,417 vehicles (92.8% out of 1,527 vehicles, and the number of false detection is 52 in total. Therefore, by combining our two methods, high vehicle detection accuracies are maintained under various environmental conditions. Finally, we apply the traffic information obtained by our two methods to traffic flow automatic monitoring, and show the effectiveness of our proposal.

  16. Prefrontal hemodynamic mapping by functional near-infrared spectroscopy in response to thermal stimulations over three body sites.

    Science.gov (United States)

    Yennu, Amarnath; Tian, Fenghua; Gatchel, Robert J; Liu, Hanli

    2016-10-01

    Functional near-infrared spectroscopy (fNIRS) was used to examine hemodynamic responses in the prefrontal cortex (PFC) during noxious thermal pain, induced by thermal stimulations over three different body sites over the right forearm, right temporomandibular joint, and left forearm. Functional NIRS measurements were obtained from three groups of healthy volunteers, one group for each body region. Each group was subjected to both low-pain stimulation (LPS) and high-pain stimulation (HPS) by a [Formula: see text] thermode of a temperature-controlled thermal stimulator over the respective three body sites. Our results showed that HPS given at three sites induced significant increases ([Formula: see text]) in oxy-hemoglobin concentration ([Formula: see text]) in the PFC with similar temporal patterns in relatively spread PFC areas. In contrast, LPS did not cause any significant [Formula: see text] in the PFC of any subject group. Our observed PFC activations induced by acute HPS were generally consistent with previous reports by fMRI studies. The study also found a peculiar global trend of postpain deactivation in the PFC, which is attributed to global vasoconstriction due to acute nocuous pain. Overall, these results indicate that hemodynamic activities in PFC exhibit consistent temporal and spatial patterns in response to acute thermal stimulation given across all three body sites.

  17. Facile and high spatial resolution ratio-metric luminescence thermal mapping in microfluidics by near infrared excited upconversion nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu; Li, Shunbo; Wen, Weijia, E-mail: phwen@ust.hk [Department of Physics, KAUST-HKUST Joint Micro/Nanofluidic Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Cao, Wenbin [Nano Science and Technology Program, Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2016-02-01

    A local area temperature monitor is important for precise control of chemical and biological processes in microfluidics. In this work, we developed a facile method to realize micron spatial resolution of temperature mapping in a microfluidic channel quickly and cost effectively. Based on the temperature dependent fluorescence emission of NaYF{sub 4}:Yb{sup 3+}, Er{sup 3+} upconversion nanoparticles (UCNPs) under near-infrared irradiation, ratio-metric imaging of UCNPs doped polydimethylsiloxane can map detailed temperature distribution in the channel. Unlike some reported strategies that utilize temperature sensitive organic dye (such as Rhodamine) to achieve thermal sensing, our method is highly chemically inert and physically stable without any performance degradation in long term operation. Moreover, this method can be easily scaled up or down, since the spatial and temperature resolution is determined by an optical imaging system. Our method supplied a simple and efficient solution for temperature mapping on a heterogeneous surface where usage of an infrared thermal camera was limited.

  18. The Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) on the Landsat Data Continuity Mission (LDCM)

    Science.gov (United States)

    Reuter, Dennis; Irons, James; Lunsford, Allen; Montanero, Matthew; Pellerano, Fernando; Richardson, Cathleen; Smith, Ramsey; Tesfaye, Zelalem; Thome, Kurtis

    2011-01-01

    The Landsat Data Continuity Mission (LDCM), a joint NASA and United States Geological Survey (USGS) mission, is scheduled for launch in December, 2012. The LDCM instrument payload will consist of the Operational Land Imager (OLI), provided by Ball Aerospace and Technology Corporation (BATC) under contract to NASA and the Thermal Infrared Sensor (TIRS), provided by NASA's Goddard Space Flight Center (GSFC). This paper will describe the design, capabilities and status of the OLI and TIRS instruments. The OLI will provide 8 channel multispectral images at a spatial resolution of 30 meters and panchromatic images at 15 meter spatial resolution. The TIRS is a 100 meter spatial resolution push-broom imager whose two spectral channels, centered at 10.8 and 12 microns, split the ETM+ thermal bands. The two channels allow the use of the "split-window" technique to aid in atmospheric correction. The TIRS focal plane consists of three Quantum Well Infrared Photodetector (QWIP) arrays to span the 185 km swath width. The OLI and TIRS instruments will be operated independently but in concert with each other. Data from both instruments will be merged into a single data stream at the (USGS)/Earth Resources Observation and Science (EROS) facility. The ground system, being developed by USGS, includes an Image Assessment System (lAS), similar to Landsat-7's, to operationally monitor, characterize and update the calibrations of the two sensors.

  19. Near-infrared Thermal Emission from WASP-12b: detections of the secondary eclipse in Ks, H & J

    CERN Document Server

    Croll, Bryce; Albert, Loic; Jayawardhana, Ray; Fortney, Jonathan J; Murray, Norman

    2010-01-01

    We present Ks, H & J-band photometry of the very highly irradiated hot Jupiter WASP-12b using the Wide-field Infrared Camera on the Canada-France-Hawaii telescope. Our photometry brackets the secondary eclipse of WASP-12b in the Ks and H-bands, and in J-band starts in mid-eclipse and continues until well after the end of the eclipse. We detect its thermal emission in all three near-infrared bands. Our secondary eclipse depths are 0.309 +/- 0.013% in Ks-band (24-sigma), 0.176 +/- 0.020% in H-band (9-sigma) and 0.131 +/- 0.028% in J-band (4-sigma). All three secondary eclipses are best-fit with a consistent phase that is compatible with a circular orbit. By combining our secondary eclipse times with others published in the literature, as well as the radial velocity and transit timing data for this system, we show that there is no evidence that WASP-12b is precessing at a detectable rate, and show that its orbital eccentricity is likely zero. Our thermal emission measurements also allow us to constrain the c...

  20. Do the results of respirable dust samples obtained from direct-on-filter X-ray diffraction, direct-on-filter infrared and indirect infrared (KBr pellet) methods correlate?

    CSIR Research Space (South Africa)

    Pretorius, C

    2010-11-01

    Full Text Available determines how the dust is distributed on the filter (analysis area of XRD vs FTIR). Current research Acknowledgements The Mine Health and Safety Council (MHSC) of South Africa provided the funding for this research project (SIM 080601) References 1.... ?MDHS 101. Direct-on-filter analysis by infrared spectroscopy and X-ray diffraction?, February 2005, Health and Safety Laboratory: Methods for the Determination of Hazardous Substances. 2. Occupational Health and Safety Administration (OSHA), Quartz...

  1. Thermal infrared remote sensing of mineral dust over land and ocean: a spectral SVD based retrieval approach for IASI

    Directory of Open Access Journals (Sweden)

    L. Klüser

    2011-05-01

    Full Text Available From the high spectral resolution thermal infrared observations of the Infrared Atmospheric Sounding Interferometer (IASI mineral dust AOD (transferred from thermal infrared to 0.5 μm is retrieved using a Singular Vector Decomposition of brightness temperature spectra. As infrared retrieval based on 8–12 μm observations, dust observation with IASI is independent from solar illumination. Through the linear combinations of suitable independent singular vectors weighted by their contribution to the observed signal, and a projection of different a-priori dust spectra on the resulting signal the dust can be well distinguished from the influence of surface emissivity and gas absorption. In contrast to lookup-table based single-channel retrievals this method takes advantage of the spectral shape of dust extinction and surface and atmosphere influence over the total 8–12 μm window band. Using different a-priori spectra for dust extinction allows also for an estimation of dust particle size in terms of effective radius based on the respective dust model size distributions. These dust models are also used for the transfer of infrared AOD to 0.5 μm. Four months of IASI observations covering Northern Africa and Arabia are used for evaluation. Two large scale dust events, one covering the Arabian Peninsula and adjacent parts of the Indian Ocean, the other over the Atlantic Ocean off the coast of West-Africa, are analysed and compared with other satellite images. They also show the good suitability of IASI data for dust observation at day and night. Monthly means derived from IASI observations represent well the known seasonal cycles of dust activity over Northern Africa and Arabia. IASI Dust AOD0.5 μm and AERONET coarse mode AOD0.5 μm are reasonably well (linearly correlated with ρ=0.623. Moreover, comparison of time series of AERONET and IASI observations shows that the evolution of dust events is very well covered by the

  2. Thermal infrared remote sensing of mineral dust over land and ocean: a spectral SVD based retrieval approach for IASI

    Directory of Open Access Journals (Sweden)

    L. Klüser

    2011-01-01

    Full Text Available From the high spectral resolution thermal infrared observations of the Infrared Atmospheric Sounding Interferometer (IASI mineral dust AOD (transferred from thermal infrared to 0.5 μm is retrieved using a Singular Vector Decomposition of brightness temperature spectra. As infrared retrieval based on 8–12 μm observations, dust observation with IASI is independent from solar illumination. Through the linear combinations of suitable independent singular vectors weighted by their contribution to the observed signal, and a projection of different a-priori dust spectra on the resulting signal the dust can be well distinguished from the influence of surface emissivity and gas absorption. In contrast to lookup-table based single-channel retrievals this method takes advantage of the spectral shape of dust extinction and surface and atmosphere influence over the total 8–12 μm window band. Using different a-priori spectra for dust extinction allows also for an estimation of dust particle size in terms of effective radius based on the respective dust model size distributions. These dust models are also used for the transfer of infrared AOD to 0.5 μm.

    Four months of IASI observations covering Northern Africa and Arabia are used for evaluation. Two large scale dust events, one covering the Arabian Peninsula and adjacent parts of the Indian Ocean, the other over the Atlantic Ocean off the coast of West-Africa, are analysed and compared with other satellite images. They also show the good suitability of IASI data for dust observation at day and night. Monthly means derived from IASI observations represent well the known seasonal cycles of dust activity over Northern Africa and Arabia. IASI Dust AOD0.5 μm and AERONET coarse mode AOD0.5 μm are reasonably well (linearly correlated with ρ = 0.655. Moreover, comparison of time series of AERONET and IASI observations shows that the evolution of dust events is very well

  3. Colour-the-INSight : Combining a direct view rifle sight with fused intensified and thermal imagery

    NARCIS (Netherlands)

    Hogervorst, M.A.; Jansen, C.; Toet, A.; Bijl, P.; Bakker, P.J.; Hiddema, A.C.; Vliet, S.F. van

    2012-01-01

    We present the design and evaluation of a new demonstrator rifle sight viewing system containing direct view, red aim point and fusion of an (uncooled, LWIR) thermal sensor with a digital image intensifier. Our goal is to create a system that performs well under a wide variety of (weather) condition

  4. Colour-the-INSight : Combining a direct view rifle sight with fused intensified and thermal imagery

    NARCIS (Netherlands)

    Hogervorst, M.A.; Jansen, C.; Toet, A.; Bijl, P.; Bakker, P.J.; Hiddema, A.C.; Vliet, S.F. van

    2012-01-01

    We present the design and evaluation of a new demonstrator rifle sight viewing system containing direct view, red aim point and fusion of an (uncooled, LWIR) thermal sensor with a digital image intensifier. Our goal is to create a system that performs well under a wide variety of (weather)

  5. Comparison of human skin opto-thermal response to near-infrared and visible laser irradiations: a theoretical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Dai Tianhong [Department of Bioengineering, Rice University, Houston, TX 77251 (United States); Pikkula, Brian M [Department of Bioengineering, Rice University, Houston, TX 77251 (United States); Wang, Lihong V [Department of Biomedical Engineering, Texas A and M University, College Station, TX 77843 (United States); Anvari, Bahman [Department of Bioengineering, Rice University, Houston, TX 77251 (United States)

    2004-11-07

    Near-infrared wavelengths are absorbed less by epidermal melanin, and penetrate deeper into human skin dermis and blood than visible wavelengths. Therefore, laser irradiation using near-infrared wavelengths may improve the therapeutic outcome of cutaneous hyper-vascular malformations in moderately to heavily pigmented skin patients and those with large-sized blood vessels or blood vessels extending deeply into the skin. A mathematical model composed of a Monte Carlo algorithm to estimate the distribution of absorbed light, numerical solution of a bio-heat diffusion equation to calculate the transient temperature distribution, and a damage integral based on an empirical Arrhenius relationship to quantify the tissue damage was utilized to investigate the opto-thermal response of human skin to near-infrared and visible laser irradiations in conjunction with cryogen spray cooling. In addition, the thermal effects of a single continuous laser pulse and micropulse-composed laser pulse profiles were compared. Simulation results indicated that a 940 nm wavelength induces improved therapeutic outcome compared with a 585 and 595 nm wavelengths for the treatment of patients with large-sized blood vessels and moderately to heavily pigmented skin. On the other hand, a 585 nm wavelength shows the best efficacy in treating small-sized blood vessels, as characterized by the largest laser-induced blood vessel damage depth compared with 595 and 940 nm wavelengths. Dermal blood content has a considerable effect on the threshold incident dosage for epidermal damage, while the effect of blood vessel size is minimal. For the same macropulse duration and incident dosage, a micropulse-composed pulse profile results in higher peak temperature at the basal layer of skin epidermis than an ideal single continuous pulse profile.

  6. Investigation of adulteration of sunflower oil with thermally deteriorated oil using Fourier transform mid-infrared spectroscopy and chemometrics

    Directory of Open Access Journals (Sweden)

    Joana Vilela

    2015-12-01

    Full Text Available Fourier transform infrared spectroscopy based on attenuated total reflectance sampling technique, combined with multivariate analysis methods was used to monitor the adulteration of pure sunflower oil (SO with thermally deteriorated oil (TDO. Contrary to published research, in this work, SO was thermally deteriorated in the absence of foodstuff. SO samples were exposed to temperatures between 125 and 225°C from 6 to 24 h. Quantification of adulteration of SO with TDO, based on principal components regression (PCR, partial least squares regression (PLS-R, and linear discriminant analysis (LDA applied to mid-infrared spectra and to their first and second derivatives is reported for the first time. Infrared frequencies associated with the biochemical differences between TDO samples deteriorated in different conditions were investigated by principal component analysis (PCA. LDA was effective in the twofold classification presence/absence of TDO in adulterated SO (with 5% V/V of less of TDO. It provided 93.7% correct classification for the calibration set and 91.3% correct classification when cross-validated. A detection limit of 1% V/V of TDO in SO was determined. Investigation of an external set of samples allowed the evaluation of the predictability of the models. The regression coefficient (R2 for prediction was 0.95 and 0.96 and the RMSE was 2.1 and 1.9% V/V when using the PCR or PLS-R models, respectively, and the first derivative of spectra. To the best of our knowledge, no investigation of adulteration of SO with TDO based on PCR, PLS-R, and LDA has been reported so far.

  7. Nanoscale Infrared, Thermal, and Mechanical Characterization of Telaprevir-Polymer Miscibility in Amorphous Solid Dispersions Prepared by Solvent Evaporation.

    Science.gov (United States)

    Li, Na; Taylor, Lynne S

    2016-03-07

    Miscibility is of great interest for pharmaceutical systems, in particular, for amorphous solid dispersions, as phase separation can lead to a higher tendency to crystallize, resulting in a loss in solubility, decreased dissolution rate, and compromised bioavailability. The purpose of this study was to investigate the miscibility behavior of a model poorly water-soluble drug, telaprevir (TPV), with three different polymers using atomic force microscopy-based infrared, thermal, and mechanical analysis. Standard atomic force microscopy (AFM) imaging together with nanoscale infrared spectroscopy (AFM-IR), nanoscale thermal analysis (nanoTA), and Lorentz contact resonance (LCR) measurements were used to evaluate the miscibility behavior of TPV with three polymers, hydroxypropyl methylcellulose (HPMC), HPMC acetate succinate (HPMCAS), and poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA), at different drug to polymer ratios. Phase separation was observed with HPMC and PVPVA at drug loadings above 10%. For HPMCAS, a smaller miscibility gap was observed, with phase separation being observed at drug loadings higher than ∼30-40%. The domain size of phase-separated regions varied from below 50 nm to a few hundred nanometers. Localized infrared spectra, nano-TA measurements, images from AFM-based IR, and LCR measurements showed clear contrast between the continuous and discrete domains for these phase-separated systems, whereby the discrete domains were drug-rich. Fluorescence microscopy provided additional evidence for phase separation. These methods appear to be promising to evaluate miscibility in drug-polymer systems with similar Tgs and submicron domain sizes. Furthermore, such findings are of obvious importance in the context of contributing to a mechanistic understanding of amorphous solid dispersion phase behavior.

  8. Remote sensing monitoring of thermal discharge in Daya Bay Nuclear Power Station based on HJ-1 infrared camera

    Science.gov (United States)

    Zhu, Li; Yin, Shoujing; Wu, Chuanqing; Ma, Wandong; Hou, Haiqian; Xu, Jing

    2014-11-01

    In this paper, the method of monitoring coastal areas affected by thermal discharge of nuclear plant by using remote sensing techniques was introduced. The proposed approach was demonstrated in Daya Bay nuclear plant based on HJ-B IRS data. A single channel water temperature inversion algorithm was detailed, considering the satellite zenith angle and water vapor. Moreover the reference background temperature was obtained using the average environmental temperature method. In the case study of Daya Bay nuclear plant, the spatial distribution of thermal pollution was analyzed by taking into account the influence of tidal, wind and so on. According to the findings of this study, the speed and direction of the ebb tide, is not conducive to the diffusion of thermal discharge of DNNP. The vertically thermal diffusion was limited by the shallow water depth near the outlet.

  9. Prediction of tomato freshness using infrared thermal imaging and transient step heating

    Science.gov (United States)

    Xie, Jing; Hsieh, Sheng-Jen; Tan, Zuojun; Wang, Hongjin; Zhang, Jian

    2016-05-01

    Tomatoes are the world's 8th most valuable agricultural product, valued at $58 billion dollars annually. Nondestructive testing and inspection of tomatoes is challenging and multi-faceted. Optical imaging is used for quality grading and ripeness. Spectral and hyperspectral imaging are used to detect surface detects and cuticle cracks. Infrared thermography has been used to distinguish between different stages of maturity. However, determining the freshness of tomatoes is still an open problem. For this research, infrared thermography was used for freshness prediction. Infrared images were captured at a rate of 1 frame per second during heating (0 to 40 seconds) and cooling (0 to 160 seconds). The absolute temperatures of the acquired images were plotted. Regions with higher temperature differences between fresh and less fresh (rotten within three days) tomatoes of approximately uniform size and shape were used as the input nodes in a three-layer artificial neural network (ANN) model. Two-thirds of the data were used for training and one-third was used for testing. Results suggest that by using infrared imaging data as input to an ANN model, tomato freshness can be predicted with 90% accuracy. T-tests and F-tests were conducted based on absolute temperature over time. The results suggest that there is a mean temperature difference between fresh and less fresh tomatoes (α = 0.05). However, there is no statistical difference in terms of temperature variation, which suggests a water concentration difference.

  10. Infrared Emission by Dust Around lambda Bootis Stars: Debris Disks or Thermally Emitting Nebulae?

    CERN Document Server

    Martínez-Galarza, J R; Su, K Y L; Gáspár, A; Rieke, G; Mamajek, E E

    2008-01-01

    We present a model that describes stellar infrared excesses due to heating of the interstellar (IS) dust by a hot star passing through a diffuse IS cloud. This model is applied to six lambda Bootis stars with infrared excesses. Plausible values for the IS medium (ISM) density and relative velocity between the cloud and the star yield fits to the excess emission. This result is consistent with the diffusion/accretion hypothesis that lambda Bootis stars (A- to F-type stars with large underabundances of Fe-peak elements) owe their characteristics to interactions with the ISM. This proposal invokes radiation pressure from the star to repel the IS dust and excavate a paraboloidal dust cavity in the IS cloud, while the metal-poor gas is accreted onto the stellar photosphere. However, the measurements of the infrared excesses can also be fit by planetary debris disk models. A more detailed consideration of the conditions to produce lambda Bootis characteristics indicates that the majority of infrared-excess stars wi...

  11. A compact thermal infrared imaging radiometer with high spatial resolution and wide swath for a small satellite using a large format uncooled infrared focal plane array

    Science.gov (United States)

    Tatsumi, Kenji; Sakuma, Fumihiro; Kikuchi, Masakuni; Tanii, Jun; Kawanishi, Toneo; Ueno, Shinichi; Kuga, Hideki

    2014-10-01

    In this paper, we present a feasibility study for the potential of a high spatial resolution and wide swath thermal infrared (TIR) imaging radiometer for a small satellite using a large format uncooled infrared focal plane array (IR-FPA). The preliminary TIR imaging radiometer designs were performed. One is a panchromatic (mono-band) imaging radiometer (8-12μm) with a large format 2000 x 1000 pixels uncooled IR-FPA with a pixel pitch of 15 μm. The other is a multiband imaging radiometer (8.8μm, 10.8μm, 11.4μm). This radiometer is employed separate optics and detectors for each wave band. It is based on the use of a 640 x 480 pixels uncooled IR-FPA with a pixel pitch of 25 μm. The thermal time constant of an uncooled IR-FPA is approximately 10-16ms, and introduces a constraint to the satellite operation to achieve better signal-to-noise ratio, MTF and linearity performances. The study addressed both on-ground time-delayintegration binning and staring imaging solutions, although a staring imaging was preferred after trade-off. The staring imaging requires that the line of sight of the TIR imaging radiometer gazes at a target area during the acquisition time of the image, which can be obtained by rotating the satellite or a steering mirror around the pitch axis. The single band radiometer has been designed to yield a 30m ground sample distance over a 30km swath width from a satellite altitude of 500km. The radiometric performance, enhanced with staring imaging, is expected to yield a NETD less than 0.5K for a 300K ground scene. The multi-band radiometer has three spectral bands with spatial resolution of 50m and swath width of 24km. The radiometric performance is expected to yield a NETD less than 0.85K. We also showed some preliminary simulation results on volcano, desert/urban scenes, and wildfire.

  12. Nanofluid Types, Their Synthesis, Properties and Incorporation in Direct Solar Thermal Collectors: A Review

    Science.gov (United States)

    Chamsa-ard, Wisut; Brundavanam, Sridevi; Fung, Chun Che; Fawcett, Derek; Poinern, Gerrard

    2017-01-01

    The global demand for energy is increasing and the detrimental consequences of rising greenhouse gas emissions, global warming and environmental degradation present major challenges. Solar energy offers a clean and viable renewable energy source with the potential to alleviate the detrimental consequences normally associated with fossil fuel-based energy generation. However, there are two inherent problems associated with conventional solar thermal energy conversion systems. The first involves low thermal conductivity values of heat transfer fluids, and the second involves the poor optical properties of many absorbers and their coating. Hence, there is an imperative need to improve both thermal and optical properties of current solar conversion systems. Direct solar thermal absorption collectors incorporating a nanofluid offers the opportunity to achieve significant improvements in both optical and thermal performance. Since nanofluids offer much greater heat absorbing and heat transfer properties compared to traditional working fluids. The review summarizes current research in this innovative field. It discusses direct solar absorber collectors and methods for improving their performance. This is followed by a discussion of the various types of nanofluids available and the synthesis techniques used to manufacture them. In closing, a brief discussion of nanofluid property modelling is also presented. PMID:28561802

  13. Identification of thermal properties distribution in building wall using infrared thermography

    OpenAIRE

    Brouns, Jordan; Dumoulin, Jean

    2016-01-01

    International audience; In the construction sector, most of the measurements carried out from IR camera devices are exploited in a qualitative way (e.g. observation of thermal bridges). However, unless a quantitative analysis is realized, it is not possible to assess the impact of the observed phenomena. Most of research efforts and proposed solutions to identify quantified thermal properties (e.g. U-values) have to be completed, adapted to the built environment and validated in experimental ...

  14. Thermal analysis of a direct-gain room with shape-stabilized PCM plates

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Guobing; Zhang, Yinping; Lin, Kunping; Xiao, Wei [Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084 (China)

    2008-06-15

    The thermal performance of a south-facing direct-gain room with shape-stabilized phase change material (SSPCM) plates has been analysed using an enthalpy model. Effects of the following factors on room air temperature are investigated: the thermophysical properties of the SSPCM (melting temperature, heat of fusion and thermal conductivity), inner surface convective heat transfer coefficient, location and thickness of the SSPCM plate, wall structure (external thermal insulation and wallboard material) etc. The results show that: (1) for the present conditions, the optimal melting temperature is about 20{sup o}C and the heat of fusion should not be less than 90 kJ kg{sup -1}; (2) it is the inner surface convection, rather than the internal conduction resistance of SSPCM, that limits the latent thermal storage; (3) the effect of PCM plates located at the inner surface of interior wall is superior to that of exterior wall (the south wall); (4) external thermal insulation of the exterior wall obviously influences the operating effect and period of the SSPCM plates and the indoor temperature in winter; (5) the SSPCM plates create a heavyweight response to lightweight constructions with an increase of the minimum room temperature at night by up to 3{sup o}C for the case studied; (6) the SSPCM plates really absorb and store the solar energy during the daytime and discharge it later and improve the indoor thermal comfort degree at nighttime. (author)

  15. Detection and mapping of volcanic rock assemblages and associated hydrothermal alteration with Thermal Infrared Multiband Scanner (TIMS) data Comstock Lode Mining District, Virginia City, Nevada

    Science.gov (United States)

    Taranik, James V.; Hutsinpiller, Amy; Borengasser, Marcus

    1986-01-01

    Thermal Infrared Multispectral Scanner (TIMS) data were acquired over the Virginia City area on September 12, 1984. The data were acquired at approximately 1130 hours local time (1723 IRIG). The TIMS data were analyzed using both photointerpretation and digital processing techniques. Karhuen-Loeve transformations were utilized to display variations in radiant spectral emittance. The TIMS image data were compared with color infrared metric camera photography, LANDSAT Thematic Mapper (TM) data, and key areas were photographed in the field.

  16. Analysis on the effect of hypersonic vehicle's optical window on infrared thermal imaging system

    Science.gov (United States)

    Dong, Liquan; Han, Ying; Kong, Lingqin; Liu, Ming; Zhao, Yuejin; Zhang, Li; Li, Yanhong; Tian, Yi; Sa, Renna

    2015-08-01

    According to the aero-thermal effects and aero-thermal radiation effects of the optical window, the thermo-optic effect, the elasto-optical effect and the thermal deformation of the optical window are analyzed using finite element analysis method. Also, the peak value and its location of the point spread function, which is caused by the thermo-optic effect and the dome thermal deformation, are calculated with the variance of time. Furthermore, the temperature gradient influence to the transmission of optical window, the variation trend of transmission as well as optical window radiation with time are studied based on temperature distribution analysis. The simulations results show that: When the incident light is perpendicular to the optical window, image shift is mainly caused by its thermal deformation, and the value of image shift is very small. Image shift is determined only by the angle of the incident light. With a certain incident angle, image shift is not affected by the gradient refractive index change. The optical window transmission is mainly affected by temperature gradient and thus not neglectable to image quality. Therefore, the selection of window cooling methods, needs not only consider the window temperature but try to eliminate the temperature gradient. When calculating the thermal radiation, the optical window should be regarded as volume radiation source instead of surface radiator. The results provide the basis for the optical window design, material selection and the later image processing.

  17. Two-dimensional infrared spectroscopic study on the thermally induced structural changes of glutaraldehyde-crosslinked collagen.

    Science.gov (United States)

    Tian, Zhenhua; Wu, Kun; Liu, Wentao; Shen, Lirui; Li, Guoying

    2015-04-05

    The thermal stability of collagen solution (5 mg/mL) crosslinked by glutaraldehyde (GTA) [GTA/collagen (w/w)=0.5] was measured by differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR), and the thermally induced structural changes were analyzed using two-dimensional (2D) correlation spectra. The denaturation temperature (Td) and enthalpy change (ΔH) of crosslinked collagen were respectively about 27°C and 88 J/g higher than those of native collagen, illuminating the thermal stability increased. With the increase of temperature, the red-shift of absorption bands and the decreased AIII/A1455 value obtained from FTIR spectra indicated that hydrogen bonds were weakened and the unwinding of triple helix occurred for both native and crosslinked collagens; whereas the less changes in red-shifting and AIII/A1455 values for crosslinked collagen also confirmed the increase in thermal stability. Additionally, the 2D correlation analysis provided information about the thermally induced structural changes. In the 2D synchronous spectra, the intensities of auto-peaks at 1655 and 1555 cm(-1), respectively assigned to amide I b