WorldWideScience

Sample records for directional radiation detectors

  1. Multi-directional radiation detector using photographic film

    International Nuclear Information System (INIS)

    Junet, L K; Majid, Z A Abdul; Sapuan, A H; Sayed, I S; Pauzi, N F

    2014-01-01

    Ionising radiation has always been part of our surrounding and people are continuously exposed to it. Ionising radiation is harmful to human health, thus it is vital to monitor the radiation. To monitor radiation, there are three main points that should be observed cautiously, which are energy, quantity, and direction of the radiation sources. A three dimensional (3D) dosimeter is an example of a radiation detector that provide these three main points. This dosimeter is able to record the radiation dose distribution in 3D. Applying the concept of dose detection distribution, study has been done to design a multi-directional radiation detector of different filter thicknesses. This is obtained by designing a cylinder shaped aluminum filter with several layers of different thickness. Black and white photographic material is used as a radiation-sensitive material and a PVC material has been used as the enclosure. The device is then exposed to a radiation source with different exposure factors. For exposure factor 70 kVp, 16 mAs; the results have shown that optical density (OD) value at 135° is 1.86 higher compared with an OD value at 315° which is 0.71 as the 135° area received more radiation compare to 315° region. Furthermore, with an evidence of different angle of film give different value of OD shows that this device has a multidirectional ability. Materials used to develop this device are widely available in the market, thus reducing the cost of development and making it suitable for commercialisation

  2. Compound Semiconductor Radiation Detector

    International Nuclear Information System (INIS)

    Kim, Y. K.; Park, S. H.; Lee, W. G.; Ha, J. H.

    2005-01-01

    In 1945, Van Heerden measured α, β and γ radiations with the cooled AgCl crystal. It was the first radiation measurement using the compound semiconductor detector. Since then the compound semiconductor has been extensively studied as radiation detector. Generally the radiation detector can be divided into the gas detector, the scintillator and the semiconductor detector. The semiconductor detector has good points comparing to other radiation detectors. Since the density of the semiconductor detector is higher than that of the gas detector, the semiconductor detector can be made with the compact size to measure the high energy radiation. In the scintillator, the radiation is measured with the two-step process. That is, the radiation is converted into the photons, which are changed into electrons by a photo-detector, inside the scintillator. However in the semiconductor radiation detector, the radiation is measured only with the one-step process. The electron-hole pairs are generated from the radiation interaction inside the semiconductor detector, and these electrons and charged ions are directly collected to get the signal. The energy resolution of the semiconductor detector is generally better than that of the scintillator. At present, the commonly used semiconductors as the radiation detector are Si and Ge. However, these semiconductor detectors have weak points. That is, one needs thick material to measure the high energy radiation because of the relatively low atomic number of the composite material. In Ge case, the dark current of the detector is large at room temperature because of the small band-gap energy. Recently the compound semiconductor detectors have been extensively studied to overcome these problems. In this paper, we will briefly summarize the recent research topics about the compound semiconductor detector. We will introduce the research activities of our group, too

  3. Radiation emitter-detector package

    International Nuclear Information System (INIS)

    O'Brien, J.T.; Limm, A.C.; Nyul, P.; Tassia, V.S. Jr.

    1978-01-01

    Mounted on the metallic base of a radiation emitter-detector is a mounting block is a first projection, and a second projection. A radiation detector is on the first projection and a semiconductor electroluminescent device, i.e., a radiation emitter, is on the second projection such that the plane of the recombination region of the electroluminescent device is perpendicular to the radiation incident surface of the radiation detector. The electroluminescent device has a primary emission and a secondary emission in a direction different from the primary emission. A radiation emitter-detector package as described is ideally suited to those applications wherein the secondary radiation of the electroluminescent device is fed into a feedback circuit regulating the biasing current of the electroluminescent device

  4. Superlattice electroabsorption radiation detector

    International Nuclear Information System (INIS)

    Cooke, B.J.

    1993-06-01

    This paper provides a preliminary investigation of a new class of superlattice electroabsorption radiation detectors that employ direct optical modulation for high-speed, two-dimensional (2-D), high-resolution imaging. Applications for the detector include nuclear radiation measurements, tactical guidance and detection (laser radar), inertial fusion plasma studies, and satellite-based sensors. Initial calculations discussed in this paper indicate that a 1.5-μm (GaAlAs) multi-quantum-well (MQW) Fabry-Perot detector can respond directly to radiation of energies 1 eV to 10 KeV, and indirectly (with scattering targets) up through gamma, with 2-D sample rates on the order of 20 ps

  5. Radiation damage in silicon detectors

    CERN Document Server

    Lindström, G

    2003-01-01

    Radiation damage effects in silicon detectors under severe hadron and gamma-irradiation are surveyed, focusing on bulk effects. Both macroscopic detector properties (reverse current, depletion voltage and charge collection) as also the underlying microscopic defect generation are covered. Basic results are taken from the work done in the CERN-RD48 (ROSE) collaboration updated by results of recent work. Preliminary studies on the use of dimerized float zone and Czochralski silicon as detector material show possible benefits. An essential progress in the understanding of the radiation-induced detector deterioration had recently been achieved in gamma irradiation, directly correlating defect analysis data with the macroscopic detector performance.

  6. Ionizing radiation detector using multimode optical fibers

    International Nuclear Information System (INIS)

    Suter, J.J.; Poret, J.C.; Rosen, M.; Rifkind, J.M.

    1993-01-01

    An optical ionizing radiation detector, based on the attenuation of 850-nm light in 50/125-μm multimode fibers, is described. The detector is especially well suited for application on spacecraft because of its small design. The detection element consists of a section of coiled fibers that has been designed to strip higher-order optical modes. Cylindrical radiation shields with atomic numbers ranging from Z = 13 (aluminum too) Z = 82 (lead) were placed around the ionizing radiation detector so that the effectiveness of the detector could be measured. By exposing the shields and the detector to 1.25-MeV cobalt 60 radiation, the mass attenuation coefficients of the shields were measured. The detector is based on the phenomenon that radiation creates optical color centers in glass fibers. Electron spin resonance spectroscopy performed on the 50/125-μm fibers showed the presence of germanium oxide and phosphorus-based color centers. The intensity of these centers is directly related to the accumulated gamma radiation

  7. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1996-01-01

    The National Institute for Nuclear Research has established a Radiation detector laboratory that has the possibility of providing to the consultants on the handling and applications of the nuclear radiation detectors. It has special equipment to repair the radiation detectors used in spectroscopy as the hyper pure Germanium for gamma radiation and the Lithium-silica for X-rays. There are different facilities in the laboratory that can become useful for other institutions that use radiation detectors. This laboratory was created to satisfy consultant services, training and repairing of the radiation detectors both in national and regional levels for Latin America. The laboratory has the following sections: Nuclear Electronic Instrumentation; where there are all kind of instruments for the measurement and characterization of detectors like multichannel analyzers of pulse height, personal computers, amplifiers and nuclear pulse preamplifiers, nuclear pulses generator, aleatories, computer programs for radiation spectra analysis, etc. High vacuum; there is a vacuum escape measurer, two high vacuum pumps to restore the vacuum of detectors, so the corresponding measurers and the necessary tools. Detectors cleaning; there is an anaerobic chamber for the detectors handling at inert atmosphere, a smoke extraction bell for cleaning with the detector solvents. Cryogenic; there are vessels and tools for handling liquid nitrogen which is used for cooling the detectors when they required it. (Author)

  8. Radiation detectors

    International Nuclear Information System (INIS)

    2013-01-01

    This sixth chapter presents the operational principles of the radiation detectors; detection using photographic emulsions; thermoluminescent detectors; gas detectors; scintillation detectors; liquid scintillation detectors; detectors using semiconductor materials; calibration of detectors; Bragg-Gray theory; measurement chain and uncertainties associated to measurements

  9. Developments of directional detectors with NaI(Tl)/BGO scintillators

    International Nuclear Information System (INIS)

    Shirakawa, Y.

    2004-01-01

    This paper describes directional gamma ray detectors with different types of scintillators. The detectors, which positively increase directional sensitivity to incident gamma rays, have been developed to measure directions, energies and counts of gamma rays, and to search for radioactive materials such as orphan radioisotopes or contaminations. Experimental results have shown that proposed directional detectors have a potential for practical use in real fields and will contribute to radiation protection and safety

  10. Semiconductor high-energy radiation scintillation detector

    International Nuclear Information System (INIS)

    Kastalsky, A.; Luryi, S.; Spivak, B.

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation generates electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. An important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombination time of minority carriers. Notably, the fast response comes without any degradation in brightness. When the scintillator is implemented in a qualified semiconductor material (such as InP or GaAs), the photo-detector and associated circuits can be epitaxially integrated on the scintillator slab and the structure can be stacked-up to achieve virtually any desired absorption capability

  11. Nuclear radiation detectors

    International Nuclear Information System (INIS)

    Kapoor, S.S.; Ramamurthy, V.S.

    1986-01-01

    The present monograph is intended to treat the commonly used detectors in the field of nuclear physics covering important developments of the recent years. After a general introduction, a brief account of interaction of radiation with matter relevant to the processes in radiation detection is given in Chapter II. In addition to the ionization chamber, proportional counters and Geiger Mueller counters, several gas-filled detectors of advanced design such as those recently developed for heavy ion physics and other types of studies have been covered in Chapter III. Semiconductor detectors are dealt with in Chapter IV. The scintillation detectors which function by sensing the photons emitted by the luminescence process during the interaction of the impinging radiation with the scintillation detector medium are described in Chapter V. The topic of neutron detectors is covered in Chapter VI, as in this case the emphasis is more on the method of neutron detection rather than on detector type. Electronic instrumentation related to signal pulse processing dealt with in Chapter VII. The track etch detectors based on the visualization of the track of the impinging charge particle have also been briefly covered in the last chapter. The scope of this monograph is confined to detectors commonly used in low and medium energy nuclear physics research and applications of nuclear techniques. The monograph is intended for post-graduate students and those beginning to work with the radiation detectors. (author)

  12. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1997-01-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  13. Self-powered radiation detector

    International Nuclear Information System (INIS)

    Playfoot, K.C.; Bauer, R.F.; Goldstein, N.P.

    1980-01-01

    This invention relates to a self powered radiation detector requiring no excitation potential to generate a signal indicating a radiation flux. Such detectors comprise two electrically insulated electrodes, at a distance from each other. These electrodes are made of conducting materials having a different response for neutron and/or gamma ray radiation flux levels, as in nuclear power stations. This elongated detector generates an electric signal in terms of an incident flux of radiations cooperating with coaxial conductors insulated from each other and with different radiation reaction characteristics. The conductor with the greatest reaction to the radiations forms the central emitting electrode and the conductor with the least reaction to the radiations forms a tubular coaxial collecting electrode. The rhodium or cobalt tubular emitting electrode contains a ductile central conducting cable placed along the longitudinal axis of the detector. The latter is in high nickel steel with a low reaction to radiation [fr

  14. Circuitry for use with an ionizing-radiation detector

    International Nuclear Information System (INIS)

    Marshall, J.H. III; Harrington, T.M.

    1976-01-01

    An improved system of circuitry for use in combination with an ionizing-radiation detector over a wide range of radiation levels includes a current-to-frequency converter together with a digital data processor for respectively producing and measuring a pulse repetition frequency which is proportional to the output current of the ionizing-radiation detector, a dc-to-dc converter for providing closely regulated operating voltages from a rechargeable battery and a bias supply for providing high voltage to the ionization chamber. The ionizing-radiation detector operating as a part of this system produces a signal responsive to the level of ionizing radiation in the vicinity of the detector, and this signal is converted into a pulse frequency which will vary in direct proportion to such level of ionizing-radiation. The data processor, by counting the number of pulses from the converter over a selected integration interval, provides a digital indication of radiation dose rate, and by accumulating the total of all such pulses provides a digital indication of total integrated dose. Ordinary frequency-to-voltage conversion devices or digital display techniques can be used as a means for providing audible and visible indications of dose and dose-rate levels

  15. Foam radiators for transition radiation detectors

    International Nuclear Information System (INIS)

    Chernyatin, V.; Dolgoshein, B.; Gavrilenko, I.; Potekhin, M.; Romaniouk, A.; Sosnovtsev, V.

    1993-01-01

    A wide variety of foam radiators, potentially useful in the design of a transition radiation detector, the possible particle identification tool in collider experiments, have been tested in the beam. Various characteristics of these radiators are compared, and the conclusion is reached that certain brands of polyethylene foam are best suited for use in the detector. Comparison is made with a 'traditional' radiator, which is a periodic structure of plastic foils. (orig.)

  16. Radiation detector device for measuring ionizing radiation

    International Nuclear Information System (INIS)

    Brake, D. von der.

    1983-01-01

    The device contains a compensating filter circuit, which guarantees measurement of the radiation dose independent of the energy or independent of the energy and direction. The compensating filter circuit contains a carrier tube of a slightly absorbing metal with an order number not higher than 35, which surrounds a tubular detector and which carries several annular filter parts on its surface. (orig./HP) [de

  17. Advanced Space Radiation Detector Technology Development

    Science.gov (United States)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  18. Silicon radiation detectors

    International Nuclear Information System (INIS)

    Lutz, G.

    1995-01-01

    An introduction to and an overview of function principles and properties of semiconductor radiation detectors is attempted. The paper is addressed to people interested in detector development but not already experts in the field of semiconductor detectors. (orig.)

  19. Radiation detectors laboratory; Laboratorio de detectores de radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez J, F.J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  20. Locating gamma radiation source by self collimating BGO detector system

    Energy Technology Data Exchange (ETDEWEB)

    Orion, I; Pernick, A; Ilzycer, D; Zafrir, H [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center; Shani, G [Ben-Gurion Univ. of the Negev, Beersheba (Israel)

    1996-12-01

    The need for airborne collimated gamma detector system to estimate the radiation released from a nuclear accident has been established. A BGO detector system has been developed as an array of separate seven cylindrical Bismuth Germanate scintillators, one central detector symmetrically surrounded by six detectors. In such an arrangement, each of the detectors reduced the exposure of other detectors in the array to a radiation incident from a possible specific spatial angle, around file array. This shielding property defined as `self-collimation`, differs the point source response function for each of the detectors. The BGO detector system has a high density and atomic number, and therefore provides efficient self-collimation. Using the response functions of the separate detectors enables locating point sources as well as the direction of a nuclear radioactive plume with satisfactory angular resolution, of about 10 degrees. The detector`s point source response, as function of the source direction, in a horizontal plane, has been predicted by analytical calculation, and was verified by Monte-Carlo simulation using the code EGS4. The detector`s response was tested in a laboratory-scale experiment for several gamma ray energies, and the experimental results validated the theoretical (analytical and Monte-Carlo) results. (authors).

  1. Interferometric direction finding with a metamaterial detector

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesh, Suresh; Schurig, David, E-mail: david.schurig@utah.edu [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Shrekenhamer, David; Padilla, Willie [Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467 (United States); Xu, Wangren; Sonkusale, Sameer [Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155 (United States)

    2013-12-16

    We present measurements and analysis demonstrating useful direction finding of sources in the S band (2–4 GHz) using a metamaterial detector. An augmented metamaterial absorber that supports magnitude and phase measurement of the incident electric field, within each unit cell, is described. The metamaterial is implemented in a commercial printed circuit board process with off-board back-end electronics. We also discuss on-board back-end implementation strategies. Direction finding performance is analyzed for the fabricated metamaterial detector using simulated data and the standard algorithm, MUtiple SIgnal Classification. The performance of this complete system is characterized by its angular resolution as a function of radiation density at the detector. Sources with power outputs typical of mobile communication devices can be resolved at kilometer distances with sub-degree resolution and high frame rates.

  2. Basic Radiation Detectors. Chapter 6

    Energy Technology Data Exchange (ETDEWEB)

    Van Eijk, C. W.E. [Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands)

    2014-12-15

    Radiation detectors are of paramount importance in nuclear medicine. The detectors provide a wide range of information including the radiation dose of a laboratory worker and the positron emission tomography (PET) image of a patient. Consequently, detectors with strongly differing specifications are used. In this chapter, general aspects of detectors are discussed.

  3. Solid state radiation detector system

    International Nuclear Information System (INIS)

    1977-01-01

    A solid state radiation flux detector system utilizes a detector element, consisting of a bar of semiconductor having electrical conductance of magnitude dependent upon the magnitude of photon and charged particle flux impinging thereon, and negative feedback circuitry for adjusting the current flow through a light emitting diode to facilitate the addition of optical flux, having a magnitude decreasing in proportion to any increase in the magnitude of radiation (e.g. x-ray) flux incident upon the detector element, whereby the conductance of the detector element is maintained essentially constant. The light emitting diode also illuminates a photodiode to generate a detector output having a stable, highly linear response with time and incident radiation flux changes

  4. Assembly of gamma radiation detection with directivity properties

    International Nuclear Information System (INIS)

    Stoica, M.; Talpalariu, C.

    2016-01-01

    An assembly of gamma radiation detection with directivity properties and small size enables the development of portable equipment or robots specialized in finding and signaling radioactively contaminated areas in case of nuclear incidents or decommissioning of nuclear installations. Directivity characteristic of the assembly of gamma radiation detection is very important when aiming to build an equipment for searching radioactively contaminated areas. In order to obtain a suitable directivity characteristics in terms of detection of gamma rays, it was necessary to construct a lead collimator with a cylindrical shape. The detector, preamplifier and amplifier pulse were placed inside the collimator and pulse discriminator circuit and power source were placed beside the collimator, all being disposed within the housing cylindrical experimental. A PIN photodiode type was used as a detector of gamma radiation. (authors)

  5. Workshops on radiation imaging detectors

    International Nuclear Information System (INIS)

    Sochinskii, N.V.; Sun, G.C.; Kostamo, P.; Silenas, A.; Saynatjoki, A.; Grant, J.; Owens, A.; Kozorezov, A.G.; Noschis, E.; Van Eijk, C.; Nagarkar, V.; Sekiya, H.; Pribat, D.; Campbell, M.; Lundgren, J.; Arques, M.; Gabrielli, A.; Padmore, H.; Maiorino, M.; Volpert, M.; Lebrun, F.; Van der Putten, S.; Pickford, A.; Barnsley, R.; Anton, M.E.G.; Mitschke, M.; Gros d'Aillon, E.; Frojdh, C.; Norlin, B.; Marchal, J.; Quattrocchi, M.; Stohr, U.; Bethke, K.; Bronnimann, C.H.; Pouvesle, J.M.; Hoheisel, M.; Clemens, J.C.; Gallin-Martel, M.L.; Bergamaschi, A.; Redondo-Fernandez, I.; Gal, O.; Kwiatowski, K.; Montesi, M.C.; Smith, K.

    2005-01-01

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications

  6. Workshops on radiation imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sochinskii, N V; Sun, G C; Kostamo, P; Silenas, A; Saynatjoki, A; Grant, J; Owens, A; Kozorezov, A G; Noschis, E; Van Eijk, C; Nagarkar, V; Sekiya, H; Pribat, D; Campbell, M; Lundgren, J; Arques, M; Gabrielli, A; Padmore, H; Maiorino, M; Volpert, M; Lebrun, F; Van der Putten, S; Pickford, A; Barnsley, R; Anton, M E.G.; Mitschke, M; Gros d' Aillon, E; Frojdh, C; Norlin, B; Marchal, J; Quattrocchi, M; Stohr, U; Bethke, K; Bronnimann, C H; Pouvesle, J M; Hoheisel, M; Clemens, J C; Gallin-Martel, M L; Bergamaschi, A; Redondo-Fernandez, I; Gal, O; Kwiatowski, K; Montesi, M C; Smith, K

    2005-07-01

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications.

  7. Self-powered radiation detectors

    International Nuclear Information System (INIS)

    Goldstein, N.P.; Todt, W.H.

    1982-01-01

    A self-powered nuclear radiation detector has an emitter electrode of an alloy of a first major constituent metal having a desired high radiation response, and a second minor constituent which imparts to the alloy a desired thermal or mechanical characteristic without diminishing the desired high radiation response. A gamma responsive self-powered detector is detailed which has an emitter with lead as the major constituent, with the minor constituent selected from aluminum, copper, nickel, platinum, or zinc. (author)

  8. Status of radiation detector and neutron monitor technology

    CERN Document Server

    Kim, Y K; Ha, J H; Han, S H; Hong, S B; Hwang, I K; Lee, W G; Moon, B S; Park, S H; Song, M H

    2002-01-01

    In this report, we describe the current states of the radiation detection technology, detectors for industrial application, and neutron monitors. We also survey the new technologies being applied to this field. The method to detect radiation is the measurement of the observable secondary effect from the interaction between incident radiation and detector material, such as ionization, excitation, fluorescence, and chemical reaction. The radiation detectors can be categorized into gas detectors, scintillation detectors, and semiconductor detectors according to major effects and main applications. This report contains the current status and operational principles of these detectors. The application fields of radiation detectors are industrial measurement system, in-core neutron monitor, medical radiation diagnostic device, nondestructive inspection device, environmental radiation monitoring, cosmic-ray measurement, security system, fundamental science experiment, and radiation measurement standardization. The st...

  9. Radiation detector

    International Nuclear Information System (INIS)

    Gillies, W.

    1980-01-01

    The radiation detector for measuring e.g. a neutron flux consists of a central emitter, an insulating shell arranged around it, and a tube-shaped collector enclosing both. The emitter itself is composed of a great number of stranded, spiral wires of small diameter giving a defined flexibility to the detector. For emitter material Pt, Rh, V, Co, Ce, Os or Ta may be used. (DG) [de

  10. Ionizing radiation detector

    Science.gov (United States)

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  11. Electret radiation detector

    International Nuclear Information System (INIS)

    Kubu, M.

    1981-01-01

    The electret radiation detector consists of 30 to 35% of bee wax and of 65 to 70% of colophony. It is mainly the induction conductivity of charo.es between the dipoles in the electret which is used for detection. In the manufacture of the detector, the average atomic number of the electret can be altered by adding various compounds, such as ZnO, which also increases efficiency for gamma radiation. An alpha or beta emitter can also be built-in in the electret. (B.S.)

  12. Semiconductor ionizino. radiation detectors

    International Nuclear Information System (INIS)

    1982-01-01

    Spectrometric semiconductor detectors of ionizing radiation with the electron-hole junction, based on silicon and germanium are presented. The following parameters are given for the individual types of germanium detectors: energy range of detected radiation, energy resolution given as full width at half maximum (FWHM) and full width at one tenth of maximum (FWTM) for 57 Co and 60 Co, detection sensitivity, optimal voltage, and electric capacitance at optimal voltage. For silicon detectors the value of FWHM for 239 Pu is given, the sensitive area and the depth of the sensitive area. (E.S.)

  13. Lyman-alpha detector designed for rocket measurements of the direct solar radiation at 121.5 nm

    International Nuclear Information System (INIS)

    Guineva, V.; Tashev, V.; Witt, G.; Gumbel, J.; Khaplanov, M.

    2007-01-01

    Rocket measurements of the direct Lyman-alpha radiation penetrating in the atmosphere were planned during the HotPay I rocket experiment, June 2006, Project ASLAF (Attenuation of the Solar Lyman-Alpha Flux), Andoya Rocket Range (ARR), Norway. The basic goal of ASLAF project was the study of the processes in the summer mesosphere and thermosphere (up to 110 km), at high latitudes using the Lyman-alpha measurements. The resonance transition 2 P- 2 S of the atomic hydrogen (Lyman-alpha emission) is the strongest and most conspicuous feature in the solar EUV spectrum. Due to the favourable circumstance, that the Lyman-alpha wavelength (121.5 nm) coincides with a minimum of the O 2 absorption spectrum, the direct Lyman-alpha radiation penetrates well in the mesosphere. The Lyman-alpha radiation is the basic agent of the NO molecules ionization, thus generating the ionospheric D-layer, and of the water vapour photolysis, being one of the main H 2 O loss processes. The Lyman-alpha radiation transfer depends on the resonance scattering from the hydrogen atoms in the atmosphere and on the O 2 absorption. Since the Lyman-alpha extinction in the atmosphere is a measure for the column density of the oxygen molecules, the atmospheric temperature profile can be calculated thereof. The detector of solar Lyman-alpha radiation was manufactured in the Stara Zagora Department of the Solar-Terrestrial Influences Laboratory (STIL). Its basic part is an ionization chamber, filled in with NO. A 60 V power supply is applied to the chamber. The produced photoelectric current from the sensor is fed to a 2-channels amplifier, providing an analogue signal. The characteristics of the Lyman-alpha detector were studied. It passed successfully all tests and the results showed that the instrument could be used in rocket experiments to measure the Lyman-alpha flux. From the measurements of the detector, the Lyman-alpha vertical profile can be obtained. The forthcoming scientific data analysis will

  14. Radiation detectors based by polymer materials

    International Nuclear Information System (INIS)

    Cherestes, Margareta; Cherestes, Codrut; Constantinescu, Livia

    2004-01-01

    Scintillation counters make use of the property of certain chemical compounds to emit short light pulses after excitation produced by the passage of charged particles or photons of high energy. These flashes of light are detected by a photomultiplier tube that converts the photons into a voltage pulse. The light emitted from the detector also can be collected, focussed and dispersed by a CCD detector. The study of the evolution of the light emission and of the radiation damage under irradiation is a primary topic in the development of radiation hard polymer based scintillator. Polymer scintillator thin films are used in monitoring radiation beam intensities and simultaneous counting of different radiations. Radiation detectors have characteristics which depend on: the type of radiation, the energy of radiation, and the material of the detector. Three types of polymer thin films were studied: a polyvinyltoluene based scintillator, fluorinated polyimide and PMMA. (authors)

  15. Diamond radiation detectors II. CVD diamond development for radiation detectors

    International Nuclear Information System (INIS)

    Kania, D.R.

    1997-01-01

    Interest in radiation detectors has supplied some of the impetus for improving the electronic properties of CVD diamond. In the present discussion, we will restrict our attention to polycrystalhne CVD material. We will focus on the evolution of these materials over the past decade and the correlation of detector performance with other properties of the material

  16. Radiation energy detector and analyzer

    International Nuclear Information System (INIS)

    Roberts, T.G.

    1981-01-01

    A radiation detector array and a method for measuring the spectral content of radiation. The radiation sensor or detector is an array or stack of thin solid-electrolyte batteries. The batteries, arranged in a stack, may be composed of independent battery cells or may be arranged so that adjacent cells share a common terminal surface. This common surface is possible since the polarity of the batteries with respect to an adjacent battery is unrestricted, allowing a reduction in component parts of the assembly and reducing the overall stack length. Additionally, a test jig or chamber for allowing rapid measurement of the voltage across each battery is disclosed. A multichannel recorder and display may be used to indicate the voltage gradient change across the cells, or a small computer may be used for rapidly converting these voltage readings to a graph of radiation intensity versus wavelength or energy. The behavior of the batteries when used as a radiation detector and analyzer are such that the voltage measurements can be made at leisure after the detector array has been exposed to the radiation, and it is not necessary to make rapid measurements as is now done

  17. Silicon detectors for x and gamma-ray with high radiation resistance

    International Nuclear Information System (INIS)

    Cimpoca, Valerica; Popescu, Ion V.; Ruscu, Radu

    2001-01-01

    Silicon detectors are widely used in X and gamma-ray spectroscopy for direct detection or coupled with scintillators in high energy nuclear physics (modern collider experiments are representative), medicine and industrial applications. In X and gamma dosimetry, a low detection limit (under 6 KeV) with silicon detectors becomes available. Work at the room temperature is now possible due to the silicon processing evolution, which assures low reverse current and high life time of carriers. For several years, modern semiconductor detectors have been the primary choice for the measurement of nuclear radiation in various scientific fields. Nowadays the recently developed high resolution silicon detectors found their way in medical applications. As a consequence many efforts have been devoted to the development of high sensitivity and radiation hardened X and gamma-ray detectors for the energy range of 5 - 150 keV. The paper presents some results concerning the technology and behaviour of X and Gamma ray silicon detectors used in physics research, industrial and medical radiography. The electrical characteristics of these detectors, their modification after exposure to radiation and the results of spectroscopic X and Gamma-ray measurements are discussed. The results indicated that the proposed detectors enables the development of reliable silicon detectors to be used in controlling the low and high radiation levels encountered in a lot of application

  18. Amorphous silicon radiation detectors

    Science.gov (United States)

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  19. Property of the diamond radiation detector

    International Nuclear Information System (INIS)

    Sochor, V.; Cechak, T.; Sopko, B.

    2008-01-01

    The outstanding properties of diamond, such as radiation hardness, high carrier mobility, high band gap and breakdown field, distinguish it as a good candidate for radiation detectors. In the dosimetry for radiotherapy is permanently searched the detector with high sensitivity, high stability, linear dependence of the response, small size, tissue equivalent material and fast response, for the measuring of the temporal and space variations of the dose. The diamond detector properties as high sensitivity, good spatial and temporal resolution, low Leakage currents, low capacitance, possibility to fabricate robust and compact device and high temperature operation make it possible to use these detectors in many fields from high energy physics till radiation monitoring, from Medical therapy dosimetry till synchrotron radiation measurement. (authors)

  20. Radiation Hardening of Silicon Detectors

    CERN Multimedia

    Leroy, C; Glaser, M

    2002-01-01

    %RD48 %title\\\\ \\\\Silicon detectors will be widely used in experiments at the CERN Large Hadron Collider where high radiation levels will cause significant bulk damage. In addition to increased leakage current and charge collection losses worsening the signal to noise, the induced radiation damage changes the effective doping concentration and represents the limiting factor to long term operation of silicon detectors. The objectives are to develop radiation hard silicon detectors that can operate beyond the limits of the present devices and that ensure guaranteed operation for the whole lifetime of the LHC experimental programme. Radiation induced defect modelling and experimental results show that the silicon radiation hardness depends on the atomic impurities present in the initial monocrystalline material.\\\\ \\\\ Float zone (FZ) silicon materials with addition of oxygen, carbon, nitrogen, germanium and tin were produced as well as epitaxial silicon materials with epilayers up to 200 $\\mu$m thickness. Their im...

  1. Signal processing for radiation detectors

    CERN Document Server

    Nakhostin, Mohammad

    2018-01-01

    This book provides a clear understanding of the principles of signal processing of radiation detectors. It puts great emphasis on the characteristics of pulses from various types of detectors and offers a full overview on the basic concepts required to understand detector signal processing systems and pulse processing techniques. Signal Processing for Radiation Detectors covers all of the important aspects of signal processing, including energy spectroscopy, timing measurements, position-sensing, pulse-shape discrimination, and radiation intensity measurement. The book encompasses a wide range of applications so that readers from different disciplines can benefit from all of the information. In addition, this resource: * Describes both analog and digital techniques of signal processing * Presents a complete compilation of digital pulse processing algorithms * Extrapolates content from more than 700 references covering classic papers as well as those of today * Demonstrates concepts with more than 340 origin...

  2. The Use of Radiation Detectors in Medicine: Radiation Detectors for Morphological Imaging (1/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    The development of radiation detectors in the field of nuclear and particle physics has had a terrific impact in medical imaging since this latter discipline took off in late ’70 with the invention of the CT scanners. The massive use in High Energy Physics of position sensitive gas detectors, of high Z and high density scintillators coupled to Photomultiplier (PMT) and Position Sensitive Photomultipliers (PSPMT), and of solid state detectors has triggered during the last 30 years a series of novel applications in Medical Imaging with ionizing radiation. The accelerated scientific progression in genetics and molecular biology has finally generated what it is now called Molecular Imaging. This field of research presents additional challenges not only in the technology of radiation detector, but more and more in the ASIC electronics, fast digital readout and parallel software. In this series of three lectures I will try to present how high energy physics and medical imaging development have both benefited by t...

  3. The Use of Radiation Detectors in Medicine: Radiation Detectors for Functional Imaging (2/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    The development of radiation detectors in the field of nuclear and particle physics has had a terrific impact in medical imaging since this latter discipline took off in late ’70 with the invention of the CT scanners. The massive use in High Energy Physics of position sensitive gas detectors, of high Z and high density scintillators coupled to Photomultiplier (PMT) and Position Sensitive Photomultipliers (PSPMT), and of solid state detectors has triggered during the last 30 years a series of novel applications in Medical Imaging with ionizing radiation. The accelerated scientific progression in genetics and molecular biology has finally generated what it is now called Molecular Imaging. This field of research presents additional challenges not only in the technology of radiation detector, but more and more in the ASIC electronics, fast digital readout and parallel software. In this series of three lectures I will try to present how high energy physics and medical imaging development have both benefited by t...

  4. Semiconductor radiation detectors technology and applications

    CERN Document Server

    2018-01-01

    The aim of this book is to educate the reader on radiation detectors, from sensor to read-out electronics to application. Relatively new detector materials, such as CdZTe and Cr compensated GaAs, are introduced, along with emerging applications of radiation detectors. This X-ray technology has practical applications in medical, industrial, and security applications. It identifies materials based on their molecular composition, not densities as the traditional transmission equipment does. With chapters written by an international selection of authors from both academia and industry, the book covers a wide range of topics on radiation detectors, which will satisfy the needs of both beginners and experts in the field.

  5. Semiconductor radiation detector

    Science.gov (United States)

    Bell, Zane W.; Burger, Arnold

    2010-03-30

    A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

  6. Semiconductor radiation detectors. Device physics

    International Nuclear Information System (INIS)

    Lutz, G.

    2007-01-01

    Starting from basic principles, the author, whose own contributions to these developments have been significant, describes the rapidly growing field of modern semiconductor detectors used for energy and position measurement radiation. This development was stimulated by requirements in elementary particle physics where it has led to important scientific discoveries. It has now spread to many other fields of science and technology. The book is written in a didactic way and includes an introduction to semiconductor physics. The working principles of semiconductor radiation detectors are explained in an intuitive way, followed by formal quantitative analysis. Broad coverage is also given to electronic signal readout and to the subject of radiation damage. The book is the first to comprehensively cover the semiconductor radiation detectors currently in use. It is useful as a teaching guide and as a reference work for research and applications. (orig.)

  7. Detector for atomic particles and ionizing radiations

    International Nuclear Information System (INIS)

    Mallet, Georges; Ythier, Christian.

    1976-01-01

    The aim of this invention is to provide improved detectors of atomic particles and of ionising radiations, having maximum sensitivity, by virtually suppressing all absorption of the radiation scattered by the main detector, so that these detectors are particularly suitable for fitting to anti-Compton spectrometers. Reference is particularly made to detectors of the Ge(Li) type, lithium compensated germanium, which are the most used. It is however made clear that this choice is not restrictive and that this invention not only applies to all known types of detectors and particularly to scintillator detectors, for instance to detectors such as NaI (Tl), composed of a monocrystal of a thallium activated alkaline halogenide, but also to gas, ionisation chamber and luminescent chamber type detectors and in general to all the known devices that convert the energy of particles into electric signals. Owing to the fact that the walls of the enclosure containing the main detector are composed, in the part around this detector, of an auxiliary detector, the latter detects virtually all the radiations scattered by the main detector. It does so without any loss due to the absorption of these radiations (a) by the metal walls of the enclosure usually containing the main detector and (b) by the walls of the auxiliary detector casing. It results from this that the detectors of the invention enable coincidence or anti-coincidence spectrometers with a very high performance to be made [fr

  8. Silicon radiation detector

    International Nuclear Information System (INIS)

    Benc, I.; Kerhart, J.; Kopecky, J.; Krca, P.; Veverka, V.; Weidner, M.; Weinova, H.

    1992-01-01

    The silicon radiation detector, which is designed for the detection of electrons with energies above 500 eV and of radiation within the region of 200 to 1100 nm, comprises a PIN or PNN + type photodiode. The active acceptor photodiode is formed by a detector surface of shallow acceptor diffusion surrounded by a collector band of deep acceptor diffusion. The detector surface of shallow P-type diffusion with an acceptor concentration of 10 15 to 10 17 atoms/cm 3 reaches a depth of 40 to 100 nm. One sixth to one eighth of the collector band width is overlapped by the P + collector band at a width of 150 to 300 μm with an acceptor concentration of 10 20 to 10 21 atoms/cm 3 down a depth of 0.5 to 3 μm. This band is covered with a conductive layer, of NiCr for instance. (Z.S.)

  9. Development of leak detector by radiation. 2

    International Nuclear Information System (INIS)

    Suzuki, Takashi; Okano, Yasuhiro; Chisaka, Haruo

    1997-01-01

    Leak detector by radiation has been developed by cooperative research between Water Authority and us. In his fiscal year, the most suitable arrangement of detector system was simulated by Monte Carlo method. The first, the experimental values were compared with the results of simulation. The second, calculation was carried out by changing the quality of reflective materials and distance between radiation source and detector. The simulation results were agreed with the experimental results. On the basis of the rate of presence of leak, the most suitable arrangement of detector system was obtained under the conditions that both radiation source and detector covered with graphite or iron of 5 cm thickness and separated each other 3 cm apart. However, by comparing FOM (figure of merit), the suitable arrangement was that radiation source and detector adjoined each other and covered by graphite or iron of 20 cm thickness. (S.Y.)

  10. Compound Semiconductor Radiation Detectors

    CERN Document Server

    Owens, Alan

    2012-01-01

    Although elemental semiconductors such as silicon and germanium are standard for energy dispersive spectroscopy in the laboratory, their use for an increasing range of applications is becoming marginalized by their physical limitations, namely the need for ancillary cooling, their modest stopping powers, and radiation intolerance. Compound semiconductors, on the other hand, encompass such a wide range of physical and electronic properties that they have become viable competitors in a number of applications. Compound Semiconductor Radiation Detectors is a consolidated source of information on all aspects of the use of compound semiconductors for radiation detection and measurement. Serious Competitors to Germanium and Silicon Radiation Detectors Wide-gap compound semiconductors offer the ability to operate in a range of hostile thermal and radiation environments while still maintaining sub-keV spectral resolution at X-ray wavelengths. Narrow-gap materials offer the potential of exceeding the spectral resolutio...

  11. A multi-panel direction-sensitive gamma-ray detector for low-altitude radiological searches

    Energy Technology Data Exchange (ETDEWEB)

    Becker, E.M.; Farsoni, A.T.

    2016-11-11

    A lightweight, low-cost multi-panel direction-sensitive radiation detector prototype has been developed at Oregon State University that is designed to be mounted on a small unmanned aerial system to autonomously search for radiation sources while flying close to the ground. The detection system comprises sixteen BGO-SiPM detector panels with an adjustable view angle, and signal outputs are processed in parallel in an FPGA. The minimum detectable activity was calculated to be 1.3 μCi of {sup 137}Cs at 1 m in under 60 s. The counting response of the detector panels were characterized and found to have 4.7% relative standard deviation, indicating good uniformity in overall design and assembly. The detector was also able to estimate the direction of a 12.3 μCi {sup 137}Cs source 100 cm from the device center with 2.3° accuracy in a 95% confidence width of 10.8° in 60 s.

  12. Advanced radiation detector development: Advanced semiconductor detector development: Development of a oom-temperature, gamma ray detector using gallium arsenide to develop an electrode detector

    International Nuclear Information System (INIS)

    Knoll, G.F.

    1995-11-01

    The advanced detector development project at the University of Michigan has completed the first full year of its current funding. Our general goals are the development of radiation detectors and spectrometers that are capable of portable room temperature operation. Over the past 12 months, we have worked primarily in the development of semiconductor spectrometers with open-quotes single carrierclose quotes response that offer the promise of room temperature operation and good energy resolution in gamma ray spectroscopy. We have also begun a small scale effort at investigating the properties of a small non-spectroscopic detector system with directional characteristics that will allow identification of the approximate direction in which gamma rays are incident. These activities have made use of the extensive clean room facilities at the University of Michigan for semiconductor device fabrication, and also the radiation measurement capabilities provided in our laboratory in the Phoenix Building on the North Campus. In addition to our laboratory based activities, Professor Knoll has also been a participant in several Department of Energy review activities held in the Forrestal Building and at the Germantown site. The most recent of these has been service on a DOE review panel chaired by Dr. Hap Lamonds that is reviewing the detector development programs supported through the Office of Arms Control and International Security

  13. Seismic restraint means for radiation detector

    International Nuclear Information System (INIS)

    Underwood, R.H.; Todt, W.H.

    1983-01-01

    Seismic restraint means are provided for mounting an elongated, generally cylindrical nuclear radiation detector within a tubular thimble in a nuclear reactor monitor system. The restraint means permits longitudinal movement of the radiation detector into and out of the thimble. Each restraint means comprises a split clamp ring and a plurality of symmetrically spaced support arms pivotally mounted on the clamp ring. Each support arm has spring bias means and thimble contact means eg insulating rollers whereby the contact means engage the thimble with a constant predetermined force which minimizes seismic vibration action on the radiation detector. (author)

  14. Multi-detector environmental radiation monitor with multichannel data communication for Indian Environmental Radiation Monitoring Network (IERMON)

    International Nuclear Information System (INIS)

    Patel, M.D.; Ratheesh, M.P.; Prakasha, M.S.; Salunkhe, S.S.; Vinod Kumar, A.; Puranik, V.D.; Nair, C.K.G.

    2011-01-01

    A solar powered system for online monitoring of environmental radiation with multiple detectors has been designed, developed and produced. Multiple GM tube detectors have been used to extend the range of measurement from 50 nano Gy/hr to 20 Gy/hr and to enhance the reliability of the system. Online data communication using GSM based and direct LAN based communication has been incorporated. Options for use of power supply from mains powered and battery powered have been enabled. Care has been taken to make it weather-proof, compact, elegant and reliable. The development is a part of the ongoing program of country-wide deployment of radiation monitors under 'Indian Environmental Radiation MOnitoring Network' (IERMON). (author)

  15. Particle identification via transition radiation and detectors

    International Nuclear Information System (INIS)

    Egorytchev, V.; Saveliev, V.; Aplin, S.J.

    2000-01-01

    Transition radiation detectors show great promise for the purposes of lepton identification in existing and future experiments in high-energy physics such as HERA-B, ATLAS, ALICE in high-luminosity environment. More high performance can be expected in low-luminosity conditions - neutrino experiments (NOMAD), and ideal condition for the use of transition radiation detectors in flying and space high-energy experiments (AMS). This paper discusses the practical theory of transition radiation, basic equation and algorithm suitable for detailed analysis of transition radiation and optimization of transition radiation detectors in the area of experimental high-energy physics. The results are based on detailed Monte Carlo simulation of transition radiation introduced in GEANT and experimental results

  16. Particle identification via transition radiation and detectors

    CERN Document Server

    Egorytchev, V; Aplin, S J

    2000-01-01

    Transition radiation detectors show great promise for the purposes of lepton identification in existing and future experiments in high- energy physics such as HERA-B, ATLAS, ALICE in high-luminosity environment. More high performance can be expected in low-luminosity conditions-neutrino experiments (NOMAD), and the ideal condition for the use of transition radiation detectors in flying and space high- energy experiments (AMS). This paper discusses the practical theory of transition radiation, basic equation and algorithm suitable for detailed analysis of transition radiation and optimization of transition radiation detectors in the area of experimental high- energy physics. The results are based on detailed Monte Carlo simulation of transition radiation introduced in GEANT and experimental results. (12 refs).

  17. Precision synchrotron radiation detectors

    International Nuclear Information System (INIS)

    Levi, M.; Rouse, F.; Butler, J.

    1989-03-01

    Precision detectors to measure synchrotron radiation beam positions have been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 /mu/m on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely-aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. Also, detectors of synchrotron radiation using the charge developed by the ejection of Compton-recoil electrons from an array of fine wires are being developed. 4 refs., 5 figs., 1 tab

  18. Radiation detector. [100 A

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P D; Hollands, D V

    1975-12-04

    A radiation detector is described in which the radiation is led to a sensor via a 100 A thick gold film filter, which reduces the infrared components of the irradiation to a greater extent than the ultra-violet component reaching the sensor.

  19. Radiation detector arrangements and methods

    International Nuclear Information System (INIS)

    Jackson, J.

    1989-01-01

    The patent describes a radiation detector arrangement. It comprises at least one detector element in the form of a temperature-sensitive resistor whose electrical resistance changes in response to radiation incident on the detector element, the resistor having a high positive temperature coefficient of electrical resistance at a transition in its electrical conductance, circuit means for applying a voltage across the resistor during operation of the detector arrangement, and temperature-regulation means for regulating the temperature of the resistor so as to operate the resistor in the transition, characterised in that the temperature-regulation means comprises the resistor and the circuit means which passes sufficient current through the resistor by resistance heating to a position in the transition at which a further increase in its temperature in response to incident radiation reduces the resistance heating by reducing the current, thereby stabilizing the temperature of the resistor at the position. The positive temperature coefficient at the position being sufficiently high that the change in the resistance heating produced by a change in the temperature of the resistor at the position is larger than a change in power of the incident radiation required to produce that same change in temperature of the resistor in the absence of any change in resistance heating

  20. Advancements in the development of a directional-position sensing fast neutron detector using acoustically tensioned metastable fluids

    Energy Technology Data Exchange (ETDEWEB)

    Archambault, Brian C. [Sagamore Adams Laboratories, Lafayette, IN (United States); Webster, Jeffrey A.; Grimes, Thomas F.; Fischer, Kevin F.; Hagen, Alex R. [School of Nuclear Engineering, Purdue University, 400 Central Avenue, West Lafayette, IN 47907 (United States); Taleyakhan, Rusi P., E-mail: rusi@purdue.edu [Sagamore Adams Laboratories, Lafayette, IN (United States); School of Nuclear Engineering, Purdue University, 400 Central Avenue, West Lafayette, IN 47907 (United States)

    2015-06-01

    Advancements in the development of a direction and position sensing fast neutron detector which utilizes the directional acoustic tensioned metastable fluid detector (D-ATMFD) are described. The resulting D-ATMFD sensor is capable of determining the direction of neutron radiation with a single compact detector versus use of arrays of detectors in conventional directional systems. Directional neutron detection and source positioning offer enhanced detection speeds in comparison to traditional proximity searching; including enabling determination of the neutron source shape, size, and strength in near real time. This paper discusses advancements that provide the accuracy and precision of ascertaining directionality and source localization information utilizing enhanced signal processing-cum-signal analysis, refined computational algorithms, and on-demand enlargement capability of the detector sensitive volume. These advancements were accomplished utilizing experimentation and theoretical modeling. Benchmarking and qualifications studies were successfully conducted with random and fission based special nuclear material (SNM) neutron sources ({sup 239}Pu–Be and {sup 252}Cf). These results of assessments have indicated that the D-ATMFD compares well in technical performance with banks of competing directional fast neutron detector technologies under development worldwide, but it does so with a single detector unit, an unlimited field of view, and at a significant reduction in both cost and size while remaining completely blind to common background (e.g., beta-gamma) radiation. Rapid and direct SNM neutron source imaging with two D-ATMFD sensors was experimentally demonstrated, and furthermore, validated via multidimensional nuclear particle transport simulations utilizing MCNP-PoliMi. Characterization of a scaled D-ATMFD based radiation portal monitor (RPM) as a cost-effective and efficient {sup 3}He sensor replacement was performed utilizing MCNP-PoliMi simulations

  1. Electromagnetic radiation detector

    Science.gov (United States)

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  2. Recent developments in radiation detectors and instruments

    International Nuclear Information System (INIS)

    Das, Debashis

    2016-01-01

    Radiation detector is the key component in precise and accurate measurement of the nuclear radiations. The detectors deployed for radiation measurements in broadly classified sectors of Energy, Security, Discovery Science and Health and Environments are in general specific to their applications. The nuclear reactors as well as the fuel processing including waste management in energy sector require wide range/variety of detectors and the instruments for safe and precise generation of power. The security sector has gained importance in radiation monitoring in the present security perspective and there are many challenges in development of detector technology. The Discovery Science or the mega science projects viz CERN, Fermilab, GANIL, INO, MACE telescope, ITER etc have continuously generated new demand on detector related technologies that have been also found to be useful in other applications. Similarly, the health and environment monitoring have been also evolving with new technologies and techniques to address the requirement's arising in projects of new nuclear programs

  3. Radiation detectors for reactors

    International Nuclear Information System (INIS)

    Balagi, V.

    2005-01-01

    Detection and measurement of radiation plays a vital role in nuclear reactors from the point of view of control and safety, personnel protection and process control applications. Various types of radiation are measured over a wide range of intensity. Consequently a variety of detectors find use in nuclear reactors. Some of these devices have been developed in Electronics Division. They include gas-filled detectors such as 10 B-lined proportional counters and chambers, fission detectors and BF 3 counters are used for the measurement of neutron flux both for reactor control and safety, process control as well as health physics instrumentation. In-core neutron flux instrumentation employs the use detectors such as miniature fission detectors and self-powered detectors. In this development effort, several indigenous materials, technologies and innovations have been employed to suit the specific requirement of nuclear reactor applications. This has particular significance in view of the fact that several new types of reactors such as P-4, PWR and AHWR critical facilities, FBTR, PFBR as well as the refurbishment of old units like CIRUS are being developed. The development work has sought to overcome some difficulties associated with the non-availability of isotopically enriched neutron-sensing materials, achieving all-welded construction etc. The present paper describes some of these innovations and performance results. (author)

  4. Self-powered radiation detectors

    International Nuclear Information System (INIS)

    Gillies, Wallace.

    1980-01-01

    This invention aims to create a self fed radiation detector comprising a long central emitter-conductor absorbing the neutrons, wrapped in an insulating material, and a thin collector-conductor placed coaxially around the emitter and the insulation, the emitter being constructed of several stranded cables in a given conducting material so that the detector is flexible enough [fr

  5. Application of MOSFET radiation detector for patient dosimetry

    International Nuclear Information System (INIS)

    Soubra, M.; Cygler, J.; Szanto, J.

    1996-01-01

    Purpose: A new direct reading Metal Oxide-Silicon Field Effect Transistor (MOSFET) based radiation detector system has been investigated in a variety of clinical radiotherapy procedures. The aim of this study is to report on the clinical applicability of such a device, its ease of use and on its dosimetric properties that include precision angular and energy dependence. Comparisons of patient dose measurements obtained by the MOSFET based system and the commonly used thermoluminescence dosimeters (TLD) and diodes are discussed. Material and Methods: A commercially available MOSFET dosimetry system that employs dual MOSFET dual bias arrangements has been used in this study. The detector is bonded with the epoxy to the end of a long (1.5 m) flexible cable whose other end is connected to a bias supply box operated by a battery. The bias box can accommodate up to 5 MOSFETs and after radiation exposure the dose can be determined by connecting the detectors to a pre calibrated reader. For the clinical evaluation 5 MOSFETs were used on patients undergoing total body irradiation (TBI) and high dose rate brachytherapy (HDR). The MOSFET detectors were taped to patient surface adjacent to the routinely used TLDs and/or diodes. To examine energy dependence the MOSFET sensitivity (mV/Gy) was determined in relation to a calibrated dose from 6 and 18 MV photon beams. The directional dependence was investigated by placing a MOSFET during irradiation in a special polystyrene insert that can be manually rotated to the required angle. Precision (reproducibility) measurements were made by exposing MOSFETs to multiple fractions of dose in the range of 3 x 10 -2 to 2 Gy. Results: In 3 of TBI trials the diodes measured average dose was within 1.0% of the prescribed dose compared to 3.7% for TLDs and 1.8% for MOSFETs. The MOSFETs average sensitivity for 6 MV was within 2% of the 18 MV photon beam. The reproducibility of MOSFET response was better than 3 % provided the dose per fraction is

  6. Photodiodes utilization as ionizing radiation detectors

    International Nuclear Information System (INIS)

    Khoury, H.J.; Melo, F.A. de

    1987-01-01

    The response of photodiodes to α and γ radiation is studied, using for α spectrometry measures and for γ radiation dosimetry. Therefore, the response of BPY-12 photodiodes as α particle detector is first studied. The results show that the response is linear with the energy of incidence radiation, one resolution 25Kev for energy of 5,4 MeV from 241 Am. For dosimetric measures, the response of SHF-206 photodiodes, when exposed at γ radiation is studied, and the results show taht the response of this detector is linear with the dose ratio, proving its practicability in γ radiation dosimetry. (C.G.C.) [pt

  7. Radiation detector system having heat pipe based cooling

    Science.gov (United States)

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  8. CVD diamond detectors for ionizing radiation

    Science.gov (United States)

    Friedl, M.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P. F.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L. S.; Palmieri, V. G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.; RD42 Collaboration

    1999-10-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2×4 cm2 have been grown and refined for better charge collection properties, which are measured with a β source or in a testbeam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5×10 15 cm-2 to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics.

  9. Neutron spectrometry by diamond detector for nuclear radiation

    International Nuclear Information System (INIS)

    Kozlov, S.F.; Konorova, E.A.; Barinov, A.L.; Jarkov, V.P.

    1975-01-01

    Experiments on fast neutron spectrometry using the nuclear radiation diamond detector inside a horizontal channel of a water-cooled and water-moderated reactor are described. It is shown that the diamond detector enables neutron spectra to be measured within the energy range of 0.3 to 10 MeV against reactor gamma-radiation background and has radiation resistance higher than that of conventional semiconductor detectors. (U.S.)

  10. Study of detectors in beta radiation fields

    International Nuclear Information System (INIS)

    Albuquerque, M. da P.P.; Xavier, M.; Caldas, L.V.E.

    1987-01-01

    Several commercial detectors used with gamma or X radiation are studied. Their sensibility and energetic dependence are analysed in exposures of beta radiation fields. A comparative evaluation with the reference detector (the extrapolation chamber) is presented. (M.A.C.) [pt

  11. Development of innovative silicon radiation detectors

    CERN Document Server

    Balbuena, JuanPablo

    Silicon radiation detectors fabricated at the IMB-CNM (CSIC) Clean Room facilities using the most innovative techniques in detector technology are presented in this thesis. TCAD simulation comprises an important part in this work as becomes an essential tool to achieve exhaustive performance information of modelled detectors prior their fabrication and subsequent electrical characterization. Radiation tolerance is also investigated in this work using TCAD simulations through the potential and electric field distributions, leakage current and capacitance characteristics and the response of the detectors to the pass of different particles for charge collection efficiencies. Silicon detectors investigated in this thesis were developed for specific projects but also for applications in experiments which can benefit from their improved characteristics, as described in Chapter 1. Double-sided double type columns 3D (3D-DDTC) detectors have been developed under the NEWATLASPIXEL project in the framework of the CERN ...

  12. Radiation and Background Levels in a CLIC Detector due to Beam-Beam Effects Optimisation of Detector Geometries and Technologies

    CERN Document Server

    Sailer, André; Lohse, Thomas

    2013-01-10

    The high charge density---due to small beam sizes---and the high energy of the proposed CLIC concept for a linear electron--positron collider with a centre-of-mass energy of up to 3~TeV lead to the production of a large number of particles through beam-beam interactions at the interaction point during every bunch crossing (BX). A large fraction of these particles safely leaves the detector. A still significant amount of energy will be deposited in the forward region nonetheless, which will produce secondary particles able to cause background in the detector. Furthermore, some particles will be created with large polar angles and directly cause background in the tracking detectors and calorimeters. The main sources of background in the detector, either directly or indirectly, are the incoherent $mathrm{e}^{+}mathrm{e}^{-}$ pairs and the particles from $gammagamma ightarrow$ hadron events. The background and radiation levels in the detector have to be estimated, to study if a detector is feasible, that can han...

  13. Radiation effects on light sources and detectors

    International Nuclear Information System (INIS)

    Barnes, C.E.

    1985-01-01

    The rapidly expanding field of optoelectronics includes a wide variety of both military and non-military applications in which the systems must meet radiation exposure requirements. Herein, we review the work on radiation effects on sources and detectors for such optoelectronic systems. For sources the principal problem is permanent damage-induced light output degradation, while for detectors it is ionizing radiation-induced photocurrents

  14. Detectors for Particle Radiation

    Science.gov (United States)

    Kleinknecht, Konrad

    1999-01-01

    This textbook provides a clear, concise and comprehensive review of the physical principles behind the devices used to detect charged particles and gamma rays, and the construction and performance of these many different types of detectors. Detectors for high-energy particles and radiation are used in many areas of science, especially particle physics and nuclear physics experiments, nuclear medicine, cosmic ray measurements, space sciences and geological exploration. This second edition includes all the latest developments in detector technology, including several new chapters covering micro-strip gas chambers, silicion strip detectors and CCDs, scintillating fibers, shower detectors using noble liquid gases, and compensating calorimeters for hadronic showers. This well-illustrated textbook contains examples from the many areas in science in which these detectors are used. It provides both a coursebook for students in physics, and a useful introduction for researchers in other fields.

  15. Monitoring radiation damage in the ATLAS pixel detector

    CERN Document Server

    Schorlemmer, André Lukas; Quadt, Arnulf; Große-Knetter, Jörn; Rembser, Christoph; Di Girolamo, Beniamino

    2014-11-05

    Radiation hardness is one of the most important features of the ATLAS pixel detector in order to ensure a good performance and a long lifetime. Monitoring of radiation damage is crucial in order to assess and predict the expected performance of the detector. Key values for the assessment of radiation damage in silicon, such as the depletion voltage and depletion depth in the sensors, are measured on a regular basis during operations. This thesis summarises the monitoring program that is conducted in order to assess the impact of radiation damage and compares it to model predictions. In addition, the physics performance of the ATLAS detector highly depends on the amount of disabled modules in the ATLAS pixel detector. A worrying amount of module failures was observed during run I. Thus it was decided to recover repairable modules during the long shutdown (LS1) by extracting the pixel detector. The impact of the module repairs and module failures on the detector performance is analysed in this thesis.

  16. CVD diamond detectors for ionizing radiation

    CERN Document Server

    Friedl, M; Bauer, C; Berfermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernegger, H; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Tapper, R J; Tesarek, R J; Thomson, G B; Trawick, M L; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; Ziock, H J; Zöller, M

    1999-01-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2*4 cm/sup 2/ have been grown and refined for better charge collection properties, which are measured with a beta source or in a test beam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5*10/sup 15/ cm/sup -2/ to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics. (16 refs).

  17. CVD diamond detectors for ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, M. E-mail: markus.friedl@cern.ch; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R.J.; Tesarek, R.; Thomson, G.B.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M

    1999-10-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2x4 cm{sup 2} have been grown and refined for better charge collection properties, which are measured with a {beta} source or in a test beam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5x10{sup 15} cm{sup -2} to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics. (author)

  18. Department of Radiation Detectors - Overview

    International Nuclear Information System (INIS)

    Piekoszewski, J.

    1997-01-01

    Work carried out in 1996 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification Using Ion and Plasma Beams. The Departamental objectives are: a search for new types of detectors, adapting modern technologies (especially of industrial microelectronics) to detector manufacturing, producing unique detectors tailored for physics experiments, manufacturing standard detectors for radiation measuring instruments. These objectives were accomplished in 1996 by: research on unique detectors for nuclear physics (e.g. a spherical set of particle detectors silicon ball), detectors for particle identification), development of technology of high-resistivity silicon detectors HRSi (grant proposal), development of thermoelectric cooling systems (grant proposal), research on p-i-n photodiode-based personal dosimeters, study of applicability of industrial planar technology in producing detectors, manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. The Department conducts research on the design and technology involved in producing X-ray generators based on X-ray tubes of special construction. Various tube models and their power supplies were developed. Some work has also been devoted to the detection and dosimetry of X-rays. X-ray tube generators are applied to non-destructive testing and are components of analytical systems such as: X-ray fluorescence chemical composition analysis, gauges of layer thickness and composition stress measurements, on-line control of processes, others where an X-ray tube may replace a radio-isotope source. In 1996, the Department: reviewed the domestic demand for X-ray generators, developed an X-ray generator for diagnosis of ostheroporosis of human limbs, prepared a grant proposal for the development of a new instrument for radiotherapy, the so-called needle-like X-ray tube. (author)

  19. Department of Radiation Detectors - Overview

    Energy Technology Data Exchange (ETDEWEB)

    Piekoszewski, J. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1997-12-31

    Work carried out in 1996 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification Using Ion and Plasma Beams. The Departamental objectives are: a search for new types of detectors, adapting modern technologies (especially of industrial microelectronics) to detector manufacturing, producing unique detectors tailored for physics experiments, manufacturing standard detectors for radiation measuring instruments. These objectives were accomplished in 1996 by: research on unique detectors for nuclear physics (e.g. a spherical set of particle detectors silicon ball), detectors for particle identification), development of technology of high-resistivity silicon detectors HRSi (grant proposal), development of thermoelectric cooling systems (grant proposal), research on p-i-n photodiode-based personal dosimeters, study of applicability of industrial planar technology in producing detectors, manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. The Department conducts research on the design and technology involved in producing X-ray generators based on X-ray tubes of special construction. Various tube models and their power supplies were developed. Some work has also been devoted to the detection and dosimetry of X-rays. X-ray tube generators are applied to non-destructive testing and are components of analytical systems such as: X-ray fluorescence chemical composition analysis, gauges of layer thickness and composition stress measurements, on-line control of processes, others where an X-ray tube may replace a radio-isotope source. In 1996, the Department: reviewed the domestic demand for X-ray generators, developed an X-ray generator for diagnosis of ostheroporosis of human limbs, prepared a grant proposal for the development of a new instrument for radiotherapy, the so-called needle-like X-ray tube. (author).

  20. A gas ionisation Direct-STIM detector for MeV ion microscopy

    International Nuclear Information System (INIS)

    Norarat, Rattanaporn; Guibert, Edouard; Jeanneret, Patrick; Dellea, Mario; Jenni, Josef; Roux, Adrien; Stoppini, Luc; Whitlow, Harry J.

    2015-01-01

    Direct-Scanning Transmission Ion Microscopy (Direct-STIM) is a powerful technique that yields structural information in sub-cellular whole cell imaging. Usually, a Si p-i-n diode is used in Direct-STIM measurements as a detector. In order to overcome the detrimental effects of radiation damage which appears as a broadening in the energy resolution, we have developed a gas ionisation detector for use with a focused ion beam. The design is based on the ETH Frisch grid-less off-axis Geiger–Müller geometry. It is developed for use in a MeV ion microscope with a standard Oxford Microbeams triplet lens and scanning system. The design has a large available solid angle for other detectors (e.g. proton induced fluorescence). Here we report the performance for imaging ReNcells VM with μm resolution where energy resolutions of <24 keV fwhm could be achieved for 1 MeV protons using isobutane gas

  1. Ruggedization of CdZnTe detectors and detector assemblies for radiation detection applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, P.H., E-mail: pinghe.lu@redlen.com; Gomolchuk, P.; Chen, H.; Beitz, D.; Grosser, A.W.

    2015-06-01

    This paper described improvements in the ruggedization of CdZnTe detectors and detector assemblies for use in radiation detection applications. Research included experimenting with various conductive and underfill adhesive material systems suitable for CZT substrates. A detector design with encapsulation patterning was developed to protect detector surfaces and to control spacing between CZT anode and PCB carrier. Robustness of bare detectors was evaluated through temperature cycling and metallization shear testing. Attachment processes using well-chosen adhesives and PCB carrier materials were optimized to improve reliability of detector assemblies, resulted in Improved Attachment Detector Assembly. These detector assemblies were subjected to aggressive temperature cycling, and varying levels of drop/shock and vibration, in accordance with modified JEDEC, ANSI and FedEx testing standards, to assess their ruggedness. Further enhanced detector assembly ruggedization methods were investigated involving adhesive conformal coating, potting and dam filling on detector assemblies, which resulted in the Enhanced Ruggedization Detector Assembly. Large numbers of CZT detectors and detector assemblies with 5 mm and 15 mm thick, over 200 in total, were tested. Their performance was evaluated by exposure to various radioactive sources using comprehensive predefined detector specifications and testing protocols. Detector assemblies from improved attachment and enhanced ruggedization showed stable performances during the harsh environmental condition tests. In conclusion, significant progress has been made in improving the reliability and enhancing the ruggedness of CZT detector assemblies for radiation detection applications deployed in operational environments. - Highlights: • We developed ruggedization methods to enhance reliability of CZT detector assemblies. • Attachment of CZT radiation detectors was improved through comparative studies. • Bare detector metallization

  2. Effects of ionizing radiation on cryogenic infrared detectors

    Science.gov (United States)

    Moseley, S. H.; Silverberg, R. F.; Lakew, B.

    1989-01-01

    The Diffuse Infrared Background Experiment (DIRBE) is one of three experiments to be carried aboard the Cosmic Background Explorer (COBE) satellite scheduled to be launched by NASA on a Delta rocket in 1989. The DIRBE is a cryogenic absolute photometer operating in a liquid helium dewar at 1.5 K. Photometric stability is a principal requirement for achieving the scientific objectives of this experiment. The Infrared Astronomy Satellite (IRAS), launched in 1983, which used detectors similar to those in DIRBE, revealed substantial changes in detector responsivity following exposure to ionizing radiation encountered on passage through the South Atlantic Anomaly (SAA). Since the COBE will use the same 900 Km sun-synchronous orbit as IRAS, ionizing radiation-induced performance changes in the detectors were a major concern. Here, ionizing radiation tests carried out on all the DIRBE photodetectors are reported. Responsivity changes following exposure to gamma rays, protons, and alpha particle are discussed. The detector performance was monitored following a simulated entire mission life dose. In addition, the response of the detectors to individual particle interactions was measured. The InSb photovoltaic detectors and the Blocked Impurity Band (BIB) detectors revealed no significant change in responsivity following radiation exposure. The Ge:Ga detectors show large effects which were greatly reduced by proper thermal annealing.

  3. General gamma-radiation test of TGC detectors

    CERN Document Server

    Smakhtin, V P

    2004-01-01

    The TGC detectors are expected to provide the Muon trigger for the ATLAS detector in the forward region of the ATLAS Muon Spectrometer. The TGC detectors have to provide a trigger signal within 25 ns of the LHC accelerator bunch spacing, with an efficiency exceeding 95%, while exposed to an effective)photon and neutron background ranging from 30 to 150 Hz/cm/sup 2/. In order to test TGC detectors in high rate environment every detector was irradiated at 2500 Cu Co-60 source in Radiation Facility of Weizmann Institute of Science at nominal operating voltage and at photon rate several times above the expected background. This radiation test was succeeded in diagnostics of the hot spots inside detectors. The present publication refers to the test results of 800 TGC detectors produced in the Weizmann Institute of Science. (1 refs).

  4. Radiation damage studies for the DOe silicon detector

    International Nuclear Information System (INIS)

    Lehner, Frank

    2004-01-01

    We report on irradiation studies performed on spare production silicon detector modules for the current DOe silicon detector. The lifetime expectations due to radiation damage effects of the existing silicon detector are reviewed. A new upgrade project was started with the goal of a complete replacement of the existing silicon detector. In that context, several investigations on the radiation hardness of new prototype silicon microstrip detectors were carried out. The irradiation on different detector types was performed with 10 MeV protons up to fluences of 10 14 p/cm 2 at the J.R. Mcdonald Laboratory at Kansas State University. The flux calibration was carefully checked using different normalisation techniques. As a result, we observe roughly 40-50% less radiation damage in silicon for 10 MeV p exposure than it is expected by the predicted NIEL scaling

  5. Superconductive tunnel structures as radiation detectors

    International Nuclear Information System (INIS)

    Barone, A.; Gray, K.E.

    1985-08-01

    A brief review is given on various aspects of the potential of superconducting tunnel junctions as detectors for atomic and nuclear radiations. On the basis of recent results main advantages and drawbacks are indicated providing a preliminary comparison with the presently used semiconductor detectors. The basic ideas underlying the physics of the interaction of nuclear particles and other radiations with superconducting junctions are outlined. 9 refs., 1 tab

  6. Method and circuit for stabilizing conversion gain of radiation detectors of a radiation detection system

    International Nuclear Information System (INIS)

    Stoub, E.W.

    1986-01-01

    A method is described for calibrating the gain of an array of radiation detectors of a radiation detection system comprising the steps of: (a) measuring in parallel for each radiation detector using a predetermined calibration point the energy map status, thereby obtaining an energy response vector whose elements correspond to the individual output of each radiation detector, each predetermined calibration point being a prescribed location corresponding to one of the radiation detectors; (b) multiplying that energy response vector with a predetermined deconvolution matrix, the deconvolution matrix being the inversion of a contribution matrix containing matrix elements C/sub IJ/, each such matrix element C/sub IJ/ of the contribution matrix representing the relative contribution level of a radiation detector j of the detection system for a point radiation source placed at a location i, thereby obtaining a gain vector product for the radiation detectors; (c) adjusting the gains of the radiation detectors with respect to the gain vector product such that a unity gain vector is essentially obtained; (d) measuring again the energy map status according to step (a); and (e) if the energy map status fails to essentially produce a unity gain vector repeat steps (a) to (d) until the energy map status substantially corresponds to unity

  7. Radiation detectors as surveillance monitors

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Dowdy, E.J.

    1981-01-01

    The International Atomic Energy Agency (IAEA) proposes to use personnel dosimetry radiation detectors as surveillance monitors for safeguards purposes. It plans to place these YES/NO monitors at barrier penetration points declared closed under IAEA safeguards to detect the passage of plutonium-bearing nuclear material, usually spent fuel. For this application, commercially available dosimeters were surveyed as well as other radiation detectors that appeared suitable and likely to be marketed in the near future. No primary advantage was found in a particular detector type because in this application backgrounds vary during long counting intervals. Secondary considerations specify that the monitor be inexpensive and easy to tamper-proof, interrogate, and maintain. On this basis radiophotoluminescent, thermoluminescent, and electronic dosimeters were selected as possible routine monitors; the latter two may prove useful for data-base acquisition

  8. Directional gamma sensing from covariance processing of inter-detector Compton crosstalk energy asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Trainham, R., E-mail: trainhcp@nv.doe.gov; Tinsley, J. [Special Technologies Laboratory of National Security Technologies, LLC, 5520 Ekwill Street, Santa Barbara, California 93111 (United States)

    2014-06-15

    Energy asymmetry of inter-detector crosstalk from Compton scattering can be exploited to infer the direction to a gamma source. A covariance approach extracts the correlated crosstalk from data streams to estimate matched signals from Compton gammas split over two detectors. On a covariance map the signal appears as an asymmetric cross diagonal band with axes intercepts at the full photo-peak energy of the original gamma. The asymmetry of the crosstalk band can be processed to determine the direction to the radiation source. The technique does not require detector shadowing, masking, or coded apertures, thus sensitivity is not sacrificed to obtain the directional information. An angular precision of better than 1° of arc is possible, and processing of data streams can be done in real time with very modest computing hardware.

  9. Gamma radiation detectors for safeguards applications

    International Nuclear Information System (INIS)

    Carchon, R.; Moeslinger, M.; Bourva, L.; Bass, C.; Zendel, M.

    2007-01-01

    The IAEA uses extensively a variety of gamma radiation detectors to verify nuclear material. These detectors are part of standardized spectrometry systems: germanium detectors for High-Resolution Gamma Spectrometry (HRGS); Cadmium Zinc Telluride (CZT) detectors for Room Temperature Gamma Spectrometry (RTGS); and NaI(Tl) detectors for Low Resolution Gamma Spectrometry (LRGS). HRGS with high-purity Germanium (HpGe) detectors cooled by liquid nitrogen is widely used in nuclear safeguards to verify the isotopic composition of plutonium or uranium in non-irradiated material. Alternative cooling systems have been evaluated and electrically cooled HpGe detectors show a potential added value, especially for unattended measurements. The spectrometric performance of CZT detectors, their robustness and simplicity are key to the successful verification of irradiated materials. Further development, such as limiting the charge trapping effects in CZT to provide improved sensitivity and energy resolution are discussed. NaI(Tl) detectors have many applications-specifically in hand-held radioisotope identification devices (RID) which are used to detect the presence of radioactive material where a lower resolution is sufficient, as they benefit from a generally higher sensitivity. The Agency is also continuously involved in the review and evaluation of new and emerging technologies in the field of radiation detection such as: Peltier-cooled CdTe detectors; semiconductor detectors operating at room temperature such as HgI 2 and GaAs; and, scintillator detectors using glass fibres or LaBr 3 . A final conclusion, proposing recommendations for future action, is made

  10. Self-powered radiation detector

    International Nuclear Information System (INIS)

    Goldstein, N.P.; Todt, W.H.

    1979-01-01

    Self-powered gamma radiation detector composed of a conducting emitter surrounded by an insulating medium and a conducting tubular collector, the emitter being a hollow tube containing an electrical insulator [fr

  11. Differential Detector for Measuring Radiation Fields

    International Nuclear Information System (INIS)

    Broide, A.; Marcus, E.; Brandys, I.; Schwartz, A.; Wengrowicz, U.; Levinson, S.; Seif, R.; Sattinger, D.; Kadmon, Y.; Tal, N.

    2004-01-01

    In case of a nuclear accident, it is essential to determine the source of radioactive contamination in order to analyze the risk to the environment and to the population. The radiation source may be a radioactive plume on the air or an area on the ground contaminated with radionuclides. Most commercial radiation detectors measure only the radiation field intensity but are unable to differentiate between the radiation sources. Consequently, this limitation causes a real problem in analyzing the potential risk to the near-by environment, since there is no data concerning the contamination ratios in the air and on the ground and this prevents us from taking the required steps to deal with the radiation event. This work presents a GM-tube-based Differential Detector, which enables to determine the source of contamination

  12. Radiation damage resistance in mercuric iodide X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B E; Dolin, R C; Devore, T M; Markakis, J M [EG and G Energy Measurements, Inc., Goleta, CA (USA); Iwanczyk, J S; Dorri, N [Xsirius, Inc., Marina del Rey, CA (USA); Trombka, J [National Aeronautics and Space Administration, Greenbelt, MD (USA). Goddard Space Flight Center

    1990-12-20

    Mercuric iodide (HgI{sub 2}) radiation detectors show great potential as ambient-temperature solid-state detectors for X-rays, gamma rays and visible light, with parameters that are competitive with existing technologies. In a previous experiment, HgI{sub 2} detectors irradiated with 10 MeV protons/cm{sup 2} exhibited no damage. The 10 MeV protons represent only the low range of the spectrum of energies that are important. An experiment has been conducted at the Saturne accelerator facility at Saclay, France, to determine the susceptibility of these detectors to radiation damage by high-energy (1.5 GeV) protons. The detectors were irradiated to a fluence of 10{sup 8} protons/cm{sup 2}. This fluence is equivalent to the cosmic radiation expected in a one-year period in space. The resolution of the detectors was measured as a function of the integral dose. No degradation in the response of any of the detectors or spectrometers was seen. It is clear from this data that HgI{sub 2} has extremely high radiation-damage resistance, exceeding that of most other semiconductor materials used for radiation detectors. Based on the results shown to date, HgI{sub 2} detectors are suitable for applications in which they may be exposed to high integral dose levels. (orig.).

  13. Degradation of silicon AC-coupled microstrip detectors induced by radiation

    Science.gov (United States)

    Bacchetta, N.; Bisello, D.; Canali, C.; Fuochi, P. G.; Gotra, Y.; Paccagnella, A.; Verzellesi, G.

    1993-12-01

    Results are presented showing the radiation response of AC-coupled FOXFET biased microstrip detectors and related test patterns to be used in the microvertex detector of the CDF experiment at Fermi National Laboratory. Radiation tolerance of detectors to gamma and proton irradiation has been tested, and the radiation-induced variations of the DC electrical parameters have been analyzed. The long-term postirradiation behavior of detector characteristics has been studied, and the relevant room-temperature annealing phenomena have been examined. The main radiation damage effects after gamma or proton irradiation of FOXFET biased microstrip detectors consist of an increase in the total leakage current, while both the detector dynamic resistance and FOXFET switching voltage decrease.

  14. Hybrid anode for semiconductor radiation detectors

    Science.gov (United States)

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  15. Radiation-hardened optoelectronic components: detectors

    International Nuclear Information System (INIS)

    Wiczer, J.J.

    1986-01-01

    In this talk, we will survey recent research in the area of radiation hardened optical detectors. We have studied conventional silicon photodiode structures, special radiation hardened silicon photodiodes, and special double heterojunction AlGaAs/GaAs photodiodes in neutron, gamma, pulsed x-ray and charged particle environments. We will present results of our work and summarize other research in this area. Our studies have shown that detectors can be made to function acceptably after exposures to neutron fluences of 10 15 n/cm 2 , total dose gamma exposures of 10 8 rad (Si), and flash x-ray environments of 10 8 rad/sec (Si). We will describe detector structures that can operate through these conditions, pre-rad and post-rad operational characteristics, and experimental conditions that produced these results. 23 refs., 10 figs., 1 tab

  16. VeriTainer radiation detector for intermodal shipping containers

    International Nuclear Information System (INIS)

    Redus, R.H.; Alioto, M.; Sperry, D.; Pantazis, T.

    2007-01-01

    The VeriSpreader TM radiation detection system will monitor every container passing through a shipping terminal without impeding the flow of commerce by making the radiation measurements during normal container handling. This is accomplished by integrating neutron and spectroscopic γ-ray detectors into a container crane spreader bar, the part of the crane that directly engages the intermodal shipping containers while moving from ship to shore and vice versa. The use of a spectroscopic γ-detector reduces the rate of nuisance alarms due to naturally occurring radioactive material (NORM). The combination of γ and neutron detection reduces the effectiveness of shielding and countermeasures. The challenges in this spreader bar-based approach arise from the harsh environment, particularly the mechanical shock and the vibration of the moving spreader bar, since the measurement is taken while the container is moving. The electrical interfaces in the port environment, from the crane to a central monitoring office, present further challenges. It is the packaging, electronic interfaces, and data processing software that distinguish this system, which is based on conventional radiation sensors. The core of the system is Amptek's GAMMA-RAD, which integrates a ruggedized scintillator/PMT, digital pulse shaping electronics, electronics for the neutron detector, power supplies, and an Ethernet interface. The design of the VeriTainer system and results from both the laboratory and a proof-of-concept test at the Port of Oakland, California will be presented

  17. Nuclear radiation-warning detector that measures impedance

    Science.gov (United States)

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  18. ALICE Transition Radiation Detector (TRD), test beam.

    CERN Multimedia

    2003-01-01

    Electrons and positrons can be discriminated from other charged particles using the emission of transition radiation - X-rays emitted when the particles cross many layers of thin materials. To develop such a Transition Radiation Detector(TRD) for ALICE many detector prototypes were tested in mixed beams of pions and electrons, as in the example shown here.

  19. Flame detector operable in presence of proton radiation

    Science.gov (United States)

    Walker, D. J.; Turnage, J. E.; Linford, R. M. F.; Cornish, S. D. (Inventor)

    1974-01-01

    A detector of ultraviolet radiation for operation in a space vehicle which orbits through high intensity radiation areas is described. Two identical ultraviolet sensor tubes are mounted within a shield which limits to acceptable levels the amount of proton radiation reaching the sensor tubes. The shield has an opening which permits ultraviolet radiation to reach one of the sensing tubes. The shield keeps ultraviolet radiation from reaching the other sensor tube, designated the reference tube. The circuitry of the detector subtracts the output of the reference tube from the output of the sensing tube, and any portion of the output of the sensing tube which is due to proton radiation is offset by the output of the reference tube. A delay circuit in the detector prevents false alarms by keeping statistical variations in the proton radiation sensed by the two sensor tubes from developing an output signal.

  20. Radiation effects in IRAS extrinsic infrared detectors

    Science.gov (United States)

    Varnell, L.; Langford, D. E.

    1982-01-01

    During the calibration and testing of the Infrared Astronomy Satellite (IRAS) focal plane, it was observed that the extrinsic photoconductor detectors were affected by gamma radiation at dose levels of the order of one rad. Since the flight environment will subject the focal plane to dose levels of this order from protons in single pass through the South Atlantic Anomaly, an extensive program of radiation tests was carried out to measure the radiation effects and to devise a method to counteract these effects. The effects observed after irradiation are increased responsivity, noise, and rate of spiking of the detectors after gamma-ray doses of less than 0.1 rad. The detectors can be returned almost to pre-irradiation performance by increasing the detector bias to breakdown and allowing a large current to flow for several minutes. No adverse effects on the detectors have been observed from this bias boost, and this technique will be used for IRAS with frequent calibration to ensure the accuracy of observations made with the instrument.

  1. Temperature effects on radiation damage in plastic detectors

    International Nuclear Information System (INIS)

    Mendoza A, D.

    1996-01-01

    The objective of present work was to study the temperature effect on radiation damage registration in the structure of a Solid State Nuclear Track Detector of the type CR-39. In order to study the radiation damage as a function of irradiation temperature, sheets of CR-39 detectors were irradiated with electron beams, simulating the interaction of positive ions. CR-39 detectors were maintained at a constant temperature from room temperature up to 373 K during irradiation. Two techniques were used from analyzing changes in the detector structure: Electronic Paramagnetic Resonance (EPR) and Infrared Spectroscopy (IR). It was found by EPR analysis that the amount of free radicals decrease as irradiation temperature increases. The IR spectrums show yield of new functional group identified as an hydroxyl group (OH). A proposed model of interaction of radiation with CR-39 detectors is discussed. (Author)

  2. Radiation hard cryogenic silicon detectors

    International Nuclear Information System (INIS)

    Casagrande, L.; Abreu, M.C.; Bell, W.H.; Berglund, P.; Boer, W. de; Borchi, E.; Borer, K.; Bruzzi, M.; Buontempo, S.; Chapuy, S.; Cindro, V.; Collins, P.; D'Ambrosio, N.; Da Via, C.; Devine, S.; Dezillie, B.; Dimcovski, Z.; Eremin, V.; Esposito, A.; Granata, V.; Grigoriev, E.; Hauler, F.; Heijne, E.; Heising, S.; Janos, S.; Jungermann, L.; Konorov, I.; Li, Z.; Lourenco, C.; Mikuz, M.; Niinikoski, T.O.; O'Shea, V.; Pagano, S.; Palmieuri, V.G.; Paul, S.; Pirollo, S.; Pretzl, K.; Rato, P.; Ruggiero, G.; Smith, K.; Sonderegger, P.; Sousa, P.; Verbitskaya, E.; Watts, S.; Zavrtanik, M.

    2002-01-01

    It has been recently observed that heavily irradiated silicon detectors, no longer functional at room temperature, 'resuscitate' when operated at temperatures below 130 K. This is often referred to as the 'Lazarus effect'. The results presented here show that cryogenic operation represents a new and reliable solution to the problem of radiation tolerance of silicon detectors

  3. Investigations on commercial semiconductor diodes as possible high dose rate radiation detectors

    International Nuclear Information System (INIS)

    Breitenhuber, L.; Kindl, P.; Obenaus, B.

    1992-12-01

    Investigations concerning the relevant properties of commercial semiconductor diodes such as their sensitivity and its dependence on accumulated dose, dose rate, energy, temperature and direction have been made in order to obtain their usefullness as radiation detectors. (authors)

  4. Synchrotron radiation and multichannel detectors in structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mokulskii, M

    1979-10-01

    A survey is presented of the development of multichannel synchrotron X radiation detectors for the structural analysis of crystals. Tests are currently under way of a 4-thousand-channel plane detector of soft X radiation. The detector consists of a multiwire proportional counter using argon and CO/sub 2/ as the working gases. The detector is coupled to a computer processing information and displaying the respective X-ray diffraction images on the monitor. The described equipment allows imaging, eg., the cross section of the elementary cell of a DNA crystal. A 16-thousand-channel detector exists in the present time and the building is envisaged of a detector with 65 thousand channels.

  5. Synchrotron radiation and multichannel detectors in structural analysis

    International Nuclear Information System (INIS)

    Mokulskij, M.

    1979-01-01

    A survey is presented of the development of multichannel synchrotron X radiation detectors for the structural analysis of crystals. Tests are currently under way of a 4-thousand-channel plane detector of soft X radiation. The detector consists of a multiwire proportional counter using argon and CO 2 as the working gases. The detector is coupled to a computer processing information and displaying the respective X-ray diffraction images on the monitor. The described equipment allows imaging, eg., the cross section of the elementary cell of a DNA crystal. A 16-thousand-channel detector exists in the present time and the building is envisaged of a detector with 65 thousand channels. (J.B.)

  6. Detectors for particle radiation. 2. rev. ed.

    International Nuclear Information System (INIS)

    Kleinknecht, K.

    1987-01-01

    This book is a description of the set-up and mode of action of detectors for charged particles and gamma radiation for students of physics, as well as for experimental physicists and engineers in research and industry: Ionization chamber, proportional counter, semiconductor counter; proportional chamber, drift chamber, bubble chamber, spark chamber, photomultiplier, laser ionization, silicion strip detector; Cherenkov counter, transition radiation detector; electron-photon-cascade counter, hadron calorimeter; magnetic spectrometer; applications in nuclear medicine, geophysics, space travel, atom physics, nuclear physics, and high-energy physics. With 149 figs., 20 tabs [de

  7. Method of neutralising the effects of electromagnetic radiation in a radiation detector and a radiation detector applying the procedure

    International Nuclear Information System (INIS)

    Gripentog, W.G.

    1972-01-01

    Circuitry is described by means of which radiation detectors of the Neher-White type, employing ionisation chambers can be unaffected by electromagnetic radiation which would otherwise cause inductive effects leading to erroneous signals. It is therefore unnecessary to use shielded cables for these instruments. (JIW)

  8. Use of GaN as a Scintillating Ionizing Radiation Detector

    Science.gov (United States)

    Wensman, Johnathan; Guardala, Noel; Mathur, Veerendra; Alasagas, Leslie; Vanhoy, Jeffrey; Statham, John; Marron, Daniel; Millett, Marshall; Marsh, Jarrod; Currie, John; Price, Jack

    2017-09-01

    Gallium nitride (GaN) is a III/V direct bandgap semiconductor which has been used in light emitting diodes (LEDs) since the 1990s. Currently, due to a potential for increased efficiency, GaN is being investigated as a replacement for silicon in power electronics finding potential uses ranging from data centers to electric vehicles. In addition to LEDs and power electronics though, doped GaN can be used as a gamma insensitive fast neutron detector due to the direct band-gap, light propagation properties, and response to ionizing radiations. Investigation of GaN as a semiconductor scintillator for use in a radiation detection system involves mapping the response function of the detector crystal over a range of photon and neutron energies, and measurements of light generation in the GaN crystal due to proton, alpha, and nitrogen projectiles. In this presentation we discuss the measurements made to date, and plausible interpretations of the response functions. This work funded in part by the Naval Surface Warfare Center, Carderock Division In-house Laboratory Independent Research program.

  9. Long-distance transmission of light in a scintillator-based radiation detector

    Science.gov (United States)

    Dowell, Jonathan L.; Talbott, Dale V.; Hehlen, Markus P.

    2017-07-11

    Scintillator-based radiation detectors capable of transmitting light indicating the presence of radiation for long distances are disclosed herein. A radiation detector can include a scintillator layer and a light-guide layer. The scintillator layer is configured to produce light upon receiving incident radiation. The light-guide layer is configured to receive light produced by the scintillator layer and either propagate the received light through the radiation detector or absorb the received light and emit light, through fluorescence, that is propagated through the radiation detector. A radiation detector can also include an outer layer partially surrounding the scintillator layer and light-guide layer. The index of refraction of the light-guide layer can be greater than the index of refraction of adjacent layers.

  10. 18th International Workshop on Radiation Imaging Detectors

    CERN Document Server

    2016-01-01

    The International Workshops on Radiation Imaging Detectors are held yearly and provide an international forum for discussing current research and developments in the area of position sensitive detectors for radiation imaging, including semiconductor detectors, gas and scintillator-based detectors. Topics include processing and characterization of detector materials, hybridization and interconnect technologies, design of counting or integrating electronics, readout and data acquisition systems, and applications in various scientific and industrial fields. The workshop will have plenary sessions with invited and contributed papers presented orally and in poster sessions. The invited talks will be chosen to review recent advances in different areas covered in the workshop.

  11. Experimental studies of radiation damage of silicon detectors

    International Nuclear Information System (INIS)

    Angelescu, T.; Ghete, V.M.; Ghiordanescu, N.; Lazanu, I.; Mihul, A.; Golutvin, I.; Lazanu, S.; Savin, I.; Vasilescu, A.; Biggeri, U.; Borchi, E.; Bruzzi, M.; Li, Z.; Kraner, H.W.

    1994-02-01

    New particle physics experiments are correlated with high luminosity and/or high energy. The new generation of colliding beam machines which will be constructed will make an extrapolation of a factor of 100 in the center of mass energy and of 1000 in luminosity beyond present accelerators. The scientific community hopes that very exciting physics results could be achieved this way, from the solution to the problem of electroweak symmetry breaking to the possible discovery of new, unpredicted phenomena. The particles which compose the radiation field are: electrons, pions, neutrons, protons and photons. It has become evident that the problem of the radiation resistance of detectors in this severe environment is a crucial one. This situation is complicated more by the fact that detectors must work all the run time of the machine, and better all the time of the experiment, without replacement (part or whole). So, studies related to the investigation of the radiation hardness of all detector parts, are developing. The studies are in part material and device characterization after irradiation, and in part technological developments, made in order to find harder, cheaper technologies, for larger surfaces. Semiconductor detectors have proven to be a good choice for vertex and calorimeter. Both fixed target machines and colliders had utilized in the past silicon junction detectors as the whole or part of the detection system. Precision beam hodoscopes and sophisticated trigger devices with silicon are equally used. The associated electronics in located near the detectors, and is subjected to the same radiation fields. Studies of material and device radiation hardness are developing in parallel. Here the authors present results on the radiation hardness of silicon, both as a bulk material and as detectors, to neutron irradiation at high fluences

  12. A New Transition Radiation Detector for the CREAM experiment

    CERN Document Server

    Malinin, A; Angelaszek, D

    The Cosmic Ray Energetics And Mass (CREAM) experiment is designed to investigate the source, propagation and acceleration mechanism of high energy cosmic-ray nuclei, by directly measuring their energy and charge. Incorporating a Transition Radiation Detector (TRD) provides a model independent energy measurement complementary to the calorimeter, as well as additional track reconstruction capability. A new TRD design provides a compact, robust, reliable, low density detector to measure incident nucleus energy for 3 < Z < 26 nuclei in the Lorentz gamma factor range of 10 2 -10 5. The TRD design, R&D;, construction milestones, beam test results and a progress of the final TRD integration in the CREAM instrument are reported.

  13. Electron Beam Induced Radiation Damage of the Semiconductor Radiation Detector based on Silicon

    International Nuclear Information System (INIS)

    Kim, Han Soo; Kim, Yong Kyun; Park, Se Hwan; Haa, Jang Ho; Kang, Sang Mook; Chung, Chong Eun; Cho, Seung Yeon; Park, Ji Hyun; Yoon, Tae Hyung

    2005-01-01

    A Silicon Surface Barrier (SSB) semiconductor detector which is generally used to detect a charged particle such as an alpha particle was developed. The performance of the developed SSB semiconductor detector was measured with an I-V curve and an alpha spectrum. The response for an alpha particle was measured by Pu-238 sources. A SSB semiconductor detector was irradiated firstly at 30sec, at 30μA and secondly 40sec, 40μA with a 2MeV pulsed electron beam generator in KAERI. And the electron beam induced radiation damage of a homemade SSB detector and the commercially available PIN photodiode were investigated. An annealing effect of the damaged SSB and PIN diode detector were also investigated using a Rapid Thermal Annealing (RTA). This data may assist in designing the silicon based semiconductor radiation detector when it is operated in a high radiation field such as space or a nuclear power plant

  14. Metal-semiconductor, composite radiation detectors

    International Nuclear Information System (INIS)

    Orvis, W.J.; Yee, J.H.; Fuess, D.

    1992-12-01

    In 1989, Naruse and Hatayama of Toshiba published a design for an increased efficiency x-ray detector. The design increased the efficiency of a semiconductor detector by interspersing layers of high-z metal within it. Semiconductors such as silicon make good, high-resolution radiation detectors, but they have low efficiency because they are low-z materials (z = 14). High-z metals, on the other hand, are good absorbers of high-energy photons. By interspersing high-z metal layers with semiconductor layers, Naruse and Hatayama combined the high absorption efficiency of the high-z metals with the good detection capabilities of a semiconductor. This project is an attempt to use the same design to produce a high-efficiency, room temperature gamma ray detector. By their nature, gamma rays require thicker metal layers to efficiently absorb them. These thicker layers change the behavior of the detector by reducing the resolution, compared to a solid state detector, and shifting the photopeak by a predictable amount. During the last year, the authors have procured and tested a commercial device with operating characteristics similar to those of a single layer of the composite device. They have modeled the radiation transport in a multi-layered device, to verify the initial calculations of layer thickness and composition. They have modeled the electrostatic field in different device designs to locate and remove high-field regions that can cause device breakdown. They have fabricated 14 single layer prototypes

  15. Radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Ohata, Shuichi; Takeuchi, Yoji

    1968-10-30

    Herein disclosed is an ionization chamber the airtightness of which can be readily tested. The ionization chamber is characterized in that a small amount of helium gas is filled in the chamber in combination with other ionization gases such as argon gas, xenon gas and the like. Helium leakage from the chamber is measured by a known helium gas sensor in a vacuum vessel. Hence the long term drift of the radiation detector sensitivity may be determined.

  16. Analysis of changes in environmental radiation, and three types of environmental radiation detector performance comparisons

    International Nuclear Information System (INIS)

    Park, J.H; Seo, J.H; Park, S.M; Yu, B.N; Park, J.H; Joo, K.S

    2013-06-01

    High-pressure ion chamber (GE Reuter-Stokes, HPIC), accuracy is high but the high price and do not have the ability nuclide analysis is a disadvantage. NaI(Tl) and PMT scintillation detector of radioactive materials can be divided. Environmental radiation measurements using a semiconductor with SiPM detector PMT to replace the value of the results were compared. SiPM detector using radiation environment were measured in the field to verify the accuracy and energy resolution. SiPMs performance as environmental radiation measurement equipment and radioactive material distinction as a personal dosimeter based technology, using the above results were prepared. The interest on the environmental radiation due to the Fukushima power plant crisis in Japan has been growing concern about the radiation environment of the relatively close proximity Korea is a very heightened state. Could be confirmed in the radiation environment of nuclear power plants around the analysis and performance of the next generation of environmental radiation meter. Fukushima power plants accident after 2 years, the equipment installed by this analysis meets the performance as a radiation detector could be confirmed as follows. CANA Inc. developed by radionuclides classification of using man-made and natural radionuclides and man-made radionuclides separated, ensure the value of the results were analyzed. Could be and alternative to the conventional detector energy resolution ( 137 CS<15%) and linearity (<15%) to satisfy the performance requirements of the measurement result of environmental radiation detector is considered. SiPM radiation environment changes and HPIC and NaI(TI) scintillation detector installed in Korea of the Fukushima power plant after the accident, radiation environment using a small alternative was to verify the accuracy of the measuring equipment. A big difference in performance as invisible by comparison with the large detector Assay miniaturization rough as a personal

  17. Technical Note: Response measurement for select radiation detectors in magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, M., E-mail: michaelreynolds@ualberta.net [Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Fallone, B. G. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada and Departments of Oncology and Physics, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Rathee, S. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada and Department of Oncology, Medical Physics Division,University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2015-06-15

    Purpose: Dose response to applied magnetic fields for ion chambers and solid state detectors has been investigated previously for the anticipated use in linear accelerator–magnetic resonance devices. In this investigation, the authors present the measured response of selected radiation detectors when the magnetic field is applied in the same direction as the radiation beam, i.e., a longitudinal magnetic field, to verify previous simulation only data. Methods: The dose response of a PR06C ion chamber, PTW60003 diamond detector, and IBA PFD diode detector is measured in a longitudinal magnetic field. The detectors are irradiated with buildup caps and their long axes either parallel or perpendicular to the incident photon beam. In each case, the magnetic field dose response is reported as the ratio of detector signals with to that without an applied longitudinal magnetic field. The magnetic field dose response for each unique orientation as a function of magnetic field strength was then compared to the previous simulation only studies. Results: The measured dose response of each detector in longitudinal magnetic fields shows no discernable response up to near 0.21 T. This result was expected and matches the previously published simulation only results, showing no appreciable dose response with magnetic field. Conclusions: Low field longitudinal magnetic fields have been shown to have little or no effect on the dose response of the detectors investigated and further lend credibility to previous simulation only studies.

  18. Monolithic active pixel radiation detector with shielding techniques

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Grzegorz W.

    2018-03-20

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  19. Radiation damage studies for the D0 silicon detector

    International Nuclear Information System (INIS)

    Lehner, F.

    2004-01-01

    We report on irradiation studies performed on spare production silicon detector modules for the current D0 silicon detector. The lifetime expectations due to radiation damage effects of the existing silicon detector are reviewed. A new upgrade project was started with the goal of a complete replacement of the existing silicon detector. In that context, several investigations on the radiation hardness of new prototype silicon microstrip detectors were carried out. The irradiation on different detector types was performed with 10 MeV protons up to fluences of 10 14 p/cm 2 at the J.R. Mcdonald Laboratory at Kansas State University. The flux calibration was carefully checked using different normalization techniques. As a result, we observe roughly 40-50% less radiation damage in silicon for 10 MeV p exposure than it is expected by the predicted NIEL scaling

  20. Successful beam tests for ALICE Transition Radiation Detector

    CERN Multimedia

    2002-01-01

    Another round of beam tests of prototypes for the Transition Radiation Detector (TRD) for ALICE has been completed and there are already some good results. Mass production of the components of the detector will start early next year.   Top view of the setup for the Transition Radiation Detector prototype tests at CERN.On the left, can be seen the full-scale TRD prototype together with four smaller versions. These are busy days for the TRD (Transition Radiation Detector) team of ALICE. Twenty people - mainly from Germany, but also from Russia and Japan - were working hard during the beam tests this autumn at CERN to assess the performance of their detector prototypes. Analysis of the data shows that the TRD can achieve the desired physics goal even for the highest conceivable multiplicities in lead-lead collisions at the LHC. In its final configuration in the ALICE experiment, the TRD will greatly help in identifying high-momentum electrons, which are 'needles in a haystack' that consists mostly of...

  1. Development of CVD diamond radiation detectors

    CERN Document Server

    Adam, W; Berdermann, E; Bogani, F; Borchi, E; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fisch, D; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E A; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Knöpfle, K T; Krammer, Manfred; Manfredi, P F; Meier, D; Mishina, M; Le Normand, F; Pan, L S; Pernegger, H; Pernicka, Manfred; Pirollo, S; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Tapper, R J; Tesarek, R J; Thomson, G B; Trawick, M L; Trischuk, W; Turchetta, R; Walsh, A M; Wedenig, R; Weilhammer, Peter; Ziock, H J; Zoeller, M M

    1998-01-01

    Diamond is a nearly ideal material for detecting ionizing radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow a diamond detector to be used in high ra diation, high temperature and in aggressive chemical media. We have constructed charged particle detectors using high quality CVD diamond. Characterization of the diamond samples and various detect ors are presented in terms of collection distance, $d=\\mu E \\tau$, the average distance electron-hole pairs move apart under the influence of an electric field, where $\\mu$ is the sum of carrier mo bilities, $E$ is the applied electric field, and $\\tau$ is the mobility weighted carrier lifetime. Over the last two years the collection distance increased from $\\sim$ 75 $\\mu$m to over 200 $\\mu$ m. With this high quality CVD diamond a series of micro-strip and pixel particle detectors have been constructed. These devices were tested to determine their position resolution and signal to n oise performance. Diamond detectors w...

  2. Transition-radiation detectors for cosmic-ray research

    International Nuclear Information System (INIS)

    Mueller, D.; Chicago Univ., Ill.

    1975-01-01

    Transition-radiation detectors for cosmic-ray work are described which consist of plastic foam of multiple plastic foil radiators, followed by proportional chambers. A summary of the properties of such detectors is given, and the detection and discrimination efficiencies for energetic particles are discussed. Several possible applications of such devices for studies of cosmic-ray particles in the energy region γ=E/mc 2 >10 3 are advertised

  3. PAMELA Space Mission: The Transition Radiation Detector

    Science.gov (United States)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; De Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2003-07-01

    PAMELA telescope is a satellite-b orne magnetic spectrometer built to fulfill the primary scientific objectives of detecting antiparticles (antiprotons and positrons) in the cosmic rays, and to measure spectra of particles in cosmic rays. The PAMELA telescope is currently under integration and is composed of: a silicon tracker housed in a permanent magnet, a time of flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD detector is composed of 9 sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD detector characteristics will be described along with its performance studied exposing the detector to particle beams of electrons, pions, muons and protons of different momenta at both CERN-PS and CERN-SPS facilities.

  4. X-Ray and Gamma-Ray Radiation Detector

    DEFF Research Database (Denmark)

    2015-01-01

    Disclosed is a semiconductor radiation detector for detecting X-ray and / or gamma-ray radiation. The detector comprises a converter element for converting incident X-ray and gamma-ray photons into electron-hole pairs, at least one cathode, a plurality of detector electrodes arranged with a pitch...... (P) along a first axis, a plurality of drift electrodes, a readout circuitry being configured to read out signals from the plurality of detector electrodes and a processing unit connected to the readout circuitry and being configured to detect an event in the converter element. The readout circuitry...... is further configured to read out signals from the plurality of drift electrodes, and the processing unit is further configured to estimate a location of the event along the first axis by processing signals obtained from both the detector electrodes and the drift electrodes, the location of the event along...

  5. Radiation field mapping using a mechanical-electronic detector

    Energy Technology Data Exchange (ETDEWEB)

    Czayka, M., E-mail: mczayka@kent.ed [College of Technology, Kent State University-Ashtabula 3300 Lake Road West, Ashtabula, OH 44004 (United States); Program on Electron Beam Technology, Kent State University, P.O. Box 1028, Middlefield, OH 44062 (United States); Fisch, M. [Program on Electron Beam Technology, Kent State University, P.O. Box 1028, Middlefield, OH 44062 (United States); College of Technology, Kent State University, P.O. Box 5190, Kent, OH 44242-0001 (United States)

    2010-04-15

    A method of radiation field mapping of a scanned electron beam using a Faraday-type detector and an electromechanical linear translator is presented. Utilizing this arrangement, fluence and fluence rate measurements can be made at different locations within the radiation field. The Faraday-type detector used in these experiments differs from most as it consists of a hollow stainless steel sphere. Results are presented in two- and three-dimensional views of the radiation field.

  6. InGaAs/InAlAs superlattice detector for THz radiation

    CERN Document Server

    Schomburg, E; Kratschmer, M; Vollnhals, A; Scheuerer, R; Renk, K F; Ustinov, V; Zhukov, A; Kovsh, A

    2002-01-01

    We report the use of an InGaAs/InAlAs superlattice for detection of THz radiation pulses generated by a free-electron-laser (FELIX). The detector showed a response corresponding to a reduction of the direct current through the superlattice. The current reduction is attributed to the THz-field induced modulation of Bloch oscillations performed by miniband electrons. The detector response was measured in a frequency range between 4 and 12 THz and showed strong minima at the frequencies of infrared active transverse optic phonons. (10 refs).

  7. Radiation damage in barium fluoride detector materials

    International Nuclear Information System (INIS)

    Levey, P.W.; Kierstead, J.A.; Woody, C.L.

    1988-01-01

    To develop radiation hard detectors, particularly for high energy physics studies, radiation damage is being studied in BaF 2 , both undoped and doped with La, Ce, Nd, Eu, Gd and Tm. Some dopants reduce radiation damage. In La doped BaF 2 they reduce the unwanted long lifetime luminescence which interferes with the short-lived fluorescence used to detect particles. Radiation induced coloring is being studied with facilities for making optical measurements before, during and after irradiation with 60 C0 gamma rays. Doses of 10 6 rad, or less, create only ionization induced charge transfer effects since lattice atom displacement damage is negligible at these doses. All crystals studied exhibit color center formation, between approximately 200 and 800 nm, during irradiation and color center decay after irradiation. Thus only measurements made during irradiation show the total absorption present in a radiation field. Both undoped and La doped BaF 2 develop damage at minimum detectable levels in the UV---which is important for particle detectors. For particle detector applications these studies must be extended to high dose irradiations with particles energetic enough to cause lattice atom displacement damage. In principle, the reduction in damage provided by dopants could apply to other applications requiring radiation damage resistant materials

  8. Multi-sensor radiation detector system

    International Nuclear Information System (INIS)

    Foster, R.G.; Cyboron, R.D.

    1975-01-01

    The invention is a multi-sensor radiation detection system including a self-powered detector and an ion or fission chamber, preferably joined as a unitary structure, for removable insertion into a nuclear reactor. The detector and chamber are connected electrically in parallel, requiring but two conductors extending out of the reactor to external electrical circuitry which includes a load impedance, a voltage source, and switch means. The switch means are employed to alternately connect the detector and chamber either with th load impedance or with the load impedance and the voltage source. In the former orientation, current through the load impedance indicates flux intensity at the self-powered detector and in the latter orientation, the current indicates flux intensity at the detector and fission chamber, though almost all of the current is contributed by the fission chamber. (auth)

  9. Radiometric analyzer with plural radiation sources and detectors

    International Nuclear Information System (INIS)

    Arima, S.; Oda, M.; Miyashita, K.; Takada, M.

    1977-01-01

    A radiometric analyzer for measuring characteristics of a material by radiation comprises a plurality of systems in which each consists of a radiation source and a radiation detector which are the same in number as the number of elements of the molecule of the material and a linear calibration circuit having inverse response characteristics (calibration curve) of the respective systems of detectors, whereby the measurement is carried out by four fundamental rules by operation of the mutual outputs of said detector system obtained through said linear calibration circuit. One typical embodiment is a radiometric analyzer for hydrocarbons which measures the density of heavy oil, the sulfur content and the calorific value by three detector systems which include a γ-ray source (E/sub γ/ greater than 50 keV), a soft x-ray source (Ex approximately 20 keV), and a neutron ray source. 2 claims, 6 figures

  10. Department of Radiation Detectors: Overview

    International Nuclear Information System (INIS)

    Piekoszewski, J.

    1998-01-01

    (full text) Work carried out in 1997 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification using Ion and Plasma Beams. Semiconductor detectors: Semiconductor detectors of ionizing radiation are among the basic tools utilized in such fields of research and industry as nuclear physics, high energy physics, medical (oncology) radiotherapy, radiological protection, environmental monitoring, energy dispersive X-ray fluorescence non-destructive analysis of chemical composition, nuclear power industry. The Department all objectives are: - search for new types of detectors, - adapting modern technologies (especially of industrial microelectronics) to detector manufacturing, - producing unique detectors tailored for physics experiments, - manufacturing standard detectors for radiation measuring instruments, - scientific development of the staff. These 1997 objectives were accomplished particularly by: - research on unique detectors for nuclear physics (e.g. transmission type Si(Li) detectors with extremely thin entrance and exit window), - development of technology of high-resistivity (HRSi) silicon detectors and thermoelectric cooling systems (KBN grant), - study of the applicability of industrial planar technology in producing detectors, - manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. In accomplishing of the above, the Department cooperated with interested groups of physicists from our Institute (P-I and P-II Departments), Warsaw University, Warsaw Heavy Ion Laboratory and with some technology Institutes based in Warsaw (ITME, ITE). Some detectors and services have been delivered to customers on a commercial basis. X-Rat tube generators: The Department conducts research on design and technology of producing X-ray generators based on X-ray tubes of special construction. In 1997, work on a special

  11. The design of intelligentized nuclear radiation monitoring detector

    International Nuclear Information System (INIS)

    Meng Yan; Fang Zongliang; Wen Qilin; Li Lirong; Hu Jiewei; Peng Jing

    2010-01-01

    This paper introduced an intelligentized nuclear radiation monitoring detector. The detector contains GM tubes, high voltage power supply and MCU circuit. The detector connect terminal via reformative serial port to provide power, accept the data and sent the command. (authors)

  12. Metal-semiconductor, composite radiation detectors

    International Nuclear Information System (INIS)

    Orvis, W.J.; Yee, J.H.; Fuess, D.A.

    1991-12-01

    In 1989, Naruse and Hatayama of Toshiba published a design for an increased efficiency x-ray detector. The design increased the efficiency of a semiconductor detector by interspersing layers of high-z metal within it. Semiconductors such as silicon make good, high-resolution radiation detectors, but they have low efficiency because they are low-z materials (z = 14). High-z metals, on the other hand, are good absorbers of high-energy photons. By interspersing high-z metal layers with semiconductor layers, Naruse and Hatayama combined the high absorption efficiency of the high-z metals with good detection capabilities of a semiconductor. This project is an attempt to use the same design to produce a high- efficiency gamma ray detector. By their nature, gamma rays require thicker metal layers to efficiently absorb them. These thicker layers change the behavior of the detector by reducing the resolution, compared to a solid state detector, and shifting the photopeak by a predictable amount. During the last year, we have modeled parts of the detector and have nearly completed a prototype device. 2 refs

  13. Recent results on the development of radiation-hard diamond detectors

    CERN Document Server

    Conway, J S; Bauer, C; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Dabrowski, W; Da Graca, J; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Jamieson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Plano, R; Polesello, P; Prawer, S; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Russ, J; Schnetzer, S; Sciortino, S; Somalwar, S V; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R; Thomson, G B; Trawick, M; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; White, C; Ziock, H J; Zöller, M

    1999-01-01

    Charged particle detectors made from chemical vapor deposition (CVD) diamond have radiation hardness greatly exceeding that of silicon- based detectors. The CERN-based RD42 Collaboration has developed and tested CVD diamond microstrip and pixel detectors with an eye to their application in the intense radiation environment near the interaction region of hadron colliders. This paper presents recent results from tests of these detectors. (4 refs).

  14. NRC TLD Direct Radiation Monitoring Network

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1992-06-01

    The US Nuclear Regulatory Commission (NRC) Direct Radiation Monitoring Network is operated by the NRC in cooperation with participating states to provide continuous measurement of the ambient radiation levels around licensed NRC facilities, primarily power reactors. Ambient radiation levels result from naturally occurring radionuclides present in the soil, cosmic radiation constantly bombarding the earth from outer space, and the contribution, if any, from the monitored facilities and other man-made sources. The Network is intended to measure radiation levels during routine facility operations and to establish background radiation levels used to assess the radiological impact of an unusual condition, such as an accident. This report presents the radiation levels measured around all facilities in the Network for the first quarter of 1992. All radiation measurements are made using small, passive detectors called thermoluminescent dosimeters (TLDs), which provide a quantitative measurement of the radiation levels in the area in which they are placed. Each site is monitored by arranging approximately 40 to 50 TLD stations in two concentric rings extending to about five miles from the facility. All TLD stations are outside the site boundary of the facility

  15. Radiation damage: special reference to gas filled radiation detectors

    International Nuclear Information System (INIS)

    Gaur, Sudha; Joshi, Pankaj Kumar; Rathore, Shakuntla

    2012-01-01

    Radiation damage is a term associated with ionizing radiation. In gas filled particle detectors, radiation damage to gases plays an important role in the device's ageing, especially in devices exposed to high intensity radiation, e.g. detector for the large hadrons collide. Ionization processes require energy above 10 eV, while splitting covalent bond in molecules and generating free radical require only 3-4 eV. The electrical discharges initiated by the ionization event by the particles result in plasma populated by large amount of free radical. The highly reactive free radical can recombine back to original molecules, or initiate a chain of free radical polymerization reaction with other molecules, yielding compounds with increasing molecular weight. These high molecular weight compounds then precipitate from gases phase, forming conductive or non-conductive deposits on the electrodes an insulating surfaces of the detector and distorting it's response. Gases containing hydrocarbon quenchers, e.g. argon-methane, are typically sensitive to ageing by polymerization; addition of oxygen tends to lower the ageing rates. Trace amount of silicon oils, present form out gassing of silicon elastomers and especially from traces of silicon lubricant tend to decompose and form deposits of silicon crystals on the surfaces. Gases mixture of argon (or xenon) with CO 2 and optimally also with 2-3 % of oxygen are highly tolerant to high radiation fluxes. The oxygen is added as noble gas with CO 2 has too high transparency for high energy photons; ozone formed from the oxygen is a strong absorber of ultra violet photons. Carbon tetra fluoride can be used as a component of the gas for high-rate detectors; the fluorine radical produced during the operation however limit the choice of materials for the chambers and electrodes (e.g. gold electrodes are required, as the fluorine radicals attack metals, forming fluorides). Addition of carbon tetra fluoride can however eliminate the

  16. Detection of nuclear radiations; Detectores de radiaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Tanarro Sanz, A

    1959-07-01

    A summary of the lectures about the ordinary detectors of nuclear radiations given by the author in the Courses of Introduction to Nuclear Engineering held at the JEN up to the date of publication is given. Those lectures are considered to be a necessary introduction to Nuclear Instrumentation and Applied electronics to Nuclear Engineering so it has been intent to underline those characteristics of radiation detectors that must be taken in consideration in choosing or designing the electronic equipment associated to them in order to take advantage of each detector possibilities. (Author) 8 refs.

  17. ALICE Transition Radiation Detector

    CERN Multimedia

    Pachmayer, Y

    2013-01-01

    The Transition Radiation Detector (TRD) is the main electron detector in ALICE. In conduction with the TPC and the ITS, it provides the necessary electron identification capability to study: - Production of light and heavy vector mesons as well as the continuum in the di-electron channel, - Semi leptonic decays of hadrons with open charm and open beauty via the single-electron channel using the displaced vertex information provided by the ITS, - Correlated DD and BB pairs via coincidences of electrons in the central barrel and muons in the forward muon arm, - Jets with high Pτ tracks in one single TRD stack.

  18. Application of Rossi-type detectors in radiation protection

    International Nuclear Information System (INIS)

    Menzel, H.G.; Hartmann, G.H.; Krauss, O.; Deutsches Krebsforschungszentrum, Heidelberg

    1983-01-01

    Rossi-type detectors can measure the energy dose and the pertinent quality factor simultaneously and independent of the radiation. This is possible because these detectors are able to measure the energy as well as the LET distribution of the measured radiation. The quality factor is then calculated on this basis. The principle of measurement, problems and solutions are discussed. (orig./HP) [de

  19. Diamond and silicon pixel detectors in high radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, Jieh-Wen

    2012-10-15

    Diamond pixel detector is a promising candidate for tracking of collider experiments because of the good radiation tolerance of diamond. The diamond pixel detector must withstand the radiation damage from 10{sup 16} particles per cm{sup 2}, which is the expected total fluence in High Luminosity Large Hadron Collider. The performance of diamond and silicon pixel detectors are evaluated in this research in terms of the signal-to-noise ratio (SNR). Single-crystal diamond pixel detectors with the most recent readout chip ATLAS FE-I4 are produced and characterized. Based on the results of the measurement, the SNR of diamond pixel detector is evaluated as a function of radiation fluence, and compared to that of planar-silicon ones. The deterioration of signal due to radiation damage is formulated using the mean free path of charge carriers in the sensor. The noise from the pixel readout circuit is simulated and calculated with leakage current and input capacitance to the amplifier as important parameters. The measured SNR shows good agreement with the calculated and simulated results, proving that the performance of diamond pixel detectors can exceed the silicon ones if the particle fluence is more than 10{sup 15} particles per cm{sup 2}.

  20. Diamond and silicon pixel detectors in high radiation environments

    International Nuclear Information System (INIS)

    Tsung, Jieh-Wen

    2012-10-01

    Diamond pixel detector is a promising candidate for tracking of collider experiments because of the good radiation tolerance of diamond. The diamond pixel detector must withstand the radiation damage from 10 16 particles per cm 2 , which is the expected total fluence in High Luminosity Large Hadron Collider. The performance of diamond and silicon pixel detectors are evaluated in this research in terms of the signal-to-noise ratio (SNR). Single-crystal diamond pixel detectors with the most recent readout chip ATLAS FE-I4 are produced and characterized. Based on the results of the measurement, the SNR of diamond pixel detector is evaluated as a function of radiation fluence, and compared to that of planar-silicon ones. The deterioration of signal due to radiation damage is formulated using the mean free path of charge carriers in the sensor. The noise from the pixel readout circuit is simulated and calculated with leakage current and input capacitance to the amplifier as important parameters. The measured SNR shows good agreement with the calculated and simulated results, proving that the performance of diamond pixel detectors can exceed the silicon ones if the particle fluence is more than 10 15 particles per cm 2 .

  1. Radiation and detectors introduction to the physics of radiation and detection devices

    CERN Document Server

    Cerrito, Lucio

    2017-01-01

    This textbook provides an introduction to radiation, the principles of interaction between radiation and matter, and the exploitation of those principles in the design of modern radiation detectors. Both radiation and detectors are given equal attention and their interplay is carefully laid out with few assumptions made about the prior knowledge of the student. Part I is dedicated to radiation, broadly interpreted in terms of energy and type, starting with an overview of particles and forces, an extended review of common natural and man-made sources of radiation, and an introduction to particle accelerators. Particular attention is paid to real life examples, which place the types of radiation and their energy in context. Dosimetry is presented from a modern, user-led point of view, and relativistic kinematics is introduced to give the basic knowledge needed to handle the more formal aspects of radiation dynamics and interaction. The explanation of the physics principles of interaction between radiation an...

  2. Department of Radiation Detectors: Overview

    International Nuclear Information System (INIS)

    Piekoszewski, J.

    1999-01-01

    Full text: Work carried out in 1998 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification Using Ion and Plasma Beams. SEMICONDUCTOR DETECTORS: Semiconductor detectors of ionizing radiation are among the basic tools utilized in such fields of research and industry as nuclear physics, high energy physics, medical (oncology) radiotherapy, radiological protection, environmental monitoring, energy dispersive X-ray fluorescence non-destructive analysis of chemical composition, nuclear power industry. The departmental objectives are: a search for new types of detectors; producing unique detectors tailored for physics experiments; manufacturing standard detectors for radiation measuring instruments; scientific development of the staff. These objectives were accomplished in 1998 particularly by: research on unique thin silicon detectors for identification of particles in E-ΔE telescopes, modernization of technology of manufacturing Ge(Li) detectors capable of detecting broader range of gamma energies, manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. In accomplishment of the above the Department co-operated with groups of physicists from IPJ, PAN Institute of Physics (Warsaw), and with some technology Institutes based in Warsaw (ITME, ITE). Some detectors and services have been delivered to customers on a commercial basis. X-Ray TUBE GENERATORS: The Department conducts research on design and technology of manufacturing X-ray generators as well as on imaging and dosimetry of X-ray beams. Various models of special construction X-ray tubes and their power supplies are under construction. In 1998 work concentrated on: completing laboratory equipment for manufacturing X-ray tubes and their components, developing technology of manufacturing X-ray tubes and their components, completing a laboratory set-up with

  3. Simple dynamic electromagnetic radiation detector

    Science.gov (United States)

    Been, J. F.

    1972-01-01

    Detector monitors gamma dose rate at particular position in a radiation facility where a mixed neutron-gamma environment exists, thus determining reactor power level changes. Device also maps gamma intensity profile across a neutron-gamma beam.

  4. Radiation effects in polymers for plastic scintillation detectors

    International Nuclear Information System (INIS)

    Pla-Dalmau, A.; Bross, A.D.; Hurlbut, C.R.; Moser, S.W.

    1994-01-01

    Recent developments in both scintillating plastic optical fibers and photon detection devices have spawned new applications for plastic scintillator detectors. This renewed attention has encouraged research that addresses the radiation stability of plastic scintillators. The optical quality of the polymer degrades with exposure to ionizing radiation and thus the light yield of the detector decreases. A complete understanding of all the mechanisms contributing to this radiation-induced degradation of the polymer can lead to techniques that will extend the radiation stability of these materials. Various radiation damage studies have been performed under different atmospheres and dose rates. Currently, the use of additives to preserve the optical properties of the polymer matrix under radiation is being investigated. The authors discuss the effect of certain antioxidants, plasticizers, and cross-linking agents on the radiation resilience of plastic scintillators

  5. Gamma-ray detectors for intelligent, hand-held radiation monitors

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1983-01-01

    Small radiation detectors based on HgI 2 , bismuth germanate (BGO), plastic, or NaI(Tl) detector materials were evaluated for use in small, lighweight radiation monitors. The two denser materials, HgI 2 and BGO, had poor resolution at low-energy and thus performed less well than NaI(Tl) in detecting low-energy gamma rays from bare, enriched uranium. The plastic scintillator, a Compton recoil detector, also performed less well at low gamma-ray energy. Two small NaI(Tl) detectors were suitable for detecting bare uranium and sheilded plutonium. One became part of a new lightweight hand-held monitor and the other found uses as a pole-mounted detector for monitoring hard-to-reach locations

  6. Use of HgI2 as gamma radiation detector

    International Nuclear Information System (INIS)

    Perez Morales, J.M.

    1993-01-01

    The Mercuric Iodide (HgI 2 ) has become one of the most promising room temperature semiconductors for the construction of X and gamma radiation detectors. The classical methods of spectroscopy have not demonstrated to achieve optimum results with HgI 2 detectors, mainly due to its particular carrier transport properties. Several alternative spectroscopic methods developed in the last ten years are presented and commented, selecting for a complete study one of them: 'The Partial Charge Collection Method'. The transport properties of the carriers generated by the radiation in the detector is specially important for understanding the spectroscopic behaviour of the HgI 2 detectors. For a rigorous characterization of this transport, it has been studied a digital technique for the analysis of the electric pulses produced by the radiation. Theoretically, it has been developed a Monte Carlo simulation of the radiation detection and the electronic signal treatment processes with these detectors in the energy range of 60-1300 KeV. These codes are applied to the study of the The Partial Charge Collection Method and its comparison with gaussian methods. Experimentally, this digital techniques is used for the study of the transport properties of thin HgI 2 detectors. Special interest is given to the contribution of the slower carriers, the holes, obtaining some consequent of spectroscopic interest. Finally, it is presented the results obtained with the first detectors grown and mounted in CIEMAT with own technology. (author). 129 ref

  7. Electromagnetic disturbance neutralizing radiation detector

    International Nuclear Information System (INIS)

    Gripentog, W.G.

    1975-01-01

    A radiation detector of the Neher-White type is described which automatically neutralizes induced negative charges on the electrometer tube control grid which shut off the electrometer tube. The detector includes means for establishing a voltage of one polarity in response to plate current and voltage of opposite polarity in response to an absence of plate current and means for connecting the control grid to a reference potential for draining the negative charge in response to the voltage of opposite polarity. (author)

  8. Solid-state radiation detectors for active personal dosimetry and radiations source tracking

    International Nuclear Information System (INIS)

    Talpalariu, Corneliu; Talpalariu, Jeni; Matei, Corina; Lita, Ioan; Popescu, Oana

    2010-01-01

    We report on the design of the readout electronics using PIN diode radiation detector of 5 mm thickness for nuclear safety and active personal dosimetry. Our effort consisted in designing and fabricating the electronics to reflect the needs of gamma radiations dosimetry and hybrids PIN diode arrays for charged particle detectors. We report results obtained during testing and characterizing the new devices in gamma fields, operating at room temperature. There were determined the energy spectrum resolution, radiation hardness and readout rate. Also, data recording methods and parallel acquisition problems from a transducer matrix are presented. (authors)

  9. Radiation response issues for infrared detectors

    Science.gov (United States)

    Kalma, Arne H.

    1990-01-01

    Researchers describe the most important radiation response issues for infrared detectors. In general, the two key degradation mechanisms in infrared detectors are the noise produced by exposure to a flux of ionizing particles (e.g.; trapped electronics and protons, debris gammas and electrons, radioactive decay of neutron-activated materials) and permanent damage produced by exposure to total dose. Total-dose-induced damage is most often the result of charge trapping in insulators or at interfaces. Exposure to short pulses of ionization (e.g.; prompt x rays or gammas, delayed gammas) will cause detector upset. However, this upset is not important to a sensor unless the recovery time is too long. A few detector technologies are vulnerable to neutron-induced displacement damage, but fortunately most are not. Researchers compare the responses of the new technologies with those of the mainstream technologies of PV HgCdTe and IBC Si:As. One important reason for this comparison is to note where some of the newer technologies have the potential to provide significantly improved radiation hardness compared with that of the mainstream technologies, and thus to provide greater motivation for the pursuit of these technologies.

  10. Detection of gamma-neutron radiation by solid-state scintillation detectors. Detection of gamma-neutron radiation by novel solid-state scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhikov, V.; Grinyov, B.; Piven, L.; Onyshchenko, G.; Sidletskiy, O. [Institute for Scintillation Materials of the NAS of Ukraine, Kharkov, (Ukraine); Naydenov, S. [Institute for Single Crystals of the National Academy of Sciences of Ukraine, Kharkov, (Ukraine); Pochet, T. [DETEC-Europe, Vannes (France); Smith, C. [Naval Postgraduate School, Monterey, CA (United States)

    2015-07-01

    'γ) reactions towards lower energies and the isotropic character of scattering of the secondary neutrons may lead to the observed limitation of the length of effective interaction, since a fraction of the secondary neutrons that propagate in the forward direction are not subject to further inelastic scattering because of their substantially lower energy. At these reduced energies, it is the capture cross-section (n, γ) that becomes predominant, resulting in lower detection efficiency. Based on these results, several types of detectors have been envisioned for application in detection systems for nuclear materials. The testing results for one such detector are presented in this work. We have studied the possibility of creation of a composite detector with scintillator granules placed inside a transparent polymer material. Because of the low transparency of such a dispersed scintillator, better light collection conditions are ensured by incorporation of a light guide between the scintillator layers. This guide is made of highly transparent polymer material. The use of a high-transparency hydrogen-containing polymer material for light guides not only ensures optimum conditions of light collection in the detector, but also allows certain deceleration of neutron radiation, increasing its interaction efficiency with the composite scintillation panels; accordingly, the detector signal is increased by 5-8%. When fast neutrons interact with the scintillator material, the resulting inelastic scattering gamma-quanta emerge, having different energies and different delay times with respect to the moment of the neutron interaction with the nucleus of the scintillator material (delay times ranging from 1x10{sup -9} to 1.3x10{sup -6} s). These internally generated gamma-quanta interact with the scintillator, and the resulting scintillation light is recorded by the photo-receiver. Since neutron sources are also strong sources of low-energy gamma-radiation, the use of dispersed Zn

  11. Solid-state radiation detectors technology and applications

    CERN Document Server

    2015-01-01

    The book discusses the current solid state material used in advance detectors manufacturing and their pros and cons and how one can tailor them using different techniques, to get the maximum performance. The book is application oriented to radiation detectors for medical, X and gamma rays application, and good reference with in-depth discussion of detector's physics as it relates to medical application tailored for engineers and scientists.

  12. Photovoltaic radiation detector element

    International Nuclear Information System (INIS)

    Agouridis, D.C.

    1980-01-01

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips

  13. A self-powered thin-film radiation detector using intrinsic high-energy current

    Energy Technology Data Exchange (ETDEWEB)

    Zygmanski, Piotr, E-mail: pzygmanski@LROC.HARVARD.EDU, E-mail: Erno-Sajo@uml.edu [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Sajo, Erno, E-mail: pzygmanski@LROC.HARVARD.EDU, E-mail: Erno-Sajo@uml.edu [Department of Physics and Applied Physics, Medical Physics Program, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States)

    2016-01-15

    Purpose: The authors introduce a radiation detection method that relies on high-energy current (HEC) formed by secondary charged particles in the detector material, which induces conduction current in an external readout circuit. Direct energy conversion of the incident radiation powers the signal formation without the need for external bias voltage or amplification. The detector the authors consider is a thin-film multilayer device, composed of alternating disparate electrically conductive and insulating layers. The optimal design of HEC detectors consists of microscopic or nanoscopic structures. Methods: Theoretical and computational developments are presented to illustrate the salient properties of the HEC detector and to demonstrate its feasibility. In this work, the authors examine single-sandwiched and periodic layers of Cu and Al, and Au and Al, ranging in thickness from 100 nm to 300 μm and separated by similarly sized dielectric gaps, exposed to 120 kVp x-ray beam (half-value thickness of 4.1 mm of Al). The energy deposition characteristics and the high-energy current were determined using radiation transport computations. Results: The authors found that in a dual-layer configuration, the signal is in the measurable range. For a defined total detector thickness in a multilayer structure, the signal sharply increases with decreasing thickness of the high-Z conductive layers. This paper focuses on the computational results while a companion paper reports the experimental findings. Conclusions: Significant advantages of the device are that it does not require external power supply and amplification to create a measurable signal; it can be made in any size and geometry, including very thin (sub-millimeter to submicron) flexible curvilinear forms, and it is inexpensive. Potential applications include medical dosimetry (both in vivo and external), radiation protection, and other settings where one or more of the above qualities are desired.

  14. UTILIZATION OF PHOSWICH DETECTORS FOR SIMULTANEOUS, MULTIPLE RADIATION DETECTION

    International Nuclear Information System (INIS)

    Miller, William H.; Manuel Diaz de Leon

    2003-01-01

    A phoswich radiation detector is comprised of a phosphor sandwich in which several different phosphors are viewed by a common photomultiplier. By selecting the appropriate phosphors, this system can be used to simultaneously measure multiple radiation types (alpha, beta, gamma and/or neutron) with a single detector. Differentiation between the signals from the different phosphors is accomplished using digital pulse shape discrimination techniques. This method has been shown to result in accurate discrimination with highly reliable and versatile digital systems. This system also requires minimal component count (i.e. only the detector and a computer for signal processing). A variety of detectors of this type have been built and tested including: (1) a triple phoswich system for alpha/beta/gamma swipe counting, (2) two well-type detectors for measuring low levels of low energy photons in the presence of a high energy background, (3) a large area detector for measuring beta contamination in the presence of a photon background, (4) another large area detector for measuring low energy photons from radioactive elements such as uranium in the presence of a photon background. An annular geometry, triple phoswich system optimized for measuring alpha/beta/gamma radiation in liquid waste processing streams is currently being designed

  15. UTILIZATION OF PHOSWICH DETECTORS FOR SIMULTANEOUS, MULTIPLE RADIATION DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    William H. Miller; Manuel Diaz de Leon

    2003-04-15

    A phoswich radiation detector is comprised of a phosphor sandwich in which several different phosphors are viewed by a common photomultiplier. By selecting the appropriate phosphors, this system can be used to simultaneously measure multiple radiation types (alpha, beta, gamma and/or neutron) with a single detector. Differentiation between the signals from the different phosphors is accomplished using digital pulse shape discrimination techniques. This method has been shown to result in accurate discrimination with highly reliable and versatile digital systems. This system also requires minimal component count (i.e. only the detector and a computer for signal processing). A variety of detectors of this type have been built and tested including: (1) a triple phoswich system for alpha/beta/gamma swipe counting, (2) two well-type detectors for measuring low levels of low energy photons in the presence of a high energy background, (3) a large area detector for measuring beta contamination in the presence of a photon background, (4) another large area detector for measuring low energy photons from radioactive elements such as uranium in the presence of a photon background. An annular geometry, triple phoswich system optimized for measuring alpha/beta/gamma radiation in liquid waste processing streams is currently being designed.

  16. Radiation effects on II-VI compound-based detectors

    CERN Document Server

    Cavallini, A; Dusi, W; Auricchio, N; Chirco, P; Zanarini, M; Siffert, P; Fougeres, P

    2002-01-01

    The performance of room temperature CdTe and CdZnTe detectors exposed to a radiation source can be strongly altered by the interaction of the ionizing particles and the material. Up to now, few experimental data are available on the response of II-VI compound detectors to different types of radiation sources. We have carried out a thorough investigation on the effects of gamma-rays, neutrons and electron irradiation both on CdTe : Cl and Cd sub 0 sub . sub 9 Zn sub 0 sub . sub 1 Te detectors. We have studied the detector response after radiation exposure by means of dark current measurements and of quantitative spectroscopic analyses at low and medium energies. The deep traps present in the material have been characterized by means of PICTS (photo-induced current transient spectroscopy) analyses, which allow to determine the trap apparent activation energy and capture cross-section. The evolution of the trap parameters with increasing irradiation doses has been monitored for all the different types of radiati...

  17. Fast infrared detectors for beam diagnostics with synchrotron radiation

    International Nuclear Information System (INIS)

    Bocci, A.; Marcelli, A.; Pace, E.; Drago, A.; Piccinini, M.; Cestelli Guidi, M.; De Sio, A.; Sali, D.; Morini, P.; Piotrowski, J.

    2007-01-01

    Beam diagnostic is a fundamental constituent of any particle accelerators either dedicated to high-energy physics or to synchrotron radiation experiments. All storage rings emit radiations. Actually they are high brilliant sources of radiation: the synchrotron radiation emission covers from the infrared range to the X-ray domain with a pulsed structure depending on the temporal characteristics of the stored beam. The time structure of the emitted radiation is extremely useful as a tool to perform time-resolved experiments. However, this radiation can be also used for beam diagnostic to determine the beam stability and to measure the dimensions of the e - or e + beam. Because of the temporal structure of the synchrotron radiation to perform diagnostic, we need very fast detectors. Indeed, the detectors required for the diagnostics of the stored particle bunches at third generation synchrotron radiation sources and FEL need response times in the sub-ns and even ps range. To resolve the bunch length and detect bunch instabilities, X-ray and visible photon detectors may be used achieving response times of a few picoseconds. Recently, photon uncooled infrared devices optimized for the mid-IR range realized with HgCdTe semiconductors allowed to obtain sub-nanosecond response times. These devices can be used for fast detection of intense IRSR sources and for beam diagnostic. We present here preliminary experimental data of the pulsed synchrotron radiation emission of DAΦNE, the electron positron collider of the LNF laboratory of the INFN, performed with new uncooled IR detectors with a time resolution of a few hundreds of picoseconds

  18. Assessment of integrated solar ultraviolet radiation by PM-355 detectors

    International Nuclear Information System (INIS)

    Abu-Jarad, F.; Al-Jarallah, M.I.; Elhadidy, M.A.; Shaahid, S.M.; Fazal-ur-Rehman

    2000-01-01

    The increase in environmental solar UV radiation due to depletion of ozone layer is a recent challenge to human health (skin cancer and eye effects) in countries having clear skies. Therefore, applying integrated, passive and inexpensive techniques to assess solar UV radiation is very much essential. Measurements of environmental solar UV radiation in Dhahran, Saudi Arabia area were carried out for a period of two months in the summer period in 1996 using two techniques in parallel namely: passive nuclear track detectors and active solar UV radiometers. Some of the nuclear track detectors were mounted in different conditions such as: under shadow band, on solar tracking mechanism following the solar rays. Others were mounted on perpendicular, tilted and horizontal surfaces in sunlight. All detectors were attached to a wooden background of the same thickness (0.5 cm) to eliminate interference of the heat effect of various support materials and have uniformity of the support materials. The assessment was carried out for different periods extending from two to nine weeks continuously. The investigated period covered the hottest months in Saudi Arabia (July and August) when the sky was clear of clouds. The results indicate linear correlation between alpha track diameters and the integrated exposure to solar UV as measured by the solar UV radiometer for all nuclear track detector positions and orientations. The highest slope has been observed for the detectors placed on solar tracking mechanism following the solar rays and the lowest from detectors oriented under the shadow band on horizontal position (measuring the diffused UV radiation only). The results show that most of the measured UV radiation (60%) were from the diffused UV radiation. The characteristics of the upper layer of the detectors are changed after chemical etching very quickly, with increase in the exposure time to UV solar radiation at certain orientation. The results encourage the use of nuclear track

  19. Assessment of integrated solar ultraviolet radiation by PM-355 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Al-Jarallah, M.I.; Elhadidy, M.A.; Shaahid, S.M.; Fazal-ur-Rehman

    2000-06-01

    The increase in environmental solar UV radiation due to depletion of ozone layer is a recent challenge to human health (skin cancer and eye effects) in countries having clear skies. Therefore, applying integrated, passive and inexpensive techniques to assess solar UV radiation is very much essential. Measurements of environmental solar UV radiation in Dhahran, Saudi Arabia area were carried out for a period of two months in the summer period in 1996 using two techniques in parallel namely: passive nuclear track detectors and active solar UV radiometers. Some of the nuclear track detectors were mounted in different conditions such as: under shadow band, on solar tracking mechanism following the solar rays. Others were mounted on perpendicular, tilted and horizontal surfaces in sunlight. All detectors were attached to a wooden background of the same thickness (0.5 cm) to eliminate interference of the heat effect of various support materials and have uniformity of the support materials. The assessment was carried out for different periods extending from two to nine weeks continuously. The investigated period covered the hottest months in Saudi Arabia (July and August) when the sky was clear of clouds. The results indicate linear correlation between alpha track diameters and the integrated exposure to solar UV as measured by the solar UV radiometer for all nuclear track detector positions and orientations. The highest slope has been observed for the detectors placed on solar tracking mechanism following the solar rays and the lowest from detectors oriented under the shadow band on horizontal position (measuring the diffused UV radiation only). The results show that most of the measured UV radiation (60%) were from the diffused UV radiation. The characteristics of the upper layer of the detectors are changed after chemical etching very quickly, with increase in the exposure time to UV solar radiation at certain orientation. The results encourage the use of nuclear track

  20. Silicon radiation detectors: materials and applications

    International Nuclear Information System (INIS)

    Walton, J.T.; Haller, E.E.

    1982-10-01

    Silicon nuclear radiation detectors are available today in a large variety of sizes and types. This profusion has been made possible by the ever increasing quality and diameter silicon single crystals, new processing technologies and techniques, and innovative detector design. The salient characteristics of the four basic detector groups, diffused junction, ion implanted, surface barrier, and lithium drift are reviewed along with the silicon crystal requirements. Results of crystal imperfections detected by lithium ion compensation are presented. Processing technologies and techniques are described. Two recent novel position-sensitive detector designs are discussed - one in high-energy particle track reconstruction and the other in x-ray angiography. The unique experimental results obtained with these devices are presented

  1. Low dose radiation damage effects in silicon strip detectors

    International Nuclear Information System (INIS)

    Wiącek, P.; Dąbrowski, W.

    2016-01-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  2. Low dose radiation damage effects in silicon strip detectors

    Science.gov (United States)

    Wiącek, P.; Dąbrowski, W.

    2016-11-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  3. The pin detector - a simple, robust, cheap and effective nuclear radiation detector

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1984-01-01

    The development of a series of radiation detectors bases on the point anode is reported. Using readily available preformed pins from a variety of electrical connectors as the anodes, a family of devices has been created with useful properties as X-ray detectors, radiation monitors and internal beta counters. A wide variety of gas fillings can be used, argon/CH 4 premix being the most convenient. The structures are robust and call for no precision alignments so keeping costs down. Performance of the devices in respect of sensitivity and pulse height resolution is comparable to that of conventional wire counters. (author)

  4. Isotope detectors and radiation detectors for test reliability techniqui. A preliminary project

    International Nuclear Information System (INIS)

    Christell, R.

    1977-03-01

    A survey is done of small and simple components for use as detectors for ionizing radiation, as well as different methods and components producing images of radiation fields based on position sensitive detectors. The investigation has resulted in a system for detection of stones in wood. In a second project isotope excited x ray fluorescence has been used for analysis of material resulting from wear of mechanical components. A facility for analysis has been built and test analysis has been performed. Methods for continous wear control with possibility to forecast breakdowns have been investigated. (K.K.)

  5. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Ducourthial, Audrey; The ATLAS collaboration

    2017-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15} n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside...

  6. Modeling radiation damage to pixel sensors in the ATLAS detector

    CERN Document Server

    Ducourthial, Audrey; The ATLAS collaboration

    2017-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15}n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside ...

  7. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Rossini, Lorenzo; The ATLAS collaboration

    2018-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High- Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of 10^15 neq/cm2 and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time and considers both planar and 3D sensor designs. In addition to thoroughly describing the setup, we compare predictions for basic...

  8. Superconducting NbN detectors for synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, Alexei; Richter, Heiko; Huebers, Heinz-Wilhelm [DLR, Instiute of Planetary Research, Berlin (Germany); Ilin, Konstantin; Siegel, Michael [Institute of Micro- and Nanoelectronic Systems, University of Karlsruhe (Germany)

    2009-07-01

    We present development of a special type of hot-electron bolometers that is designed to optimally detect pulsed synchrotron radiation in the terahertz frequency range. The enlarged log-spiral antenna makes it possible to sense the low-frequency part of the spectrum in coherent and non-coherent regime. The device follows the layout of a typical HEB mixer. The radiation is coupled quasioptically with the 6-mm elliptical silicon lens. The bolometer has the noise equivalent power 2 nW per square root Hz and responds to a few picoseconds long radiation pulse with the electric pulse having full width at half maximum of 160 ps. We present results obtained with this type of detector at different synchrotron facilities and discuss possible improvements of the detector performance.

  9. Radiation flaw detector for testing non-uniform surface bodies of revolution

    International Nuclear Information System (INIS)

    Valevich, M.I.

    1984-01-01

    Radiation flaw detector for testing bodies of revolution with non-uniform surface, welded joints, etc., based on spatial filtration and differentiation of ionizing radiation flux has been described. The calculation of the most important unit of flaw detector - integrators - is made. Experimental studies of the sensitivity have shown, that the radiation flaw detector can be used for rapid testing of products with the sensitivity comparable with the sensitivity of radiographic testing of steel

  10. Fabrication of radiation detector using PbI2 crystals

    International Nuclear Information System (INIS)

    Shoji, T.; Ohba, K.; Suehiro, T.; Hiratate, Y.

    1995-01-01

    Radiation detectors have been fabricated from lead iodide (PbI 2 ) crystals grown by two methods: zone melting and Bridgman methods. In response characteristics of the detector fabricated from crystals grown by the zone melting method, a photopeak for γ-rays from an 241 Am source (59.5 KeV) has been clearly observed with applied detector bias of 500 V at room temperature. The hole drift mobility is estimated to be about 5.5 cm 2 /Vs from measurement of pulse rise time for 5.48 MeV α-rays from 241 Am. By comparing the detector bias versus saturated peak position of the PbI 2 detector with that of CdTe detector, the average energy for producing electron-hole pairs is estimated to be about 8.4 eV for the PbI 2 crystal. A radiation detector fabricated from PbI 2 crystals grown by the Bridgman method, however, exhibited no response for γ-rays

  11. Single-crystalline Bi2Sr2CaCu2O8+x detectors for direct detection of microwave radiation

    International Nuclear Information System (INIS)

    Li, M.; Winkler, D.; Yurgens, A.

    2015-01-01

    We test radiation detectors made from single-crystalline Bi 2 Sr 2 CaCu 2 O 8+x flakes put on oxidized Si substrates. The 100-nm-thick flakes are lithographically patterned into 4×12 μm 2 large rectangles embedded in thin-film log-spiral antennas. The SiO 2 layer weakens the thermal link between the flakes and the bath. Two modes of radiation detection have been observed. For a bolometric type of sensors a responsivity of ∼300 V/W and a noise equivalent power of 30 nW/√(Hz) has been deduced at 70 K. Much more sensitive is the non-bolometric device showing characteristics similar to a Golay-type detector while being at least a thousand times faster. Making smaller (sub-μm) structures is expected to significantly improve the performance of these devices and makes them very competitive among other microwave and terahertz detectors

  12. Development of Radiation Hard Radiation Detectors, Differences between Czochralski Silicon and Float Zone Silicon

    CERN Document Server

    Tuominen, Eija

    2012-01-01

    The purpose of this work was to develop radiation hard silicon detectors. Radiation detectors made ofsilicon are cost effective and have excellent position resolution. Therefore, they are widely used fortrack finding and particle analysis in large high-energy physics experiments. Silicon detectors willalso be used in the CMS (Compact Muon Solenoid) experiment that is being built at the LHC (LargeHadron Collider) accelerator at CERN (European Organisation for Nuclear Research). This work wasdone in the CMS programme of Helsinki Institute of Physics (HIP).Exposure of the silicon material to particle radiation causes irreversible defects that deteriorate theperformance of the silicon detectors. In HIP CMS Programme, our approach was to improve theradiation hardness of the silicon material with increased oxygen concentration in silicon material. Westudied two different methods: diffusion oxygenation of Float Zone silicon and use of high resistivityCzochralski silicon.We processed, characterised, tested in a parti...

  13. Status and trends of solid state track detector use in radiation protection monitoring

    International Nuclear Information System (INIS)

    Doerschel, B.

    1980-01-01

    The characteristic properties of solid state track detectors allow them to be used for determining the radiation fields of charged and uncharged particles and, consequently, for solving some problems involved in radiation protection monitoring. Aptitude of various detector materials is investigated on the basis of the track formation mechanism taking into account the properties of the particles to be detected. Use of these detectors in radiation protection monitoring presumes appropriate methods of intensifying the latent tracks, which are discussed as a function of various physical parameters. Readout methods of solid state track detectors are based on variations in detector properties determined by number and size of particle tracks in the detector. The choice of a special readout method, among other things, depends on the purpose, detector material, and pretreatment of the detectors. The most prospective methods are described and investigated with respect to their possible use in various fields of radiation protection monitoring. The trends of development of the application of solid state track detectors in radiation protection monitoring are discussed, using some typical applications as examples. (author)

  14. 3-D GaAs radiation detectors

    International Nuclear Information System (INIS)

    Meikle, A.R.; Bates, R.L.; Ledingham, K.; Marsh, J.H.; Mathieson, K.; O'Shea, V.; Smith, K.M.

    2002-01-01

    A novel type of GaAs radiation detector featuring a 3-D array of electrodes that penetrate through the detector bulk is described. The development of the technology to fabricate such a detector is presented along with electrical and radiation source tests. Simulations of the electrical characteristics are given for detectors of various dimensions. Laser drilling, wet chemical etching and metal evaporation were used to create a cell array of nine electrodes, each with a diameter of 60 μm and a pitch of 210 μm. Electrical measurements showed I-V characteristics with low leakage currents and high breakdown voltages. The forward and reverse I-V measurements showed asymmetrical characteristics, which are not seen in planar diodes. Spectra were obtained using alpha particle illumination. A charge collection efficiency of 50% and a S/N ratio of 3 : 1 were obtained. Simulations using the MEDICI software package were performed on cells with various dimensions and were comparable with experimental results. Simulations of a nine-electrode cell with 10 μm electrodes with a 25 μm pitch were also performed. The I-V characteristics again showed a high breakdown voltage with a low leakage current but also showed a full depletion voltage of just 8 V

  15. Performance of semiconductor radiation sensors for simple and low-cost radiation detector

    International Nuclear Information System (INIS)

    Tanimura, Yoshihiko; Birumachi, Atsushi; Yoshida, Makoto; Watanabe, Tamaki

    2008-01-01

    In order to develop a simple but reliable radiation detector for the general public, photon detection performances of radiation sensors have been studied in photon calibration fields and by Monte Carlo simulations. A silicon p-i-n photodiode and a CdTe detector were selected for the low cost sensors. Their energy responses to ambient dose equivalent H * (10) were evaluated over the energy range from 60 keV to 2 MeV. The response of the CdTe decreases markedly with increasing photon energy. On the other hand, the photodiode has the advantage of almost flat response above 150 keV. The sensitivities of these sensors are 4 to 6 cpm for the natural radiation. Detection limits of the radiation level are low enough to know the extreme increase of radiation due to emergency situations of nuclear power plants, fuel treatment facilities and so on. (author)

  16. Radiation-hard semiconductor detectors for SuperLHC

    CERN Document Server

    Bruzzi, Mara; Al-Ajili, A A; Alexandrov, P; Alfieri, G; Allport, Philip P; Andreazza, A; Artuso, M; Assouak, S; Avset, B S; Barabash, L; Baranova, E; Barcz, A; Basile, A; Bates, R; Belova, N; Betta, G F D; Biagi, S F; Bilei, G M; Bisello, D; Blue, A; Blumenau, A; Boisvert, V; Bölla, G; Bondarenko, G B; Borchi, E; Borrello, L; Bortoletto, D; Boscardin, M; Bosisio, L; Bowcock, T J V; Brodbeck, T J; Broz, J; Brukhanov, A; Brzozowski, A; Buda, M; Buhmann, P; Buttar, C; Campabadal, F; Campbell, D; Candelori, A; Casse, G; Cavallini, A; Chilingarov, A G; Chren, D; Cindro, V; Citterio, M; Collins, P; Coluccia, R; Contarato, D; Coutinho, J; Creanza, D; Cunningham, W; Cvetkov, V; Davies, G; Dawson, I; De Palma, M; Demina, R; Dervan, P; Dierlamm, A; Dittongo, S; Dobrzanski, L; Dolezal, Z; Dolgolenko, A; Eberlein, T; Eremin, V; Fall, C; Fasolo, F; Ferbel, T; Fizzotti, F; Fleta, C; Focardi, E; Forton, E; Franchenko, S; Fretwurst, E; Gamaz, F; García-Navarro, J E; García, C; Gaubas, E; Genest, M H; Gill, K A; Giolo, K; Glaser, M; Gössling, C; Golovine, V; Gorelov, I; Goss, J; Gouldwell, A; Grégoire, G; Gregori, P; Grigoriev, E; Grigson, C; Grillo, A; Groza, A; Guskov, J; Haddad, L; Harding, R; Härkönen, J; Hauler, F; Hayama, S; Hoeferkamp, M; Honniger, F; Horazdovsky, T; Horisberger, R P; Horn, M; Houdayer, A; Hourahine, B; Hruban, A; Hughes, G; Ilyashenko, Yu S; Irmscher, K; Ivanov, A; Jarasiunas, K; Jin, T; Jones, B K; Jones, R; Joram, C; Jungermann, L; Kalinina, E; Kaminski, P; Karpenko, A; Karpov, A; Kazlauskiene, V; Kazukauskas, V; Khivrich, V; Khomenkov, V P; Kierstead, J A; Klaiber Lodewigs, J M; Kleverman, M; Klingenberg, R; Kodys, P; Kohout, Z; Korjenevski, S; Kowalik, A; Kozlowski, R; Kozodaev, M; Kramberger, G; Krasel, O; Kuznetsov, A; Kwan, S; Lagomarsino, S; Lari, T; Lassila-Perini, K M; Lastovetsky, V F; Latino, G; Latushkin, S T; Lazanu, I; Lazanu, S; Lebel, C; Leinonen, K; Leroy, C; Li, Z; Lindström, G; Lindström, L; Linhart, V; Litovchenko, A P; Litovchenko, P G; Litvinov, V; Lo Giudice, A; Lozano, M; Luczynski, Z; Luukka, Panja; Macchiolo, A; Mainwood, A; Makarenko, L F; Mandic, I; Manfredotti, C; Martí i García, S; Marunko, S; Mathieson, K; Melone, J; Menichelli, D; Meroni, C; Messineo, A; Miglio, S; Mikuz, M; Miyamoto, J; Moll, M; Monakhov, E; Moscatelli, F; Mozzanti, A; Murin, L; Naoumov, D; Nava, F; Nossarzhevska, E; Nummela, S; Nysten, J; Olivero, P; O'Shea, V; Palviainen, T; Paolini, C; Parkes, C; Passeri, D; Pein, U; Pellegrini, G; Perera, L; Petasecca, M; Piatkowski, B; Piemonte, C; Pignatel, G U; Pinho, N; Pintilie, I; Pintilie, L; Polivtsev, L; Polozov, P; Popa, A I; Popule, J; Pospísil, S; Pucker, G; Radicci, V; Rafí, J M; Ragusa, F; Rahman, M; Rando, R; Röder, R; Rohe, T; Ronchin, S; Rott, C; Roy, A; Roy, P; Ruzin, A; Ryazanov, A; Sadrozinski, H F W; Sakalauskas, S; Scaringella, M; Schiavulli, L; Schnetzer, S; Schumm, B; Sciortino, S; Scorzoni, A; Segneri, G; Seidel, S; Seiden, A; Sellberg, G; Sellin, P J; Sentenac, D; Sevilla, S G; Shipsey, I; Sícho, P; Sloan, T; Solar, M; Son, S; Sopko, B; Spencer, N; Stahl, J; Stavitski, I; Stolze, D; Stone, R; Storasta, J; Strokan, N; Strupinski, W; Sudzius, M; Surma, B; Suuronen, J; Suvorov, A; Svensson, B G; Tipton, P; Tomasek, M; Troncon, C; Tsvetkov, A; Tuominen, E; Tuovinen, E; Tuuva, T; Tylchin, M; Uebersee, H; Uher, J; Ullán, M; Vaitkus, J V; Vanni, P; Velthuis, J; Verbitskaya, E; Verzellesi, G; Vrba, V; Wagner, G; Wilhelm, I; Worm, S; Wright, V; Wunstorf, R; Zabierowski, P; Zaluzhny, A; Zavrtanik, M; Zen, M; Zhukov, V; Zorzi, N; de Boer, Wim

    2005-01-01

    An option of increasing the luminosity of the Large Hadron Collider (LHC) at CERN to 10/sup 35/ cm-/sup 2/s-/sup 1/ has been envisaged to extend the physics reach of the machine. An efficient tracking down to a few centimetres from the interaction point will be required to exploit the physics potential of the upgraded LHC. As a consequence, the semiconductor detectors close to the interaction region will receive severe doses of fast hadron irradiation and the inner tracker detectors will need to survive fast hadron fluences of up to above 10 /sup 16/ cm-/sup 2/. The CERN-RD50 project "Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders" has been established in 2002 to explore detector materials and technologies that will allow to operate devices up to, or beyond, this limit. The strategies followed by RD50 to enhance the radiation tolerance include the development of new or defect engineered detector materials (SiC, GaN, Czochralski and epitaxial silicon, oxygen enriched Flo...

  17. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Rossini, Lorenzo; The ATLAS collaboration

    2018-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of 10^15 neq/cm^2 and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current and future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time and considers both planar and 3D sensor designs. In addition to thoroughly describing the setup, we compare predictions for b...

  18. Modeling radiation damage to pixel sensors in the ATLAS detector

    Science.gov (United States)

    Ducourthial, A.

    2018-03-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC) . As the closest detector component to the interaction point, these detectors will be subject to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC) [1], the innermost layers will receive a fluence in excess of 1015 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is essential in order to make accurate predictions for current and future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects on the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside early studies with LHC Run 2 proton-proton collision data.

  19. Study of radiation detectors response in standard X, gamma and beta radiation standard beams

    International Nuclear Information System (INIS)

    Nonato, Fernanda Beatrice Conceicao

    2010-01-01

    The response of 76 Geiger-Mueller detectors, 4 semiconductor detectors and 34 ionization chambers were studied. Many of them were calibrated with gamma radiation beams ( 37 Cs and 60 Co), and some of them were tested in beta radiation ( 90 Sr+ 9' 0Y e 204 Tl) and X radiation (N-60, N-80, N-100, N-150) beams. For all three types of radiation, the calibration factors of the instruments were obtained, and the energy and angular dependences were studied. For beta and gamma radiation, the angular dependence was studied for incident radiation angles of 0 deg and +- 45 deg. The curves of the response of the instruments were obtained over an angle interval of 0 deg to +- 90 deg, for gamma, beta and X radiations. The calibration factors obtained for beta radiation were compared to those obtained for gamma radiation. For gamma radiation, 24 of the 66 tested Geiger-Mueller detectors presented results for the energy dependence according to international recommendation of ISO 4037-2 and 56 were in accordance with the Brazilian ABNT 10011 recommendation. The ionization chambers and semiconductors were in accordance to national and international recommendations. All instruments showed angular dependence less than 40%. For beta radiation, the instruments showed unsatisfactory results for the energy dependence and angular dependence. For X radiation, the ionization chambers presented results for energy dependence according to the national recommendation, and the angular dependence was less than 40%. (author)

  20. Assembly for the measurement of the most probable energy of directed electron radiation

    International Nuclear Information System (INIS)

    Geske, G.

    1987-01-01

    This invention relates to a setup for the measurement of the most probable energy of directed electron radiation up to 50 MeV. The known energy-range relationship with regard to the absorption of electron radiation in matter is utilized by an absorber with two groups of interconnected radiation detectors embedded in it. The most probable electron beam energy is derived from the quotient of both groups' signals

  1. Performance And Radiation Hardness Of The Atlas/sct Detector Module

    CERN Document Server

    Eklund, L

    2003-01-01

    The ATLAS experiment is a general purpose experiment being constructed at the Large Hadron Collider (LHC) at FERN, Geneva. ATLAS is designed to exploit the full physics potential of LHC, in particular to study topics concerning the Higgs mechanism, Super-symmetry and CP violation. The cross sections for the processes under study are extremely small, requiring very high luminosity colliding beams. The Semiconductor Tracker (SCT) is an essential part of the Inner Detector tracking system of ATLAS. The active elements of the SCT is 4088 detector modules, tiled on four barrel cylinders and eighteen endcap disks. As a consequence of the high luminosity, the detector modules will operate in a harsh radiation environment. This thesis describes work concerning radiation hardness, beam test performance and methods for production testing of detector modules. The radiation hardness studies have been focused on the electrical performance of the front-end ASIC and the detector module. The results have identified features ...

  2. Development of radiation tolerant semiconductor detectors for the Super-LHC

    CERN Document Server

    Moll, M; Al-Ajili, A A; Alfieri, G; Allport, P P; Artuso, M; Assouak, S; Avset, B S; Barabash, L; Barcz, A; Bates, R; Biagi, S F; Bilei, G M; Bisello, D; Blue, A; Blumenau, A; Boisvert, V; Bölla, G; Bondarenko, G B; Borchi, E; Borrello, L; Bortoletto, D; Boscardin, M; Bosisio, L; Bowcock, T J V; Brodbeck, T J; Broz, J; Bruzzi, M; Brzozowski, A; Buda, M; Buhmann, P; Buttar, C; Campabadal, F; Campbell, D; Candelori, A; Casse, G; Cavallini, A; Charron, S; Chilingarov, A; Chren, D; Cindro, V; Collins, P; Coluccia, R; Contarato, D; Coutinho, J; Creanza, D; Cunningham, W; Betta, G F D; Dawson, I; de Boer, Wim; De Palma, M; Demina, R; Dervan, P; Dittongo, S; Dolezal, Z; Dolgolenko, A; Eberlein, T; Eremin, V; Fall, C; Fasolo, F; Fizzotti, F; Fleta, C; Focardi, E; Forton, E; Fretwurst, E; García, C; García-Navarro, J E; Gaubas, E; Genest, M H; Gill, K A; Giolo, K; Glaser, M; Gössling, C; Golovine, V; Sevilla, S G; Gorelov, I; Goss, J; Bates, A G; Grégoire, G; Gregori, P; Grigoriev, E; Grillo, A A; Groza, A; Guskov, J; Haddad, L; Härkönen, J; Hauler, F; Hoeferkamp, M; Honniger, F; Horazdovsky, T; Horisberger, Roland Paul; Horn, M; Houdayer, A; Hourahine, B; Hughes, G; Ilyashenko, Yu S; Irmscher, K; Ivanov, A; Jarasiunas, K; Johansen, K M H; Jones, B K; Jones, R; Joram, C; Jungermann, L; Kalinina, E; Kaminski, P; Karpenko, A; Karpov, A; Kazlauskiene, V; Kazukauskas, V; Khivrich, V; Khomenkov, V; Kierstead, J A; Klaiber Lodewigs, J; Klingenberg, R; Kodys, P; Kohout, Z; Korjenevski, S; Koski, M; Kozlowski, R; Kozodaev, M; Kramberger, G; Krasel, O; Kuznetsov, A; Kwan, S; Lagomarsino, S; Lassila-Perini, K M; Lastovetsky, V F; Latino, G; Lazanu, S; Lazanu, I; Lebedev, A; Lebel, C; Leinonen, K; Leroy, C; Li Z; Lindström, G; Linhart, V; Litovchenko, A P; Litovchenko, P G; Lo Giudice, A; Lozano, M; Luczynski, Z; Luukka, P; Macchiolo, A; Makarenko, L F; Mandic, I; Manfredotti, C; Manna, N; Garcia, S Mi; Marunko, S; Mathieson, K; Melone, J; Menichelli, D; Messineo, A; Metcalfe, J; Miglio, S; Mikuz, M; Miyamoto, J; Monakhov, E; Moscatelli, F; Naoumov, D; Nossarzhevska, E; Nysten, J; Olivero, P; OShea, V; Palviainen, T; Paolini, C; Parkes, C; Passeri, D; Pein, U; Pellegrini, G; Perera, L; Petasecca, M; Piemonte, C; Pignatel, G U; Pinho, N; Pintilie, I; Pintilie, L; Polivtsev, L; Polozov, P; Popa, A; Popule, J; Pospísil, S; Pozza, A; Radicci, V; Rafí, J M; Rando, R; Röder, R; Rohe, T; Ronchin, S; Rott, C; Roy, A; Ruzin, A; Sadrozinski, H F W; Sakalauskas, S; Scaringella, M; Schiavulli, L; Schnetzer, S; Schumm, B; Sciortino, S; Scorzoni, A; Segneri, G; Seidel, S; Seiden, A; Sellberg, G; Sellin, P J; Sentenac, D; Shipsey, I; Sícho, P; Sloan, T; Solar, M; Son, S; Sopko, B; Sopko, V; Spencer, N; Stahl, J; Stolze, D; Stone, R; Storasta, J; Strokan, N; Sudzius, M; Surma, B; Suvorov, A; Svensson, B G; Tipton, P; Tomasek, M; Tsvetkov, A; Tuominen, E; Tuovinen, E; Tuuva, T; Tylchin, M; Uebersee, H; Uher, J; Ullán, M; Vaitkus, J V; Velthuis, J; Verbitskaya, E; Vrba, V; Wagner, G; Wilhelm, I; Worm, S; Wright, V; Wunstorf, R; Yiuri, Y; Zabierowski, P; Zaluzhny, A; Zavrtanik, M; Zen, M; Zhukov, V; Zorzi, N

    2005-01-01

    The envisaged upgrade of the Large Hadron Collider (LHC) at CERN towards the Super-LHC (SLHC) with a 10 times increased luminosity of 10challenges for the tracking detectors of the SLHC experiments. Unprecedented high radiation levels and track densities and a reduced bunch crossing time in the order of 10ns as well as the need for cost effective detectors have called for an intensive R&D program. The CERN RD50 collaboration "Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders" is working on the development of semiconductor sensors matching the requirements of the SLHC. Sensors based on defect engineered silicon like Czochralski, epitaxial and oxygen enriched silicon have been developed. With 3D, Semi-3D and thin detectors new detector concepts have been evaluated and a study on the use of standard and oxygen enriched p-type silicon detectors revealed a promising approach for radiation tolerant cost effective devices. These and other most recent advancements of the RD50 ...

  3. RD50 Collaboration overview: Development of new radiation hard detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, S., E-mail: susanne.kuehn@cern.ch

    2016-07-11

    Silicon sensors are widely used as tracking detectors in high energy physics experiments. This results in several specific requirements like radiation hardness and granularity. Therefore research for highly performing silicon detectors is required. The RD50 Collaboration is a CERN R&D collaboration dedicated to the development of radiation hard silicon devices for application in high luminosity collider experiments. Extensive research is ongoing in different fields since 2001. The collaboration investigates both defect and material characterization, detector characterization, the development of new structures and full detector systems. The report gives selected results of the collaboration and places an emphasis on the development of new structures, namely 3D devices, CMOS sensors in HV technology and low gain avalanche detectors. - Highlights: • The RD50 Collaboration is a CERN R&D collaboration dedicated to the development of radiation hard silicon devices for high luminosity collider experiments. • The collaboration investigates defect, material and detector characterization, the development of new structures and full detector systems. • Results of measured data of n-in-p type sensors allow recommendations for silicon tracking detectors at the HL-LHC. • The charge multiplication effect was investigated to allow its exploitation and resulted in new structures like LGAD sensors. • New sensor types like slim and active edge sensors, 3D detectors, and lately HVCMOS devices were developed in the active collaboration.

  4. Radiation damage in silicon. Defect analysis and detector properties

    Energy Technology Data Exchange (ETDEWEB)

    Hoenniger, F.

    2008-01-15

    Silicon microstrip and pixel detectors are vital sensor-components as particle tracking detectors for present as well as future high-energy physics (HEP) experiments. All experiments at the large Hadron Collider (LHC) are equipped with such detectors. Also for experiments after the upgrade of the LHC (the so-called Super-LHC), with its ten times higher luminosity, or the planned International Linear Collider (ILC) silicon tracking detectors are forseen. Close to the interaction region these detectors have to face harsh radiation fields with intensities above the presently tolerable level. defect engineering of the used material, e. g. oxygen enrichment of high resistivity float zone silicon and growing of thin low resistivityepitaxial layers on Czochralski silicon substrates has been established to improve the radiation hardness of silicon sensors. This thesis focuses mainly on the investigation of radiation induced defects and their differences observed in various kinds of epitaxial silicon material. Comparisons with other materials like float zone or Czochralski silicon are added. Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current (TSC) measurements have been performed after {gamma}-, electron-, proton- and neutron-irradiation. The differenced in the formation of vacancy and interstitial related defects as well as so-called clustered regions were investigated for various types of irradiation. In addition to the well known defects VO{sub i}, C{sub i}O{sub i}, C{sub i}C{sub s}, VP or V{sub 2} several other defect complexes have been found and investigated. Also the material dependence of the defect introduction rates and the defect annealing behavior has been studied by isothermal and isochronal annealing experiments. Especially the IO{sub 2} defect which is an indicator for the oxygen-dimer content of the material has been investigated in detail. On the basis of radiation induced defects like the bistable donor (BD) defect and a deep

  5. Radiation damage in silicon. Defect analysis and detector properties

    International Nuclear Information System (INIS)

    Hoenniger, F.

    2008-01-01

    Silicon microstrip and pixel detectors are vital sensor-components as particle tracking detectors for present as well as future high-energy physics (HEP) experiments. All experiments at the large Hadron Collider (LHC) are equipped with such detectors. Also for experiments after the upgrade of the LHC (the so-called Super-LHC), with its ten times higher luminosity, or the planned International Linear Collider (ILC) silicon tracking detectors are forseen. Close to the interaction region these detectors have to face harsh radiation fields with intensities above the presently tolerable level. defect engineering of the used material, e. g. oxygen enrichment of high resistivity float zone silicon and growing of thin low resistivityepitaxial layers on Czochralski silicon substrates has been established to improve the radiation hardness of silicon sensors. This thesis focuses mainly on the investigation of radiation induced defects and their differences observed in various kinds of epitaxial silicon material. Comparisons with other materials like float zone or Czochralski silicon are added. Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current (TSC) measurements have been performed after γ-, electron-, proton- and neutron-irradiation. The differenced in the formation of vacancy and interstitial related defects as well as so-called clustered regions were investigated for various types of irradiation. In addition to the well known defects VO i , C i O i , C i C s , VP or V 2 several other defect complexes have been found and investigated. Also the material dependence of the defect introduction rates and the defect annealing behavior has been studied by isothermal and isochronal annealing experiments. Especially the IO 2 defect which is an indicator for the oxygen-dimer content of the material has been investigated in detail. On the basis of radiation induced defects like the bistable donor (BD) defect and a deep acceptor, a model has been introduced to

  6. Searches for $CP$ violation in multi-body charm decays and studies of radiation damage in the LHCb VELO detector

    CERN Document Server

    Chen, Shanzhen; Gersabeck, Marco

    This thesis presents two searches for direct charge-parity ($CP$) violation in multi-body decays in the charm-sector at LHCb, the development of techniques for performing model-independent searches for direct $CP$ violation in multi-body decays, and the development of studies of radiation damage effects in the LHCb vertex detector. LHCb is a dedicated experiment to study New Physics in the decays of heavy hadrons at the Large Hadron Collider (LHC) at CERN. The detector includes a high precision vertex detector surrounding the $pp$ interaction region made with silicon strip sensors. Studies of the effects of radiation damage in LHC run-2 for the operation of this detector are presented and the determination of the operational bias voltages of the silicon strip sensors is discussed. An unbinned model independent technique for $CP$ violation searches in multi-body decays called the energy test is used for the first time. The selection and treatment of the coordinates used to describe the phase-space of the de...

  7. A large area transition radiation detector for the NOMAD experiment

    Science.gov (United States)

    Bassompierre, G.; Bermond, M.; Berthet, M.; Bertozzi, T.; Détraz, C.; Dubois, J.-M.; Dumps, L.; Engster, C.; Fazio, T.; Gaillard, G.; Gaillard, J.-M.; Gouanère, M.; Manola-Poggioli, E.; Mossuz, L.; Mendiburu, J.-P.; Nédélec, P.; Palazzini, E.; Pessard, H.; Petit, P.; Petitpas, P.; Placci, A.; Sillou, D.; Sottile, R.; Valuev, V.; Verkindt, D.; Vey, H.; Wachnik, M.

    1998-02-01

    A transition radiation detector to identify electrons at 90% efficiency with a rejection factor against pions of 10 3 on an area of 2.85 × 2.85 m 2 has been constructed for the NOMAD experiment. Each of its 9 modules includes a 315 plastic foil radiator and a detector plane of 176 vertical straw tubes filled with a xenon-methane gas mixture. Details of the design, construction and operation of the detector are given.

  8. A large area transition radiation detector for the NOMAD experiment

    CERN Document Server

    Bassompierre, Gabriel; Berthet, M; Bertozzi, T; Détraz, C; Dubois, J M; Dumps, Ludwig; Engster, Claude; Fazio, T; Gaillard, G; Gaillard, Jean-Marc; Gouanère, M; Manola-Poggioli, E; Mossuz, L; Mendiburu, J P; Nédélec, P; Palazzini, E; Pessard, H; Petit, P; Petitpas, P; Placci, Alfredo; Sillou, D; Sottile, R; Valuev, V Yu; Verkindt, D; Vey, H; Wachnik, M

    1997-01-01

    A transition radiation detector to identify electrons at 90% efficiency with a rejection factor against pions of 10 3 on an area of 2.85 × 2.85 m 2 has been constructed for the NOMAD experiment. Each of its 9 modules includes a 315 plastic foil radiator and a detector plane of 176 vertical straw tubes filled with a xenon-methane gas mixture. Details of the design, construction and operation of the detector are given.

  9. CONCORD: comparison of cosmic radiation detectors in the radiation field at aviation altitudes

    Czech Academy of Sciences Publication Activity Database

    Meier, M.; Trompier, F.; Ambrožová, Iva; Kubančák, Ján; Matthia, D.; Ploc, Ondřej; Santen, N.; Wirtz, M.

    2016-01-01

    Roč. 6, MAY (2016), A24 ISSN 2115-7251 Institutional support: RVO:61389005 Keywords : aviation * radiation exposure of aircrew * comparison of radiation detectors * galactic cosmic radiation * ambient dose equivalent Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.446, year: 2016

  10. Evidence of Dopant Type-Inversion and Other Radiation Damage Effects of the CDF Silicon Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Ballarin, Roberto [Univ. of the Basque Country, Leioa (Spain)

    2010-06-01

    The aim of this document is to study the effect of radiation damage on the silicon sensors. The reflection of the effect of radiation can be observed in two fundamental parameters of the detector: the bias current and the bias voltage. The leakage current directly affects the noise, while the bias voltage is required to collect the maximum signal deposited by the charged particle.

  11. The radiation environment in the ATLAS inner detector

    CERN Document Server

    Dawson, I

    2000-01-01

    The radiation environment in the inner detector has been simulated using the particle transport program FLUKA with a recent description of the ATLAS experiment. Given in this paper are particle fluences and doses at positions relevant to the three inner detector subsystems; the Pixel, SCT and TRT detectors. In addition, studies are reported on in which (1) information concerning the optimization of the inner detector neutron-moderators is obtained and (2) the impact of including additional vacuum-equipment material is assessed. (19 refs).

  12. Development of the mercury iodide semiconductor crystal for application as a radiation detector

    International Nuclear Information System (INIS)

    Martins, Joao Francisco Trencher

    2011-01-01

    In this work, the establishment of a technique for HgI growth and preparation of crystals, for use as room temperature radiation semiconductor detectors is described. Three methods of crystal growth were studied while developing this work: physical vapor transport (PVT); saturated solution of HgI 2 , using two different solvents; (a) dimethyl sulfoxide (DMSO) and (b) acetone, and the Bridgman method. In order to evaluate the obtained crystals by the three methods, systematic measurements were carried out for determining the stoichiometry, structure, orientation, surface morphology and impurity of the crystal. The influence of these physical chemical properties on the crystals development was studied, evaluating their performance as radiation detectors. The X-ray diffractograms indicated that the crystals were, preferentially, oriented in the (001) e (101) directions with tetragonal structure for all crystals. Nevertheless, morphology with a smaller deformation level was observed for the crystal obtained by the PVT technique, comparing to other methods. Uniformity on the surface layer of the PVT crystal was detected, while clear incrustations of elements distinct from the crystal could be viewed on the DMSO crystal surface. The best results as to radiation response were found for the crystal grown by physical vapor transport. Significant improvement in the HgI z2 radiation detector performance was achieved for purer crystals, growing the crystal twice by PVT technique. (author)

  13. Neutron radiation damage studies on silicon detectors

    International Nuclear Information System (INIS)

    Li, Zheng; Chen, W.; Kraner, H.W.

    1990-10-01

    Effects of neutron radiation on electrical properties of Si detectors have been studied. At high neutron fluence (Φ n ≥ 10 12 n/cm 2 ), C-V characteristics of detectors with high resistivities (ρ ≥ 1 kΩ-cm) become frequency dependent. A two-trap level model describing this frequency dependent effect is proposed. Room temperature anneal of neutron damaged (at LN 2 temperature) detectors shows three anneal stages, while only two anneal stages were observed in elevated temperature anneal. 19 refs., 14 figs

  14. Development of a Compact Gamma-ray Detector for a Neural-Network Radiation Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. S.; Ha, J. H.; Lee, K. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, C. H. [Hanyang Univ., Seoul (Korea, Republic of)

    2012-03-15

    Radiation monitoring is very important to secure safety in nuclear-related facilities and against nuclear terrorism. For wide range of radiation monitoring, neutral network system of radiation detection is most efficient way. Thus, a compact radiation detector is useful to install in wide range to be concerned. A compact gamma-ray detector was fabricated by using a CsI(Tl) scintillator, which was matched with the formerly developed PIN photodiode, for a neural network radiation monitoring. At room temperature, the fabricated compact gamma-ray detector demonstrates an energy resolution of 13.3 % for 662 keV 6.9% for 1330 keV. The compactness, the low-voltage power consumption and the physical hardness are very useful features for a neural network radiation monitoring. In this study, characteristics of a fabricated compact gamma-ray detector were presented. An important aspect to consider in a neural-network radiation monitoring such as reaction probability of the fabricated compact detector for angle of incident gamma-ray was also addressed.

  15. Characteristics for heavy ions and micro-dosimetry in radiation detectors

    International Nuclear Information System (INIS)

    Doke, Tadayoshi

    1978-01-01

    The characteristics of radiation detectors for heavy ions generally present more complex aspects as compared with those for electron beam and γ-ray. There is the ''Katz theory'' applying the target theory in radiobiology phenomenologically to radiation detectors. Here, first, the Katz theory for radiation detectors is explained, then its applications to nuclear plates, solid state track detectors, scintillation detectors and thermoluminescence dosimeters are described, respectively. The theory is used for the calibration of the nuclear charge of heavy ions in nuclear plates and recently is used to simulate the flight tracks of heavy ions or magnetic monopoles. In solid state track detectors, the threshold value of the energy given along the tracks of heavy ions is inherent to a detector, and the Katz theory is applicable as the measure of the threshold. The theory seems to be superior to the other methods. However, it has disadvantages that the calculation is not simple and is difficult for wide objects. In scintillation detectors, the scintillation efficiency is not a single function of dE/dx, but depends on the kinds of heavy ions, which Katz succeeded to describe quantitatively with his theory. Such result has also been produced that the dependence of thermoluminescence dosimeters such as LiF on LET by Katz theory agreed fairly well with experiments. (Wakatsuki, Y.)

  16. Instrumentation for characterizing materials and composed semiconductors for ionizing radiation detectors

    International Nuclear Information System (INIS)

    Paschoal, Arquimedes J.A.; Leite, Adolfo M.B.; Nazzre, Fabio V.B.; Santos, Luiz A.P.

    2007-01-01

    The purpose of this work is the development of instrumentation for characterizing some type of ionizing radiation detectors. Those detectors are being manufactured by the Nuclear Instrumentation Laboratory at CRCN/Recife and can be used both on photon beam and with particles. Such detectors consist of semiconductor material in the form of films generated by oxide growing or by means of semiconductor material deposition in a substrate. Those materials can be made of metals, semi-metals, composites or semiconductor polymers. Prior to expose those detectors to ionizing radiation, it must be physically and electrically characterized. In this intention it was developed an electromechanical system. An electrical circuit was built to measure the signal from the detector and another circuit to control the movement of four probes (4-points technique) by using a stepper motor and the micro stepping technique avoiding damage to the detector. This system can be of interest to researchers that work with a sort of semiconductor materials in the form of thin film and in nanotechnological processes aiming the design of radiation ionizing detectors. (author)

  17. Signal and noise analysis of a-Si:H radiation detector-amplifier system

    International Nuclear Information System (INIS)

    Cho, Gyuseong.

    1992-03-01

    Hydrogenated amorphous silicon (a-Si:H) has potential advantages in making radiation detectors for many applications because of its deposition capability on a large-area substrate and its high radiation resistance. Position-sensitive radiation detectors can be made out of a 1d strip or a 2-d pixel array of a Si:H pin diodes. In addition, signal processing electronics can be made by thin-film transistors on the same substrate. The calculated radiation signal, based on a simple charge collection model agreed well with results from various wave length light sources and 1 MeV beta particles on sample diodes. The total noise of the detection system was analyzed into (a) shot noise and (b) 1/f noise from a detector diode, and (c) thermal noise and (d) 1/f noise from the frontend TFT of a charge-sensitive preamplifier. the effective noise charge calculated by convoluting these noise power spectra with the transfer function of a CR-RC shaping amplifier showed a good agreement with the direct measurements of noise charge. The derived equations of signal and noise charge can be used to design an a-Si:H pixel detector amplifier system optimally. Signals from a pixel can be readout using switching TFTs, or diodes. Prototype tests of a double-diode readout scheme showed that the storage time and the readout time are limited by the resistances of the reverse-biased pixel diode and the forward biased switching diodes respectively. A prototype charge-sensitive amplifier was made using poly-Si TFTs to test the feasibility of making pixel-level amplifiers which would be required in small-signal detection. The measured overall gain-bandwidth product was ∼400 MHz and the noise charge ∼1000 electrons at a 1 μsec shaping time. When the amplifier is connected to a pixel detector of capacitance 0.2 pF, it would give a charge-to-voltage gain of ∼0.02 mV/electron with a pulse rise time less than 100 nsec and a dynamic range of 48 dB

  18. Signal and noise analysis of a-Si:H radiation detector-amplifier system

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Gyuseong [Univ. of California, Berkeley, CA (United States)

    1992-03-01

    Hydrogenated amorphous silicon (a-Si:H) has potential advantages in making radiation detectors for many applications because of its deposition capability on a large-area substrate and its high radiation resistance. Position-sensitive radiation detectors can be made out of a 1d strip or a 2-d pixel array of a Si:H pin diodes. In addition, signal processing electronics can be made by thin-film transistors on the same substrate. The calculated radiation signal, based on a simple charge collection model agreed well with results from various wave length light sources and 1 MeV beta particles on sample diodes. The total noise of the detection system was analyzed into (a) shot noise and (b) 1/f noise from a detector diode, and (c) thermal noise and (d) 1/f noise from the frontend TFT of a charge-sensitive preamplifier. the effective noise charge calculated by convoluting these noise power spectra with the transfer function of a CR-RC shaping amplifier showed a good agreement with the direct measurements of noise charge. The derived equations of signal and noise charge can be used to design an a-Si:H pixel detector amplifier system optimally. Signals from a pixel can be readout using switching TFTs, or diodes. Prototype tests of a double-diode readout scheme showed that the storage time and the readout time are limited by the resistances of the reverse-biased pixel diode and the forward biased switching diodes respectively. A prototype charge-sensitive amplifier was made using poly-Si TFTs to test the feasibility of making pixel-level amplifiers which would be required in small-signal detection. The measured overall gain-bandwidth product was ~400 MHz and the noise charge ~1000 electrons at a 1 μsec shaping time. When the amplifier is connected to a pixel detector of capacitance 0.2 pF, it would give a charge-to-voltage gain of ~0.02 mV/electron with a pulse rise time less than 100 nsec and a dynamic range of 48 dB.

  19. Signal and noise analysis of a-Si:H radiation detector-amplifier system

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Gyuseong.

    1992-03-01

    Hydrogenated amorphous silicon (a-Si:H) has potential advantages in making radiation detectors for many applications because of its deposition capability on a large-area substrate and its high radiation resistance. Position-sensitive radiation detectors can be made out of a 1d strip or a 2-d pixel array of a Si:H pin diodes. In addition, signal processing electronics can be made by thin-film transistors on the same substrate. The calculated radiation signal, based on a simple charge collection model agreed well with results from various wave length light sources and 1 MeV beta particles on sample diodes. The total noise of the detection system was analyzed into (a) shot noise and (b) 1/f noise from a detector diode, and (c) thermal noise and (d) 1/f noise from the frontend TFT of a charge-sensitive preamplifier. the effective noise charge calculated by convoluting these noise power spectra with the transfer function of a CR-RC shaping amplifier showed a good agreement with the direct measurements of noise charge. The derived equations of signal and noise charge can be used to design an a-Si:H pixel detector amplifier system optimally. Signals from a pixel can be readout using switching TFTs, or diodes. Prototype tests of a double-diode readout scheme showed that the storage time and the readout time are limited by the resistances of the reverse-biased pixel diode and the forward biased switching diodes respectively. A prototype charge-sensitive amplifier was made using poly-Si TFTs to test the feasibility of making pixel-level amplifiers which would be required in small-signal detection. The measured overall gain-bandwidth product was {approximately}400 MHz and the noise charge {approximately}1000 electrons at a 1 {mu}sec shaping time. When the amplifier is connected to a pixel detector of capacitance 0.2 pF, it would give a charge-to-voltage gain of {approximately}0.02 mV/electron with a pulse rise time less than 100 nsec and a dynamic range of 48 dB.

  20. The HERMES dual-radiator ring imaging Cherenkov detector

    CERN Document Server

    Akopov, N; Bailey, K; Bernreuther, S; Bianchi, N; Capitani, G P; Carter, P; Cisbani, E; De Leo, R; De Sanctis, E; De Schepper, D; Dzhordzhadze, V; Filippone, B W; Frullani, S; Garibaldi, F; Hansen, J O; Hommez, B; Iodice, M; Jackson, H E; Jung, P; Kaiser, R; Kanesaka, J; Kowalczyk, R; Lagamba, L; Maas, A; Muccifora, V; Nappi, E; Negodaeva, K; Nowak, Wolf-Dieter; O'Connor, T; O'Neill, T G; Potterveld, D H; Ryckbosch, D; Sakemi, Y; Sato, F; Schwind, A; Shibata, T A; Suetsugu, K; Thomas, E; Tytgat, M; Urciuoli, G M; Van De Kerckhove, K; Van De Vyver, R; Yoneyama, S; Zhang, L F; Zohrabyan, H G

    2002-01-01

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C sub 4 F sub 1 sub 0 , a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  1. Gold-coated copper cone detector as a new standard detector for F2 laser radiation at 157 nm

    International Nuclear Information System (INIS)

    Kueck, Stefan; Brandt, Friedhelm; Taddeo, Mario

    2005-01-01

    A new standard detector for high-accuracy measurements of F2 laser radiation at 157 nm is presented. This gold-coated copper cone detector permits the measurement of average powers up to 2 W with an uncertainty of ∼1%. To the best of our knowledge, this is the first highly accurate standard detector for F2 laser radiation for this power level. It is fully characterized according to Guide to the Expression of Uncertainty in Measurement of the International Organization for Standardization and is connected to the calibration chain for laser radiation established by the German National Metrology Institute

  2. Evaluation of a digital optical ionizing radiation particle track detector

    International Nuclear Information System (INIS)

    Hunter, S.R.

    1987-06-01

    An ionizing radiation particle track detector is outlined which can, in principle, determine the three-dimensional spatial distribution of all the secondary electrons produced by the passage of ionizing radiation through a low-pressure (0.1 to 10 kPa) gas. The electrons in the particle track are excited by the presence of a high-frequency AC electric field, and two digital cameras image the optical radiation produced in electronic excitation collisions of the surroundings gas by the electrons. The specific requirements of the detector for neutron dosimetry and microdosimetry are outlined (i.e., operating conditions of the digital cameras, high voltage fields, gas mixtures, etc.) along with an estimate of the resolution and sensitivity achievable with this technique. The proposed detector is shown to compare favorable with other methods for obtaining the details of the track structure, particularly in the quality of the information obtainable about the particle track and the comparative simplicity and adaptability of the detector for measuring the secondary electron track structure for many forms of ionizing radiation over a wide range of energies

  3. Development of superconducting tunnel junction radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Katagiri, Masaki; Kishimoto, Maki; Ukibe, Masahiro; Nakamura, Tatsuya; Nakazawa, Masaharu [Japan Atomic Energy Research Inst., Tokyo (Japan); Kurakado, Masahiko; Ishibashi, Kenji; Maehata, Keisuke

    1998-07-01

    Study on development of high energy resolution X-ray detector using superconducting tunnel junction (STJ) for radiation detection was conducted for 5 years under cooperation of University of Tokyo group and Kyushu University group by Quantum measurement research group of Advanced fundamental research center of JAERI. As the energy resolution of STJ could be obtained better results than that of Si semiconductor detector told to be actually best at present, this study aimed to actualize an X-ray detector usable for the experimental field and to elucidate radiation detection mechanism due to STJ. The STJ element used for this study was the one developed by Kurakado group of Nippon Steel Corp. As a results, some technical problems were almost resolved, which made some trouble when using the STJ element to detection element of X-ray spectrometer. In order to make the X-ray detector better, it is essential to manufacture a STJ element and develop serial junction type STJ element on the base of optimization of the element structure and selection and single crystallization of new superconducting materials such as Ta and others, activating the research results. (G.K.)

  4. Modern gas-avalanche radiation detectors: from innovations to applications

    International Nuclear Information System (INIS)

    2013-01-01

    Micro-Pattern Gaseous Detectors (MPGD) technologies allow for the conception of advanced large area radiation detectors with unprecedented spatial resolutions and sensitivities, capable of operating under very high radiation flux. After more than two decades of extensive R and D carried by large number of groups worldwide, these detector technologies have reached high level of maturity. Nowadays, they are adapted as leading instruments for a growing number of applications in particle physics and in many other fields on basic and applied research. The growing interest in MPGD technologies and their mass-production capabilities naturally motivates further developments in the field. The state-of-the-art detector concepts and technologies have been introduced and their evolution, properties and current leading applications have been reviewed. Future potential applications as well as new technology challenges have been discussed

  5. Two-dimensional readout system for radiation detector

    International Nuclear Information System (INIS)

    Lee, L.Y.

    1975-01-01

    A two dimensional readout system has been provided for reading out locations of scintillations produced in a scintillation type radiation detector array wherein strips of scintillator material are arranged in a parallel planar array. Two sets of light guides are placed perpendicular to the scintillator strips, one on the top and one on the bottom to extend in alignment across the strips. Both the top and bottom guides are composed of a number of 90 0 triangular prisms with the lateral side forming the hypotenuse equal to twice the width of a scintillator strip. The prism system reflects light from a scintillation along one of the strips back and forth through adjacent strips to light pipes coupled to the outermost strips of the detector array which transmit light pulses to appropriate detectors to determine the scintillation along one axis. Other light pipes are connected to the end portions of the strips to transmit light from the individual strips to appropriate light detectors to indicate the particular strip activated, thereby determining the position of a scintillation along the other axis. The number of light guide pairs may be equal the number of the scintillation strips when equal spatial resolution for each of the two coordinates is desired. When the scintillator array detects an event which produces a scintillation along one of the strips, the emitted light travels along four different paths, two of which are along the strip, and two of which are through the light guide pair perpendicular to the strips until all four beams reach the outer edges of the array where they may be transmitted to light detectors by means of light pipes connected therebetween according to a binary code for direct digital readout. (U.S.)

  6. Mobile robot prototype detector of gamma radiation

    International Nuclear Information System (INIS)

    Vazquez C, R.M.; Duran V, M. D.; Jardon M, C. I.

    2014-10-01

    In this paper the technological development of a mobile robot prototype detector of gamma radiation is shown. This prototype has been developed for the purpose of algorithms implementation for the applications of terrestrial radiation monitoring of exposed sources, search for missing radioactive sources, identification and delineation of radioactive contamination areas and distribution maps generating of radioactive exposure. Mobile robot detector of radiation is an experimental technology development platform to operate in laboratory environment or flat floor facilities. The prototype integrates a driving section of differential configuration robot on wheels, a support mechanism and rotation of shielded detector, actuator controller cards, acquisition and processing of sensor data, detection algorithms programming and control actuators, data recording (Data Logger) and data transmission in wireless way. The robot in this first phase is remotely operated in wireless way with a range of approximately 150 m line of sight and can extend that range to 300 m or more with the use of signal repeaters. The gamma radiation detection is performed using a Geiger detector shielded. Scan detection is performed at various time sampling periods and diverse positions of discrete or continuous angular orientation on the horizon. The captured data are geographical coordinates of robot GPS (latitude and longitude), orientation angle of shield, counting by sampling time, date, hours, minutes and seconds. The data is saved in a file in the Micro Sd memory on the robot. They are also sent in wireless way by an X Bee card to a remote station that receives for their online monitoring on a laptop through an acquisition program by serial port on Mat Lab. Additionally a voice synthesizing card with a horn, both in the robot, periodically pronounced in Spanish, data length, latitude, orientation angle of shield and detected accounts. (Author)

  7. Large arrays of discrete ionizing radiation detectors multiplexed using fluorescent optical converters

    International Nuclear Information System (INIS)

    Koslow, E.E.; Edelman, R.R.

    1985-01-01

    This invention provides a radiation imaging system employing arrays of scintillators. An object of the invention is to produce a detector with high spatial resolution, high gamma-photon absorption efficiency, excellent source and detector scatter rejection, and utilizing low-cost solid state opto-electronic devices. In one embodiment, it provides a radiation detection and conversion apparatus having an array of optically isolated radiation sensitive elements that emit optical radiation upon absorption of ionizing radiation. An array of channels, comprising a material that absorbs and traps the radiation emitted and transports it or radiation that has been shifted to longer wavelengths, is placed near the radiation-sensitive elements. Electro-optical detectors that convert the transported radiation into electrical signals are coupled to the channels. The activation of one of the electro-optical devices by radiation from one of the channels indicates that at least one of the radiation-sensitive elements near that channel has absorbed a quantity of radiation

  8. Modeling of diamond radiation detectors

    International Nuclear Information System (INIS)

    Milazzo, L.; Mainwood, A.

    2004-01-01

    We have built up a computer simulation of the detection mechanism in the diamond radiation detectors. The diamond detectors can be fabricated from a chemical vapour deposition polycrystalline diamond film. In this case, the trapping-detrapping and recombination at the defects inside the grains and at the grain boundaries degrade the transport properties of the material and the charge induction processes. These effects may strongly influence the device's response. Previous simulations of this kind of phenomena in the diamond detectors have generally been restricted to the simple detector geometries and homogeneous distribution of the defects. In our model, the diamond film (diamond detector) is simulated by a grid. We apply a spatial and time discretization, regulated by the grid resolution, to the equations describing the charge transport and, by using the Shockley-Ramo theorem, we calculate the signal induced on the electrodes. In this way, we can simulate the effects of the nonhomogeneous distributions of the trapping, recombination, or scattering centers and can investigate the differences observed when different particles, energies, and electrode configurations are used. The simulation shows that the efficiency of the detector increases linearly with the average grain size, that the charge collection distance is small compared to the dimensions of a single grain, and that for small grains, the trapping at the intragrain defects is insignificant compared to the effect of the grain boundaries

  9. Radiation Hazard Detector

    Science.gov (United States)

    1978-01-01

    NASA technology has made commercially available a new, inexpensive, conveniently-carried device for protection, of people exposed to potentially dangerous levels of microwave radiation. Microwaves are radio emissions of extremely high frequency. They can be hazardous but the degree of hazard is not yet well understood. Generally, it is believed that low intensity radiation of short duration is not harmful but that exposure to high levels can induce deep internal burns, affecting the circulatory and nervous systems, and particularly the eyes. The Department of Labor's Occupational Safety and Health Administration (OSHA) has established an allowable safe threshold of exposure. However, people working near high intensity sources of microwave energy-for example, radar antennas and television transmitters-may be unknowingly exposed to radiation levels beyond the safe limit. This poses not only a personal safety problem but also a problem for employers in terms of productivity loss, workman's compensation claims and possible liability litigation. Earlier-developed monitoring devices which warn personnel of dangerous radiation levels have their shortcomings. They can be cumbersome and awkward to use while working. They also require continual visual monitoring to determine if a person is in a dangerous area of radiation, and they are relatively expensive, another deterrent to their widespread adoption. In response to the need for a cheaper and more effective warning system, Jet Propulsion Laboratory developed, under NASA auspices, a new, battery-powered Microwave Radiation Hazard Detector. To bring the product to the commercial market, California Institute Research Foundation, the patent holder, granted an exclusive license to Cicoil Corporation, Chatsworth, California, an electronic components manufacturer.

  10. Improved spectrometric characteristics of thallium bromide nuclear radiation detectors

    CERN Document Server

    Hitomi, K; Shoji, T; Suehiro, T; Hiratate, Y

    1999-01-01

    Thallium bromide (TlBr) is a compound semiconductor with a high atomic number and wide band gap. In this study, nuclear radiation detectors have been fabricated from the TlBr crystals. The TlBr crystals were grown by the horizontal travelling molten zone (TMZ) method using the materials purified by many pass zone refining. The crystals were characterized by measuring the resistivity, the mobility-lifetime (mu tau) product and the energy required to create an electron-hole pair (the epsilon value). Improved energy resolution has been obtained by the TlBr radiation detectors. At room temperature the full-width at half-maximum (FWHM) for the 59.5, 122 and 662 keV gamma-ray photo peak obtained from the detectors were 3.3, 8.8 and 29.5 keV, respectively. By comparing the saturated peak position of the TlBr detector with that of the CdTe detector, the epsilon value has been estimated to be about 5.85 eV for the TlBr crystal.

  11. Method and apparatus for logging a borehole employing dual radiation detectors

    International Nuclear Information System (INIS)

    Arnold, D.M.

    1986-01-01

    An apparatus is described for logging a characteristic of a borehole in an earth formation employing nuclear count rate data selectively compensated for non-standard borehole conditions, comprising: a sonde, movable in a borehole, having: a radiation source for emitting radiation into earth formations adjacent the wellbore; first detector, spaced longitudinally from the radiation source, for detecting radiation scattered back to the detector and generating a first signal representative of a first count rate value, C/sub SS/; and second detector spaced a different longitudinal distance from the radiation source, for detecting radiation scattered back to the detector and generating a second signal representative of a count rate value, C/sub LS/; memory means for storing a predetermined threshold value, first predetermined relationships between the borehole characteristic and count rate values C/sub LS/, C/sub SS/; and second predetermined relationships between the borehole characteristic and ratios of C/sub LS/ to C/sub SS/; electronic means for producing a signal related in value to the borehole characteristic, which electronic means compares at least one of the first and second count rate value signals with the predetermined threshold value; means for recording the signal generated by the electronic means

  12. Calculation of the relative efficiency of thermoluminescent detectors to space radiation

    International Nuclear Information System (INIS)

    Bilski, P.

    2011-01-01

    Thermoluminescent (TL) detectors are often used for measurements of radiation doses in space. While space radiation is composed of a mixture of heavy charged particles, the relative TL efficiency depends on ionization density. The question therefore arises: what is the relative efficiency of TLDs to the radiation present in space? In the attempt to answer this question, the relative TL efficiency of two types of lithium fluoride detectors for space radiation has been calculated, based on the theoretical space spectra and the experimental values of TL efficiency to ion beams. The TL efficiency of LiF:Mg,Ti detectors for radiation encountered at typical low-Earth’s orbit was found to be close to unity, justifying a common application of these TLDs to space dosimetry. The TL efficiency of LiF:Mg,Cu,P detectors is significantly lower. It was found that a shielding may have a significant influence on the relative response of TLDs, due to changes caused in the radiation spectrum. In case of application of TLDs outside the Earth’s magnetosphere, one should expect lower relative efficiency than at the low-Earth’s orbit.

  13. High energy radiation detector

    International Nuclear Information System (INIS)

    Vosburgh, K.G.

    1975-01-01

    The high energy radiation detector described comprises a set of closely spaced wedge reflectors. Each wedge reflector is composed of three sides forming identical isoceles triangles with a common apex and an open base forming an equilateral triangle. The length of one side of the base is less than the thickness of the coat of material sensitive to high energy radiation. The wedge reflectors reflect the light photons spreading to the rear of the coat in such a way that each reflected track is parallel to the incident track of the light photon spreading rearwards. The angle of the three isosceles triangles with a common apex is between 85 and 95 deg. The first main surface of the coat of high energy radiation sensitive material is in contact with the projecting edges of the surface of the wedge reflectors of the reflecting element [fr

  14. [Effects of ionizing radiation on scintillators and other particle detectors

    International Nuclear Information System (INIS)

    Proudfoot, J.

    1992-01-01

    It is my task to summarise the great variety of topics (covering a refreshing mix of physics, chemistry and technology) presented at this conference, which has focused on the effects of ionising radiation on scintillators and other particle detectors. One of the reasons and the central interest of many of the participants was the use of such detectors in experiments at two future large hadron colliders: the Superconducting Super Collider to be operating outside of Dallas in the United States by the turn of the decade and its European counterpart the Large Hadron Collider to be operating outside of Geneva in Switzerland on a similar time scale. These accelerators are the ''apple of the high energy physicist's eye.'' Their goal is to uncover the elusive Higgs particle and thereby set the cornerstone in our current knowledge of elementary particle interactions. This is the Quest, and from this lofty height the presentations rapidly moved on to the specific questions of experimental science: how such an experiment is carried out; why radiation damage is an issue; how radiation damage affects detectors; which factors affect radiation damage characteristics; which factors are not affected by radiation damage; and how better detectors may be constructed. These were the substance of this conference

  15. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Nachman, Benjamin Philip; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of $10^{15}$ 1 MeV $n_\\mathrm{eq}/\\mathrm{cm}^2$ and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This talk presents a digitization model that includes radiation damage effects to the ATLAS Pixel sensors for the first time. After a thorough description of the setup, predictions for basic Pixel cluster properties are presented alongside first validation studies with Run 2 collision data.

  16. Responses of conventional and extended-range neutron detectors in mixed radiation fields around a 150-MeV electron LINAC

    International Nuclear Information System (INIS)

    Lin, Yu-Chi; Sheu, Rong-Jiun; Chen, Ang-Yu

    2015-01-01

    This study analyzed the responses of two types of neutron detector in mixed gamma-ray and neutron radiation fields around a 150-MeV electron linear accelerator (LINAC). The detectors were self-assembled, high efficiency, and designed in two configurations: (1) a conventional moderated-type neutron detector based on a large cylindrical He-3 proportional counter; and (2) an extended-range version with an embedded layer of lead in the moderator to increase the detector’s sensitivity to high-energy neutrons. Two sets of the detectors were used to measure neutrons at the downstream and lateral locations simultaneously, where the radiation fields differed considerably in intensities and spectra of gamma rays and neutrons. Analyzing the detector responses through a comparison between calculations and measurements indicated that not only neutrons but also high-energy gamma rays (>5 MeV) triggered the detectors because of photoneutrons produced in the detector materials. In the lateral direction, the contribution of photoneutrons to both detectors was negligible. Downstream of the LINAC, where high-energy photons were abundant, photoneutrons contributed approximately 6% of the response of the conventional neutron detector; however, almost 50% of the registered counts of the extended-range neutron detector were from photoneutrons because of the presence of the detector rather than the effect of the neutron field. Dose readings delivered by extended-range neutron detectors should be interpreted cautiously when used in radiation fields containing a mixture of neutrons and high-energy gamma rays

  17. Radiation detector

    International Nuclear Information System (INIS)

    Conrad, B.; Finkenzeller, J.; Kiiehn, G.; Lichtenberg, W.

    1984-01-01

    In an exemplary embodiment, a flat radiation beam is detected having a common electrode disposed parallel to the beam plane at one side and a common support with a series of individual conductors providing electrodes opposite successive portions of the common electrode and lying in a plane also parallel to the beam plane. The beam may be fan-shaped and the individual electrodes may be aligned with respective ray paths separated by uniform angular increments in the beam plane. The individual conductors and the connection thereof to the exterior of the detector housing may be formed on an insulator which can be folded into a T-shape for leading the supply conductors for alternate individual conductors toward terminals at opposite sides of the chamber

  18. Alpha particle response study of polycrstalline diamond radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Amit; Topkar, Anita [Electronics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2016-05-23

    Chemical vapor deposition has opened the possibility to grow high purity synthetic diamond at relatively low cost. This has opened up uses of diamond based detectors for wide range of applications. These detectors are most suitable for harsh environments where standard semiconductor detectors cannot work. In this paper, we present the fabrication details and performance study of polycrystalline diamond based radiation detector. Effect of different operating parameters such as bias voltage and shaping time for charge collection on the performance of detector has been studied.

  19. Silicon-lithium nuclear radiation detectors. Kremnii-litievye detektory yadernogo izlucheniya

    Energy Technology Data Exchange (ETDEWEB)

    Azimov, S.A.; Muminov, R.A.; Shamirzaev, S.Kh.; Yafasov, A.Ya.

    1981-01-01

    A presentation is made of the physical principles underlying the design, building, and technology of silicon-lithium detectors and ways of improving them. Criteria of nuclear radiation control and selection and the connection between radiation and detector properties are discussed. A study is made of the effect that various defects have on the process of charge collection and formation of amplitude spectra during the recording of various types of particles. A detailed examination is made of the optimal technological systems for making detectors with high energy and time resolutions, and features of producing high-quality detectors which employ the use of ion-laser and other methods of modern semiconductor technology. 322 references, 102 figures, 2 tables.

  20. Design and Implementation of a Detector for High Flux Mixed Radiation Fields

    CERN Document Server

    Kramer, Daniel; Sulc, Miroslav

    2008-01-01

    The main purpose of the LHC Beam Loss Monitoring (BLM) system is the active protection of the LHC accelerators' elements against the quench of superconducting magnets and the damage of equipment caused by the loss of circulating protons. The lost protons initiate a shower of secondary particles, which deposit their energy in the equipment and partly in a radiation detector. If thresholds in the BLM system are exceeded, the circulating LHC beam is directed towards a dump to stop the energy deposition in the fragile equipment. The LHC BLM system will use ionization chambers as standard detectors, and in the areas with very high dose rates Secondary Emission Monitor (SEM) chambers will be employed to increase the dynamic range. The SEM is characterized by a high linearity and accuracy, low sensitivity, fast response and a good radiation tolerance. The emission of electrons from the surface layer of metals by the passage of charged particles is only measurable in a vacuum environment. This requirement leads toget...

  1. Characterization and calibration of radiation-damaged double-sided silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, L. [Institut für Kernphysik, Universität zu Köln, D-50937 Köln (Germany); Vogt, A., E-mail: andreas.vogt@ikp.uni-koeln.de [Institut für Kernphysik, Universität zu Köln, D-50937 Köln (Germany); Reiter, P.; Birkenbach, B.; Hirsch, R.; Arnswald, K.; Hess, H.; Seidlitz, M.; Steinbach, T.; Warr, N.; Wolf, K. [Institut für Kernphysik, Universität zu Köln, D-50937 Köln (Germany); Stahl, C.; Pietralla, N. [Institut für Kernphysik, Technische Universität Darmstadt, D-64291 Darmstadt (Germany); Limböck, T.; Meerholz, K. [Physikalische Chemie, Universität zu Köln, D-50939 Köln (Germany); Lutter, R. [Maier-Leibnitz-Laboratorium, Ludwig-Maximilians-Universität München, D-85748 Garching (Germany)

    2017-05-21

    Double-sided silicon strip detectors (DSSSD) are commonly used for event-by-event identification of charged particles as well as the reconstruction of particle trajectories in nuclear physics experiments with stable and radioactive beams. Intersecting areas of both p- and n-doped front- and back-side segments form individual virtual pixel segments allowing for a high detector granularity. DSSSDs are employed in demanding experimental environments and have to withstand high count rates of impinging nuclei. The illumination of the detector is often not homogeneous. Consequently, radiation damage of the detector is distributed non-uniformly. Position-dependent incomplete charge collection due to radiation damage limits the performance and lifetime of the detectors, the response of different channels may vary drastically. Position-resolved charge-collection losses between front- and back-side segments are investigated in an in-beam experiment and by performing radioactive source measurements. A novel position-resolved calibration method based on mutual consistency of p-side and n-side charges yields a significant enhancement of the energy resolution and the performance of radiation-damaged parts of the detector.

  2. Wire chamber radiation detector with discharge control

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Mulera, T.A.

    1984-01-01

    A wire chamber radiation detector has spaced apart parallel electrodes and grids defining an ignition region in which charged particles or other ionizing radiations initiate brief localized avalanche discharges and defining an adjacent memory region in which sustained glow discharges are initiated by the primary discharges. Conductors of the grids at each side of the memory section extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles were detected by sequentially transmitting pulses to the conductors of one grid while detecting transmissions of the pulses to the orthogonal conductors of the other grid through glow discharges. One of the grids bounding the memory region is defined by an array of conductive elements each of which is connected to the associated readout conductor through a separate resistance. The wire chamber avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or near simultaneous charged particles have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced

  3. Search for Physics beyond the Standard Model with the ATLAS detector and the development of radiation detectors

    CERN Document Server

    Silver, Yiftah

    We are investigating a radiation detector based on plasma display panel technology, the principal component of plasma television displays. This Plasma Panel Sensor (PPS) technology is a variant of micro-pattern gas radiation detectors. Based on the properties of existing plasma display panels, we expect eventually to be able to build a sealed array of plasma discharge gas cells to detect ionizing radiation with fast rise time of less than 10ns and high spatial resolution using a pixel pitch of less than 100 micrometer. In this thesis I shall describe our program of testing plasma display panels as detectors, including simulations, design and the first laboratory and beam studies that demonstrate the detection of cosmic ray muons, beta rays and medium energy protons. The ATLAS detector is used to search for high-mass resonances, in particular heavy neutral gauge bosons (Z') and excited states of Kaluza-Klein γ/Z bosons decaying to an electron-positron pair or a muon-antimuon pair. Results are presented based ...

  4. New detectors of neutron, gamma- and X-radiations

    CERN Document Server

    Lobanov, N S

    2002-01-01

    Paper presents new detectors to record absorbed doses of neutron, gamma- and X-ray radiations within 0-1500 Mrad range. DBF dosimeter is based on dibutyl phthalate. EDS dosimeter is based on epoxy (epoxide) resin, while SD 5-40 detector is based on a mixture of dibutyl phthalate and epoxy resin. Paper describes experimental techniques to calibrate and interprets the measurement results of absorbed doses for all detectors. All three detectors cover 0-30000 Mrad measured does range. The accuracy of measurements is +- 10% independent (practically) of irradiation dose rates within 20-2000 rad/s limits under 20-80 deg C temperature

  5. The role of contacts in semiconductor gamma radiation detectors

    International Nuclear Information System (INIS)

    Lachish, U.

    1998-01-01

    It is proposed that the operation of semiconductor gamma radiation detectors, equipped with ohmic contacts, which allow free electron flow between the contacts and bulk material, will not be sensitive to low hole mobility, hole collection efficiency, or hole trapping. Such fast-operating detectors may be readily integrated into monolithic arrays. The detection mechanism and various material aspects are discussed and compared to those of blocking contact detectors. Some suggestions for detector realization are presented. (orig.)

  6. Monitoring the Radiation Damage of the ATLAS Pixel Detector

    CERN Document Server

    Cooke, M; The ATLAS collaboration

    2012-01-01

    The Pixel Detector is the innermost charged particle tracking component employed by the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instantaneous luminosity delivered by the LHC, now routinely in excess of 5x10^{33} cm^{-2} s^{-1}, results in a rapidly increasing accumulated radiation dose to the detector. Methods based on the sensor depletion properties and leakage current are used to monitor the evolution of the radiation damage, and results from the 2011 run are presented.

  7. Monitoring the radiation damage of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Cooke, M.

    2013-01-01

    The pixel detector is the innermost charged particle tracking component employed by the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instantaneous luminosity delivered by the LHC, now routinely in excess of 5×10 33 cm −2 s −1 , results in a rapidly increasing accumulated radiation dose to the detector. Methods based on the sensor depletion properties and leakage current are used to monitor the evolution of the radiation damage, and results from the 2011 run are presented

  8. Radiation Damage Modeling for 3D Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Wallangen, Veronica; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of 10^15 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This poster presents the details of a new digitization model that includes radiation damage effects to the 3D Pixel sensors for the ATLAS Detector.

  9. Field oxide radiation damage measurements in silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, M [Particle Detector Group, Fermilab, Batavia, IL (United States) Research Inst. for High Energy Physics (SEFT), Helsinki (Finland); Singh, P; Shepard, P F [Dept. of Physics and Astronomy, Univ. Pittsburgh, PA (United States)

    1993-04-01

    Surface radiation damage in planar processed silicon detectors is caused by radiation generated holes being trapped in the silicon dioxide layers on the detector wafer. We have studied charge trapping in thick (field) oxide layers on detector wafers by irradiating FOXFET biased strip detectors and MOS test capacitors. Special emphasis was put on studying how a negative bias voltage across the oxide during irradiation affects hole trapping. In addition to FOXFET biased detectors, negatively biased field oxide layers may exist on the n-side of double-sided strip detectors with field plate based n-strip separation. The results indicate that charge trapping occurred both close to the Si-SiO[sub 2] interface and in the bulk of the oxide. The charge trapped in the bulk was found to modify the electric field in the oxide in a way that leads to saturation in the amount of charge trapped in the bulk when the flatband/threshold voltage shift equals the voltage applied over the oxide during irradiation. After irradiation only charge trapped close to the interface is annealed by electrons tunneling to the oxide from the n-type bulk. (orig.).

  10. Directional radiative cooling thermal compensation for gravitational wave interferometer mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Justin Kamp, Carl [Department of Chemical Reaction Engineering, Chalmers University of Technology, SE-412 96 Goteborg (Sweden)], E-mail: carl.kamp@chalmers.se; Kawamura, Hinata [Yokoyama Junior High School, Sanda, Hachioji, Tokyo 193-0832 (Japan); Passaquieti, Roberto [Dipartimento di Fisica ' Enrico Fermi' and INFN Sezione di Pisa, Universita' di Pisa, Largo Bruno Pontecorvo, I-56127 Pisa (Italy); DeSalvo, Riccardo [LIGO Observatories, California Institute of Technology, Pasadena, CA 91125 (United States)

    2009-08-21

    The concept of utilizing directional radiative cooling to correct the problem of thermal lensing in the mirrors of the LIGO/VIRGO gravitational wave detectors has been shown and has prospects for future use. Two different designs utilizing this concept, referred to as the baffled and parabolic mirror solutions, have been proposed with different means of controlling the cooling power. The technique takes advantage of the power naturally radiated by the mirror surfaces at room temperature to prevent their heating by the powerful stored laser beams. The baffled solution has been simulated via COMSOL Multiphysics as a design tool. Finally, the parabolic mirror concept was experimentally validated with the results falling in close agreement with theoretical cooling calculations. The technique of directional radiative thermal correction can be reversed to image heat rings on the mirrors periphery to remotely and dynamically correct their radius of curvature without subjecting the mirror to relevant perturbations.

  11. Diamond detectors for synchrotron radiation X-ray applications

    Energy Technology Data Exchange (ETDEWEB)

    De Sio, A. [Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Roma (Italy); Department of Astronomy and Space Science, Universita di Firenze, L.go E. Fermi 2, 50125 Firenze (Italy)], E-mail: desio@arcetri.astro.it; Pace, E. [Department of Astronomy and Space Science, Universita di Firenze, L.go E. Fermi 2, 50125 Firenze (Italy); INFN, Sezione di Firenze, v. G. Sansone 1, Sesto Fiorentino, Firenze (Italy); Cinque, G.; Marcelli, A. [Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Roma (Italy); Achard, J.; Tallaire, A. [LIMHP-CNRS, University of Paris XIII, 99 Avenue JB Clement, 93430 Villetaneuse (France)

    2007-07-15

    Due to its unique physical properties, diamond is a very appealing material for the development of electronic devices and sensors. Its wide band gap (5.5 eV) endows diamond based devices with low thermal noise, low dark current levels and, in the case of radiation detectors, high visible-to-X-ray signal discrimination (visible blindness) as well as high sensitivity to energies greater than the band gap. Furthermore, due to its radiation hardness diamond is very interesting for applications in extreme environments, or as monitor of high fluency radiation beams. In this work the use of diamond based detectors for X-ray sensing is discussed. On purpose, some photo-conductors based on different diamond types have been tested at the DAFNE-L synchrotron radiation laboratory at Frascati. X-ray sensitivity spectra, linearity and stability of the response of these diamond devices have been measured in order to evidence the promising performance of such devices.

  12. Diamond detectors for synchrotron radiation X-ray applications

    International Nuclear Information System (INIS)

    De Sio, A.; Pace, E.; Cinque, G.; Marcelli, A.; Achard, J.; Tallaire, A.

    2007-01-01

    Due to its unique physical properties, diamond is a very appealing material for the development of electronic devices and sensors. Its wide band gap (5.5 eV) endows diamond based devices with low thermal noise, low dark current levels and, in the case of radiation detectors, high visible-to-X-ray signal discrimination (visible blindness) as well as high sensitivity to energies greater than the band gap. Furthermore, due to its radiation hardness diamond is very interesting for applications in extreme environments, or as monitor of high fluency radiation beams. In this work the use of diamond based detectors for X-ray sensing is discussed. On purpose, some photo-conductors based on different diamond types have been tested at the DAFNE-L synchrotron radiation laboratory at Frascati. X-ray sensitivity spectra, linearity and stability of the response of these diamond devices have been measured in order to evidence the promising performance of such devices

  13. Active microphonic noise cancellation in radiation detectors

    International Nuclear Information System (INIS)

    Zimmermann, Sergio

    2013-01-01

    A new adaptive filtering technique to reduce microphonic noise in radiation detectors is presented. The technique is based on system identification that actively cancels the microphonic noise. A sensor is used to measures mechanical disturbances that cause vibration on the detector assembly, and the digital adaptive filtering estimates the impact of these disturbances on the microphonic noise. The noise then can be subtracted from the actual detector measurement. In this paper the technique is presented and simulations are used to support this approach. -- Highlights: •A sensor is used to measures mechanical disturbances that cause vibration on the detector assembly. •Digital adaptive filtering estimates the impact of these disturbances on the microphonic noise. •The noise is then subtracted from the actual detector measurement. •We use simulations to demonstrate the performance of this approach. •After cancellation, we recover most of the original energy resolution

  14. Radiation damage measurements on CZT drift strip detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Korsbech, Uffe C C

    2003-01-01

    from 2 x 10(8) to 60 x 10(8) p(+)/cm(2). Even for the highest fluences, which had a dramatic effect on the spectroscopic performance, we were able to recover the detectors after an appropriate annealing procedure. The radiation damage was studied as a function of depth inside the detector material...... with the proton dose. The radiation contribution to the electron trapping was found to obey the following relation: (mutau(e)(-1))(rad) = (2.5+/-0.2) x 10(-7) x Phi (V/cm)(2) with the proton fluence, Phi in p(+)/cm(2). The trapping depth dependence, however, did not agree well with the damage profile calculated...

  15. Counterbalanced radiation detection device

    International Nuclear Information System (INIS)

    Platz, W.

    1986-01-01

    A counterbalanced radiation detection device is described which consists of: (a) a base; (b) a radiation detector having a known weight; (c) means connected with the radiation detector and the base for positioning the radiation detector in different heights with respect to the base; (d) electronic component means movably mounted on the base for counterbalancing the weight of the radiation detector; (e) means connected with the electronic component means and the radiation detector positioning means for positioning the electronic component means in different heights with respect to the base opposite to the heights of the radiation detector; (f) means connected with the radiation detector and the base for shifting the radiation detector horizontally with respect to the base; and (g) means connected with the electronic component means and the radiation detector shifting means for shifting the electronic component means horizontally with respect to the base in opposite direction to shifting of the radiation detector

  16. Methods for radiation detection and characterization using a multiple detector probe

    Science.gov (United States)

    Akers, Douglas William; Roybal, Lyle Gene

    2014-11-04

    Apparatuses, methods, and systems relating to radiological characterization of environments are disclosed. Multi-detector probes with a plurality of detectors in a common housing may be used to substantially concurrently detect a plurality of different radiation activities and types. Multiple multi-detector probes may be used in a down-hole environment to substantially concurrently detect radioactive activity and contents of a buried waste container. Software may process, analyze, and integrate the data from the different multi-detector probes and the different detector types therein to provide source location and integrated analysis as to the source types and activity in the measured environment. Further, the integrated data may be used to compensate for differential density effects and the effects of radiation shielding materials within the volume being measured.

  17. The transition radiation detector of the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, Cyrano [Institut fuer Kernphysik, WWU Muenster (Germany)

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment is a fixed target heavy-ion experiment at the future FAIR accelerator facility. The CBM Transition Radiation Detector (TRD) is one of the key detectors to provide electron identification above momenta of 1 GeV/c and charged particle tracking. Due its capability to identify charged particles via their specific energy loss, the TRD in addition will provide valuable information for the measurement of fragments. These requirements can be fulfilled with a XeCO{sub 2} based Multi-Wire Proportional Counter (MWPC) detector in combination with an adequate radiator. The default MWPC is composed of a symmetric amplification area of 7 mm thickness, followed by a 5 mm drift region to enhance the TR-photon absorption probability in the active gas volume. This geometry provides also efficient and fast signal creation, as well as read-out, of the order of 200 μs per charged particle track. The performance of this detector is maximized by reducing the material budget between the radiator and gas volume to a minimum. The full detector at SIS100 will be composed of 200 modules in 2 sizes. To limit cost and production time the number of various module types is limited to 6 types and 4 types of Front End Board (FEB) flavors are required. An overview of the design and performance of the TRD detector is given.

  18. The AMS-02 transition radiation detector

    CERN Document Server

    Kirn, Th

    2004-01-01

    The Alpha Magnetic Spectrometer AMS02 will be equipped with a large transition radiation detector (TRD) to achieve a proton background suppression necessary for dark matter searches. The AMS02 TRD consists of 20 layers of fleece radiator each with Xe/CO//2 proportional wire straw tubes read out by a dedicated low-power data- acquisition system. A space-qualified TRD design will be presented. The performance of a 20-layer prototype was tested at CERN with electron, myon and pion beams up to l00 GeV and with protons up to 250 GeV. The beam-test results will be compared to Geant3 MC predictions. The detector is under construction at RWTH Aachen; the gas system will be built at MIT, slow-control at MIT and INFN Rome and DAQ at TH Karlsruhe. This project is funded by the German Space Agency DLR, the US Department of Energy DOE and NASA.

  19. Portable radiation detector and mapping system

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Hayes, D.W.; Eakle, R.F.

    1995-01-01

    A portable radiation detector and mapping system (RADMAPS) has been developed to detect, locate and plot nuclear radiation intensities on commercially available digital maps and other images. The field unit records gamma-ray spectra or neutron signals together with positions from a Global Positioning System (GPS) on flash memory cards. The recorded information is then transferred to a lap-top computer for spectral data analyses and then georegistered graphically on maps, photographs, etc. RADMAPS integrates several existing technologies to produce a preprogrammable field unit uniquely suited for each survey, as required. The system presently records spectra from a Nal(Tl) gamma-ray detector or an enriched Li-6 doped glass neutron scintillator. Standard Geographic Information System software installed in a lap-top, complete with CD-ROM supporting digitally imaged maps, permits the characterization of nuclear material in the field when the presence of such material is not otherwise documented. This paper gives the results of a typical site survey of the Savannah River Site (SRS) using RADMAPS

  20. Electromechanically cooled germanium radiation detector system

    International Nuclear Information System (INIS)

    Lavietes, Anthony D.; Joseph Mauger, G.; Anderson, Eric H.

    1999-01-01

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++, GAMANL, GRPANL and MGAU, typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organisations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service . The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted

  1. A radiation detector fabricated from silicon photodiode.

    Science.gov (United States)

    Yamamoto, H; Hatakeyama, S; Norimura, T; Tsuchiya, T

    1984-12-01

    A silicon photodiode is converted to a low energy charged particle radiation detector. The window thickness of the fabricated detector is evaluated to be 50 micrograms/cm2. The area of the depletion region is 13.2 mm2 and the depth of it is estimated to be about 100 microns. The energy resolution (FWHM) is 14.5 ke V for alpha-particles from 241Am and 2.5 ke V for conversion electrons from 109Cd, respectively.

  2. The use of detectors based on ionisation recombination in radiation protection

    International Nuclear Information System (INIS)

    Sullivan, A.H.

    1984-01-01

    Intitial recombination of ionisation in a gas depends on the ionisation density and hence on the linear energy transfer along the tracks of charged particles. This effect can be used as a basis for instruments that respond to different types of ionising radiation approximately in the way required by the quality factor-linear energy transfer relation recommended by the ICRP for use in radiation protection. Empirical instruments based on ionisation recombination that have been used for radiation protection measurements are reviewed, and relations are derived from recombination theory that show that the response of such detectors can be readily predicted. The usefulness of recombination instruments in radiation protection is discussed and their advantages and limitations assessed. It is shown that their main application will be as reference instruments against which other detectors can be calibrated. As an extension to using recombination detectors as reference instruments, the feasibility of specifying radiation quality in terms of ionisation recombination is investigated. (author)

  3. Characterization of a radiation detector for aircraft measurements

    International Nuclear Information System (INIS)

    Holanda M, L. de; Federico, C. A.; Caldas, L. V. E.

    2014-08-01

    Air crews, as pilots and flight attendants, are subjected to cosmic ray doses which can be higher than the average doses on workers from the nuclear industry. The diversity of particles of high energies present in the radiation field on board of air crafts turns the determination of the incident dose difficult, and requires special care regarding dosimetric systems to be used in this kind of radiation field. The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA) in conjunction with the Institute of Energetic and Nuclear Research (Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP) are working on this subject since 2008. A prototype of a radiation detector for aircraft measurements was previously built and tested in flight and laboratory conditions. The detector is able of measuring a quantity known as absorbed dose (using passive dosimeters), which will subsequently be correlated to the ambient dose equivalent and the effective dose received by air crews. In this context, a theoretical approach through Monte Carlo simulations with the computational codes MCNP5 and MCNPX was used to model and characterize the detector response at such experimental conditions. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between the absorbed doses measured and simulated, and its relationship with the ambient dose equivalent and the effective dose for this detector. (author)

  4. Characterization of a radiation detector for aircraft measurements

    Energy Technology Data Exchange (ETDEWEB)

    Holanda M, L. de; Federico, C. A.; Caldas, L. V. E., E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares, Av. Lineu Prestes 2242, Cidade Universitaria, CEP 05508-000, Sao Paulo (Brazil)

    2014-08-15

    Air crews, as pilots and flight attendants, are subjected to cosmic ray doses which can be higher than the average doses on workers from the nuclear industry. The diversity of particles of high energies present in the radiation field on board of air crafts turns the determination of the incident dose difficult, and requires special care regarding dosimetric systems to be used in this kind of radiation field. The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA) in conjunction with the Institute of Energetic and Nuclear Research (Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP) are working on this subject since 2008. A prototype of a radiation detector for aircraft measurements was previously built and tested in flight and laboratory conditions. The detector is able of measuring a quantity known as absorbed dose (using passive dosimeters), which will subsequently be correlated to the ambient dose equivalent and the effective dose received by air crews. In this context, a theoretical approach through Monte Carlo simulations with the computational codes MCNP5 and MCNPX was used to model and characterize the detector response at such experimental conditions. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between the absorbed doses measured and simulated, and its relationship with the ambient dose equivalent and the effective dose for this detector. (author)

  5. Studying radiative B decays with the Atlas detector

    International Nuclear Information System (INIS)

    Viret, S.

    2004-09-01

    This thesis is dedicated to the study of radiative B decays with the ATLAS detector at the LHC (large hadron collider). Radiative decays belong to the rare decays family. Rare decays transitions involve flavor changing neutral currents (for example b → sγ), which are forbidden at the lowest order in the Standard Model. Therefore these processes occur only at the next order, thus involving penguin or box diagrams, which are very sensitive to 'new physics' contributions. The main goal of our study is to show that it would be possible to develop an online selection strategy for radiative B decays with the ATLAS detector. To this end, we have studied the treatment of low energy photons by the ATLAS electromagnetic calorimeter (ECal). Our analysis shows that ATLAS ECal will be efficient with these particles. This property is extensively used in the next section, where a selection strategy for radiative B decays is proposed. Indeed, we look for a low energy region of interest in the ECal as soon as the level 1 of the trigger. Then, photon identification cuts are performed in this region at level 2. However, a large part of the proposed selection scheme is also based on the inner detector, particularly at level 2. The final results show that large amounts of signal events could be collected in only one year by ATLAS. A preliminary significance (S/√B) estimation is also presented. Encouraging results concerning the observability of exclusive radiative B decays are obtained. (author)

  6. Single-flux-quantum circuit technology for superconducting radiation detectors

    International Nuclear Information System (INIS)

    Fujimaki, Akira; Onogi, Masashi; Matsumoto, Tomohiro; Tanaka, Masamitsu; Sekiya, Akito; Hayakawa, Hisao; Yorozu, Shinichi; Terai, Hirotaka; Yoshikawa, Nobuyuki

    2003-01-01

    We discuss the application of the single-flux-quantum (SFQ) logic circuits to multi superconducting radiation detectors system. The SFQ-based analog-to-digital converters (ADCs) have the advantage in current sensitivity, which can reach less than 10 nA in a well-tuned ADC. We have also developed the design technology of the SFQ circuits. We demonstrate high-speed operation of large-scale integrated circuits such as a 2x2 cross/bar switch, arithmetic logic unit, indicating that our present SFQ technology is applicable to the multi radiation detectors system. (author)

  7. Application of solid state nuclear track detectors in radiation protection

    International Nuclear Information System (INIS)

    Ramachandran, T.V.; Subba Ramu, M.C.; Mishra, U.C.

    1989-01-01

    This article reviews the current status of the application of nuclear track detectors with emphasis on recent developments in the field of radiation protection. Track etch detectors have been used for the measurements of low level radiation in the environment, fast neutron and radon daughter inhalation dose. Recent developments in the field of dosimetry seem to be promising. In fast neutron dosimetry, track etch detectors can be used without inclusion of fissile materials by using the electrochemical etching technique. These detectors can provide important information in the energy range upto 250 keV. Survey of this range of energy with TLD is difficult because they are extremely energy dependent and over-respond to low energy neutrons. Measurement of radon using track detectors can help to lower the cost of the radon dosimeters. Certain detectors are sensitive to alpha particles from radon and their progeny. Higher sensitivity permits their use in a passive type of personnel dosimeter, which does not require the troublesome aspects of air sampling for the collection of radon daughter samples. (author), 38 refs., 8 tabs., 12 figs

  8. Radiation detectors as surveillance monitors for IAEA safeguards

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Dowdy, E.J.

    1980-10-01

    Radiation detectors used for personnel dosimetry are examined for use under IAEA Safeguards as monitors to confirm the passage or nonpassage (YES/NO) of plutonium-bearing nuclear material at barrier penetrations declared closed. In this application where backgrounds are ill defined, no advantage is found for a particular detector type because of intrinsic efficiency. Secondary considerations such as complexity, ease of tamper-proofing, and ease of readout are used to recommend specific detector types for routine monitoring and for data-base measurements. Recommendations are made for applications, data acquisition, and instrument development

  9. Radiation detectors as surveillance monitors for IAEA safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Fehlau, P.E.; Dowdy, E.J.

    1980-10-01

    Radiation detectors used for personnel dosimetry are examined for use under IAEA Safeguards as monitors to confirm the passage or nonpassage (YES/NO) of plutonium-bearing nuclear material at barrier penetrations declared closed. In this application where backgrounds are ill defined, no advantage is found for a particular detector type because of intrinsic efficiency. Secondary considerations such as complexity, ease of tamper-proofing, and ease of readout are used to recommend specific detector types for routine monitoring and for data-base measurements. Recommendations are made for applications, data acquisition, and instrument development.

  10. Method of shaping of direction-characterization of sensitivity of ionizing radiation detection probe

    International Nuclear Information System (INIS)

    Czarnecki, J.; Jaszczuk, J.; Kruczyk, M.; Slapa, M.; Wroblewski, T.

    1986-01-01

    A method of shaping of direction-characterization of sensitivity of the ionizing radiation detection probe, especially equipped with small gamma detectors is described. Two detectors are placed coaxially in the bases of the cylindrical shield. One of them is uncovered in the highest degree and the second is not covered to a maximum. The signals from them are processed on the standarized sequences of electrical impulses (taking into account the heights and the widths of the amplitude). 2 figs., 1 tab. (A.S.)

  11. A direct electron detector for time-resolved MeV electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vecchione, T.; Denes, P.; Jobe, R. K.; Johnson, I. J.; Joseph, J. M.; Li, R. K.; Perazzo, A.; Shen, X.; Wang, X. J.; Weathersby, S. P.; Yang, J.; Zhang, D.

    2017-03-01

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μmμm spatial resolution and less than 20 analogue-to-digital converter count RMS pixel noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.

  12. 175th International School of Physics "Enrico Fermi" : Radiation and Particle Detectors

    CERN Document Server

    Bottigli, U; Oliva, P

    2010-01-01

    High energy physics (HEP) has a crucial role in the context of fundamental physics. HEP experiments make use of a massive array of sophisticated detectors to analyze the particles produced in high-energy scattering events. This book contains the papers from the workshop 'Radiation and Particle Detectors', organized by the International School of Physics, and held in Varenna in July 2009. Its subject is the use of detectors for research in fundamental physics, astro-particle physics and applied physics. Subjects covered include the measurement of: the position and length of ionization trails, time of flight velocity, radius of curvature after bending the paths of charged particles with magnetic fields, coherent transition radiation, synchrotron radiation, electro-magnetic showers produced by calorimetric methods and nuclear cascades produced by hadrons in massive steel detectors using calorimetry. Detecting muons and the detection of Cherenkov radiation are also covered, as is the detection of neutrinos by ste...

  13. Review of the Radiation Environment in the Inner Detector

    CERN Document Server

    Dawson, I

    2000-01-01

    The radiation environment in the inner detector has been simulated using the particle transport program FLUKA with a recent description of the ATLAS experiment. Given in this note are particle fluences and doses at positions relevant to the PIXEL, SCT and TRT detectors. In addition, studies are reported on in which 1) information concerning the optimisation of the inner detector neutron-moderators is obtained and 2) the impact of including additional vacuum-equipment is assessed.

  14. Radiation damage study in CZT matrix detectors exposed to gamma rays

    International Nuclear Information System (INIS)

    Leyva Fabelo, Antonio; Pinnera Hernandez, Ibrahin; Cruz Inclan, Carlos Manuel; Abreu Alfonso, Yamiel; Dona Lemus, Olga; Diaz Garcia, Angelina; Montanno Zetina, Luis Manuel

    2009-01-01

    Radiation damage in terms of atomic displacements in a typical CZT detector used in medical imaging applications was studied using the Monte Carlo statistical method. All detector structural and geometric features as well as different energies of the photons usually used in the application were taken into account. Considering the Mott McKinley Feshbach classical approach, effective cross sections of the displacements were calculated, including the number of displacements per atom for each atomic species present in the material and each photon energy considered. These results are analyzed and compared. Finally, the radiation damage on CZT detector is compared to that calculated in a similar detector manufactured with other semiconducting materials. (author)

  15. Notification determining technical standards concerning prevention of radiation injuries by electron capture detectors for gas chromatography

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions of the law on the prevention of radiation injuries by radioisotopes, the ordinance and the regulation for the execution of the law. This rule is applied to electron capture detectors for gas chromatography under the law. Basic terms are defined, such as detector radiation source, detector container and carrier gas. The detectors shall consist of detector radiation sources and containers, and the containers must be such that the radiation sources can not be easily taken away and never cause the danger to fall off. The induction and discharge mouths of the detector containers shall be shut tightly with caps, etc. The main structures and radiation sources of detectors shall be made of materials, which are difficult to corrode, and do not melt and easily cause chemical change below 800 deg. C. Detector radiation sources shall be made of metals plated with nickel 63 less than 20 milli-curie. The radiation dose rate on the surface of a detector shall be shielded to less than 0.06 milli-rem an hour. The temperature of detectors and carrier gas shall not exceed 350 deg. C. Corrosive gas shall not be used as carrier gas. The period of effective indication is 5 years. The method of washing, and the conditions of leak, heat-resistance and shock-resistance examinations are defined, respectively. (Okada, K.)

  16. Evaluation of the radiation field in the future circular collider detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00211473; Cerutti, Francesco; Ferrari, Alfredo; Riegler, Werner; Vlachoudis, Vasilis; CERN. Geneva. ATS Department

    2016-01-01

    The radiation load on a detector at a 100 TeV proton-proton collider, that is being investigated within the Future Circular Collider (FCC) study, is presented. A peak luminosity of 30 1034 cm−2s−1 and a total integrated luminosity of 30 ab−1 are assumed for these radiation studies. A first concept of the detector foresees the presence of central and forward sub-detectors that provide acceptance up to |η|=6 inside a magnetic field generated by the combination of a central solenoid and two forward dipoles. This layout has been modelled and relevant fluence and dose distributions have been calculated using the FLUKA Monte Carlo code. Distributions of fluence rates are discussed separately for charged particles, neutrons and pho- tons. Dose and 1 MeV neutron equivalent fluence, for the accumulated integrated luminosity, are presented. The peak values of these quantities in the different sub-detectors are highlighted, in order to define the radiation tolerance requirements for the choice of possible technol...

  17. Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    McMullan, G., E-mail: gm2@mrc-lmb.cam.ac.uk [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH (United Kingdom); Faruqi, A.R. [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH (United Kingdom); Clare, D. [Crystallography and Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX (United Kingdom); Henderson, R. [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH (United Kingdom)

    2014-12-15

    Low dose electron imaging applications such as electron cryo-microscopy are now benefitting from the improved performance and flexibility of recently introduced electron imaging detectors in which electrons are directly incident on backthinned CMOS sensors. There are currently three commercially available detectors of this type: the Direct Electron DE-20, the FEI Falcon II and the Gatan K2 Summit. These have different characteristics and so it is important to compare their imaging properties carefully with a view to optimise how each is used. Results at 300 keV for both the modulation transfer function (MTF) and the detective quantum efficiency (DQE) are presented. Of these, the DQE is the most important in the study of radiation sensitive samples where detector performance is crucial. We find that all three detectors have a better DQE than film. The K2 Summit has the best DQE at low spatial frequencies but with increasing spatial frequency its DQE falls below that of the Falcon II. - Highlights: • Three direct electron detectors offer better DQE than film at 300 keV. • Recorded 300 keV electron events on the detectors have very similar Landau distributions. • The Gatan K2 Summit detector has the highest DQE at low spatial frequency. • The FEI Falcon II detector has the highest DQE beyond one half the Nyquist frequency. • The Direct Electron DE-20 detector has the fastest data acquisition rate.

  18. Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy

    International Nuclear Information System (INIS)

    McMullan, G.; Faruqi, A.R.; Clare, D.; Henderson, R.

    2014-01-01

    Low dose electron imaging applications such as electron cryo-microscopy are now benefitting from the improved performance and flexibility of recently introduced electron imaging detectors in which electrons are directly incident on backthinned CMOS sensors. There are currently three commercially available detectors of this type: the Direct Electron DE-20, the FEI Falcon II and the Gatan K2 Summit. These have different characteristics and so it is important to compare their imaging properties carefully with a view to optimise how each is used. Results at 300 keV for both the modulation transfer function (MTF) and the detective quantum efficiency (DQE) are presented. Of these, the DQE is the most important in the study of radiation sensitive samples where detector performance is crucial. We find that all three detectors have a better DQE than film. The K2 Summit has the best DQE at low spatial frequencies but with increasing spatial frequency its DQE falls below that of the Falcon II. - Highlights: • Three direct electron detectors offer better DQE than film at 300 keV. • Recorded 300 keV electron events on the detectors have very similar Landau distributions. • The Gatan K2 Summit detector has the highest DQE at low spatial frequency. • The FEI Falcon II detector has the highest DQE beyond one half the Nyquist frequency. • The Direct Electron DE-20 detector has the fastest data acquisition rate

  19. Modeling Radiation Damage Effects in 3D Pixel Digitization for the ATLAS Detector

    CERN Document Server

    Giugliarelli, Gilberto; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of 10^15 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This poster presents the details of a new digitization model that includes radiation damage effects to the 3D Pixel sensors for the ATLAS Detector.

  20. Modeling Radiation Damage Effects in 3D Pixel Digitization for the ATLAS Detector

    CERN Document Server

    Wallangen, Veronica; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of 10$^{15}$ n$_\\mathrm{eq}$/cm$^2$ and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This work presents the details of a new digitization model that includes radiation damage effects to the 3D Pixel sensors for the ATLAS detector.

  1. Advances in the project about Pin type silicon radiation detectors

    International Nuclear Information System (INIS)

    Ramirez F, J.; Cerdeira, A.; Aceves, M.; Diaz, A.; Estrada, M.; Rosales, P.; Cabal, A.E.; Montano L, M.; Leyva, A.

    1998-01-01

    The obtained advances in the collaboration project ININ-CINVESTAV about development of Pin type semiconductor radiation detectors here are presented. It has been characterized the response to different types of radiation made in CINVESTAV and INAOE. Measurements have been realized with different types of sensitive to charge preamplifiers determining the main characteristics which must be executed to be able to be employed with low capacitance detectors. As applications it has been possible to measure the irradiation time in a mammography machine and X-ray energy spectra have been obtained in the order of 14 KeV, with 4 KeV at ambient temperature. The future actions of project have been indicated and the possible applications of these detectors. (Author)

  2. Measurement and analysis of high energy radiation through activation detectors. Application in dosimetry

    International Nuclear Information System (INIS)

    Sklavenitis, L.

    1967-10-01

    This work is concerned with the possibility of measurement and analysis of radiation fluences within objects of small volume submitted to a high energy proton beam. The first part, consecrated to the establishment of a method of analysis, comprises a detailed study of the radiation nature and energy spectra as well as of the various dosimetry methods. In order to select a group of detectors, high energy nuclear reactions were systematically studied and for some of them cross sections were measured or calculated: for example the cross section of the reaction 11 B (p,n) 11 C between 150 and 3000 MeV and of the reaction 34 S (p,2pn) 32 P between 50 and 3000 MeV. The second part is relative to the application of the fore-mentioned analysis to radiation within a tissue equivalent phantom irradiated by 3 GeV protons. This analysis is sufficiently detailed to allow the reconstitution of the absorbed doses, the dose equivalent and, contingent on a better knowledge of the dose due to heavy particles, the quality factors. It allowed also to follow the evolution of the various dosimetric data as a function of the depth inside the phantom and to verify calculations already done by other researchers. The comparison of the measured doses and the corresponding detector activities revealed the possibility that some detectors could give directly the absorbed dose, or even the dose equivalent, by a simple activity measurement. (author) [fr

  3. Radiation hard silicon particle detectors for HL-LHC—RD50 status report

    Energy Technology Data Exchange (ETDEWEB)

    Terzo, S., E-mail: Stefano.Terzo@mpp.mpg.de

    2017-02-11

    It is foreseen to significantly increase the luminosity of the LHC by upgrading towards the HL-LHC (High Luminosity LHC). The Phase-II-Upgrade scheduled for 2024 will mean unprecedented radiation levels, way beyond the limits of the silicon trackers currently employed. All-silicon central trackers are being studied in ATLAS, CMS and LHCb, with extremely radiation hard silicon sensors to be employed on the innermost layers. Within the RD50 Collaboration, a massive R&D program is underway across experimental boundaries to develop silicon sensors with sufficient radiation tolerance. We will present results of several detector technologies and silicon materials at radiation levels corresponding to HL-LHC fluences. Based on these results, we will give recommendations for the silicon detectors to be used at the different radii of tracking systems in the LHC detector upgrades. In order to complement the measurements, we also perform detailed simulation studies of the sensors. - Highlights: • The RD50 collaboration investigates the radiation hardness of silicon sensors. • Different approaches to simulate the detector response after irradiation are shown. • HV-CMOS are cost-effective solution for the outer pixel layers at HL-LHC. • 3D and thin planar sensors with slim edges are solutions for innermost layers at HL-LHC. • Sensors with intrinsic gain are investigated to develop ultra-fast silicon detectors.

  4. Silicon carbide and its use as a radiation detector material

    International Nuclear Information System (INIS)

    Nava, F; Bertuccio, G; Cavallini, A; Vittone, E

    2008-01-01

    We present a comprehensive review of the properties of the epitaxial 4H silicon carbide polytype (4H–SiC). Particular emphasis is placed on those aspects of this material related to room, high-temperature and harsh environment ionizing radiation detector operation. A review of the characterization methods and electrical contacting issues and how these are related to detector performance is presented. The most recent data on charge transport parameters across the Schottky barrier and how these are related to radiation spectrometer performance are presented. Experimental results on pixel detectors having equivalent noise energies of 144 eV FWHM (7.8 electrons rms) and 196 eV FWHM at +27 °C and +100 °C, respectively, are reported. Results of studying the radiation resistance of 4H–SiC are analysed. The data on the ionization energies, capture cross section, deep-level centre concentrations and their plausible structures formed in SiC as a result of irradiation with various particles are reviewed. The emphasis is placed on the study of the 1 MeV neutron irradiation, since these thermal particles seem to play the main role in the detector degradation. An accurate electrical characterization of the induced deep-level centres by means of PICTS technique has allowed one to identify which play the main role in the detector degradation. (topical review)

  5. Technologies pioneered by LHC. Superconducting magnet and radiation-tolerant tracking detector

    International Nuclear Information System (INIS)

    Yamamoto, Akira; Unno, Yoshinobu

    2007-01-01

    In the LHC project of proton-proton collisions exploring the energy frontier, superconducting magnets and radiation-tolerant tracking detector play fundamental roles as key technologies. The superconducting magnets contribute to bending and focusing particle beam by using high magnetic field created with the NbTi superconductor cooled to the superfluid temperature of He (1.9 K). In order to overcome the unprecedented radiation damage and to capture the particles emerging with high energy and high density, the large area and highly radiation-tolerant silicon semiconductor tracking detector has been developed for the LHC experiment. (author)

  6. Radiation hard silicon microstrip detectors for use in ATLAS at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, Lars Gimmestad

    2005-07-01

    The Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) will accelerate protons in colliding beams to a center of mass energy of 14 TeV at very high luminosities. The ATLAS detector is being built to explore the physics in this unprecedented energy range. Tracking of charged particles in high-energy physics (HEP) experiments requires a high spatial resolution and fast signal readout, all with as little material as possible. Silicon microstrip detectors meet these requirements well and have been chosen for the Semiconductor Tracker (SCT) which is part of the inner tracking system of ATLAS and has a total area of 61 m2. During the 10 years of operation at LHC, the total fluence received by the detectors is sufficiently large that they will suffer a severe degradation from radiation induced damage. The damage affects both the physics performance of the detectors as well as their operability and a great challenge has been to develop radiation hard detectors for this environment. An extensive irradiation programme has been carried out where detectors of various designs, including defect engineering by oxygen enriched silicon, have been irradiated to the expected fluence. A subsequent thermal annealing period is included to account for a realistic annual maintenance schedule at room temperature, during which the radiation induced defects alter the detector properties significantly. This thesis presents work that has been carried out in the Bergen ATLAS group with results both from the irradiation programme and from detector testing during the module production. (Author)

  7. Radiation hard silicon microstrip detectors for use in ATLAS at CERN

    International Nuclear Information System (INIS)

    Johansen, Lars Gimmestad

    2005-06-01

    The Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) will accelerate protons in colliding beams to a center of mass energy of 14 TeV at very high luminosities. The ATLAS detector is being built to explore the physics in this unprecedented energy range. Tracking of charged particles in high-energy physics (HEP) experiments requires a high spatial resolution and fast signal readout, all with as little material as possible. Silicon microstrip detectors meet these requirements well and have been chosen for the Semiconductor Tracker (SCT) which is part of the inner tracking system of ATLAS and has a total area of 61 m2. During the 10 years of operation at LHC, the total fluence received by the detectors is sufficiently large that they will suffer a severe degradation from radiation induced damage. The damage affects both the physics performance of the detectors as well as their operability and a great challenge has been to develop radiation hard detectors for this environment. An extensive irradiation programme has been carried out where detectors of various designs, including defect engineering by oxygen enriched silicon, have been irradiated to the expected fluence. A subsequent thermal annealing period is included to account for a realistic annual maintenance schedule at room temperature, during which the radiation induced defects alter the detector properties significantly. This thesis presents work that has been carried out in the Bergen ATLAS group with results both from the irradiation programme and from detector testing during the module production. (Author)

  8. Proton induced target fragmentation studies on solid state nuclear track detectors using Carbon radiators

    Science.gov (United States)

    Szabó, J.; Pálfalvi, J. K.; Strádi, A.; Bilski, P.; Swakoń, J.; Stolarczyk, L.

    2018-04-01

    One of the limiting factors of an astronaut's career is the dose received from space radiation. High energy protons, being the main components of the complex radiation field present on a spacecraft, give a significant contribution to the dose. To investigate the behavior of solid state nuclear track detectors (SSNTDs) if they are irradiated by such particles, SSNTD stacks containing carbon blocks were exposed to high energy proton beams (70, 100, 150 and 230 MeV) at the Proteus cyclotron, IFJ PAN -Krakow. The incident protons cannot be detected directly; however, tracks of secondary particles, recoils and fragments of the constituent atoms of the detector material and of the carbon radiator are formed. It was found that as the proton energy increases, the number of tracks induced in the PADC material by secondary particles decreases. From the measured geometrical parameters of the tracks the linear energy transfer (LET) spectrum and the dosimetric quantities were determined, applying appropriate calibration. In the LET spectra the LET range of the most important secondary particles could be identified and their abundance showed differences in the spectra if the detectors were short or long etched. The LET spectra obtained on the SSNTDs irradiated by protons were compared to LET spectra of detectors flown on the International Space Station (ISS): they were quite similar, resulting in a quality factor difference of only 5%. Thermoluminescent detectors (TLDs) were applied in each case to measure the dose from primary protons and other lower LET particles present in space. Comparing and analyzing the results of the TLD and SSNTD measurements, it was obtained that proton induced target fragments contributed to the total absorbed dose in 3.2% and to the dose equivalent in 14.2% in this particular space experiment.

  9. Test of radiation hardness of pcCVD detectors

    Energy Technology Data Exchange (ETDEWEB)

    Schlemme, Steffen [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Technische Universitaet Darmstadt (Germany); Enders, Joachim [Technische Universitaet Darmstadt (Germany); Figuera, P.; Salamone, S. [LNS-INFN Catania (Italy); Fruehauf, J.; Kis, Mladen; Kratz, A.; Kurz, N.; Loechner, S.; Nociforo, Chiara; Schirru, Fabio; Szczepanczyk, B.; Traeger, M.; Visinka, R. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Musumarra, A. [LNS-INFN Catania (Italy); University of Catania (Italy)

    2016-07-01

    The new in-flight separator Super-FRS is under construction at the Facility for Antiproton and Ion Research (FAIR, Darmstadt). Ion rates up to 3 x 10{sup 11} {sup 238}U/spill demand an adaption of detectors to a high radiation environment. A test experiment to investigate the radiation hardness of polycrystalline diamond detectors (pcCVD) was performed at the LNS-INFN in Catania using a {sup 12}C beam at 62 MeV/u and intensities of up to 1.5 pnA. The setup consisted of pcCVD strip detectors to measure the beam profile, a single crystal diamond detector to calibrate the ionisation chamber working in current mode as a beam intensity monitor and a pcCVD sample to be irradiated. The IC used was designed for FAIR and showed a stable counting rate allowing us to calibrate and perform beam intensity measurements with it. The total measured counts on the sample were 8.25 x 10{sup 11} counts/mm{sup 2} over a period of 60 hours. Digital waveforms of the pcCVD signals were taken with an oscilloscope and analysed. The results showed no change of the pcCVD signal properties during the entire irradiation.

  10. The ALICE Transition Radiation Detector: construction, operation, and performance

    OpenAIRE

    Acharya, Shreyasi; Adam, Jaroslav; Ahmad, Nazeer; Bhattacharjee, Buddhadeb; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Umaka, Ejiro Naomi; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Bhom, Jihyun

    2018-01-01

    The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 G...

  11. Semiconductor scintillator detector for gamma radiation

    International Nuclear Information System (INIS)

    Laan, F.T.V. der; Borges, V.; Zabadal, J.R.S.

    2015-01-01

    Nowadays the devices employed to evaluate individual radiation exposition are based on dosimetric films and thermoluminescent crystals, whose measurements must be processed in specific transductors. Hence, these devices carry out indirect measurements. Although a new generation of detectors based on semiconductors which are employed in EPD's (Electronic Personal Dosemeters) being yet available, it high producing costs and large dimensions prevents the application in personal dosimetry. Recent research works reports the development of new detection devices based on photovoltaic PIN diodes, which were successfully employed for detecting and monitoring exposition to X rays. In this work, we step forward by coupling a 2mm anthracene scintillator NE1, which converts the high energy radiation in visible light, generating a Strong signal which allows dispensing the use of photomultipliers. A low gain high performance amplifier and a digital acquisition device are employed to measure instantaneous and cumulative doses for energies ranging from X rays to Gamma radiation up to 2 MeV. One of the most important features of the PIN diode relies in the fact that it can be employed as a detector for ionization radiation, since it requires a small energy amount for releasing electrons. Since the photodiode does not amplify the corresponding photon current, it must be coupled to a low gain amplifier. Therefore, the new sensor works as a scintillator coupled with a photodiode PIN. Preliminary experiments are being performed with this sensor, showing good results for a wide range of energy spectrum. (author)

  12. Design and construction of the prototype synchrotron radiation detector

    CERN Document Server

    Anderhub, H; Baetzner, D; Baumgartner, S; Biland, A; Camps, C; Capell, M; Commichau, V; Djambazov, L; Fanchiang, Y J; Flügge, G; Fritschi, M; Grimm, O; Hangarter, K; Hofer, H; Horisberger, Urs; Kan, R; Kaestli, W; Kenney, G P; Kim, G N; Kim, K S; Koutsenko, V F; Kraeber, M; Kuipers, J; Lebedev, A; Lee, M W; Lee, S C; Lewis, R; Lustermann, W; Pauss, Felicitas; Rauber, T; Ren, D; Ren, Z L; Röser, U; Son, D; Ting, Samuel C C; Tiwari, A N; Viertel, Gert M; Gunten, H V; Wicki, S W; Wang, T S; Yang, J; Zimmermann, B

    2002-01-01

    The Prototype Synchrotron Radiation Detector (PSRD) is a small-scale experiment designed to measure the rate of low-energy charged particles and photons in near the Earth's orbit. It is a precursor to the Synchrotron Radiation Detector (SRD), a proposed addition to the upgraded version of the Alpha Magnetic Spectrometer (AMS-02). The SRD will use the Earth's magnetic field to identify the charge sign of electrons and positrons with energies above 1 TeV by detecting the synchrotron radiation they emit in this field. The differential energy spectrum of these particles is astrophysically interesting and not well covered by the remaining components of AMS-02. Precise measurements of this spectrum offer the possibility to gain information on the acceleration mechanism and characteristics of all cosmic rays in our galactic neighbourhood. The SRD will discriminate against protons as they radiate only weakly. Both the number and energy of the synchrotron photons that the SRD needs to detect are small. The identificat...

  13. Industrial workshop on LASL semiconductor radiation-detector research and development

    International Nuclear Information System (INIS)

    Endebrock, M.

    1978-11-01

    An Industrial Workshop on LASL Semiconductor Radiation Detector Research and Development was held at the Los Alamos Scientific Laboratory (LASL) in the spring of 1977. The purpose was to initiate communication between our detector research and development program and industry. LASL research programs were discussed with special emphasis on detector problems. Industrial needs and capabilities in detector research and development were also presented. Questions of technology transfer were addressed. The notes presented here are meant to be informal, as were the presentations

  14. Radiation Damage in Silicon Detectors Caused by Hadronic and Electromagnetic Irradiation

    CERN Document Server

    Fretwurst, E.; Stahl, J.; Pintilie, I.

    2002-01-01

    The report contains various aspects of radiation damage in silicon detectors subjected to high intensity hadron and electromagnetic irradiation. It focuses on improvements for the foreseen LHC applications, employing oxygenation of silicon wafers during detector processing (result from CERN-RD48). An updated survey on hadron induced damage is given in the first article. Several improvements are outlined especially with respect to antiannealing problems associated with detector storage during LHC maintenance periods. Open questions are outlined in the final section, among which are a full understanding of differences found between proton and neutron induced damage, process related effects changing the radiation tolerance in addition to the oxygen content and the lack of understanding the changed detector properties on the basis of damage induced point and cluster defects. In addition to float zone silicon, so far entirely used for detector fabrication,Czochralski silicon was also studied and first promising re...

  15. X-ray radiometric analysis of lead and zinc concentrates using germanium radiation detector

    International Nuclear Information System (INIS)

    Vajgachev, A.A.; Mamysh, V.A.; Mil'chakov, V.I.; Shchekin, K.I.; Berezkin, V.V.

    1975-01-01

    The results of determination of lead, zinc and iron in lead and zinc concentrates by the X-ray-radiometric method with the use of germanium semiconductor detector are presented. In the experiments the 57 Co source and tritium-zirconium target were used. The activity of 57 Co was 2 mc. The area of the germanium detector employed was 5g mm 2 , its thickness - 2.3 mm. In lead concentrates zinc and iron were determined from the direct intensity of K-series radiation. In the analysis of zinc concentrates the same conditions of recording and excitation were used as in the case of lead concentrates, but the measurements were conducted in saturated layers. It is demonstrated that the use of germanium semiconductor detectors in combination with the suggested methods of measurements makes it possible to perform determination of iron, zinc and lead in zinc and lead concentrates with permissible error

  16. Radiative processes for Rindler and accelerating observers and the stress-tensor detector

    International Nuclear Information System (INIS)

    Paola, R. De; Svaiter, N.F.

    1996-04-01

    It is considered a monopole detector interacting with a massive scalar field. Using the rotating wave approximation the radiative processes is discussed from the accelerated frame point of view. After this, it is obtained the Minkowski vacuum stress tensor measured by the accelerated observer using a non-gravitational stress sensor detector. Finally we analyse radiative processes of the monopole detector travelling in a world line that is inertial in the infinite past and has a constant proper acceleration in the infinite future. (author). 30 refs

  17. Detector and quantifier of ionizing x-radiation by indirect method

    International Nuclear Information System (INIS)

    Pablo, Aramayo; Roberto, Cruz; Luis, Rocha; Rotger Viviana I; Olivera, Juan Manuel

    2007-01-01

    The work presents the development of a device able to detect and quantify ionizing radiations. The transduction principle proposed for the design of the detector consists on using the properties of the fluorescent screens able to respond to the incident radiation with a proportional brightness. Though the method is well-known, it proved necessary to optimize the design of the detectors in order to get a greater efficiency in the relationship radiation/brightness; to that purpose, different models were tried out, varying its geometry and the optoelectronic device. The resultant signal was processed and presented in a visualization system. It is important to highlight that the project is in development and the results we obtained are preliminary

  18. Charge collection efficiency in a semiconductor radiation detector with a non-constant electric field

    International Nuclear Information System (INIS)

    Shah, K.S.; Lund, J.C.; Olschner, F.

    1990-01-01

    The development of improved semiconductor radiation detectors would be facilitated by a quantitative model that predicts the performance of these detectors as a function of material characteristics and device operating parameters. An accurate prediction of the pulse height spectrum from a radiation detector can be made if both the noise and the charge collection properties of the detector are understood. The noise characteristics of semiconductor radiation detectors have been extensively studied. The effect of noise can be closely simulated by convoluting the noise-free pulse height spectrum with a Gaussian function. Distortion of semiconductor detector's pulse height spectrum from charge collection effects is more complex than the effects of noise and is more difficult to predict. To compute these distortions it is necessary to know how the charge collection efficiency η varies as a function of position within the detector x. These effects are shown. This problem has been previously solved for planar detectors with a constant electric field, for the case of spherical detectors, and for coaxial detectors. In this paper the authors describe a more general solution to the charge collection problem which includes the case of a non-constant electric field in a planar geometry

  19. Characteristics of fabricated si PIN-type radiation detectors on cooling temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Soo; Jeong, Manhee; Kim, Young Soo [Korea Atomic Energy Research Institute, Jeongeup-si 580-185 (Korea, Republic of); Lee, Dong Hun [Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of); Cho, Seung Yeon [Environmental Health Center, Yonsei University, Wonju-si 1184-4 (Korea, Republic of); Ha, Jang Ho [Korea Atomic Energy Research Institute, Jeongeup-si 580-185 (Korea, Republic of)

    2015-06-01

    Si PIN photodiode radiation detectors with three different active areas (3×3 mm{sup 2}, 5×5 mm{sup 2}, and 10×10 mm{sup 2}) were designed and fabricated at the Korea Atomic Energy Research Institute (KAERI) for low energy X- and gamma-ray detection. In Si-based semiconductor radiation detectors, one of the noise sources is thermal noise, which degrades their energy resolution performance. In this study, the temperature effects on the energy resolution were investigated using a 3×3 mm{sup 2} active area PIN photodiode radiation detector using a Thermoelectric Module (TEM) from room temperature to −23 °C. Energy resolutions from 25 keV auger electrons to 81 keV gamma-ray from a Ba-133 calibration source were measured and compared at every 10 °C interval. At −23 °C, energy resolutions were improved by 15.6% at 25 keV, 4.0% at 31 keV, and 1.2% at 81 keV in comparison with resolutions at room temperature. CsI(Tl)/PIN photodiode radiation detectors were also fabricated for relatively high energy gamma-ray detection. Energy resolutions for Cs-137, Co-60, and Na-22 sources were measured and compared with the spectral responsivity.

  20. An intercomparison of detectors for measurement of background radiation

    International Nuclear Information System (INIS)

    Nielsen, S.P.; Boetter-Jensen, L.

    1981-04-01

    Measurements of the background radiation were made in 1978 at 14 locations with a high-pressure ionization chamber, thermoluminiscence dosimeters (TLD's), two NaI(Tl) detectors, and a Ge(Li) spectrometer system. Simultaneous measurements with the ionization chamber and the spectrometer system provide reliable estimates of the total background exposure rate, of the individual contributors to the terrestrial exposure rate, and of the exposure rate from the secondary cosmic radiation. The TLD results agree with those of the ionization chamber. The NaI(Tl) detector results show that accurate estimates of the terrestrial exposure rate can be obtained if empirical corrections are applied. (author)

  1. Dual-Energy Semiconductor Detector of X-rays and Gamma Radiation

    Directory of Open Access Journals (Sweden)

    Brodyn, M.S.

    2014-03-01

    Full Text Available Analysis of the major types of ionizing radiation detectors, their advantages and disadvantages are presented. Application of ZnSe-based semiconductor detector in high temperature environment is substantiated. Different forms of ZnSe-based detector samples and double-crystal scheme for registration of X- and gamma rays in a broad energy range were used . Based on the manufactured simulator device, the study sustains the feasibility of the gamma quanta recording by a high-resistance ZnSe-based detector operating in a perpulse mode.

  2. Mobile robot prototype detector of gamma radiation; Prototipo de robot movil detector de radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez C, R.M. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Duran V, M. D.; Jardon M, C. I., E-mail: raulmario.vazquez@inin.gob.mx [Tecnologico de Estudios Superiores de Villa Guerrero, Carretera Federal Toluca-Ixtapan de la Sal Km. 64.5, La Finca Villa Guerrero, Estado de Mexico (Mexico)

    2014-10-15

    In this paper the technological development of a mobile robot prototype detector of gamma radiation is shown. This prototype has been developed for the purpose of algorithms implementation for the applications of terrestrial radiation monitoring of exposed sources, search for missing radioactive sources, identification and delineation of radioactive contamination areas and distribution maps generating of radioactive exposure. Mobile robot detector of radiation is an experimental technology development platform to operate in laboratory environment or flat floor facilities. The prototype integrates a driving section of differential configuration robot on wheels, a support mechanism and rotation of shielded detector, actuator controller cards, acquisition and processing of sensor data, detection algorithms programming and control actuators, data recording (Data Logger) and data transmission in wireless way. The robot in this first phase is remotely operated in wireless way with a range of approximately 150 m line of sight and can extend that range to 300 m or more with the use of signal repeaters. The gamma radiation detection is performed using a Geiger detector shielded. Scan detection is performed at various time sampling periods and diverse positions of discrete or continuous angular orientation on the horizon. The captured data are geographical coordinates of robot GPS (latitude and longitude), orientation angle of shield, counting by sampling time, date, hours, minutes and seconds. The data is saved in a file in the Micro Sd memory on the robot. They are also sent in wireless way by an X Bee card to a remote station that receives for their online monitoring on a laptop through an acquisition program by serial port on Mat Lab. Additionally a voice synthesizing card with a horn, both in the robot, periodically pronounced in Spanish, data length, latitude, orientation angle of shield and detected accounts. (Author)

  3. Review on the characteristics of radiation detectors for dosimetry and imaging

    International Nuclear Information System (INIS)

    Seco, Joao; Clasie, Ben; Partridge, Mike

    2014-01-01

    The enormous advances in the understanding of human anatomy, physiology and pathology in recent decades have led to ever-improving methods of disease prevention, diagnosis and treatment. Many of these achievements have been enabled, at least in part, by advances in ionizing radiation detectors. Radiology has been transformed by the implementation of multi-slice CT and digital x-ray imaging systems, with silver halide films now largely obsolete for many applications. Nuclear medicine has benefited from more sensitive, faster and higher-resolution detectors delivering ever-higher SPECT and PET image quality. PET/MR systems have been enabled by the development of gamma ray detectors that can operate in high magnetic fields. These huge advances in imaging have enabled equally impressive steps forward in radiotherapy delivery accuracy, with 4DCT, PET and MRI routinely used in treatment planning and online image guidance provided by cone-beam CT. The challenge of ensuring safe, accurate and precise delivery of highly complex radiation fields has also both driven and benefited from advances in radiation detectors. Detector systems have been developed for the measurement of electron, intensity-modulated and modulated arc x-ray, proton and ion beams, and around brachytherapy sources based on a very wide range of technologies. The types of measurement performed are equally wide, encompassing commissioning and quality assurance, reference dosimetry, in vivo dosimetry and personal and environmental monitoring. In this article, we briefly introduce the general physical characteristics and properties that are commonly used to describe the behaviour and performance of both discrete and imaging detectors. The physical principles of operation of calorimeters; ionization and charge detectors; semiconductor, luminescent, scintillating and chemical detectors; and radiochromic and radiographic films are then reviewed and their principle applications discussed. Finally, a general

  4. Detector and dosimeter for neutrons and other radiation

    International Nuclear Information System (INIS)

    Apfel, R.E.

    1979-01-01

    A radiation detector and dosimeter is based on the fact that a sufficiently finely-dispersed liquid suspended in a host liquid of high viscosity or gel is stable at temperatures above its normal boiling point for long periods of time provided it is protected from contact with walls, or other types of initiators which can cause volatilization or vaporization of the droplets. Radiation, and particularly neutron radiation of sufficient energy and intensity on coming in contact with such droplets can trigger volatilization. The volume of vapor evolved can then serve as a measure of radiation intensity and dosage

  5. Recent advances in MEMS radiation detectors for improving radiation safety in nuclear reactors

    International Nuclear Information System (INIS)

    Bhisikar, Abhay

    2016-01-01

    MEMS (micro-electro-mechanical-system) is a core technology that leverages integrated circuit (IC) fabrication technology, builds ultra-miniaturized components and, enables radical new system applications. When considering MEMS radiation detectors; they are the specific micromechanical structures which are designed to sense doses of radiations. The present article reviews the most recent progress made in the domain of MEMS ionizing radiation sensors at international level for nuclear reactors which can be relevant to Indian context. (author)

  6. Quality of radiation field imaging

    International Nuclear Information System (INIS)

    Petr, I.

    1988-01-01

    The questions were studied of the quality of imaging the gamma radiation field and of the limits of the quality in directional detector scanning. A resolution angle was introduced to quantify the imaging quality, and its relation was sought with the detection effective half-angle of the directional detector. The resolution angle was defined for the simplest configuration of the radiation field consisting of two monoenergetic gamma beams in one plane. It was shown that the resolution angle decreases, i.e., resolution in imaging the radiation field is better, with the effective half-angle of the directional detector. It was also found that resolution of both gamma beams deteriorated when the beams were surrounded with an isotropic background field. If the beams are surrounded with a background field showing general distribution, the angle size will be affected not only by the properties of the detector but also by the distribution of the ambient radiation field and the method of its scanning. The method described can be applied in designing a directional detector necessary for imaging the presumed radiation field in the required quality. (Z.M.). 4 figs., 3 refs

  7. SENTIRAD-An innovative personal radiation detector based on a scintillation detector and a silicon photomultiplier

    International Nuclear Information System (INIS)

    Osovizky, A.; Ginzburg, D.; Manor, A.; Seif, R.; Ghelman, M.; Cohen-Zada, I.; Ellenbogen, M.; Bronfenmakher, V.; Pushkarsky, V.; Gonen, E.; Mazor, T.; Cohen, Y.

    2011-01-01

    The alarming personal radiation detector (PRD) is a device intended for Homeland Security (HLS) applications. This portable device is designed to be worn or carried by security personnel to detect photon-emitting radioactive materials for the purpose of crime prevention. PRD is required to meet the scope of specifications defined by various HLS standards for radiation detection. It is mandatory that the device be sensitive and simultaneously small, pocket-sized, of robust mechanical design and carriable on the user's body. To serve these specialized purposes and requirements, we developed the SENTIRAD, a new radiation detector designed to meet the performance criteria established for counterterrorist applications. SENTIRAD is the first commercially available PRD based on a CsI(Tl) scintillation crystal that is optically coupled with a silicon photomultiplier (SiPM) serving as a light sensor. The rapidly developing technology of SiPM, a multipixel semiconductor photodiode that operates in Geiger mode, has been thoroughly investigated in previous studies. This paper presents the design considerations, constraints and radiological performance relating to the SENTIRAD radiation sensor.

  8. Test-beam Results from a RICH Detector Prototype Using Aerogel Radiator and Pixel Hybrid Photon Detectors

    CERN Document Server

    Aglieri-Rinella, G; Van Lysebetten, A; Piedigrossi, D; Wyllie, K; Bellunato, T F; Calvi, M; Matteuzzi, C; Musy, M; Perego, D L; Somerville, L P; Newby, C; Easo, S; Wotton, S

    2006-01-01

    A test-beam study was performed at CERN with a Ring Imaging Cherenkov (RICH) prototype using three pixel Hybrid Photon Detectors. Results on the photon yield and Cherenkov angle resolution are presented here, for the Aerogel radiator and also for reference runs taken with Nitrogen radiator.

  9. Fabrication of advanced military radiation detector sensor and performance evaluation

    International Nuclear Information System (INIS)

    Kang, Sin Yang

    2010-02-01

    Recently, our country is facing a continuous nuclear weapons threat. Therefore, we must have a high-level nuclear weapons protection system. The best protection against nuclear weapons is detecting their use to reduce casualties in our country to a minimum. That means, the development of a military radiation detector is a very important issue. The Korea army is using the 'PDR - 1K portable military radiation surveymeter' in NBC (Nuclear, Biological, Chemical warfare) operations. The PDR - 1K military detector can measure beta and gamma rays only but it cannot detect alpha particles. Because of its characteristics, the Korea army has weaknesses in tactical operations. The PDR - 1K sensor is based on a GM - tube sensor system. For the mechanical structure, detectors utilizing a GM-tube sensor do not work on a high - radiation battlefield and they do not carry out nuclide analysis for fixed electron signal output. In the meantime, the United States of America and Germany are using 'AN/PDR - 77' and 'SVG - 2' that were made from scintillator sensors. They have excellent physical qualities and radiation responses for military use. Also, nuclide analysis is available. Therefore, in this study we fabricated a military - grade scintillator radiation sensor that is able to detect alpha, beta, and gamma - rays to overcome PDR - 1K's weaknesses. Also, physical characteristics and radiation response evaluation for the fabricated sensors was carried out. The alpha - particle sensor and beta - ray sensor were fabricated using a ZnS(Ag) powder state scintillator, and a Saint - Gobain organic plastic scintillator BC-408 panel, respectively. The gamma ray sensor was manufactured using a 10 x 10 x 10 mm 3 CsI(Tl) inorganic scintillator crystal. A detailed explanation follows. The alpha particle sensor was fabricated by using air - brushing method to Zns(Ag) powder scintillator spreading. The ZnS(Ag) layer thickness was 35 μm (detection efficiency: 41%). This alpha - particle sensor

  10. Radiation imaging with optically read out GEM-based detectors

    Science.gov (United States)

    Brunbauer, F. M.; Lupberger, M.; Oliveri, E.; Resnati, F.; Ropelewski, L.; Streli, C.; Thuiner, P.; van Stenis, M.

    2018-02-01

    Modern imaging sensors allow for high granularity optical readout of radiation detectors such as MicroPattern Gaseous Detectors (MPGDs). Taking advantage of the high signal amplification factors achievable by MPGD technologies such as Gaseous Electron Multipliers (GEMs), highly sensitive detectors can be realised and employing gas mixtures with strong scintillation yield in the visible wavelength regime, optical readout of such detectors can provide high-resolution event representations. Applications from X-ray imaging to fluoroscopy and tomography profit from the good spatial resolution of optical readout and the possibility to obtain images without the need for extensive reconstruction. Sensitivity to low-energy X-rays and energy resolution permit energy resolved imaging and material distinction in X-ray fluorescence measurements. Additionally, the low material budget of gaseous detectors and the possibility to couple scintillation light to imaging sensors via fibres or mirrors makes optically read out GEMs an ideal candidate for beam monitoring detectors in high energy physics as well as radiotherapy. We present applications and achievements of optically read out GEM-based detectors including high spatial resolution imaging and X-ray fluorescence measurements as an alternative readout approach for MPGDs. A detector concept for low intensity applications such as X-ray crystallography, which maximises detection efficiency with a thick conversion region but mitigates parallax-induced broadening is presented and beam monitoring capabilities of optical readout are explored. Augmenting high resolution 2D projections of particle tracks obtained with optical readout with timing information from fast photon detectors or transparent anodes for charge readout, 3D reconstruction of particle trajectories can be performed and permits the realisation of optically read out time projection chambers. Combining readily available high performance imaging sensors with compatible

  11. A detector for localizing diverging beams of ionizing radiations

    International Nuclear Information System (INIS)

    Allemand, Robert.

    1974-01-01

    Description is given of a detector for localizing diverging radiation beams, adapted to provide the angular distribution of nuclear events. That detector comprises a casing filled with a fluid adapted to produce electric charges under radiations and provided with a front-side and a rear-side, means for generating an electric field at right angles to portions of parallel surfaces of revolution having in common an axis of revolution contained in the place of symmetry, and a plane unit for localizing electric charges mounted at the rear of said means, the initial portion of the beam being on the axis of revolution. This can be applied to X-ray diffraction and to neutron diffraction [fr

  12. A review of advances in pixel detectors for experiments with high rate and radiation

    Science.gov (United States)

    Garcia-Sciveres, Maurice; Wermes, Norbert

    2018-06-01

    The large Hadron collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the high luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.

  13. Passivation layer of Si/Li ionizing radiation detectors

    International Nuclear Information System (INIS)

    Vidra, M.; Reznicek, L.

    1992-01-01

    The proposed passivating layer of Si/Li ionizing radiation detectors ensures a good long-time stability of their volt-ampere characteristics and noise properties. The layer can be applied to protect the detector junction surface in systems cyclically cooled to liquid nitrogen temperature, and in preamplifier feedback optoelectronics to prevent light from entering into the detector. The passivating layer is obtained by evaporating solvent from a cured suspension of boron nitride or aluminium oxide powder in a solution containing piceine and a nonpolar solvent such as toluene. The weight proportions are 1 to 8 parts of piceine, 3 to 9 parts of boron nitride or aluminium oxide, and 1 to 10 parts of the nonpolar solvent. (Z.S.)

  14. Temperature differences within the detector of the Robertson-Berger sunburn meter, model 500, compared to global radiation

    Science.gov (United States)

    Kjeldstad, Berit; Grandum, Oddbjorn

    1993-11-01

    The Robertson-Berger sunburn meter, model 500, has no temperature compensation, and the effect of temperature on the instrument response has been investigated and discussed in several reports. It is recommended to control the temperature of the detector or at least measure it. The temperature sensor is recommended to be positioned within the detector unit. We have measured the temperature at three different positions in the detector: At the edge of the green filter where the phosphor layer is placed; at the glass tube covering the cathode; and, finally, the air temperature inside the instrument. These measurements have been performed outdoors since July 1991, with corresponding measurements of the global and direct solar radiation. There was no difference between the temperature of the glasstube covering the cathode and the air inside the instrument, at any radiation level. However, there was a difference between the green filter and the two others. The difference is linearly dependent on the amount of global radiation. The temperature difference, (Delta) T (temperature between the green filter and the air inside the sensor), increased 0.8 degree(s)C when the global irradiation increased by 100 W/m2. At maximum global radiation in Trondheim (latitude 63.4 degree(s)N) (Delta) T was approximately 5 - 6 K when the global radiation was about 700 W/m2. This was valid for temperatures between 7 degree(s)C and 30 degree(s)C. Only clear days were evaluated.

  15. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    Science.gov (United States)

    Majewski, Stanislaw; Kross, Brian J.; Zorn, Carl J.; Majewski, Lukasz A.

    1996-01-01

    An optimized examination system and method based on the Reverse Geometry X-Ray.RTM. (RGX.RTM.) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging.

  16. Improvement of radiation response characteristic on CdTe detectors using fast neutron irradiation

    International Nuclear Information System (INIS)

    Miyamaru, Hiroyuki; Takahashi, Akito; Iida, Toshiyuki

    1999-01-01

    The treatment of fast neutron pre-irradiation was applied to a CdTe radiation detector in order to improve radiation response characteristic. Electron transport property of the detector was changed by the irradiation effect to suppress pulse amplitude fluctuation in risetime. Spectroscopic performance of the pre-irradiated detector was compared with the original. Additionally, the pre-irradiated detector was employed with a detection system using electrical signal processing of risetime discrimination (RTD). Pulse height spectra of 241 Am, 133 Ba, and 137 Cs gamma rays were measured to examine the change of the detector performance. The experimental results indicated that response characteristic for high-energy photons was improved by the pre-irradiation. The combination of the pre-irradiated detector and the RTD processing was found to provide further enhancement of the energy resolution. Application of fast neutron irradiation effect to the CdTe detector was demonstrated. (author)

  17. Development and deployment of the Collimated Directional Radiation Detection System

    Science.gov (United States)

    Guckes, Amber L.; Barzilov, Alexander

    2017-09-01

    The Collimated Directional Radiation Detection System (CDRDS) is capable of imaging radioactive sources in two dimensions (as a directional detector). The detection medium of the CDRDS is a single Cs2LiYCl6:Ce3+ scintillator cell enriched in 7Li (CLYC-7). The CLYC-7 is surrounded by a heterogeneous high-density polyethylene (HDPE) and lead (Pb) collimator. These materials make-up a coded aperture inlaid in the collimator. The collimator is rotated 360° by a stepper motor which enables time-encoded imaging of a radioactive source. The CDRDS is capable of spectroscopy and pulse shape discrimination (PSD) of photons and fast neutrons. The measurements of a radioactive source are carried out in discrete time steps that correlate to the angular rotation of the collimator. The measurement results are processed using a maximum likelihood expectation (MLEM) algorithm to create an image of the measured radiation. This collimator design allows for the directional detection of photons and fast neutrons simultaneously by utilizing only one CLYC-7 scintillator. Directional detection of thermal neutrons can also be performed by utilizing another suitable scintillator. Moreover, the CDRDS is portable, robust, and user friendly. This unit is capable of utilizing wireless data transfer for possible radiation mapping and network-centric applications. The CDRDS was tested by performing laboratory measurements with various gamma-ray and neutron sources.

  18. The ALICE Transition Radiation Detector: status and perspectives for Run II

    CERN Document Server

    Klein, Jochen

    2016-01-01

    The ALICE Transition Radiation Detector contributes to the tracking, particle identification, and triggering capabilities of the experiment. It is composed of six layers of multi-wire proportional chambers, each of which is preceded by a radiator and a Xe/CO$_2$-filled drift volume. The signal is sampled in timebins of 100~ns over the drift length which allows for the reconstruction of chamber-wise track segments, both online and offline. The particle identification is based on the specific energy loss of charged particles and additional transition radiation photons, the latter being a signature for electrons. The detector is segmented into 18 sectors, of which 13 were installed in Run I. The TRD was included in data taking since the LHC start-up and was successfully used for electron identification and triggering. During the Long Shutdown 1, the detector was completed and now covers the full azimuthal acceptance. Furthermore, the readout and trigger components were upgraded. When data taking was started for ...

  19. WE-AB-BRB-12: Nanoscintillator Fiber-Optic Detector System for Microbeam Radiation Therapy Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, J [University of North Carolina and North Carolina State University, Chapel Hill, NC (United States); Dooley, J; Chang, S [University of North Carolina School of Medicine, Chapel Hill, NC (United States); Belley, M; Yoshizumi, T [Duke University Medical Center, Durham, NC (United States); Stanton, I; Langloss, B; Therien, M [Duke University, Durham, NC (United States)

    2015-06-15

    Purpose: Microbeam Radiation Therapy (MRT) is an experimental radiation therapy that has demonstrated a higher therapeutic ratio than conventional radiation therapy in animal studies. There are several roadblocks in translating the promising treatment technology to clinical application, one of which is the lack of a real-time, high-resolution dosimeter. Current clinical radiation detectors have poor spatial resolution and, as such, are unsuitable for measuring microbeams with submillimeter-scale widths. Although GafChromic film has high spatial resolution, it lacks the real-time dosimetry capability necessary for MRT preclinical research and potential clinical use. In this work we have demonstrated the feasibility of using a nanoscintillator fiber-optic detector (nanoFOD) system for real-time MRT dosimetry. Methods: A microplanar beam array is generated using a x-ray research irradiator and a custom-made, microbeam-forming collimator. The newest generation nanoFOD has an effective size of 70 µm in the measurement direction and was calibrated against a kV ion chamber (RadCal Accu-Pro) in open field geometry. We have written a computer script that performs automatic data collection with immediate background subtraction. A computer-controlled detector positioning stage is used to precisely measure the microbeam peak dose and beam profile by translating the stage during data collection. We test the new generation nanoFOD system, with increased active scintillation volume, against the previous generation system. Both raw and processed data are time-stamped and recorded to enable future post-processing. Results: The real-time microbeam dosimetry system worked as expected. The new generation dosimeter has approximately double the active volume compared to the previous generation resulting in over 900% increase in signal. The active volume of the dosimeter still provided the spatial resolution that meets the Nyquist criterion for our microbeam widths. Conclusion: We have

  20. Semiconductor scintillator detector for gamma radiation; Detector cintilador semicondutor para radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Laan, F.T.V. der; Borges, V.; Zabadal, J.R.S., E-mail: ftvdl@ufrgs.br, E-mail: borges@ufrgs.br, E-mail: jorge.zabadal@ufrgs.br [Universidade Federal do Rio Grande do Sul (GENUC/DEMEC/UFRGS), Porto Alegre, RS (Brazil). Grupo de Estudos Nucleares. Departamento de Engenharia Mecanica

    2015-07-01

    Nowadays the devices employed to evaluate individual radiation exposition are based on dosimetric films and thermoluminescent crystals, whose measurements must be processed in specific transductors. Hence, these devices carry out indirect measurements. Although a new generation of detectors based on semiconductors which are employed in EPD's (Electronic Personal Dosemeters) being yet available, it high producing costs and large dimensions prevents the application in personal dosimetry. Recent research works reports the development of new detection devices based on photovoltaic PIN diodes, which were successfully employed for detecting and monitoring exposition to X rays. In this work, we step forward by coupling a 2mm anthracene scintillator NE1, which converts the high energy radiation in visible light, generating a Strong signal which allows dispensing the use of photomultipliers. A low gain high performance amplifier and a digital acquisition device are employed to measure instantaneous and cumulative doses for energies ranging from X rays to Gamma radiation up to 2 MeV. One of the most important features of the PIN diode relies in the fact that it can be employed as a detector for ionization radiation, since it requires a small energy amount for releasing electrons. Since the photodiode does not amplify the corresponding photon current, it must be coupled to a low gain amplifier. Therefore, the new sensor works as a scintillator coupled with a photodiode PIN. Preliminary experiments are being performed with this sensor, showing good results for a wide range of energy spectrum. (author)

  1. Performance of an LPD prototype detector at MHz frame rates under Synchrotron and FEL radiation

    Science.gov (United States)

    Koch, A.; Hart, M.; Nicholls, T.; Angelsen, C.; Coughlan, J.; French, M.; Hauf, S.; Kuster, M.; Sztuk-Dambietz, J.; Turcato, M.; Carini, G. A.; Chollet, M.; Herrmann, S. C.; Lemke, H. T.; Nelson, S.; Song, S.; Weaver, M.; Zhu, D.; Meents, A.; Fischer, P.

    2013-11-01

    A MHz frame rate X-ray area detector (LPD — Large Pixel Detector) is under development by the Rutherford Appleton Laboratory for the European XFEL. The detector will have 1 million pixels and allows analogue storage of 512 images taken at 4.5 MHz in the detector front end. The LPD detector has 500 μm thick silicon sensor tiles that are bump bonded to a readout ASIC. The ASIC's preamplifier provides relatively low noise at high speed which results in a high dynamic range of 105 photons over an energy range of 5-20 keV. Small scale prototypes of 32 × 256 pixels (LPD 2-Tile detector) and 256 × 256 pixels (LPD supermodule detector) are now available for X-ray tests. The performance of prototypes of the detector is reported for first tests under synchrotron radiation (PETRA III at DESY) and Free-Electron-Laser radiation (LCLS at SLAC). The initial performance of the detector in terms of signal range and noise, radiation hardness and spatial and temporal response are reported. The main result is that the 4.5 MHz sampling detection chain is reliably working, including the analogue on-chip memory concept. The detector is at least radiation hard up to 5 MGy at 12 keV. In addition the multiple gain concept has been demonstrated over a dynamic range to 104 at 12 keV with a readout noise equivalent to < 1 photon rms in its most sensitive mode.

  2. Semidetector-radiation detector arrangement, as well as its application in a tomographic scanner, in a device to determine radiation intensity or to measure the radiation penetration or absorption

    International Nuclear Information System (INIS)

    Kaufman, L.; Hosier, K.E. Jr.

    1979-01-01

    The CdTe detector or a plate with several CdTe or HgI 2 detectors is suitable for use in computer controlled tomographic X-ray scanners. The detector is used in connection with a pulsed radiation source (Am 241) and a frequency filter technique for measuring the resulting electrical charge pulse of the detector. Merely a narrow frequency band is selected according to the measured duration of the incident radiation pulses. (DG) [de

  3. Calculating the Responses of Self-Powered Radiation Detectors.

    Science.gov (United States)

    Thornton, D. A.

    Available from UMI in association with The British Library. The aim of this research is to review and develop the theoretical understanding of the responses of Self -Powered Radiation Detectors (SPDs) in Pressurized Water Reactors (PWRs). Two very different models are considered. A simple analytic model of the responses of SPDs to neutrons and gamma radiation is presented. It is a development of the work of several previous authors and has been incorporated into a computer program (called GENSPD), the predictions of which have been compared with experimental and theoretical results reported in the literature. Generally, the comparisons show reasonable consistency; where there is poor agreement explanations have been sought and presented. Two major limitations of analytic models have been identified; neglect of current generation in insulators and over-simplified electron transport treatments. Both of these are developed in the current work. A second model based on the Explicit Representation of Radiation Sources and Transport (ERRST) is presented and evaluated for several SPDs in a PWR at beginning of life. The model incorporates simulation of the production and subsequent transport of neutrons, gamma rays and electrons, both internal and external to the detector. Neutron fluxes and fuel power ratings have been evaluated with core physics calculations. Neutron interaction rates in assembly and detector materials have been evaluated in lattice calculations employing deterministic transport and diffusion methods. The transport of the reactor gamma radiation has been calculated with Monte Carlo, adjusted diffusion and point-kernel methods. The electron flux associated with the reactor gamma field as well as the internal charge deposition effects of the transport of photons and electrons have been calculated with coupled Monte Carlo calculations of photon and electron transport. The predicted response of a SPD is evaluated as the sum of contributions from individual

  4. High purity liquid phase epitaxial gallium arsenide nuclear radiation detector

    International Nuclear Information System (INIS)

    Alexiev, D.; Butcher, K.S.A.

    1991-11-01

    Surface barrier radiation detector made from high purity liquid phase epitaxial gallium arsenide wafers have been operated as X- and γ-ray detectors at various operating temperatures. Low energy isotopes are resolved including 241 Am at 40 deg C. and the higher gamma energies of 235 U at -80 deg C. 15 refs., 1 tab., 6 figs

  5. Radiation damage measurements in room temperature semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Franks, L.A.; Olsen, R.W.; James, R.B.; Brunett, B.A.; Walsh, D.S.; Doyle, B.L.; Vizkelethy, G.; Trombka, J.I.

    1998-01-01

    The literature of radiation damage measurements on cadmium zinc telluride (CZT), cadmium telluride (CT), and mercuric iodide (HgI 2 ) is reviewed and in the case of CZT supplemented by new alpha particle data. CZT strip detectors exposed to intermediate energy (1.3 MeV) proton fluences exhibit increased interstrip leakage after 10 10 p/cm 2 and significant bulk leakage after 10 12 p/cm 2 . CZT exposed to 200 MeV protons shows a two-fold loss in energy resolution after a fluence of 5 x 10 9 p/cm 2 in thick (3 mm) planar devices but little effect in 2 mm devices. No energy resolution effects were noted from moderated fission spectrum of neutrons after fluences up to 10 10 n/cm 2 , although activation was evident. Exposures of CZT to 5 MeV alpha particle at fluences up to 1.5 x 10 10 α/cm 2 produced a near linear decrease in peak position with fluence and increases in FWHM beginning at about 7.5 x 10 9 α/cm 2 . CT detectors show resolution losses after fluences of 3 x 10 9 p/cm 2 at 33 MeV for chlorine-doped detectors. Indium doped material may be more resistant. Neutron exposures (8 MeV) caused resolution losses after fluences of 2 x 10 10 n/cm 2 . Mercuric iodide has been studied with intermediate energy protons (10 to 33 MeV) at fluences up to 10 12 p/cm 2 and with 1.5 GeV protons at fluences up to 1.2 x 10 8 p/cm 2 . Neutron exposures at 8 MeV have been reported at fluences up to 10 15 n/cm 2 . No radiation damage was reported under these irradiation conditions

  6. Feasibility study for the use of PADC as a radiation detector for living cell cultures

    CERN Document Server

    Meesen, G; Gestel, S V; Oostveldt, P V

    1999-01-01

    In the framework of an ESA project, a microbiological experiment in space is planned. In this experiment a cell culture will be exposed to cosmic radiation onboard a spacecraft. Because the living cell culture will be directly on a nuclear track detector stack, this detector will be submitted to a different environment than normally used. The temperature will be 37 deg. C and the culture will be in a biological growth medium. Tests have been conducted to assess the possible use of PADC in these conditions. For this, a series of alpha irradiated detectors have been exposed for different periods of time (up to 1 month) to these 'biological' conditions. The radiological properties as well as the mechanical properties (swelling...) have been investigated. Results show no influence of the biological environment on the PADC, which makes it useable under these circumstances.

  7. Feasibility study for the use of PADC as a radiation detector for living cell cultures

    International Nuclear Information System (INIS)

    Meesen, G.; Poffijn, A.; Gestel, S. van; Oostveldt, P. van

    1999-01-01

    In the framework of an ESA project, a microbiological experiment in space is planned. In this experiment a cell culture will be exposed to cosmic radiation onboard a spacecraft. Because the living cell culture will be directly on a nuclear track detector stack, this detector will be submitted to a different environment than normally used. The temperature will be 37 deg. C and the culture will be in a biological growth medium. Tests have been conducted to assess the possible use of PADC in these conditions. For this, a series of alpha irradiated detectors have been exposed for different periods of time (up to 1 month) to these 'biological' conditions. The radiological properties as well as the mechanical properties (swelling...) have been investigated. Results show no influence of the biological environment on the PADC, which makes it useable under these circumstances

  8. Ionization detector with improved radiation source

    International Nuclear Information System (INIS)

    Solomon, E.F.

    1977-01-01

    The detector comprises a chamber having at least one radiation source disposed therein. The chamber includes spaced collector plates which form a part of a detection circuit for sensing changes in the ionization current in the chamber. The radiation source in one embodiment is in the form of a wound wire or ribbon suitably supported in the chamber and preferably a source of beta particles. The chamber may also include an adjustable electrode and the source may function as an adjustable current source by forming the wire or ribbon in an eliptical shape and rotating the structure. In another embodiment the source has a random shape and is homogeneously disposed in the chamber. 13 claims, 5 drawing figures

  9. Direct single electron detection with a CMOS detector for electron microscopy

    International Nuclear Information System (INIS)

    Faruqi, A.R.; Henderson, R.; Pryddetch, M.; Allport, P.; Evans, A.

    2005-01-01

    We report the results of an investigation into the use of a monolithic active pixel sensor (MAPS) for electron microscopy. MAPS, designed originally for astronomers at the Rutherford Appleton Laboratories, was installed in a 120 kV electron microscope (Philips CM12) at the MRC Laboratory in Cambridge for tests which included recording single electrons at 40 and 120 keV, and measuring signal-to-noise ratio (SNR), spatial resolution and radiation sensitivity. Our results show that, due to the excellent SNR and resolution, it is possible to register single electrons. The radiation damage to the detector is apparent with low doses and gets progressively greater so that its lifetime is limited to 600,000-900,000 electrons/pixel (very approximately 10-15 krad). Provided this detector can be radiation hardened to reduce its radiation sensitivity several hundred fold and increased in size, it will provide excellent performance for all types of electron microscopy

  10. Radiation damage monitoring in the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Seidel, Sally

    2013-01-01

    We describe the implementation of radiation damage monitoring using measurement of leakage current in the ATLAS silicon pixel sensors. The dependence of the leakage current upon the integrated luminosity is presented. The measurement of the radiation damage corresponding to an integrated luminosity 5.6 fb −1 is presented along with a comparison to a model. -- Highlights: ► Radiation damage monitoring via silicon leakage current is implemented in the ATLAS (LHC) pixel detector. ► Leakage currents measured are consistent with the Hamburg/Dortmund model. ► This information can be used to validate the ATLAS simulation model.

  11. PRD3000: A novel Personnel Radiation Detector with Radiation Exposure Monitoring

    International Nuclear Information System (INIS)

    Fallu-Labruyere, A.; Micou, C.; Schulcz, F.; Fellinger, J.

    2015-01-01

    PRD3000 TM is a novel Personal Radiation Detector (PRD) with personnel radiation dose exposure monitoring. It is intended for First Responders, Law Enforcement, Customs Inspectors protecting critical infrastructures for detecting unexpected radioactive sources, who also need real time Hp(10) dose equivalent information. Traditional PRD devices use scintillator materials instrumented through either a photomultiplier tube or a photodiode photodetector. While the former is bulky and sensitive to magnetic fields, the latter has to compromise radiation sensitivity and energy threshold given its current noise per unit of photo-detection surface. Recently, solid state photodetectors (SiPM), based on arrays of Geiger operated diodes, have emerged as a scalable digital photodetector for photon counting. Their strong breakdown voltage temperature dependence (on the order of tens of milli-volts per K) has however limited their use for portable instruments where strong temperature gradients can be experienced, and limited power is available to temperature stabilize. The PRD3000 is based on the industry standard DMC3000 active dosimeter that complies with IEC 61526 Ed. 3 and ANSI 42.20 for direct reading personal dose equivalent meters and active personnel radiation monitors. An extension module is based on a CsI(Tl) scintillator readout by a temperature compensated SiPM. Preliminary nuclear tests combined with a measured continuous operation in excess of 240 hours from a single AAA battery cell indicate that the PRD3000 complies with the IEC 62401 Ed.2 and ANSI 42.32 without sacrificing battery life time. We present a summary of the device test results, starting with performance stability over a temperature range of - 20 deg. C to 50 deg. C, false alarm rates and dynamic response time. (authors)

  12. PRD3000: A novel Personnel Radiation Detector with Radiation Exposure Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Fallu-Labruyere, A.; Micou, C.; Schulcz, F.; Fellinger, J. [Mirion Technologies - MGPI SA (France)

    2015-07-01

    PRD3000{sup TM} is a novel Personal Radiation Detector (PRD) with personnel radiation dose exposure monitoring. It is intended for First Responders, Law Enforcement, Customs Inspectors protecting critical infrastructures for detecting unexpected radioactive sources, who also need real time Hp(10) dose equivalent information. Traditional PRD devices use scintillator materials instrumented through either a photomultiplier tube or a photodiode photodetector. While the former is bulky and sensitive to magnetic fields, the latter has to compromise radiation sensitivity and energy threshold given its current noise per unit of photo-detection surface. Recently, solid state photodetectors (SiPM), based on arrays of Geiger operated diodes, have emerged as a scalable digital photodetector for photon counting. Their strong breakdown voltage temperature dependence (on the order of tens of milli-volts per K) has however limited their use for portable instruments where strong temperature gradients can be experienced, and limited power is available to temperature stabilize. The PRD3000 is based on the industry standard DMC3000 active dosimeter that complies with IEC 61526 Ed. 3 and ANSI 42.20 for direct reading personal dose equivalent meters and active personnel radiation monitors. An extension module is based on a CsI(Tl) scintillator readout by a temperature compensated SiPM. Preliminary nuclear tests combined with a measured continuous operation in excess of 240 hours from a single AAA battery cell indicate that the PRD3000 complies with the IEC 62401 Ed.2 and ANSI 42.32 without sacrificing battery life time. We present a summary of the device test results, starting with performance stability over a temperature range of - 20 deg. C to 50 deg. C, false alarm rates and dynamic response time. (authors)

  13. Operation and radiation resistance of a FOXFET biasing structure for silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, M [Particle Detector Group, Fermilab, Batavia, IL (United States) Research Inst. for High Energy Physics (SEFT), Helsinski (Finland); Singh, P; Engels, E Jr; Shepard, J; Shepard, P F [Dept. of Physics and Astronomy, Univ. Pittsburgh, PA (United States)

    1993-03-01

    AC-coupled strip detectors biased with a FOXFET transistor structure have been studied. Measurement results for the basic operational characteristics of the FOXFET are presented together with a brief description of the physics underlying its operation. Radiation effects were studied using photons from a [sup 137]Cs source. Changes in the FOXFET characteristics as a function of radiation dose up to 1 Mrad are reported. Results about the effect of radiation on the noise from a FOXFET biased detector are discribed. (orig.).

  14. Operation and radiation resistance of a FOXFET biasing structure for silicon strip detectors

    International Nuclear Information System (INIS)

    Laakso, M.; Helsinki Univ.; Singh, P.; Engels, E. Jr.; Shepard, P.

    1992-02-01

    AC-coupled strip detectors biased with a FOXFET transistor structure have been studied. Measurement results for the basic operational characteristics of the FOXFET are presented together with a brief description of the physics underlying its operation. Radiation effects were studied using photons from a 137 Cs source. Changes in the FOXFET characteristics as a function of radiation dose up to 1 MRad are reported. Results about the effect of radiation on the noise from a FOXFET biased detector are described. 13 refs

  15. Design of a wire imaging synchrotron radiation detector

    International Nuclear Information System (INIS)

    Kent, J.; Gomez-Cadenas, J.J.; Hogan, A.; King, M.; Rowe, W.; Watson, S.; Von Zanthier, C.; Briggs, D.D.; Levi, M.

    1990-01-01

    This paper documents the design of a detector invented to measure the positions of synchrotron radiation beams for the precision energy spectrometers of the Stanford Linear Collider (SLC). The energy measurements involve the determination, on a pulse-by-pulse basis, of the separation of pairs of intense beams of synchrotron photons in the MeV energy range. The detector intercepts the beams with arrays of fine wires. The ejection of Compton recoil electrons results in charges being developed in the wires, thus enabling a determination of beam positions. 10 refs., 4 figs

  16. Jagiellonian University Radiation Damage in Silicon Particle Detectors in High Luminosity Experiments

    CERN Document Server

    Oblakowska-Mucha, A

    2017-01-01

    Radiation damage is nowadays the most serious problem in silicon particle detectors placed in the very harsh radiation environment. This problem will be even more pronounced after the LHC Upgrade because of extremely strong particle fluences never encountered before. In this review, a few aspects of radiation damage in silicon trackers are presented. Among them, the change in the silicon lattice and its influence on the detector performance are discussed. Currently applied solutions and the new ideas for future experiments will be also shown. Most of the results presented in this summary were obtained within the RD50 Collaboration

  17. Gaschromatographic proof of nitrous oxide concentrations in air by means of radiation ionization detectors

    International Nuclear Information System (INIS)

    Popp, P.; Schoentube, E.; Oppermann, G.

    1985-01-01

    For the analysis of nitrous oxide concentrations at workplaces in operating theatres, gaschromatography is a particularly suitable method if it is possible to measure nitrous oxide concentrations in the ppm to ppb region. For this, most frequently used gaschromatographic detectors (flame ionization detector, thermal conductivity detector) are unsuitable, whereas radiation ionization detectors can be used successfully. The investigations using detectors designed at the Central Institute for Isotopes and Radiation Research of the GDR Academy of Sciences showed that a high-temperature electron-capture detector (ECD), working at a temperatur of 250 0 C, enables the determination of traces of nitrous oxide with a detection limit of about 200 ppb, while the helium detector has a limit of 50 ppb of nitrous oxide in room air. Since the helium detector requires extremely pure carrier gas, the high-temperature ECD appears more suitable for analyzing nitrous oxide. (author)

  18. Stable room-temperature thallium bromide semiconductor radiation detectors

    Science.gov (United States)

    Datta, A.; Fiala, J.; Becla, P.; Motakef, Shariar

    2017-10-01

    Thallium bromide (TlBr) is a highly efficient ionic semiconductor with excellent radiation detection properties. However, at room temperature, TlBr devices polarize under an applied electric field. This phenomenon not only degrades the charge collection efficiency of the detectors but also promotes chemical reaction of the metal electrodes with bromine, resulting in an unstable electric field and premature failure of the device. This drawback has been crippling the TlBr semiconductor radiation detector technology over the past few decades. In this exhaustive study, this polarization phenomenon has been counteracted using innovative bias polarity switching schemes. Here the highly mobile Br- species, with an estimated electro-diffusion velocity of 10-8 cm/s, face opposing electro-migration forces during every polarity switch. This minimizes the device polarization and availability of Br- ions near the metal electrode. Our results indicate that it is possible to achieve longer device lifetimes spanning more than 17 000 h (five years of 8 × 7 operation) for planar and pixelated radiation detectors using this technique. On the other hand, at constant bias, 2500 h is the longest reported lifetime with most devices less than 1000 h. After testing several biasing switching schemes, it is concluded that the critical bias switching frequency at an applied bias of 1000 V/cm is about 17 μHz. Using this groundbreaking result, it will now be possible to deploy this highly efficient room temperature semiconductor material for field applications in homeland security, medical imaging, and physics research.

  19. Stable room-temperature thallium bromide semiconductor radiation detectors

    Directory of Open Access Journals (Sweden)

    A. Datta

    2017-10-01

    Full Text Available Thallium bromide (TlBr is a highly efficient ionic semiconductor with excellent radiation detection properties. However, at room temperature, TlBr devices polarize under an applied electric field. This phenomenon not only degrades the charge collection efficiency of the detectors but also promotes chemical reaction of the metal electrodes with bromine, resulting in an unstable electric field and premature failure of the device. This drawback has been crippling the TlBr semiconductor radiation detector technology over the past few decades. In this exhaustive study, this polarization phenomenon has been counteracted using innovative bias polarity switching schemes. Here the highly mobile Br− species, with an estimated electro-diffusion velocity of 10−8 cm/s, face opposing electro-migration forces during every polarity switch. This minimizes the device polarization and availability of Br− ions near the metal electrode. Our results indicate that it is possible to achieve longer device lifetimes spanning more than 17 000 h (five years of 8 × 7 operation for planar and pixelated radiation detectors using this technique. On the other hand, at constant bias, 2500 h is the longest reported lifetime with most devices less than 1000 h. After testing several biasing switching schemes, it is concluded that the critical bias switching frequency at an applied bias of 1000 V/cm is about 17 μHz. Using this groundbreaking result, it will now be possible to deploy this highly efficient room temperature semiconductor material for field applications in homeland security, medical imaging, and physics research.

  20. A gas microstrip wide angle X-ray detector for application in synchrotron radiation experiments

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Lipp, J; Mir, J A; Simmons, J E; Spill, E J; Stephenson, R; Dobson, B R; Farrow, R C; Helsby, W I; Mutikainen, R; Suni, I

    2002-01-01

    The Gas Microstrip Detector has counting rate capabilities several orders of magnitude higher than conventional wire proportional counters while providing the same (or better) energy resolution for X-rays. In addition the geometric flexibility provided by the lithographic process combined with the self-supporting properties of the substrate offers many exciting possibilities for X-ray detectors, particularly for the demanding experiments carried out on Synchrotron Radiation Sources. Using experience obtained in designing detectors for Particle Physics we have developed a detector for Wide Angle X-ray Scattering studies. The detector has a fan geometry which makes possible a gas detector with high detection efficiency, sub-millimetre spatial resolution and good energy resolution over a wide range of X-ray energy. The detector is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source.

  1. Studies of radiation hardness of MOS devices for application in a linear collider vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qingyu

    2008-10-17

    The proposed International Linear Collider (ILC) together with the Large Hadron Collider (LHC) at CERN serve as a combined tool to explore the mysteries of the universe: the former is a precision machine and the latter can be considered as a finding machine. The key component of the ILC is the vertex detector that should be placed as close as possible to the Interaction Point (IP) and has better radiation tolerance against the dominant electron-positron pair production background from beam-beam interactions. A new generation of MOS-type Depleted-Field-Effect Transistor (MOSDEPFET) active pixel detectors has been proposed and developed by Semiconductor Labor Munich for Physics and for extraterrestrial Physics in order to meet the requirements of the vertex detector at the ILC. Since all MOS devices are susceptible to ionizing radiation, the main topic is focused on the radiation hardness of detectors, by which a series of physical processes are analyzed: e.g. surface damage due to ionizing radiation as well as damage mechanisms and their associated radiation effects. As a consequence, the main part of this thesis consists of a large number of irradiation experiments and the corresponding discussions. Finally, radiation hardness of the detectors should be improved through a set of concluded experiences that are based on a series of analysis of the characteristic parameters using different measurement techniques. The feasibility of the MOSDEPFET-based vertex detector is, therefore, predicted at ILC. (orig.)

  2. Studies of radiation hardness of MOS devices for application in a linear collider vertex detector

    International Nuclear Information System (INIS)

    Wei, Qingyu

    2008-01-01

    The proposed International Linear Collider (ILC) together with the Large Hadron Collider (LHC) at CERN serve as a combined tool to explore the mysteries of the universe: the former is a precision machine and the latter can be considered as a finding machine. The key component of the ILC is the vertex detector that should be placed as close as possible to the Interaction Point (IP) and has better radiation tolerance against the dominant electron-positron pair production background from beam-beam interactions. A new generation of MOS-type Depleted-Field-Effect Transistor (MOSDEPFET) active pixel detectors has been proposed and developed by Semiconductor Labor Munich for Physics and for extraterrestrial Physics in order to meet the requirements of the vertex detector at the ILC. Since all MOS devices are susceptible to ionizing radiation, the main topic is focused on the radiation hardness of detectors, by which a series of physical processes are analyzed: e.g. surface damage due to ionizing radiation as well as damage mechanisms and their associated radiation effects. As a consequence, the main part of this thesis consists of a large number of irradiation experiments and the corresponding discussions. Finally, radiation hardness of the detectors should be improved through a set of concluded experiences that are based on a series of analysis of the characteristic parameters using different measurement techniques. The feasibility of the MOSDEPFET-based vertex detector is, therefore, predicted at ILC. (orig.)

  3. Experiences with radiation portal detectors for international rail transport

    International Nuclear Information System (INIS)

    Stromswold, David C.; McCormick, Kathleen R.; Todd, Lindsay C.; Ashbaker, Eric D.; Evans, J.C.

    2006-01-01

    Radiation detectors monitored trains at two international borders to evaluate the performance of NaI(Tl) and plastic (polyvinyltoluene: PVT) gamma-ray detectors to characterize rail cargo. The detectors included a prototype NaI(Tl) radiation-portal-monitor panel having four large detectors (10-cm x 10-cm x 41-cm) and a PVT panel with a 41 cm x 173 cm x 3.8-cm detector. Spectral data from the NaI(Tl) and PVT detectors were recorded. Of particular emphasis was the identification of naturally occurring radioactive material (NORM) and the resultant frequency of nuisance alarms. For rail monitoring, the difficulty in stopping trains to perform secondary inspection on alarming cars creates a need for reliable identification of NORM during initial screening. Approximately 30 trains were monitored, and the commodities in individual railcars were ascertained from manifest information. At one test site the trains carried inter-modal containers that had been unloaded from ships, and at the other site the trains contained bulk cargo or individual items in boxcars or flatbeds. NORM encountered included potash, liquefied petroleum gas, fireworks, televisions, and clay-based products (e.g., pottery). Analysis of the spectral data included the use of the template-fitting program GADRAS/FitToDB from Sandia National Laboratories. For much of the NORM the NaI(Tl) data produced a correct identification of the radionuclides present in the railcars. The same analysis was also used for PVT data in which the spectral information (no peaks but only gradual spectral changes including Compton edges) was limited. However, the PVT analysis provided correct identification of 40K and 226Ra in many cases

  4. Cadmium telluride gamma-radiation detectors with a high energy resolution

    International Nuclear Information System (INIS)

    Alekseeva, L.A.; Dorogov, P.G.; Ivanov, V.I.; Khusainov, A.K.

    1985-01-01

    This paper considers the possibility of improving the energy resolution of cadmium telluride gamma-radiation detectors through the choice of the geometry and size of the sensitive region of the detector. The optimum ratio of the product of the mobility and lifetime for electrons to the same product for holes from the point of view of energy resolution is greater than or equal to 10 2 for a detector of spherical geometry and should be less than or equal to 10 for a cylindrical geometry and approximately 1 for a planar geometry. The optimum values of the major and minor radii of a spherical detector are calculated

  5. Fabrication of advanced military radiation detector sensor and performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sin Yang

    2010-02-15

    Recently, our country is facing a continuous nuclear weapons threat. Therefore, we must have a high-level nuclear weapons protection system. The best protection against nuclear weapons is detecting their use to reduce casualties in our country to a minimum. That means, the development of a military radiation detector is a very important issue. The Korea army is using the 'PDR - 1K portable military radiation surveymeter' in NBC (Nuclear, Biological, Chemical warfare) operations. The PDR - 1K military detector can measure beta and gamma rays only but it cannot detect alpha particles. Because of its characteristics, the Korea army has weaknesses in tactical operations. The PDR - 1K sensor is based on a GM - tube sensor system. For the mechanical structure, detectors utilizing a GM-tube sensor do not work on a high - radiation battlefield and they do not carry out nuclide analysis for fixed electron signal output. In the meantime, the United States of America and Germany are using 'AN/PDR - 77' and 'SVG - 2' that were made from scintillator sensors. They have excellent physical qualities and radiation responses for military use. Also, nuclide analysis is available. Therefore, in this study we fabricated a military - grade scintillator radiation sensor that is able to detect alpha, beta, and gamma - rays to overcome PDR - 1K's weaknesses. Also, physical characteristics and radiation response evaluation for the fabricated sensors was carried out. The alpha - particle sensor and beta - ray sensor were fabricated using a ZnS(Ag) powder state scintillator, and a Saint - Gobain organic plastic scintillator BC-408 panel, respectively. The gamma ray sensor was manufactured using a 10 x 10 x 10 mm{sup 3} CsI(Tl) inorganic scintillator crystal. A detailed explanation follows. The alpha particle sensor was fabricated by using air - brushing method to Zns(Ag) powder scintillator spreading. The ZnS(Ag) layer thickness was 35 {mu}m (detection

  6. Diagnosis of the gastric cancer by radionuclides and their labels, using catheter-type semiconductor radiation detector (CASRAD)

    Energy Technology Data Exchange (ETDEWEB)

    Sassa, R [Asahi Life Foundation, Tokyo (Japan). Inst. for Adult Diseases; Iio, M; Sugita, T

    1980-08-01

    A new method of differential diagnosis of gastric cancer was reported. After intravenous /sup 32/P administration, lesions were counted by a small catheter-type radiation detector system under gastrofiberscopic direct vision control. Optimum counting time was examined in man and it was found to be between 20 to 50 hours after intravenous administration of /sup 32/P. With the currently available technology of miniature detectors, the ..beta..-emitting carcinophilic agent was still found to be the agent of choice to this end, since ..gamma..-emitting carcinophilic agents cannot provide data originated only from the gastric mucosa in question.

  7. The transition radiation detector of the PAMELA space mission

    Science.gov (United States)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; de Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2004-04-01

    PAMELA space mission objective is to flight a satellite-borne magnetic spectrometer built to fulfill the primary scientific goals of detecting antiparticles (antiprotons and positrons) and to measure spectra of particles in cosmic rays. The PAMELA telescope is composed of: a silicon tracker housed in a permanent magnet, a time-of-flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD is composed of nine sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD characteristics will be described along with its performances studied at both CERN-PS and CERN-SPS facilities, using electrons, pions, muons and protons of different momenta.

  8. The transition radiation detector of the PAMELA space mission

    International Nuclear Information System (INIS)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; De Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2004-01-01

    PAMELA space mission objective is to flight a satellite-borne magnetic spectrometer built to fulfill the primary scientific goals of detecting antiparticles (antiprotons and positrons) and to measure spectra of particles in cosmic rays. The PAMELA telescope is composed of: a silicon tracker housed in a permanent magnet, a time-of-flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD is composed of nine sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD characteristics will be described along with its performances studied at both CERN-PS and CERN-SPS facilities, using electrons, pions, muons and protons of different momenta

  9. Regulation No. 0-31 on handling of radiation flaw-detectors

    International Nuclear Information System (INIS)

    1975-01-01

    The regulation contains mandatory design, commissioning, and operational requirements for laboratories using flaw-detectors emitting ionizing radiation; also, design, manufacturing, and operational requirements for the production of any type of X-ray or gamma-ray flaw-detectors. Laboratories carrying out non-destructive testing are either stationary or mobile. Conceptual and operating designs are elaborated, including the building and the laboratory lay-outs, the mains, water supply, and sewerage system technological lay-out, explanatory comments, and a lay-out of the shielding equipment. Approbated designs are implemented, and the laboratories commissioned to representatives of the State Sanitary Inspectorate. Licences are issued by the Ministry of Public Health (MPH) and the Committee on Peaceful Uses of Atomic Energy (CPUAE). Any flaw-detector has to conform to the Bulgarian State Standards and be coordinated with the MPH, the CPUAE, and the Central Laboratory for Nuclear Flaw-Detection (CLNFD). The laboratories are required to have operational instructions, an emergency plan, and to keep technological and dosimetric records. The latter are provided and processed by the relevant service at the Research Institute of Radiobiology and Radiation Hygiene. For operations involving of flaw-detectors, presence of at least two workers is required. (G.G.)

  10. Spectral Analysis Method of Plastic Scintillator-based Radiation Detector against Nuclear/Radiological Terrorism

    International Nuclear Information System (INIS)

    Kwak, Sung-Woo; Yoo, Ho-Sik; Jang, Sung Soon; Kim, Jung-Soo; Yoon, Wan-Ki

    2008-01-01

    In these days, the threats relating to nuclear or radioactive materials have become a matter of internationally increased grave concern. A plastic scintillation detector in radiation portal monitoring (RPM) application has been used to detect radioactive sources in steel scrap entering reprocessing facilities, and to detect illicit transport of radioactive material across border ports-of-entry. The detection systems for RPM application usually are large and can not easily be moved to a different location. For some situations, an inconspicuous and mobile system for the radioactive or nuclear material during road transport is needed. The mobile radiation detection system has employed a NaI- based radiation detector to detect and identify the material hidden in vehicle. There are some operational constraints - short measuring time, weak activity due to heavy shield of illegal source, long distance - of inspection system in such nuclear security applications. Due to these constraints, large area sensor is required to maximize its sensitivity. Large NaI material, however, is extremely expensive. In designing a radiation detector for prevention of illicit trafficking of nuclear or radioactive materials, the trade-off should be carefully optimized between performance and cost in order to achieve cost-effective inspection system. For the cost-effective mobile radiation detection system, this paper describes new spectral analysis method to use the crude spectroscopic information available from a plastic detector to discriminate other man-made radiation source from NORM

  11. Performance characteristics and radiation damage results from the Fermilab E706 silicon microstrip detector system

    Energy Technology Data Exchange (ETDEWEB)

    Engels, E Jr; Mani, S; Orris, D; Shepard, P F; Weerasundara, P D; Choudhary, B C; Joshi, U; Kapoor, V; Shivpuri, R; Baker, W

    1989-07-01

    A charged particle spectrometer containing a 7120-channel silicon microstrip detector system, one component of Fermilab experiment E706 to study direct photon production in hadron-hadron collisions, was utilized in a run in which 6 million events were recorded. We describe the silicon system, provide early results of track and vertex reconstruction, and present data on the radiation damage to the silicon wafers resulting from the narrow high intensity beam. (orig.).

  12. Scintillation characteristics of phosphich-detector for detection of beta- and gamma-radiations

    CERN Document Server

    Ananenko, A A; Gavrilyuk, V

    2002-01-01

    The results of the study on the influence of individual peculiarities of the compound scintillation detector structure on the value and stability of the light yield by the gamma- and beta-radiation combined registration are presented. The phosphich detector is manufactured from the sodium iodide monocrystal, activated by thallium, and the scintillation plastic on the polystyrol basis. The comparison of the experimental results with the mathematical modeling data revealed certain regularities of the process of forming the phosphich detector light signal. The recommendations are worked out by means whereof the following characteristics of the scintillation unit: the light yield and its stability, amplitude resolution and the peak-to-valley ratio by the gamma- and beta-radiation registration were improved

  13. Use of a solar panel as a directionally sensitive large-area radiation monitor for direct and scattered x-rays and gamma-rays.

    Science.gov (United States)

    Abdul-Majid, S

    1987-01-01

    The characteristics of a 25.4 X 91 cm solar cell panel used as an x-ray and gamma-ray radiation monitor are presented. Applications for monitoring the primary x-ray beam are described at different values of operating currents and voltages as well as for directional dependence of scattered radiation. Other applications in gamma-ray radiography are also given. The detector showed linear response to both x-ray and gamma-ray exposures. The equipment is rigid, easy to use, relatively inexpensive and requires no power supply or any complex electronic equipment.

  14. The iQID camera: An ionizing-radiation quantum imaging detector

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Brian W., E-mail: brian.miller@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); College of Optical Sciences, The University of Arizona, Tucson, AZ 85719 (United States); Gregory, Stephanie J.; Fuller, Erin S. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Barrett, Harrison H.; Bradford Barber, H.; Furenlid, Lars R. [Center for Gamma-Ray Imaging, The University of Arizona, Tucson, AZ 85719 (United States); College of Optical Sciences, The University of Arizona, Tucson, AZ 85719 (United States)

    2014-12-11

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detector's response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The confirmed response to this broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated by particle interactions is optically amplified by the intensifier and then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. The spatial location and energy of individual particles are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, excellent detection efficiency for charged particles, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discriminate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is real-time, single-particle digital autoradiography. We present the latest results and discuss potential applications.

  15. Radiation monitoring and beam dump system of the OPAL silicon microvertex detector

    CERN Document Server

    Braibant, S

    1997-01-01

    The OPAL microvertex silicon detector radiation monitoring and beam dump system is described. This system was designed and implemented in order to measure the radiation dose received at every beam crossing and to induce a fast beam dump if the radiation dose exceeds a given threshold.

  16. Study on the energy dependence of gamma radiation detectors for 137Cs and 60Co

    International Nuclear Information System (INIS)

    Nonato, Fernanda B.C.; Diniz, Raphael E.; Carvalho, Valdir S.; Vivolo, Vitor; Caldas, Linda V.E.

    2009-01-01

    38 Geiger-Mueller radiation detectors and 9 ionization chambers were calibrated, viewing to study the energy dependence of the monitor response for gamma radiation fields ( 137 Cs and 60 Co). The results were considered satisfactory only for ionization chambers and for some Geiger-Mueller detectors

  17. Experiences with radiation portal detectors for international rail transport

    Science.gov (United States)

    Stromswold, D. C.; McCormick, K.; Todd, L.; Ashbaker, E. D.; Evans, J. C.

    2006-08-01

    Radiation detectors monitored trains at two international borders to evaluate the performance of NaI(Tl) and plastic (polyvinyltoluene: PVT) gamma-ray detectors to characterize rail cargo. The detectors included a prototype NaI(Tl) radiation-portal-monitor panel having four large detectors (10-cm × 10-cm × 41-cm) and a PVT panel with a 41 cm × 173 cm × 3.8-cm detector. Spectral data from the NaI(Tl) and PVT detectors were recorded. Of particular emphasis was the identification of naturally occurring radioactive material (NORM) and the resultant frequency of nuisance alarms. For rail monitoring, the difficulty in stopping trains to perform secondary inspection on alarming cars creates a need for reliable identification of NORM during initial screening. Approximately 30 trains were monitored, and the commodities in individual railcars were ascertained from manifest information. At one test site, the trains carried inter-modal containers that had been unloaded from ships, and at the other site, the trains contained bulk cargo in tanker cars and hopper cars or individual items in boxcars or flatbeds. NORM encountered included potash, liquefied petroleum gas, fireworks, televisions, and clay-based products (e.g., pottery). Analysis of the spectral data included the use of the template-fitting portion of the program GADRAS developed at Sandia National Laboratories. For most of the NORM, the NaI(Tl) data produced a correct identification of the radionuclides present in the railcars. The same analysis was also used for PVT data in which the spectral information (no peaks but only gradual spectral changes including Compton edges) was limited. However, the PVT analysis provided correct identification of 40K and 226Ra in many cases.

  18. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview

    Science.gov (United States)

    Mirzaei, Ali; Huh, Jeung-Soo; Kim, Sang Sub; Kim, Hyoun Woo

    2018-05-01

    Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.

  19. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview

    Science.gov (United States)

    Mirzaei, Ali; Huh, Jeung-Soo; Kim, Sang Sub; Kim, Hyoun Woo

    2018-03-01

    Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.

  20. Study of a transition radiation detector for the DO experiment at FNAL

    International Nuclear Information System (INIS)

    Feinstein, F.

    1988-06-01

    The DZero experiment will study proton-antiproton collisions at 1.8 TeV in the center of mass produced at Fermi National Accelerator Laboratory (USA). The main features of the detector are an excellent hermetical calorimeter and a very good identification of muons and electrons. The Transition Radiation Detector contributes to electron/jet discrimination. Transition radiation is emitted when a charge particle crosses the interface between two media of different refraction indices. A N foils radiator produces about N/137 soft X rays when the Lorentz factor gamma of the particle is greater than a threshold of the order of 1000. The radiated energy saturates when gamma goes to infinity. These properties allow to separate electrons from pions until 140 GeV. This study presents the results of a test on a 5 GeV electron and pion beam of a prototype of chamber and of three radiators made of lithium foils, polypropylene foils, and polyethylene fibers. The detector response to pions and electrons is compared to theoretical predictions. Different statistical methods of electron/pion separation are compared on the experimental data. A method has been performed using likelihood functions which obtains a pion rejection greater than 50 for an electron efficiency of 90%. The performances are compared to those of other TRDs [fr

  1. Ascertaining directionality information from incident nuclear radiation

    Energy Technology Data Exchange (ETDEWEB)

    Archambault, Brian C. [Purdue University (United States); Lapinskas, Joseph R. [QSA Global, Inc. (United States); Wang Jing; Webster, Jeffrey A. [Purdue University (United States); McDeavitt, Sean [Texas A and M University (United States); Taleyarkhan, Rusi P., E-mail: rusi@purdue.edu [Purdue University (United States)

    2011-10-15

    Highlights: > Use of tensioned metastable fluids for detection of fast neutron radiation. > Monitored neutrons with 100% gamma photon blindness capability. > Monitored direction of incoming neutron radiation from special nuclear material emissions. > Ascertained directionality of neutron source to within 30 deg. and with 80% confidence with 2000 detection events at rate of 30-40 per second. > Conducted successful blind test for determining source of neutrons from a hidden neutron emitting source. > Compared results with MCNP5-COMSOL based multi-physics model. - Abstract: Unprecedented capabilities for the detection of nuclear particles via tailored resonant acoustic systems such as the acoustic tensioned metastable fluid detection (ATMFD) systems were assessed for determining directionality of incoming fast neutrons. This paper presents advancements that expand on these accomplishments, thereby increasing the accuracy and precision of ascertaining directionality information utilizing enhanced signal processing-cum-signal analysis, refined computational algorithms, and on demand enlargement of the detector sensitive volume. Advances in the development of ATMFD systems were accomplished utilizing a combination of experimentation and theoretical modeling. Modeling methodologies include Monte-Carlo based nuclear particle transport using MCNP5 and multi-physics based assessments accounting for acoustic, structural, and electromagnetic coupling of the ATMFD system via COMSOL's multi-physics simulation platform. Benchmarking and qualification studies have been conducted with a 1 Ci Pu-Be neutron-gamma source. These results show that the specific ATMFD system used for this study can enable detection of directionality of incoming fast neutrons from the neutron source to within 30{sup o} with 80% confidence; this required {approx}2000 detection events which could be collected within {approx}50 s at a detection rate of {approx}30-40 per second. Blind testing was

  2. Ascertaining directionality information from incident nuclear radiation

    International Nuclear Information System (INIS)

    Archambault, Brian C.; Lapinskas, Joseph R.; Wang Jing; Webster, Jeffrey A.; McDeavitt, Sean; Taleyarkhan, Rusi P.

    2011-01-01

    Highlights: → Use of tensioned metastable fluids for detection of fast neutron radiation. → Monitored neutrons with 100% gamma photon blindness capability. → Monitored direction of incoming neutron radiation from special nuclear material emissions. → Ascertained directionality of neutron source to within 30 deg. and with 80% confidence with 2000 detection events at rate of 30-40 per second. → Conducted successful blind test for determining source of neutrons from a hidden neutron emitting source. → Compared results with MCNP5-COMSOL based multi-physics model. - Abstract: Unprecedented capabilities for the detection of nuclear particles via tailored resonant acoustic systems such as the acoustic tensioned metastable fluid detection (ATMFD) systems were assessed for determining directionality of incoming fast neutrons. This paper presents advancements that expand on these accomplishments, thereby increasing the accuracy and precision of ascertaining directionality information utilizing enhanced signal processing-cum-signal analysis, refined computational algorithms, and on demand enlargement of the detector sensitive volume. Advances in the development of ATMFD systems were accomplished utilizing a combination of experimentation and theoretical modeling. Modeling methodologies include Monte-Carlo based nuclear particle transport using MCNP5 and multi-physics based assessments accounting for acoustic, structural, and electromagnetic coupling of the ATMFD system via COMSOL's multi-physics simulation platform. Benchmarking and qualification studies have been conducted with a 1 Ci Pu-Be neutron-gamma source. These results show that the specific ATMFD system used for this study can enable detection of directionality of incoming fast neutrons from the neutron source to within 30 o with 80% confidence; this required ∼2000 detection events which could be collected within ∼50 s at a detection rate of ∼30-40 per second. Blind testing was successfully

  3. The ALICE Transition Radiation Detector: Construction, operation, and performance

    Science.gov (United States)

    Alice Collaboration

    2018-02-01

    The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/ c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.

  4. Germanium junction detectors. Theoretical and practical factors governing their use in radiation spectrometry

    International Nuclear Information System (INIS)

    Hors, M.; Philis, C.

    1967-01-01

    Semi-conductor detectors have recently greatly increased the possibilities available to nuclear spectroscopists for the study of α, β and γ radiations. Their use in radio-chemistry has encouraged us to study their principle, their mechanism and also the conditions under which they can be used. The first part, which is theoretical, consists of a summary of what should be known concerning the best use of junction detectors, in particular Ge (Li) detectors. The second part, which is experimental, summarizes the laboratory work carried out over a period of one year on Ge (Li) detectors. Stress is laid on the possibilities presented by the use of these detectors as photo-electric spectrometers, and also on the precautions required. Amongst the numerous results presented, the resolution of 2.52 keV obtained for the γ radiation of 145.5 keV for 141 Ce may be particularly noted. (authors) [fr

  5. Simple classical model for Fano statistics in radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V. [Pacific Northwest National Laboratory, National Security Division - Radiological and Chemical Sciences Group PO Box 999, Richland, WA 99352 (United States)], E-mail: David.Jordan@pnl.gov; Renholds, Andrea S.; Jaffe, John E.; Anderson, Kevin K.; Rene Corrales, L.; Peurrung, Anthony J. [Pacific Northwest National Laboratory, National Security Division - Radiological and Chemical Sciences Group PO Box 999, Richland, WA 99352 (United States)

    2008-02-01

    A simple classical model that captures the essential statistics of energy partitioning processes involved in the creation of information carriers (ICs) in radiation detectors is presented. The model pictures IC formation from a fixed amount of deposited energy in terms of the statistically analogous process of successively sampling water from a large, finite-volume container ('bathtub') with a small dipping implement ('shot or whiskey glass'). The model exhibits sub-Poisson variance in the distribution of the number of ICs generated (the 'Fano effect'). Elementary statistical analysis of the model clarifies the role of energy conservation in producing the Fano effect and yields Fano's prescription for computing the relative variance of the IC number distribution in terms of the mean and variance of the underlying, single-IC energy distribution. The partitioning model is applied to the development of the impact ionization cascade in semiconductor radiation detectors. It is shown that, in tandem with simple assumptions regarding the distribution of energies required to create an (electron, hole) pair, the model yields an energy-independent Fano factor of 0.083, in accord with the lower end of the range of literature values reported for silicon and high-purity germanium. The utility of this simple picture as a diagnostic tool for guiding or constraining more detailed, 'microscopic' physical models of detector material response to ionizing radiation is discussed.

  6. Radiation hardness of silicon detectors manufactured on wafers from various sources

    International Nuclear Information System (INIS)

    Dezillie, B.; Bates, S.; Glaser, M.; Lemeilleur, F.; Leroy, C.

    1997-01-01

    Impurity concentrations in the initial silicon material are expected to play an important role for the radiation hardness of silicon detectors, during their irradiation and for their evolution with time after irradiation. This work reports on the experimental results obtained with detectors manufactured using various float-zone (FZ) and epitaxial-grown material. Preliminary results comparing the changes in leakage current and full depletion voltage of FZ and epitaxial detectors as a function of fluence and of time after 10 14 cm -2 proton irradiation are given. The measurement of charge collection efficiency for epitaxial detectors is also presented. (orig.)

  7. Double gated-integrator for shaping nuclear radiation detector signals

    International Nuclear Information System (INIS)

    Gal, J.

    2001-01-01

    A new shaper, the double gated-integrator, for shaping nuclear radiation detector signals is investigated both theoretically and experimentally. The double gated-integrator consists of a pre-filter and two cascaded gated integrators. Two kinds of pre-filters were considered: a rectangular one and an exponential one. The results of the theoretical calculation show that the best figure of demerit for the double gated-integrator with exponential pre-filter is 1.016. This means that its noise to signal ratio is only 1.6% worse than that it is for infinite cusp shaping. The practical realization of the exponential pre-filter and that of the double gated integrator, both in analogue and in digital way, is very simple. Therefore, the double gated-integrator with exponential pre-filter could be a promising solution for shaping nuclear radiation detector signals

  8. Construction and performance of the ALICE Transition Radiation Detector

    Energy Technology Data Exchange (ETDEWEB)

    Emschermann, David

    2010-01-20

    The Transition Radiation Detector (TRD) has been designed to identify electrons in the pion dominated background of heavy-ions collisions. As electrons do not interact strongly, they allow to probe the early phase of the interaction. As trigger on high-p{sub t} e{sup +}e{sup -} pairs within 6.5 {mu}s after collision, the TRD can initiate the readout of the Time Projection Chamber (TPC). The TRD is composed of 18 super modules arranged in a barrel geometry in the central part of the ALICE detector. It offers almost 1.2 million readout channels on a total area of close to 700 m{sup 2}. The particle detection properties of the TRD depend crucially on details in the design of the cathode pad readout plane. The design parameters of the TRD readout pad plane are introduced and analysed regarding their physical properties. The noise patterns observed in the detector can be directly linked to the static pad capacitance distribution and corrected for it. A summary is then given of the TRD services infrastructure at CERN: a 70 kW low voltage system, a 1080 channel 2.5 kV high voltage setup and the Ethernet network serving more than 600 nodes. Two beam tests were conducted at the CERN PS accelerator in 2004 and 2007 using full sized TRD chambers from series production. Details on the setups are presented with particular emphasis on the custom tailored data acquisition systems. Finally the performance of the TRD is studied, focusing on the pion rejection capability and the excellent position resolution. (orig.)

  9. Construction and performance of the ALICE Transition Radiation Detector

    International Nuclear Information System (INIS)

    Emschermann, David

    2010-01-01

    The Transition Radiation Detector (TRD) has been designed to identify electrons in the pion dominated background of heavy-ions collisions. As electrons do not interact strongly, they allow to probe the early phase of the interaction. As trigger on high-p t e + e - pairs within 6.5 μs after collision, the TRD can initiate the readout of the Time Projection Chamber (TPC). The TRD is composed of 18 super modules arranged in a barrel geometry in the central part of the ALICE detector. It offers almost 1.2 million readout channels on a total area of close to 700 m 2 . The particle detection properties of the TRD depend crucially on details in the design of the cathode pad readout plane. The design parameters of the TRD readout pad plane are introduced and analysed regarding their physical properties. The noise patterns observed in the detector can be directly linked to the static pad capacitance distribution and corrected for it. A summary is then given of the TRD services infrastructure at CERN: a 70 kW low voltage system, a 1080 channel 2.5 kV high voltage setup and the Ethernet network serving more than 600 nodes. Two beam tests were conducted at the CERN PS accelerator in 2004 and 2007 using full sized TRD chambers from series production. Details on the setups are presented with particular emphasis on the custom tailored data acquisition systems. Finally the performance of the TRD is studied, focusing on the pion rejection capability and the excellent position resolution. (orig.)

  10. LET spectrometry with track etch detectors-Use in high-energy radiation fields

    International Nuclear Information System (INIS)

    Jadrnickova, I.; Spurny, F.

    2008-01-01

    For assessing the risk from ionizing radiation it is necessary to know not only the absorbed dose but also the quality of the radiation; radiation quality is connected with the physical quantity linear energy transfer (LET). One of the methods of determination of LET is based on chemically etched track detectors. This contribution concerns with a spectrometer of LET based on the track detectors and discusses some results obtained at: ·high-energy radiation reference field created at the SPS accelerator at CERN; and ·onboard of International Space Station where track-etch based LET spectrometer has been exposed 273 days during 'Matrjoshka - R' experiment. Results obtained are compared with the results of studies at some lower-energy neutron sources; some conclusions on the registrability of neutrons and the ability of this spectrometer to determine dose equivalent in high-energy radiation fields are formulated

  11. Low-cost cadmium zinc telluride radiation detectors based on electron-transport-only designs

    International Nuclear Information System (INIS)

    Brunett, B.A.; Lund, J.C.; Van Scyoc, J.M.; Hilton, N.R.; Lee, E.Y.; James, R.B.

    1999-01-01

    The goal of this project was to utilize a novel device design to build a compact, high resolution, room temperature operated semiconductor gamma ray sensor. This sensor was constructed from a cadmium zinc telluride (CZT) crystal. It was able to both detect total radiation intensity and perform spectroscopy on the detected radiation. CZT detectors produced today have excellent electron charge carrier collection, but suffer from poor hole collection. For conventional gamma-ray spectrometers, both the electrons and holes must be collected with high efficiency to preserve energy resolution. The requirement to collect the hole carriers, which have relatively low lifetimes, limits the efficiency and performance of existing experimental devices. By implementing novel device designs such that the devices rely only on the electron signal for energy information, the sensitivity of the sensors for detecting radiation can be increased substantially. In this report the authors describe a project to develop a new type of electron-only CZT detector. They report on their successful efforts to design, implement and test these new radiation detectors. In addition to the design and construction of the sensors the authors also report, in considerable detail, on the electrical characteristics of the CZT crystals used to make their detectors

  12. Practical prototype of a cluster-counting transition radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Fabjan, C W; Willis, W [European Organization for Nuclear Research, Geneva (Switzerland); Gavrilenko, I; Maiburov, S; Shmeleva, A; Vasiliev, P [AN SSSR, Moscow. Fizicheskij Inst.; Chernyatin, V; Dolgoshein, B; Kantserov, V; Nevski, P [Moskovskij Inzhenerno-Fizicheskij Inst. (USSR)

    1981-06-15

    A transition radiation detector using a method of cluster counting measurements has been tested. The performance is considerably better than with the usual method of total charge measurements, as well as offering advantages in simplicity of construction and operation.

  13. Solid state detectors for neutron radiation monitoring in fusion facilities

    International Nuclear Information System (INIS)

    Gómez-Ros, J.M.

    2014-01-01

    The purpose of this communication is to summarize the main solid state based detectors proposed for neutron diagnostic in fusion applications and their applicability under the required harsh conditions in terms of intense radiation, high temperature and available space restrictions. Activation systems, semiconductor based detectors, luminescent materials and Cerenkov fibre optics sensors (C-FOS) are the main devices that are described. - Highlights: • A state-of-the-art summary of solid state based detectors are described. • Conditions and restrictions for their applicability are described. • A list of the 38 more relevant references has been included

  14. Estimation of interface resistivity in bonded Si for the development of high performance radiation detectors

    International Nuclear Information System (INIS)

    Kanno, Ikuo; Yamashita, Makoto; Nomiya, Seiichiro; Onabe, Hideaki

    2007-01-01

    For the development of high performance radiation detectors, direct bonding of Si wafers would be an useful method. Previously, p-n bonded Si were fabricated and they showed diode characteristics. The interface resistivity was, however, not investigated in detail. For the study of interface resistivity, n-type Si wafers with different resistivities were bonded. The resistivity of bonded Si wafers were measured and the interface resistivity was estimated by comparing with the results of model calculations. (author)

  15. Nano structural anodes for radiation detectors

    Science.gov (United States)

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  16. Development of a cryogenic radiation detector for mapping radio frequency superconducting cavity field emissions

    Energy Technology Data Exchange (ETDEWEB)

    Danny Dotson; John Mammosser

    2005-05-01

    Field emissions in a super conducting helium cooled RF cavity and the production of radiation (mostly X-Rays) have been measured externally on cryomodules at Jefferson Lab since 1991. External measurements are limited to radiation energies above 100 keV due to shielding of the stainless steel cryogenic body. To measure the onset of and to map field emissions from a superconducting cavity requires the detecting instrument be inside the shield and within the liquid Helium. Two possible measurement systems are undergoing testing at JLab. A CsI detector array set on photodiodes and an X-Ray film camera with a fixed aperture. Several devices were tested in the cell with liquid Helium without success. The lone survivor, a CsI array, worked but saturated at high power levels due to backscatter. The array was encased in a lead shield with a slit opening set to measure the radiation emitted directly from the cell eliminating a large portion of the backscatter. This is a work in progress and te sting should be complete before the PAC 05. The second system being tested is passive. It is a shielded box with an aperture to expose radiation diagnostic film located inside to direct radiation from the cell. Developing a technique for mapping field emissions in cryogenic cells will assist scientists and engineers in pinpointing any surface imperfections for examination.

  17. Responses of diode detectors to radiation beams from teletherapy machines

    International Nuclear Information System (INIS)

    Malinda, Lora; Nasukha

    2003-01-01

    Responses of diode detectors to radiation beams from teletherapy machines. It has been carried out responses to two sets of diode detector by using the beams of teletherapy Co-60 and medical linear accelerator. Each set of consist of 8 diode detectors was irradiated by using gamma beams from teletherapy Co-60 machines and 6 MV and 10 MV foron beams from medical linear accelerator and 6.9.12.16. and 20 MeV electron beams from medical linear accelerator. The detectors were positioned on the phantom circularly and radially and electronic equilibrium condition for all type and energy beams. It was found that every detectors had own individual response and it is not to be uniformity, since the fluctuation in between 16.6 % to 30.9 %. All detectors responses are linear to gamma and foron beams, and also for energy above 6 MeV for electron beams. Nonlinearity response occurs for 6 MeV electron beam, it is probably from the assumption of electronic equilibrium

  18. The Development of a Hybrid-Type Radiation Detector with SiC for a Reactor Robot

    International Nuclear Information System (INIS)

    Lee, Nam Ho; Cho, Jai Wan; Kim, Seung Ho

    2005-01-01

    For a robot working in a harsh environment such as a nuclear reactor environment or a space environment, requirements of on-board radiation detectors are not the same as those for environments around human. SiC devices with the wide band-gap are less dependent on temperature than Si counterparts and the can be the better candidate for the high radiation environment. With this background, radiation performance of a commercial SiC detector in a Co-60 gamma-ray environment has been evaluated. In addition to the SiC detector, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) detector has been incorporated as a backup. With this MOSFET sensor the dosimeter can keep its radiation exposure history even with loss of power. It is not only a redundant feature but also a diverse feature. The dosimetry module can be attached to mobile robot for high radiation environment was developed. This module has both SiC diode and pMOSFET mentioned above. The monitoring program which receives the radiation information from them and gives out the alarm signal when the difference of the two values from them is over the preset level was constructed. Because both the SiC pulse-type detector and the MOSFET dosimeter are small and light weight, they can be easily accommodated on a small printcircuit board for a tight space on a robot arm or for a small spacecraft

  19. A program in detector development for the US synchrotron radiation community

    International Nuclear Information System (INIS)

    Thompson, A.; Mills, D.; Naday, S.; Gruner, S.; Siddons, P.; Arthur, J.; Wehlitz, R.; Padmore, H.

    2001-01-01

    There is a clear gulf between the capabilities of modern synchrotrons to deliver high photon fluxes, and the capabilities of detectors to measure the resulting photon, electron or ion signals. While a huge investment has been made in storage ring technology, there has not to date been a commensurate investment in detector systems. With appropriate detector technology, gains in data rates could be 3 to 4 orders of magnitude in some cases. The US community working in detector technology is under-funded and fragmented and works without the long term funding commitment required for development of the most advanced detector systems. It is becoming apparent that the US is falling behind its international competitors in provision of state-of-the-art detector technology for cutting edge synchrotron radiation based experiments

  20. Direct conversion Si and CdZnTe detectors for digital mammography

    CERN Document Server

    Yin Shi Shi; Maeding, D; Mainprize, J; Mawdsley, G; Yaffe, M J; Gordon, E E; Hamilton, W J

    2000-01-01

    Hybrid pixel detector arrays that convert X-rays directly into charge signals are under development at NOVA for application to digital mammography. This technology also has wide application possibilities in other fields of radiology or in industrial imaging, nondestructive evaluation (NDE) and nondestructive inspection (NDI). These detectors have potentially superior properties compared to either emulsion-based film-screen systems which has nonlinear response to X-rays, or phosphor-based detectors in which there is an intermediate step of X-ray to light photon conversion (Feig and Yaffe, Radiol. Clinics North America 33 (1995) 1205-1230). Potential advantages of direct conversion detectors are high quantum efficiencies (QE) of 98% or higher (for 0.3 mm thick CdZnTe detector with 20 keV X-rays), improved contrast, high sensitivity and low intrinsic noise. These factors are expected to contribute to high detective quantum efficiency (DQE). The prototype hybrid pixel detector developed has 50x50 mu m pixel size,...

  1. A transition radiation detector which features accurate tracking and dE/dx particle identification

    International Nuclear Information System (INIS)

    O'Brien, E.; Lissauer, D.; McCorkle, S.; Polychronakos, V.; Takai, H.; Chi, C.Y.; Nagamiya, S.; Sippach, W.; Toy, M.; Wang, D.; Wang, Y.F.; Wiggins, C.; Willis, W.; Cherniatin, V.; Dolgoshein, B.; Bennett, M.; Chikanian, A.; Kumar, S.; Mitchell, J.T.; Pope, K.

    1991-01-01

    We describe the results of a test run involving a Transition Radiation Detector that can both distinguish electrons from pions with momenta greater than 0.7 GeV/c and simultaneously track particles passing through the detector. The particle identification is accomplished through a combination of the detection of Transition Radiation from the electron and the differences in electron and pion energy loss (dE/dx) in the detector. The dE/dx particle separation is most efficient below 2 GeV/c while particle ID utilizing Transition Radiation is effective above 1.5 GeV/c. Combined, the electron-pion separation is better than 5 x l0 2 . The single-wire, track-position resolution for the TRD is ∼230μm

  2. Development of High Energy Particle Detector for the Study of Space Radiation Storm

    Directory of Open Access Journals (Sweden)

    Gyeong-Bok Jo

    2014-09-01

    Full Text Available Next Generation Small Satellite-1 (NEXTSat-1 is scheduled to launch in 2017 and Instruments for the Study of Space Storm (ISSS is planned to be onboard the NEXTSat-1. High Energy Particle Detector (HEPD is one of the equipment comprising ISSS and the main objective of HEPD is to measure the high energy particles streaming into the Earth radiation belt during the event of a space storm, especially, electrons and protons, to obtain the flux information of those particles. For the design of HEPD, the Geometrical Factor was calculated to be 0.05 to be consistent with the targets of measurement and the structure of telescope with field of view of 33.4° was designed using this factor. In order to decide the thickness of the detector sensor and the classification of the detection channels, a simulation was performed using GEANT4. Based on the simulation results, two silicon detectors with 1 mm thickness were selected and the aluminum foil of 0.05 mm is placed right in front of the silicon detectors to shield low energy particles. The detection channels are divided into an electron channel and two proton channels based on the measured LET of the particle. If the measured LET is less than 0.8 MeV, the particle belongs to the electron channel, otherwise it belongs to proton channels. HEPD is installed in the direction of 0°,45°,90° against the along-track of a satellite to enable the efficient measurement of high energy particles. HEPD detects electrons with the energy of 0.1 MeV to several MeV and protons with the energy of more than a few MeV. Thus, the study on the dynamic mechanism of these particles in the Earth radiation belt will be performed.

  3. Direct digital conversion detector technology

    Science.gov (United States)

    Mandl, William J.; Fedors, Richard

    1995-06-01

    Future imaging sensors for the aerospace and commercial video markets will depend on low cost, high speed analog-to-digital (A/D) conversion to efficiently process optical detector signals. Current A/D methods place a heavy burden on system resources, increase noise, and limit the throughput. This paper describes a unique method for incorporating A/D conversion right on the focal plane array. This concept is based on Sigma-Delta sampling, and makes optimum use of the active detector real estate. Combined with modern digital signal processors, such devices will significantly increase data rates off the focal plane. Early conversion to digital format will also decrease the signal susceptibility to noise, lowering the communications bit error rate. Computer modeling of this concept is described, along with results from several simulation runs. A potential application for direct digital conversion is also reviewed. Future uses for this technology could range from scientific instruments to remote sensors, telecommunications gear, medical diagnostic tools, and consumer products.

  4. SiC detectors to monitor ionizing radiations emitted from nuclear events and plasmas

    Science.gov (United States)

    Torrisi, L.; Cannavò, A.

    2016-09-01

    Silicon Carbide (SiC) semiconductor detectors are increasingly employed in Nuclear Physics for their advantages with respect to traditional silicon (Si). Such detectors show an energy resolution, charge mobility, response velocity and detection efficiency similar to Si detectors. However, the higher band gap (3.26 eV), the lower leakage current (∼10 pA) maintained also at room temperature, the higher radiation hardness and the higher density with respect to Si represent some indisputable advantages characterizing such detectors. The devices can be employed at high temperatures, at high absorbed doses and in the case of high visible light intensities, for example, in plasma, for limited exposition times without damage. Generally SiC Schottky diodes are employed in reverse polarization with an active region depth of the order of 100 µm, purity below 1014 cm-3 and an active area lower than 1 cm2. Measurements in the regime of proportionality with the radiation energy released in the active region and measurements in time-of-flight configuration are employed for nuclear emission events produced at both low and high fluences. Alpha spectra demonstrated an energy resolution of about 1.3% at 5.8 MeV. Radiation emission from laser-generated plasma can be monitored in terms of detected photons, electrons and ions, using the laser pulse as a start signal and the radiation detection as a stop signal, enabling to measure the ion velocity by knowing the target-detector flight distance. SiC spectra acquired in the Messina University laboratories using radioactive ion sources and at the PALS laboratory facility in Prague (Czech Republic) are presented. A preliminary study of the use of SiC detectors, embedded in a water equivalent polymer, as a dosimeter is presented and discussed.

  5. The HERMES dual-radiator RICH detector

    CERN Document Server

    Jackson, H E

    2003-01-01

    The HERMES experiment emphasizes measurements of semi-inclusive deep-inelastic scattering. Most of the hadrons produced lie between 2 and 10 GeV, a region in which it had not previously been feasible to separate pions, kaons, and protons with standard particle identification (PID) techniques. The recent development of new clear, large, homogeneous and hydrophobic silica aerogel material with a low index of refraction offered the means to apply RICH PID techniques to this difficult momentum region. The HERMES instrument uses two radiators, C sub 4 F sub 1 sub 0 , a heavy fluorocarbon gas, and a wall of silica aerogel tiles. A lightweight spherical mirror constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality provides optical focusing on a photon detector consisting of 1934 photomultiplier tubes (PMT) for each detector half. The PMT array is held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet. Ring recon...

  6. Synthetic radiation diagnostics in PIConGPU. Integrating spectral detectors into particle-in-cell codes

    Energy Technology Data Exchange (ETDEWEB)

    Pausch, Richard; Burau, Heiko; Huebl, Axel; Steiniger, Klaus [Helmholtz-Zentrum Dresden-Rossendorf (Germany); Technische Universitaet Dresden (Germany); Debus, Alexander; Widera, Rene; Bussmann, Michael [Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2016-07-01

    We present the in-situ far field radiation diagnostics in the particle-in-cell code PIConGPU. It was developed to close the gap between simulated plasma dynamics and radiation observed in laser plasma experiments. Its predictive capabilities, both qualitative and quantitative, have been tested against analytical models. Now, we apply this synthetic spectral diagnostics to investigate plasma dynamics in laser wakefield acceleration, laser foil irradiation and plasma instabilities. Our method is based on the far field approximation of the Lienard-Wiechert potential and allows predicting both coherent and incoherent radiation spectrally from infrared to X-rays. Its capability to resolve the radiation polarization and to determine the temporal and spatial origin of the radiation enables us to correlate specific spectral signatures with characteristic dynamics in the plasma. Furthermore, its direct integration into the highly-scalable GPU framework of PIConGPU allows computing radiation spectra for thousands of frequencies, hundreds of detector positions and billions of particles efficiently. In this talk we will demonstrate these capabilities on resent simulations of laser wakefield acceleration (LWFA) and high harmonics generation during target normal sheath acceleration (TNSA).

  7. High sensitive radiation detector for radiology dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Valente, M.; Malano, F. [Instituto de Fisica Enrique Gaviola, Oficina 102 FaMAF - UNC, Av. Luis Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Molina, W.; Vedelago, J., E-mail: valente@famac.unc.edu.ar [Laboratorio de Investigaciones e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Laboratorio 448 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2014-08-15

    Fricke solution has a wide range of applications as radiation detector and dosimetry. It is particularly appreciated in terms of relevant comparative advantages, like tissue equivalence when prepared in aqueous media like gel matrix, continuous mapping capability, dose rate recorded and incident direction independence as well as linear dose response. This work presents the development and characterization of a novel Fricke gel system, based on modified chemical compositions making possible its application in clinical radiology. Properties of standard Fricke gel dosimeter for high dose levels are used as starting point and suitable chemical modifications are introduced and carefully investigated in order to attain high resolution for low dose ranges, like those corresponding to radiology interventions. The developed Fricke gel radiation dosimeter system achieves the expected typical dose dependency, actually showing linear response in the dose range from 20 up to 4000 mGy. Systematic investigations including several chemical compositions are carried out in order to obtain a good enough dosimeter response for low dose levels. A suitable composition among those studied is selected as a good candidate for low dose level radiation dosimetry consisting on a modified Fricke solution fixed to a gel matrix containing benzoic acid along with sulfuric acid, ferrous sulfate, xylenol orange and ultra-pure reactive grade water. Dosimeter samples are prepared in standard vials for its in phantom irradiation and further characterization by spectrophotometry measuring visible light transmission and absorbance before and after irradiation. Samples are irradiated by typical kV X-ray tubes and calibrated Farmer type ionization chamber is used as reference to measure dose rates inside phantoms in at vials locations. Once sensitive material composition is already optimized, dose-response curves show significant improvement regarding overall sensitivity for low dose levels. According to

  8. High sensitive radiation detector for radiology dosimetry

    International Nuclear Information System (INIS)

    Valente, M.; Malano, F.; Molina, W.; Vedelago, J.

    2014-08-01

    Fricke solution has a wide range of applications as radiation detector and dosimetry. It is particularly appreciated in terms of relevant comparative advantages, like tissue equivalence when prepared in aqueous media like gel matrix, continuous mapping capability, dose rate recorded and incident direction independence as well as linear dose response. This work presents the development and characterization of a novel Fricke gel system, based on modified chemical compositions making possible its application in clinical radiology. Properties of standard Fricke gel dosimeter for high dose levels are used as starting point and suitable chemical modifications are introduced and carefully investigated in order to attain high resolution for low dose ranges, like those corresponding to radiology interventions. The developed Fricke gel radiation dosimeter system achieves the expected typical dose dependency, actually showing linear response in the dose range from 20 up to 4000 mGy. Systematic investigations including several chemical compositions are carried out in order to obtain a good enough dosimeter response for low dose levels. A suitable composition among those studied is selected as a good candidate for low dose level radiation dosimetry consisting on a modified Fricke solution fixed to a gel matrix containing benzoic acid along with sulfuric acid, ferrous sulfate, xylenol orange and ultra-pure reactive grade water. Dosimeter samples are prepared in standard vials for its in phantom irradiation and further characterization by spectrophotometry measuring visible light transmission and absorbance before and after irradiation. Samples are irradiated by typical kV X-ray tubes and calibrated Farmer type ionization chamber is used as reference to measure dose rates inside phantoms in at vials locations. Once sensitive material composition is already optimized, dose-response curves show significant improvement regarding overall sensitivity for low dose levels. According to

  9. Method for manufacturing nuclear radiation detector with deep diffused junction

    International Nuclear Information System (INIS)

    Hall, R.N.

    1977-01-01

    Germanium radiation detectors are manufactured by diffusing lithium into high purity p-type germanium. The diffusion is most readily accomplished from a lithium-lead-bismuth alloy at approximately 430 0 C and is monitored by a quartz half cell containing a standard composition of this alloy. Detectors having n-type cores may be constructed by converting high purity p-type germanium to n-type by a lithium diffusion and subsequently diffusing some of the lithium back out through the surface to create a deep p-n junction. Production of coaxial germanium detectors comprising deep p-n junctions by the lithium diffusion process is described

  10. Radiation resistance of γ-detector modules at the labelling station of labelled neutrino complex

    International Nuclear Information System (INIS)

    Pishchal'nikov, Yu.M.

    1986-01-01

    The data on efficiency and transparency decrease of various types of lightpipe-spectrum (LSS) and scintillation plates on the basis of PMMA and polystyrene under the dose irradiation ranging from 10 4 to 3x10 6 rad have been obtained. Sample irradiation was carried out in a wide muon beam and with the intensive radioactie source 60 Co. The deterioration in the γ-detector (TNF) energy resolution due to the radiation damage of scintillators and (LSS) is discussed. Radiation damage of the lead glass detectors (the GAMS detector) and ''sandwich'' type modules have been compared

  11. Test beam performance of a tracking TRD [Transition Radiation Detector] prototype

    International Nuclear Information System (INIS)

    Shank, J.T.; Whitaker, J.S.; Polychronakos, V.A.; Radeka, V.; Stephani, D.; Beker, H.; Bock, R.K.; Botlo, M.; Fabjan, C.W.; Pfennig, J.; Price, M.J.; Willis, W.J.; Akesson, T.; Chernyatin, V.; Dolgoshein, B.; Nevsky, P.; Potekhin, M.; Romanjuk, A.; Sosnovtsev, V.; Gavrilenko, I.; Muravjev, S.; Shmeleva, A.

    1990-01-01

    A Tracking Transition Radiation Detector prototype has been constructed and tested. It consists of 240 straw tubes, 4 mm in diameter, imbedded in a polyethylene block acting as the radiator. Its performance as an electron identifier as well as a tracking device for minimum ionizing particles has been determined. 2 refs., 6 figs

  12. Low-Power Large-Area Radiation Detector for Space Science Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this task is to develop a low-power, large-area detectors from SiC, taking advantage of very low thermal noise characteristics and high radiation...

  13. Radiation Effects of n-type, Low Resistivity, Spiral Silicon Drift Detector Hybrid Systems

    International Nuclear Information System (INIS)

    Chen, W.; De Geronimo, G.; Carini, G.A.; Gaskin, J.A.; Keister, J.W.; Li, S.; Li, Z.; Ramsey, B.D.; Siddons, D.P.; Smith, G.C.; Verbitskaya, E.

    2011-01-01

    We have developed a new thin-window, n-type, low-resistivity, spiral silicon drift detector (SDD) array - to be used as an extraterrestrial X-ray spectrometer (in varying environments) for NASA. To achieve low-energy response, a thin SDD entrance window was produced using a previously developed method. These thin-window devices were also produced on lower resistivity, thinner, n-type, silicon material, effectively ensuring their radiation hardness in anticipation of operation in potentially harsh radiation environments (such as found around the Jupiter system). Using the Indiana University Cyclotron Facility beam line RERS1, we irradiated a set of suitable diodes up to 5 Mrad and the latest iteration of our ASICs up to 12 Mrad. Then we irradiated two hybrid detectors consisting of newly, such-produced in-house (BNL) SDD chips bonded with ASICs with doses of 0.25 Mrad and 1 Mrad. Also we irradiated another hybrid detector consisting of previously produced (by KETEK) on n-type, high-resistivity SDD chip bonded with BNL's ASICs with a dose of 1 Mrad. The measurement results of radiated diodes (up to 5 Mrad), ASICs (up to 12 Mrad) and hybrid detectors (up to 1 Mrad) are presented here.

  14. Simulation and test of 3D silicon radiation detectors

    International Nuclear Information System (INIS)

    Fleta, C.; Pennicard, D.; Bates, R.; Parkes, C.; Pellegrini, G.; Lozano, M.; Wright, V.; Boscardin, M.; Dalla Betta, G.-F.; Piemonte, C.; Pozza, A.; Ronchin, S.; Zorzi, N.

    2007-01-01

    The work presented here is the result of the collaborative effort between the University of Glasgow, ITC-IRST (Trento) and IMB-CNM (Barcelona) in the framework of the CERN-RD50 Collaboration to produce 3D silicon radiation detectors and study their performance. This paper reports on two sets of 3D devices. IRST and CNM have fabricated a set of single-type column 3D detectors, which have columnar electrodes of the same doping type and an ohmic contact located at the backplane. Simulations of the device behaviour and electrical test results are presented. In particular, current-voltage, capacitance-voltage and charge collection efficiency measurements are reported. Other types of structures called double-sided 3D detectors are currently being fabricated at CNM. In these detectors the sets of n and p columns are made on opposite sides of the device. Electrical and technological simulations and first processing results are presented

  15. Pin Diode Detector For Radiation Field Monitoring In A Current Mode

    International Nuclear Information System (INIS)

    Beck, A.; Wengrowicz, U.; Kadmon, Y.; Tirosh, D.; Osovizky, A.; Vulasky, E.; Tal, N.

    1999-01-01

    Thus paper presents calculations and tests made for a detector based on a bare Pin diode and a Pin diode coupled to a plastic scintillator. These configurations have a variety of applications in radiation field monitoring. For example, the Positron Emission Tomography (PET) technology which becomes an established diagnostic imaging modality. Flour-18 is one of the major isotopes being used by PET imaging. The PET method utilizes short half life β + radioisotopes which, by annihilation, produce a pair of high energy photons (511 keV). Fluoro-deoxyglucose producers are required to meet federal regulations and licensing requirements. Some of the regulations are related to the production in chemistry modules regarding measuring the Start Of Synthesis (SOS) activity and verifying the process repeatability. Locating a radiation detector based on Pin diode inside the chemistry modules is suitable for this purpose. The dimensions of a Pin diode based detector can be small, with expected linearity over several scale decades

  16. Energy loss and online directional track visualization of fast electrons with the pixel detector Timepix

    Czech Academy of Sciences Publication Activity Database

    Granja, C.; Krist, Pavel; Chvátil, David; Šolc, J.; Pospíšil, S.; Jakubek, J.; Opalka, L.

    2013-01-01

    Roč. 59, DEC (2013), s. 245-261 ISSN 1350-4487 Institutional support: RVO:61389005 Keywords : interaction of radiation with matter * dE/dx detectors * particle tracking detectors * hybrid pixel detectors * active nuclear emulsion * energy loss Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.140, year: 2013

  17. Radiation damage studies of detector-compatible Si JFETs

    International Nuclear Information System (INIS)

    Dalla Betta, Gian-Franco; Boscardin, Maurizio; Candelori, Andrea; Pancheri, Lucio; Piemonte, Claudio; Ratti, Lodovico; Zorzi, Nicola

    2007-01-01

    We have largely improved the performance of our detector-compatible Si JFETs by optimizing the fabrication technology. New devices feature thermal noise values close to the theoretical ones, and remarkably low 1/f noise figures. In view of adopting these JFETs for X-ray imaging and HEP applications, bulk and surface radiation damage tests have been carried out by irradiating single transistors and test structures with neutrons and X-rays. Selected results from static and noise characterization of irradiated devices are discussed in this paper, and the impact of radiation effects on the performance of JFET-based circuits is addressed

  18. A precision synchrotron radiation detector using phosphorescent screens

    International Nuclear Information System (INIS)

    Jung, C.K.; Lateur, M.; Nash, J.; Tinsman, J.; Butler, J.; Wormser, G.

    1990-01-01

    A precision detector to measure synchrotron radiation beam positions has been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 μm on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. 3 refs., 5 figs., 1 tab

  19. Radiation hard silicon microstrip detectors for Tevatron experiments

    International Nuclear Information System (INIS)

    Korjenevski, Sergey

    2004-01-01

    The Silicon Microstrip Tracking detectors at the CDF and D0 experiments have now been operating for almost three years at Fermilab. These detectors were designed originally for an integrated luminosity of 2fb -1 . As the expected luminosity for Run IIb at the Tevatron collider was initially envisioned to reach 15fb -1 , radiation tolerances of both devices were revisited, culminating in proposals for new systems. With reduced expectations for total luminosity at ∼6fb -1 , the full detector-replacement projects were terminated. The CDF detector is expected nevertheless to cope efficiently with the lower anticipated dose, however, the D0 experiment is planning a smaller-scale project: a Layer-0 (L0) upgrade of the silicon tracker (D0SMT). The new device will fit between the beam line and the inner layer of the current Tracker. Built of single-sided sensors, this upgrade is expected to perform well in the harsh radiation environment, and be able to withstand an integrated luminosity of 15fb -1 . Prototypes of Run IIb sensors were irradiated using 10MeV protons at the tandem Van de Graaff at the James R. McDonald Laboratory at Kansas State University. A fit to the 10MeV proton data yields a damage parameter αp=11x10-17Acm. This is consistent with results from RD48 (αp=9.9x10-17Acm). The scaling of damage to 1MeV neutron fluence uses a hardness factor (κ) derived from the non-ionizing components of the energy loss (NEIL). NEIL predicts a hardness factor of 3.87 for 10MeV protons. We obtained an experimental value of this factor of 2.54, or 34% smaller than scaling predictions from NEIL

  20. The ALICE Transition Radiation Detector: Construction, operation, and performance

    Czech Academy of Sciences Publication Activity Database

    Acharya, S.; Adamová, Dagmar; Bielčík, J.; Bielčíková, Jana; Brož, M.; Contreras, J. G.; Ferencei, Jozef; Hladký, Jan; Horák, D.; Křížek, Filip; Kučera, Vít; Kushpil, Svetlana; Lavička, R.; Mareš, Jiří A.; Petráček, V.; Šumbera, Michal; Vaňát, Tomáš; Závada, Petr

    2018-01-01

    Roč. 881, č. 2 (2018), s. 88-127 ISSN 0168-9002 R&D Projects: GA MŠk(CZ) LG15052 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : fibre/foam sendwich radiator * transition radiation detector * multi-wire proportional drift chamber * Xenon-based gas micture * tracking * lonisation energy loss Subject RIV: BG - Nuclear, Atomic and Molecular Physics , Colliders; BF - Elementary Particles and High Energy Physics (FZU-D) OBOR OECD: Nuclear physics ; Particles and field physics (FZU-D) Impact factor: 1.362, year: 2016

  1. Array element of a space-based synchrotron radiation detector

    International Nuclear Information System (INIS)

    Lee, M.W.; Commichau, S.C.; Kim, G.N.; Son, D.; Viertel, G.M.

    2006-01-01

    A synchrotron radiation detector (SRD) has been proposed as part of the Alpha Magnetic Spectrometer experiment on the International Space Station to study cosmic ray electrons and positrons in the TeV energy range. The SRD will identify these particles by detecting their emission of synchrotron radiation in the Earth's magnetic field. This article reports on the study of key technical parameters for the array elements which form the SRD, including the choice of the detecting medium, the sensor and the readout system

  2. Direct photon-counting scintillation detector readout using an SSPM

    International Nuclear Information System (INIS)

    Stapels, Christopher J.; Squillante, Michael R.; Lawrence, William G.; Augustine, Frank L.; Christian, James F.

    2007-01-01

    Gamma-ray detector technologies, capable of providing adequate energy information, use photomultiplier tubes (PMTs) or silicon avalanche photodiodes to detect the light pulse from a scintillation crystal. A new approach to detect the light from scintillation materials is to use an array of small photon counting detectors, or a 'detector-on-a-chip' based on a novel 'Solid-state Photomultiplier' (SSPM) concept. A CMOS SSPM coupled to a scintillation crystal uses an array of CMOS Geiger photodiode (GPD) pixels to collect light and produce a signal proportional to the energy of the radiation. Each pixel acts as a binary photon detector, but the summed output is an analog representation of the total photon intensity. We have successfully fabricated arrays of GPD pixels in a CMOS environment, which makes possible the production of miniaturized arrays integrated with the detector electronics in a small silicon chip. This detector technology allows for a substantial cost reduction while preserving the energy resolution needed for radiological measurements. In this work, we compare designs for the SSPM detector. One pixel design achieves maximum detection efficiency (DE) for 632-nm photons approaching 30% with a room temperature dark count rate (DCR) of less than 1 kHz for a 30-μm-diameter pixel. We characterize after pulsing and optical cross talk and discuss their effects on the performance of the SSPM. For 30-μm diameter, passively quenched CMOS GPD pixels, modeling suggests that a pixel spacing of approximately 90 μm optimizes the SSPM performance with respect to DE and cross talk

  3. Radiation hardness of silicon detectors - a challenge from high-energy physics

    CERN Document Server

    Lindström, G; Fretwurst, E

    1999-01-01

    An overview of the radiation-damage-induced problems connected with the application of silicon particle detectors in future high-energy physics experiments is given. Problems arising from the expected hadron fluences are summarized and the use of the nonionizing energy loss for normalization of bulk damage is explained. The present knowledge on the deterioration effects caused by irradiation is described leading to an appropriate modeling. Examples are given for a correlation between the change in the macroscopic performance parameters and effects to be seen on the microscopic level by defect analysis. Finally possible ways are out-lined for improving the radiation tolerance of silicon detectors either by operational conditions, process technology or defect engineering.

  4. Recent advancements in the development of radiation hard semiconductor detectors for S-LHC

    CERN Document Server

    Fretwurst, E; Al-Ajili, A A; Alfieri, G; Allport, P P; Artuso, M; Assouak, S; Avset, B S; Barabash, L; Barcz, A; Bates, R; Biagi, S F; Bilei, G M; Bisello, D; Blue, A; Blumenau, A; Boisvert, V; Bölla, G; Bondarenko, G B; Borchi, E; Borrello, L; Bortoletto, D; Boscardin, M; Bosisio, L; Bowcock, T J V; Brodbeck, T J; Broz, J; Bruzzi, M; Brzozowski, A; Buda, M; Buhmann, P; Buttar, C; Campabadal, F; Campbell, D; Candelori, A; Casse, G; Cavallini, A; Charron, S; Chilingarov, A G; Chren, D; Cindro, V; Collins, P; Coluccia, R; Contarato, D; Coutinho, J; Creanza, D; Cunningham, L; Dalla Betta, G F; Dawson, I; de Boer, Wim; De Palma, M; Demina, R; Dervan, P; Dittongo, S; Dolezal, Z; Dolgolenko, A; Eberlein, T; Eremin, V; Fall, C; Fasolo, F; Ferbel, T; Fizzotti, F; Fleta, C; Focardi, E; Forton, E; García, C; García-Navarro, J E; Gaubas, E; Genest, M H; Gill, K A; Giolo, K; Glaser, M; Gössling, C; Golovine, V; González-Sevilla, S; Gorelov,I; Goss, J; Gouldwell-Bates, A; Grégoire, G; Gregori, P; Grigoriev, E; Grillo, A A; Groza, A; Guskov, J; Haddad, L; Härkönen, J; Hauler, F; Hoeferkamp, M; Honniger, F; Horazdovsky, T; Horisberger, R P; Horn, M; Houdayer, A; Hourahine, B; Hughes, G; Ilyashenko, Yu S; Irmscher, K; Ivanov, A; Jarasiunas, K; Johansen, K M H; Jones, B K; Jones, R; Joram, C; Jungermann, L; Kalinina, E; Kaminski, P; Karpenko, A; Karpov, A; Kazlauskiene, V; Kazukauskas, V; Khivrich, V; Khomenkov, V P; Kierstead, J A; Klaiber Lodewigs, J M; Klingenberg, R; Kodys, P; Kohout, Z; Korjenevski, S; Koski, M; Kozlowski, R; Kozodaev, M; Kramberger, G; Krasel, O; Kuznetsov, A; Kwan, S; Lagomarsino, S; Lassila-Perini, K M; Lastovetsky, V F; Latino, G; Lazanu, I; Lazanu, S; Lebedev, A; Lebel, C; Leinonen, K; Leroy, C; Li, Z; Lindström, G; Linhart, V; Litovchenko, P G; Litovchenko, A P; Lo Giudice, A; Lozano, M; Luczynski, Z; Luukka, Panja; Macchiolo, A; Makarenko, L F; Mandic, I; Manfredotti, C; Manna, N; Martí i García, S; Marunko, S; Mathieson, K; Melone, J; Menichelli, D; Messineo, A; Metcalfe, J; Miglio, S; Mikuz, M; Miyamoto, J; Moll, M; Monakhov, E; Moscatelli, F; Naoumov, D; Nossarzhevska, E; Nysten, J; Olivero, P; O'Shea, V; Palviainen, T; Paolini, C; Parkes, C; Passeri, D; Pein, U; Pellegrini, G; Perera, L; Petasecca, M; Piemonte, C; Pignatel, G U; Pinho, N; Pintilie, I; Pintilie, L; Polivtsev, L; Polozov, P; Popa, A; Populea, J; Pospísil, S; Pozza, A; Radicci, V; Rafí, J M; Rando, R; Röder, R; Rohe, T; Ronchin, S; Rott, C; Roy, A; Ruzin, A; Sadrozinski, H F W; Sakalauskas, S; Scaringella, M; Schiavulli, L; Schnetzer, S; Schumm, B; Sciortino, S; Scorzoni, A; Segneri, G; Seidela, S; Seiden, A; Sellberg, G; Sellin, P J; Sentenac, D; Shipsey, I; Sícho, P; Sloan, T; Solar, M; Son, S; Sopko, B; Sopko, V; Spencer, N; Stahl, J; Stolze, D; Stone, R; Storasta, J; Strokan, N; Sudzius, M; Surma, B; Suvorov, A; Svensson, B G; Tipton, P; Tomasek, M; Tsvetkov, A; Tuominen, E; Tuovinen, E; Tuuva, T; Tylchin, M; Uebersee, H; Uher, J; Ullán, M; Vaitkus, J V; Velthuis, J; Verbitskaya, E; Vrba, V; Wagner, G; Wilhelm, I; Worm, S; Wright, V; Wunstorf, R; Yiuri, Y; Zabierowski, P; Zaluzhny, A; Zavrtanik, M; Zen, M; Zhukov, V; Zorzi, N

    2005-01-01

    The proposed luminosity upgrade of the Large Hadron Collider (S-LHC) at CERN will demand the innermost layers of the vertex detectors to sustain fluences of about 1016 hadrons/cm2. Due to the high multiplicity of tracks, the required spatial resolution and the extremely harsh radiation field new detector concepts and semiconductor materials have to be explored for a possible solution of this challenge. The CERN RD50 collaboration “Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders” has started in 2002 an R&D program for the development of detector technologies that will fulfill the requirements of the S-LHC. Different strategies are followed by RD50 to improve the radiation tolerance. These include the development of defect engineered silicon like Czochralski, epitaxial and oxygen-enriched silicon and of other semiconductor materials like SiC and GaN as well as extensive studies of the microscopic defects responsible for the degradation of irradiated sensors. Furthe...

  5. Observation of microwave radiation using low-cost detectors at the ANKA storage ring*

    CERN Document Server

    Judin, V; Hofmann, A; Huttel, E; Kehrer, B; Klein, M; Marsching, S; Müller, A S; Nasse, M; Smale, N; Caspers, F; Peier, P

    2011-01-01

    Synchrotron light sources emit Coherent Synchrotron Radiation (CSR) for wavelengths longer than or equal to the bunch length. At most storage rings CSR cannot be observed, because the vacuum chamber cuts off radiation with long wavelengths. There are different approaches for shifting the CSR to shorter wavelengths that can propagate through the beam pipe, e.g.: the accelerator optics can be optimized for a low momentum compaction factor, thus reducing the bunch length. Alternatively, laser slicing can modulate substructures on long bunches [1]. Both techniques extend the CSR spectrum to shorter wavelengths, so that CSR is emitted at wavelengths below the waveguide shielding cut off. Usually fast detectors, like superconducting bolometer detector systems or Schottky barrier diodes, are used for observation of dynamic processes in accelerator physics. In this paper, we present observations of microwave radiation at ANKA using an alternative detector, a LNB (Low Noise Block) system. These devices are usually use...

  6. Charge transport properties of CdMnTe radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kim K.; Rafiel, R.; Boardman, M.; Reinhard, I.; Sarbutt, A.; Watt, G.; Watt, C.; Uxa, S.; Prokopovich, D.A.; Belas, E.; Bolotnikov, A.E.; James, R.B.

    2012-04-11

    Growth, fabrication and characterization of indium-doped cadmium manganese telluride (CdMnTe)radiation detectors have been described. Alpha-particle spectroscopy measurements and time resolved current transient measurements have yielded an average charge collection efficiency approaching 100 %. Spatially resolved charge collection efficiency maps have been produced for a range of detector bias voltages. Inhomogeneities in the charge transport of the CdMnTe crystals have been associated with chains of tellurium inclusions within the detector bulk. Further, it has been shown that the role of tellurium inclusions in degrading chargecollection is reduced with increasing values of bias voltage. The electron transit time was determined from time of flight measurements. From the dependence of drift velocity on applied electric field the electron mobility was found to be n = (718 55) cm2/Vs at room temperature.

  7. Epitaxy - a new technology for fabrication of advanced silicon radiation detectors

    International Nuclear Information System (INIS)

    Kemmer, J.; Wiest, F.; Pahlke, A.; Boslau, O.; Goldstrass, P.; Eggert, T.; Schindler, M.; Eisele, I.

    2005-01-01

    Twenty five years after the introduction of the planar process to the fabrication of silicon radiation detectors a new technology, which replaces the ion implantation doping by silicon epitaxy is presented. The power of this new technique is demonstrated by fabrication of silicon drift detectors (SDDs), whereby both the n-type and p-type implants are replaced by n-type and p-type epi-layers. The very first SDDs ever produced with this technique show energy resolutions of 150 eV for 55 Fe at -35 deg C. The area of the detectors is 10 mm 2 and the thickness 300 μm. The high potential of epitaxy for future detectors with integrated complex electronics is described

  8. A direct reflection OLVF debris detector based on dark-field imaging

    Science.gov (United States)

    Li, Bo; Xi, Yinhu; Feng, Song; Mao, Junhong; Xie, You-Bai

    2018-06-01

    To solve the problems of monitoring wear debris in black oil, a direct reflection online visual ferrograph (OLVF) debris detector is presented. In current OLVF detectors, a reflected light source is used. The emitted light is reflected by wear debris directly instead of passing through the lube oil. Therefore, the transparency of the lube oil ceases to matter. Two experiments were conducted to validate the wear debris imaging feasibility and effectiveness of the newly developed detector. The results show that the visual feature information of the wear debris can be reliably obtained from black oil by this detector, and it can also be used to track the fast-changing wear of tribopairs at different wear stages. To the best of our knowledge, to date there is no other report for solving this issue.

  9. Advances in the project about Pin type silicon radiation detectors; Avances en el proyecto sobre detectores de radiacion de silicio tipo PIN

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez F, J. [Instituto Nacional de Investigaciones Nucleares, Laboratorio de Detectores de Radiacion, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Cerdeira, A.; Aceves, M.; Diaz, A.; Estrada, M.; Rosales, P.; Cabal, A.E.; Montano L, M.; Leyva, A

    1998-07-01

    The obtained advances in the collaboration project ININ-CINVESTAV about development of Pin type semiconductor radiation detectors here are presented. It has been characterized the response to different types of radiation made in CINVESTAV and INAOE. Measurements have been realized with different types of sensitive to charge preamplifiers determining the main characteristics which must be executed to be able to be employed with low capacitance detectors. As applications it has been possible to measure the irradiation time in a mammography machine and X-ray energy spectra have been obtained in the order of 14 KeV, with 4 KeV at ambient temperature. The future actions of project have been indicated and the possible applications of these detectors. (Author)

  10. Study the radiation damage effects in Si microstrip detectors for future HEP experiments

    International Nuclear Information System (INIS)

    Lalwani, Kavita; Jain, Geetika; Dalal, Ranjeet; Ranjan, Kirti; Bhardwaj, Ashutosh

    2016-01-01

    Silicon (Si) detectors are playing a key role in High Energy Physics (HEP) experiments due to their superior tracking capabilities. In future HEP experiments, like upgrade of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC), CERN, the silicon tracking detectors will be operated in a very intense radiation environment. This leads to both surface and bulk damage in Si detectors, which in turn will affect the operating performance of Si detectors. It is important to complement the measurements of the irradiated Si strip detectors with device simulation, which helps in understanding of both the device behavior and optimizing the design parameters needed for the future Si tracking system. An important ingredient of the device simulation is to develop a radiation damage model incorporating both bulk and surface damage. In this work, a simplified two-trap model is incorporated in device simulation to describe the type-inversion. Further, an extensive simulation of effective doping density as well as electric field profile is carried out at different temperatures for various fluences.

  11. Study the radiation damage effects in Si microstrip detectors for future HEP experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lalwani, Kavita, E-mail: kavita.phy@mnit.ac.in [Malaviya National Institute of Technology (MNIT) Jaipur, Jaipur-302017 (India); Jain, Geetika; Dalal, Ranjeet; Ranjan, Kirti; Bhardwaj, Ashutosh [University of Delhi (DU), Delhi-110007 (India)

    2016-07-15

    Silicon (Si) detectors are playing a key role in High Energy Physics (HEP) experiments due to their superior tracking capabilities. In future HEP experiments, like upgrade of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC), CERN, the silicon tracking detectors will be operated in a very intense radiation environment. This leads to both surface and bulk damage in Si detectors, which in turn will affect the operating performance of Si detectors. It is important to complement the measurements of the irradiated Si strip detectors with device simulation, which helps in understanding of both the device behavior and optimizing the design parameters needed for the future Si tracking system. An important ingredient of the device simulation is to develop a radiation damage model incorporating both bulk and surface damage. In this work, a simplified two-trap model is incorporated in device simulation to describe the type-inversion. Further, an extensive simulation of effective doping density as well as electric field profile is carried out at different temperatures for various fluences.

  12. Silicon radiation detector analysis using back electron beam induced current

    International Nuclear Information System (INIS)

    Guye, R.

    1987-01-01

    A new technique for the observation and analysis of defects in silicon radiation detectors is described. This method uses an electron beam from a scanning electron microscope (SEM) impinging on the rear side of the p + n junction of the silicon detector, which itself is active and detects the electron beam induced current (EBIC). It is shown that this current is a sensitive probe of localized trapping centers, either at the junction surface or somewhere in the volume of the silicon crystal. (orig.)

  13. A study of the radiative K{sub L}{yields}{pi}{sup {+-}}e{sup -+}{nu}{gamma} decay and search for direct photon emission with the KLOE detector

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosino, F.; Chiefari, G.; Massarotti, P.; Meola, S.; Napolitano, M.; Perfetto, F.; Saracino, G. [Univ. ' Federico II' , Dipt. di Scienze Fisiche, Napoli (Italy)]|[INFN Sezione di Napoli, Napoli (Italy); Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bertolucci, S.; Bloise, C.; Bossi, F.; Campana, P.; Capon, G.; Capussela, T.; Chi, S.; Ciambrone, P.; De Lucia, E.; De Simone, P.; Dreucci, M.; Felici, G.; Ferrari, A.; Ferrer, M.L.; Forti, C.; Gatti, C.; Giovannella, S.; Lanfranchi, G.; Mei, W.; Miscetti, S.; Moulson, M.; Mueller, S.; Murtas, F.; Palutan, M.; Santangelo, P.; Sciascia, B.; Sibidanov, A.; Spadaro, T.; Venanzoni, G. [Lab. Nazionali di Frascati dell' INFN, Frascati (Roma) (Italy); Archilli, F. [Univ. ' Tor Vergata' , Dipt. di Fisica, Roma (Italy)]|[INFN Sezione di Roma Tor Vergata, Roma (Italy); Bacci, C.; Bocchetta, S.; Ceradini, F.; Cesario, F.; Di Micco, B.; Nguyen, F. [Univ. ' Roma Tre' , Dipt. di Fisica, Roma (Italy)]|[INFN Sezione di Roma Tre, Roma (Italy); Beltrame, P.; Denig, A.; Kluge, W.; Leone, D. [Univ. et Karlsruhe, Inst. fuer Experimentelle Kernphysik, Karlsruhe (Germany); Bini, C.; Caloi, R.; De Santis, A.; De Zorzi, G.; Di Domenico, A.; Fiore, S.; Franzini, P.; Gauzzi, P.; Lacava, F.; Testa, M. [Univ. ' La Sapienza' , Dipt. di Fisica, Roma (Italy)]|[INFN Sezione di Roma, Roma (Italy); Branchini, P.; Graziani, E.; Passeri, A.; Tortora, L. [INFN Sezione di Roma Tre, Roma (Italy); Crucianelli, F. [Univ. ' La Sapienza' , Dipt. di Fisica, Roma (Italy); Di Donato, C.; Doria, A. [INFN Sezione di Napoli, Napoli (Italy); Gorini, E. [Univ. Lecce, Dipt. di Fisica, Lecce (Italy)]|[INFN Sezione di Lecce, Lecce (Italy); Kulikov, V. [Inst. for Theoretical and Experimental Physics, Moscow (Russian Federation); Lee-Franzini, J. [Lab. Nazionali di Frascati dell' INFN, Frascati (Roma) (Italy)]|[State Univ. of New York, Physics Dept., Stony Brook (United States)] [and others

    2008-06-15

    We present a measurement of the ratio R={gamma}(K{sup 0}{sub e3{gamma}};E{sup *}{sub {gamma}}>30 MeV, {theta}{sup *}{sub {gamma}}>20 )/{gamma}(K{sup 0}{sub e3}) and a first measurement of the direct emission contribution in semileptonic K{sub L} decays. The measurement was performed at the DA{phi}NE{phi} factory by selecting {phi}{yields}K{sub L}K{sub S} decays with the KLOE detector. We use 328 pb{sup -1} of data, corresponding to about 3.5 million K{sup 0}{sub e3} events and about 9000 K{sup 0}{sub e3{gamma}} radiative events. Our result is R=(924{+-}23{sub stat}{+-}16{sub syst}) x 10{sup -5} for the branching ratio and left angle X right angle =-2.3{+-}1.3{sub stat}{+-}1.4{sub syst} for the effective strength parameter describing direct emission. (orig.)

  14. Silicon detectors operating beyond the LHC collider conditions: scenarios for radiation fields and detector degradation

    International Nuclear Information System (INIS)

    Lazanu, I.; Lazanu, S.

    2004-01-01

    Particle physics makes its greatest advances with experiments at the highest energies. The way to advance to a higher energy regime is through hadron colliders, or through non-accelerator experiments, as for example the space astroparticle missions. In the near future, the Large Hadron Collider (LHC) will be operational, and beyond that, its upgrades: the Super-LHC (SLHC) and the hypothetical Very Large Hadron Collider (VLHC). At the present time, there are no detailed studies for future accelerators, except those referring to LHC. For the new hadron collider LHC and some of its updates in luminosity and energy, the silicon detectors could represent an important option, especially for the tracking system and calorimetry. The main goal of this paper is to analyse the expected long-time degradation of the silicon as material and for silicon detectors, during continuous radiation, in these hostile conditions. The behaviour of silicon in relation to various scenarios for upgrade in energy and luminosity is discussed in the frame of a phenomenological model developed previously by the authors and now extended to include new mechanisms, able to explain and give solutions to discrepancies between model predictions and detector behaviour after hadron irradiation. Different silicon material parameters resulting from different technologies are considered to evaluate what materials are harder to radiation and consequently could minimise the degradation of device parameters in conditions of continuous long time operation. (authors)

  15. A transition radiation detector for RHIC featuring accurate tracking and dE/dx particle identification

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, E.; Lissauer, D.; McCorkle, S.; Polychronakos, V.; Takai, H. [Brookhaven National Lab., Upton, NY (United States); Chi, C.Y.; Nagamiya, S.; Sippach, W.; Toy, M.; Wang, D.; Wang, Y.F.; Wiggins, C.; Willis, W. [Columbia Univ., New York, NY (United States); Cherniatin, V.; Dolgoshein, B. [Moscow Institute of Physics and Engineering, (Russian Federation); Bennett, M.; Chikanian, A.; Kumar, S.; Mitchell, J.T.; Pope, K. [Yale Univ., New Haven, CT (United States)

    1991-12-31

    We describe the results of a test ran involving a Transition Radiation Detector that can both distinguish electrons from pions which momenta greater titan 0.7 GeV/c and simultaneously track particles passing through the detector. The particle identification is accomplished through a combination of the detection of Transition Radiation from the electron and the differences in electron and pion energy loss (dE/dx) in the detector. The dE/dx particle separation is most, efficient below 2 GeV/c while particle ID utilizing Transition Radiation effective above 1.5 GeV/c. Combined, the electron-pion separation is-better than 5 {times} 10{sup 2}. The single-wire, track-position resolution for the TRD is {approximately}230 {mu}m.

  16. Combined performance tests before installation of the ATLAS Semiconductor and Transition Radiation Tracking Detectors

    Czech Academy of Sciences Publication Activity Database

    Abat, E.; Abdesselam, A.; Andy, T.N.; Böhm, Jan; Šťastný, Jan

    2008-01-01

    Roč. 3, - (2008), P08003/1-P08003/67 ISSN 1748-0221 R&D Projects: GA MŠk LA08032; GA MŠk 1P04LA212 Institutional research plan: CEZ:AV0Z10100502 Keywords : solid state detectors * particle tracking detectors * large detector systems for particle and astroparticle physics * transition radiation detectors Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.333, year: 2008

  17. Testing digital recursive filtering method for radiation measurement channel using pin diode detector

    International Nuclear Information System (INIS)

    Talpalariu, C. M.; Talpalariu, J.; Popescu, O.; Mocanasu, M.; Lita, I.; Visan, D. A.

    2016-01-01

    In this work we have studied a software filtering method implemented in a pulse counting computerized measuring channel using PIN diode radiation detector. In case our interest was focalized for low rate decay radiation measurement accuracies improvement and response time optimization. During works for digital mathematical algorithm development, we used a hardware radiation measurement channel configuration based on PIN diode BPW34 detector, preamplifier, filter and programmable counter, computer connected. We report measurement results using two digital recursive methods in statically and dynamically field evolution. Software for graphical input/output real time diagram representation was designed and implemented, facilitating performances evaluation between the response of fixed configuration software recursive filter and dynamically adaptive configuration recursive filter. (authors)

  18. High tracking resolution detectors. Final Technical Report

    International Nuclear Information System (INIS)

    Vasile, Stefan; Li, Zheng

    2010-01-01

    High-resolution tracking detectors based on Active Pixel Sensor (APS) have been valuable tools in Nuclear Physics and High-Energy Physics research, and have contributed to major discoveries. Their integration time, radiation length and readout rate is a limiting factor for the planed luminosity upgrades in nuclear and high-energy physics collider-based experiments. The goal of this program was to demonstrate and develop high-gain, high-resolution tracking detector arrays with faster readout, and shorter radiation length than APS arrays. These arrays may operate as direct charged particle detectors or as readouts of high resolution scintillating fiber arrays. During this program, we developed in CMOS large, high-resolution pixel sensor arrays with integrated readout, and reset at pixel level. Their intrinsic gain, high immunity to surface and moisture damage, will allow operating these detectors with minimal packaging/passivation requirements and will result in radiation length superior to APS. In Phase I, we designed and fabricated arrays with calorimetric output capable of sub-pixel resolution and sub-microsecond readout rate. The technical effort was dedicated to detector and readout structure development, performance verification, as well as to radiation damage and damage annealing.

  19. Investigation of the radiation leakage from X ray flaw detectors and the improvement measures for the unqualified products

    International Nuclear Information System (INIS)

    Li Yiachun; Wu Yi; Pang Hu; Bai Bin

    1997-01-01

    The authors introduce investigation methods and results for radiation leakage from X ray flaw detectors, which are used in Beijing area. Total 21 sets of flaw detectors made in 8 factories in Beijing, Shanghai etc. have been tested, of which 16 sets made in Beijing, Dandong and Japan are gas cooling flaw detectors, and rest 5 sets made in Shanghai and Germany are water or oil cooling detectors. The air Kerma rate of leakage radiation at 1 m from the X ray tube target were measured by Type FJ-347A X, γ dosimeter. It can be seen from the results that, compared with the trade standard ZBY315-83, 5 sets of water or oil cooling flaw detectors are all qualified. However, only two sets of gas cooling detectors are qualified, and the radiation leakage of another 14 sets are over the values specified in the standard. The reason is analyzed, and some advices about the measures of improving radiation protection structure design and production technology for the unqualified products have been proposed

  20. Coaxial nuclear radiation detector with deep junction and radial field gradient

    International Nuclear Information System (INIS)

    Hall, R.N.

    1979-01-01

    Germanium radiation detectors are manufactured by diffusion lithium into high purity p-type germanium. The diffusion is most readily accomplished from a lithium-lead-bismuth alloy at approximately 430 0 and is monitored by a quartz half cell containing a standard composition of this alloy. Detectors having n-type cores may be constructed by converting high purity p-type germanium to n-type by a lithium diffusion and subsequently diffusing some of the lithium back out through the surface to create a deep p-n junction. Coaxial germanium detectors comprising deep p-n junctions are produced by the lithium diffusion process

  1. IceCube: A Cubic Kilometer Radiation Detector

    International Nuclear Information System (INIS)

    IceCube Collaboration; Klein, Spencer R; Klein, S.R.

    2008-01-01

    IceCube is a 1 km 3 neutrino detector now being built at the Amudsen-Scott South Pole Station. It consists of 4800 Digital Optical Modules (DOMs) which detect Cherenkov radiation from the charged particles produced in neutrino interactions. IceCube will observe astrophysical neutrinos with energies above about 100 GeV. IceCube will be able to separate ν μ , ν t , and ν τ interactions because of their different topologies. IceCube construction is currently 50% complete

  2. Technology development of p-type microstrip detectors with radiation hard p-spray isolation

    International Nuclear Information System (INIS)

    Pellegrini, G.; Fleta, C.; Campabadal, F.; Diez, S.; Lozano, M.; Rafi, J.M.; Ullan, M.

    2006-01-01

    A technology for the fabrication of p-type microstrip silicon radiation detectors using p-spray implant isolation has been developed at CNM-IMB. The p-spray isolation has been optimized in order to withstand a gamma irradiation dose up to 50 Mrad (Si), which represents the ionization radiation dose expected in the middle region of the SCT-Atlas detector of the future Super-LHC during 10 years of operation. The best technological options for the p-spray implant were found by using a simulation software package and dedicated calibration runs. Using the optimized technology, detectors have been fabricated in the Clean Room facility of CNM-IMB, and characterized by reverse current and capacitance measurements before and after irradiation. The average full depletion voltage measured on the non-irradiated detectors was V FD =41±3 V, while the leakage current density for the microstrip devices at V FD +20 V was 400 nA/cm 2

  3. Custom synthesized diamond crystals as state of the art radiation detectors

    International Nuclear Information System (INIS)

    Keddy, R.J.; Nam, T.L.; Fallon, P.J.

    1990-01-01

    The fact that as a radiation detector, diamond is a stable, non-toxic and tissue equivalent (Z=6) material, makes it an ideal candidate for in vivo radiation dosimetry or the dosimetry of general radiation fields in environmental monitoring. Natural diamond crystals have the disadvantage, however, that no two crystals can be guaranteed to have the same response characteristics. This disadvantage can be overcome by synthesizing the crystals under controlled conditions and by using very selective chemistry. Such synthetic diamonds can be used as thermoluminescence dosimeters (TLDs) where they exhibit characteristics comparable to presently available commercial TLDs or they can be used as ionization chambers to produce either ionization currents or pulses where the small physical size of the diamond (1 mm 3 ) and possibilities of digital circuitry makes miniaturization an extremely attractive possibility. It has also been found that they can perform as scintillation detectors. This contribution describes aspects of the performance characteristics of such diamonds in all three modes. 24 refs., 14 figs

  4. Elevated Radiation Exposure Associated With Above Surface Flat Detector Mini C-Arm Use.

    Science.gov (United States)

    Martin, Dennis P; Chapman, Talia; Williamson, Christopher; Tinsley, Brian; Ilyas, Asif M; Wang, Mark L

    2017-11-01

    This study aims to test the hypothesis that: (1) radiation exposure is increased with the intended use of Flat Surface Image Intensifier (FSII) units above the operative surface compared with the traditional below-table configuration; (2) this differential increases in a dose-dependent manner; and (3) radiation exposure varies with body part and proximity to the radiation source. A surgeon mannequin was seated at a radiolucent hand table, positioned for volar distal radius plating. Thermoluminescent dosimeters measured exposure to the eyes, thyroid, chest, hand, and groin, for 1- and 15-minute trials from a mini C-arm FSII unit positioned above and below the operating surface. Background radiation was measured by control dosimeters placed within the operating theater. At 1-minute of exposure, hand and eye dosages were significantly greater with the flat detector positioned above the table. At 15-minutes of exposure, hand radiation dosage exceeded that of all other anatomic sites with the FSII in both positions. Hand exposure was increased in a dose-dependent manner with the flat detector in either position, whereas groin exposure saw a dose-dependent only with the flat detector beneath the operating table. These findings suggest that the surgeon's hands and eyes may incur greater radiation exposure compared with other body parts, during routine mini C-arm FSII utilization in its intended position above the operating table. The clinical impact of these findings remains unclear, and future long-term radiation safety investigation is warranted. Surgeons should take precautions to protect critical body parts, particularly when using FSII technology above the operating with prolonged exposure time.

  5. Detector materials: germanium and silicon

    International Nuclear Information System (INIS)

    Haller, E.E.

    1981-11-01

    This article is a summary of a short course lecture given in conjunction with the 1981 Nuclear Science Symposium. The basic physical properties of elemental semiconductors are reviewed. The interaction of energetic radiation with matter is discussed in order to develop a feeling for the appropriate semiconductor detector dimensions. The extremely low net dopant concentrations which are required are derived directly from the detector dimensions. A survey of the more recent techniques which have been developed for the analysis of detector grade semiconductor single crystals is presented

  6. The Performance Assessment of the Detector for the Portable Environmental Radiation Distribution Monitoring System with Rapid Nuclide Recognition

    International Nuclear Information System (INIS)

    Lee, Uk Jae; Kim, Hee Reyoung

    2015-01-01

    The environment radiation distribution monitoring system measures the radiation using a portable detector and display the overall radiation distribution. Bluetooth and RS-232 communications are used for constructing monitoring system. However RS-232 serial communication is known to be more stable than Bluetooth and also it can use the detector's raw data which will be used for getting the activity of each artificial nuclide. In the present study, the detection and communication performance of the developed detector with RS-232 method is assessed by using standard sources for the real application to the urban or rural environment. Assessment of the detector for the portable environmental radiation distribution monitoring system with rapid nuclide recognition was carried out. It was understood that the raw data of detector could be effectively treated by using RS-232 method and the measurement showed a good agreement with the calculation within the relative error of 0.4 % in maximum

  7. The Performance Assessment of the Detector for the Portable Environmental Radiation Distribution Monitoring System with Rapid Nuclide Recognition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Uk Jae; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    The environment radiation distribution monitoring system measures the radiation using a portable detector and display the overall radiation distribution. Bluetooth and RS-232 communications are used for constructing monitoring system. However RS-232 serial communication is known to be more stable than Bluetooth and also it can use the detector's raw data which will be used for getting the activity of each artificial nuclide. In the present study, the detection and communication performance of the developed detector with RS-232 method is assessed by using standard sources for the real application to the urban or rural environment. Assessment of the detector for the portable environmental radiation distribution monitoring system with rapid nuclide recognition was carried out. It was understood that the raw data of detector could be effectively treated by using RS-232 method and the measurement showed a good agreement with the calculation within the relative error of 0.4 % in maximum.

  8. Performance of the AMS-02 Transition Radiation Detector

    CERN Document Server

    von Doetinchem, P.; Karpinski, W.; Kirn, T.; Luebelsmeyer, K.; Orboeck, J.; Schael, S.; Schultz von Dratzig, A.; Schwering, G.; Siedenburg, T.; Siedling, R.; Wallraff, W.; Becker, U.; Burger, J.; Henning, R.; Kounine, A.; Koutsenko, V.; Wyatt, J.

    2006-01-01

    For cosmic particle spectroscopy on the International Space Station the AMS experiment will be equipped with a Transition Radiation Detector (TRD) to improve particle identification. The TRD has 20 layers of fleece radiator with Xe/CO2 proportional mode straw tube chambers. They are supported in a conically shaped octagon structure made of CFC-Al-honeycomb. For low power consumption VA analog multiplexers are used as front-end readout. A 20 layer prototype built from final design components has achieved proton rejections from 100 to 2000 at 90% electron efficiency for proton beam energies up to 250 GeV with cluster counting, likelihood and neural net selection algorithms.

  9. Advances in Physical and Biological Radiation Detectors. Proceedings of a Symposium on New Developments in Physical and Biological Radiation Detectors

    International Nuclear Information System (INIS)

    1971-01-01

    Radiation dosimetry is a fundamental part of all radiation protection work. The measurements are made with a variety of instruments, and health physicists, after professional interpretation of the data, can assess the levels of exposure which might be encountered in a given area or the individual doses received by workers, visitors and others at places where the possibility of radiation exposure exists. The types of radiation concerned here are photon radiations, ranging from soft X-rays to gamma rays, and particulate radiations such as β-rays, α-particles, protons, neutrons and fission fragments. The type of technique used depends not only on the type of radiation but also on such factors as whether the radiation is from a source internal or external to the body. Radiation dosimetry is not only used at nuclear facilities; it has diverse applications, for example in determining doses when radiation sources are employed for medical diagnostics and therapy, in safeguarding workers in any industry where isotopes are used, and in assessing the effect of both naturally occurring and man-made radiations on the general public and the environment. The advances of modern technology have increased the variety of sources; an example can be given from colour television, where the high potential necessary in certain colour cathode-ray tubes generates a non-negligible amount of X-rays. The Symposium on New Developments in Physical and Biological Radiation Detectors was one of a continuing series of meetings in which the International Atomic Energy Agency furthers the exchange of information on all aspects of personnel and area dosimetry. The Symposium was devoted in particular to a study of the dose meters themselves - their radiation-sensitive elements (both physical and biological),their instrumentation, and calibration and standardization. Several speakers suggested that the situation in the standardization and calibration of measuring equipment and sources was

  10. The simulation of the LANFOS-H food radiation contamination detector using Geant4 package

    Science.gov (United States)

    Piotrowski, Lech Wiktor; Casolino, Marco; Ebisuzaki, Toshikazu; Higashide, Kazuhiro

    2015-02-01

    Recent incident in the Fukushima power plant caused a growing concern about the radiation contamination and resulted in lowering the Japanese limits for the permitted amount of 137Cs in food to 100 Bq/kg. To increase safety and ease the concern we are developing LANFOS (Large Food Non-destructive Area Sampler)-a compact, easy to use detector for assessment of radiation in food. Described in this paper LANFOS-H has a 4 π coverage to assess the amount of 137Cs present, separating it from the possible 40K food contamination. Therefore, food samples do not have to be pre-processed prior to a test and can be consumed after measurements. It is designed for use by non-professionals in homes and small institutions such as schools, showing safety of the samples, but can be also utilized by specialists providing radiation spectrum. Proper assessment of radiation in food in the apparatus requires estimation of the γ conversion factor of the detectors-how many γ photons will produce a signal. In this paper we show results of the Monte Carlo estimation of this factor for various approximated shapes of fish, vegetables and amounts of rice, performed with Geant4 package. We find that the conversion factor combined from all the detectors is similar for all food types and is around 37%, varying maximally by 5% with sample length, much less than for individual detectors. The different inclinations and positions of samples in the detector introduce uncertainty of 1.4%. This small uncertainty validates the concept of a 4 π non-destructive apparatus.

  11. Modifications in the optical and thermal properties of a CR-39 polymeric detector induced by high doses of γ-radiation

    Science.gov (United States)

    Saad, A. F.; Ibraheim, Mona H.; Nwara, Aya M.; Kandil, S. A.

    2018-04-01

    Effects of γ-radiation on the optical and thermal properties of a poly allyl diglycol carbonate (PADC), a form of CR-39, polymer have been investigated. CR-39 detectors were exposed to γ-rays at very high doses ranging from 5.0 × 105 to 3.0 × 106 Gy. The induced changes were analyzed using ultraviolet-visible spectroscopy (UV-VIS) in absorbance mode, and thermogravimetric analysis (TGA). The UV-visible spectra of the virgin and γ-irradiated CR-39 polymer detectors displayed a significant decreasing trend in their optical energy band gaps for indirect transitions, whereas for the direct ones showed a little change. This drop in the energy band gap with increasing dose is discussed on the basis of the gamma irradiation induced modifications in the CR-39 polymeric detector. The TGA thermograms show that the weight loss rate increased with increase in dose, which may be due to the disordered system via scission followed by crosslinking in the irradiated polymer detector. The TGA thermograms also indicated that the CR-39 detector decomposed in three/four stages for the virgin and irradiated samples. The activation energy for thermal decomposition was determined using a type of Arrhenius equation based on the TGA experimental results. These experimental results so obtained can be well used in radiation dosimetry.

  12. Nuclear Material Accountability Applications of a Continuous Energy and Direction Gamma Ray Detector

    International Nuclear Information System (INIS)

    Gerts, David; Bean, Robert; Paff, Marc

    2010-01-01

    The Idaho National Laboratory has recently developed a detector system based on the principle of a Wilson cloud chamber that gives the original energy and direction to a gamma ray source. This detector has the properties that the energy resolution is continuous and the direction to the source can be resolved to desired fidelity. Furthermore, the detector has low power requirements, is durable, operates in widely varying environments, and is relatively cheap to produce. This detector is expected, however, to require significant time to perform measurements. To mitigate the significant time for measurements, the detector is expected to scale to very large sizes with a linear increase in cost. For example, the proof of principle detector is approximately 30,000 cm3. This work describes the technical results that lead to these assertions. Finally, the applications of this detector are described in the context of nuclear material accountability.

  13. Proceedings of the workshop on radiation detector and its application

    International Nuclear Information System (INIS)

    1996-01-01

    This workshop was held from January 23 to 25, 1996 at National Laboratory for High Energy Physics. At the workshop, lectures were given on the development of the single ion detector using MCP in heavy ion microbeam device, the response of MCP to single heavy ion, the response of a superheated liquid drop type detector to low LET radiation, the response characteristics of a CR-39 flight track detector to hydrogen isotopes, the analysis of small nuclear flight tracks on CR-39 with an interatomic force microscope, charge-sensible amplifiers, the signal-processing circuit for position detection, time and depth-resolved measurement of ion tracks in condensed matter, the response of a thin Si detector to electrons, the method of expressing gas-amplifying rate curves in proportional count gas for low temperature, the characteristics of self annihilating streamer by ultraviolet laser, the development of slow positron beam using radioisotopes, the development of a tunnel junction type x-ray detector, the development of the pattern-analyzing system for PIXE spectra, the characteristics of NE213-CaF 2 bond type neutron detector and many others. In this report, the gists of these papers are collected. (K.I.)

  14. Comparison of cosmic rays radiation detectors on-board commercial jet aircraft.

    Science.gov (United States)

    Kubančák, Ján; Ambrožová, Iva; Brabcová, Kateřina Pachnerová; Jakůbek, Jan; Kyselová, Dagmar; Ploc, Ondřej; Bemš, Július; Štěpán, Václav; Uchihori, Yukio

    2015-06-01

    Aircrew members and passengers are exposed to increased rates of cosmic radiation on-board commercial jet aircraft. The annual effective doses of crew members often exceed limits for public, thus it is recommended to monitor them. In general, the doses are estimated via various computer codes and in some countries also verified by measurements. This paper describes a comparison of three cosmic rays detectors, namely of the (a) HAWK Tissue Equivalent Proportional Counter; (b) Liulin semiconductor energy deposit spectrometer and (c) TIMEPIX silicon semiconductor pixel detector, exposed to radiation fields on-board commercial Czech Airlines company jet aircraft. Measurements were performed during passenger flights from Prague to Madrid, Oslo, Tbilisi, Yekaterinburg and Almaty, and back in July and August 2011. For all flights, energy deposit spectra and absorbed doses are presented. Measured absorbed dose and dose equivalent are compared with the EPCARD code calculations. Finally, the advantages and disadvantages of all detectors are discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. The case for a directional dark matter detector and the status of current experimental efforts

    CERN Document Server

    Ahlen, S; Battat, J B R; Billard, J; Bozorgnia, N; Burgos, S; Caldwell, T; Carmona, J M; Cebrián, S; Colas, P; Dafni, T; Daw, E; Dujmic, D; Dushkin, A; Fedus, W; Ferrer, E; Finkbeiner, D; Fisher, P H; Forbes, J; Fusayasu, T; Galan, J; Gamble, T; Ghag, C; Giomataris, Yu; Gold, M; Gomez, H; Gómez, M E; Gondolo, P; Green, A; Grignon, C; Guillaudin, O; Hagemann, C; Hattori, K; Henderson, S; Higashi, N; Ida, C; Iguaz, F J; Inglis, A; Irastorza, I G; Iwaki, S; Kaboth, A; Kabuki, S; Kadyk, J; Kallivayalil, N; Kubo, H; Kurosawa, S; Kudryavtsev, V A; Lamy, T; Lanza, R; Lawson, T B; Lee, A; Lee, E R; Lin, T; Loomba, D; López, J; Luzón, G; Manobu, T; Martoff, J; Mayet, F; McCluskey, B; Miller, E; Miuchi, K; Monroe, J; Morgan, B; Muna, D; Murphy, A St J; Naka, T; Nakamura, K; Nakamura, M; Nakano, T; Nicklin, G G; Nishimura, H; Niwa, K; Paling, S M; Parker, J; Petkov, A; Pipe, M; Pushkin, K; Robinson, M; Rodríguez, A; Rodríguez-Quintero, J; Sahin, T; Sanderson, R; Sanghi, N; Santos, D; Sato, O; Sawano, T; Sciolla, G; Sekiya, H; Slatyer, T R; Snowden-Ifft, D P; Spooner, N J C; Sugiyama, A; Takada, A; Takahashi, M; Takeda, A; Tanimori, T; Taniue, K; Tomas, A; Tomita, H; Tsuchiya, K; Turk, J; Tziaferi, E; Ueno, K; Vahsen, S; Vanderspek, R; Vergados, J; Villar, J A; Wellenstein, H; Wolfe, I; Yamamoto, R K; Yegoryan, H

    2010-01-01

    We present the case for a dark matter detector with directional sensitivity. This document was developed at the 2009 CYGNUS workshop on directional dark matter detection, and contains contributions from theorists and experimental groups in the field. We describe the need for a dark matter detector with directional sensitivity; each directional dark matter experiment presents their project's status; and we close with a feasibility study for scaling up to a one ton directional detector, which would cost around $150M.

  16. Directional Sensitivity in Light-Mass Dark Matter Searches with Single-Electron-Resolution Ionization Detectors

    Science.gov (United States)

    Kadribasic, Fedja; Mirabolfathi, Nader; Nordlund, Kai; Sand, Andrea E.; Holmström, Eero; Djurabekova, Flyura

    2018-03-01

    We propose a method using solid state detectors with directional sensitivity to dark matter interactions to detect low-mass weakly interacting massive particles (WIMPs) originating from galactic sources. In spite of a large body of literature for high-mass WIMP detectors with directional sensitivity, no available technique exists to cover WIMPs in the mass range semiconductor detectors allow for directional sensitivity once properly calibrated. We examine the commonly used semiconductor material response to these low-mass WIMP interactions.

  17. Cosmic radiation dose in aircraft - a neutron track etch detector

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Radolic, V.; Miklavcic, I.; Poje, M.; Varga, M. [Department of Physics, University of Osijek, 31000 Osijek, P.O. Box 125, Gajev trg 6 (Croatia); Planinic, J. [Department of Physics, University of Osijek, 31000 Osijek, P.O. Box 125, Gajev trg 6 (Croatia)], E-mail: planinic@ffos.hr

    2007-12-15

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect.

  18. Cosmic radiation dose in aircraft - a neutron track etch detector

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Miklavcic, I.; Poje, M.; Varga, M.; Planinic, J.

    2007-01-01

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect

  19. Fabrication of radiation detector using PbI{sub 2} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, T; Sakamoto, K; Ohba, K; Suehiro, T; Hiratate, Y [Tohoku Inst. of Tech., Sendai (Japan)

    1996-07-01

    In this paper, we will discuss the PbI{sub 2} radiation detector fabricated from a crystal grown by the zone melting method and by the vapor phase method, together with characteristics of the crystal obtained by a XPS analyzer. (J.P.N.)

  20. Analysis of portable gamma flaw detectors concerning radiation hygiene

    International Nuclear Information System (INIS)

    Makarova, T.V.

    1982-01-01

    Design and shields of gamma flaw detectors as one of the main factors responsible for personnel dose were studied. The analysis was conducted using the results of radiation hygienic surveys of gamma flaw detection laboratories functioning constantly in Estonia. It is shown that recently the replacement of GUP apparatuses by flaw detectors of RID and ''Gamma-RID'' (types which have design and shielding advantages is observed. However personnel doses have not reduced considerably for the last 10 years. This fact is attributed to design disadvantages of the RID and ''Gamma-RID'' apparatuses the removing of which will give the decreasing of annual personnel dose by 80 %

  1. Development of cryogenic Si detectors by CERN RD39 Collaboration for ultra radiation hardness in SLHC environment

    CERN Document Server

    Li, Z; Anbinderis, P; Anbinderis, T; D’Ambrosio, N; de Boer, Wim; Borchi, E; Borer, K; Bruzzi, M; Buontempo, S; Chen, W; Cindro, V; Dierlamm, A; Eremin, V; Gaubas, E; Gorbatenko, V; Grigoriev, E; Hauler, F; Heijne, Erik H M; Heising, S; Hempel, O; Herzog, R; Härkönen, J; Ilyashenko, I; Janos, S; Jungermann, L; Kalesinskas, V; Kapturauskas, J; Laiho, R; Luukka, P; Mandic, I; De Masi, R; Menichelli, D; Mikuz, M; Militaru, O; Niinikosky, T O; O’Shea, V; Pagano, S; Paul, S; Piotrzkowski, K; Pretzl, K; Rato-Mendes, P; Rouby, X; Ruggiero, G; Smith, K; Sonderegger, P; Sousa, P; Tuominen, E; Tuovinen, E; Verbitskaya, E; Vaitkus, J; Wobst, E; Zavrtanik, M

    2007-01-01

    There are two key approaches in our CERN RD 39 Collaboration efforts to obtain ultra-radiation-hard Si detectors: (1) use of the charge/current injection to manipulate the detector internal electric field in such a way that it can be depleted at a modest bias voltage at cryogenic temperature range (150 K), and (2) freezing out of the trapping centers that affects the CCE at cryogenic temperatures lower than that of the liquid nitrogen (LN2) temperature. In our first approach, we have developed the advanced radiation hard detectors using charge or current injection, the current injected diodes (CID). In a CID, the electric field is controlled by injected current, which is limited by the space charge, yielding a nearly uniform electric field in the detector, independent of the radiation fluence. In our second approach, we have developed models of radiation-induced trapping levels and the physics of their freezing out at cryogenic temperatures.

  2. Improvement of thick a-Si radiation detectors by field profile tailoring

    International Nuclear Information System (INIS)

    Drewery, J.S.; Cho, G.; Jing, T.; Kaplan, S.N.; Mireshghi, A.; Perez-Mendez, V.; Wildermuth, D.

    1992-04-01

    Application of thick (∼50 μm) a-Si p-i-n diodes as a direct radiation detector for minimum ionizing particles is hampered by the need to apply large bias voltages in order fully to deplete the detecting intrinsic layer, which typically contains 5 - 10 x 10 14 ionizable dangling bonds per CM 3 . By insertion of thin p-type layers at intervals within the intrinsic layer, the required depletion voltage can be reduced by a factor of at least 1/(n+l) where n is the number of layers inserted. This principle is demonstrated for devices approximately 12μm in thickness. It is shown that electron losses within the p type layer can be kept to minimum by choice of a low doping concentration for the introduced players

  3. Methodology for Assessing Radiation Detectors Used by Emergency Responders

    International Nuclear Information System (INIS)

    Piotr Wasiolek; April Simpson

    2008-01-01

    The threat of weapons of mass destruction terrorism resulted in the U.S. Department of Homeland Security deploying large quantities of radiation detectors throughout the emergency responder community. However, emergency responders specific needs were not always met by standard health physics instrumentation used in radiation facilities. Several American National Standards Institute standards were developed and approved to evaluate the technical capabilities of detection equipment. Establishing technical capability is a critical step, but it is equally important to emergency responders that the instruments are easy to operate and can withstand the rugged situations they encounter. The System Assessment and Validation for Emergency Responders (SAVER) Program (managed by the U.S. Department of Homeland Security, Office of Grants and Training, Systems Support Division) focuses predominantly on the usability, ergonomics, readability, and other features of the detectors, rather than performance controlled by industry standards and the manufacturers. National Security Technologies, LLC, as a SAVER Technical Agent, conducts equipment evaluations using active emergency responders who are familiar with the detection equipment and knowledgeable of situations encountered in the field, which provides more relevant data to emergency responders

  4. Charge transport properties of CdMnTe radiation detectors

    Directory of Open Access Journals (Sweden)

    Prokopovich D. A.

    2012-10-01

    Full Text Available Growth, fabrication and characterization of indium-doped cadmium manganese telluride (CdMnTe radiation detectors have been described. Alpha-particle spectroscopy measurements and time resolved current transient measurements have yielded an average charge collection efficiency approaching 100 %. Spatially resolved charge collection efficiency maps have been produced for a range of detector bias voltages. Inhomogeneities in the charge transport of the CdMnTe crystals have been associated with chains of tellurium inclusions within the detector bulk. Further, it has been shown that the role of tellurium inclusions in degrading charge collection is reduced with increasing values of bias voltage. The electron drift velocity was calculated from the rise time distribution of the preamplifier output pulses at each measured bias. From the dependence of drift velocity on applied electric field the electron mobility was found to be μn = (718 ± 55 cm2/Vs at room temperature.

  5. Apparatus and method for locating and quantifying or directing a source of ionizing radiation

    International Nuclear Information System (INIS)

    Rogers, W.L.; Wainstock, M.A.

    1976-01-01

    An apparatus and method for locating or directing a source of ionizing radiation such as X-rays, gamma rays, alpha particles, beta particles, etc. are described. The preferred embodiment detects and locates abnormalities of the body such as ocular melanomas by detecting the emission of radiation from a melanoma which has absorbed a radioactive medium. The apparatus includes an ultrasound probe which emits ultrasonic waves along a first axis and detects a returned portion of the waves. The ultrasound probe is associated with a display which displays the returned portion of the waves in the time domain so that suspected abnormalities can be located. The ultrasound probe is used to guide a directional probe for detecting and quantifying ionizing radiation which is equipped with a focusing collimator having a focal point along a second axis. The two probes are supported so that the first and second axes converge at the focal point of the collimator. A range marker is associated with the ultrasonic detector which indicates the point of convergence of the axes on the ultrasonic display permitting guidance of the radiation detecting probe to the suspected abnormality

  6. A novel radiation detector for removing scattered radiation in chest radiography: Monte Carlo simulation-based performance evaluation

    Science.gov (United States)

    Roh, Y. H.; Yoon, Y.; Kim, K.; Kim, J.; Kim, J.; Morishita, J.

    2016-10-01

    Scattered radiation is the main reason for the degradation of image quality and the increased patient exposure dose in diagnostic radiology. In an effort to reduce scattered radiation, a novel structure of an indirect flat panel detector has been proposed. In this study, a performance evaluation of the novel system in terms of image contrast as well as an estimation of the number of photons incident on the detector and the grid exposure factor were conducted using Monte Carlo simulations. The image contrast of the proposed system was superior to that of the no-grid system but slightly inferior to that of the parallel-grid system. The number of photons incident on the detector and the grid exposure factor of the novel system were higher than those of the parallel-grid system but lower than those of the no-grid system. The proposed system exhibited the potential for reduced exposure dose without image quality degradation; additionally, can be further improved by a structural optimization considering the manufacturer's specifications of its lead contents.

  7. Oblique incidence effects in direct x-ray detectors: A first-order approximation using a physics-based analytical model

    International Nuclear Information System (INIS)

    Badano, Aldo; Freed, Melanie; Fang Yuan

    2011-01-01

    Purpose: The authors describe the modifications to a previously developed analytical model of indirect CsI:Tl-based detector response required for studying oblique x-ray incidence effects in direct semiconductor-based detectors. This first-order approximation analysis allows the authors to describe the associated degradation in resolution in direct detectors and compare the predictions to the published data for indirect detectors. Methods: The proposed model is based on a physics-based analytical description developed by Freed et al. [''A fast, angle-dependent, analytical model of CsI detector response for optimization of 3D x-ray breast imaging systems,'' Med. Phys. 37(6), 2593-2605 (2010)] that describes detector response functions for indirect detectors and oblique incident x rays. The model, modified in this work to address direct detector response, describes the dependence of the response with x-ray energy, thickness of the transducer layer, and the depth-dependent blur and collection efficiency. Results: The authors report the detector response functions for indirect and direct detector models for typical thicknesses utilized in clinical systems for full-field digital mammography (150 μm for indirect CsI:Tl and 200 μm for a-Se direct detectors). The results suggest that the oblique incidence effect in a semiconductor detector differs from that in indirect detectors in two ways: The direct detector model produces a sharper overall PRF compared to the response corresponding to the indirect detector model for normal x-ray incidence and a larger relative increase in blur along the x-ray incidence direction compared to that found in indirect detectors with respect to the response at normal incidence angles. Conclusions: Compared to the effect seen in indirect detectors, the direct detector model exhibits a sharper response at normal x-ray incidence and a larger relative increase in blur along the x-ray incidence direction with respect to the blur in the

  8. Prototypes of Self-Powered Radiation Detectors Employing Intrinsic High-Energy Current (HEC) (POSTPRINT)

    Science.gov (United States)

    2016-01-01

    neutron sensi- tivities of a Pt self - powered detector ,” IEEE Trans. Nucl. Sci. 25, 292–295 (1978). 6T. A. Dellin, R. E. Huddleston, and C. J...Gamma-sensitive self - powered detectors and their use for in-core flux -mapping,” IEEE Trans. Nucl. Sci. 28, 752–757 (1981). 9E. A. Burke and J. Wall...AFCEC-CX-TY-TP-2016-0006 PROTOTYPES OF SELF - POWERED RADIATION DETECTORS EMPLOYING INTRINSIC HIGH-ENERGY CURRENT (HEC) (POSTPRINT) Piotr

  9. Field Deployable Gamma Radiation Detectors for DHS Use

    Energy Technology Data Exchange (ETDEWEB)

    Sanjoy Mukhopadhyay

    2007-08-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER{trademark}, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack{trademark} that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant

  10. Field Deployable Gamma Radiation Detectors for DHS Use

    International Nuclear Information System (INIS)

    Sanjoy Mukhopadhyay

    2007-01-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER(trademark), which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack(trademark) that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant

  11. Conceptual Design of Simulated Radiation Detector for Nuclear Forensics Exercise Purposes

    International Nuclear Information System (INIS)

    Kim, Jae Kwang; Baek, Ye Ji; Lee, Seung Min

    2016-01-01

    A site associated with an illicit trafficking or security event may contain trace evidence of criminal or malicious acts involving radioactive material. Such a site is called a radiological crime scene. Management of a radiological crime scene requires a process of ensuring an orderly accurate and effective collection and preservation of evidence. In order to effectively address such a security event, first responders and/or on-scene investigators need to exercise detecting, locating and recovering materials at the scene of the incident. During such the exercise, a sealed source can be used. This source is allowed to be a very small amount for exercises as there is the limit on the amount of radioactive material that causes no harm. So it is typically difficult to be found by some radiation detectors that the exercises have little effect on improving the ability of trainees. Therefore, we developed a conceptual design of a simulation radiation detector coupled with simulation sources which are designed to imitate a significant amount radioactive material for the purpose of a nuclear forensics exercise. With the potential of a terrorist attack using radioactive materials, the first responders should regularly perform the nuclear forensics exercise in order to prepare for a recovery operation. In this regard, some devices such as simulated detector, coupled with a virtual source, can replace a real detector and a surrogate source of material in field exercises. BLE technology could be applied to create similar environments to that of an actual radiological attack. The detector coupled with the simulated sources could be very helpful for first responders in testing and improving their ability in the case of a nuclear security event. In addition, this conceptual design could be extended to develop a simulated dosimeter coupled with a beacon signal emitters. The dosimeter is a personal device used for indicating the cumulated exposure of radiation in real time in the

  12. Conceptual Design of Simulated Radiation Detector for Nuclear Forensics Exercise Purposes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Kwang; Baek, Ye Ji; Lee, Seung Min [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2016-05-15

    A site associated with an illicit trafficking or security event may contain trace evidence of criminal or malicious acts involving radioactive material. Such a site is called a radiological crime scene. Management of a radiological crime scene requires a process of ensuring an orderly accurate and effective collection and preservation of evidence. In order to effectively address such a security event, first responders and/or on-scene investigators need to exercise detecting, locating and recovering materials at the scene of the incident. During such the exercise, a sealed source can be used. This source is allowed to be a very small amount for exercises as there is the limit on the amount of radioactive material that causes no harm. So it is typically difficult to be found by some radiation detectors that the exercises have little effect on improving the ability of trainees. Therefore, we developed a conceptual design of a simulation radiation detector coupled with simulation sources which are designed to imitate a significant amount radioactive material for the purpose of a nuclear forensics exercise. With the potential of a terrorist attack using radioactive materials, the first responders should regularly perform the nuclear forensics exercise in order to prepare for a recovery operation. In this regard, some devices such as simulated detector, coupled with a virtual source, can replace a real detector and a surrogate source of material in field exercises. BLE technology could be applied to create similar environments to that of an actual radiological attack. The detector coupled with the simulated sources could be very helpful for first responders in testing and improving their ability in the case of a nuclear security event. In addition, this conceptual design could be extended to develop a simulated dosimeter coupled with a beacon signal emitters. The dosimeter is a personal device used for indicating the cumulated exposure of radiation in real time in the

  13. Electronic alarm device for radioactivity detector associated with a direct current amplifier or with a integration-based counting assembly

    International Nuclear Information System (INIS)

    Desmaretz, Marc; Ferlicot, Rene

    1964-04-01

    The authors report the study of a device aimed at triggering sound and light alarms when a radiation detector associated with a direct current amplifier or with a counting assembly detects a radiation intensity greater than one or two previously defined thresholds. This device can be used at any time for a detection assembly which is not continuously monitored. It has been designed to be adapted to the CEA standard electronics currently used in installations and on which the alarm function had not been initially foreseen. The assembly comprises an additional safety device for the control of any untimely shutdown of the detection chain [fr

  14. X- and gamma-ray N+PP+ silicon detectors with high radiation resistance

    International Nuclear Information System (INIS)

    Petris, M.; Ruscu, R.; Moraru, R.; Cimpoca, V.

    1998-01-01

    We have investigated the use of p-type silicon detectors as starting material for X-and gamma-ray detectors because of several potential benefits it would bring: 1. high purity p-type silicon grown by the float-zone process exhibits better radial dopant uniformity than n-type float-zone silicon; 2. it is free of radiation damage due to the neutron transmutation doping process and behaves better in a radiation field because mainly acceptor like centers are created through the exposure and the bulk material type inversion does not occur as in the n-type silicon. But the p-type silicon, in combination with a passivating layer of silicon dioxide, leads to a more complex detector layout since the positive charge in the oxide causes an inversion in the surface layer under the silicon dioxide. Consequently, it would be expected that N + P diodes have a higher leakage current than P + N ones. All these facts have been demonstrated experimentally. These features set stringent requirements for the technology of p-type silicon detectors. Our work presents two new geometries and an improved technology for p-type high resistivity material to obtain low noise radiation detectors. Test structures were characterized before and after the gamma exposure with a cumulative dose in the range 10 4 - 5 x 10 6 rad ( 60 Co). Results indicate that proposed structures and their technology enable the development of reliable N + PP + silicon detectors. For some samples (0.8 - 12 mm 2 ), extremely low reverse currents were obtained and, in combination with a low noise charge preamplifier, the splitting of 241 Am X-ray lines was possible and also the Mn Kα line (5.9 keV) was extracted from the noise with a 1.9 keV FWHM at the room temperature. An experimental model of a nuclear probe based on these diodes was designed for X-ray detection applications. (authors)

  15. Amorphous silicon/crystalline silicon heterojunctions for nuclear radiation detector applications

    International Nuclear Information System (INIS)

    Walton, J.T.; Hong, W.S.; Luke, P.N.; Wang, N.W.; Ziemba, F.P.

    1996-10-01

    Results on characterization of electrical properties of amorphous Si films for the 3 different growth methods (RF sputtering, PECVD [plasma enhanced], LPCVD [low pressure]) are reported. Performance of these a-Si films as heterojunctions on high resistivity p-type and n- type crystalline Si is examined by measuring the noise, leakage current, and the alpha particle response of 5mm dia detector structures. It is demonstrated that heterojunction detectors formed by RF sputtered films and PECVD films are comparable in performance with conventional surface barrier detectors. Results indicate that the a-Si/c-Si heterojunctions have the potential to greatly simplify detector fabrication. Directions for future avenues of nuclear particle detector development are indicated

  16. Amorphous silicon/crystalline silicon heterojunctions for nuclear radiation detector applications

    International Nuclear Information System (INIS)

    Walton, J.T.; Hong, W.S.; Luke, P.N.; Wang, N.W.; Ziemba, F.P.

    1996-01-01

    Results on the characterization of the electrical properties of amorphous silicon films for the three different growth methods, RF sputtering, PECVD, and LPCVD are reported. The performance of these a-Si films as heterojunctions on high resistivity p-type and n-type crystalline silicon is examined by measuring the noise, leakage current and the alpha particle response of 5 mm diameter detector structures. It is demonstrated that heterojunction detectors formed by RF sputtered films and PECVD films are comparable in performance with conventional surface barrier detectors. The results indicate that the a-Si/c-Si heterojunctions have the potential to greatly simplify detector fabrication. Directions for future avenues of nuclear particle detector development are indicated

  17. Evaluation of a GEM and CAT-based detector for radiation therapy beam monitoring

    International Nuclear Information System (INIS)

    Brahme, A.; Danielsson, M.; Iacobaeus, C.; Ostling, J.; Peskov, V.; Wallmark, M.

    2000-01-01

    We are developing a radiation therapy beam monitor for the Karolinska Institute. This monitor will consist of two consecutive detectors confined in one gas chamber: a 'keV-photon detector', which will allow diagnostic quality visualization of the patient, and a 'MeV-photon detector', that will measure the absolute intensity of the therapy beam and its position with respect to the patient. Both detectors are based on highly radiation resistant gas and solid photon to electron converters, combined with GEMs and a CAT as amplification structures. We have performed systematic studies of the high-rate characteristics of the GEM and the CAT, as well as tested the electron transfer through these electron multipliers and various types of converters. The tests show that the GEM and the CAT satisfy all requirements for the beam monitoring system. As a result of these studies we successfully developed and tested a full section of the beam monitor equipped with a MeV-photon converter placed between the GEM and the CAT

  18. Contamination detector for inner surface of container

    International Nuclear Information System (INIS)

    Watanabe, Tadao.

    1995-01-01

    The present invention concerns a device for detecting contamination of radioactive materials on the inner surface of a vessel upon reutilizing the vessel for containing solidified radioactive wastes and transporting them. Namely, the detecting device has following functions. (1) A radiation detector detects the radioactive materials on the inner surface of the vessel. (2) A plurality of proximity switches measure the distance from the radiation detector to the wall surface of the vessel and are actuated if the distance is decreased to a predetermined value, (3) A vessel inner surface position calculation mechanism calculates the position of the inner surface of the vessel based on the information from a direction indicator and a height indicator. (4) A frontal limit detector detects the limit for allowing the radiation detector to proceed. (5) A vessel inner shape judging mechanism for judging the shape of the inner side of the vessel based on the signals from the proximity switches in a state where the frontal limit detector is operated and a vessel inner surface position signal outputted from the vessel inner surface position calculation mechanism. As a result, the shape of the inner side of the vessel can accurately be recognized, thereby improving accuracy of radiation measurement. (I.S.)

  19. Nuclear electronic equipment for control and monitoring panel. Specifications and methods for testing radiation detectors

    International Nuclear Information System (INIS)

    Roguin, Andre.

    1976-02-01

    This document will be of interest to users and makers of neutron and gamma radiations detectors in the field of nuclear reactor control and protection. Information is given which will enable users to optimize their choice and methods of using equipment, and makers to optimize their methods of fabrication. It should also serve as a model from which official specifications, technical instructions and test methods for these detectors, could be established. A detailed description is given of the appropriate parameters, terminology and notations. General specifications, operating conditions and test methods are indicated. The following detectors are studied: in-core detectors: fission ionization chambers, self powered neutron detectors (S.P.N.D.); out-core detectors: boron ionization chambers (for monitoring), boron trifluoride proportional counter tubes, boron lined proportional counter tubes, helium-3 proportional counter tubes. The devices described in the document are intended for industrial radiation monitoring applications and not for calibration standards (dosimetry) or for health physics measurement purposes. They are characterized by their fidelity, fast response, reliability and long lifetimes [fr

  20. Development of a sealed source radiation detector system for gamma ray scanning of petroleum distillation columns

    International Nuclear Information System (INIS)

    Vasquez Salvador, Pablo Antonio

    2004-01-01

    Gamma Ray Scanning is an online technique to 'view' the hydraulic performance of an operating column, with no disruption to operating processes conditions (pressure and temperature), as a cost-effective solution. The principle of this methodology consists of a small suitably sealed gamma radiation source and a radiation detector experimentally positioned to the column, moving concurrently in small increments on opposite sides and the quantity of gamma transmitted. The source-detector system consists of: a sealed ''6 0 Co radioactive source in a panoramic lead radiator, a scintillator detector coupled to a ratemeter / analyzer and a mobile system. In this work, a gamma scanning sealed source-detector system for distillation columns, was developed, comparing two scintillator detectors: NaI(Tl) (commercial) and CsI(Tl) (IPEN). In order to project the system, a simulated model of a tray-type distillation column was used. The equipment developed was tested in an industrial column for water treatment (6.5 m diameter and 40 m height). The required activities of 6 ''0Co, laboratory (11.1 MBq) and industrial works (1.48 TBq) were calculated by simulation software. Both, the NaI(Tl) and the CsI(Tl) detectors showed good proprieties for gamma scanning applications, determining the position and presence or absence of trays. (author)

  1. Characterization of photo-multiplier tube as ex-vessel radiation detector in tokamak

    Science.gov (United States)

    Jo, Jungmin; Cheon, MunSeong; Kim, Junghee; An, YoungHwa; Park, Seungil; Chung, Kyoung-Jae; Hwang, Y. S.

    2017-09-01

    Feasibility of using conventional photo-multiplier tubes (PMTs) without a scintillator as an ex-vessel radiation detector in a tokamak environment is studied. Basic irradiation tests using standard gamma ray sources and a d-d neutron generator showed that the PMT is responding both to gamma photons and neutrons, possibly due to the direct generation of secondary electrons inside the PMT by the impingement of high energy photons. Because of the selective sensitivity of the PMT to hard x-ray and neutrons in ohmic and neutral beam injected plasmas, respectively, it is shown that the PMT with certain configuration can be utilized either to monitor the fluctuation in the fusion neutron generation rate or to study the behavior of runaway electrons in tokamaks.

  2. Radiation damage of pixelated photon detector by neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Isamu [KEK, 1-1 Oho Tsukuba 305-0801 (Japan)], E-mail: isamu.nakamura@kek.jp

    2009-10-21

    Radiation Damage of Pixelated Photon Detector by neutron irradiation is reported. MPPC, one of PPD or Geiger-mode APD, developed by Hamamatsu Photonics, is planned to be used in many high energy physics experiments. In such experiments radiation damage is a serious issue. A series of neutron irradiation tests is performed at the Reactor YAYOI of the University of Tokyo. MPPCs were irradiated at the reactor up to 10{sup 12}neutron/cm{sup 2}. In this paper, the effect of neutron irradiation on the basic characteristics of PPD including gain, noise rate, photon detection efficiency is presented.

  3. Applications of noble gas radiation detectors to counter-terrorism

    International Nuclear Information System (INIS)

    Vanier, Peter E.; Forman, Leon

    2002-01-01

    Radiation detectors are essential tools in the detection, analysis and disposition of potential terrorist devices containing hazardous radioactive and/or fissionable materials. For applications where stand-off distance and source shielding are limiting factors, large detectors have advantages over small ones. The ability to distinguish between Special Nuclear Materials and false-positive signals from natural or man-made benign sources is also important. Ionization chambers containing compressed noble gases, notably xenon and helium-3, can be scaled up to very large sizes, improving the solid angle for acceptance of radiation from a distant source. Gamma spectrometers using Xe have a factor of three better energy resolution than NaI scintillators, allowing better discrimination between radioisotopes. Xenon detectors can be constructed so as to have extremely low leakage currents, enabling them to operate for long periods of time on batteries or solar cells. They are not sensitive to fluctuations in ambient temperature, and are therefore suitable for deployment in outdoor locations. Position-sensitive 3He chambers have been built as large as 3000 cm2, and with spatial resolution of less than 1 mm. Combined with coded apertures made of cadmium, they can be used to create images of thermal neutron sources. The natural background of spallation neutrons from cosmic rays generates a very low count rate, so this instrument could be quite effective at identifying a man-made source, such as a spontaneous fission source (Pu) in contact with a moderator (high explosive)

  4. Method of calibration for portable detectors of ionizing radiation

    International Nuclear Information System (INIS)

    Leal, Carlos; Carrizales, Lila; Guacaran, Douglas; Moreno, Ailed; Duran, Jose

    2008-01-01

    Full text: The LSCD is beginning a process of accreditation by the national authority of Venezuela (CENCAMER), so we felt the need to modify existing protocols calibration, suggested by the IAEA (Technical Reports Series No 133) to be adjusted in accordance with international standards of ISO 17025 EA-4/02 and Mexican standard NOM-021-NUCL-2002, adapting the calibration procedure of portable radiation detectors to those standards. The procedure used in the LSCD, conducts an intercomparison between measures between the standard reference and to calibrate the instrument, thus verifying the correct operation of the equipment and its usefulness to the individual or environmental radiation monitoring, not to exceed the limits primary for the public and occupationally Staff Exposed (POE), and propose a simple way to perform this calibration procedure and comply with the standard international and national standards, ensuring the proper functioning of the instruments calibrated. One of the calculations that has proven to be a useful tool in the verification of the conditions of operating the same, it is uncertainty, this procedure allows to characterize the response of individual detector, depending on the constraints specified by the manufacturer, to optimize the calibration is necessary to consider the multiple factors that can affect the measure and evaluate the response of the same, so it is vitally important estimating the typical uncertainty associated with the calibration technique employed, but this calculation is not trivial, depends on the type of detector found usually between 5% to 20%, both in uncertainty as the linearity, which are the parameters that are set to consider an instrument in good or bad condition. Typical are calibrated are: monitors air Geiger-Muller, Ionization cameras, detector of Neutron's, Proportional Counter, Personal dosimeters. (author)

  5. A semiconductor parameter analyzer for ionizing radiation detectors

    International Nuclear Information System (INIS)

    Santos, Luiz A.P.

    2009-01-01

    Electrometers and ion chamber are normally used to make several types of measurements in a radiation field and there is a unique voltage applied to each detector type. Some electronic devices that are built of semiconductor materials like silicon crystal can also be used for the same purpose. In this case, a characteristic curve of the device must be acquired to choose an operation point which consists of an electrical current or voltage to be applied to the device. Unlike ion chambers, such an electronic device can have different operation points depending on its current versus voltage curve (I x V). The best operation point of the device is also a function of the radiation, energy, dose rate and fluence. The purpose of this work is to show a semiconductor parameter analyzer built to acquire I x V curves as usually, and the innovation here is the fact that it can be used to obtain such a parametric curve when a quad-polar device is under irradiation. The results demonstrate that the system is a very important tool to scientists interested to evaluate a semiconductor detector before, during and after irradiation. A collection of results for devices under an X-ray beam and a neutron fluence are presented: photodiode, phototransistors, bipolar transistor and MOSFET. (author)

  6. Laser system for testing radiation imaging detector circuits

    Science.gov (United States)

    Zubrzycka, Weronika; Kasinski, Krzysztof

    2015-09-01

    Performance and functionality of radiation imaging detector circuits in charge and position measurement systems need to meet tight requirements. It is therefore necessary to thoroughly test sensors as well as read-out electronics. The major disadvantages of using radioactive sources or particle beams for testing are high financial expenses and limited accessibility. As an alternative short pulses of well-focused laser beam are often used for preliminary tests. There are number of laser-based devices available on the market, but very often their applicability in this field is limited. This paper describes concept, design and validation of laser system for testing silicon sensor based radiation imaging detector circuits. The emphasis is put on keeping overall costs low while achieving all required goals: mobility, flexible parameters, remote control and possibility of carrying out automated tests. The main part of the developed device is an optical pick-up unit (OPU) used in optical disc drives. The hardware includes FPGA-controlled circuits for laser positioning in 2 dimensions (horizontal and vertical), precision timing (frequency and number) and amplitude (diode current) of short ns-scale (3.2 ns) light pulses. The system is controlled via USB interface by a dedicated LabVIEW-based application enabling full manual or semi-automated test procedures.

  7. Quantitative analysis of polarization phenomena in CdTe radiation detectors

    International Nuclear Information System (INIS)

    Toyama, Hiroyuki; Higa, Akira; Yamazato, Masaaki; Maehama, Takehiro; Toguchi, Minoru; Ohno, Ryoichi

    2006-01-01

    Polarization phenomena in a Schottky-type CdTe radiation detector were studied. We evaluated the distribution of electric field in a biased CdTe detector by measuring the progressive change of Schottky barrier lowering with time. The parameters of deep acceptors such as detrapping time, concentration, and the depth of the energy level were quantitatively evaluated. In the case of applying the conventional model of charge accumulation, the obtained result shows that the CdTe bulk is never undepleted. We modified the charge accumulation model by taking account of the occupation state of the deep acceptor level. When a modified model is applied, the time that the depletion width in the bulk begins to diminish closely fits the time that the photopeak position begins to shift in radiation measurements. In this paper, we present a distribution of electric field during biasing and a simple method for the evaluation of the parameters of deep acceptors in CdTe bulk. (author)

  8. Directly-deposited blocking filters for high-performance silicon x-ray detectors

    Science.gov (United States)

    Bautz, M.; Kissel, S.; Masterson, R.; Ryu, K.; Suntharalingam, V.

    2016-07-01

    Silicon X-ray detectors often require blocking filters to mitigate noise and out-of-band signal from UV and visible backgrounds. Such filters must be thin to minimize X-ray absorption, so direct deposition of filter material on the detector entrance surface is an attractive approach to fabrication of robust filters. On the other hand, the soft (E OD 6) care must be taken to prevent light from entering the sides and mounting surfaces of the detector. Our methods have been used to deposit filters on the detectors of the REXIS instrument scheduled to fly on OSIRIS-ReX later this year.

  9. Manufacturing of different gel detectors and their calibration for spatial radiation dose measurements

    International Nuclear Information System (INIS)

    Bero, M.

    2008-05-01

    Three types of gel dosemeter have been made and their most important properties for radiation dosimetry were studied. The comparison between the three categories helps to widen knowledge in each of these detectors and to establish a method for the preparation as well as testing of this radiation sensitive materials. Experiments show the technical application possibility for using these gel detectors to measure the spatial radiation dose distribution in the range of doses given for cancer treatment. The experimental results give some important characteristic for the three gel dosemeter used in comparison to that of the traditional dosimetry systems. It also shows the simplicity of manufacturing the dosemeter from low cost materials and its radiation response to ionizing. The relationships between the dosemeter response and the dose rate as well as the radiation energy were also investigated. Important subjects that have been also taken into consideration are the effects of ambient conditions and storage likelihood of the studied materials. Recommendation was made for the use of these materials in practical applications and for handling as well as their long term storage possibility. (author)

  10. Instrumentation for beam radiation and luminosity measurement in the CMS experiment using novel detector technologies

    CERN Document Server

    Guthoff, Moritz

    2017-01-01

    The higher energy and luminosity of the LHC initiated the development of dedicated technologies for radiation monitoring and luminosity measurement. A pixelated luminosity detector counts coincidences in several three layer telescopes of silicon pixel detectors to measure the luminosity for each colliding LHC bunch pair. In addition, charged particle tracking allows to monitor the location of the collision point.The upgraded fast beam conditions monitor measures the particle flux using 24 two pad single crystalline diamond sensors, equipped with a fast front-end ASIC produced in 130 nm CMOS technology. The excellent time resolution is used to separate collision products from machine induced background.A new beam-halo monitor at larger radius exploits Cerenkov light produced by relativistic charged particles in fused quartz crystals to provide direction sensitivity and time resolution to separate incoming and outgoing particles. The back-end electronics of the beam monitoring systems includes dedicated modules...

  11. Cherenkov Detector for Beam Quality Measurement

    CERN Document Server

    AUTHOR|(CDS)2078842

    2016-01-01

    A new detector to measure the machine induced background at larger radiihas been developed and installed in the CMS experiment at LHC. Itconsists of 40 modules, each comprising a quartz bar read out by aphotomultiplier. Since Cerenkov radiation is emitted in a forward conearound the charged particle trajectory, these detectors can distinguishthe directions of the machine induced background.The back-end consists of a microTCA readout with excellent time resolution.The performance of the detector modules measured in several test-beamcampaigns will be reported. The installation in CMS will be described, andfirst results about operating the detector during data taking will begiven.

  12. Can direct electron detectors outperform phosphor-CCD systems for TEM?

    Energy Technology Data Exchange (ETDEWEB)

    Moldovan, G; Li, X; Kirkland, A [Department of Materials, University of Oxford, Parks Road, Oxford, 0X1 3PH (United Kingdom)], E-mail: grigore.moldovan@materials.ox.ac.uk

    2008-08-15

    A new generation of imaging detectors is being considered for application in TEM, but which device architectures can provide the best images? Monte Carlo simulations of the electron-sensor interaction are used here to calculate the expected modulation transfer of monolithic active pixel sensors (MAPS), hybrid active pixel sensors (HAPS) and double sided Silicon strip detectors (DSSD), showing that ideal and nearly ideal transfer can be obtained using DSSD and MAPS sensors. These results highly recommend the replacement of current phosphor screen and charge coupled device imaging systems with such new directly exposed position sensitive electron detectors.

  13. Transition radiation detector of the experience NOMAD for the τ identification in the channel: τ- → e-ν-bare ντ

    International Nuclear Information System (INIS)

    Fazio, T.

    1995-01-01

    This thesis presents a work included in an experiment of research concerning neutrino oscillations in the channel ν μ → ν τ at CERN (NOMAD-WA96). This experiments need several detectors, and particularly a transition radiation detector with specific characteristics. The work consists, in a first part, in the study of neutrino physic and of the NOMAD detector. In a second part, the report presents how was implemented the transition radiation detector and how works the simulation of a such radiation. Then, the detector is optimised by comparing experiments and simulations; the thesis also presents how to control the detector. The last part talks about algorithms of pions-electrons separation. (TEC). 95 refs., 78 figs., 12 tabs

  14. Studying radiative B decays with the Atlas detector; Etude des desintegrations radiatives des mesons B dans le detecteur ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Viret, S

    2004-09-01

    This thesis is dedicated to the study of radiative B decays with the ATLAS detector at the LHC (large hadron collider). Radiative decays belong to the rare decays family. Rare decays transitions involve flavor changing neutral currents (for example b {yields} s{gamma}), which are forbidden at the lowest order in the Standard Model. Therefore these processes occur only at the next order, thus involving penguin or box diagrams, which are very sensitive to 'new physics' contributions. The main goal of our study is to show that it would be possible to develop an online selection strategy for radiative B decays with the ATLAS detector. To this end, we have studied the treatment of low energy photons by the ATLAS electromagnetic calorimeter (ECal). Our analysis shows that ATLAS ECal will be efficient with these particles. This property is extensively used in the next section, where a selection strategy for radiative B decays is proposed. Indeed, we look for a low energy region of interest in the ECal as soon as the level 1 of the trigger. Then, photon identification cuts are performed in this region at level 2. However, a large part of the proposed selection scheme is also based on the inner detector, particularly at level 2. The final results show that large amounts of signal events could be collected in only one year by ATLAS. A preliminary significance (S/{radical}B) estimation is also presented. Encouraging results concerning the observability of exclusive radiative B decays are obtained. (author)

  15. Studying radiative B decays with the Atlas detector; Etude des desintegrations radiatives des mesons B dans le detecteur ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Viret, S

    2004-09-01

    This thesis is dedicated to the study of radiative B decays with the ATLAS detector at the LHC (large hadron collider). Radiative decays belong to the rare decays family. Rare decays transitions involve flavor changing neutral currents (for example b {yields} s{gamma}), which are forbidden at the lowest order in the Standard Model. Therefore these processes occur only at the next order, thus involving penguin or box diagrams, which are very sensitive to 'new physics' contributions. The main goal of our study is to show that it would be possible to develop an online selection strategy for radiative B decays with the ATLAS detector. To this end, we have studied the treatment of low energy photons by the ATLAS electromagnetic calorimeter (ECal). Our analysis shows that ATLAS ECal will be efficient with these particles. This property is extensively used in the next section, where a selection strategy for radiative B decays is proposed. Indeed, we look for a low energy region of interest in the ECal as soon as the level 1 of the trigger. Then, photon identification cuts are performed in this region at level 2. However, a large part of the proposed selection scheme is also based on the inner detector, particularly at level 2. The final results show that large amounts of signal events could be collected in only one year by ATLAS. A preliminary significance (S/{radical}B) estimation is also presented. Encouraging results concerning the observability of exclusive radiative B decays are obtained. (author)

  16. Electrical properties study under radiation of the 3D-open-shell-electrode detector

    Directory of Open Access Journals (Sweden)

    Manwen Liu

    2018-05-01

    Full Text Available Since the 3D-Open-Shell-Electrode Detector (3DOSED is proposed and the structure is optimized, it is important to study 3DOSED’s electrical properties to determine the detector’s working performance, especially in the heavy radiation environments, like the Large Hadron Collider (LHC and it’s upgrade, the High Luminosity (HL-LHC at CERN. In this work, full 3D technology computer-aided design (TCAD simulations have been done on this novel silicon detector structure. Simulated detector properties include the electric field distribution, the electric potential distribution, current-voltage (I-V characteristics, capacitance-voltage (C-V characteristics, charge collection property, and full depletion voltage. Through the analysis of calculations and simulation results, we find that the 3DOSED’s electric field and potential distributions are very uniform, even in the tiny region near the shell openings with little perturbations. The novel detector fits the designing purpose of collecting charges generated by particle/light in a good fashion with a well defined funnel shape of electric potential distribution that makes these charges drifting towards the center collection electrode. Furthermore, by analyzing the I-V, C-V, charge collection property and full depletion voltage, we can expect that the novel detector will perform well, even in the heavy radiation environments.

  17. FPGA-based GEM detector signal acquisition for SXR spectroscopy system

    Science.gov (United States)

    Wojenski, A.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Zabolotny, W.; Chernyshova, M.; Czarski, T.; Malinowski, K.

    2016-11-01

    The presented work is related to the Gas Electron Multiplier (GEM) detector soft X-ray spectroscopy system for tokamak applications. The used GEM detector has one-dimensional, 128 channel readout structure. The channels are connected to the radiation-hard electronics with configurable analog stage and fast ADCs, supporting speeds of 125 MSPS for each channel. The digitalized data is sent directly to the FPGAs using fast serial links. The preprocessing algorithms are implemented in the FPGAs, with the data buffering made in the on-board 2Gb DDR3 memory chips. After the algorithmic stage, the data is sent to the Intel Xeon-based PC for further postprocessing using PCI-Express link Gen 2. For connection of multiple FPGAs, PCI-Express switch 8-to-1 was designed. The whole system can support up to 2048 analog channels. The scope of the work is an FPGA-based implementation of the recorder of the raw signal from GEM detector. Since the system will work in a very challenging environment (neutron radiation, intense electro-magnetic fields), the registered signals from the GEM detector can be corrupted. In the case of the very intense hot plasma radiation (e.g. laser generated plasma), the registered signals can overlap. Therefore, it is valuable to register the raw signals from the GEM detector with high number of events during soft X-ray radiation. The signal analysis will have the direct impact on the implementation of photon energy computation algorithms. As the result, the system will produce energy spectra and topological distribution of soft X-ray radiation. The advanced software was developed in order to perform complex system startup and monitoring of hardware units. Using the array of two one-dimensional GEM detectors it will be possible to perform tomographic reconstruction of plasma impurities radiation in the SXR region.

  18. Radiation damage measurements in room-temperature semiconductor radiation detectors

    CERN Document Server

    Franks, L A; Olsen, R W; Walsh, D S; Vizkelethy, G; Trombka, J I; Doyle, B L; James, R B

    1999-01-01

    The literature of radiation damage measurements on cadmium zinc telluride (CZT), cadmium telluride (CT), and mercuric iodide (HgI sub 2) is reviewed and in the case of CZT supplemented by new alpha particle data. CZT strip detectors exposed to intermediate energy (1.3 MeV) proton fluences exhibit increased interstrip leakage after 10 sup 1 sup 0 p/cm sup 2 and significant bulk leakage after 10 sup 1 sup 2 p/cm sup 2. CZT exposed to 200 MeV protons shows a two-fold loss in energy resolution after a fluence of 5x10 sup 9 p/cm sup 2 in thick (3 mm) planar devices but little effect in 2 mm devices. No energy resolution effects were noted from a moderated fission spectrum of neutrons after fluences up to 10 sup 1 sup 0 n/cm sup 2 , although activation was evident. Exposures of CZT to 5 MeV alpha particles at fluences up to 1.5x10 sup 1 sup 0 alpha/cm sup 2 produced a near linear decrease in peak position with fluence and increases in FWHM beginning at about 7.5x10 sup 9 alpha/cm sup 2. CT detectors show resolution...

  19. Radiation dose of digital tomosynthesis for sinonasal examination: comparison with multi-detector CT.

    Science.gov (United States)

    Machida, Haruhiko; Yuhara, Toshiyuki; Tamura, Mieko; Numano, Tomokazu; Abe, Shinji; Sabol, John M; Suzuki, Shigeru; Ueno, Eiko

    2012-06-01

    Using an anthropomorphic phantom, we have investigated the feasibility of digital tomosynthesis (DT) of flat-panel detector (FPD) radiography to reduce radiation dose for sinonasal examination compared to multi-detector computed tomography (MDCT). A female Rando phantom was scanned covering frontal to maxillary sinus using the clinically routine protocol by both 64-detector CT (120 kV, 200 mAs, and 1.375-pitch) and DT radiography (80 kV, 1.0 mAs per projection, 60 projections, 40° sweep, and posterior-anterior projections). Glass dosimeters were used to measure the radiation dose to internal organs including the thyroid gland, brain, submandibular gland, and the surface dose at various sites including the eyes during those scans. We compared the radiation dose to those anatomies between both modalities. In DT radiography, the doses of the thyroid gland, brain, submandibular gland, skin, and eyes were 230 ± 90 μGy, 1770 ± 560 μGy, 1400 ± 80 μGy, 1160 ± 2100 μGy, and 112 ± 6 μGy, respectively. These doses were reduced to approximately 1/5, 1/8, 1/12, 1/17, and 1/290 of the respective MDCT dose. For sinonasal examinations, DT radiography enables dramatic reduction in radiation exposure and dose to the head and neck region, particularly to the lens of the eye. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Radiation measurement

    International Nuclear Information System (INIS)

    Go, Sung Jin; Kim, Seung Guk; No, Gyeong Seok; Park, Myeong Hwan; Ann, Bong Seon

    1998-03-01

    This book explains technical terms about radiation measurement, which are radiation, radiation quantity and unit such as prefix of international unit, unit for defence purposes of radiation, coefficient of radiation and interaction, kinds and principles of radiation detector, ionization chamber, G-M counter, G-M tube, proportional counter, scintillation detector, semiconductor radiation detector, thermoluminescence dosimeter, PLD, others detector, radiation monitor, neutron detector, calibration of radiation detector, statistics of counting value, activation analysis and electronics circuit of radiation detector.

  1. Modeling Radiation Damage Effects in 3D Pixel Digitization for the ATLAS Detector

    CERN Document Server

    Giugliarelli, Gilberto; The ATLAS collaboration

    2018-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS experiment. They constitute the part of ATLAS closest to the interaction point and for this reason they will be exposed – over their lifetime – to a significant amount of radiation: prior to the HL-LHC, the innermost layers will receive a fluence of 10^15 neq/cm2 and their HL–LHC upgrades will have to cope with an order of magnitude higher fluence integrated over their lifetimes. This poster presents the details of a new digitization model that includes radiation damage effects to the 3D Pixel sensors for the ATLAS Detector.

  2. Analysis of self-powered gamma ray detector with directional discrimination

    International Nuclear Information System (INIS)

    Levert, F.E.; Beyerlein, R.A.; Cox, S.A.

    1979-01-01

    The results of a combined Monte Carlo simulation and experimental investigation of the directional and energy dependent response of a self-powered gamma detector with a flat plate Pb-C central electrode are presented. The electron yield of the central electrode in a three dimensional mockup of the detector was calculated for photons of several discrete energies, emanating from an infinitely thin planar source, incident on the outer surface of the detector. Separate computations were done with the source facing the lead side and carbon side of the central electrode. Experimental measurements with a detector that closely matched the design used in the simulation were conducted in a graphite column next to a neutron leakage face of a low flux reactor. A localized gamma ray source was created by positioning a 235 U strip between the leakage face of the reactor and the detector. A comparison of results obtained in both cases showed good agreement. Also experimental measurements to determine the effect of the thickness of lead shielding surrounding the outer wall of the detector and space charge in the vacuum insulator between the central electrode and the inner wall on the response of the detector were performed. (Auth.)

  3. Radiation hardness of silicon detectors manufactured on epitaxial material and FZ bulk enriched with oxygen, carbon, tin and platinum

    CERN Document Server

    Ruzin, A; Glaser, M; Lemeilleur, F; Talamonti, R; Watts, S; Zanet, A

    1999-01-01

    Recent results on the radiation hardness of silicon detectors fabricated on epitaxial and float zone bulk silicon enriched by various impurities, such as carbon, oxygen, tin and platinum are reported. A new methodology of measurements of electrical properties of the devices has been utilized in the experiment. It has been shown that in the case of irradiation by protons, oxygen enriched silicon has better radiation hardness than standard float zone silicon. The carbon enriched silicon detectors, on the other hand, exhibited significantly inferior radiation hardness compared to standard detectors. This study shows for the first time, a violation of the widely used normalization technique of the various particle irradiations by NIEL coefficients. The study has been carried out in the framework of the RD48 (ROSE) collaboration, which studies the radiation hardening of silicon detectors. (5 refs).

  4. Mixed ionic-electronic conductor-based radiation detectors and methods of fabrication

    Science.gov (United States)

    Conway, Adam; Beck, Patrick R; Graff, Robert T; Nelson, Art; Nikolic, Rebecca J; Payne, Stephen A; Voss, Lars; Kim, Hadong

    2015-04-07

    A method of fabricating a mixed ionic-electronic conductor (e.g. TlBr)-based radiation detector having halide-treated surfaces and associated methods of fabrication, which controls polarization of the mixed ionic-electronic MIEC material to improve stability and operational lifetime.

  5. Method for the preparation of n-i-p type radiation detector from silicon

    International Nuclear Information System (INIS)

    Keleti, J.; Toeroek, T.; Lukacs, J.; Molnar, I.

    1978-01-01

    The patent describes a procedure for the preparation of n-i-p type silicon radiation detectors. The aim was to provide an adaquate procedure for the production of α, β, γ-detectors from silicon available on the market, either p-type single crystal silicon characterised by its boron level. The procedure and the 9 claims are illustrated by two examples. (Sz.J.)

  6. Temperature Dependency and Alpha Response of Semi-Insulating GaAs Schottky Radiation Detector at Low Bias Voltage

    International Nuclear Information System (INIS)

    Kang, Sang Mook; Ha, Jang Ho; Park, Se Hwan; Kim, Han Soo; Kim, Yong Kyun

    2009-01-01

    The last decade has seen a growing interest in semiconductor radiation detectors operated at room or nearly room temperature. Great efforts have been invested in the development of radiation detectors based on semi-insulating (SI) GaAs. The main reasons are as follows: (i) high resistance against radiation damage; (ii) it possesses a good energy resolution, which relates to its active volume; (iii) such a detector also exhibits fast signal rise times, which results from a high mobility and drift velocity of charge carriers; (iv) its large band gap energy allows a SI GaAs detector to operate at room temperature. Other important features are a good technology base and low production and operating costs. An alpha particle monitoring method for the detection of Pu-238 and U-235 is becoming important in homeland security. Alpha measurement in a vacuum is known to provide a good resolution sufficient to separate an isotope abundance in nuclear materials. However, in order to apply it to a high radiation field like a spent fuel treatment facility, a nuclear material loading and unloading process in a vacuum is one of the great disadvantages. Therefore, the main technical issue is to develop a detector for alpha detection at air condition and low power operation for integration type device. In this study we fabricated GaAs Schottky detector by using semi-insulating (SI) wafer and measured current-voltage characteristic curve and alpha response with 5.5 MeV Am-241 source

  7. Assessment of radiation exposure of nuclear medicine staff using personal TLD dosimeters and charcoal detectors

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, F.; Garcia-Talavera, M.; Pardo, R.; Deban, L. [Valladolid Univ., Dept. de Quimica Analitica, Facultad de Ciencias (Spain); Garcia-Talavera, P.; Singi, G.M.; Martin, E. [Hospital Clinico Univ., Servicio de Medicina Nuclear, Salamanca (Spain)

    2006-07-01

    Although the main concern regarding exposure to ionizing radiation for nuclear medicine workers is external radiation, inhalation of radionuclides can significantly contribute to the imparted doses. We propose a new approach to assess exposure to inhalation of {sup 131}I based on passive monitoring using activated charcoal detectors. We compared the inhalation doses to the staff of a nuclear medicine department, based on the measurements derived from charcoal detectors placed at various locations, and the external doses monitored using personal TLD dosimeters. (authors)

  8. Assessment of radiation exposure of nuclear medicine staff using personal TLD dosimeters and charcoal detectors

    International Nuclear Information System (INIS)

    Jimenez, F.; Garcia-Talavera, M.; Pardo, R.; Deban, L.; Garcia-Talavera, P.; Singi, G.M.; Martin, E.

    2006-01-01

    Although the main concern regarding exposure to ionizing radiation for nuclear medicine workers is external radiation, inhalation of radionuclides can significantly contribute to the imparted doses. We propose a new approach to assess exposure to inhalation of 131 I based on passive monitoring using activated charcoal detectors. We compared the inhalation doses to the staff of a nuclear medicine department, based on the measurements derived from charcoal detectors placed at various locations, and the external doses monitored using personal TLD dosimeters. (authors)

  9. Development of bonded semiconductor device for high counting rate high efficiency photon detectors

    International Nuclear Information System (INIS)

    Kanno, Ikuo

    2008-01-01

    We are trying to decrease dose exposure in medical diagnosis by way of measuring the energy of X-rays. For this purpose, radiation detectors for X-ray energy measurement with high counting rate should be developed. Direct bonding of Si wafers was carried out to make a radiation detector, which had separated X-ray absorber and detector. The resistivity of bonding interface was estimated with the results of four-probe measurements and model calculations. Direct bonding of high resistivity p and n-Si wafers was also performed. The resistance of the pn bonded diode was 0.7 MΩ. The resistance should be increased in the future. (author)

  10. Development of an underwater Cherenkov detector to reveal sources of technogenic radionuclides

    International Nuclear Information System (INIS)

    Chernyaev, A.M.; Gaponov, I.A.; Lapushkina, L.V.

    1999-01-01

    The major difference of the Cherenkov underwater detector from a scintillation detector is that its operation does not require a primary transducer (scintillator). Detected particle energy conversion into a light flash occurs directly in sea water (radiator) due to the Cherenkov effect. Consequently, photoreceiver of the underwater Cherenkov detector registers light from radiator of actually infinite volume. The circumstance is of principle importance, as it permits attaining the utmost sensitivity in case of the minimal overall dimensions and weight of detecting equipment

  11. A Self-Powered Thin-Film Radiation Detector Using Intrinsic High-Energy Current (HEC) (Author’s Final Version)

    Science.gov (United States)

    2016-09-08

    of electromagnetic 85 pulse effects on cables and electrical devices4 and as a self - powered detector for in-core neutron flux measurement in nuclear...AFCEC-CX-TY-TP-2016-0003 A SELF - POWERED THIN-FILM RADIATION DETECTOR USING INTRINSIC HIGH-ENERGY CURRENT (HEC) (AUTHOR’S FINAL VERSION...14 -- 5 Oct 15 A self - powered thin-film radiation detector using intrinsic high-energy current (HEC) (Author’s Final Version) FA8051-15-P-0010

  12. Three-axis asymmetric radiation detector system

    Science.gov (United States)

    Martini, Mario Pierangelo; Gedcke, Dale A.; Raudorf, Thomas W.; Sangsingkeow, Pat

    2000-01-01

    A three-axis radiation detection system whose inner and outer electrodes are shaped and positioned so that the shortest path between any point on the inner electrode and the outer electrode is a different length whereby the rise time of a pulse derived from a detected radiation event can uniquely define the azimuthal and radial position of that event, and the outer electrode is divided into a plurality of segments in the longitudinal axial direction for locating the axial location of a radiation detection event occurring in the diode.

  13. Germanium nitride and oxynitride films for surface passivation of Ge radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Maggioni, G., E-mail: maggioni@lnl.infn.it [Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Carturan, S. [Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Fiorese, L. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Dipartimento di Ingegneria dei Materiali e delle Tecnologie Industriali, Università di Trento, Via Mesiano 77, I-38050 Povo, Trento (Italy); Pinto, N.; Caproli, F. [Scuola di Scienze e Tecnologie, Sezione di Fisica, Università di Camerino, Via Madonna delle Carceri 9, Camerino (Italy); INFN, Sezione di Perugia, Perugia (Italy); Napoli, D.R. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Giarola, M.; Mariotto, G. [Dipartimento di Informatica—Università di Verona, Strada le Grazie 15, I-37134 Verona (Italy)

    2017-01-30

    Highlights: • A surface passivation method for HPGe radiation detectors is proposed. • Highly insulating GeNx- and GeOxNy-based layers are deposited at room temperature. • Deposition parameters affect composition and electrical properties of the layers. • The improved performance of a GeNx-coated HPGe diode is assessed. - Abstract: This work reports a detailed investigation of the properties of germanium nitride and oxynitride films to be applied as passivation layers to Ge radiation detectors. All the samples were deposited at room temperature by reactive RF magnetron sputtering. A strong correlation was found between the deposition parameters, such as deposition rate, substrate bias and atmosphere composition, and the oxygen and nitrogen content in the film matrix. We found that all the films were very poorly crystallized, consisting of very small Ge nitride and oxynitride nanocrystallites, and electrically insulating, with the resistivity changing from three to six orders of magnitude as a function of temperature. A preliminary test of these films as passivation layers was successfully performed by depositing a germanium nitride film on the intrinsic surface of a high-purity germanium (HPGe) diode and measuring the improved performance, in terms of leakage current, with respect to a reference passivated diode. All these interesting results allow us to envisage the application of this coating technology to the surface passivation of germanium-based radiation detectors.

  14. Radiation-damage studies, irradiations and high-dose dosimetry for LHC detectors

    CERN Document Server

    Coninckx, F; León-Florián, E; Leutz, H; Schönbacher, Helmut; Sonderegger, P; Tavlet, Marc; Sopko, B; Henschel, H; Schmidt, H U; Boden, A; Bräunig, D; Wulf, F; Cramariuc, R; Ilie, D; Fattibene, P; Onori, S; Miljanic, S; Paic, G; Razen, B; Razem, D; Rendic, D; CERN. Geneva. Detector Research and Development Committee

    1991-01-01

    The proposal is divided into a main project and special projects. The main project consists of a service similar to the one given in the past to accelerator construction projects at CERN (ISR,SPS,LEP) on high-dose dosimetry, material irradiations, irradiations tests, standardization of test procedures and data compilations. Large experience in this field and numerous radiation damage test data of insulating and structural materials are available. The special projects cover three topics which are of specific interest for LHC detector physicists and engineers at CERN and in other high energy physics institutes, namely: Radiation effects in scintillators; Selection of radiation hard optical fibres for data transmission; and Selection and testing of radiation hard electronic components.

  15. Development of a novel gamma probe for detecting radiation direction

    Science.gov (United States)

    Pani, R.; Pellegrini, R.; Cinti, M. N.; Longo, M.; Donnarumma, R.; D'Alessio, A.; Borrazzo, C.; Pergola, A.; Ridolfi, S.; De Vincentis, G.

    2016-01-01

    Spatial localization of radioactive sources is currently a main issue interesting different fields, including nuclear industry, homeland security as well as medical imaging. It is currently achieved using different systems, but the development of technologies for detecting and characterizing radiation is becoming important especially in medical imaging. In this latter field, radiation detection probes have long been used to guide surgery, thanks to their ability to localize and quantify radiopharmaceutical uptake even deep in tissue. Radiolabelled colloid is injected into, or near to, the tumor and the surgeon uses a hand-held radiation detector, the gamma probe, to identify lymph nodes with radiopharmaceutical uptkake. The present work refers to a novel scintigraphic goniometric probe to identify gamma radiation and its direction. The probe incorporates several scintillation crystals joined together in a particular configuration to provide data related to the position of a gamma source. The main technical characteristics of the gamma locator prototype, i.e. sensitivity, spatial resolution and detection efficiency, are investigated. Moreover, the development of a specific procedure applied to the images permits to retrieve the source position with high precision with respect to the currently used gamma probes. The presented device shows a high sensitivity and efficiency to identify gamma radiation taking a short time (from 30 to 60 s). Even though it was designed for applications in radio-guided surgery, it could be used for other purposes, as for example homeland security.

  16. Development of a novel gamma probe for detecting radiation direction

    International Nuclear Information System (INIS)

    Pani, R.; Pellegrini, R.; Cinti, M.N.; Longo, M.; Donnarumma, R.; Borrazzo, C.; D'Alessio, A.; Pergola, A.; Ridolfi, S.; Vincentis, G. De

    2016-01-01

    Spatial localization of radioactive sources is currently a main issue interesting different fields, including nuclear industry, homeland security as well as medical imaging. It is currently achieved using different systems, but the development of technologies for detecting and characterizing radiation is becoming important especially in medical imaging. In this latter field, radiation detection probes have long been used to guide surgery, thanks to their ability to localize and quantify radiopharmaceutical uptake even deep in tissue. Radiolabelled colloid is injected into, or near to, the tumor and the surgeon uses a hand-held radiation detector, the gamma probe, to identify lymph nodes with radiopharmaceutical uptkake. The present work refers to a novel scintigraphic goniometric probe to identify gamma radiation and its direction. The probe incorporates several scintillation crystals joined together in a particular configuration to provide data related to the position of a gamma source. The main technical characteristics of the gamma locator prototype, i.e. sensitivity, spatial resolution and detection efficiency, are investigated. Moreover, the development of a specific procedure applied to the images permits to retrieve the source position with high precision with respect to the currently used gamma probes. The presented device shows a high sensitivity and efficiency to identify gamma radiation taking a short time (from 30 to 60 s). Even though it was designed for applications in radio-guided surgery, it could be used for other purposes, as for example homeland security

  17. A directional gamma-ray detector based on scintillator plates

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, D., E-mail: hanna@physics.mcgill.ca; Sagnières, L.; Boyle, P.J.; MacLeod, A.M.L.

    2015-10-11

    A simple device for determining the azimuthal location of a source of gamma radiation, using ideas from astrophysical gamma-ray burst detection, is described. A compact and robust detector built from eight identical modules, each comprising a plate of CsI(Tl) scintillator coupled to a photomultiplier tube, can locate a point source of gamma rays with degree-scale precision by comparing the count rates in the different modules. Sensitivity to uniform environmental background is minimal.

  18. Test and further development of a silicon picsel detector for detecting ionising radiation

    International Nuclear Information System (INIS)

    Lechner, P.

    1990-12-01

    The concept of a silicon detector with a MOSFET as an integrating amplification element (DEP-MOSFET) is introduced. The method of functioning of different version and a picture cell (picsel) detector, which makes energy and location resolution possible, is discussed. Quantitative relationships which describe the operation of the component as a detector, and quantitative relationships for the energy resolution of a DEP-MOSFET are derived theoretically. Measurements provide the proof of the detection function of different versions and the confirmation of the results of the theoretical model. The excellent noise properties of DEP-MOSFET detectors with closed structure are pointed out. The further development of the explained detector concept by integration of a JFET as the amplifying element (here introduced in the form of a computer simulation and quantitative relationships which describe the behaviour as a detector) promises progress with regard to energy resolution and radiation resistance, and offers the possibility of producing a picsel detector made from closed structures with little technological effort. (orig.) [de

  19. Analysis of the direct x-ray absorption noise in phosphor-coupled CMOS detectors

    International Nuclear Information System (INIS)

    Han, Jong Chul; Yun, Seung Man; Kim, Ho Kyung; Cunningham, Ian; Achterkirchen, Thorsten

    2009-01-01

    It is known that the indirect conversion detectors have an NPS (noise power spectrum), which decreases with the spatial frequency, and the direct conversion detector have a nearly constant NPS with the spatial frequency (or white NPS). This explains that when a significant amount of x rays are not absorbed in the phosphor layer, then the additional absorption of x-rays in the semiconductor layers (or the photodiodes) with their white noise contributions degrades the total NPS performance. From the fact, we investigated how the direct x-ray affects CMOS detectors in terms of NPS and DQE (detective quantum efficiency)

  20. Slow scan sit detector for x-ray diffraction studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Milch, J.R.

    1978-01-01

    A TV-type x-ray detector using a SIT vidicon has been used for biological diffraction studies at the EMBL outstation at DESY, Hamburg, Germany. The detector converts the two-dimensional diffraction pattern to a charge pattern on the vidicon target, which is read out in the slow-scan mode. This detector has high DOE, no count-rate limit, and is simple and inexpensive to construct. Radiation from the storage ring DORIS was used to study the structure of live muscle at various phases of contraction. Typically the count-rate on the detector was 10 6 x-rays/sec and a total exposure of a few seconds was needed to record the weak diffraction from muscle. This compares with usual exposure times of several hours using a rotating anode generator and film

  1. Development of TiBr semiconductor crystal for applications as radiation detector and photodetector

    International Nuclear Information System (INIS)

    Oliveira, Icimone Braga de

    2006-01-01

    In this work, Tlbr crystals were grown by the Bridgman method from zone melted materials. The influence of the purification efficiency and the crystalline surface quality on the crystal were studied, evaluating its performance as a radiation detector. Due to significant improvement in the purification and crystals growth, good results have been obtained for the developed detectors. The spectrometric performance of the Tlbr detector was evaluated by 241 Am (59 keV), 133 Ba (80 e 355 keV), 57 Co (122 keV), 22 Na (511 keV) and 137 Cs (662 keV) at room temperature. The best energy resolution results were obtained from purer detectors. Energy resolutions of 10 keV (16%), 12 keV (15%), 12 keV (10%), 28 keV (8%), 31 keV (6%) and 36 keV (5%) to 59, 80, 122, 355, 511 and 662 keV energies, respectively, were obtained. A study on the detection response at -20 deg C was also carried out, as well as the detector stability in function of the time. No significant difference was observed in the energy resolution between measurements at both temperatures. It was observed that the detector instability causes degradation of the spectroscopic characteristics during measurements at room temperature and the instability varies for each detector. This behavior was also verified by other authors. The viability to use the developed Tlbr crystal as a photodetector coupled to scintillators crystals was also studied in this work. Due to its quantum efficiency in the region from 350 to 500 nm, Tlbr shows to be a promising material to be used as a photodetector. As a possible application of this work, the development of a surgical probe has been initiated using the developed Tlbr crystal as the radiation detector of the probe. (author)

  2. Design of a synchrotron radiation detector for the test beam lines at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Hutton, R.D.

    1994-01-01

    As part of the particle- and momentum-tagging instrumentation required for the test beam lines of the Superconducting Super Collider (SSC), the synchrotron radiation detector (SRD) was designed to provide electron tagging at momentum above 75 GeV. In a parallel effort to the three test beam lines at the SSC, schedule demands required testing and calibration operations to be initiated at Fermilab. Synchrotron radiation detectors also were to be installed in the NM and MW beam lines at Femilab before the test beam lines at the SSC would become operational. The SRD is the last instrument in a series of three used in the SSC test beam fines. It follows a 20-m drift section of beam tube downstream of the last silicon strip detector. A bending dipole just in of the last silicon strip detector produces the synchrotron radiation that is detected in a 50-mm-square cross section NaI crystal. A secondary scintillator made of Bicron BC-400 plastic is used to discriminate whether it is synchrotron radiation or a stray particle that causes the triggering of the NaI crystal's photo multiplier tube (PMT)

  3. A transition radiation detector for positron identification in a balloon-borne particle astrophysics experiment

    International Nuclear Information System (INIS)

    Barbarito, E.; Bellotti, R.; Cafagna, F.; Castellano, M.; Circella, M.; De Cataldo, G.; De Marzo, C.; Fusco, P.; Giglietto, N.; Mongelli, M.; Marangelli, B.; Perchiazzi, M.; Raino, A.; Sacchetti, A.; Spinelli, P.

    1995-01-01

    We have built and tested a transition radiation detector of about 76x80 cm 2 active surface to discriminate positrons from protons in an experiment performed on a balloon flight to search for primordial antimatter. The TRD is made of ten modules each consisting of a carbon fiber radiator followed by a multiwire proportional chamber. In order to achieve a proton-electron rejection factor of the order of 10 -3 with a strict limitation on power consumption to about 40 mW per chamber channel, as required by experimental constraints, we have developed a low power consumption ''cluster counting'' electronics. Different analysis procedures of calibration data are shown. In addition, comparisons of the performances of this detector are also made with a previous similar prototype equipped with standard fast electronics and similar detectors from other authors. ((orig.))

  4. Gamma-ray escape peak characteristics of radiation-damaged reverse-electrode germanium coaxial detectors

    International Nuclear Information System (INIS)

    Pehl, R.H.; Hull, E.L.; Madden, N.W.; Xing Jingshu; Friesel, D.L.

    1996-01-01

    A comparison of the characteristics of full-energy gamma-ray peaks and their corresponding escape peaks when high energy photons interact in radiation damaged reverse-electrode (n-type) germanium coaxial detectors is presented. Coaxial detector geometry is the dominant factor, causing charge collection to be dramatically better for interactions occurring near the outer periphery of the detector as well as increasing of the probability of escape events occurring in this region. It follows that the resolution of escape peaks is better than that of ordinary gamma-ray peaks. This is experimentally verified. A nearly identical but undamaged detector exhibited significant Doppler broadening of single escape peaks. Because double escape events preferentially occur at outer radii, energy shifts of double escape reflect extremely small amounts of charge trapping in undamaged detectors. (orig.)

  5. Particle Identification in Cherenkov Detectors using Convolutional Neural Networks

    CERN Document Server

    Theodore, Tomalty

    2016-01-01

    Cherenkov detectors are used for charged particle identification. When a charged particle moves through a medium faster than light can propagate in that medium, Cherenkov radiation is released in the shape of a cone in the direction of movement. The interior of the Cherenkov detector is instrumented with PMTs to detect this Cherenkov light. Particles, then, can be identified by the shapes of the images on the detector walls.

  6. Response of CR-39 Detector Against Fast Neutron Using D-Polyethylene and H-Polyethylene Radiator

    International Nuclear Information System (INIS)

    Sofyan, Hasnel

    1996-01-01

    The research on the response of detector CR-39 by using D-Polyethylene and H-Polyethylene radiator has been carried out. The optimum number of nuclear tracks was found with the use of 30 % NaOH at 80 + 0,5oC for 80 minutes of etching time. The comparison of CR-39 detector response caused by D-Polyethylene radiator against H-Polyethylene radiator of irradiation in air, were found to be 1.18 and 0.84 for 241Am-Be neutron source and neutron source from reactor respectively. For phantom irradiation, the results were found to be 1.75 for 241Am-Be neutron source, and 0.77 for neutron source from reactor

  7. Overview of radiation damage in silicon detectors - models and defect engineering

    International Nuclear Information System (INIS)

    Watts, S.J.

    1997-01-01

    This paper reviews recent work in the area of radiation damage in silicon detectors. It is not intended as a comprehensive review, but provides a snapshot guide to current ideas and indicates how the subject is expected to develop in the immediate future. (orig.)

  8. Remote impact of rotating objects on semiconductor detector of gamma radiation

    International Nuclear Information System (INIS)

    Mel'nik, I.A.

    2005-01-01

    Remote impact of rotating objects (such as electric motors, flywheels) on meter and ionizing radiation detector readings were studied. A model, explaining diminution of readings of scintillation and gas-discharge intensimeters at switched on hygroscopic electric motor and at mechanically rotating flywheel, is proposed

  9. A new-generation radiation monitoring vehicle

    International Nuclear Information System (INIS)

    Gryc, Lubomir; Cespirova, Irena; Sury, Jan; Hanak, Vitezslav; Sladek, Petr

    2015-01-01

    A new radiation monitoring vehicle has been developed within the MOSTAR (Mobile and Stationary Radiation monitoring systems for a new generation of radiation monitoring network) Security Research project. The vehicle accommodates a system for radiation survey using scintillation detectors. Basic spectroscopy is performed with a sodium iodine crystal system, directional measurement is based on two side-mounted plastic detectors, logging dose rates, GPS coordinates and displaying results in a map. A semiconductor spectrometric chain for rapid qualitative and quantitative evaluation of environmental samples is also included. (orig.)

  10. Radiation tolerance of the FOXFET biasing scheme for AC-coupled Si microstrip detectors

    International Nuclear Information System (INIS)

    Bacchetta, N.; Gotra, Yu.; Bisello, D.; Da Ros, R.; Giraldo, A.; Fusaro, G.; Paccagnella, A.; Univ. di Cagliari; Verzellesi, G.; Univ. di Padova

    1993-01-01

    The radiation response of FOXFETs has been studied for proton, gamma and neutron exposures. The punch-through behavior, which represents the normal FET operating conditions in Si microstrip detectors, has been found to be much less sensitive to radiation damage than threshold voltage. The device performance has been elucidated by means of two-dimensional simulations. The main radiation effects have been also taken into account in the numerical analysis and separately examined

  11. Position sensitive X-ray or X-ray detector and 3-D-tomography using same

    International Nuclear Information System (INIS)

    1975-01-01

    A fan-shaped beam of penetrating radiation, such as X-ray or γ-ray radiation, is directed through a slice of the body to be analyzed into a position sensitive detector for deriving a shadowgraph of transmission or absorption of the penetrating radiation by the body. A number of such shadowgraphs are obtained for different angles of rotation of the fan-shaped beam relative to the center of the slice being analyzed. The detected fan beam shadowgraph data is reordered into shadowgraph data corresponding to sets of parallel paths of radiation through the body. The reordered parallel path shadowgraph data is then convoluted in accordance with a 3-D reconstruction method by convolution in a computer to derive a 3-D reconstructed tomograph of the body under analysis. In a preferred embodiment, the position sensitive detector comprises a multiwire detector wherein the wires are arrayed parallel to the direction of the divergent penetrating rays to be detected. A focussed grid collimator is interposed between the body and the position sensitive detector for collimating the penetrating rays to be detected. The source of penetrating radiation is preferably a monochromatic source

  12. Geiger-mueller radiation detector with means for detecting and indicating the existence of radiation overload

    International Nuclear Information System (INIS)

    Kovacs, T.; Mills, A.P.; Pfeiffer, L.N.

    1981-01-01

    When subjected to radiation overload existing geiger-mueller counters may give an erroneously low reading, resulting in possible hazard to personnel. The instant invention discloses simple and inexpensive apparatus to remedy this dangerous shortcoming. Depending on the geometry of the detector tube, two possible failure modes have been identified, and circuitry is disclosed to detect the existence of these respective failure modes. The disclosed apparatus indicates the absence of an overload condition, in addition to signaling, by both visible and audible means, the existence of excessive radiation that might result in erroneously low reading of the geiger-mueller counter

  13. Results obtained with the passive radiation detectors in the ICCHIBAN-4 experiment

    International Nuclear Information System (INIS)

    Bilski, P.; Horwacik, T.

    2005-05-01

    In frame of the InterComparison of Cosmic rays with Heavy Ions Beams at NIRS (ICCHIBAN) organized at the HIMAC accelerator in Chiba several types of the thermoluminescent detectors (TLD), as well as CR-39 track detectors, were exposed. Four different types of TLDs were used: MTS-7 ( 7 LiF:Mg,Ti), MTS-6 ( 6 LiF:Mg,Ti), MCP-7 ( 7 LiF:Mg,Cu,P) and MTT-7 ( 7 LiF:Mg,Ti with changed activator composition. All TLDs were manufactured at the Institute of Nuclear Physics (INP) in Cracow. The detectors were irradiated with various doses of He, C, Ne and Fe ions. Part of exposures were done in unknown conditions, to test measuring capabilities of the detectors. For analyses of these results, the method of obtaining information on ionisation density of an unknown radiation field, which is based on ratios of responses of different LiF detectors, was successfully used. (author)

  14. Photometric estimation of defect size in radiation direction

    International Nuclear Information System (INIS)

    Zuev, V.M.

    1993-01-01

    Factors, affecting accuracy of photometric estimation of defect size in radiation transmission direction, are analyzed. Experimentally obtained dependences of contrast of defect image on its size in radiation transmission direction are presented. Practical recommendations on improving accuracy of photometric estimation of defect size in radiation transmission direction, are developed

  15. Measurement of environmental radiation using medical scintillation detector in well counter system

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Kwang Yeul; Park, Yeon Joon; Kim, Min Jeong; Ham, Eun Hye; Yoon, Ji Yeol; Kim, Hyun in; Min, Jung Hwan; Park, Hoon Hee [Dept. of Radiological Technology, Shingu College, Sungnam (Korea, Republic of)

    2015-12-15

    After the Fukushima nuclear accident in 2011, concerns about radiation by people are increasing rapidly. If people could know how much they will be exposed by radiation, it may help them avoiding it and understand what exactly radiation is. By doing this, we were helping to reduce the anxiety of radiation contamination. In this study, we have researched figures of radioactivity with ‘Captus-3000 thyroid uptake measurement systems’ in well counter detector system. The materials were measured with Briquette, Shiitake, Pollock, Button type battery, Alkaline battery, Topsoil, Asphalt, Gasoline, Milk powder, Pine, Basalt stone, Pencil lead, Wasabi, Coarse salt, Tuna(can) Cigar, Beer, and then we categorized those samples into Land resources, Water resources, Foodstuff and Etc (Beer classified as a water resources has been categorized into Foodstuff). Also, we selected the standard radiation source linear 137Cs to measure the sensitivity of well counter detector. After that, we took cpm(counter per minute) for the well counter detector of thyroid uptake system’s sensitivity. Then we compared the results of each material’s cpm and converted those results to Bq/kg unit. There were a little limitation with the measurement equipment because it has less sensitivity than other professional equipment like ‘High purity germanium radiation detector’. Moreover, We didn’t have many choices to decide the materials. As a result, there are macroscopic differences among the rates of material’s spectrum. Therefore, it had meaningful results that showed how much each material had emitted radiation. To compare the material’s cpm with BKG, we’ve compounded their spectrums. By doing that, we were able to detect some differences among the spectrums at specific peak section. Lastly, Button type battery, Alkaline Battery, Briquette, Asphalt and Topsoil showed high value. There were classified emitting high radiation Group A and emitted lower radiation Group B. The Group A

  16. Measurement of environmental radiation using medical scintillation detector in well counter system

    International Nuclear Information System (INIS)

    Lyu, Kwang Yeul; Park, Yeon Joon; Kim, Min Jeong; Ham, Eun Hye; Yoon, Ji Yeol; Kim, Hyun in; Min, Jung Hwan; Park, Hoon Hee

    2015-01-01

    After the Fukushima nuclear accident in 2011, concerns about radiation by people are increasing rapidly. If people could know how much they will be exposed by radiation, it may help them avoiding it and understand what exactly radiation is. By doing this, we were helping to reduce the anxiety of radiation contamination. In this study, we have researched figures of radioactivity with ‘Captus-3000 thyroid uptake measurement systems’ in well counter detector system. The materials were measured with Briquette, Shiitake, Pollock, Button type battery, Alkaline battery, Topsoil, Asphalt, Gasoline, Milk powder, Pine, Basalt stone, Pencil lead, Wasabi, Coarse salt, Tuna(can) Cigar, Beer, and then we categorized those samples into Land resources, Water resources, Foodstuff and Etc (Beer classified as a water resources has been categorized into Foodstuff). Also, we selected the standard radiation source linear 137Cs to measure the sensitivity of well counter detector. After that, we took cpm(counter per minute) for the well counter detector of thyroid uptake system’s sensitivity. Then we compared the results of each material’s cpm and converted those results to Bq/kg unit. There were a little limitation with the measurement equipment because it has less sensitivity than other professional equipment like ‘High purity germanium radiation detector’. Moreover, We didn’t have many choices to decide the materials. As a result, there are macroscopic differences among the rates of material’s spectrum. Therefore, it had meaningful results that showed how much each material had emitted radiation. To compare the material’s cpm with BKG, we’ve compounded their spectrums. By doing that, we were able to detect some differences among the spectrums at specific peak section. Lastly, Button type battery, Alkaline Battery, Briquette, Asphalt and Topsoil showed high value. There were classified emitting high radiation Group A and emitted lower radiation Group B. The Group A

  17. Exploring graphene field effect transistor devices to improve spectral resolution of semiconductor radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Richard Karl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Jeffrey B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hamilton, Allister B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    Graphene, a planar, atomically thin form of carbon, has unique electrical and material properties that could enable new high performance semiconductor devices. Graphene could be of specific interest in the development of room-temperature, high-resolution semiconductor radiation spectrometers. Incorporating graphene into a field-effect transistor architecture could provide an extremely high sensitivity readout mechanism for sensing charge carriers in a semiconductor detector, thus enabling the fabrication of a sensitive radiation sensor. In addition, the field effect transistor architecture allows us to sense only a single charge carrier type, such as electrons. This is an advantage for room-temperature semiconductor radiation detectors, which often suffer from significant hole trapping. Here we report on initial efforts towards device fabrication and proof-of-concept testing. This work investigates the use of graphene transferred onto silicon and silicon carbide, and the response of these fabricated graphene field effect transistor devices to stimuli such as light and alpha radiation.

  18. Wide Band-Gap Semiconductor Radiation Detectors: Science Fiction, Horror Story, or Headlines (460th Brookhaven Lecture)

    International Nuclear Information System (INIS)

    James, Ralph

    2010-01-01

    With radiation constantly occurring from natural sources all around us -- from food, building materials, and rays from the sun, to name a few -- detecting radiotracers for medical procedures and other radiation to keep people safe is not easy. In order to make better use of radiation to diagnose or treat certain health conditions, or to track radiological materials being transported, stored, and used, the quest is on to develop improved radiation detectors. James gives a brief introduction on radiation detection and explain how it is used in applications ranging from medical to homeland security. He then discusses how new materials and better ways to analyze them here at the National Synchrotron Light Source (NSLS) and the future NSLS-II will lead to a new class of radiation detectors that will provide unprecedented advances in medical and industrial imaging, basic science, and the nonproliferation of nuclear materials.

  19. Radiation imaging detectors made by wafer post-processing of CMOS chips

    NARCIS (Netherlands)

    Blanco Carballo, V.M.

    2009-01-01

    In this thesis several wafer post-processing steps have been applied to CMOS chips. Amplification gas strucutures are built on top of the microchips. A complete radiation imaging detector is obtained this way. Integrated Micromegas-like and GEM-like structures were fabricated on top of Timepix CMOS

  20. An algorithm for calculating the Lorentz angle in silicon detectors [online

    OpenAIRE

    Bartsch, Valeria; De Boer, Willem; Bol, Johannes; Dierlamm, Alexander; Grigoriev, Eugene; Hauler, Florian; Heising, Stephan; Jungermann, Levin

    2001-01-01

    The CMS (Compact Muon Solenoid) detector will use silicon sensors in the harsh radiation environment of the LHC (Large Hadron Collider) and high magnetic fields. The drift direction of the charge carriers is aected by the Lorentz force due to the high magnetic field. Also the resulting radiation damage changes the properties of the drift. The CMS silicon strip detector is read out on the p-side of the sensors, where holes are coll...