WorldWideScience

Sample records for direction reversal pwr

  1. Directives and general design requirements for a small PWR

    International Nuclear Information System (INIS)

    Arrieta, L.A.

    1992-08-01

    A proposal of directives and general requirements for the development of a small PWR conceptual design is presented. These directives address the main safety, performance and economic design aspects. The purpose is to use this work as a base for a wide discussion, involving all project participants, culminating with the definition of the final directives and general requirements. (author)

  2. Spontaneous direct and reverse osmosis

    International Nuclear Information System (INIS)

    Valitov, N.Kh.

    1996-01-01

    It has been ascertained experimentally that in the course of separation of CsCl, KCl, NaCl aqueous solutions by semi-permeable membrane from distilled water the direct and then reverse osmosis are observed. The same sequence is observed in case of separation of CsCl aqueous solutions from NaCl of different concentrations. The reason for the direct and reverse osmosis has been explained. 5 refs.; 3 figs. 1 tab

  3. Design of a PWR for long cycle and direct recycling of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Nader M.A., E-mail: mnader73@yahoo.com

    2015-12-15

    Highlights: • Single-batch loading PWR with a new fuel assembly for 36 calendar months cycle was designed. • The new fuel assembly is constructed from a number of CANDU fuel bundles. • This design enables to recycle the spent fuel directly in CANDU reactors for high burnup. • Around 56 MWd/kgU burnup is achieved from fuel that has average enrichment of 4.8 w/o U-235 using this strategy. • Safety parameters such as the power distribution and CANDU coolant void reactivity were considered. - Abstract: In a previous work, a new design was proposed for the Pressurized Water Reactor (PWR) fuel assembly for direct use of the PWR spent fuel without processing. The proposed assembly has four zircaloy-4 tubes contains a number of 61-element CANDU fuel bundles (8 bundles per tube) stacked end to end. The space between the tubes contains 44 lower enriched UO{sub 2} fuel rods and 12 guide tubes. In this paper, this assembly is used to build a single batch loading 36-month PWR and the spent CANDU bundles are recycled in the on power refueling CANDU reactors. The Advanced PWR (APWR) is considered as a reference design. The average enrichment in the core is 4.76%w U-235. IFBA and Gd{sub 2}O{sub 3} as burnable poisons are used for controlling the excess reactivity and to flatten the power distribution. The calculations using MCNPX showed that the PWR will discharge the fuel with average burnup of 31.8 MWd/kgU after 1000 effective full power days. Assuming a 95 days plant outage, 36 calendar months can be achieved with a capacity factor of 91.3%. Good power distribution in the core is obtained during the cycle and the required critical boron concentration is less than 1750 ppm. Recycling of the discharged CANDU fuel bundles that represents 85% of the fuel in the assembly, in CANDU-6 or in 700 MWe Advanced CANDU Reactor (ACR-700), an additional burnup of about 31 or 26 MWd/kgU burnup can be achieved, respectively. Averaging the fuel burnup on the all fuel in the PWR

  4. Application of directional solidification ingot (LSD) in forging of PWR reactor vessel heads

    International Nuclear Information System (INIS)

    Benhamou, C.; Poitrault, I.

    1985-09-01

    Creusot-Loire Industrie uses this type of ingot for manufacture of Framatome 1300 and 1450 MW 4-loop PWR reactor vessel heads. This type of ingot offers a number advantages: improved internal soundness; greater chemical, structural and mechanical homogeneity of the finished part; simplified forging process. After a brief description of the pouring and solidification processes, this paper presents an analysis of the results of examinations performed on the prototype forging, as well as review of results obtained during industrial fabrication of dished heads from LSD ingots. The advantages of the LSD ingot over conventional ingots are discussed in conclusion

  5. Diffusion properties of active particles with directional reversal

    International Nuclear Information System (INIS)

    Großmann, R; Bär, M; Peruani, F

    2016-01-01

    The diffusion properties of self-propelled particles which move at constant speed and, in addition, reverse their direction of motion repeatedly are investigated. The internal dynamics of particles triggering these reversal processes is modeled by a stochastic clock. The velocity correlation function as well as the mean squared displacement is investigated and, furthermore, a general expression for the diffusion coefficient for self-propelled particles with directional reversal is derived. Our analysis reveals the existence of an optimal, finite rotational noise amplitude which maximizes the diffusion coefficient. We comment on the relevance of these results with regard to biological systems and suggest further experiments in this context. (paper)

  6. The effect of transducer directivity on time reversal focusing.

    Science.gov (United States)

    Anderson, Brian E; Clemens, Miles; Willardson, Matthew L

    2017-07-01

    This letter explores the effect of the directivity of a source on time reversal acoustic focusing of energy. A single loudspeaker produces an airborne focus of sound in a reverberation chamber and in a classroom. Individual foci are created at microphone positions that surround the loudspeaker. The primary axis of the loudspeaker is then rotated and experiments are repeated to average out the room response. Focal amplitude, temporal quality of the foci, and spatial focusing quality are compared to determine the optimal angle to aim a directional source axis relative to the desired focal position.

  7. Influence of wheelchair front caster wheel on reverse directional stability.

    Science.gov (United States)

    Guo, Songfeng; Cooper, Rory A; Corfman, Tom; Ding, Dan; Grindle, Garrett

    2003-01-01

    The purpose of this research was to study directional stability during reversing of rear-wheel drive, electric powered wheelchairs (EPW) under different initial front caster orientations. Specifically, the weight distribution differences caused by certain initial caster orientations were examined as a possible mechanism for causing directional instability that could lead to accidents. Directional stability was quantified by measuring the drive direction error of the EPW by a motion analysis system. The ground reaction forces were collected to determine the load on the front casters, as well as back-emf data to attain the speed of the motors. The drive direction error was found to be different for various initial caster orientations. Drive direction error was greatest when both casters were oriented 90 degrees to the left or right, and least when both casters were oriented forward. The results show that drive direction error corresponds to the loading difference on the casters. The data indicates that loading differences may cause asymmetric drag on the casters, which in turn causes unbalanced torque load on the motors. This leads to a difference in motor speed and drive direction error.

  8. Differential Binding Models for Direct and Reverse Isothermal Titration Calorimetry.

    Science.gov (United States)

    Herrera, Isaac; Winnik, Mitchell A

    2016-03-10

    Isothermal titration calorimetry (ITC) is a technique to measure the stoichiometry and thermodynamics from binding experiments. Identifying an appropriate mathematical model to evaluate titration curves of receptors with multiple sites is challenging, particularly when the stoichiometry or binding mechanism is not available. In a recent theoretical study, we presented a differential binding model (DBM) to study calorimetry titrations independently of the interaction among the binding sites (Herrera, I.; Winnik, M. A. J. Phys. Chem. B 2013, 117, 8659-8672). Here, we build upon our DBM and show its practical application to evaluate calorimetry titrations of receptors with multiple sites independently of the titration direction. Specifically, we present a set of ordinary differential equations (ODEs) with the general form d[S]/dV that can be integrated numerically to calculate the equilibrium concentrations of free and bound species S at every injection step and, subsequently, to evaluate the volume-normalized heat signal (δQ(V) = δq/dV) of direct and reverse calorimetry titrations. Additionally, we identify factors that influence the shape of the titration curve and can be used to optimize the initial concentrations of titrant and analyte. We demonstrate the flexibility of our updated DBM by applying these differentials and a global regression analysis to direct and reverse calorimetric titrations of gadolinium ions with multidentate ligands of increasing denticity, namely, diglycolic acid (DGA), citric acid (CIT), and nitrilotriacetic acid (NTA), and use statistical tests to validate the stoichiometries for the metal-ligand pairs studied.

  9. Direction-reversing Nystagmus in Horizontal and Posterior Semicircular Canal Canalolithiasis.

    Science.gov (United States)

    Jeong, Kyung-Hwa; Shin, Jung Eun; Shin, Dong Hyuk; Kim, Chang-Hee

    2016-07-01

    To investigate the incidence and characteristics of direction-reversing nystagmus in patients with horizontal (HSCC) and posterior semicircular canal (PSCC) canalolithiasis, and evaluate the effect of direction-reversing nystagmus on the treatment outcome. A retrospective study. Between March 2014 and September 2015, 63 and 92 consecutive patients with HSCC and PSCC canalolithiasis, respectively, were enrolled. Positional nystagmus characteristics were examined using video-nystagmography. In HSCC canalolithiasis, direction-reversing nystagmus was observed in 73% of patients (46 of 63), of which 19 cases were bilateral and 27 unilateral. In patients with bilateral reversal, maximal slow-phase velocity (mSPV) was significantly greater when the head turned to the lesioned side than to the healthy side in both the first and second phase. In all patients with unilateral reversal, direction-reversing nystagmus always occurred in the side of stronger initial nystagmus in a supine roll test. The mean mSPV of first phase nystagmus was significantly greater on the side with reversal than without (p direction-reversing nystagmus required more repositioning maneuver sessions. In contrast to HSCC canalolithiasis, only 4% of patients (4 of 92) with PSCC canalolithiasis exhibited spontaneous reversal of initial nystagmus. The incidence of direction-reversing nystagmus was higher in HSCC canalolithiasis than in PSCC canalolithiasis, and second-phase (direction-reversing) nystagmus in HSCC canalolithiasis has a prolonged duration. Short-term adaptation of the vestibulo-ocular reflex may be responsible for the development of direction-reversing nystagmus.

  10. Character Reversal in Children: The Prominent Role of Writing Direction

    Science.gov (United States)

    Fischer, Jean-Paul

    2017-01-01

    Recent research has established that 5- to 6-year-old typically developing children in a left-right writing culture spontaneously reverse left-oriented characters (e.g., they write a [reversed J] instead of J) when they write single characters. Thus, children seem to implicitly apply a right-writing rule (RWR: see Fischer & Koch, 2016a). In…

  11. Deboration in nuclear stations of the PWR type

    International Nuclear Information System (INIS)

    1978-01-01

    Reactivity control in nuclear power stations of the PWR type is realised with boric acid. A method to concentrate boric acid without an evaporator has been studied. A flow-sheet with reverse osmosis is proposed. (author)

  12. Numerical Solving Of The Track Wall Equation In LR115 Detectors Etched In Direct And Reverse Directions

    International Nuclear Information System (INIS)

    Milenkovic, B.; Stevanovic, N.; Krstic, D.

    2008-01-01

    The general equation of the track wall was solved numerically by using finite difference method and computer software MATHEMATICA. This method was applied for alpha particle tracks in LR115 detector, assuming both directions of etching, from the top and from the bottom of the sensitive layer. The equation of the track wall etched in reverse direction was derived, and has the same form as one for direct etching, with some difference in argument of V function. It has been shown that tracks diameter are larger in reverse etching when the energy is large and removed layer is relatively small. Opposite to this, tracks diameter are smaller in reverse etching when energy of alpha particle is less then 2 MeV. If removed layer is large both kinds of etching would produce tracks similar in size, but the track profile is different. (author)

  13. Reversing the direction of space and inverse Doppler effect in positive refraction index media

    Science.gov (United States)

    Sun, Fei; He, Sailing

    2017-01-01

    A negative refractive index medium, in which all spatial coordinates are reversed (i.e. a left-hand triplet is formed) by a spatial folding transformation, can create many novel electromagnetic phenomena, e.g. backward wave propagation, and inversed Doppler effect (IDE). In this study, we use coordinate rotation transformation to reverse only two spatial coordinates (e.g. x‧ and y‧), while keeping z‧ unchanged. In this case, some novel phenomena, e.g. radiation-direction-reversing illusions and IDE, can be achieved in a free space region wrapped by the proposed shell without any negative refractive index medium, which is easier for experimental realization and future applications.

  14. Seawater desalination using reusable type small PWR

    Energy Technology Data Exchange (ETDEWEB)

    Uchiyama, Y. [Institute of Engineering Mechanics and Systems, University of Tsukuba, Tsukuba, Ibaraki (Japan); Minato, A. [Planning Division, Central Research Institute of the Electric Power Industry, Komae-shi, Tokyo (Japan); Shimamura, K. [Nuclear Systems Engineering Department, Nuclear Energy Systems Engineering Center, Mitsubishi Heavy Industries, Ltd., Kanagawa (Japan)]. E-mail: shimamura@atom.hq.mhi.co.jp

    2003-07-01

    Demand for seawater desalination is increasing, especially in regions such as the Middle East and North Africa, where populations are growing at a high annual rate. If such demand is met by fossil fuel energy, the influence on the environment, such as global warming, cannot be disregarded. Since these regions are behind in their preparedness of social capital infrastructure, such as power transfer grids, small reactors are considered to be more suitable for introduction than the large reactors found commonly in developed countries. Therefore, a small reusable PWR with mid-range pressure and temperature services, which does not require on-site refuelling, was devised for seawater desalination. In a small reusable PWR, spent fuel is taken out together with the reactor vessel and refuelled on the exterior fuel exchange base prepared independently. Thus, the safeguards against nuclear proliferation increase at a plant site because the lid of the reactor vessel is never opened at the site, in principle. The reactor vessel will be transported from the plant site to a fuel exchange base under stipulated conditions within a transportation cask after a long (about six years) operation. Since fuel handling facilities at the site become unnecessary through centralisation at a fuel exchange base, initial plant construction costs are reduced. In addition, the reactor vessel is reused until its service life has expired. This examination was based on the marine reactor of the experimental nuclear ship, Mutsu, after it had been applied for land use: at a lowered, midrange pressure and temperature service, in theory. It is possible to produce fresh water through reverse osmosis (RO) membrane pressure-rising seawater by a steam turbine driven pump. Using the method of driving a desalination unit high-pressure pump directly by low-pressure steam generated from the heating reactor, fresh water can be produced efficiently. Furthermore, operating at reduced pressure makes it possible

  15. Electrochemical deposition and characterization of zinc–nickel alloys deposited by direct and reverse current

    Directory of Open Access Journals (Sweden)

    JELENA B. BAJAT

    2005-12-01

    Full Text Available Zn–Ni alloys electrochemically deposited on steel under various deposition conditions were investigated. The alloys were deposited on a rotating disc electrode and on a steel panel from chloride solutions by direct and reverse current. The influence of reverse plating variables (cathodic and anodic current densities and their time duration on the composition, phase structure and corrosion properties were investigated. The chemical content and phase composition affect the anticorrosive properties of Zn–Ni alloys during exposure to a corrosive agent (3 % NaCl solution. It was shown that the Zn–Ni alloy electrodeposited by reverse current with a full period T = 1 s and r = 0.2 exhibits the best corrosion properties of all the investigated alloys deposited by reverse current.

  16. Innate Reverse Transcriptase Activity of DNA Polymerase for Isothermal RNA Direct Detection.

    Science.gov (United States)

    Shi, Chao; Shen, Xiaotong; Niu, Shuyan; Ma, Cuiping

    2015-11-04

    RNA detection has become one of the most robust parts in molecular biology, medical diagnostics and drug discovery. Conventional RNA detection methods involve an extra reverse transcription step, which limits their further application for RNA rapid detection. We herein report a novel finding that Bst and Klenow DNA polymerases possess innate reverse transcriptase activities, so that the reverse transcription step and next amplification reaction can be combined to one step in isothermal RNA detection. We have demonstrated that Bst and Klenow DNA polymerases could be successfully used to reverse transcribe RNA within 125-nt length by real time RT-PCR and polyacrylamide gel electrophoresis (PAGE). Our findings will spur the development of a myriad of simple and easy to use RNA detection technologies for isothermal RNA direct detection. This will just meet the future needs of bioanalysis and clinical diagnosis to RNA rapid detection in POC settings and inspection and quarantine.

  17. DIRECT PULP CAPPING IN TREATMENT OF REVERSIBLE PULPITIS IN PRIMARY TEETH- CLINICAL PROTOCOL

    Directory of Open Access Journals (Sweden)

    Nina Milcheva

    2016-10-01

    Full Text Available The pulp of primary teeth is identical morphologically and physiologically to that of permanent teeth and it is capable to answer to pathological stimuli by producing tertiary dentin. When the inflammation of the pulp is in its reversible stage vital methods of treatment are indicated in order to stimulate the healing processes in it and protect its vitality. In Bulgaria the most popular method of treatment of inflammation diseases of the pulp in primary dentition is the mortal amputation. The biological way of treatment is not very common even in cases where there are indications for it. Purpose: The aim of this paper is to present the approbated by us protocol for application of direct pulp capping for treatment of reversible pulpitis in primary teeth. Material and methods: On the base of world experience and our contemporary meta- analysis of the researches published in the last 15 years concerning the problems of diagnostics. We determined clinical and radiographic diagnostic criteria for reversible pulpitis in primary teeth and indications for application of direct pulp capping as a method of treatment. We give clinical steps for application of the method and summarized the clinical and radiographic criteria for success after treatment. Results/conclusion: We gather all the information for applying direct pulp cappingfor treatment of reversible pulpitis in primary dentition. We offer the method of direct pulp capping as a clinical protocol “step by step” and illustrated by scheme which can be useful for students and dentists in their everyday practice.

  18. Direct visualization of polarization reversal of organic ferroelectric memory transistor by using charge modulated reflectance imaging

    Science.gov (United States)

    Otsuka, Takako; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2017-11-01

    By using the charge modulated reflectance (CMR) imaging technique, charge distribution in the pentacene organic field-effect transistor (OFET) with a ferroelectric gate insulator [P(VDF-TrFE)] was investigated in terms of polarization reversal of the P(VDF-TrFE) layer. We studied the polarization reversal process and the carrier spreading process in the OFET channel. The I-V measurement showed a hysteresis behavior caused by the spontaneous polarization of P(VDF-TrFE), but the hysteresis I-V curve changes depending on the applied drain bias, possibly due to the gradual shift of the polarization reversal position in the OFET channel. CMR imaging visualized the gradual shift of the polarization reversal position and showed that the electrostatic field formed by the polarization of P(VDF-TrFE) contributes to hole and electron injection into the pentacene layer and the carrier distribution is significantly dependent on the direction of the polarization. The polarization reversal position in the channel region is governed by the electrostatic potential, and it happens where the potential reaches the coercive voltage of P(VDF-TrFE). The transmission line model developed on the basis of the Maxwell-Wagner effect element analysis well accounts for this polarization reversal process in the OFET channel.

  19. PWR core design calculations

    International Nuclear Information System (INIS)

    Trkov, A.; Ravnik, M.; Zeleznik, N.

    1992-01-01

    Functional description of the programme package Cord-2 for PWR core design calculations is presented. Programme package is briefly described. Use of the package and calculational procedures for typical core design problems are treated. Comparison of main results with experimental values is presented as part of the verification process. (author) [sl

  20. Reversing the direction of space and inverse Doppler effect in positive refraction index media

    International Nuclear Information System (INIS)

    Sun, Fei; He, Sailing

    2017-01-01

    A negative refractive index medium, in which all spatial coordinates are reversed (i.e. a left-hand triplet is formed) by a spatial folding transformation, can create many novel electromagnetic phenomena, e.g. backward wave propagation, and inversed Doppler effect (IDE). In this study, we use coordinate rotation transformation to reverse only two spatial coordinates (e.g. x ′ and y ′), while keeping z ′ unchanged. In this case, some novel phenomena, e.g. radiation-direction-reversing illusions and IDE, can be achieved in a free space region wrapped by the proposed shell without any negative refractive index medium, which is easier for experimental realization and future applications. (paper)

  1. Minor actinide transmutation on PWR burnable poison rods

    International Nuclear Information System (INIS)

    Hu, Wenchao; Liu, Bin; Ouyang, Xiaoping; Tu, Jing; Liu, Fang; Huang, Liming; Fu, Juan; Meng, Haiyan

    2015-01-01

    Highlights: • Key issues associated with MA transmutation are the appropriate loading pattern. • Commercial PWRs are the only choice to transmute MAs in large scale currently. • Considerable amount of MA can be loaded to PWR without disturbing k eff markedly. • Loading MA to PWR burnable poison rods for transmutation is an optimal loading pattern. - Abstract: Minor actinides are the primary contributors to long term radiotoxicity in spent fuel. The majority of commercial reactors in operation in the world are PWRs, so to study the minor actinide transmutation characteristics in the PWRs and ultimately realize the successful minor actinide transmutation in PWRs are crucial problem in the area of the nuclear waste disposal. The key issues associated with the minor actinide transmutation are the appropriate loading patterns when introducing minor actinides to the PWR core. We study two different minor actinide transmutation materials loading patterns on the PWR burnable poison rods, one is to coat a thin layer of minor actinide in the water gap between the zircaloy cladding and the stainless steel which is filled with water, another one is that minor actinides substitute for burnable poison directly within burnable poison rods. Simulation calculation indicates that the two loading patterns can load approximately equivalent to 5–6 PWR annual minor actinide yields without disturbing the PWR k eff markedly. The PWR k eff can return criticality again by slightly reducing the boric acid concentration in the coolant of PWR or removing some burnable poison rods without coating the minor actinide transmutation materials from PWR core. In other words, loading minor actinide transmutation material to PWR does not consume extra neutron, minor actinide just consumes the neutrons which absorbed by the removed control poisons. Both minor actinide loading patterns are technically feasible; most importantly do not need to modify the configuration of the PWR core and

  2. A study on the direct use of spent PWR fuel in CANDU -A study on the radioactive waste management for DUPIC fuel cycle-

    International Nuclear Information System (INIS)

    Park, Hyun Soo; Jun, Kwan Sik; Nah, Jung Won; Park, Jang Jin; Kim, Jong Hoh; Cho, Yung Hyun; Baek, Seung Woo; Shin, Jin Myung; Yang, Seung Yung

    1994-07-01

    The immobilization materials for radioactive wastes resulting from the DUPIC fuel manufacturing process were selected and their characteristics were evaluated. To predict the trapping behavior of the Ruthenium, a semi-volatile nuclide, its volatility was measured and thermogravimetric analysis were performed with simulated fuel. New Ruthenium trapping material was developed which is deposited on ceramic honey-comb monolith of cordierite. The base glass was manufactured with fly ash added to the borosilicate glass. The composition of the scrap waste was calculated based on the PWR spent fuel which has initial 235 U content of 3.5%, burnup of 35,000 MWD/MTU and cooling time of 10 years. Simulated waste glass was manufactured, and its chemical durability was evaluated by soxhlet leach test. Radioactivity of non-oxidized cladding material were measured. The preliminary design criteria were prepared for off-gas treatment system in IMEF. 31 figs, 42 tabs, 51 refs. (Author)

  3. The integrated PWR

    International Nuclear Information System (INIS)

    Gautier, G.M.

    2002-01-01

    This document presents the integrated reactors concepts by a presentation of four reactors: PIUS, SIR, IRIS and CAREM. The core conception, the operating, the safety, the economical aspects and the possible users are detailed. From the performance of the classical integrated PWR, the necessity of new innovative fuels utilization, the research of a simplified design to make easier the safety and the KWh cost decrease, a new integrated reactor is presented: SCAR 600. (A.L.B.)

  4. Reactor control system. PWR

    International Nuclear Information System (INIS)

    2009-01-01

    At present, 23 units of PWR type reactors have been operated in Japan since the start of Mihama Unit 1 operation in 1970 and various improvements have been made to upgrade operability of power stations as well as reliability and safety of power plants. As the share of nuclear power increases, further improvements of operating performance such as load following capability will be requested for power stations with more reliable and safer operation. This article outlined the reactor control system of PWR type reactors and described the control performance of power plants realized with those systems. The PWR control system is characterized that the turbine power is automatic or manually controlled with request of the electric power system and then the nuclear power is followingly controlled with the change of core reactivity. The system mainly consists of reactor automatic control system (control rod control system), pressurizer pressure control system, pressurizer water level control system, steam generator water level control system and turbine bypass control system. (T. Tanaka)

  5. Water chemistry in PWR

    International Nuclear Information System (INIS)

    Abe, Kenji

    1987-01-01

    This article outlines major features and basic concept of the secondary system of PWR's and water properties control measures adopted in recent PWR plants. The secondary system of a PWR consists of a condenser cooling pipe (aluminum-brass, titanium, or stainless steel), low-pressure make-up water heating pipe (aluminum-brass or stainless steel), high-ressure make-up water heating pipe (cupro-nickel or stainless steel), steam generator heat-transfer pipe (Inconel 600 or 690), and bleed/drain pipe (carbon steel, low alloy steel or stainless steel). Other major pipes and equipment are made of carbon steel or stainless steel. Major troubles likely to be caused by water in the secondary system include reduction in wall thickness of the heat-transfer pipe, stress corrosion cracking in the heat-transfer pipe, and denting. All of these are caused by local corrosion due to concentration of purities contained in water. For controlling the water properties in the secondary system, it is necessary to prevent impurities from entering the system, to remove impurities and corrosion products from the system, and to prevent corrosion of apparatus making up the system. Measures widely adopted for controlling the formation of IGA include the addition of boric acid for decreasing the concentration of free alkali and high hydrazine operation for providing a highly reducing atmospere. (Nogami, K.)

  6. Reversal of H-bonding direction by N-sulfonation in a synthetic reverse-turn peptide motif.

    Science.gov (United States)

    Vijayadas, Kuruppanthara N; Kotmale, Amol S; Thorat, Shridhar H; Gonnade, Rajesh G; Nair, Roshna V; Rajamohanan, Pattuparambil R; Sanjayan, Gangadhar J

    2015-03-14

    This communication depicts an intriguing example of hydrogen-bonding reversal upon introduction of a sulfonamide linkage at the N-terminus of a synthetic reverse-turn peptide motif. The ready availability of two sulfonyl oxygen atoms, as hydrogen-bonding acceptors, combined with the inherent twisted conformation of sulfonamides are seen to act as switches that engage/disengage the hydrogen-bond at the sticky ends/termini.

  7. Computer-generated direct perception displays for supporting PWR feedwater system start-up and fault management: a proof-of-principle in design

    International Nuclear Information System (INIS)

    Reising, D.V.C.; Jones, B.G.; Shaheen, S.; Moray, N.; Sanderson, P.M.; Rasmussen, J.

    1998-01-01

    difficult problems which have not yet been investigated in extending the proposed approach to fault management. In the present research Rasmussen et al's framework was used for designing computer-generated graphical displays that support pressurized water reactor (PWR) start-up. Specifically, a suite of displays was developed to support a PWR's feedwater (FW) system start-up as a proof-of-principle. The suite of displays demonstrate the theoretical design approach and are not meant to represent a fully implementable interface for FW system control. (author)

  8. PWR decontamination feasibility study

    International Nuclear Information System (INIS)

    Silliman, P.L.

    1978-01-01

    The decontamination work which has been accomplished is reviewed and it is concluded that it is worthwhile to investigate further four methods for decontamination for future demonstration. These are: dilute chemical; single stage strong chemical; redox processes; and redox/chemical in combination. Laboratory work is recommended to define the agents and processes for demonstration and to determine the effect of the solvents on PWR materials. The feasibility of Indian Point 1 for decontamination demonstrations is discussed, and it is shown that the system components of Indian Point 1 are well suited for use in demonstrations

  9. Optimization of reload core design for PWR

    International Nuclear Information System (INIS)

    Shen Wei; Xie Zhongsheng; Yin Banghua

    1995-01-01

    A direct efficient optimization technique has been effected for automatically optimizing the reload of PWR. The objective functions include: maximization of end-of-cycle (EOC) reactivity and maximization of average discharge burnup. The fuel loading optimization and burnable poison (BP) optimization are separated into two stages by using Haling principle. In the first stage, the optimum fuel reloading pattern without BP is determined by the linear programming method using enrichments as control variable, while in the second stage the optimum BP allocation is determined by the flexible tolerance method using the number of BP rods as control variable. A practical and efficient PWR reloading optimization program based on above theory has been encoded and successfully applied to Qinshan Nuclear Power Plant (QNP) cycle 2 reloading design

  10. Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    Joshi Anagha

    2009-05-01

    Full Text Available Abstract Background A myriad of methods to reverse-engineer transcriptional regulatory networks have been developed in recent years. Direct methods directly reconstruct a network of pairwise regulatory interactions while module-based methods predict a set of regulators for modules of coexpressed genes treated as a single unit. To date, there has been no systematic comparison of the relative strengths and weaknesses of both types of methods. Results We have compared a recently developed module-based algorithm, LeMoNe (Learning Module Networks, to a mutual information based direct algorithm, CLR (Context Likelihood of Relatedness, using benchmark expression data and databases of known transcriptional regulatory interactions for Escherichia coli and Saccharomyces cerevisiae. A global comparison using recall versus precision curves hides the topologically distinct nature of the inferred networks and is not informative about the specific subtasks for which each method is most suited. Analysis of the degree distributions and a regulator specific comparison show that CLR is 'regulator-centric', making true predictions for a higher number of regulators, while LeMoNe is 'target-centric', recovering a higher number of known targets for fewer regulators, with limited overlap in the predicted interactions between both methods. Detailed biological examples in E. coli and S. cerevisiae are used to illustrate these differences and to prove that each method is able to infer parts of the network where the other fails. Biological validation of the inferred networks cautions against over-interpreting recall and precision values computed using incomplete reference networks. Conclusion Our results indicate that module-based and direct methods retrieve largely distinct parts of the underlying transcriptional regulatory networks. The choice of algorithm should therefore be based on the particular biological problem of interest and not on global metrics which cannot be

  11. Analysis of a postulated pipe rupture and subsequent check valve slam of a PWR feedwater line

    International Nuclear Information System (INIS)

    Chang, K.C.; Adams, T.M.

    1983-01-01

    System designs criteria employed in the design of pressurized water reactors (PWR) requires that, for a postulated instantaneous guillotine rupture anywhere in the steam generator feedwater system, no more than one steam generator can be allowed to blowdown. Feedwater systems in many PWR's consist of pipe lines running from the feedwater pumps into a common feedwater header then branching into each steam generator from the header. The feedwater piping to each steam generator contains swing check valves to prevent reverse flow from the steam generator. This activation of some or all of these check valves significantly complicates the system structural analysis in that not only the blowdown forces resulting from the postulated pipe rupture, but also the water hammer loads resulting from closure of the check valve at high reverse flow velocities must be considered. The loads resulting from system blowdown and check valve closure are axial in nature. Peak loads ranging from 130000 lbs. to 180000 lbs. are not uncommon and are layout dependent. The analysis and design to withstand this transient loading deviates from the usual feedwater line design in that supports are required along the piping axis in the direction normal to the usual seismic supports. A brief and general discussion of the methods employed in the generation of the thermal-hydraulic loadings is presented. However, the discussion emphasizes the piping and piping support structural design and analysis method and approaches used in evaluating a selected portion of such a feedwater system. (orig./RW)

  12. Direct current electric field assembly of colloidal crystals displaying reversible structural color.

    Science.gov (United States)

    Shah, Aayush A; Ganesan, Mahesh; Jocz, Jennifer; Solomon, Michael J

    2014-08-26

    We report the application of low-voltage direct current (dc) electric fields to self-assemble close-packed colloidal crystals in nonaqueous solvents from colloidal spheres that vary in size from as large as 1.2 μm to as small as 0.1 μm. The assemblies are created rapidly (∼2 min) from an initially low volume fraction colloidal particle suspension using a simple capacitor-like electric field device that applies a steady dc electric voltage. Confocal microscopy is used to observe the ordering that is produced by the assembly method. This spatial evidence for ordering is consistent with the 6-fold diffraction patterns identified by light scattering. Red, green, and blue structural color is observed for the ordered assemblies of colloids with diameters of 0.50, 0.40, and 0.29 μm, respectively, consistent with spectroscopic measurements of reflectance. The diffraction and spectrophotometry results were found to be consistent with the theoretical Bragg's scattering expected for closed-packed crystals. By switching the dc electric field from on to off, we demonstrate reversibility of the structural color response on times scales ∼60 s. The dc electric field assembly method therefore represents a simple method to produce reversible structural color in colloidal soft matter.

  13. PWR burnable absorber evaluation

    International Nuclear Information System (INIS)

    Cacciapouti, R.J.; Weader, R.J.; Malone, J.P.

    1995-01-01

    The purpose of the study was to evaluate the relative neurotic efficiency and fuel cycle cost benefits of PWR burnable absorbers. Establishment of reference low-leakage equilibrium in-core fuel management plans for 12-, 18- and 24-month cycles. Review of the fuel management impact of the integral fuel burnable absorber (IFBA), erbium and gadolinium. Calculation of the U 3 O 8 , UF 6 , SWU, fuel fabrication, and burnable absorber requirements for the defined fuel management plans. Estimation of fuel cycle costs of each fuel management plan at spot market and long-term market fuel prices. Estimation of the comparative savings of the different burnable absorbers in dollar equivalent per kgU of fabricated fuel. (author)

  14. PWR degraded core analysis

    International Nuclear Information System (INIS)

    Gittus, J.H.

    1982-04-01

    A review is presented of the various phenomena involved in degraded core accidents and the ensuing transport of fission products from the fuel to the primary circuit and the containment. The dominant accident sequences found in the PWR risk studies published to date are briefly described. Then chapters deal with the following topics: the condition and behaviour of water reactor fuel during normal operation and at the commencement of degraded core accidents; the generation of hydrogen from the Zircaloy-steam and the steel-steam reactions; the way in which the core deforms and finally melts following loss of coolant; debris relocation analysis; containment integrity; fission product behaviour during a degraded core accident. (U.K.)

  15. A specific antidote for reversal of anticoagulation by direct and indirect inhibitors of coagulation factor Xa.

    Science.gov (United States)

    Lu, Genmin; DeGuzman, Francis R; Hollenbach, Stanley J; Karbarz, Mark J; Abe, Keith; Lee, Gail; Luan, Peng; Hutchaleelaha, Athiwat; Inagaki, Mayuko; Conley, Pamela B; Phillips, David R; Sinha, Uma

    2013-04-01

    Inhibitors of coagulation factor Xa (fXa) have emerged as a new class of antithrombotics but lack effective antidotes for patients experiencing serious bleeding. We designed and expressed a modified form of fXa as an antidote for fXa inhibitors. This recombinant protein (r-Antidote, PRT064445) is catalytically inactive and lacks the membrane-binding γ-carboxyglutamic acid domain of native fXa but retains the ability of native fXa to bind direct fXa inhibitors as well as low molecular weight heparin-activated antithrombin III (ATIII). r-Antidote dose-dependently reversed the inhibition of fXa by direct fXa inhibitors and corrected the prolongation of ex vivo clotting times by such inhibitors. In rabbits treated with the direct fXa inhibitor rivaroxaban, r-Antidote restored hemostasis in a liver laceration model. The effect of r-Antidote was mediated by reducing plasma anti-fXa activity and the non-protein bound fraction of the fXa inhibitor in plasma. In rats, r-Antidote administration dose-dependently and completely corrected increases in blood loss resulting from ATIII-dependent anticoagulation by enoxaparin or fondaparinux. r-Antidote has the potential to be used as a universal antidote for a broad range of fXa inhibitors.

  16. Reversing the direction of galvanotaxis with controlled increases in boundary layer viscosity

    Science.gov (United States)

    Kobylkevich, Brian M.; Sarkar, Anyesha; Carlberg, Brady R.; Huang, Ling; Ranjit, Suman; Graham, David M.; Messerli, Mark A.

    2018-05-01

    Weak external electric fields (EFs) polarize cellular structure and direct most migrating cells (galvanotaxis) toward the cathode, making it a useful tool during tissue engineering and for healing epidermal wounds. However, the biophysical mechanisms for sensing weak EFs remain elusive. We have reinvestigated the mechanism of cathode-directed water flow (electro-osmosis) in the boundary layer of cells, by reducing it with neutral, viscous polymers. We report that increasing viscosity with low molecular weight polymers decreases cathodal migration and promotes anodal migration in a concentration dependent manner. In contrast, increased viscosity with high molecular weight polymers does not affect directionality. We explain the contradictory results in terms of porosity and hydraulic permeability between the polymers rather than in terms of bulk viscosity. These results provide the first evidence for controlled reversal of galvanotaxis using viscous agents and position the field closer to identifying the putative electric field receptor, a fundamental, outside-in signaling receptor that controls cellular polarity for different cell types.

  17. Reversing direction of galvanotaxis by controlled increases in boundary layer viscosity.

    Science.gov (United States)

    Kobylkevich, Brian M; Sarkar, Anyesha; Carlberg, Brady R; Huang, Ling; Ranjit, Suman; Graham, David M; Messerli, Mark A

    2018-02-07

    Weak external electric fields (EFs) polarize cellular structure and direct most migrating cells (galvanotaxis) toward the cathode, making it a useful tool during tissue engineering and healing of epidermal wounds. However, the biophysical mechanisms for sensing weak EFs remain elusive. We have reinvestigated the mechanism of cathode-directed water flow (electro-osmosis) in the boundary layer of cells, by reducing it with neutral, viscous polymers. We report that increasing viscosity with low molecular weight polymers decreases cathodal migration and promotes anodal migration in a concentration dependent manner. In contrast, increased viscosity with high molecular weight polymers does not affect directionality. We explain the contradictory results in terms of porosity and hydraulic permeability between the polymers rather than in terms of bulk viscosity. These results provide the first evidence for controlled reversal of galvanotaxis using viscous agents and position the field closer to identifying the putative electric field receptor, a fundamental, outside-in signaling receptor that controls cellular polarity for different cell types. © 2018 IOP Publishing Ltd.

  18. A Direct from Blood Reverse Transcriptase Polymerase Chain Reaction Assay for Monitoring Falciparum Malaria Parasite Transmission in Elimination Settings

    NARCIS (Netherlands)

    Taylor, B.J.; Lanke, K.; Banman, S.L.; Morlais, I.; Morin, M.J.; Bousema, T.; Rijpma, S.R.; Yanow, S.K.

    2017-01-01

    We describe a novel one-step reverse transcriptase real-time PCR (direct RT-PCR) for Plasmodium falciparum malaria parasites that amplifies RNA targets directly from blood. We developed the assay to identify gametocyte-specific transcripts in parasites from patient blood samples, as a means of

  19. Investigation on cold-drawn gold bonding wire with serial and reverse-direction drawing

    International Nuclear Information System (INIS)

    Cho, Jae-Hyung; Rollett, A.D.; Cho, J.-S.; Park, Y.-J.; Park, S.-H.; Oh, K.H.

    2006-01-01

    Gold bonding wires have been manufactured through multiple drawing steps with serial and reverse-direction drawing. The texture and microstructure of the gold bonding wires were characterized with X-ray diffraction and EBSD and compared with the predictions of finite element (FE) simulation. Initial fiber decreases during drawing and is replaced by fiber. The oriented grains are concentrated in the center and surface regions, whereas the oriented grains are located throughout the cross-section of the wire. Regions near the surface often exhibit the complex textures. A simplified forward and backward drawing process was modeled by FE analysis with ABAQUS/Standard TM . The simple two-step drawing process results in severe variation in shear strain under the surface and displays the opposite behavior in the shear components of the deformation gradient. The texture evolution was predicted using the deformation gradient calculated in the FE simulations together with a model of polycrystal plasticity. The and fibers are predicted to develop in the center part of the wire where homogeneous deformation occurs. The regions near the surface that experience repeated shear strain exhibit complex textures that deviate from the standard and fibers. The {1 1 2} and {1 1 1} components are prevalent in the higher shear strain regions. The variations of the anisotropic elastic directional moduli with position were also calculated

  20. Reverse transcriptase directs viral evolution in a deep ocean methane seep

    Science.gov (United States)

    Paul, B. G.; Bagby, S. C.

    2013-12-01

    Deep ocean methane seeps are sites of intense microbial activity, with complex communities fueled by aerobic and anaerobic methanotrophy. Methane consumption in these communities has a substantial impact on the global carbon cycle, yet little is known about their evolutionary history or their likely evolutionary trajectories in a warming ocean. As in other marine systems, viral predation and virally mediated horizontal gene transfer are expected to be major drivers of evolutionary change in these communities; however, the host cells' resistance to cultivation has impeded direct study of the viral population. We conducted a metagenomic study of viruses in the anoxic sediments of a deep methane seep in the Santa Monica Basin in the Southern California Bight. We retrieved 1660 partial viral genomes, tentatively assigning 1232 to bacterial hosts and 428 to archaea. One abundant viral genome, likely hosted by Clostridia species present in the sediment, was found to encode a diversity-generating retroelement (DGR), a module for reverse transcriptase-mediated directed mutagenesis of a distal tail fiber protein. While DGRs have previously been described in the viruses of human pathogens, where diversification of viral tail fibers permits infection of a range of host cell types, to our knowledge this is the first description of such an element in a marine virus. By providing a mechanism for massively broadening potential host range, the presence of DGRs in these systems may have a major impact on the prevalence of virally mediated horizontal gene transfer, and even on the phylogenetic distances across which genes are moved.

  1. Recent development in PWR zinc injection

    International Nuclear Information System (INIS)

    Ocken, H.; Fruzzetti, K.; Frattini, P.; Wood, C.J.

    2002-01-01

    Zinc injection to the reactor coolant system (RCS) of PWRs holds the promise to alleviate two key challenges facing PWR plant operators: (1) reducing degradation of coolant system materials, including nickel-base alloy tubing and lower alloy penetrations due to stress corrosion cracking, and (2) lowering shutdown dose rates. Primary water stress corrosion cracking (PWSCC) is a dominant tube failure mode at many plants. This paper summarizes recent observations from U. S. and international PWRs that have implemented zinc injection, focusing primarily on coolant chemistry and dose rate issues. It also provides a look at the future direction of EPRI-sponsored projects on this topic. (authors)

  2. French PWR Safety Philosophy

    International Nuclear Information System (INIS)

    Conte, M. M.

    1986-01-01

    The first 900 MWe units, built under the American Westinghouse licence and with reference to the U. S. regulation, were followed by 28 standardized units, C P1 and C P2 series. Increasing knowledge and lessons learned from starting and operating experience of French nuclear power plants, completed by the experience learned from the operation of foreign reactors, has contributed to the improvement of French PWR design and safety philosophy. As early as 1976, this experience was taken into account by French Safety organisms to discuss, with Electricite de France, the safety options for the planned 1300 MWe units, P4 and P4 series. In 1983, the new reactor scheduled, Ni4 series 1400 MWe, is a totally French design which satisfies the French regulations and other French standards and codes. Based on a deterministic approach, the French safety analysis was progressively completed by a probabilistic approach each of them having possibilities and limits. Increasing knowledge and lessons learned from operating experience have contributed to the French safety philosophy improvement. The methodology now applied to safety evaluation develops a new facet of the in depth defense concept by taking highly unlikely events into consideration, by developing the search of safety consistency of the design, and by completing the deterministic approach by the probabilistic one

  3. PWR fuel performance and future trend in Japan

    International Nuclear Information System (INIS)

    Kondo, Y.

    1987-01-01

    Since the first PWR power plant Mihama Unit 1 initiated its commercial operation in 1970, Japanese utilities and manufacturers have expended much of their resources and efforts to improve PWR technology. The results are already seen in significantly improved performance of 16 PWR plants now in operation. Mitsubishi Heavy Industries Ltd. (MHI) has been supplying them with nuclear fuel assemblies, which are over 5700. As the reliability of the current design fuel has been achieved, the direction of R and D on nuclear fuel has changed to make nuclear power more competitive to the other power generation methods. The most important R and D targets are the burnup extension, Gd contained fuel, Pu utilizatoin and the load follow capacility. (author)

  4. Model driven architecture for reverse engineering technologies: strategic directions and system evolution

    National Research Council Canada - National Science Library

    Favre, Liliana

    2010-01-01

    "This book proposes an integration of classical compiler techniques, metamodeling techniques and algebraic specification techniques to make a significant impact on the automation of MDA-based reverse...

  5. Design of microreactor by integration of reverse engineering and direct metal laser sintering process

    Energy Technology Data Exchange (ETDEWEB)

    Bineli, Aulus Roberto Romao; Gimenez Perez, Ana Paula; Bernardes, Luiz Fernando; Munhoz, Andre Luiz Jardini; Maciel Filho, Rubens [Universidade de Campinas (LOPCA/UNICAMP), SP (Brazil). School of Chemical Engineering. Laboratory of Optimization, Design and Advanced Process Control], Email: aulus@feq.unicamp.br

    2010-07-01

    The propose of this work is to present high precision microfabrication facilities using computer aided technologies as Reverse Engineering (RE) and Rapid Manufacturing (RM) to analyze, design and construct micro reactors to produce high content hydrogen gas. Micro reactors are very compact, have a high surface to volume ratio, exhibit enhanced heat and mass transfer rates, denotes extremely low pressure drop and allow improved thermal integration in the processes involved. The main goals of micro reactors are the optimization of conventional chemical plants and low footprint, opening different ways to research new process technologies and synthesis of new products. In this work, a microchannels plate and housing structure of these plates were fabricated using DMLS method (Direct Metal Laser Sintering). The plates were analyzed to verify the minimum thickness wall that machine can produce, and the housing structure were digitalized, using a 3D scanning, to perform a 3D inspection and to verify the deflection of the constructed part in comparison with original CAD design models. It was observed that DMLS systems are able to produce micro reactors and microchannels plates with high precision at different metallic materials. However, it is important to choose appropriate conditions to avoid residual stresses and consequently warping parts. (author)

  6. Beneficiation of a Sedimentary Phosphate Ore by a Combination of Spiral Gravity and Direct-Reverse Flotation

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2016-04-01

    Full Text Available In China, direct-reverse flotation is proved to be applicable to most phosphate ores. However, because the ratio of froth product is generally high, current direct-reverse technology faces challenges in terms of high reagent consumptions and cost. A new gravity and flotation combined process has been developed for the recovery of collophanite from sedimentary phosphate ore from the beneficiation plant of Hubei, China. In this process, 53% of the collophanite was firstly recovered by gravity separation, reducing the mass flow to direct flotation. The gravity tailing was the feed for the direct flotation. The flotation concentrate, mixed with gravity concentrate, was then subjected to reverse flotation. A final concentrate with a grade of 30.41% P2O5 at a recovery of 91.5% was produced from the feed analyzing 21.55% P2O5. Compared to the conventional direct-reverse flotation 86.1% recovery at 31.69% P2O5, it was found that pre-recovery of collophanite by spiral separation could significantly reduce the flotation reagent consumption and lead to improved overall collophanite recovery. The benefits of the new process in terms of cost savings were also discussed.

  7. In vitro direct organogenesis in response to floral reversion in lily ...

    African Journals Online (AJOL)

    Our previous study indicated that the tiger lily (Lilium lancifolium var. Flore Pleno) has a great ability to produce inflorescence bulbils in nature as a form of natural phenomenon of floral reversion in plants. This present research was carried out to investigate the artificial floral reversion in in vitro culture of two lilies (Asiatic ...

  8. Sizewell 'B' PWR reference design

    International Nuclear Information System (INIS)

    1982-04-01

    The reference design for a PWR power station to be constructed as Sizewell 'B' is presented in 3 volumes containing 14 chapters and in a volume of drawings. The report describes the proposed design and provides the basis upon which the safety case and the Pre-Construction Safety Report have been prepared. The station is based on a 3425MWt Westinghouse PWR providing steam to two turbine generators each of 600 MW. The layout and many of the systems are based on the SNUPPS design for Callaway which has been chosen as the US reference plant for the project. (U.K.)

  9. Dopamine and noradrenaline efflux in the medial prefrontal cortex during serial reversals and extinction of instrumental goal-directed behavior

    NARCIS (Netherlands)

    van der Meulen, Jamilja A. J.; Joosten, Ruud N. J. M. A.; de Bruin, Jan P. C.; Feenstra, Matthijs G. P.

    2007-01-01

    The prefrontal cortex (PFC) of the rat supports cognitive flexibility, the ability to spontaneously adapt goal-directed behavior in response to radically changing situational demands. We have shown previously that transient inactivation of the rat medial PFC (mPFC) impairs initial reversal learning

  10. Comparison of statistical accuracy between the 'direct' and the 'reverse' time-of-flight techniques

    International Nuclear Information System (INIS)

    Kudryashev, V.A.; Hartung, U.

    1992-01-01

    The statistical accuracy between two neutron time-of-flight (TOF) diffraction techniques, the classic 'forward' TOF and the 'reverse' TOF technique, are compared. This problem is discussed in dependence on the diffracted spectrum, the background and some special device parameters. In general the 'reverse' TOF method yields better statistics in the spectrum's range above the medium channel content; by the classic TOF method this is achieved in the lower area. For that reason, the reverse TOF measurement is especially recommendable for structure problems and the forward TOF technique for studying the background (e.g. the inelastic scattered portion). (orig.)

  11. Managing reversal of direct oral anticoagulants in emergency situations Anticoagulation Education Task Force White Paper

    NARCIS (Netherlands)

    Ageno, Walter; Büller, Harry R.; Falanga, Anna; Hacke, Werner; Hendriks, Jeroen; Lobban, Trudie; Merino, Jose; Milojevic, Ivan S.; Moya, Francisco; van der Worp, H. Bart; Randall, Gary; Tsioufis, Konstantinos; Verhamme, Peter; Camm, A. John

    2016-01-01

    Anticoagulation is the cornerstone of prevention and treatment of venous thromboembolism (VTE) and stroke prevention in patients with atrial fibrillation (AF). However, the mechanisms by which anticoagulants confer therapeutic benefit also increase the risk of bleeding. As such, reversal strategies

  12. Effects of direct current and pulse-reverse copper plating waveforms on the incubation behavior of self-annealing

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Min-Yuan [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 300 Taiwan (China); Chen, Kei-Wei, E-mail: kwchena@aa.nctu.edu.t [Department of Materials Science, National University of Tainan, Tainan, 700 Taiwan (China); Liu, Tzeng-Feng [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 300 Taiwan (China); Wang, Ying-Lang [Department of Materials Science, National University of Tainan, Tainan, 700 Taiwan (China); Feng, Hsien-Ping [Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300 Taiwan (China)

    2010-10-01

    This study investigates spontaneous microstructural evolution in electroplated Cu films with various plating current densities involving direct current and pulse-reverse waveforms and various possible driving forces. Studies have explained the grain growth and resistivity decrease during the self-annealing of as-deposited Cu film, but the incubation behavior of self-annealing under various direct current and pulse-reverse current waveforms at a certain film thickness is unknown. In this study, it was found that pulse-reverse current retards the incubation behavior more significantly than does direct current. According to the measurements of resistivity, stress, and secondary ion mass spectrometer, the large stress difference between the initial and critical values and the low impurity content of pulse-reverse current postponed the incubation, and led to a slow self-annealing rate. The combination of the stress difference and the impurity effect explains the incubation behavior of self-annealing under various plating current densities. The resistivity and X-ray diffraction results suggest that stress is the primary driving force that dramatically speeds up grain growth above the critical stress, and that high current density with a rapid grain growth rate enhances the (200) texture for strain energy minimization in electroplated Cu film.

  13. Reversed better-than-average effect in direct comparisons of nonsocial stimuli depends on the set size.

    Science.gov (United States)

    Niewiarowski, Jakub; Karyłowski, Jerzy J; Szutkiewicz-Szekalska, Karolina; Cypryańska, Marzena

    2014-05-01

    Studies on direct comparative judgments typically show that, for items that are positively evaluated, a single item randomly drawn from a larger set of similar items tends to be judged as better than average (the BTA effect). However, Windschitl, Conybeare, and Krizan (2008) demonstrated that, under timing conditions that do not favor focusing attention on the single item, the reversal of the BTA effect occurs. We report two experiments showing that the magnitude of the reversed BTA effect increases as a function of the size of a multiitem referent with which a single item target is compared. Specifically, in direct comparative judgments of the attractiveness of positively evaluated objects (nice-looking cloth buttons, attractive buildings, or cupcakes), underestimation of the attractiveness of singletons, as compared with a multiitem set (reversed BTA effect), increased with the increased set size. Analysis of absolute judgments obtained for singletons and for small and large multiitem sets suggests that, for attractive stimuli, both the reversed BTA effect in comparative judgments and its sensitivity to set size occur as a result of a positive relationship between set size and perceived attractiveness in absolute judgments.

  14. PWR plant construction in Japan

    International Nuclear Information System (INIS)

    Tamura, Toshifumi

    2002-01-01

    The construction methods based on the experiences on the Nuclear Island, which is a critical path in the total construction schedule, have been studied and reconsidered in order to construct by more reliable and economical method. So various improved construction method are being applied and the duration of construction is being reduced continuously. So various improved construction method are being applied and the duration of construction is being reduced continuously. In this paper, the history of construction of twenty-three (23) PWR Plant, the actual construction methods and schedule of Ohi-3/4, to which the many improved methods were applied during their construction, are introduced mainly with the improved points for previously constructed plants. And also the situation of construction method for the next PWR Plant is simply explained

  15. Overview of PWR chemistry options

    Energy Technology Data Exchange (ETDEWEB)

    Nordmann, F.; Stutzmann, A.; Bretelle, J.L. [Electricite de France, Central Labs. (France)

    2002-07-01

    EDF Central Laboratories, in charge of engineering in chemistry, of defining the chemistry specifications and studying the operation feedback and improvement for 58 PWR units, have the opportunity to evaluate many options of operation developed and applied all around the world. Thanks to these international relationships and to the benefit of a large feedback from many units, some general evaluation of the various options is discussed in this paper. (authors)

  16. Corrosion of PWR steam generators

    International Nuclear Information System (INIS)

    Garnsey, R.

    1979-01-01

    Some designs of pressurized water reactor (PWR) steam generators have experienced a variety of corrosion problems which include stress corrosion cracking, tube thinning, pitting, fatigue, erosion-corrosion and support plate corrosion resulting in 'denting'. Large international research programmes have been mounted to investigate the phenomena. The operational experience is reviewed and mechanisms which have been proposed to explain the corrosion damage are presented. The implications for design development and for boiler and feedwater control are discussed. (author)

  17. PWR system reliability improvement activities

    International Nuclear Information System (INIS)

    Yoshikawa, Yuichiro

    1985-01-01

    In Japan lacking in energy resources, it is our basic energy policy to accelerate the development program of nuclear power, thereby reducing our dependence. As referred to in the foregoing, every effort has been exerted on our part to improve the PWR system reliability by dint of the so-called 'HOMEMADE' TQC activities, which is our brain-child as a result of applying to the energy industry the quality control philosophy developed in the field of manufacturing industry

  18. Direct integration of MEMS, dielectric pumping and cell manipulation with reversibly bonded gecko adhesive microfluidics

    International Nuclear Information System (INIS)

    Warnat, S; King, H; Hubbard, T; Wasay, A; Sameoto, D

    2016-01-01

    We present an approach to form a microfluidic environment on top of MEMS dies using reversibly bonded microfluidics. The reversible polymeric microfluidics moulds bond to the MEMS die using a gecko-inspired gasket architecture. In this study the formed microchannels are demonstrated in conjunction with a MEMS mechanical single cell testing environment for BioMEMS applications. A reversible microfluidics placement technique with an x - y and rotational accuracy of  ±2 µ m and 1° respectively on a MEMS die was developed. No leaks were observed during pneumatic pumping of common cell media (PBS, sorbitol, water, seawater) through the fluidic channels. Thermal chevron actuators were successful operated inside this fluidic environment and a performance deviation of ∼15% was measured compared to an open MEMS configuration. Latex micro-spheres were pumped using traveling wave di-electrophoresis and compared to an open (no-microfluidics) configuration with velocities of 24 µ m s −1 and 20 µ m s −1 . (technical note)

  19. Reversed sense of the ''outward'' direction for dynamical effects of rotation close to a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Abramowicz, M.A.; Prasanna, A.R.

    1988-10-01

    Anderson and Lemos (1988) noticed that the direction in which viscous torque transports angular momentum changes, close to a black hole, from outwards to inwards. We find here that close to a black hole the centrifugal force attracts particles towards the hole. We argue that these are particular examples of a general reversal in sense of the inward and outward directions for all dynamical effects of rotation close to the hole. Using results from the recent paper by Abramowicz, Carter and Lasota (1988) we explain that the reversal is not connected with dragging of inertial frames or with the difference between the angular velocities of the hole and of the surrounding matter but rather, it is an effect of curvature. For a Schwarzschild black hole the reversal takes place at the circular photon orbit (r=3M-tilde) because the geodesic curvature, R-tilde=r(1-3M-tilde/r), of the circles r = const. changes its sign there. (author). 13 refs, 7 figs, 1 tab

  20. Human EGF-derived direct and reverse short linear motifs: conformational dynamics insight into the receptor-binding residues.

    Science.gov (United States)

    Moldogazieva, Nurbubu T; Shaitan, Konstantin V; Antonov, Mikhail Yu; Mokhosoev, Innokenty M; Levtsova, Olga V; Terentiev, Alexander A

    2018-04-01

    Short linear motifs (SLiMs) have been recognized to perform diverse functions in a variety of regulatory proteins through the involvement in protein-protein interactions, signal transduction, cell cycle regulation, protein secretion, etc. However, detailed molecular mechanisms underlying their functions including roles of definite amino acid residues remain obscure. In our previous studies, we demonstrated that conformational dynamics of amino acid residues in oligopeptides derived from regulatory proteins such as alpha-fetoprotein (AFP), carcino-embryonic antigen (CEA), and pregnancy specific β1-glycoproteins (PSGs) contributes greatly to their biological activities. In the present work, we revealed the 22-member linear modules composed of direct and reverse AFP 14-20 -like heptapeptide motifs linked by CxxGY/FxGx consensus motif within epidermal growth factor (EGF), growth factors of EGF family and numerous regulatory proteins containing EGF-like modules. We showed, first, the existence of similarity in amino acid signatures of both direct and reverse motifs in terms of their physicochemical properties. Second, molecular dynamics (MD) simulation study demonstrated that key receptor-binding residues in human EGF in the aligned positions of the direct and reverse motifs may have similar distribution of conformational probability densities and dynamic behavior despite their distinct physicochemical properties. Third, we found that the length of a polypeptide chain (from 7 to 53 residues) has no effect, while disulfide bridging and backbone direction significantly influence the conformational distribution and dynamics of the residues. Our data may contribute to the atomic level structure-function analysis and protein structure decoding; additionally, they may provide a basis for novel protein/peptide engineering and peptide-mimetic drug design.

  1. A comparison of fuzzy logic-PID control strategies for PWR pressurizer control

    International Nuclear Information System (INIS)

    Kavaklioglu, K.; Ikonomopoulos, A.

    1993-01-01

    This paper describes the results obtained from a comparison performed between classical proportional-integral-derivative (PID) and fuzzy logic (FL) controlling the pressure in a pressurized water reactor (PWR). The two methodologies have been tested under various transient scenarios, and their performances are evaluated with respect to robustness and on-time response to external stimuli. One of the main concerns in the safe operation of PWR is the pressure control in the primary side of the system. In order to maintain the pressure in a PWR at the desired level, the pressurizer component equipped with sprayers, heaters, and safety relief valves is used. The control strategy in a Westinghouse PWR is implemented with a PID controller that initiates either the electric heaters or the sprayers, depending on the direction of the coolant pressure deviation from the setpoint

  2. Stumbling corrective responses in healthy human subjects to rapid reversal of treadmill direction.

    Science.gov (United States)

    Vilensky, J A; Cook, J A; Cooper, J L

    1999-06-01

    The kinematics of stumbling and recovery induced by a rapidly reversing treadmill is described for eight healthy adults. Stability was achieved in approximately 400 ms following treadmill reversal (initiated at heel-strike) and the ensuing stumble. It appeared to be accomplished primarily by rapid flexion of the thigh and knee of the stance limb, which prevented damage to the knee joint and lowered the trunk, and by extension of the contralateral joints (swing limb), which contacted the ground presumably to deliver an impulsive thrust to counter the backward lean of the trunk. The movements of the ankle also contributed to the recovery from the stumble, but its movements were markedly more variable among the subjects than those of the thigh and knee. The observed kinematics to some extent resembled a crossed-extension reflex, which may have been triggered by muscle, joint, cutaneous or vestibular afferents. These data should provide a baseline by which to compare groups in which recovery from stumbling is known to be deficient (e.g., the elderly).

  3. Direct observation of magnetization reversal of hot-deformed Nd-Fe-B magnet

    Directory of Open Access Journals (Sweden)

    Xiaoyun Zhu

    2018-01-01

    Full Text Available The dynamic magnetic domain structure in magnetization and demagnetization process of hot-deformed and NdCu-diffused Nd2Fe14B magnets were in-situ observed by Lorentz transmission electron microscopy (LTEM. The demagnetization process of hot-deformed sample is dominated by domain-wall pinning, while that of NdCu-diffused sample is mainly the magnetization reversal of single grains or grain aggregations. This firstly observed result gives an explicit evidence to understand the coercivity mechanism of magnetically segregated magnet. The effect of magnetic field of TEM on decrease in domain wall energy was theoretically analyzed, which helps to understand the in-situ observation process of magnetic materials.

  4. First direct observation of time-reversal non-invariance in the neutral-kaon system

    CERN Document Server

    Angelopoulos, Angelos; Aslanides, Elie; Backenstoss, Gerhard; Bargassa, P; Behnke, O; Benelli, A; Bertin, V; Blanc, F; Bloch, P; Carlson, P J; Carroll, M; Cawley, E; Chertok, M B; Danielsson, M; Dejardin, M; Derré, J; Ealet, A; Eleftheriadis, C; Faravel, L; Fetscher, W; Fidecaro, Maria; Filipcic, A; Francis, D; Fry, J; Gabathuler, Erwin; Gamet, R; Gerber, H J; Go, A; Haselden, A; Hayman, P J; Henry-Coüannier, F; Hollander, R W; Jon-And, K; Kettle, P R; Kokkas, P; Kreuger, R; Le Gac, R; Leimgruber, F; Mandic, I; Manthos, N; Marel, Gérard; Mikuz, M; Miller, J; Montanet, François; Müller, A; Nakada, Tatsuya; Pagels, B; Papadopoulos, I M; Pavlopoulos, P; Polivka, G; Rickenbach, R; Roberts, B L; Ruf, T; Santoni, C; Schäfer, M; Schaller, L A; Schietinger, T; Schopper, A; Tauscher, Ludwig; Thibault, C; Touchard, F; Touramanis, C; van Eijk, C W E; Vlachos, S; Weber, P; Wigger, O; Wolter, M; Zavrtanik, D; Zimmerman, D

    1998-01-01

    We report on the first observation of time-reversal symmetry violation through a comparison of the probabilities of $\\bar{K}^0$ transforming into $K^0$ and $K^0$ into $\\bar{K}^0$ as a function of the neutral-kaon eigentime $t$. The comparison is based on the analysis of the neutral-kaon semileptonic decays recorded in the CPLEAR experiment. There, the strangeness of the neutral kaon at time $t=0$ was tagged by the kaon charge in the reaction $p\\bar{p} \\rightarrow K^{\\pm} \\pi^{\\mp} K^0(\\bar{K}^0)$ at rest, whereas the strangeness of the kaon at the decay time $t=\\tau$ was tagged by the lepton charge in the final state. An average decay-rate asymmetry \\begin{equation*} \\langle^{R(\\bar{K}^0_{t=0} \\to e^+\\pi^-\

  5. Direct observation of magnetization reversal of hot-deformed Nd-Fe-B magnet

    Science.gov (United States)

    Zhu, Xiaoyun; Tang, Xu; Pei, Ke; Tian, Yue; Liu, Jinjun; Xia, Weixing; Zhang, Jian; Liu, J. Ping; Chen, Renjie; Yan, Aru

    2018-01-01

    The dynamic magnetic domain structure in magnetization and demagnetization process of hot-deformed and NdCu-diffused Nd2Fe14B magnets were in-situ observed by Lorentz transmission electron microscopy (LTEM). The demagnetization process of hot-deformed sample is dominated by domain-wall pinning, while that of NdCu-diffused sample is mainly the magnetization reversal of single grains or grain aggregations. This firstly observed result gives an explicit evidence to understand the coercivity mechanism of magnetically segregated magnet. The effect of magnetic field of TEM on decrease in domain wall energy was theoretically analyzed, which helps to understand the in-situ observation process of magnetic materials.

  6. Proposition of a modeling and an analysis methodology of integrated reverse logistics chain in the direct chain

    International Nuclear Information System (INIS)

    Mimouni, F.; Abouabdellah, A.

    2016-01-01

    Propose a modeling and analysis methodology based on the combination of Bayesian networks and Petri networks of the reverse logistics integrated the direct supply chain. Network modeling by combining Petri and Bayesian network. Modeling with Bayesian network complimented with Petri network to break the cycle problem in the Bayesian network. Demands are independent from returns. Model can only be used on nonperishable products. Legislation aspects: Recycling laws; Protection of environment; Client satisfaction via after sale service. Bayesian network with a cycle combined with the Petri Network. (Author)

  7. Conceptual design of simplified PWR

    International Nuclear Information System (INIS)

    Tabata, Hiroaki

    1996-01-01

    The limited availability for location of nuclear power plant in Japan makes plants with higher power ratings more desirable. Having no intention of constructing medium-sized plants as a next generation standard plant, Japanese utilities are interested in applying passive technologies to large ones. So, Japanese utilities have studied large passive plants based on AP600 and SBWR as alternative future LWRs. In a joint effort to develop a new generation nuclear power plant which is more friendly to operator and maintenance personnel and is economically competitive with alternative sources of power generation, JAPC and Japanese Utilities started the study to modify AP600 and SBWR, in order to accommodate the Japanese requirements. During a six year program up to 1994, basic concepts for 1000 MWe class Simplified PWR (SPWR) and Simplified BWR (SBWR) were developed, though there still remain several areas to be improved. These studies have now stepped into the phase of reducing construction cost and searching for maximum power rating that can be attained by reasonably practical technology. These results also suggest that it is hopeful to develop a large 3-loop passive plant (∼1200 MWe). Since Korea mainly deals with PWR, this paper summarizes SPWR study. The SPWR is jointly studied by JAPC, Japanese PWR Utilities, EdF, WH and Mitsubishi Heavy Industry. Using the AP-600 reference design as a basis, we enlarged the plant size to 3-loops and added engineering features to conform with Japanese practice and Utilities' preference. The SPWR program definitively confirmed the feasibility of a passive plant with an NSSS rating about 1000 MWe and 3 loops. (J.P.N.)

  8. Heteroscedasticity as a Basis of Direction Dependence in Reversible Linear Regression Models.

    Science.gov (United States)

    Wiedermann, Wolfgang; Artner, Richard; von Eye, Alexander

    2017-01-01

    Heteroscedasticity is a well-known issue in linear regression modeling. When heteroscedasticity is observed, researchers are advised to remedy possible model misspecification of the explanatory part of the model (e.g., considering alternative functional forms and/or omitted variables). The present contribution discusses another source of heteroscedasticity in observational data: Directional model misspecifications in the case of nonnormal variables. Directional misspecification refers to situations where alternative models are equally likely to explain the data-generating process (e.g., x → y versus y → x). It is shown that the homoscedasticity assumption is likely to be violated in models that erroneously treat true nonnormal predictors as response variables. Recently, Direction Dependence Analysis (DDA) has been proposed as a framework to empirically evaluate the direction of effects in linear models. The present study links the phenomenon of heteroscedasticity with DDA and describes visual diagnostics and nine homoscedasticity tests that can be used to make decisions concerning the direction of effects in linear models. Results of a Monte Carlo simulation that demonstrate the adequacy of the approach are presented. An empirical example is provided, and applicability of the methodology in cases of violated assumptions is discussed.

  9. Directing Stem Cell Differentiation via Electrochemical Reversible Switching between Nanotubes and Nanotips of Polypyrrole Array.

    Science.gov (United States)

    Wei, Yan; Mo, Xiaoju; Zhang, Pengchao; Li, Yingying; Liao, Jingwen; Li, Yongjun; Zhang, Jinxing; Ning, Chengyun; Wang, Shutao; Deng, Xuliang; Jiang, Lei

    2017-06-27

    Control of stem cell behaviors at solid biointerfaces is critical for stem-cell-based regeneration and generally achieved by engineering chemical composition, topography, and stiffness. However, the influence of dynamic stimuli at the nanoscale from solid biointerfaces on stem cell fate remains unclear. Herein, we show that electrochemical switching of a polypyrrole (Ppy) array between nanotubes and nanotips can alter surface adhesion, which can strongly influence mechanotransduction activation and guide differentiation of mesenchymal stem cells (MSCs). The Ppy array, prepared via template-free electrochemical polymerization, can be reversibly switched between highly adhesive hydrophobic nanotubes and poorly adhesive hydrophilic nanotips through an electrochemical oxidation/reduction process, resulting in dynamic attachment and detachment to MSCs at the nanoscale. Multicyclic attachment/detachment of the Ppy array to MSCs can activate intracellular mechanotransduction and osteogenic differentiation independent of surface stiffness and chemical induction. This smart surface, permitting transduction of nanoscaled dynamic physical inputs into biological outputs, provides an alternative to classical cell culture substrates for regulating stem cell fate commitment. This study represents a general strategy to explore nanoscaled interactions between stem cells and stimuli-responsive surfaces.

  10. Contaminants of emerging concern in reverse osmosis brine concentrate from indirect/direct water reuse applications.

    Science.gov (United States)

    Romeyn, Travis R; Harijanto, Wesley; Sandoval, Sofia; Delagah, Saied; Sharbatmaleki, Mohamadali

    2016-01-01

    Water shortage is becoming more common due to droughts and global population increases resulting in the increasing popularity of water reuse to create new water sources. Reverse osmosis (RO) membrane systems are popular in these applications since they can produce drinking water quality effluent. Unfortunately, RO systems have the drawback of generating concentrate streams that contain contaminants rejected by the membrane including chemicals of emerging concern (CECs). CECs are chemicals such as hormones, steroids, pesticides, pharmaceuticals, and personal care products that are used for their intended purpose and then released into wastewater. CECs are believed to be detrimental to aquatic wildlife health and pose an unknown human health risk. This research gathered the existing knowledge on CEC presence in concentrate, available proven concentrate treatment methods, their CEC removal abilities, and current CEC regulations. It was found that 127 CECs have been measured in RO concentrate with 100 being detected at least once. The most potent treatment process available is UV/H2O2 as it offers the highest removal rates for the widest range of chemicals. The less expensive process of ozone/biologically activated carbon offers slightly lower removal abilities. This comprehensive report will provide the groundwork for better understanding, regulating and treating concentrate stream CECs.

  11. Surveillance of vibrations in PWR

    International Nuclear Information System (INIS)

    Espefaelt, R.; Lorenzen, J.; Aakerhielm, F.

    1980-07-01

    The core of a PWR - including fuel elements, internal structure, control rods and core support structure inside the pressure vessel - is subjected to forces which can cause vibrations. One sensitive means to detect and analyse such vibrations is by means of the noise from incore and excore neutron detector signals. In this project noise recordings have been made on two occasions in the Ringhals 2 plant and the obtained data been analysed using the Studsvik Noise Analysis Program System (SNAPS). The results have been intepreted and a detailed description of the vibrational status of the core and pressure vessel internals has been produced. On the basis of the obtained results it is proposed that neutron signal noise analysis should be performed at each PWR plant in the beginning, middle and end of each fuel cycle and an analysis be made using the methods developed in the project. It would also provide a contribution to a higher degree of preparedness for diagnostic tasks in case of unexpected and abnormal events. (author)

  12. Directed evolution of DNA polymerase, RNA polymerase and reverse transcriptase activity in a single polypeptide.

    Science.gov (United States)

    Ong, Jennifer L; Loakes, David; Jaroslawski, Szymon; Too, Kathleen; Holliger, Philipp

    2006-08-18

    DNA polymerases enable key technologies in modern biology but for many applications, native polymerases are limited by their stringent substrate recognition. Here we describe short-patch compartmentalized self-replication (spCSR), a novel strategy to expand the substrate spectrum of polymerases in a targeted way. spCSR is based on the previously described CSR, but unlike CSR only a short region (a "patch") of the gene under investigation is diversified and replicated. This allows the selection of polymerases under conditions where catalytic activity and processivity are compromised to the extent that full self-replication is inefficient. We targeted two specific motifs involved in substrate recognition in the active site of DNA polymerase I from Thermus aquaticus (Taq) and selected for incorporation of both ribonucleotide- (NTP) and deoxyribonucleotide-triphosphates (dNTPs) using spCSR. This allowed the isolation of multiple variants of Taq with apparent dual substrate specificity. They were able to synthesize RNA, while still retaining essentially wild-type (wt) DNA polymerase activity as judged by PCR. One such mutant (AA40: E602V, A608V, I614M, E615G) was able to incorporate both NTPs and dNTPs with the same catalytic efficiency as the wt enzyme incorporates dNTPs. AA40 allowed the generation of mixed RNA-DNA amplification products in PCR demonstrating DNA polymerase, RNA polymerase as well as reverse transcriptase activity within the same polypeptide. Furthermore, AA40 displayed an expanded substrate spectrum towards other 2'-substituted nucleotides and was able to synthesize nucleic acid polymers in which each base bore a different 2'-substituent. Our results suggest that spCSR will be a powerful strategy for the generation of polymerases with altered substrate specificity for applications in nano- and biotechnology and in the enzymatic synthesis of antisense and RNAi probes.

  13. Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase.

    Science.gov (United States)

    Schuchmann, K; Müller, V

    2013-12-13

    Storage and transportation of hydrogen is a major obstacle for its use as a fuel. An increasingly considered alternative for the direct handling of hydrogen is to use carbon dioxide (CO2) as an intermediate storage material. However, CO2 is thermodynamically stable, and developed chemical catalysts often require high temperatures, pressures, and/or additives for high catalytic rates. Here, we present the discovery of a bacterial hydrogen-dependent carbon dioxide reductase from Acetobacterium woodii directly catalyzing the hydrogenation of CO2. We also demonstrate a whole-cell system able to produce formate as the sole end product from dihydrogen (H2) and CO2 as well as syngas. This discovery opens biotechnological alternatives for efficient CO2 hydrogenation either by using the isolated enzyme or by employing whole-cell catalysis.

  14. Direct imaging of cross-sectional magnetization reversal in an exchange-biased CoFeB/IrMn bilayer

    Science.gov (United States)

    Hu, Shuai; Pei, Ke; Wang, Baomin; Xia, Weixing; Yang, Huali; Zhan, Qingfeng; Li, Xiaoguang; Liu, Xincai; Li, Run-Wei

    2018-02-01

    The exchange coupling between ferromagnetic (FM) and antiferromagnetic materials has been intensely studied for fundamental physics and technological applications in various devices. However, the experimental reported magnitudes of exchange coupling are often smaller than that predicted theoretically, and for which the formation of springlike spin structure in the FM layer has been suggested as the cause. However, investigating the spin structure around the interface of exchange-coupled systems is challenging. Here we report the direct imaging of the cross-sectional magnetization reversal and spin structure at the interface of a model exchange-biased CoFeB/IrMn bilayer by a Lorentz transmission electron microscope with electron holography techniques. Through imaging of in situ magnetization reversal and spin structure at the remanent state, the springlike spin structure (either Bloch-wall-like or Néel-wall-like) in the CoFeB layer has been deduced within subnanometer region of the interface. This result puts a strong constraint on the theories of exchange coupling in inhomogeneous magnetic systems.

  15. FLUOLE-2: An Experiment for PWR Pressure Vessel Surveillance

    Directory of Open Access Journals (Sweden)

    Thiollay Nicolas

    2016-01-01

    Full Text Available FLUOLE-2 is a benchmark-type experiment dedicated to 900 and 1450 MWe PWR vessels surveillance dosimetry. This two-year program started in 2014 and will end in 2015. It will provide precise experimental data for the validation of the neutron spectrum propagation calculation from core to vessel. It is composed of a square core surrounded by a stainless steel baffe and internals: PWR barrel is simulated by steel structures leading to different steel-water slides; two steel components stand for a surveillance capsule holder and for a part of the pressure vessel. Measurement locations are available on the whole experimental structure. The experimental knowledge of core sources will be obtained by integral gamma scanning measurements directly on fuel pins. Reaction rates measured by calibrated fission chambers and a large set of dosimeters will give information on the neutron energy and spatial distributions. Due to the low level neutron flux of EOLE ZPR a special, high efficiency, calibrated gamma spectrometry device will be used for some dosimeters, allowing to measure an activity as low as 7. 10−2 Bq per sample. 103mRh activities will be measured on an absolute calibrated X spectrometry device. FLUOLE-2 experiment goal is to usefully complete the current experimental benchmarks database used for the validation of neutron calculation codes. This two-year program completes the initial FLUOLE program held in 2006–2007 in a geometry representative of 1300 MWe PWR.

  16. Direct 4D parametric imaging for linearized models of reversibly binding PET tracers using generalized AB-EM reconstruction

    Science.gov (United States)

    Rahmim, Arman; Zhou, Yun; Tang, Jing; Lu, Lijun; Sossi, Vesna; Wong, Dean F.

    2012-01-01

    Due to high noise levels in the voxel kinetics, development of reliable parametric imaging algorithms remains as one of most active areas in dynamic brain PET imaging, which in the vast majority of cases involves receptor/transporter studies with reversibly binding tracers. As such, the focus of this work has been to develop a novel direct 4D parametric image reconstruction scheme for such tracers. Based on a relative equilibrium (RE) graphical analysis formulation (Zhou et al., 2009b), we developed a closed-form 4D EM algorithm to directly reconstruct distribution volume (DV) parametric images within a plasma input model, as well as DV ratio (DVR) images within a reference tissue model scheme (wherein an initial reconstruction was used to estimate the reference tissue time-activity-curves). A particular challenge with the direct 4D EM formulation is that the intercept parameters in graphical (linearized) analysis of reversible tracers (e.g. Logan or RE analysis) are commonly negative (unlike for irreversible tracers; e.g. using Patlak analysis). Subsequently, we focused our attention on the AB-EM algorithm, derived by Byrne (1998) to allow inclusion of prior information about the lower (A) and upper (B) bounds for image values. We then generalized this algorithm to the 4D EM framework thus allowing negative intercept parameters. Furthermore, our 4D AB-EM algorithm incorporated, and emphasized the use of spatially varying lower bounds to achieve enhanced performance. As validation, the means of parameters estimated from 55 human 11C-raclopride dynamic PET studies were used for extensive simulations using a mathematical brain phantom. Images were reconstructed using conventional indirect as well as proposed direct parametric imaging methods. Noise vs. bias quantitative measurements were performed in various regions of the brain. Direct 4D EM reconstruction resulted in notable qualitative and quantitative accuracy improvements (over 35% noise reduction, with matched

  17. Directed genetic modification of African horse sickness virus by reverse genetics

    Directory of Open Access Journals (Sweden)

    Elaine Vermaak

    2015-07-01

    Full Text Available African horse sickness virus (AHSV, a member of the Orbivirus genus in the family Reoviridae, is an arthropod-transmitted pathogen that causes a devastating disease in horses with a mortality rate greater than 90%. Fundamental research on AHSV and the development of safe, efficacious vaccines could benefit greatly from an uncomplicated genetic modification method to generate recombinant AHSV. We demonstrate that infectious AHSV can be recovered by transfection of permissive mammalian cells with transcripts derived in vitro from purified AHSV core particles. These findings were expanded to establish a genetic modification system for AHSV that is based on transfection of the cells with a mixture of purified core transcripts and a synthetic T7 transcript. This approach was applied successfully to recover a directed cross-serotype reassortant AHSV and to introduce a marker sequence into the viral genome. The ability to manipulate the AHSV genome and engineer specific mutants will increase understanding of AHSV replication and pathogenicity, as well as provide a tool for generating designer vaccine strains.

  18. Reversed Pressure Compaction: A Novel Method for Processing Composite Materials Directly from Polymer Fibers

    Science.gov (United States)

    Cohen, Yachin; Rein, Dmitry M.; Vaykhansky, Lev

    2002-03-01

    “Single component” composite materials are processed directly from oriented polymer fibers without extraneous matrix. Bonding is achieved by entanglement of macromolecules that emanate from the fiber by controlled surface melting. The key element in the processing scheme is control of the fibers’ melting temperature by hydrostatic pressure, using the following steps: a) compression to high pressure (Pu) at low temperature (To), which deforms the fiber cross-section without melting. b) raising temperature to a high level (Tu), which is below the melting point of the oriented crystals at Pu. c) pPressure reduction to an intermediate level (Pm) for controlled time. At this pressure, the fibers’ begin melting from their surface and are consolidated. d) increase of pressure back to Pu stops the melting process. e) return to ambient temperature and pressure provides the finished material. This process is applicable to a wide range of polymeric materials such as ultra-high molecular weight polyethylene (UHMWPE), polypropylene, fluorinated polymers and liquid-crystalline polymers. The fact that the main processing steps occur at a constant temperature, whereby melting and crystallization are effected by control of pressure, allows enhanced homogeneity of the fabricated material. High-performance substrates for microwave antennae and circuitry have been fabricated with this manner, as will be described in the presentation.

  19. PWR standardization: The French experience

    International Nuclear Information System (INIS)

    Bacher, P.E.

    1987-01-01

    After a short historical review of the French PWR programme with 45000 MWe in operation and 15000 MWe under construction, the paper first develops the objectives and limits of the standardizatoin policy. Implementation of standardization is described through successive reactor series and feedback of experience, together with its impact on safety and on codes and standards. Present benefits of standardization range from low engineering costs to low backfitting costs, via higher quality, reduction in construction times and start-up schedules and improved training of operators. The future of the French programme into the 1990's is again with an advanced standardized series, the N4-1400 MW plant. There is no doubt that the very positive experience with standardization is relevant to any country trying to achieve self-reliance in the nuclear power field. (author)

  20. Point-of-Care Coagulation Tests Monitoring of Direct Oral Anticoagulants and Their Reversal Therapy: State of the Art.

    Science.gov (United States)

    Iapichino, Giacomo E; Bianchi, Paolo; Ranucci, Marco; Baryshnikova, Ekaterina

    2017-06-01

    Direct oral anticoagulants (DOACs) exert similar anticoagulant effects to vitamin K antagonists and are increasingly used worldwide. Nevertheless, an evidence-based approach to patients receiving DOACs when any unplanned urgent surgery or bleeding (either spontaneous or traumatic) occurs is still missing. In this review, we investigate the role of point-of-care coagulation tests when other, more specific tests are not available. Indeed, thromboelastography and activated clotting time can detect dabigatran-induced coagulopathy, while their accuracy is limited for apixaban and rivaroxaban, mostly in cases of low drug plasma concentrations. These tests can also be used to guide the reversal of DOAC-induced coagulopathy providing a quick, before-and-after picture in case of therapeutic use of hemostatic compounds. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  1. Babcock and Wilcox advanced PWR development

    International Nuclear Information System (INIS)

    Kulynych, G.E.; Lemon, J.E.

    1986-01-01

    The Babcock and Wilcox 600 MWe PWR design is discussed. Main features of the new B-600 design are improvements in reactor system configuration, glandless coolant pumps, safety features, core design and steam generators

  2. The increase in fatigue crack growth rates observed for Zircaloy-4 in a PWR environment

    Science.gov (United States)

    Cockeram, B. V.; Kammenzind, B. F.

    2018-02-01

    Cyclic stresses produced during the operation of nuclear reactors can result in the extension of cracks by processes of fatigue. Although fatigue crack growth rate (FCGR) data for Zircaloy-4 in air are available, little testing has been performed in a PWR primary water environment. Test programs have been performed by Gee et al., in 1989 and Picker and Pickles in 1984 by the UK Atomic Energy Authority, and by Wisner et al., in 1994, that have shown an enhancement in FCGR for Zircaloy-2 and Zircaloy-4 in high-temperature water. In this work, FCGR testing is performed on Zircaloy-4 in a PWR environment in the hydrided and non-hydrided condition over a range of stress-intensity. Measurements of crack extension are performed using a direct current potential drop (DCPD) method. The cyclic rate in the PWR primary water environment is varied between 1 cycle per minute to 0.1 cycle per minute. Faster FCGR rates are observed in water in comparison to FCGR testing performed in air for the hydrided material. Hydrided and non-hydrided materials had similar FCGR values in air, but the non-hydrided material exhibited much lower rates of FCGR in a PWR primary water environment than for hydrided material. Hydrides are shown to exhibit an increased tendency for cracking or decohesion in a PWR primary water environment that results in an enhancement in FCGR values. The FCGR in the PWR primary water only increased slightly with decreasing cycle frequency in the range of 1 cycle per minute to 0.1 cycle per minute. Comparisons between the FCGR in water and air show the enhancement from the PWR environment is affected by the applied stress intensity.

  3. Reverse transcriptase real-time PCR for detection and quantification of viable Campylobacter jejuni directly from poultry faecal samples.

    Science.gov (United States)

    Bui, Xuan Thanh; Wolff, Anders; Madsen, Mogens; Bang, Dang Duong

    2012-01-01

    Campylobacter spp. is the most common cause of bacterial diarrhoea in humans worldwide. Therefore, rapid and reliable methods for detection and quantification of this pathogen are required. In this study, we have developed a reverse transcription quantitative real-time PCR (RT-qPCR) for detection and quantification of viable Campylobacter jejuni directly from chicken faecal samples. The results of this method and a DNA-based quantitative real-time PCR (qPCR) method were compared with those of a bacterial culture method. Using bacterial culture and RT-qPCR methods, viable C. jejuni cells could be detected for up to 5 days in both the C. jejuni spiked and the naturally contaminated faecal samples. We found that no RT-qPCR signals were obtained when viable C. jejuni cells could not be counted by the culture method. In contrast, using a DNA-based qPCR method, dead or non-viable Campylobacter cells were detected, and all tested samples were positive, even after 20 days of storage. The developed method for detection and quantification of viable C. jejuni cells directly from chicken faecal samples can be used for further research on the survival of Campylobacter in the environment. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  4. Hydro mechanical investigation on different PWR upper plenum core structures

    International Nuclear Information System (INIS)

    Shen Xiuzhong; Yu Ping'an; Yang Guanyue

    1997-01-01

    The development of Nuclear Industry relys on the safe and reliable operation of nuclear power station. Whether or not control rods moving upward and downward freedly and dropping rapidly in emergency case by order directly dominates the nuclear power regulation and emergency shut-down. So to clarify the factors which exert great influences on the drop of control rods is very important for making certain that PWR is operated safety and relialy. Among the factors, the hydraulic load on the control rods plays an important role during the operation of reactor. However because of complication in turbulent flow and concentration of the control rod guide bundles in the upper plenum, the flow field has not been thoroughly studied up to now. In order to understand the flow field in upper plenum fully a 1/4 scale transparent model of the upper plenum of a active 300 MWe PWR is designed and installed in line with similarity theory. The velocity distributions (including horizontal and axial velocity) in the upper plenum are obtained by using N-J type Dynamic Resistance Strain Foil Velocimetry (N-J type DRSFV) and Laser Doppler Velocimetry (LDV). For the sake of alleviating the hydraulic load on the control rods and making certain that the control rods and making certain that the control rods are moving upward and downward freely and drop rapidly in emergency case by order, the core structure in the upper plenum of the active 300 MWe PWR is improved as in the following 2 cases: 1 Some protective sleeves are added to the control rod guide bundles near the upper plenum outlet nozzles (symmetric 4 bundles: 02-26, 03-25, 11-29, 12-28). The rest of the core structure is same as that of the core structure in the active 300 MWe PWR. 2. The active upper plenum core structure with 37 control rod guide bundles is replaced by the core structure with 33 protective-sleeved control rod guide bundles. The results of the simulated experiments with the 2 cases are compared with that of the

  5. Preliminary safety analysis of the PWR with accident-tolerant fuels during severe accident conditions

    International Nuclear Information System (INIS)

    Wu, Xiaoli; Li, Wei; Wang, Yang; Zhang, Yapei; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng; Liu, Tong; Deng, Yongjun; Huang, Heng

    2015-01-01

    Highlights: • Analysis of severe accident scenarios for a PWR fueled with ATF system is performed. • A large-break LOCA without ECCS is analyzed for the PWR fueled with ATF system. • Extended SBO cases are discussed for the PWR fueled with ATF system. • The accident-tolerance of ATF system for application in PWR is illustrated. - Abstract: Experience gained in decades of nuclear safety research and previous nuclear accidents direct to the investigation of passive safety system design and accident-tolerant fuel (ATF) system which is now becoming a hot research point in the nuclear energy field. The ATF system is aimed at upgrading safety characteristics of the nuclear fuel and cladding in a reactor core where active cooling has been lost, and is preferable or comparable to the current UO 2 –Zr system when the reactor is in normal operation. By virtue of advanced materials with improved properties, the ATF system will obviously slow down the progression of accidents, allowing wider margin of time for the mitigation measures to work. Specifically, the simulation and analysis of a large break loss of coolant accident (LBLOCA) without ECCS and extended station blackout (SBO) severe accident are performed for a pressurized water reactor (PWR) loaded with ATF candidates, to reflect the accident-tolerance of ATF

  6. Structure-dynamic model verification calculation of PWR 5 tests

    International Nuclear Information System (INIS)

    Engel, R.

    1980-02-01

    Within reactor safety research project RS 16 B of the German Federal Ministry of Research and Technology (BMFT), blowdown experiments are conducted at Battelle Institut e.V. Frankfurt/Main using a model reactor pressure vessel with a height of 11,2 m and internals corresponding to those in a PWR. In the present report the dynamic loading on the pressure vessel internals (upper perforated plate and barrel suspension) during the DWR 5 experiment are calculated by means of a vertical and horizontal dynamic model using the CESHOCK code. The equations of motion are resolved by direct integration. (orig./RW) [de

  7. Upgrading of PWR plant simulators

    International Nuclear Information System (INIS)

    Wada, Tomonori; Sasaki, Kazunori; Nakaishi, Hirokazu.

    1989-01-01

    For the education and training of operators in electric power plants, simulators have been employed, and it is well known that their effect is great. There are operation training simulators which simulate the dynamic characteristics of plants and all the machinery and equipment that operators handle, and train the procedure of restoration at the time of abnormality in plants, education simulators which can analyze the dynamic characteristics of plants efficiently in a short time, and offer information by visualizing phenomena with three-dimensional display and others so as to be easily understandable, and forecast simulators which do the analysis forecasting plant behavior at the time of abnormality in plants, and investigate the necessity of the guide for operation procedure and the countermeasures at the time of emergency. In this explanation, the upgrading of operation training simulators which have been put already in training is discussed. The constitution of simulator system and the instructor function, the outline of PWR plant simulation models comprising thermal flow model, pump model, leak model and so on, the techniques of increasing simulator speed, and the example of analysis using the NUPAC code are reported. (K.I.)

  8. PWR secondary water chemistry study

    International Nuclear Information System (INIS)

    Pearl, W.L.; Sawochka, S.G.

    1977-02-01

    Several types of corrosion damage are currently chronic problems in PWR recirculating steam generators. One probable cause of damage is a local high concentration of an aggressive chemical even though only trace levels are present in feedwater. A wide variety of trace chemicals can find their way into feedwater, depending on the sources of condenser cooling water and the specific feedwater treatment. In February 1975, Nuclear Water and Waste Technology Corporation (NWT), was contracted to characterize secondary system water chemistry at five operating PWRs. Plants were selected to allow effects of cooling water chemistry and operating history on steam generator corrosion to be evaluated. Calvert Cliffs 1, Prairie Island 1 and 2, Surry 2, and Turkey Point 4 were monitored during the program. Results to date in the following areas are summarized: (1) plant chemistry variations during normal operation, transients, and shutdowns; (2) effects of condenser leakage on steam generator chemistry; (3) corrosion product transport during all phases of operation; (4) analytical prediction of chemistry in local areas from bulk water chemistry measurements; and (5) correlation of corrosion damage to chemistry variation

  9. Operating experience with an on-line vibration control system for PWR main coolant pumps

    International Nuclear Information System (INIS)

    Runkel, J.; Stegemann, D.; Vortriede, A.

    1996-01-01

    The main circulation pumps are key components of nuclear power plants with pressurized water reactors, because the availability of the main circulation pumps has a direct influence on the availability and electrical output of the entire plant. The on-line automatic vibration control system ASMAS was developed for early failure detection during the normal operation of the main circulation pumps in order to avoid unexpected outages and to establish the possibility of preventive maintenance of the pumps. This system is permanently and successfully operating in three German 1300 MW el NPP's with PWR and has been successfully tested in a 350 MW el NPP with a PWR. (orig.)

  10. Operating experience with an on-line vibration control system for PWR main coolant pumps

    International Nuclear Information System (INIS)

    Runkel, J.; Stegemann, D.; Vortriede, A.

    1998-01-01

    The main circulation pumps are key components of nuclear power plants with pressurized water reactors (PWRs), because the availability of the main circulation pumps has a direct influence on the availability and electrical output of the entire plant. The on-line automatic vibration control system ASMAS was developed for early failure detection during the normal operation of the main circulation pumps in order to avoid unexpected outages and to establish the possibility of preventive maintenance of the pumps. This system is permanently and successfully operating in three German 1300 MW e1 NPP's with PWR and has been successfully tested in a 350 MW e1 NPP with a PWR. (orig.)

  11. Ultra-high resolution steady-state micro-thermometry using a bipolar direct current reversal technique

    Science.gov (United States)

    Wu, Jason Yingzhi; Wu, Wei; Pettes, Michael Thompson

    2016-09-01

    The suspended micro-thermometry measurement technique is one of the most prominent methods for probing the in-plane thermal conductance of low dimensional materials, where a suspended microdevice containing two built-in platinum resistors that serve as both heater and thermometer is used to measure the temperature and heat flow across a sample. The presence of temperature fluctuations in the sample chamber and background thermal conductance through the device, residual gases, and radiation are dominant sources of error when the sample thermal conductance is comparable to or smaller than the background thermal conductance, on the order of 300 pW/K at room temperature. In this work, we present a high resolution thermal conductance measurement scheme in which a bipolar direct current reversal technique is adopted to replace the lock-in technique. We have demonstrated temperature resolution of 1.0-2.6 mK and thermal conductance resolution of 1.7-26 pW/K over a temperature range of 30-375 K. The background thermal conductance of the suspended microdevice is determined accurately by our method and allows for straightforward isolation of this parasitic signal. This simple and high-throughput measurement technique yields an order of magnitude improvement in resolution over similarly configured lock-in amplifier techniques, allowing for more accurate investigation of fundamental phonon transport mechanisms in individual nanomaterials.

  12. PWR-blowdown heat transfer separate effects program

    International Nuclear Information System (INIS)

    Thomas, D.G.

    1976-01-01

    The ORNL Pressurized-Water Reactor Blowdown Heat Transfer (PWR-BDHT) Program is an experimental separate-effects study of the relations among the principal variables that can alter the rate of blowdown, the presence of flow reversal and rereversal, time delay to critical heat flux, the rate at which dryout progresses, and similar time-related functions that are important to LOCA analysis. Primary test results are obtained from the Thermal-Hydraulic Test Facility (THTF). Supporting experiments are carried out in several additional test loops - the Forced Convection Test Facility (FCTF), an air-water loop, a transient steam-water loop, and a low-temperature water mockup of the THTF heater rod bundle. The studies to date are described

  13. Parallel GPU implementation of PWR reactor burnup

    International Nuclear Information System (INIS)

    Heimlich, A.; Silva, F.C.; Martinez, A.S.

    2016-01-01

    Highlights: • Three GPU algorithms used to evaluate the burn-up in a PWR reactor. • Exhibit speed improvement exceeding 200 times over the sequential. • The C++ container is expansible to accept new nuclides chains. - Abstract: This paper surveys three methods, implemented for multi-core CPU and graphic processor unit (GPU), to evaluate the fuel burn-up in a pressurized light water nuclear reactor (PWR) using the solutions of a large system of coupled ordinary differential equations. The reactor physics simulation of a PWR reactor spends a long execution time with burnup calculations, so performance improvement using GPU can imply in better core design and thus extended fuel life cycle. The results of this study exhibit speed improvement exceeding 200 times over the sequential solver, within 1% accuracy.

  14. PWR Analysis with the Advanced System: DELFOS

    International Nuclear Information System (INIS)

    Cabellos, O.; Aragones, J.M.; Ahnert, C.

    1998-01-01

    The development of new PWR codes is necessary due to the heterogeneity of fuel assemblies, the complexity of load patterns and the required operation conditions. Code revisions have been previously referred. Although modern advanced nodal core models have been well established, some reports in the Annual Conference of the A.N.S. in 1995 indicated that the accuracy of cross section models have received less attention. Due to the new performance and taking into account the importance of the nodal cross-sections approximations, the group of researchers in the Instituto de Fusion Nuclear (UPM)have developed new models (code systems DELFOS) for advanced analysis of PWR cores. The system has been tested in the Asco II NPP, cycle 1 to 11 (nominal operation and startup physics tests) comparing with measurements in the last cycle. In conclusion we have validated this methodology for its general application to PWR reactors. (Author)

  15. ABB advanced BWR and PWR fuel

    International Nuclear Information System (INIS)

    Junkrans, S.; Helmersson, S.; Andersson, S.

    1999-01-01

    Fuel designed and fabricated by ABB is now operating in 40 PWRs and BWRs in Europe, the United States and Korea. An excellent fuel reliability track record has been established. High burnups are proven for both BWR and PWR. Thermal margin improving features and advanced burnable absorber concepts enable the utilities to adopt demanding duty cycles to meet new economic objectives. In particular we note the excellent reliability record of ABB PWR fuel equipped with Guardian TM debris filter, proven to meet the -6 rod-cycles fuel failure goal, and the out-standing operating record of the SVEA 10x10 BWR fuel, where ABB is the only vendor to date with multi batch experience to high burnup. ABB is dedicated to maintain high fuel reliability as well as continually improve and develop a broad line of BWR and PWR products. ABB's development and fuel follow-up activities are performed in close co-operation with its customers. (orig.)

  16. Coolant monitoring systems for PWR reactors

    International Nuclear Information System (INIS)

    Luzhnov, A.M.; Morozov, V.V.; Tsypin, S.G.

    1987-01-01

    The ways of improving information capacity of existing monitoring systems and the necessity of designing new ones for coolant monitoring are reviewed. A wide research program on development of coolant monitoring systems in PWR reactors is analyzed. The possible applications of in-core and out-of-core detectors for coolant monitoring are demonstrated

  17. Improvement of PWR reliability by corrosion prevention

    International Nuclear Information System (INIS)

    Takamatsu, Hiroshi

    1999-01-01

    Since first PWR in Japan started commercial operation in 1970, we have encountered the various modes of corrosion on primary and secondary side components. We have paid much efforts for resolving these corrosion problems, that is, investigating the causes of corrosion and establishing the countermeasures for these corrosion. We summarize these efforts in this article. (author)

  18. Thermohydraulic calculations of PWR primary circuits

    International Nuclear Information System (INIS)

    Botelho, D.A.

    1984-01-01

    Some mathematical and numerical models from Retran computer codes aiming to simulate reactor transients, are presented. The equations used for calculating one-dimensional flow are integrated using mathematical methods from Flash code, with steam code to correlate the variables from thermodynamic state. The algorithm obtained was used for calculating a PWR reactor. (E.G.) [pt

  19. 3D graphics simulation of the PWR

    International Nuclear Information System (INIS)

    Lei Gongchao; Ma Baiyong

    1999-01-01

    Using the functions of the software 'I-DEAS Master Series 5', such as the mode of design, drafting, simulation, test, geometry and so on, the task of stereo graphics simulating the PWR is done. Reliability of designed data is checked

  20. PWR reactors for BBR nuclear power plants

    International Nuclear Information System (INIS)

    Structure and functioning of the nuclear steam generator system developed by BBR and its components are described. Auxiliary systems, control and load following behaviour and fuel management are discussed and the main data of PWR given. The brochure closes with a perspective of the future of the Muelheim-Kaerlich nuclear power plant. (GL) [de

  1. Secondary systems of PWR and BWR

    International Nuclear Information System (INIS)

    Schindler, N.

    1981-01-01

    The secondary systems of a nuclear power plant comprises the steam, condensate and feedwater cycle, the steam plant auxiliary or ancillary systems and the cooling water systems. The presentation gives a general review about the main systems which show a high similarity of PWR and BWR plants. (orig./RW)

  2. Manufacturing technologies of PWR pressure vessels

    International Nuclear Information System (INIS)

    Qin Xubin

    1991-01-01

    Pressure vessels belong to the main component of PWR plants. Starting with describing the manufacture of pressure vessel components and their assembly, the manufacturing technologies of pressure vessels are briefly presented with regards to welding, heat treatment, inspections and testing. In addition, quality assurance during the manufacture is presented with emphasis

  3. Utilization of thorium in PWR type reactors

    International Nuclear Information System (INIS)

    Correa, F.

    1977-01-01

    Uranium 235 consumption is comparatively evaluated with thorium cycle for a PWR type reactor. Modifications are only made in fuels components. U-235 consumption is pratically unchanged in both cycles. Some good results are promised to the mixed U-238/Th-232 fuel cycle in 1/1 proportion [pt

  4. Design and Development of Virtual Reactivity System for PWR

    International Nuclear Information System (INIS)

    Anwar, M. I.

    2012-01-01

    The reactivity monitoring and investigation is an important mean to ensure the safety operation of a nuclear power plant. But the reactivity of the nuclear reactor usually cannot be directly measured. It should be computed with certain estimation method. In this thesis, an effort has been made using an artificial neural network and highly fluctuating experimental data for predicting the total reactivity of the nuclear reactor based on all components of net reactivity. This virtual reactivity system is designed by taking advantage of neural network's nonlinear mapping capability. Based on analysis of the reactivity contributing factors, several neural network models are built separately for control rod, boron, poisons, fuel Doppler Effect and moderator effect. Extensive simulation and validation tests for PWR show that satisfied results have been obtained with the proposed approach. It presents a new idea to estimate the PWR's reactivity using artificial intelligence. All the design and simulation work is carried out in MATLAB and a real time programming environment is chosen for the computation and prediction of reactivity. (author)

  5. Reverse transcriptase real-time PCR for detection and quantification of viable Campylobacter jejuni directly from poultry faecal samples

    DEFF Research Database (Denmark)

    Bui, Thanh Xuan; Wolff, Anders; Madsen, Mogens

    2012-01-01

    Campylobacter spp. is the most common cause of bacterial diarrhoea in humans worldwide. Therefore, rapid and reliable methods fordetection and quantification of this pathogen are required. In this study, we have developed a reverse transcription quantitative real-time PCR(RT-qPCR) for detection a...

  6. Methodology for the LABIHS PWR simulator modernization

    Energy Technology Data Exchange (ETDEWEB)

    Jaime, Guilherme D.G.; Oliveira, Mauro V., E-mail: gdjaime@ien.gov.b, E-mail: mvitor@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The Human-System Interface Laboratory (LABIHS) simulator is composed by a set of advanced hardware and software components whose goal is to simulate the main characteristics of a Pressured Water Reactor (PWR). This simulator serves for a set of purposes, such as: control room modernization projects; designing of operator aiding systems; providing technological expertise for graphical user interfaces (GUIs) designing; control rooms and interfaces evaluations considering both ergonomics and human factors aspects; interaction analysis between operators and the various systems operated by them; and human reliability analysis in scenarios considering simulated accidents and normal operation. The simulator runs in a PA-RISC architecture server (HPC3700), developed nearby 2000's, using the HP-UX operating system. All mathematical modeling components were written using the HP Fortran-77 programming language with a shared memory to exchange data from/to all simulator modules. Although this hardware/software framework has been discontinued in 2008, with costumer support ceasing in 2013, it is still used to run and operate the simulator. Due to the fact that the simulator is based on an obsolete and proprietary appliance, the laboratory is subject to efficiency and availability issues, such as: downtime caused by hardware failures; inability to run experiments on modern and well known architectures; and lack of choice of running multiple simulation instances simultaneously. This way, there is a need for a proposal and implementation of solutions so that: the simulator can be ported to the Linux operating system, running on the x86 instruction set architecture (i.e. personal computers); we can simultaneously run multiple instances of the simulator; and the operator terminals run remotely. This paper deals with the design stage of the simulator modernization, in which it is performed a thorough inspection of the hardware and software currently in operation. Our goal is to

  7. Methodology for the LABIHS PWR simulator modernization

    International Nuclear Information System (INIS)

    Jaime, Guilherme D.G.; Oliveira, Mauro V.

    2011-01-01

    The Human-System Interface Laboratory (LABIHS) simulator is composed by a set of advanced hardware and software components whose goal is to simulate the main characteristics of a Pressured Water Reactor (PWR). This simulator serves for a set of purposes, such as: control room modernization projects; designing of operator aiding systems; providing technological expertise for graphical user interfaces (GUIs) designing; control rooms and interfaces evaluations considering both ergonomics and human factors aspects; interaction analysis between operators and the various systems operated by them; and human reliability analysis in scenarios considering simulated accidents and normal operation. The simulator runs in a PA-RISC architecture server (HPC3700), developed nearby 2000's, using the HP-UX operating system. All mathematical modeling components were written using the HP Fortran-77 programming language with a shared memory to exchange data from/to all simulator modules. Although this hardware/software framework has been discontinued in 2008, with costumer support ceasing in 2013, it is still used to run and operate the simulator. Due to the fact that the simulator is based on an obsolete and proprietary appliance, the laboratory is subject to efficiency and availability issues, such as: downtime caused by hardware failures; inability to run experiments on modern and well known architectures; and lack of choice of running multiple simulation instances simultaneously. This way, there is a need for a proposal and implementation of solutions so that: the simulator can be ported to the Linux operating system, running on the x86 instruction set architecture (i.e. personal computers); we can simultaneously run multiple instances of the simulator; and the operator terminals run remotely. This paper deals with the design stage of the simulator modernization, in which it is performed a thorough inspection of the hardware and software currently in operation. Our goal is to

  8. Progress of PWR reactor fuels: OSIRIS equipments

    International Nuclear Information System (INIS)

    Colomez, G.; Farny, G.; Vidal, H.

    1981-09-01

    The experimental reactor Osiris situated at the Saclay Nuclear Centre is a reactor fitted with tests and monitoring facilities. Of the pool and open core type, it can test the test fuel of PWR power stations under high neutron flux. The characteristic stresses of the operating states of power reactors can be reproduced in experimental devices suited to the various study subjects, be this the creep and deformation of zircaloy claddings, the behavior of fuel rods to power ramps, to load following, to remote regulation, to the cooling state in double phase or just analytical tests. The experimental irradiation devices extend from the single static coolant capsule, such as the NaK alloy, to the dynamic coolant test loop that operates in the cooling conditions representative of PWR's including water chemistry. Ancillary devices make it possible to carry out examinations and non-destructive testing: immersed neutron radiography, gamma scanning visualization monitoring device, eddy currents, profilometering [fr

  9. Fuel management optimization for a PWR

    International Nuclear Information System (INIS)

    Dumas, M.; Robeau, D.

    1981-04-01

    This study is aimed to optimize the refueling pattern of a PWR. Two methods are developed, they are based on a linearized form of the optimization problem. The first method determines a feasible solution in two steps; in the first one the original problem is replaced by a relaxed one which is solved by the Method of Approximation Programming. The second step is based on the Branch and Bound method to find the feasible solution closest to the solution obtained in the first step. The second method starts from a given refueling pattern and tries to improve this pattern by the calculation of the effects of 2 by 2, 3 by 3 and 4 by 4 permutations on the objective function. Numerical results are given for a typical PWR refueling using the two methods

  10. Horizontal Drop of 21- PWR Waste Package

    International Nuclear Information System (INIS)

    A.K. Scheider

    2001-01-01

    The objective of this calculation is to determine the structural response of the waste package (WP) dropped horizontally from a specified height. The WP used for that purpose is the 21-Pressurized Water Reactor (PWR) WP. The scope of this document is limited to reporting the calculation results in terms of stress intensities. The information provided by the sketches (Attachment I) is that of the potential design of the type of WP considered in this calculation, and all obtained results are valid for that design only. This calculation is associated with the WP design and was performed by the Waste Package Design group in accordance with the ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 16). AP-3.12Q, ''Calculations'' (Ref. 11) is used to perform the calculation and develop the document. The sketches attached to this calculation provide the potential dimensions and materials for the 21-PWR WP design

  11. Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles.

    Science.gov (United States)

    Wang, Ling; Dong, Hao; Li, Yannian; Xue, Chenming; Sun, Ling-Dong; Yan, Chun-Hua; Li, Quan

    2014-03-26

    Adding external, dynamic control to self-organized superstructures with desired functionalities is an important leap necessary in leveraging the fascinating molecular systems for applications. Here, the new light-driven chiral molecular switch and upconversion nanoparticles, doped in a liquid crystal media, were able to self-organize into an optically tunable helical superstructure. The resulting nanoparticle impregnated helical superstructure was found to exhibit unprecedented reversible near-infrared (NIR) light-guided tunable behavior only by modulating the excitation power density of a continuous-wave NIR laser (980 nm). Upon irradiation by the NIR laser at the high power density, the reflection wavelength of the photonic superstructure red-shifted, whereas its reverse process occurred upon irradiation by the same laser but with the lower power density. Furthermore, reversible dynamic NIR-light-driven red, green, and blue reflections in a single thin film, achieved only by varying the power density of the NIR light, were for the first time demonstrated.

  12. Directly observed reversible shape changes and hemoglobin stratification during centrifugation of human and Amphiuma red blood cells.

    Science.gov (United States)

    Hoffman, Joseph F; Inoué, Shinya

    2006-02-21

    This paper describes changes that occur in human and Amphiuma red blood cells observed during centrifugation with a special microscope. Dilute suspensions of cells were layered, in a centrifuge chamber, above an osmotically matched dense solution, containing Nycodenz, Ficoll, or Percoll (Pharmacia) that formed a density gradient that allowed the cells to slowly settle to an equilibrium position. Biconcave human red blood cells moved downward at low forces with minimum wobble. The cells oriented vertically when the force field was increased and Hb sedimented as the lower part of each cell became bulged and assumed a "bag-like" shape. The upper centripetal portion of the cell became thinner and remained biconcave. These changes occurred rapidly and were completely reversible upon lowering the centrifugal force. Bag-shaped cells, upon touching red cells in rouleau, immediately reverted to biconcave disks as they flipped onto a stack. Amphiuma red cells displayed a different type of reversible stratification and deformation at high force fields. Here the cells became stretched, with the nucleus now moving centrifugally, the Hb moving centripetally, and the bottom of the cells becoming thinner and clear. Nevertheless, the distribution of the marginal bands at the cells' rim was unchanged. We conclude that centrifugation, per se, while changing a red cell's shape and the distribution of its intracellular constituents, does so in a completely reversible manner. Centrifugation of red cells harboring altered or missing structural elements could provide information on shape determinants that are still unexplained.

  13. Sensitivity analysis of a PWR pressurizer

    International Nuclear Information System (INIS)

    Bruel, Renata Nunes

    1997-01-01

    A sensitivity analysis relative to the parameters and modelling of the physical process in a PWR pressurizer has been performed. The sensitivity analysis was developed by implementing the key parameters and theoretical model lings which generated a comprehensive matrix of influences of each changes analysed. The major influences that have been observed were the flashing phenomenon and the steam condensation on the spray drops. The present analysis is also applicable to the several theoretical and experimental areas. (author)

  14. EDF/CIDEN - ONECTRA: PWR decontamination

    International Nuclear Information System (INIS)

    Fayolle, P.; Orcel, H.; Wertz, L.

    2010-01-01

    In the context of PWR circuit renewal (expected in 2011) and their decontamination, an analysis of data coming from cartography and on site decontamination measurements as well as from premise modelling by means of the PANTHERE radioprotection code, is presented. Several French PWRs have been studied. After a presentation of code principles and operation, the authors discuss the radiological context of a workstation, and give an assessment of the annual dose associated with maintenance operations with or without decontamination

  15. GAIA: AREVAs New PWR fuel assembly design

    Energy Technology Data Exchange (ETDEWEB)

    Vollmert, N.; Gentet, G.; Louf, P.H.; Mindt, M.; O' Brian, J.; Peucker, J.

    2015-07-01

    GAIA is the label of a new PWR Fuel Assembly design developed by AREVA with the objective to provide its customers an advanced fuel assembly design regarding both robustness and performance. Since 2012 GAIA lead fuel assemblies are under irradiation in a Swedish reactor and since 2015 in a U.S. reactor. Visual inspections and examinations carried out so far during the outages confirmed the intended reliability, robustness and the performance enhancement of the design. (Author)

  16. The Conceptual Design of Innovative Safe PWR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-Gon [Centural Research Institute, Daejeon (Korea, Republic of); Heo, Sun [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-10-15

    Most of countries operating NPPs have been performed post-Fukushima improvements as short-term countermeasure to enhance the safety of operating NPPs. Separately, vendors have made efforts on developing passive safety systems as long-term and ultimate countermeasures. AP1000 designed by Westinghouse Electric Company has passive safety systems including the passive emergency core cooling system (PECCS), the passive residual heat removal system (PRHRS), and the passive containment cooling system (PCCS). ESBWR designed by GE-Hitachi also has passive safety systems consisting of the isolation condenser system, the gravity driven cooling system and the PCCS. Other countries including China and Russia have made efforts on developing passive safety systems for enhancing the safety of their plants. In this paper, we summarize the design goals and main design feature of innovative safe PWR, iPOWER which is standing for Innovative Passive Optimized World-wide Economical Reactor, and show the developing status and results of research projects. To mitigate an accident without electric power and enhance the safety level of PWR, the conceptual designs of passive safety system and innovative safe PWR have been performed. It includes the PECCS for core cooling and the PCCS for containment cooling. Now we are performing the small scale and separate effect tests for the PECCS and the PCCS and preparing the integral effect test for the PECCS and real scale test for the PCCS.

  17. Nondestructive examination requirements for PWR vessel internals

    International Nuclear Information System (INIS)

    Spanner, J.

    2015-01-01

    This paper describes the requirements for the nondestructive examination of pressurized water reactor (PWR) vessel internals in accordance with the requirements of the EPRI Material Reliability Program (MRP) inspection standard for PWR internals (MRP-228) and the American Society of Mechanical Engineers Section XI In-service Inspection. The MRP vessel internals examinations have been performed at nuclear plants in the USA since 2009. The objective of the inspection standard is to provide the requirements for the nondestructive examination (NDE) methods implemented to support the inspection and evaluation of the internals. The inspection standard contains requirements specific to the inspection methodologies involved as well as requirements for qualification of the NDE procedures, equipment and personnel used to perform the vessel internals inspections. The qualification requirements for the NDE systems will be summarized. Six PWR plants in the USA have completed inspections of their internals using the Inspection and Evaluation Guideline (MRP-227) and the Inspection Standard (MRP-228). Examination results show few instances of service-induced degradation flaws, as expected. The few instances of degradation have mostly occurred in bolting

  18. Low concentration NP preoxidation condition for PWR decontamination

    International Nuclear Information System (INIS)

    Huang Fuduan; Yu Degui; Lu Jingju; Ding Dejun; Zhao Yukun

    1991-02-01

    To use preoxidation condition with low concentration NP (nitric acid permanganate) instead of conventional high concentration AP (alkline permanganate ) for PWR oxidation decontamination (POD) was summarized. Experiments including three parts have been performed. The defilming performance and decontamination factor of preoxidation with low concentration NP, which is 100, 10 times lower than that of AP are better than that with high concentration AP. The reason has been studied with the aid of prefilmed specimens of corrosion potential measuring in NP solution and chromium release in NP and AP solutions. The behaviour of alloy 13 prefilmed specimen in NP preoxidation solution is different from 18-8 ss and Incoloy 800. In the low acidity, the corrosion potential moves toward positive direction as the acidity becomes high

  19. Contribution to the experimental qualification of PWR fuel storage calculations

    International Nuclear Information System (INIS)

    Marsault, Philippe.

    1980-12-01

    Experiments were carried out on assemblies representative of those used in PWR reactors in a configuration made critical with a driver zone. In this way, certain parameters were able to be measured using current classical techniques. As the multiplication factor for a group of assemblies cannot be determined directly, substitutions were made with an equivalent homogeneous lattice in which Laplacian measurements could be made. The k(infinite) factor was obtained by introducing a migration area which can only be obtained from calculations. Experimental storage studies realized during the CRISTO 1 campaign utilize: 1) a lattice with 4 14x14 pin assemblies immersed in ordinary water; 2) a lattice with 4 14x14 pin assemblies and 3) a regular lattice. The CRISTO experiment enabled criticality calculations to be qualified with these lattices for storage under accidental conditions [fr

  20. Improvement of PWR plant design in order to reduce collective doses

    International Nuclear Information System (INIS)

    Bergeron, J.-P.; Leblond, A.

    1980-01-01

    According to the experience of the starting up and the first cycle operating for both 900 MW PWR units of Fessenheim nuclear station, the authors recall some practices it is necessary to undertake or to develop in order to reduce collective radiation dose rate. Independently of already well known great subjects, they point out details which are often difficultie's sources. So, they suggest much more concerted actions by everyone who is applying directives with radiation exposure for employ [fr

  1. A digital control and monitoring system for PWR waste-disposal systems

    International Nuclear Information System (INIS)

    Ueda, Toshiharu; Fuchigami, Kazuyuki; Shimozato, Masao; Takazawa, Kazuo

    1982-01-01

    Mitsubishi Electric has developed a digital control and monitoring system for PWR waste-disposal systems. This novel system has improved operability due to its automated operations and control, and integrated supervisory functions. The system includes other features to improve operability: sequence control by a control computer, direct-digital process control, integrated supervision of operation states by a supervisory computer and a high-speed dataway, and CRT interfacing between the computer and dataway. (author)

  2. Reverse-direction (5'-->3') synthesis of oligonucleotides containing a 3'-S-phosphorothiolate linkage and 3'-terminal 3'-thionucleosides.

    Science.gov (United States)

    Gaynor, James W; Piperakis, Michael M; Fisher, Julie; Cosstick, Richard

    2010-03-21

    The synthesis of oligodeoxynucleotides containing 3'-thionucleosides has been explored using a reverse-direction (5'-->3') approach, based on nucleoside monomers which contain a trityl- or dimethoxytrityl-protected 3'-thiol and a 5'-O-phosphoramidite. These monomers are relatively simple to prepare as trityl-based protecting groups were introduced selectively at a 3'-thiol in preference to a 5'-hydroxyl group. As an alternative approach, trityl group migration could be induced from the 5'-oxygen to the 3'-thiol function. 5'-->3' Synthesis of oligonucleotides gave relatively poor yields for the internal incorporation of 3'-thionucleosides [to give a 3'-S-phosphorothiolate (3'-SP) linkage] and multiple 3'-SP modifications could not be introduced by this method. However, the reverse direction approach provided an efficient route to oligonucleotides terminating with a 3'-thionucleoside. The direct synthesis of these thio-terminating oligomers has not previously been reported and the methods described are applicable to 2'-deoxy-3'-thionucleosides derived from thymine, cytosine and adenine.

  3. Direct production of XY(DMY-) sex reversal female medaka (Oryzias latipes) by embryo microinjection of TALENs.

    Science.gov (United States)

    Luo, Daji; Liu, Yun; Chen, Ji; Xia, Xiaoqin; Cao, Mengxi; Cheng, Bin; Wang, Xuejuan; Gong, Wuming; Qiu, Chao; Zhang, Yunsheng; Cheng, Christopher Hon Ki; Zhu, Zuoyan; Hu, Wei

    2015-09-14

    Medaka is an ideal model for sex determination and sex reversal, such as XY phenotypically female patients in humans. Here, we assembled improved TALENs targeting the DMY gene and generated XY(DMY-) mutants to investigate gonadal dysgenesis in medaka. DMY-TALENs resulted in indel mutations at the targeted loci (46.8%). DMY-nanos3UTR-TALENs induced mutations were passed through the germline to F1 generation with efficiencies of up to 91.7%. XY(DMY-) mutants developed into females, laid eggs, and stably passed the Y(DMY-) chromosome to next generation. RNA-seq generated 157 million raw reads from WT male (WT_M_TE), WT female (WT_F_OV) and XY(DMY-) female medaka (TA_F_OV) gonad libraries. Differential expression analysis identified 144 up- and 293 down-regulated genes in TA_F_OV compared with WT_F_OV, 387 up- and 338 down-regulated genes in TA_F_OV compared with WT_M_TE. According to genes annotation and functional prediction, such as Wnt1 and PRCK, it revealed that incomplete ovarian function and reduced fertility of XY(DMY-) mutant is closely related to the wnt signaling pathway. Our results provided the transcriptional profiles of XY(DMY-) mutants, revealed the mechanism between sex reversal and DMY in medaka, and suggested that XY(DMY-) medaka was a novel mutant that is useful for investigating gonadal dysgenesis in phenotypic female patients with the 46, XY karyotype.

  4. Bidirectional Control of Reversal in a Dual Action Task by Direct and Indirect Pathway Activation in the Dorsolateral Striatum in Mice

    Directory of Open Access Journals (Sweden)

    Muriel Laurent

    2017-12-01

    Full Text Available The striatum is a key brain structure involved in the processing of cognitive flexibility, which results from the balance between the flexibility demanded for novel learning of motor actions and the inflexibility required to preserve previously learned actions. In particular, the dorsolateral portion of the striatum (DLS is engaged in the learning of action sequence. This process is temporally driven by fine adjustments in the function of the two main neuronal populations of the striatum, known as the direct pathway medium spiny neurons (dMSNs and indirect pathway medium spiny neurons (iMSNs. Here, using optogenetics, behavioral, and electrophysiological tools, we addressed the relative role of both neuronal populations in the acquisition of a reversal dual action sequence in the DLS. While the channelrhodopsin-induced activation of dMSNs and iMSNs of the DLS did not induce changes in the learning rate of the sequence, the specific activation of the dMSNs of the DLS facilitated the acquisition of a reversal dual action sequence; the activation of iMSNs induced a significant deficit in the acquisition of the same task. Taken together our results indicate an antagonistic relationship between dMSNs and iMSNs on the acquisition of a reversal dual action sequence.

  5. The historical place of the PWR in energy supply

    International Nuclear Information System (INIS)

    Rippon, S.

    1982-01-01

    The development of nuclear power and evolutionary changes in PWR technology including plant standardisation are discussed. The proposed Sizewell B nuclear power station would benefit from three sources of standardisation: the architect engineering advice of Bechtel; the licensing package of Westinghouse; and the joint design of the SNUPPS group. Safety issues and PWR performance are also discussed. (U.K.)

  6. Probe for detection of denting in PWR steam generator tubes

    International Nuclear Information System (INIS)

    Gerardin, J.P.; Germain, J.L.; Nio, J.C.

    1994-07-01

    In certain types of PWR steam generator, oxide deposits can lead to embedding, and subsequently to deformation of a tube (the phenomenon of ''denting''). Such embedding changes the vibratory behavior of the tubes and can result in fatigue cracking. This type of cracking can also be worsened in the event of improper assembly of the anti-vibration spacer bars supporting the U-bends. To prevent such incidents and provide for effective preventive condition-directed maintenance of its PWR steam generators, EDF has undertaken the study and development of a probe to detect this type of phenomenon. The studies began in 1990 and led to the building of an initial prototype probe. The principle behind the probe consists in inducing vibration in the U-bend and determining the main resonance modes of the tube. Measurements of frequency and amplitude and calculation of damping enable characterization of the mechanical behavior of the U-bend. The most important parameter is damping, for which the value must be sufficiently high to ensure that the tube is not subjected to major vibratory amplitudes during operation. Numerous tests have been performed with the first prototype version of the probe, on a mock-up in the test area and on one of the demounted steam generators on the Dampierre site. These different tests have enabled validation of the operating principle, fine-tuning the process, pinpointing certain mechanical problems in the probe design, and obtaining the first indications as to the real vibratory behavior of U-bends on a steam generator. On the basis of these preliminary tests, the specifications were drawn up for an industrial version of the probe. Following a call for bids and the choice of a manufacturer, work began on fabrication of a new probe model in 1993. This version was delivered at the end of 1993 and testing began in 1994. (authors). 5 figs., 2 tabs

  7. Minimization of PWR reactor control rods wear

    International Nuclear Information System (INIS)

    Ponzoni Filho, Pedro; Moura Angelkorte, Gunther de

    1995-01-01

    The Rod Cluster Control Assemblies (RCCA's) of Pressurized Water Reactors (PWR's) have experienced a continuously wall cladding wear when Reactor Coolant Pumps (RCP's) are running. Fretting wear is a result of vibrational contact between RCCA rodlets and the guide cards which provide lateral support for the rodlets when RCCA's are withdrawn from the core. A procedure is developed to minimize the rodlets wear, by the shuffling and axial reposition of RCCA's every operating cycle. These shuffling and repositions are based on measurement of the rodlet cladding thickness of all RCCA's. (author). 3 refs, 2 figs, 2 tabs

  8. Industrywide survey of PWR organics. Final report

    International Nuclear Information System (INIS)

    Richards, J.E.; Byers, W.A.

    1986-07-01

    Thirteen Pressurized Water reactor (PWR) secondary cycles were sampled for organic acids, total organic carbon, and inorganic anions. The distribution and removal of organics in a makeup water treatment system were investigted at an additional plant. TOC analyses were used for the analysis of makeup water systems; anion ion chromatography and ion exclusion chromatography were used for the analysis of secondary water systems. Additional information on plant operation and water chemistry was collected in a survey. The analytical and survey data were compared and correlations made

  9. Technical specifications for PWR secondary water chemistry

    International Nuclear Information System (INIS)

    Weeks, J.R.; van Rooyen, D.

    1977-08-01

    The bases for establishing Technical Specifications for PWR secondary water chemistry are reviewed. Whereas extremely stringent control of secondary water needs to be maintained to prevent denting in some units, sound bases for establishing limits that will prevent stress corrosion, wastage, and denting do not exist at the present time. This area is being examined very thoroughly by industry-sponsored research programs. Based on the evidence available to date, short term control limits are suggested; establishment of these or other limits as Technical Specifications is not recommended until the results of the research programs have been obtained and evaluated

  10. Fuel cycle cost projections. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Clark, L.L.; Chockie, A.D.

    1979-12-01

    This report estimates current and future costs associated with the light water reactor nuclear fuel cycle for both once-through and thermal recycle cases. Using a range of future nuclear power generating scenarios, process flows are developed for each segment of the nuclear fuel cycle. Capital and operating costs are estimated and are combined with the process flows to generate unit cost projections for each fuel cycle segment. The unit costs and process flows are combined in the NUCOST program to estimate fuel cycle power costs through the year 2020. The unit costs are also used to estimate the fuel costs of an individual model PWR and BWR.

  11. Identifying and directly dating Plio-Pleistocene geomagnetic reversals and events from speleothems at South African archaeological and fossil bearing palaeocaves: implications for extending archaeomagnetic records

    Science.gov (United States)

    Herries, A. I.; Pickering, R.; Kappen, P.

    2013-05-01

    In the last 10 years palaeomagnetic research on speleothems from archaeological and fossil bearing palaeokarst in northern South Africa has led to the identification of apparent short geomagnetic field events that were initially thought to represent one or both of the Réunion events. More recently the development of uranium-lead dating techniques for speleothem in the 5 Ma to 500 ka time range has allowed us to directly date these events for the first time, as well as date more recently discovered events and reversals. This work now indicates that the same reversals events are often found in speleothems in different caves throughout the region. An event has been directly dated at two sites to between 2.047 and 2.0005 Ma and likely represents what has been termed the 'Huckleberry Ridge' event at other localities. Another event sometime between 2.33 and 2.15 Ma likely represents the Réunion event while another between 1.111 to 1.087 Ma is thought to represent the Punaruu event. X-ray Fluorescence Microscopy work at the Australian Synchrotron has been used to map the iron distribution in the speleothems and in tandem with the demagnetisation spectra has enabled the mineralogy and mode of acquisition of remanence to be determined and the potential effects of recrystalisation on the palaeomagnetic signal to be accessed. Further work on speleothem sequences in the caves has the potential to refine the ages of geomagnetic field reversals, events and excursions over almost any time range for which speleothems exist, if certain conditions are met. Given the rapid lock-in time of the remanence and low alteration rates and effects of speleothems they provide a powerful new medium for reconstructing Plio-Pleistocene geomagnetic field variation.

  12. Results of UPTF and PKL research projects for PWR plant operation

    International Nuclear Information System (INIS)

    Liebert, J.; Brand, B.; Umminger, K.; Schwarz, W.; Sgarz, G.

    1999-01-01

    The research projects UPTF (Upper Plenum Test Facility) and PKL (Primaerkreislauf) make extraordinary experimental contributions in Germany to the examination of thermo-hydraulic processes associated with accidents and shutdown procedures of PWR plants. With the full-scale mock-up of the main components of the primary system, UPTF (dismantled in 1997) was the worldwide unique test facility of its kind. For the large break loss-of-coolant accident, the results achieved in the UPTF can be applied directly to the reactor plant due to the original geometry and the pressure range identical with the PWR. For complex studies involving the interaction of the primary side with the secondary side as well as a number of technical safety and auxiliary systems, the downscaled PKL test facility is used. The results from the two test facilities are complementary owing to the different features of the rigs, and thus help improve the further understanding of the relevant processes investigated. (orig.) [de

  13. Negative mood reverses devaluation of goal-directed drug-seeking favouring an incentive learning account of drug dependence

    OpenAIRE

    Hogarth, Lee; He, Zhimin; Chase, Henry W.; Wills, Andy J.; Troisi, Joseph; Leventhal, Adam M.; Mathew, Amanda R.; Hitsman, Brian

    2015-01-01

    Background Two theories explain how negative mood primes smoking behaviour. The stimulus?response (S-R) account argues that in the negative mood state, smoking is experienced as more reinforcing, establishing a direct (automatic) association between the negative mood state and smoking behaviour. By contrast, the incentive learning account argues that in the negative mood state smoking is expected to be more reinforcing, which integrates with instrumental knowledge of the response required to ...

  14. CECP, Decommissioning Costs for PWR and BWR

    International Nuclear Information System (INIS)

    Bierschbach, M.C.

    1997-01-01

    1 - Description of program or function: The Cost Estimating Computer Program CECP, designed for use on an IBM personal computer or equivalent, was developed for estimating the cost of decommissioning boiling water reactor (BWR) and light-water reactor (PWR) power stations to the point of license termination. 2 - Method of solution: Cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial volume and costs; and manpower staffing costs. Using equipment and consumables costs and inventory data supplied by the user, CECP calculates unit cost factors and then combines these factors with transportation and burial cost algorithms to produce a complete report of decommissioning costs. In addition to costs, CECP also calculates person-hours, crew-hours, and exposure person-hours associated with decommissioning. 3 - Restrictions on the complexity of the problem: The program is designed for a specific waste charge structure. The waste cost data structure cannot handle intermediate waste handlers or changes in the charge rate structures. The decommissioning of a reactor can be divided into 5 periods. 200 different items for special equipment costs are possible. The maximum amount for each special equipment item is 99,999,999$. You can support data for 10 buildings, 100 components each; ESTS1071/01: There are 65 components for 28 systems available to specify the contaminated systems costs (BWR). ESTS1071/02: There are 75 components for 25 systems available to specify the contaminated systems costs (PWR)

  15. Modeling of PWR fuel at extended burnup

    International Nuclear Information System (INIS)

    Dias, Raphael Mejias

    2016-01-01

    This work studies the modifications implemented over successive versions in the empirical models of the computer program FRAPCON used to simulate the steady state irradiation performance of Pressurized Water Reactor (PWR) fuel rods under high burnup condition. In the study, the empirical models present in FRAPCON official documentation were analyzed. A literature study was conducted on the effects of high burnup in nuclear fuels and to improve the understanding of the models used by FRAPCON program in these conditions. A steady state fuel performance analysis was conducted for a typical PWR fuel rod using FRAPCON program versions 3.3, 3.4, and 3.5. The results presented by the different versions of the program were compared in order to verify the impact of model changes in the output parameters of the program. It was observed that the changes brought significant differences in the results of the fuel rod thermal and mechanical parameters, especially when they evolved from FRAPCON-3.3 version to FRAPCON-3.5 version. Lower temperatures, lower cladding stress and strain, lower cladding oxide layer thickness were obtained in the fuel rod analyzed with the FRAPCON-3.5 version. (author)

  16. PWR and WWER fuel performance. A comparison of major characteristics

    International Nuclear Information System (INIS)

    Weidinger, H.

    2006-01-01

    PWR and WWER fuel technologies have the same basic performance targets: most effective use of the energy stored in the fuel and highest possible reliability. Both fuel technologies use basically the same strategies to reach these targets: 1) Optimized reload strategies; 2) Maximal use of structural material with low neutron cross sections; 3) Decrease the fuel failure frequency towards a 'zero failure' performance by understanding and eliminating the root causes of those defects. The key driving force of the technology of both, PWR and WWER fuel is high burn-up. Presently a range of 45 - 50 MWD/kgU have been reached commercially for PWR and WWER fuel. The main technical limitations to reach high burn-up are typically different for PWR and WWER fuel: for PWR fuel it is the corrosion and hydrogen uptake of the Zr-based materials; for WWER fuel it is the mechanical and dimensional stability of the FA (and the whole core). Corrosion and hydrogen uptake of Zr-materials is a 'non-problem' for WWER fuel. Other performance criteria that are important for high burn-up are the creep and growth behaviour of the Zr materials and the fission gas release in the fuel rod. There exists a good and broad data base to model and design both fuel types. FA and fuel rod vibration appears to be a generic problem for both fuel types but with more evidence for PWR fuel performance reliability. Grid-to-rod fretting is still a major issue in the fuel failure statistics of PWR fuel. Fuel rod cladding defects by debris fretting is no longer a key problem for PWR fuel, while it still appears to be a significant root cause for WWER fuel failures. 'Zero defect' fuel performance is achievable with a high probability, as statistics for US PWR and WWER-1000 fuel has shown

  17. Directional change during a Miocene R-N geomagnetic polarity reversal recorded by mafic lava flows, Sheep Creek Range, north central Nevada, USA

    Science.gov (United States)

    Bogue, S. W.; Glen, J. M. G.; Jarboe, N. A.

    2017-09-01

    Recurring transitional field directions during three Miocene geomagnetic reversals provide evidence that lateral inhomogeneity of the lower mantle affects flow in the outer core. We compare new paleomagnetic results from a composite sequence of 15.2 Ma lava flows in north central Nevada (Sheep Creek Range; 40.7°N, 243.2°E), erupted during a polarity reversal, to published data from Steens Mountain (250 km to the northwest in Oregon) and the Newberry Mountains (650 km to the south in California) that document reversals occurring millions of years and many polarity switches earlier. Alternating field demagnetization, followed by thermal demagnetization in half the samples, clearly isolated the primary thermoremanent magnetization of Sheep Creek Range flows. We correlated results from our three sampled sections to produce a composite record that begins with a single virtual geomagnetic pole (VGP) at low latitude in the Atlantic, followed by two VGPs situated near latitude 30°N in NE Africa. After jumping to 83°N (one VGP), the pole moves to equatorial South America (one VGP), back to NE Africa (three VGPs), to high southern latitudes (two VGPs), back to equatorial South America (three VGPs), and finally to high northern latitudes (nine VGPs). The repeated visits of the transitional VGP to positions in South America and near NE Africa, as well as the similar behavior recorded at Steens Mountain and the Newberry Mountains, suggest that lower mantle or core-mantle boundary features localize core flow structures, thereby imparting a discernible regional structure on the transitional geomagnetic field that persists for millions of years.

  18. Intensive wave power and steel quenching 3-D model for cylindrical sample. Time direct and reverse formulations and solutions

    Directory of Open Access Journals (Sweden)

    Buikis Andris

    2017-01-01

    Full Text Available In this paper we develop mathematical models for three dimensional hyperbolic heat equations (wave equation or telegraph equation with inner source power and construct their analytical solutions for the determination of the initial heat flux for cylindrical sample. As additional conditions the temperature and heat flux at the end time are given. In some cases we give expression of wave energy. In some cases we give expression of wave energy. Some solutions of time inverse problems are obtained in the form of first kind Fredholm integral equation, but others has been obtained in closed analytical form as series. We viewed both direct and inverse problems at the time. For the time inverse problem we use inversion in the time argument.

  19. Direct experimental evidence for the reversal of carrier type upon hydrogen intercalation in epitaxial graphene/SiC(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Rajput, S., E-mail: srajput@uwm.edu; Li, Y. Y.; Li, L. [Department of Physics, University of Wisconsin, Milwaukee, Wisconsin 53211 (United States)

    2014-01-27

    Raman spectroscopy and scanning tunneling microscopy/spectroscopy measurements are performed to determine the atomic structure and electronic properties of H-intercalated graphene/SiC(0001) obtained by annealing the as-grown epitaxial graphene in hydrogen atmosphere. While the as-grown graphene is found to be n-type with the Dirac point (E{sub D}) at 450 and 350 meV below Fermi level for the 1st and 2nd layer, the H-intercalated graphene is p-type with E{sub D} at 320 and 200 meV above. In addition, ripples are observed in the now quasi-free standing graphene decoupled from the SiC substrate. This causes fluctuations in the Dirac point that directly follow the undulations of the ripples, resulting in electron and hole puddles in the H-intercalated graphene/SiC(0001)

  20. Negative mood reverses devaluation of goal-directed drug-seeking favouring an incentive learning account of drug dependence.

    Science.gov (United States)

    Hogarth, Lee; He, Zhimin; Chase, Henry W; Wills, Andy J; Troisi, Joseph; Leventhal, Adam M; Mathew, Amanda R; Hitsman, Brian

    2015-09-01

    Two theories explain how negative mood primes smoking behaviour. The stimulus-response (S-R) account argues that in the negative mood state, smoking is experienced as more reinforcing, establishing a direct (automatic) association between the negative mood state and smoking behaviour. By contrast, the incentive learning account argues that in the negative mood state smoking is expected to be more reinforcing, which integrates with instrumental knowledge of the response required to produce that outcome. One differential prediction is that whereas the incentive learning account anticipates that negative mood induction could augment a novel tobacco-seeking response in an extinction test, the S-R account could not explain this effect because the extinction test prevents S-R learning by omitting experience of the reinforcer. To test this, overnight-deprived daily smokers (n = 44) acquired two instrumental responses for tobacco and chocolate points, respectively, before smoking to satiety. Half then received negative mood induction to raise the expected value of tobacco, opposing satiety, whilst the remainder received positive mood induction. Finally, a choice between tobacco and chocolate was measured in extinction to test whether negative mood could augment tobacco choice, opposing satiety, in the absence of direct experience of tobacco reinforcement. Negative mood induction not only abolished the devaluation of tobacco choice, but participants with a significant increase in negative mood increased their tobacco choice in extinction, despite satiety. These findings suggest that negative mood augments drug-seeking by raising the expected value of the drug through incentive learning, rather than through automatic S-R control.

  1. Evaluation of FRP Confinement Models for Substandard Rectangular RC Columns Based on Full-Scale Reversed Cyclic Lateral Loading Tests in Strong and Weak Directions

    Directory of Open Access Journals (Sweden)

    Hamid Farrokh Ghatte

    2016-09-01

    Full Text Available Although many theoretical and experimental studies are available on external confinement of columns using fiber-reinforced polymer (FRP jackets, as well as numerous models proposed for the axial stress-axial strain relation of concrete confined with FRP jackets, they have not been validated with a sufficient amount and variety of experimental data obtained through full-scale tests of reinforced concrete (RC columns with different geometrical and mechanical characteristics. Particularly, no systematical experimental data have been presented on full-scale rectangular substandard RC columns subjected to reversed cyclic lateral loads along either their strong or weak axes. In this study, firstly, test results of five full-scale rectangular substandard RC columns with a cross-sectional aspect ratio of two (300 mm × 600 mm are briefly summarized. The columns were tested under constant axial load and reversed cyclic lateral loads along their strong or weak axes before and after retrofitting with external FRP jackets. In the second stage, inelastic lateral force-displacement relationships of the columns are obtained analytically, making use of the plastic hinge assumption and different FRP confinement models available in the literature. Finally, the analytical findings are compared with the test results for both strong and weak directions of the columns. Comparisons showed that use of different models for the stress-strain relationship of FRP-confined concrete can yield significantly non-conservative or too conservative retrofit designs, particularly in terms of deformation capacity.

  2. Evaluation model for PWR irradiated fuel

    International Nuclear Information System (INIS)

    Gomes, I.C.

    1983-01-01

    The individual economic value of the plutonium isotopes for the recycle of the PWR reactor is investigated, assuming the existence of an market for this element. Two distinct market situations for the stages of the fuel cycle are analysed: one for the 1972 costs and the other for costs of 1982. Comparisons are made for each of the two market situations concerning enrichment of the U-235 in the uranium fuel that gives the minimum cost in the fuel cycle. The method adopted to establish the individual value of the plutonium isotopes consists on the economical analyses of the plutonium fuel cycle for four different isotopes mixtures refering to the uranium fuel cycle. (Author) [pt

  3. A pressure drop model for PWR grids

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dong Seok; In, Wang Ki; Bang, Je Geon; Jung, Youn Ho; Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A pressure drop model for the PWR grids with and without mixing device is proposed at single phase based on the fluid mechanistic approach. Total pressure loss is expressed in additive way for form and frictional losses. The general friction factor correlations and form drag coefficients available in the open literatures are used to the model. As the results, the model shows better predictions than the existing ones for the non-mixing grids, and reasonable agreements with the available experimental data for mixing grids. Therefore it is concluded that the proposed model for pressure drop can provide sufficiently good approximation for grid optimization and design calculation in advanced grid development. 7 refs., 3 figs., 3 tabs. (Author)

  4. Stochastic optimization of loading pattern for PWR

    International Nuclear Information System (INIS)

    Smuc, T.; Pevec, D.

    1994-01-01

    The application of stochastic optimization methods in solving in-core fuel management problems is restrained by the need for a large number of proposed solutions loading patterns, if a high quality final solution is wanted. Proposed loading patterns have to be evaluated by core neutronics simulator, which can impose unrealistic computer time requirements. A new loading pattern optimization code Monte Carlo Loading Pattern Search has been developed by coupling the simulated annealing optimization algorithm with a fast one-and-a-half dimensional core depletion simulator. The structure of the optimization method provides more efficient performance and allows the user to empty precious experience in the search process, thus reducing the search space size. Hereinafter, we discuss the characteristics of the method and illustrate them on the results obtained by solving the PWR reload problem. (authors). 7 refs., 1 tab., 1 fig

  5. Full MOX high burn-up PWR

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Tsutomu; Kugo, Teruhiko; Shimada, Shoichiro; Araya, Fumimasa; Ochiai, Masaaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-12-01

    As a part of conceptual investigation on advanced light water reactors for the future, a light water reactor with the high burn-up of 100 GWd/t, the long cycle operation of 3 years and the full MOX core is being studied, aiming at the improvement on economical aspects, the reduction of the spent fuel production, the utilization of Plutonium and so forth. The present report summarizes investigation on PWR-type reactors. The core with the increased moderation of the moderator-to-fuel volume ratio of 2.6 {approx} 3.0 has been proposed be such a core that accomplishes requirements mentioned above. Through the neutronic and the thermo-hydrodynamic evaluation, the performances of the core have been evaluated. Also, the safety designing is underway considering the reactor system with the passive safety features. (author)

  6. Development of gadolinia bearing fuel for PWR

    International Nuclear Information System (INIS)

    Seki, Kazuichiro

    1986-01-01

    In the PWR power plants in Japan, the long-period operation cycle was extended legally to a maximum of 13 months from the conventional about 9 months in fiscal 1980. With this move, as a new type of fuel with burnable-poison-rod function, the development was started of gadolinia-bearing (gadolinium oxide) fuel, gadolinia being contained in the fuel pellets. The basic technology studies were completed in fiscal 1984. Actual irradiation of the fuel in Unit 2 of the Oi Power Station was then started in July 1984, demonstrating validity of the design. Meanwhile, the rapid power-up fest and the fuel center temperature measurement are conducted in an overseas reactor from fiscal 1983. The following are described: functions of the burnable absorber, the need for gadolinia-bearing fuel, experiences with gadolinia-bearing fuel, problems in the design and production of gadolinia-bearing fuel, the development of gadolinia-bearing fuel. (Mori, K.)

  7. Development of advanced PWR steam generator

    International Nuclear Information System (INIS)

    Saito, Itaru; Nakamura, Tomomichi

    1999-01-01

    In response to the increased power of the advanced PWR, it is necessary to develop a steam generator (SG) which has a large capacity with high performance and high reliability as well as being economical to produce. In this paper, the development of the design of a new SG for the advanced PWRs is described and compared with the design of a conventional SG. Moreover, an outline of a seismic verification test for the U-bend tube bundle which includes advanced anti-vibration bars (AVB) which are very important is described. As a result, it was verified that the bundle has sufficient strength and a relatively high attenuation to seismic loads. These results will be reflected in the detailed design of advanced AVBs. (author)

  8. The PWR cores management; La gestion des coeurs REP

    Energy Technology Data Exchange (ETDEWEB)

    Barral, J.C. [Electricite de France (EDF), 75 - Paris (France); Rippert, D. [CEA Cadarache, Departement d' Etudes des Reacteurs, DER, 13 - Saint-Paul-lez-Durance (France); Johner, J. [CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee, DRFC, 13 - Saint-Paul-lez-Durance (France)] [and others

    2000-01-25

    During the meeting of the 25 january 2000, organized by the SFEN, scientists and plant operators in the domain of the PWR debated on the PWR cores management. The five first papers propose general and economic information on the PWR and also the fast neutron reactors chains in the electric power market: statistics on the electric power industry, nuclear plant unit management, the ITER project and the future of the thermonuclear fusion, the treasurer's and chairman's reports. A second part offers more technical papers concerning the PWR cores management: performance and optimization, in service load planning, the cores management in the other countries, impacts on the research and development programs. (A.L.B.)

  9. Microprobe analysis and scanning electron microscope on PWR fuels

    International Nuclear Information System (INIS)

    Giannetto, B.

    1996-01-01

    In this text we present the apparatus used, in the CEA centers of Saclay and Cadarache, for analysis PWR spent fuels and we give results for Uranium oxide fuels and mixed oxide fuels. 5 figs., 26 photos

  10. Characterization of Factors affecting IASCC of PWR Core Internals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Woo; Hwang, Seong Sik; Kim, Won Sam [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-09-15

    A lot works have been performed on IASCC in BWR. Recent efforts have been devoted to investigate IASCC in PWR, but the mechanism in PWR is not fully understood yet as compared with that in BWR due to a lack of data from laboratories and fields. Therefore it is strongly needed to review and analyse recent researches of IASCC in both BWR and PWR for establishing a proactive management technology for IASCC of core internals in Korean PWRs. This work is aimed to review mainly recent technical reports on IASCC of stainless steels for core internals in PWR. For comparison, the works on IASCC in BWR were also reviewed and briefly introduced in this report.

  11. Physicochemical attack against solid tumors based on the reversal of direction of entropy flow: an attempt to introduce thermodynamics in anticancer therapy

    Directory of Open Access Journals (Sweden)

    Lv Xiaogui

    2006-11-01

    tissues, the rate of entropy production of normal cells may exceed that of cancerous cells. Consequently, the application of external energy to the body can reverse the direction of the entropy current. The harmful effect brought about by the entropy flow from cancerous to healthy tissue can be blocked by the reversed direction of entropy current from the irradiated normal tissue around the tumor.

  12. Model for transient simulation in a PWR steam circuit

    International Nuclear Information System (INIS)

    Mello, L.A. de.

    1982-11-01

    A computer code (SURF) was developed and used to simulate pressure losses along the tubes of the main steam circuit of a PWR nuclear power plant, and the steam flow through relief and safety valves when pressure reactors its thresholds values. A thermodynamic model of turbines (high and low pressure), and its associated components are simulated too. The SURF computer code was coupled to the GEVAP computer code, complementing the simulation of a PWR nuclear power plant main steam circuit. (Author) [pt

  13. GO evaluation of a PWR spray system. Final report

    International Nuclear Information System (INIS)

    Long, W.T.

    1975-08-01

    GO is a reliability analysis methodology developed over the years from 1960 to the present by Kaman Sciences Corporation, Colorado Springs, Colorado. In this report the GO methodology is presented and its application demonstrated by performing a reliability analysis of a conceptual PWR Containment Spray System. Certain numerical results obtained are compared with those of a prior fault tree analysis of the same system as documented in the 11 January 1973 draft report, A Fault Tree Evaluation of a PWR Spray System

  14. Calculations of the neutron environment inside a PWR containment

    International Nuclear Information System (INIS)

    Hopkins, W.C.

    1979-01-01

    Neutron dose rates inside a PWR containment have been calculated using the DOT-DOMINO-MORSE technique. These dose rates are compared to measurements performed by teams from the Health Physics Division of the Oak Ridge National Laboratory and the Lawrence Livermore Laboratory. A simple method for extrapolating neutron dose rates at the top of the refueling pool to other areas in PWR containments is outlined

  15. Maintenance Technology and its Applications for PWR Plants

    International Nuclear Information System (INIS)

    Wachi, E.; Nishitani, J.; Okimura, K.; Tokunaga, H.

    2012-01-01

    Of the 24 PWR plants in Japan, eleven have been operated for more than 30 years. Accordingly, it has become extremely important to take measures against ageing structures and components in order to achieve safe and reliable long term operation of these plants. In this paper, a concept of the ageing countermeasure for PWR in Japan is outlined and then representative technologies related to various maintenance activities are presented. (author)

  16. Thermal-hydraulic study of integrated steam generator in PWR

    International Nuclear Information System (INIS)

    Osakabe, Masahiro

    1989-01-01

    One of the safety aspects of innovative reactor concepts is the integration of steam generators (SGs) into the reactor vessel in the case of the pressurized water reactor (PWR). All of the reactor system components including the pressurizer are within the reactor vessel in the SG integrated PWR. The simple heat transfer code was developed for the parametric study of the integrated SG. The code was compared to the once-through 19-tube SG experiment and the good agreement between the experimental results and the code predictions was obtained. The assessed code was used for the parametric study of the integrated once-through 16 m-straight-tube SG installed in the annular downcomer. The proposed integrated SG as a first attempt has approximately the same tube size and pitch as the present PWR and the SG primary and secondary sides in the present PWR is inverted in the integrated PWR. Based on the study, the reactor vessel size of the SG integrated PWR was calculated. (author)

  17. Modeling chemistry in PWR fuel crud

    International Nuclear Information System (INIS)

    PWR fuel crud arises from deposition of corrosion products in the coolant on clad surfaces in the core. These deposits form a porous layer through which water must pass to provide effective heat transfer from the clad surface. The usual heat transfer mechanism is by wick boiling in which water passing through the porous crud is converted to steam that escapes through steam chimneys in the deposit. This conversion of water into steam within the deposit means that dilute solutions in the bulk coolant become concentrated in the crud and this can lead to precipitation of species such as lithium borates, ZnO and Zn-silicates. Such precipitation processes may lead to problems such as crud induced power shifts (CIPS), formally known as axial off-set anomaly (AOA), or crud induced localised corrosion (CILC) of the clad, that has led to cladding failures. These precipitation processes also hinder heat transfer and can lead to hot spots on the clad surfaces that are potentially damaging. Questions such as what should be the plant limits on Zn, Si, B and Li to prevent such problems, and how should these be controlled during the cycle, are not easy to answer. With several new designs of PWR proposing high power density cores and therefore greater subcooled nucleate boiling, and with existing plants still up-rating their cores, these questions are likely to become more important in the future. It is therefore important to understand the relationship between coolant chemistry (Zn, Si, Li, B levels) and the chemistry within fuel crud. The bulk and crud chemistry are coupled along with the bulk and local heat transfer processes. This coupling of chemistry and heat transfer makes this a particularly difficult problem to investigate theoretically although the authors have previously achieved this using a number of one dimensional heat and mass transfer models. This paper discusses a new approach to this problem using finite element methods to solve the relevant coupled chemistry and

  18. The deformation of zircaloy PWR cladding with low internal pressures, under mainly convective cooling by steam

    International Nuclear Information System (INIS)

    Hindle, E.D.; Mann, C.A.; Reynolds, A.E.

    1981-01-01

    The deformation behaviour is reported of specimens of Zircaloy PWR fuel cladding when directly heated in flowing steam. The range of internal pressures studied was 0.69-2.07 MPa; this extended earlier studies using higher pressures. The specimens were ramped and then held at a steady test temperature until rupture or until 600 seconds had elapsed. Under these conditions it was found that extended deformation occurred with pressures down to 1 MPa at temperatures up to 900 deg C. At lower pressures and higher temperatures there was no large extended deformation; this is believed to result from the effects of oxidation

  19. Sensitivity analysis on hot channel of PWR type reactors using matricial formalism

    International Nuclear Information System (INIS)

    Maciel, Edisson Savio G.; Andrade Lima, Fernando Roberto de; Lira, Carlos Alberto B.O.

    1995-01-01

    The matricial formalism of the perturbation theory is applied in a simplified model to study the hot channel of PWR reactors. Mass, linear momentum and energy conservation equations and appropriated heat transfer and fluid mechanics correlations describe the discretized system. After calculating system's thermalhydraulic properties, the matricial formalism is applied and the sensitivity coefficients are determined for each case of interest. Comparisons between perturbative method and direct results of the model have shown good agreement which demonstrates that the matricial formalism is an important tool for discretized system analysis. (author). 6 refs, 2 tabs

  20. Analysis of transient heat conduction in a PWR fuel rod by an improved lumped parameter approach

    Energy Technology Data Exchange (ETDEWEB)

    Dourado, Eneida Regina G. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Cotta, Renato M. [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Mecanica; Jian, Su, E-mail: eneidadourado@gmail.com, E-mail: sujian@nuclear.ufrj.br, E-mail: cotta@mecanica.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    This paper aims to analyze transient heat conduction in a nuclear fuel rod by an improved lumped parameter approach. One-dimensional transient heat conduction is considered, with the circumferential symmetry assumed and the axial conduction neglected. The thermal conductivity and specific heat in the fuel pellet are considered temperature dependent, while the thermophysical properties of the cladding are considered constant. Hermite approximation for integration is used to obtain the average temperature and heat flux in the radial direction. Significant improvement over the classical lumped parameter formulation has been achieved. The proposed model can be also used in dynamic analysis of PWR and nuclear power plant simulators. (author)

  1. Conceptual study on advanced PWR system

    International Nuclear Information System (INIS)

    Bae, Yoon Young; Chang, M. H.; Yu, K. J.; Lee, D. J.; Cho, B. H.; Kim, H. Y.; Yoon, J. H.; Lee, Y. J.; Kim, J. P.; Park, C. T.; Seo, J. K.; Kang, H. S.; Kim, J. I.; Kim, Y. W.; Kim, Y. H.

    1997-07-01

    In this study, the adoptable essential technologies and reference design concept of the advanced reactor were developed and related basic experiments were performed. 1) Once-through Helical Steam Generator: a performance analysis computer code for heli-coiled steam generator was developed for thermal sizing of steam generator and determination of thermal-hydraulic parameters. 2) Self-pressurizing pressurizer : a performance analysis computer code for cold pressurizer was developed. 3) Control rod drive mechanism for fine control : type and function were surveyed. 4) CHF in passive PWR condition : development of the prediction model bundle CHF by introducing the correction factor from the data base. 5) Passive cooling concepts for concrete containment systems: development of the PCCS heat transfer coefficient. 6) Steam injector concepts: analysis and experiment were conducted. 7) Fluidic diode concepts : analysis and experiment were conducted. 8) Wet thermal insulator : tests for thin steel layers and assessment of materials. 9) Passive residual heat removal system : a performance analysis computer code for PRHRS was developed and the conformance to EPRI requirement was checked. (author). 18 refs., 55 tabs., 137 figs

  2. Alloy development for high burnup cladding (PWR)

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. [Kraftwerk Union AG, Mulheim (Germany); Jeong, Y.H.; Baek, K.H.; Kim, S.J.; Choi, B.K.; Kim, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-04-01

    An overview on current alloy development for high burnup PWR fuel cladding is given. It is mainly based on literature data. First, the reasons for an increase of the current mean discharge burnup from 35 MWd / kg(U) to 70 MWd / kg(U) are outlined. From the material data, it is shown that a batch average burnup of 60-70 MWd / kg(U), as aimed by many fuel vendors, can not be achieved with stand (=ASTM-) Zry-4 cladding tubes without violating accepted design criteria. Specifically criteria which limit maximum oxide scale thickness and maximum hydrogen content, and to a less degree, maximum creep and growth rate, can not be achieved. The development potential of standard Zry-4 is shown. Even when taking advantage of this potential, it is shown that an 'improved' Zry-4 is reaching its limits when it achieves the target burnup. The behavior of some Zr alloys outside the ASTM range is shown, and the advantages and disadvantages of the 3 alloy groups (ZrSn+transition metals, ZrNb, ZrSnNb+transition metals) which are currently considered to have the development potential for high burnup cladding materials are depicted. Finally, conclusions are drawn. (author). 14 refs., 11 tabs., 82 figs.

  3. Conceptual study on advanced PWR system

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yoon Young; Chang, M. H.; Yu, K. J.; Lee, D. J.; Cho, B. H.; Kim, H. Y.; Yoon, J. H.; Lee, Y. J.; Kim, J. P.; Park, C. T.; Seo, J. K.; Kang, H. S.; Kim, J. I.; Kim, Y. W.; Kim, Y. H.

    1997-07-01

    In this study, the adoptable essential technologies and reference design concept of the advanced reactor were developed and related basic experiments were performed. (1) Once-through Helical Steam Generator: a performance analysis computer code for heli-coiled steam generator was developed for thermal sizing of steam generator and determination of thermal-hydraulic parameters. (2) Self-pressurizing pressurizer : a performance analysis computer code for cold pressurizer was developed. (3) Control rod drive mechanism for fine control : type and function were surveyed. (4) CHF in passive PWR condition : development of the prediction model bundle CHF by introducing the correction factor from the data base. (5) Passive cooling concepts for concrete containment systems: development of the PCCS heat transfer coefficient. (6) Steam injector concepts: analysis and experiment were conducted. (7) Fluidic diode concepts : analysis and experiment were conducted. (8) Wet thermal insulator : tests for thin steel layers and assessment of materials. (9) Passive residual heat removal system : a performance analysis computer code for PRHRS was developed and the conformance to EPRI requirement was checked. (author). 18 refs., 55 tabs., 137 figs.

  4. CORD-2 package for PWR design calculations

    International Nuclear Information System (INIS)

    Trkov, A.; Ravnik, M.

    1994-01-01

    The CORD-2 package is designed to provide a modern, independent calculational tool for reactor core calculations. It provides options that are essential for modeling the advanced features of fuel assemblies. Its development is part of a wider effort to establish country's own expertise in nuclear design and safety analysis. The package provides not only the calculational modules, but also the data management support facilities. It has been implemented on VAX/VMS and on PC/DOS, but extension to other systems is quite straightforward. The main components and the calculational methods are briefly described. The results of the validation programme are presented. They include the comparison of the calculated results with the measured values of ten cycles of the Krsko nuclear power plant and for the IAEA test case Almaraz, with special emphasis on the first cores at hot-zero power conditions. The results of the validation programme shows that CORD-2 is applicable for design level PWR core calculations. (authors). 9 refs., 4 figs., 3 tabs

  5. Method of starting up PWR type reactor

    International Nuclear Information System (INIS)

    Kadokami, Akira; Ueno, Ryuji; Tsuge, Ayao; Onimura, Kichiro; Ochi, Tatsuya.

    1988-01-01

    Purpose: To start-up a PWR type reactor so as to effectively impregnate and concentrate corrosion inhibitors in intergranular corrosive faces. Method: Upon reactor start-up, after transferring from the warm zero output state to thermal power loaded state and injecting corrosion inhibitors, thermal power is returned to zero and, subsequently, increased up to a rated power. By selecting the thermal power upon injecting the corrosion inhibitors to a steam generator body, that is, by selecting a thermal power load that starts to boil in heat conduction tubes, feedwater in the clavis portion can be formed into an appropriate boiling convection and, accordingly, the corrosion inhibitors can be penetrated to the clevis portion at a higher rate and in a greater amount as compared with those under zero power condition. Subsequently, when the thermal power is reduced, a sub-cooled state is attained in the clevis portion, in which steams present in the intergranular corrosion faces in the heat conduction tubes are condensated. As a result, the corrosion inhibitors at high concentration are impregnated into the intergranular corrosive faces to provide excellent effects. (Kamimura, M.)

  6. Alloy development for high burnup cladding (PWR)

    International Nuclear Information System (INIS)

    Hahn, R.; Jeong, Y. H.; Baek, K. H.; Kim, S. J.; Choi, B. K.; Kim, J.M.

    1999-04-01

    An overview on current alloy development for high burnup PWR fuel cladding is given. It is mainly based on literature data. First, the reasons for an increase of the current mean discharge burnup from 35 MWd / kg(U) to 70 MWd / kg(U) are outlined. From the material data, it is shown that a batch average burnup of 60-70 MWd / kg(U), as aimed by many fuel vendors, can not be achieved with stand (=ASTM-) Zry-4 cladding tubes without violating accepted design criteria. Specifically criteria which limit maximum oxide scale thickness and maximum hydrogen content, and to a less degree, maximum creep and growth rate, can not be achieved. The development potential of standard Zry-4 is shown. Even when taking advantage of this potential, it is shown that an 'improved' Zry-4 is reaching its limits when it achieves the target burnup. The behavior of some Zr alloys outside the ASTM range is shown, and the advantages and disadvantages of the 3 alloy groups (ZrSn+transition metals, ZrNb, ZrSnNb+transition metals) which are currently considered to have the development potential for high burnup cladding materials are depicted. Finally, conclusions are drawn. (author). 14 refs., 11 tabs., 82 figs

  7. A PWR Thorium Pin Cell Burnup Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Kevan Dean; Zhao, X.; Pilat, E. E; Hejzlar, P.

    2000-05-01

    As part of work to evaluate the potential benefits of using thorium in LWR fuel, a thorium fueled benchmark comparison was made in this study between state-of-the-art codes, MOCUP (MCNP4B + ORIGEN2), and CASMO-4 for burnup calculations. The MOCUP runs were done individually at MIT and INEEL, using the same model but with some differences in techniques and cross section libraries. Eigenvalue and isotope concentrations were compared on a PWR pin cell model up to high burnup. The eigenvalue comparison as a function of burnup is good: the maximum difference is within 2% and the average absolute difference less than 1%. The isotope concentration comparisons are better than a set of MOX fuel benchmarks and comparable to a set of uranium fuel benchmarks reported in the literature. The actinide and fission product data sources used in the MOCUP burnup calculations for a typical thorium fuel are documented. Reasons for code vs code differences are analyzed and discussed.

  8. Analysis of reactivity accidents in PWR'S

    International Nuclear Information System (INIS)

    Camous, F.; Chesnel, A.

    1989-12-01

    This note describes the French strategy which has consisted, firstly, in examining all the accidents presented in the PWR unit safety reports in order to determine for each parameter the impact on accident consequences of varying the parameter considered, secondly in analyzing the provisions taken into account to restrict variation of this parameter to within an acceptable range and thirdly, in checking that the reliability of these provisions is compatible with the potential consequences of transgression of the authorized limits. Taking into consideration violations of technical operating specifications and/or non-observance of operating procedures, equipment failures, and partial or total unavailability of safety systems, these studies have shown that fuel mechanical strength limits can be reached but that the probability of occurrence of the corresponding events places them in the residual risk field and that it must, in fact, be remembered that there is a wide margin between the design basis accidents and accidents resulting in fuel destruction. However, during the coming year, we still have to analyze scenarios dealing with cumulated events or incidents leading to a reactivity accident. This program will be mainly concerned with the impact of the cases examined relating to dilution incidents under normal operating conditions or accident operating conditions

  9. Minimization of radioactive liquids released from PWR

    International Nuclear Information System (INIS)

    Yoshikawa, Hideo; Kohri, Masaharu.

    1981-01-01

    The quantity of radioactive substances in the liquids released into the environment from a PWR power station in normal operation was determined, following the path from the sources of generation, that is, the equipments in primary and secondary cooling systems, to the release into the environment after the radioactive substances were removed in treatment facilities. The quantity of radioactive substances released from primary and secondary systems was determined for each source of generation in a standard plant, and the results were examined. As the concrete example of reducing the release on the basis of ''As low as reasonably achievable'' concept, the increase of letdown flow rate and the installation of a condensate-desalting column are reported. As the sources of generation, the primary coolant formed by shim bleed and the drain from primary system equipments, the drain from an auxiliary building floor, radiochemistry waste solution and the drain from intermediate cooling system, the waste water of washing and shower bath, the drain from a turbine building floor, and the blow-down waste from steam generators are enumerated. The concentration of radioactive substances in primary and secondary coolants, the decontamination factor of waste treatment equipments and the measures for reducing the release are described. (Kako, I.)

  10. Scaling Analysis for PWR Steam Generator

    International Nuclear Information System (INIS)

    Li, Yuquan; Ye, Zishen

    2011-01-01

    To test the nuclear power plant safety system performance and verify the relative safety analysis code, a widely used approach is to design and construct a scaled model based on a scaling methodology. For a pressurized water reactor (PWR), the SG scaling analysis is important before designing a scale model which is expected to well simulate the system response to the accident. In this work, a review of the transient process in SG during a loss of coolant accident (LOCA) is first presented, and then a brief natural circulation scaling analysis is performed to get the basic SG scaling design rules. The U-tube scaling design shows the scaling will enlarge the thermal center height ratio while keeping the length ratio when the scale model uses a different diameter ratio and the height ratio, which causes distortion in natural circulation simulation. And then, by the heat transfer scaling analysis, a relation between the U-tube diameter ratio and model height ratio is obtained, and it shows the diameter ratio decreases with the decreasing model height ratio. In the end, the SG transition from the heat sink to the heat source is analyzed, and the results show the SG secondary inventory and the total material heat capacity need to be properly scaled to represent the transition correctly

  11. Computer aided information system for a PWR

    International Nuclear Information System (INIS)

    Vaidian, T.A.; Karmakar, G.; Rajagopal, R.; Shankar, V.; Patil, R.K.

    1994-01-01

    The computer aided information system (CAIS) is designed with a view to improve the performance of the operator. CAIS assists the plant operator in an advisory and support role, thereby reducing the workload level and potential human errors. The CAIS as explained here has been designed for a PWR type KLT- 40 used in Floating Nuclear Power Stations (FNPS). However the underlying philosophy evolved in designing the CAIS can be suitably adopted for other type of nuclear power plants too (BWR, PHWR). Operator information is divided into three broad categories: a) continuously available information b) automatically available information and c) on demand information. Two in number touch screens are provided on the main control panel. One is earmarked for continuously available information and the other is dedicated for automatically available information. Both the screens can be used at the operator's discretion for on-demand information. Automatically available information screen overrides the on-demand information screens. In addition to the above, CAIS has the features of event sequence recording, disturbance recording and information documentation. CAIS design ensures that the operator is not overburdened with excess and unnecessary information, but at the same time adequate and well formatted information is available. (author). 5 refs., 4 figs

  12. Conceptual study of advanced PWR core design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs.

  13. Conceptual study of advanced PWR core design

    International Nuclear Information System (INIS)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong.

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs

  14. ABB PWR fuel design for high burnup

    International Nuclear Information System (INIS)

    Nilsson, S.; Jourdain, P.; Limback, M.; Garde, A.M.

    1998-01-01

    Corrosion, hydriding and irradiation induced growth of a based materials are important factors for the high burnup performance of PWR fuel. ABB has developed a number of Zr based alloys to meet the need for fuel that enables operation to elevated burnups. The materials include composition and processing optimised Zircaloy 4 (OPTIN TM ) and Zircaloy 2 (Zircaloy 2P), as well as advanced Zr based alloys with chemical compositions outside the composition specified for Zircaloy. The advanced alloys are either used as Duplex or as single component claddings. The Duplex claddings have an inner component of Zircaloy and an outer layer of Zr with small additions of alloying elements. ABB has furthermore improved the dimensional stability of the fuel assembly by developing stiffer and more bow resistant guide tubes while debris related fuel failures have been eliminated from ABB fuel by introducing the Guardian TM grid. Intermediate flow mixers that improve the thermal hydraulic performance and the dimensional stability of the fuel has also been developed within ABB. (author)

  15. Evolutionary developments of advanced PWR nuclear fuels and cladding materials

    International Nuclear Information System (INIS)

    Kim, Kyu-Tae

    2013-01-01

    Highlights: • PWR fuel and cladding materials development processes are provided. • Evolution of PWR advanced fuel in U.S.A. and in Korea is described. • Cutting-edge design features against grid-to-rod fretting and debris are explained. • High performance data of advanced grids, debris filters and claddings are given. -- Abstract: The evolutionary developments of advanced PWR fuels and cladding materials are explained with outstanding design features of nuclear fuel assembly components and zirconium-base cladding materials. The advanced PWR fuel and cladding materials development processes are also provided along with verification tests, which can be used as guidelines for newcomers planning to develop an advanced fuel for the first time. The up-to-date advanced fuels with the advanced cladding materials may provide a high level of economic utilization and reliable performance even under current and upcoming aggressive operating conditions. To be specific, nuclear fuel vendors may achieve high fuel burnup capability of between 45,000 and 65,000 MWD/MTU batch average, overpower thermal margin of as much as 15% and longer cycle length up to 24 months on the one hand and fuel failure rates of around 10 −6 on the other hand. However, there is still a need for better understanding of grid-to-rod fretting wear mechanisms leading to major PWR fuel defects in the world and subsequently a driving force for developing innovative spacer grid designs with zero fretting wear-induced fuel failure

  16. Seismic qualification of PWR plant auxiliary feedwater systems

    International Nuclear Information System (INIS)

    Lu, S.C.; Tsai, N.C.

    1983-08-01

    The NRC Standard Review Plan specifies that the auxiliary feedwater (AFW) system of a pressurized water reactor (PWR) is a safeguard system that functions in the event of a Safe Shutdown Earthquake (SSE) to remove the decay heat via the steam generator. Only recently licensed PWR plants have an AFW system designed to the current Standard Review Plan specifications. The NRC devised the Multiplant Action Plan C-14 in order to make a survey of the seismic capability of the AFW systems of operating PWR plants. The purpose of this survey is to enable the NRC to make decisions regarding the need of requiring the licensees to upgrade the AFW systems to an SSE level of seismic capability. To implement the first phase of the C-14 plan, the NRC issued a Generic Letter (GL) 81-14 to all operating PWR licensees requesting information on the seismic capability of their AFW systems. This report summarizes Lawrence Livermore National Laboratory's efforts to assist the NRC in evaluating the status of seismic qualification of the AFW systems in 40 PWR plants, by reviewing the licensees' responses to GL 81-14

  17. Social integration in a reversed integration neighbourhood? : Perspectives of neighbours, family members, and direct support professionals and the role of formal and informal support

    NARCIS (Netherlands)

    Venema, Eleonora

    2016-01-01

    This research focused on the social integration of people with intellectual disabilities who live in a reversed integration neighbourhood. Reversed integration means that the grounds of the residential facility is turned into a regular neighbourhood wherein people with and without intellectual

  18. The advanced main control console for next japanese PWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, A. [Hokkaido Electric Power Co., Inc., Sapporo (Japan); Ito, K. [Mitsubishi Heavy Industries, Ltd., Nuclear Energy Systems Engineering Center, Yokohama (Japan); Yokoyama, M. [Mitsubishi Electric Corporation, Energy and Industrial Systems Center, Kobe (Japan)

    2001-07-01

    The purpose of the improvement of main control room designing in a nuclear power plant is to reduce operators' workload and potential human errors by offering a better working environment where operators can maximize their abilities. In order to satisfy such requirements, the design of main control board applied to Japanese Pressurized Water Reactor (PWR) type nuclear power plant has been continuously modified and improved. the Japanese Pressurized Water Reactor (PWR) Utilities (Electric Power Companies) and Mitsubishi Group have developed an advanced main control board (console) reflecting on the study of human factors, as well as using a state of the art electronics technology. In this report, we would like to introduce the configuration and features of the Advanced Main Control Console for the practical application to the next generation PWR type nuclear power plants including TOMARI No.3 Unit of Hokkaido Electric Power Co., Inc. (author)

  19. Pressurizer and steam-generator behavior under PWR transient conditions

    International Nuclear Information System (INIS)

    Wahba, A.B.; Berta, V.T.; Pointner, W.

    1983-01-01

    Experiments have been conducted in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR), at the Idaho National Engineering Laboratory, in which transient phenomena arising from accident events with and without reactor scram were studied. The main purpose of the LOFT facility is to provide data for the development of computer codes for PWR transient analyses. Significant thermal-hydraulic differences have been observed between the measured and calculated results for those transients in which the pressurizer and steam generator strongly influence the dominant transient phenomena. Pressurizer and steam generator phenomena that occurred during four specific PWR transients in the LOFT facility are discussed. Two transients were accompanied by pressurizer inflow and a reduction of the heat transfer in the steam generator to a very small value. The other two transients were accompanied by pressurizer outflow while the steam generator behavior was controlled

  20. Improved emergency elevated air release for simplified PWR

    International Nuclear Information System (INIS)

    Naitoh, T.; Bruce, R.A.; Hirota, K.; Tajiri, Y.

    1992-01-01

    In developing the application of the simplified PWR in Japan, one of the most important areas is to limit post-accident site boundary whole body dose. In addressing this, the concept of Emergency Passive Air Filtration System (EPAFS) and it's feasibility is developed. The efficiency of charcoal filtering and the atmospheric diffusion effect of an elevated air release are important for dose reduction. The performance of these functions was evaluated by confirmatory testing. The test results confirmed a 99 percent efficiency of charcoal filter and an atmospheric diffusion effect higher than that of a conventional plant. The Emergency Passive Air Filtration System (EPAFS) and the atmospheric diffusion effect of elevated air release contribute to making the calculated post-accident site boundary whole body dose of simplified PWR as low as that of the conventional Japanese PWR plant. (author)

  1. Industry-wide survey of organics in PWR's

    International Nuclear Information System (INIS)

    Byers, W.A.; Richards, J.E.; Hobart, S.A.

    1986-01-01

    Interest in organic impurities found in Pressurized Water Reactors (PWR's) has stemmed from several sources. The most serious concern is that organic acids will increase cation conductivity, a parameter that is used to control power plant chemistry. This effect can complicate secondary water monitoring and control. Organics may foul or exhaust makeup demineralizers and condensate polishers, and thus result in increased operating costs or the in leakage of potentially corrosive agents into the steam generators. Some organics, however, such as mopholine and cyclohexylamine may reduce corrosion through oxygen scavenging or surface filming reactions, and may have a positive influence on the pH in areas of local corrosion. At the time this survey began, little information was available on the types or levels of organic impurities that are typically found in PWR's. this survey is intended to provide baseline data for future corrosion testing and to provide fundamental information that will be helpful in refining PWR chemistry guidelines and operating practices

  2. The advanced main control console for next japanese PWR plants

    International Nuclear Information System (INIS)

    Tsuchiya, A.; Ito, K.; Yokoyama, M.

    2001-01-01

    The purpose of the improvement of main control room designing in a nuclear power plant is to reduce operators' workload and potential human errors by offering a better working environment where operators can maximize their abilities. In order to satisfy such requirements, the design of main control board applied to Japanese Pressurized Water Reactor (PWR) type nuclear power plant has been continuously modified and improved. the Japanese Pressurized Water Reactor (PWR) Utilities (Electric Power Companies) and Mitsubishi Group have developed an advanced main control board (console) reflecting on the study of human factors, as well as using a state of the art electronics technology. In this report, we would like to introduce the configuration and features of the Advanced Main Control Console for the practical application to the next generation PWR type nuclear power plants including TOMARI No.3 Unit of Hokkaido Electric Power Co., Inc. (author)

  3. Cylindrization of a PWR core for neutronic calculations

    International Nuclear Information System (INIS)

    Santos, Rubens Souza dos

    2005-01-01

    In this work we propose a core cylindrization, starting from a PWR core configuration, through the use of an algorithm that becomes the process automated in the program, independent of the discretization. This approach overcomes the problem stemmed from the use of the neutron transport theory on the core boundary, in addition with the singularities associated with the presence of corners on the outer fuel element core of, existents in the light water reactors (LWR). The algorithm was implemented in a computational program used to identification of the control rod drop accident in a typical PWR core. The results showed that the algorithm presented consistent results comparing with an production code, for a problem with uniform properties. In our conclusions, we suggest, for future works, for analyzing the effect on mesh sizes for the Cylindrical geometry, and to compare the transport theory calculations versus diffusion theory, for the boundary conditions with corners, for typical PWR cores. (author)

  4. Basic information about development and construction of a PWR

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1977-01-01

    1.0) Plant layout of a PWR; 2.0) principle design of a PWR and the reactor coolant system; 3.0) reactor auxiliary and ancillary systems; 3.1) volume control system; 3.2) boric acid control and chemical feeding system; 3.3) coolant purification and degassing system; 3.4) coolant storage and treatment system; 3.5) nuclear component cooling system; 3.6) liquid waste processing system; 3.7) gaseous waste processing system; 4.0) residual heat removal system; 5.0) emergency feedwater system; 6.0) containment design; 7.0) fuel handling, storage and transport system in a PWR. (orig.) [de

  5. Swing-Down of 21-PWR Waste Package

    International Nuclear Information System (INIS)

    A.K. Scheider

    2001-01-01

    The objective of this calculation is to determine the structural response of the waste package (WP) swinging down from a horizontally suspended height. The WP used for that purpose is the 21-Pressurized Water Reactor (PWR) WP. The scope of this document is limited to reporting the calculation results in terms of stress intensities. This calculation is associated with the WP design and was performed by the Waste Package Design group in accordance with the ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 13). AP-3.12Q, ''Calculations'' (Ref. 18) is used to perform the calculation and develop the document. The information provided by the sketches attached to this calculation is that of the potential design of the type of 21-PWR WP design considered in this calculation and provides the potential dimensions and materials for the 21-PWR WP design

  6. Load-following operation of PWR plants

    International Nuclear Information System (INIS)

    Jang, Jong Hwa; Oh, Soo Yul; Koo, Yang Hyun; Lee, Jae Han

    1993-12-01

    The load-following operation of nuclear power plants will become inevitable due to the increased nuclear share in the total electricity generation. As a groundwork for the load-following capability of the Korean next generation PWRs, the state-of-the-art has been reviewed. The core control principles and methods are the main subject in this review as well as the impact of load-following operations on the fuel performance and on the mechanical integrity of components. To begin with, it was described what the load-following operation is and in what view point the technology should be reviewed. Afterwards the load-following method, performance and problems in domestic 900 MWe class PWRs were discussed, and domestic R and D works were summarized. Foreign technologies were also reviewed. They include Mode G and Mode X of Foratom, D and L bank method of KWU, the method using PSCEA of ABB-CE, and MSHIM of Westinghouse. The load-following related special features of Foratom's N4 plant, KWU's plants, ABB-CE's Systems 80+, and Westinghouse's AP600 were described in each technology review. The review concluded that the capability of N4 plant with Mode X is the best and the methods in System, 80+ and AP600 would require verifications for the continued and usual load-following operation. It was recommended that the load-following operation experiences in domestic PWRs under operation be required to settle down the capability for the future. In addition, a more enhanced technology is required for the Korean next generation PWR regardless what the reference plant concept is. 30 figs., 19 tabs., 75 refs. (Author)

  7. New oral antithrombotics: focus on dabigatran, an oral, reversible direct thrombin inhibitor for the prevention and treatment of venous and arterial thromboembolic disorders

    Directory of Open Access Journals (Sweden)

    Dahl OE

    2012-01-01

    Full Text Available Ola E Dahl1,21Department of Orthopaedics, Innlandet Hospital Trust, Elverum Central Hospital, Elverum, Norway; 2Thrombosis Research Institute, London, UKAbstract: Venous thromboembolism, presenting as deep vein thrombosis or pulmonary embolism, is a major challenge for health care systems. It is the third most common vascular disease after coronary heart disease and stroke, and many hospitalized patients have at least one risk factor. In particular, patients undergoing hip or knee replacement are at risk, with an incidence of asymptomatic deep vein thrombosis of 40%–60% without thromboprophylaxis. Venous thromboembolism is associated with significant mortality and morbidity, with patients being at risk of recurrence, post-thrombotic syndrome, and chronic thromboembolic pulmonary hypertension. Arterial thromboembolism is even more frequent, and atrial fibrillation, the most common embolic source (cardiac arrhythmia, is associated with a five-fold increase in the risk of stroke. Strokes due to atrial fibrillation tend to be more severe and disabling and are more often fatal than strokes due to other causes. Currently, recommended management of both venous and arterial thromboembolism involves the use of anticoagulants such as coumarin and heparin derivatives. These agents are effective, although have characteristics that prevent them from providing optimal anticoagulation and convenience. Hence, new improved oral anticoagulants are being investigated. Dabigatran is a reversible, direct thrombin inhibitor, which is administered as dabigatran etexilate, the oral prodrug. Because it is the first new oral anticoagulant that has been licensed in many countries worldwide for thromboprophylaxis following orthopedic surgery and for stroke prevention in patients with atrial fibrillation, this compound will be the main focus of this review. Dabigatran has been investigated for the treatment of established venous thromboembolism and prevention of

  8. The latest full-scale PWR simulator in Japan

    International Nuclear Information System (INIS)

    Nishimuru, Y.; Tagi, H.; Nakabayashi, T.

    2004-01-01

    The latest MHI Full-scale Simulator has an excellent system configuration, in both flexibility and extendability, and has highly sophisticated performance in PWR simulation by the adoption of CANAC-II and PRETTY codes. It also has an instructive character to display the plant's internal status, such as RCS condition, through animation. Further, the simulation has been verified to meet a functional examination at model plant, and with a scale model test result in a two-phase flow event, after evaluation for its accuracy. Thus, the Simulator can be devoted to a sophisticated and broad training course on PWR operation. (author)

  9. The traveller: a new look for PWR fresh fuel packages

    International Nuclear Information System (INIS)

    Bayley, B.; Stilwell, W.E.; Kent, N.A.

    2004-01-01

    The Traveller PWR fresh fuel shipping package represents a radical departure from conventional PWR fuel package designs. This paper follows the development effort from the establishment of goals and objectives, to intermediate testing and analysis, to final testing and licensing. The discussion starts with concept origination and covers the myriad iterations that followed until arriving at a design that would meet the demanding licensing requirements, last for 30 years, and would be easy to load and unload fuel, easy to handle, inexpensive to manufacture and transport, and simple and inexpensive to maintain

  10. Sensitivity of risk parameters to human errors for a PWR

    International Nuclear Information System (INIS)

    Samanta, P.; Hall, R.E.; Kerr, W.

    1980-01-01

    Sensitivities of the risk parameters, emergency safety system unavailabilities, accident sequence probabilities, release category probabilities and core melt probability were investigated for changes in the human error rates within the general methodological framework of the Reactor Safety Study for a Pressurized Water Reactor (PWR). Impact of individual human errors were assessed both in terms of their structural importance to core melt and reliability importance on core melt probability. The Human Error Sensitivity Assessment of a PWR (HESAP) computer code was written for the purpose of this study

  11. Structures and Materials of Reactor Internals for PWR in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. W.; Kim, W. S.; Kwon, S. C.; Kwon, J. H.; Kim, Y. S.; Kim, H. P.; Yoo, C. S.; Lee, S. R.; Jung, M. K.; Hwang, S. S

    2007-10-15

    Nuclear reactor types in Korea are PWR type reactor (Westinghouse, Combustion Engineering, Farmatome type) and CANDU type reactor. Structures and Materials for reactor internal of PWR type were investigated. Reactor internal was composed of lower core support structure, upper core support assembly, incore instrumentation support structure. Lower core support structure of these structures is the most important. The major material for the reactor internal is type 304 and 316 stainless steel and radial support clevis bolts are made of Inconel. The main damage mechanism for reactor internal was IASCC and the effect of IASCC on reactor internal was investigated. The accident for reactor internal was also investigate.

  12. PHEDRE model for the simulation of PWR reactors

    International Nuclear Information System (INIS)

    Bernard, Patrice; Dupraz, Remy; Vasile, Alfredo.

    1979-11-01

    This note presents the model of PHEDRE, simulator of a PWR, set on the hybrid computers of CISI, at the Nuclear Research Center of Cadarache. The model mainly concerns the primary part and the steam production of the PWR constructed in France. It includes an axial modelization of the core, the pressurizer, two loops of steam production and the inlet of the turbine, and the regulations concerning these components. The note presents the equations of the model, the structures of the codes concerning the initialization and the dynamic resolution, and describes the control panel of PHEDRE [fr

  13. Leak before break application in French PWR plants under operation

    Energy Technology Data Exchange (ETDEWEB)

    Faidy, C. [EDF SEPTEN, Villeurbanne (France)

    1997-04-01

    Practical applications of the leak-before break concept are presently limited in French Pressurized Water Reactors (PWR) compared to Fast Breeder Reactors. Neithertheless, different fracture mechanic demonstrations have been done on different primary, auxiliary and secondary PWR piping systems based on similar requirements that the American NUREG 1061 specifications. The consequences of the success in different demonstrations are still in discussion to be included in the global safety assessment of the plants, such as the consequences on in-service inspections, leak detection systems, support optimization,.... A large research and development program, realized in different co-operative agreements, completes the general approach.

  14. Transient performance of flow in PWR reactor circuits

    International Nuclear Information System (INIS)

    Hirdes, V.R.T.R.; Carajilescov, P.

    1988-12-01

    Generally, PWR's are designed with several primary loops, each one provided with a pump to circulate the coolant through the core. If one or more of these pumps fail, there would be a decrease in reactor flow rate which cause coolant phase change in the core and components overheating. The present work establishes a simulation model for pump failure in PWR's and the SARDAN-FLOW computes code was developed, considering any combination of such failures. Based on the data of Angra I, several accident and operational transient conditions were simulated. (author) [pt

  15. Transient performance of flow in circuits of PWR type reactors

    International Nuclear Information System (INIS)

    Hirdes, V.R.; Carajilescov, P.

    1988-09-01

    Generally, PWR's are designed with several primary loops, each one provided with a pump to circulate the coolant through the core. If one or more of these pumps fail, there would be a decrease in reactor flow rate which could cause coolant phase change in the core and components overheating. The present work establishes a simulation model for pump failure in PWR's and the SARDAN-FLOW computes code was developed, considering any combination of such failures. Based on the data of Angra I, several accident and operational transient conditions were simulated. (author) [pt

  16. Sodium fast reactor: an asset for a PWR UOX/MOX fleet - 5327

    International Nuclear Information System (INIS)

    Tiphine, M.; Coquelet-Pascal, C.; Girieud, R.; Eschbach, R.; Chabert, C.; Grosman, R.

    2015-01-01

    Due to its low fissile content, Pu from spent MOX fuels is sometimes regarded as not recyclable in LWR. Based on the existing French nuclear infrastructure (La Hague reprocessing plant and MELOX MOX manufacturing plant), AREVA and CEA have evaluated the conditions of Pu multi recycling in a 100% LWR fleet. As France is currently supporting a Fast Reactor prototype project, scenario studies have also been conducted to evaluate the contribution of a 600 MWe SFR in the LWR fleet. These scenario studies consider a nuclear fleet composed of 8 PWR 900 MWe, with or without the contribution of a SFR, and aim at evaluating the following points: -) the feasibility of Pu multi-recycling in PWR; -) the impact on the spent fuels storage; -) the reduction of the stored separated Pu; -) the impact on waste management and final disposal. The studies have been conducted with the COSI6 code, developed by CEA Nuclear Energy Direction since 1985, that simulates the evolution over time of a nuclear power plants fleet and of its associated fuel cycle facilities and provides material flux and isotopic compositions at each point of the scenario. To multi-recycle Pu into LWR MOX and to ensure flexibility, different reprocessing strategies were evaluated by adjusting the reprocessing order, the choice of used fuel assemblies according to their burn-up and the UOX/MOX proportions. The improvement of the Pu fissile quality and the kinetic of Pu multi-recycling in SFR depending on the initial Pu quality were also evaluated and led to a reintroduction of Pu in PWR MOX after a single irradiation in SFR, still in dilution with Pu from UOX to maintain a sufficient fissile quality. (authors)

  17. Behaviour of fission products in PWR primary coolant and defected fuel rods evaluation

    International Nuclear Information System (INIS)

    Bourgeois, P.; Stora, J.P.

    1979-01-01

    The activity surveillance of the PWR primary coolant by γ spectometry gives some informations on fuel failures. The activity of different nuclides e.g. Xenons, Kryptons, Iodines, can be correlated with the number of the defected fuel rods. Therefore the precharacterization with eventually a prelocalization of the related fuel assemblies direct the sipping-test and allows a saving of time during refueling. A model is proposed to calculate the number of the defected rods from the activity measurements of the primary coolant. A semi-empirical model of the release of the fission products has been built from the activity measurements of the primary coolant in a 900 MWe PWR. This model allows to calculate the number of the defected rods and also a typical parameter of the mean damage. Fission product release is described by three stages: release from uranium dioxide, transport across the gas gap and behaviour in the primary coolant. The model of release from the oxide considers a diffusion process in the grains with trapping. The release then occurs either directly to free surfaces or with a delay due to a transit into closed porosity of the oxide. The amount released is the same for iodine and rare gas. With the gas gap transit is associated a transport time and a probability of trapping for the iodines. In the primary coolant the purification and the radioactive decay are considered. (orig.)

  18. Laser based maintenance technology for PWR power plants

    International Nuclear Information System (INIS)

    Itaru Chida; Masaki Yoda; Naruhiko Mukai; Yuji Sano; Makoto Ochiai; Takahiro Miura; Ryoichi Saeki

    2005-01-01

    Stress corrosion cracking (SCC) is the major factor to reduce the reliability of aged reactor components. Toshiba has developed various laser-based maintenance technologies and already applied them to several existing nuclear power plants. Recently, we have developed the maintenance system for the inner surface of bottom-mounted instruments (BMI) of PWR plants. This system performs nondestructive testing (NDT) and preventive maintenance against SCC by using YAG lasers. Laser ultrasonic testing (LUT) has a great potential to be applied to the remote inspection of reactor components. Laser-induced surface acoustic wave (SAW) inspection system was developed by using a compact probe with a multi-mode optical fiber and an interferometer. This system is used for both detection and depth measurement of surface-breaking cracks. It is confirmed through laboratory studies that the developed system successfully detected and sized micro slits of around 1.0 mm depth on weld metal and heat-affected zone (HAZ). SCCs produced by chemical method were also tested by the system. For the preventive maintenance treatment, laser-peening (LP) technology was developed and already applied to several reactor components in operating BWR plants. LP is a novel process to improve residual stress from tensile to compressive on material surface layer by irradiating focused high-power laser pulses in water. We have developed a fiber-delivered LP (FLP) system as a preventive maintenance against SCC. For checking the effect of FLP, we carried out FLP experiments on the inner surface of a small tube-shaped Alloy 600 by using this system. After FLP, residual stress was measured by X-ray method for radial and axial directions on the inner surface of the tube, and effectiveness of stress improvement was proved. Based on these experiences, LUT and FLP were applied to Ikata unit-1 of Shikoku Electric Power Company Inc. and successfully treated the inner surface of BMIs. (authors)

  19. Radiation detectors for the control of PWR nuclear boilers

    International Nuclear Information System (INIS)

    Duchene, J.

    1977-01-01

    The neutronic control in French PWR is effected by: 2 channels of measurement of intermediate power using γ'-compensated boron-coated ionization chambers 4 channels of measurement of high power with 'long' boron chambers also used in axial off-set measurement. A movable in-core measuring system is used for the fuel management and the power distribution monitoring. The instrumentation of start-up and intermediate power is conventional; the chambers of the axial off-set measurement and the in-core system are special for this type of power plant, they are discussed in details. The essential properties of the various types of detector, their major advantages or drawbacks, their comparative adaptation to the functions to be performed in the plant are summarized in a table. The 'long chambers' (on use in Fessenheim I and II, and soon in Bugey II) are boron coated current ionization chambers, without γ compensation, intended for power measurement. In-core measurements first involved activation methods - movable wires giving flux profiles, -or activable nuts (the Aeroball System at Trino Vercellese, Chooz...). In on-line neutron detectors, used at fixed positions, the electric signal is generated from: ionization the gas filling fission ionization chambers and γ ionization chambers; direct collection of the charged particles emitted from the convertor element in self-powered neutron detectors (rhodium, silver or vanadium) or self-powered γ detectors (cobalt); or thermoelectric effect in neutron and γ thermometers. The in-core measurement unit developped by Framatome is a movable miniaturized fission chamber system (at Tihange), every French exported power plant being now equipped with it [fr

  20. Seismic analysis of the core of a PWR reactor

    International Nuclear Information System (INIS)

    Preumont, A.

    1981-01-01

    The author develops successively: - a method for the generation of accelerograms compatible with the response spectrum; a model for the analysis of lateral deformations of the core of a PWR reactor under seismic excitation; a simple dynamic model of the fuel assembly including a vibration model. (MD)

  1. Post irradiation examination on test fuel pins for PWR

    International Nuclear Information System (INIS)

    Fogaca Filho, N.; Ambrozio Filho, F.

    1981-01-01

    Certain aspects of irradiation technology on test fuel pins for PWR, are studied. The results of post irradiation tests, performed on test fuel pins in hot cells, are presented. The results of the tests permit an evaluation of the effects of irradiation on the fuel and cladding of the pin. (Author) [pt

  2. Reactor core design calculations and fuel management in PWR

    International Nuclear Information System (INIS)

    Ravnik, M.

    1987-01-01

    Computer programs and methods developed at J. Stefan Institute for nuclear core design of Krsko NPP are treated. development, scope, verification and organisation of core design procedure are presented. The core design procedure is applicable to any NPP of PWR type. (author)

  3. Make use of EDF orientations in PWR fuel management

    International Nuclear Information System (INIS)

    Gloaguen, A.

    1989-01-01

    The EDF experience acquired permits to allow the PWR fuel performances and to make use of better management. In this domain low progress can be given considerable financial profits. The industrial and commercial structures, the time constant of the fuel cycle, has for consequence that the electric utilities can take advantage only progressively of the expected profits [fr

  4. Design of a PWR emergency core cooling simulator loop

    International Nuclear Information System (INIS)

    Melo, C.A. de.

    1982-12-01

    The preliminary design of a PWR Emergency Core Cooling Simulator Loop for investigations of the phenomena involved in a postulated Loss-of-Coolant Accident, during the Reflooding Phase, is presented. The functions of each component of the loop, the design methods and calculations, the specification of the instrumentation, the system operation sequence, the materials list and a cost assessment are included. (Author) [pt

  5. Parameterized representation of macroscopic cross section for PWR reactor

    International Nuclear Information System (INIS)

    Fiel, João Cláudio Batista; Carvalho da Silva, Fernando; Senra Martinez, Aquilino; Leal, Luiz C.

    2015-01-01

    Highlights: • This work describes a parameterized representation of the homogenized macroscopic cross section for PWR reactor. • Parameterization enables a quick determination of problem-dependent cross-sections to be used in few group calculations. • This work allows generating group cross-section data to perform PWR core calculations without computer code calculations. - Abstract: The purpose of this work is to describe, by means of Chebyshev polynomials, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and 235 92 U enrichment. The cross-section data analyzed are fission, scattering, total, transport, absorption and capture. The parameterization enables a quick and easy determination of problem-dependent cross-sections to be used in few group calculations. The methodology presented in this paper will allow generation of group cross-section data from stored polynomials to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by the proposed methodology when compared with results from the SCALE code calculations show very good agreement

  6. Exhaust air cleaning of PWR nuclear power plants

    International Nuclear Information System (INIS)

    Wang Rufan.

    1987-01-01

    This paper describes requirements, design criteria and major equipments of exhaust air cleaning for PWR nuclear power plants. The particularity of exhaust air cleaning for NPP is stressed in this paper. Finally, the exhaust air cleaning systems of Qinshan NPP are briefly introduced

  7. Contribution to study and design of PWR plant simulation code

    International Nuclear Information System (INIS)

    Delourme, Didier.

    1980-11-01

    This paper presents an improvement of PICOLO, a package for PWR plants simulation. Its describes principally the integration to the code of a primary loop and pressurizer model and the corresponding control loops. Fast transients are tested on the packages and results are compared with real transients obtained on plants [fr

  8. VHTR, ADS, and PWR spent nuclear fuel analysis

    Energy Technology Data Exchange (ETDEWEB)

    Salome, J.A.D.; Cardoso, F.; Velasquez, C.E.; Pereira, F.; Pereira, C. [Departamento de Engenharia Nuclear - Escola de Engenharia Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte MG, CEP: 31270-901 (Brazil); Instituto Nacional de Ciencias e Tecnologia de Reatores Nucleares Inovadores - CNPq, Rio de Janeiro (Brazil); Barros, G.P. [Comissao Nacional de Energia Nuclear - CNEN, Rua General Severiano 82, Botafogo, Rio de Janeiro, RJ, CEP: 22290-040 (Brazil)

    2016-07-01

    The aim of this study is to analyze and compare the discharged-spent fuel of 3 types of nuclear systems: a Very High-Temperature Gas Reactor (VHTR), a lead-cooled Accelerator-Driven System (ADS) and a standard Pressurized Water Reactor (PWR). The two first systems, VHTR, and ADS were designed to use reprocessed fuels. UREX+ and GANEX techniques were used for the reprocessing processes respectively. The fuel burnup simulated for the systems in other works have been used to obtain the final composition of the spent fuel discharged. After discharge, the radioactivity, the radiotoxicity, and the decay heat were evaluated through the ORIGEN 2.1 code until 10{sup 7} years and compared to the literature. The spent nuclear waste (SNF) coming from reprocessing techniques and burned up in advanced reactors show that the radiotoxicity decreases below a conventional SNF from a typical PWR for the time studied. The VHTR and ADs have higher values of radioactivity, radiotoxicity and decay heat, because of the greater concentrations of plutonium and curium in these reactors than in the PWR. Fission products have the greatest contribution for the first 25 years over the parameters studied for a PWR. The most harmful fission products are: Ba{sup 137m}, Tc{sup 99}, I{sup 129} and Nb{sup 93m} and for actinides is the plutonium and curium.

  9. MicroRNA-532 and microRNA-3064 inhibit cell proliferation and invasion by acting as direct regulators of human telomerase reverse transcriptase in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Lin Bai

    Full Text Available Human telomerase reverse transcriptase (hTERT plays a crucial role in ovarian cancer (OC progression. However, the mechanisms underlying hTERT upregulation in OC, and the specific microRNAs (miRNAs involved in the regulation of hTERT in OC cells, remains unclear. We performed a bioinformatics search to identify potential miRNAs that bind to the 3'-untranslated region (3'-UTR region of the hTERT mRNA. We examined the expression levels of miR-532/miR-3064 in OC tissues and normal ovarian tissues, and analyzed the correlation between miRNA expression and OC patient outcomes. The impacts of miR-532/miR-3064 on hTERT expression were evaluated by western blot analysis and hTERT 3'-UTR reporter assays. We investigated the effects of miR-532/miR-3064 on proliferation and invasion in OC cells. We found that miR-532 and miR-3064 are down-regulated in OC specimens. We observed a significant association between reduced miR-532/miR-3064 expression and poorer survival of patients with OC. We confirmed that in OC cells, these two miRNAs downregulate hTERT levels by directly targeting its 3'-UTR region, and inhibited proliferation, EMT and invasion of OC cells. In addition, the overexpression of the hTERT cDNA lacking the 3'-UTR partially restored miR-532/miR-3064-inhibited OC cell proliferation and invasion. The silencing of hTERT by siRNA oligonucleotides abolished these malignant features, and phenocopied the effects of miR-532/miR-3064 overexpression. Furthermore, overexpression of miR-532/miR-3064 inhibits the growth of OC cells in vivo. Our findings demonstrate a miR-532/miR-3064-mediated mechanism responsible for hTERT upregulation in OC cells, and reveal a possibility of targeting miR-532/miR-3064 for future treatment of OC.

  10. Reverse Osmosis

    Indian Academy of Sciences (India)

    ment of Civil Engineering and is presently the. Chairman of Center for. Sustainable Technologies,. Indian Institute of Science,. Bangalore. His research areas include, unsaturated soil behaviour, hazardous waste management, water quality and remediation of contaminated water. Keywords. Osmosis, reverse osmosis,.

  11. Reversible Sterilization

    Science.gov (United States)

    Largey, Gale

    1977-01-01

    Notes that difficult questions arise concerning the use of sterilization for alleged eugenic and euthenic purposes. Thus, how reversible sterilization will be used with relation to the poor, mentally ill, mentally retarded, criminals, and minors, is questioned. (Author/AM)

  12. Effects of aging in containment spray injection system of PWR reactor containment

    International Nuclear Information System (INIS)

    Borges, Diogo da S.; Lava, Deise D.; Affonso, Renato R.W.; Guimaraes, Antonio C.F.; Moreira, Maria de L.

    2014-01-01

    This paper presents a contribution to the study of the components aging process in commercial plants of Pressurized Water Reactors (PWR). The analysis is done by applying the method of Fault trees, Monte Carlo Method and Fussell-Vesely Importance Measurement. The study on the aging of nuclear plants, is related to economic factors involved directly with the extent of their operational life, and also provides important data on issues of safety. The most recent case involving the process of extending the life of a PWR plant can be seen in Angra 1 Nuclear Power Plant by investing $ 27 million in the installation of a new reactor cover. The corrective action generated an extension of the useful life of Angra 1 estimated in twenty years, and a great savings compared to the cost of building a new plant and the decommissioning of the first, if it had reached the operation time out 40 years. The extension of the lifetime of a nuclear power plant must be accompanied by special attention from the most sensitive components of the systems to the aging process. After the application of the methodology (aging analysis of Containment Spray Injection System (CSIS)) proposed in this paper, it can be seen that increasing the probability of failure of each component, due to the aging process, generate an increased general unavailability of the system that contains these basic components. The final results obtained were as expected and can contribute to the maintenance policy, preventing premature aging in nuclear power systems

  13. Interpretation of out of line control rod experiments for 1300 MWE PWR

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, J.L.; Garcia-Fernandez, L.

    1988-01-01

    The present note summarizes the studies we performed recently in order to search a 2D reconstruction procedure for the 1300 MWE PWR power shape, starting from data coming out from thermocouples placed on several fuel assemblies. In classical PWR design, only a few assemblies are equipped with measurement devices, so that it is necessary to interpolate among measure points in order to obtain a complete coverage of the core. A mathematical approach based on the splitting of the power into a reference steady state nominal shape and some ''influence'' and harmonic functions was chosen. The reference steady state power shape, which corresponds to the full power operating mode, is obtained via direct mobile chamber measurements. The perturbations due to the control rod movements are accounted for by specific ''influence'' functions: moreover, harmonics are used to reconstruct the minor effects due to xenon tilts, rod out of line positions and all actual mechanical and thermohydraulic inhomogeneities. The weighting coefficients of the functions are evaluated by a least square method, starting from the distribution of the deviations among the measurements and the reference values.

  14. Fabrication of DUPIC fuel pellets using high burn-up spent PWR fuel

    International Nuclear Information System (INIS)

    Lee, Jung-Won; Park, Geun-Il; Choi, Yong

    2012-01-01

    Technology for the direct usage of a spent PWR fuel in CANDU reactors (DUPIC) was developed in KAERI to reduce the amount of spent fuel. DUPIC fuel pellets were fabricated using a dry processing method to re-fabricate CANDU fuel from spent PWR fuel without any intentional separation of fissile materials or fission products. The DUPIC fuel element fabrication process satisfied a quality assurance program in accordance with the Canadian standard. For the DUPIC fuels with various fuel burn-ups between 27,300 and 65,000 MWd/tU, the sintered pellet density decreased with increasing fuel burn-ups. Fission gas releases and powder properties of the spent fuel also influenced the DUPIC fuel characteristics. Measurement of cesium content released from green pellets revealed that their sintered density significantly depended on sintering temperature history. It was useful to establish a DUPIC fuel fabrication technology in which a high-burn-up fuel with 65,000 MWd/tU was treated. (author)

  15. ALIBABA, an assistance system for the detection of confinement leaks in a PWR reactor

    International Nuclear Information System (INIS)

    Bedier, P.O.; Libmann, M.

    1995-01-01

    The objective of the Crisis Technical Center (CTC) of the French Institute for Nuclear Protection and Safety (IPSN) is to estimates the consequences of a given nuclear accident on the populations and the environment. ALIBABA is a data processing tool available at the CTC and devoted to the detection of confinement leaks in 900 MWe PWR reactors using the activity values measured by the captors of the installation. The heart of this expert system is a structural and functional representation of the different components directly involved in the leak detection (isolating valves, ventilation systems, electric boards etc..). This tool can manage the availability of each component to make qualitative and quantitative balance-sheets. This paper presents the ALIBABA software, an industrial prototype realized with the SPIRAL knowledge base systems generator at the CEA Reactor Studies and Applied Mathematics Service (SERMA) and commercialized by CRIL-Ingenierie Society. It describes the techniques used for the modeling of PWR systems and for the visualization of the survey. The functionality of the man-machine interface is discussed and the means used for the validation of the software are summarized. (J.S.). 6 refs

  16. Zinc injection in German PWR plants

    International Nuclear Information System (INIS)

    Streit, K.

    2004-01-01

    Operating experience acquired at PWR NNPs shows that zinc injection at low concentrations of 5 ppb is a very effective source term reduction measure. This method does not lead to any operating restrictions or other negative effects on plant systems and components. The nuclear industry has been very successful in reducing radiation exposures within the past two decades. Annual exposures could be significantly decreased and are now at a level of around 1 man-Sv per plant and year. This great success can mainly be attributed to the general commitment of plant operators to maintaining radiation exposures of workers in the controlled access area as low as reasonably achievable (ALARA principle). The ALARA principle, of course, also implies evaluation of the economic benefit of radiation protection measures. Radiation source term reduction has drawn increasing attention of plant operators in recent years. For the new PWRs cobalt-based alloys in the primary system have successively been eliminated already at the design and construction phase within the last decade. Use of wear-resistant cobalt-free substitute materials in combination with the general use of advanced alloys for the steam generator tubing of PWRs resulted in low values for the two most common sources of plant radiation fields, namely 58 Co and 60 Co. Investigations showed that the beneficial effect of zinc can be related to its high affinity for mixed spinel oxide phases, resulting in the following two basic effects: -Zinc is incorporated preferentially into the oxide layer on primary system surfaces and thus reduces pickup of 58 Co and 60 Co and - Zinc can displace cobalt isotopes from existing oxide layers. In German PWRs with Incoloy 800 steam generator tubing material (Ni-content -32%), the observed reductions correspond to a decrease in dose rates of around 10 to 15% per year and thus follow, as predicted, the half-life time of 60 Co. Overall reductions in high radiation areas are now in the range of

  17. Columbia University: Direct Reversal of Glucocorticoid Resistance by AKT inhibition in Acute Lymphoblastic Leukemia (T-ALL) | Office of Cancer Genomics

    Science.gov (United States)

    The goal of this project is to identify key druggable regulators of glucocorticoid resistance in T-ALL. To this end, a reverse-engineered T-ALL context-specific regulatory interaction network was created from a phenotypically diverse T-ALL gene expression dataset, and then this network was interrogated using master regulator analysis to find drivers of glucocorticoid resistance.

  18. A direct test of time-reversal symmetry in the neutral K meson system with KS → πℓν and KL → 3π0 at KLOE-2

    Directory of Open Access Journals (Sweden)

    Gajos Aleksander

    2014-01-01

    Full Text Available Quantum entanglement of K and B mesons allows for a direct experimental test of time-reversal symmetry independent of CP violation. The T symmetry can be probed by exchange of initial and final states in the reversible transitions between flavor and CP- definite states of the mesons which are only connected by the T conjugation. While such a test was successfully performed by the BaBar experiment with neutral B mesons, the KLOE-2 detector can probe T -violation in the neutral kaons system by investigating the process with KS → π±l∓νl and KL → 3π0 decays. Analysis of the latter is facilitated by a novel reconstruction method for the vertex of KL → 3π0 decay which only involves neutral particles. Details of this new vertex reconstruction technique are presented as well as prospects for conducting the direct T symmetry test at the KLOE-2 experiment.

  19. Transient one-volume calculations for a PWR equipped with a core rescue system (SSN)

    International Nuclear Information System (INIS)

    Petrangeli, G.

    1983-01-01

    The simplified thermal-hydraulic calculations used in order to asses the feasibility and effectiveness of a Core Rescue System (SSN) for PWRs have been here collected. SSN systems essentially consists of an augmentated (with reference to relief lines) primary system automatic depressurization line, of low pressure borated water accumulator lasting for many hours and of a direct contact condenser for the dissipation of heat to the environment. Although some final verifications have to be completed, it can now be considered well proven that these systems are capable of making a PWR at least ten times safer than most designs. This is due to their characteristics of semplicity, direct detection and action, passive operation. This conclusion relies on analysis and calculations performed at DISP, at ENEA/TERM/MEP and elsewhere. Simple engineering methods as those shown in this report have been and may be useful guide in the use of more accurate, and therefore less flexible, calculatrions

  20. Gadolinia experience and design for PWR fuel cycles

    International Nuclear Information System (INIS)

    Stephenson, L. C.

    2000-01-01

    The purpose of this paper is to describe Siemens Power Corporation's (SPC) current experience with the burnable absorber gadolinia in PWR fuel assemblies, including optimized features of SPC's PWR gadolinia designs, and comparisons with other burnable absorbers. Siemens is the world leader in PWR gadolinia experience. More than 5,900 Siemens PWR gadolinia-bearing fuel assemblies have been irradiated. The use of gadolinia-bearing fuel provides significant flexibility in fuel cycle designs, allows for low radial leakage fuel management and extended operating cycles, and reduces BOC (beginning-of-cycle) soluble boron concentrations. The optimized use of an integral burnable neutron absorber is a design feature which provides improved economic performance for PWR fuel assemblies. This paper includes a comparison between three different types of integral burnable absorbers: gadolinia, Zirconium diboride and erbia. Fuel cycle design studies performed by Siemens have shown that the enrichment requirements for 18-24 month fuel cycles utilizing gadolinia or zirconium diboride integral fuel burnable absorbers can be approximately the same. Although a typical gadolinia residual penalty for a cycle design of this length is as low as 0.02-0.03 wt% U-235, the design flexibility of gadolinia allows for very aggressive low-leakage core loading plans which reduces the enrichment requirements for gadolinia-bearing fuel. SPC has optimized its use of gadolinia in PWR fuel cycles. Typically, low (2-4) weight percent Gd 2 O 3 is used for beginning to middle of cycle reactivity hold down as well as soluble boron concentration holddown at BOC. Higher concentrations of Gd 2 O 3 , such as 6 and 8 wt%, are used to control power peaking in assemblies later in the cycle. SPC has developed core strategies that maximize the use of lower gadolinia concentrations which significantly reduces the gadolinia residual reactivity penalty. This optimization includes minimizing the number of rods with

  1. Reverse Micelles Directed Synthesis of TiO2-CeO2 Mixed Oxides and Investigation of Their Crystal Structure and Morphology

    Czech Academy of Sciences Publication Activity Database

    Matějová, Lenka; Valeš, V.; Fajgar, Radek; Matěj, Z.; Holý, V.; Šolcová, Olga

    2013-01-01

    Roč. 198, FEB (2013), s. 485-495 ISSN 0022-4596 R&D Projects: GA ČR GA203/09/1117; GA TA ČR TA01020804 Grant - others:GA ČR(CZ) GAP204/11/0785 Institutional support: RVO:67985858 Keywords : titania–ceria * cerium titanate * sol-gel preparation * reverse micelle * X-ray diffraction * Raman spectroscopy Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.200, year: 2013

  2. Direct Analysis of Reversed-Phase HPTLC Separated Tryptic Protein Digests using a Liquid Microjunction Surface Sampling Probe/ESI-MS System

    Energy Technology Data Exchange (ETDEWEB)

    Emory, Joshua F [ORNL; Walworth, Matthew J [ORNL; Van Berkel, Gary J [ORNL; Schulz, Michael [Merck Research Laboratories; Minarik, susanne [Merck Research Laboratories

    2010-01-01

    The sampling, ionization and detection of tryptic peptides separated in one-dimension on reversed phase HPTLC plates was performed using liquid microjunction surface sampling probe electrospray ionization mass spectrometry. Tryptic digests of five proteins (cytochrome c., myoglobin, beta-casein, lysozyme, and bovine serum albumin) were spotted on reversed phase HPTLC RP-8 F254s and HPTLC RP-18 F254s plates. The plates were then developed using 70/30 methanol/water with 0.1 M ammonium acetate. A dual purpose extraction/electrospray solution containing 70/30/0.1 water/methanol/formic acid was infused through the sampling probe during analysis of the developed lanes. Both full scan mass spectra and data dependent tandem mass spectra were acquired for each development lane to detect and verify the peptide distributions. Data dependent tandem mass spectra provided both protein identification and sequence coverage information. Highest sequence coverages were achieved for cytochrome c. and myoglobin (62.5% and 58.3%, respectively) on reversed phase RP-8 plates. While the tryptic peptides were separated enough for identification, the peptide bands did show some overlap with most peptides located in the lower half of the development lane. Proteins whose peptides were more separated gave higher sequence coverage. Larger proteins such as beta-casein and BSA which were spotted in lower relative amounts gave much lower sequence coverage than the smaller proteins.

  3. Colloids in PWR primary and secondary coolant. Innovative analytical methods

    International Nuclear Information System (INIS)

    Nowotka, Karsten; Guillodo, Michael; Burchardt, Carsten; Geier, Roland; Lehr, Robert; Stellwag, Bernhard

    2014-01-01

    Transport and deposition of corrosion products in the colloid size range between 1 nm and 1 μm are important for heat transfer performance and corrosion in primary and secondary cooling circuits of LWRs. Direct analysis of the properties of small-sized colloids (< 0.45 μm) is difficult due to the pronounced change of the physicochemical properties of coolant samples in sampling lines. An innovative method, based on a filter cascade and developed in the AREVA Technical Center, named 'Colloid Catcher' (CC, patent pending), permits on-line measurements of the properties of corrosion products in the coolant of LWRs. CC measurements are complementary to classic trace analysis addressing the soluble content. Low and high temperature (up to 330°C) test sections are available, depending on our customer's needs. The CC contains differential pressure detectors at each of the three consecutive membrane filters which allow for an in-situ characterization without modification of the corrosion products chemical nature due to temperature changes and subsequent exposure to the atmosphere. With this method, a 'Colloid Fingerprint' of the test solution can be obtained, ideal for an assessment of the transport and deposition of corrosion products in laboratory and on-site studies. The on-line data can of course be complemented by post filtration membrane characterization by digestion and/or optical methods. The high temperature CC serves at the same time as a sampling point for grab samples, with good reproducibility thanks to continuous liquid flow. The CC has been designed to be deployable on laboratory or industrial cooling circuits. The CC test sections have been qualified using AREVA Technical Center's test loops. First test results obtained with the LT CC are presented. Laboratory data can be used to back up existing results and data of on-site measurement campaigns at BWR and PWR plants which were determined with a basic version of the LT CC

  4. A concept of PWR using plate and shell heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Luciano Ondir; Andrade, Delvonei Alves de, E-mail: luciano.ondir@gmail.com, E-mail: delvonei@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    In previous work it was verified the physical possibility of using plate and shell heat exchangers for steam generation in a PWR for merchant ships. This work studies the possibility of using GESMEX commercial of the shelf plate and shell heat exchanger of series XPS. It was found it is feasible for this type of heat exchanger to meet operational and accidental requirements for steam generation in PWR. Additionally, it is proposed an arrangement of such heat exchangers inside the reactor pressure vessel. Such arrangement may avoid ANSI/ANS51.1 nuclear class I requirements on those heat exchangers because they are contained in the reactor coolant pressure barrier and play no role in accidental scenarios. Additionally, those plates work under compression, preventing the risk of rupture. Being considered non-nuclear safety, having a modular architecture and working under compression may turn such architectural choice a must to meet safety objectives with improved economics. (author)

  5. The plutonium recycle for PWR reactors from brazilian nuclear program

    International Nuclear Information System (INIS)

    Rubini, L.A.

    1978-01-01

    The purpose of this thesis is to evaluate the material requirements of the nuclear fuel cycle with plutonium recycle. The study starts with the calculation of a reference reactor and has flexibility to evaluate the demand under two alternatives of nuclear fuel cycle for Pressurized Water Reactors (PWR): Without plutonium recycle; and with plutonium recycle. Calculations of the reference reactor have been carried out with the CELL-CORE codes. Variations in the material requirements were studied considering changes in the installed nuclear capacity of PWR reactors, the capacity factor of these reactors, and the introduction of fast breeders. Recycling plutonium produced inside the system can reach economies of about 5% U 3 O 8 and 6% separative work units if recycle is assumed only after the fifth operation cycle of the thermal reactors. (author)

  6. Report on the PWR-radiation protection/ALARA Committee

    Energy Technology Data Exchange (ETDEWEB)

    Malone, D.J. [Consumers Power Co., Covert, MI (United States)

    1995-03-01

    In 1992, representatives from several utilities with operational Pressurized Water Reactors (PWR) formed the PWR-Radiation Protection/ALARA Committee. The mission of the Committee is to facilitate open communications between member utilities relative to radiation protection and ALARA issues such that cost effective dose reduction and radiation protection measures may be instituted. While industry deregulation appears inevitable and inter-utility competition is on the rise, Committee members are fully committed to sharing both positive and negative experiences for the benefit of the health and safety of the radiation worker. Committee meetings provide current operational experiences through members providing Plant status reports, and information relative to programmatic improvements through member presentations and topic specific workshops. The most recent Committee workshop was facilitated to provide members with defined experiences that provide cost effective ALARA performance.

  7. Three basic options for the management of PWR waste

    International Nuclear Information System (INIS)

    Malherbe, J.; Saulieu, E. de; Glibert, R.; Alamo Berna, S.; Cecille, L.; Geiser, H.; Kowa, S.; Thiels, G.

    1990-01-01

    Relying on the national practices of France, Germany and Belgium, three reference management routes for PWR wastes were drawn up and subsequently evaluated in terms of costs and radiological impact. It was thus demonstrated that safety regulations and technical redundancies, especially for off-gas treatment, liquid waste processing and dry solid waste treatment, play an important part in the cost associated with each route. The analysis of the different treatment options for mixed solid low level waste highlighted the low cost effectiveness of incineration as compared to compaction. Whatever the scenario investigated, the disposal costs of PWR wastes proved to be quite marginal in the overall cost. The radiological impact associated with each route was assessed through individual doses resulting from liquid and gaseous effluents. This theoretical exercise included some sensitivity studies performed on a selection of important parameters

  8. Thermal hydraulic simulations of the Angra 2 PWR

    Directory of Open Access Journals (Sweden)

    González-Mantecón Javier

    2015-01-01

    Full Text Available Angra 2, the second Brazilian nuclear power plant, began the commercial operation in 2001. The plant is a pressurized water reactor (PWR type with electrical output of about 1350 MW. In the present work, the thermal hydraulic RELAP5-3D code was used to develop a model of this reactor. The model was performed using geometrical and material data from the Angra 2 final safety analysis report (FSAR. Simulations of the reactor behavior during steady state and loss of coolant accident were performed. Results of temperature distribution within the core, inlet and outlet coolant temperatures, coolant mass flow, and other parameters have been compared with the reference data and demonstrated to be in good agreement with each other. This study demonstrates that the developed RELAP5-3D model is capable of reproducing the thermal hydraulic behavior of the Angra 2 PWR and it can contribute to the process of the plant safety analysis.

  9. A concept of PWR using plate and shell heat exchangers

    International Nuclear Information System (INIS)

    Freire, Luciano Ondir; Andrade, Delvonei Alves de

    2015-01-01

    In previous work it was verified the physical possibility of using plate and shell heat exchangers for steam generation in a PWR for merchant ships. This work studies the possibility of using GESMEX commercial of the shelf plate and shell heat exchanger of series XPS. It was found it is feasible for this type of heat exchanger to meet operational and accidental requirements for steam generation in PWR. Additionally, it is proposed an arrangement of such heat exchangers inside the reactor pressure vessel. Such arrangement may avoid ANSI/ANS51.1 nuclear class I requirements on those heat exchangers because they are contained in the reactor coolant pressure barrier and play no role in accidental scenarios. Additionally, those plates work under compression, preventing the risk of rupture. Being considered non-nuclear safety, having a modular architecture and working under compression may turn such architectural choice a must to meet safety objectives with improved economics. (author)

  10. Reverse Osmosis

    Indian Academy of Sciences (India)

    or the water reaches the tip of every leaf of a plant is due to osmotic pressure. ... concentration and temperature of the solution by a law that is similar to the gas law. ... waste management, water quality and remediation of contaminated water. Keywords. Osmosis, reverse osmosis, desalinatiion, seawater, water purification.

  11. Studi Operasi Resin Penukar Ion Dalam Sistem Purifikasi Air Primer Pwr

    OpenAIRE

    Biyantoro, Dwi; Basuki, Kris Tri; Subagiono, Subagiono

    2006-01-01

    STUDI OPERASI RESIN PENUKAR ION DALAM SISTEM PURIFIKASI AIR PRIMER PWR. Telah dilakukan studioperasi resin penukar ion dalam sistem purifikasi air primer PWR. Air pendingin reaktor yang pada awalnya sesuaidengan persyaratan setelah pengoperasian reaktor sering kualitasnya berubah, sehingga harus dimurnikan. Unsurunsurpengotor dalam air primer PWR diidentifikasi sebagai penyebab pengotor seperti korosi, pelepasan produk fisi(Cs137, Sr90, Co60,C14, Tc99), dan pelepasan kembali unsur oleh resin ...

  12. Uranium savings on a once through PWR fuel cycle

    International Nuclear Information System (INIS)

    Cupo, J.V.

    1980-01-01

    A number of alternatives which have the greatest potential for near term savings with minimum plant and fuel modifications have been examined at Westinghouse as part of continued internal assessment and part of NASAP study conducted for DOE pertaining to uranium utilization in a once through PWR fuel cycle. The alternatives which could be retrofitted to existing reactors were examined in more detail in the evaluation since they would have the greater near term impact on U savings

  13. Ciclon: A neutronic fuel management program for PWR's consecutive cycles

    International Nuclear Information System (INIS)

    Aragones, J.M.

    1977-01-01

    The program description and user's manual of a new computer code is given. Ciclon performs the neutronic calculation of consecutive reload cycles for PWR's fuel management optimization. Fuel characteristics and burnup data, region or batch sizes, loading schemes and state of previously irradiated fuel are input to the code. Cycle lengths or feed enrichments and burnup sharing for each region or batch are calculate using different core neutronic models and printed or punched in standard fuel management format. (author) [es

  14. Study on thermal-hydraulics during a PWR reflood phase

    International Nuclear Information System (INIS)

    Iguchi, Tadashi

    1998-10-01

    In-core thermal-hydraulics during a PWR reflood phase following a large-break LOCA are quite unique in comparison with two-phase flow which has been studied widely in previous researches, because the geometry of the flow path is complicated (bundle geometry) and water is at extremely low superficial velocity and almost under stagnant condition. Hence, some phenomena realized during a PWR reflood phase are not understood enough and appropriate analytical models have not been developed, although they are important in a viewpoint of reactor safety evaluation. Therefore, author investigated some phenomena specified as important issues for quantitative prediction, i.e. (1) void fraction in a bundle during a PWR reflood phase, (2) effect of radial core power profile on reflood behavior, (3) effect of combined emergency core coolant injection on reflood behavior, and (4) the core separation into two thermal-hydraulically different regions and the in-core flow circulation behavior observed during a combined injection PWR reflood phase. Further, author made analytical models for these specified issues, and succeeded to predict reflood behaviors at representative types of PWRs, i.e.cold leg injection PWRs and Combined injection PWRs, in good accuracy. Above results were incorporated into REFLA code which is developed at JAERI, and they improved accuracy in prediction and enlarged applicability of the code. In the present study, models were intended to be utilized in a practical use, and hence these models are simplified ones. However, physical understanding on the specified issues in the present study is basic and principal for reflood behavior, and then it is considered to be used in a future advanced code development and improvement. (author). 110 refs

  15. Improvement on main control room for Japanese PWR plants

    International Nuclear Information System (INIS)

    Matsumiya, Masayuki

    1996-01-01

    The main control room which is the information center of nuclear power plant has been continuously improved utilizing the state of the art ergonomics, a high performance computer, computer graphic technologies, etc. For the latest Japanese Pressurized Water Reactor (PWR) plant, the CRT monitoring system is applied as the major information source for facilitating operators' plant monitoring tasks. For an operating plant, enhancement of monitoring and logging functions has been made adopting a high performance computer

  16. ORNL-PWR BDHT analysis procedure: an overview

    International Nuclear Information System (INIS)

    Cliff, S.B.

    1978-01-01

    The key computer programs currently used by the analysis procedure of the ORNL-PWR Blowdown Heat Transfer Separate Effects Program are overviewed with particular emphasis placed on their interrelationships. The major modeling and calculational programs, COBRA, ORINC, ORTCAL, PINSIM, and various versions of RELAP4, are summarized and placed into the perspective of the procedure. The supportive programs, REDPLT, ORCPLT, BDHTPLOT, OXREPT, and OTOCI, and their uses are described

  17. Optimal design of passive containment cooling system for innovative PWR

    OpenAIRE

    Huiun Ha; Sangwon Lee; Hangon Kim

    2017-01-01

    Using the Generation of Thermal-Hydraulic Information for Containments (GOTHIC) code, thermal-hydraulic phenomena that occur inside the containment have been investigated, along with the preliminary design of the passive containment cooling system (PCCS) of an innovative pressurized water reactor (PWR). A GOTHIC containment model was constructed with reference to the design data of the Advanced Power Reactor 1400, and report related PCCS. The effects of the design parameters were evaluated fo...

  18. Methodology of safety operating range determination for the PWR plant

    International Nuclear Information System (INIS)

    Kostadinov, V.; Mavko, B.

    1991-01-01

    The results of NPP Krsko core thermal power design limits investigation, which set bounds to the maximum allowable fuel temperature during normal operation and incidents of moderate frequency, are presented. In addition, allowable reactor coolant temperatures limited by the pressure of the steam generator safety valves opening are calculated. The range of a PWR plant safe operation imposed by the thermal overpower, the steam generator safety valves opening and DNBR safety limits is determined. (author)

  19. Fire experiences: principal lessons learned, application in PWR power plants

    International Nuclear Information System (INIS)

    Schoemacker, M.

    1984-01-01

    The article reviews the principal design rules to be borne in mind for PWR nuclear units installation. These rule takes into account: the specific character of materials involved (safety aspect for nuclear construction), experience acquired as a result of fires in EDF production units, and the results obtained from tests carried out by the EDF at Fort de Chelles between 1980 and 1982, especially in the field of PVC cables [fr

  20. PWR's countermeasures after Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Kato, Akihiko

    2012-01-01

    Countermeasures in case of similar events (loss of all AC power sources (SBO) and loss of ultimate heat sink (LUHS) as Fukushima Daiichi were investigated for further improvement of safety and reliability of PWR Plants. As for PWR in case of SBO and LUHS, steam driven auxiliary feedwater pump could be operable to supply feedwater to steam generators and stable state of reactor could be attained by natural circulation cooling of primary coolant Generated steam would be released to the air from main steam relief valve. Emergency safety countermeasures were taken to (1) improve water tightness by application of door and pipe penetration sealing to protect important equipment from flooding due to tsunami, (2) deploy mobile engine-operated pumps and (3) deploy emergency air-cooled generators. The government ordered 'stress tests' to quantify the effectiveness of safety measures for all Japan's reactors before they restart following any shutdown. Based on emergency safety countermeasures, plant operators assessed whether reactor and spent fuel pool could be stably cooled by external events (earthquake, tsunami and simultaneous effects) beyond the plant design basis. Further safety and reliability improvements of PWR plants had been considered or implemented for reinforcement of external power system, onsite power system with additional installation of permanent emergency air-cooled generators, enhancement of plant cooling function and update closure function of containment vessel in case of severe accident (T. Tanaka)

  1. Actinides transmutation - a comparison of results for PWR benchmark

    International Nuclear Information System (INIS)

    Claro, Luiz H.

    2009-01-01

    The physical aspects involved in the Partitioning and Transmutation (P and T) of minor actinides (MA) and fission products (FP) generated by reactors PWR are of great interest in the nuclear industry. Besides these the reduction in the storage of radioactive wastes are related with the acceptability of the nuclear electric power. From the several concepts for partitioning and transmutation suggested in literature, one of them involves PWR reactors to burn the fuel containing plutonium and minor actinides reprocessed of UO 2 used in previous stages. In this work are presented the results of the calculations of a benchmark in P and T carried with WIMSD5B program using its new cross sections library generated from the ENDF-B-VII and the comparison with the results published in literature by other calculations. For comparison, was used the benchmark transmutation concept based in a typical PWR cell and the analyzed results were the k∞ and the atomic density of the isotopes Np-239, Pu-241, Pu-242 and Am-242m, as function of burnup considering discharge of 50 GWd/tHM. (author)

  2. Evaluation of zinc addition to PWR primary coolant

    International Nuclear Information System (INIS)

    Pathania, R.; Yagnik, S.; Gold, R.E.; Dove, M.; Kolstad, E.

    1995-01-01

    Laboratory studies have shown that addition of zinc to a PWR environment reduces the general corrosion rates of materials in the primary system and delays the initiation of primary water stress corrosion cracking (PWSCC) in Alloy 600. Because of the potential benefits of zinc addition in reducing radiation fields and mitigating PWSCC of Alloy 600 a project was initiated to qualify zinc addition to a PWR. The objective of this work was to evaluate the effect of zinc addition on radiation fields, PWSCC of Alloy 600 and fuel cladding corrosion at the Farley-2 PWR. In order to provide an early warning of any potential adverse effects on the fuel cladding, corrosion studies were initiated at the Halden test reactor prior to zinc addition at Farley-2. This paper provides an overview of the scope of the zinc addition demonstration at Farley-2 and the fuel cladding corrosion tests at Halden. The zinc concentration in the Farley-2 coolant is approximately 40 ppb and that in Halden is 50 ppb. The paper presents initial results from these studies which are still in progress

  3. A scheme of better utilization of PWR spent fuels

    International Nuclear Information System (INIS)

    Chung, Bum Jin; Kang, Chang Soon

    1991-01-01

    The recycle of PWR spent fuels in a CANDU reactor, so called the tandem fuel cycle is investigated in this study. This scheme of utilizing PWR spent fuels will ease the shortage of spent fuel storage capacity as well as will improve the use of uranium resources. The minimum modification the design of present CANDU reactor is seeked in the recycle. Nine different fuel types are considered in this work and are classified into two categories: refabrication and reconfiguration. For refabrication, PWR spent fuels are processed and refabricated into the present 37 rod lattice structure of fuel bundle, and for reconfiguration, meanwhile, spent fuels are simply disassembled and rods are cut to fit into the present grid configuration of fuel bundle without refabrication. For each fuel option, the neutronics calculation of lattice was conducted to evaluate the allowable burn up and distribution. The fuel cycle cost of each option was also computed to assess the economic justification. The results show that most tandem fuel cycle option considered in this study are technically feasible as well as economically viable. (Author)

  4. Vortioxetine, but not escitalopram or duloxetine, reverses memory impairment induced by central 5-HT depletion in rats: evidence for direct 5-HT receptor modulation

    DEFF Research Database (Denmark)

    Jensen, Jesper Bornø; du Jardin, Kristian Gaarn; Song, Dekun

    2014-01-01

    reuptake inhibitor escitalopram, or the 5-HT norepinephrine reuptake inhibitor duloxetine. SERT occupancies were estimated by ex vivo autoradiography. PCPA depleted central 5-HT by >90% in tissue and microdialysate, and impaired NOR and SA performance. Restoring central 5-HT with 5-HTP reversed...... these deficits. At similar SERT occupancies (>90%) vortioxetine, but not escitalopram or duloxetine, restored memory performance. Acute fenfluramine significantly increased extracellular 5-HT in control and PCPA-treated rats, while vortioxetine did so only in control rats. Thus, vortioxetine restores 5-HT...

  5. Radiation release characterization of PWR spent fuel assemblies generated from Korean nuclear power plants

    Directory of Open Access Journals (Sweden)

    Moon Hyun Joo

    2009-01-01

    Full Text Available Spent nuclear fuel should be kept under safe management until it is disposed of permanently. Because of this, it is important to understand its radiation release characteristics. In this paper, the Monte Carlo method is applied to evaluate the radiation release characteristics of two types of PWR spent fuel assembly generated from the operating plants in Korea: Westinghouse and Korea Standard Nuclear Power Plant. The source terms were calculated using ORIGEN-ARP. The neutron and photon (or gamma dose distributions along the vertical and horizontal directions of each spent fuel assembly were evaluated using MCNPX code. Compared with the two dose distributions, the photon dose was found to be about 105 times higher than the neutron dose.

  6. PSA LEVEL 3 DAN IMPLEMENTASINYA PADA KAJIAN KESELAMATAN PWR

    Directory of Open Access Journals (Sweden)

    Pande Made Udiyani

    2015-03-01

    Full Text Available Kajian keselamatan PLTN menggunakan metodologi kajian probabilistik sangat penting selain kajian deterministik. Metodologi kajian menggunakan Probabilistic Safety Assessment (PSA Level 3 diperlukan terutama untuk estimasi kecelakaan parah atau kecelakaan luar dasar desain PLTN. Metode ini banyak dilakukan setelah kejadian kecelakaan Fukushima. Dalam penelitian ini dilakukan implementasi PSA Level 3 pada kajian keselamatan PWR, postulasi kecelakan luar dasar desain PWR AP-1000 dan disimulasikan di contoh tapak Bangka Barat. Rangkaian perhitungan yang dilakukan adalah: menghitung suku sumber dari kegagalan teras yang terjadi, pemodelan kondisi meteorologi tapak dan lingkungan, pemodelan jalur paparan, analisis dispersi radionuklida dan transportasi fenomena di lingkungan, analisis deposisi radionuklida, analisis dosis radiasi, analisis perlindungan & mitigasi, dan analisis risiko. Kajian menggunakan rangkaian subsistem pada perangkat lunak PC Cosyma. Hasil penelitian membuktikan bahwa implementasi metode kajian keselamatan PSA Level 3 sangat efektif dan komprehensif terhadap estimasi dampak, konsekuensi, risiko, kesiapsiagaan kedaruratan nuklir (nuclear emergency preparedness, dan manajemen kecelakaan reaktor terutama untuk kecelakaan parah atau kecelakaan luar dasar desain PLTN. Hasil kajian dapat digunakan sebagai umpan balik untuk kajian keselamatan PSA Level 1 dan PSA Level 2. Kata kunci: PSA level 3, kecelakaan, PWR   Reactor safety assessment of nuclear power plants using probabilistic assessment methodology is most important in addition to the deterministic assessment. The methodology of Level 3 Probabilistic Safety Assessment (PSA is especially required to estimate severe accident or beyond design basis accidents of nuclear power plants. This method is carried out after the Fukushima accident. In this research, the postulations beyond design basis accidentsof PWR AP - 1000 would be taken, and simulated at West Bangka sample site. The

  7. THYDE-P, PWR LOCA Thermohydraulic Transient Analysis

    International Nuclear Information System (INIS)

    Asahi, Yoshiro

    2001-01-01

    . - The most important feature of THYDE-W is the conservation of mass, momentum and energy. 2 - Method of solution: In THYDE-P, a PWR plant is regarded as a net- work of various coolant components which may be classified into nodes and junctions. The one-dimensional mass, momentum and energy equations are suitably integrated in each node and junction. In integrating the resulting equations with respect to time, a non- linear implicit method is used on the basis of the Newton method. The Jacobian matrix of the basic equations can be reduced to a simple form by the network theory, which is one of the characteristics of THYDE-P. To solve the basic equations by the non-linear implicit method, various smoothing functions with respect to time are introduced for mode changes such as phase change and flow re- versal. New models for a steam generator and a pressurizer are implemented. A THYDE-P calculation is started by a steady-state adjustment, where the basic equations are exactly solved without time derivatives. THYDE-P is able to calculate through both blowdown and re- fill-reflood phases without any change of models and physical conditions of the coolant. A model which takes non-equilibrium effects into account is newly implemented. 3 - Restrictions on the complexity of the problem: It is required that the network has at least one mixing junction except for the core heatup calculation mode and that a normal node without heat source (or sink) must be placed at both the top and bottom ends of the core. After so reticulating the plant, we have a number of nodes and junctions separately, strictly in numeric order in accordance with the following rules: (a) Normal nodes (except linkage nodes) should be numbered in numerical order chain-wise from one mixing junction to another according to the direction of the steady state chain flow. (b) Then linkage nodes should be numbered in numeric order chain- wise from the corresponding mixing junction. (c) Special nodes should be numbered

  8. Reversible Statistics

    DEFF Research Database (Denmark)

    Tryggestad, Kjell

    2004-01-01

    The study aims is to describe how the inclusion and exclusion of materials and calculative devices construct the boundaries and distinctions between statistical facts and artifacts in economics. My methodological approach is inspired by John Graunt's (1667) Political arithmetic and more recent work...... within constructivism and the field of Science and Technology Studies (STS). The result of this approach is here termed reversible statistics, reconstructing the findings of a statistical study within economics in three different ways. It is argued that all three accounts are quite normal, albeit...... by accounting for the significance of the materials and the equipment that enters into the production of statistics. Key words: Reversible statistics, diverse materials, constructivism, economics, science, and technology....

  9. Mode of inhibition of HIV-1 reverse transcriptase by polyacetylenetriol, a novel inhibitor of RNA- and DNA-directed DNA polymerases.

    Science.gov (United States)

    Loya, Shoshana; Rudi, Amira; Kashman, Yoel; Hizi, Amnon

    2002-03-15

    Polyacetylenetriol (PAT), a natural marine product from the Mediterranean sea sponge Petrosia sp., was found to be a novel general potent inhibitor of DNA polymerases. It inhibits equally well the RNA- and DNA-dependent DNA polymerase activities of retroviral reverse transcriptases (RTs) (i.e. of HIV, murine leukaemia virus and mouse mammary tumour virus) as well as cellular DNA polymerases (i.e. DNA polymerases alpha and beta and Escherichia coli polymerase I). A study of the mode and mechanism of the polymerase inhibition by PAT has been conducted with HIV-1 RT. PAT was shown to be a reversible non-competitive inhibitor. PAT binds RT independently and at a site different from that of the primer-template and dNTP substrates with high affinity (K(i)=0.51 microM and K(i)=0.53 microM with dTTP and with dGTP as the variable substrates respectively). Blocking the polar hydroxy groups of PAT has only a marginal effect on the inhibitory capacity, thus hydrophobic interactions are likely to play a major role in inhibiting RT. Preincubation of RT with the primer-template substrate prior to the interaction with PAT reduces substantially the inhibition capacity, probably by preventing these contacts. PAT does not interfere with the first step of polymerization, the binding of RT to DNA, nor does the inhibitor interfere with the binding of dNTP to RT/DNA complex, as evident from the steady-state kinetic study, whereby K(m) remains unchanged. We assume, therefore, that PAT interferes with subsequent catalytic steps of DNA polymerization. The inhibitor may alter the optimal stereochemistry of the polymerase active site relative to the primer terminus, bound dNTP and the metal ions that are crucial for efficient catalysis or, alternatively, may interfere with the thumb sub-domain movement and, thus, with the translocation of the primer-template following nucleotide incorporation.

  10. Sex Reversal in Birds.

    Science.gov (United States)

    Major, Andrew T; Smith, Craig A

    2016-01-01

    Sexual differentiation in birds is controlled genetically as in mammals, although the sex chromosomes are different. Males have a ZZ sex chromosome constitution, while females are ZW. Gene(s) on the sex chromosomes must initiate gonadal sex differentiation during embryonic life, inducing paired testes in ZZ individuals and unilateral ovaries in ZW individuals. The traditional view of avian sexual differentiation aligns with that expounded for other vertebrates; upon sexual differentiation, the gonads secrete sex steroid hormones that masculinise or feminise the rest of the body. However, recent studies on naturally occurring or experimentally induced avian sex reversal suggest a significant role for direct genetic factors, in addition to sex hormones, in regulating sexual differentiation of the soma in birds. This review will provide an overview of sex determination in birds and both naturally and experimentally induced sex reversal, with emphasis on the key role of oestrogen. We then consider how recent studies on sex reversal and gynandromorphic birds (half male:half female) are shaping our understanding of sexual differentiation in avians and in vertebrates more broadly. Current evidence shows that sexual differentiation in birds is a mix of direct genetic and hormonal mechanisms. Perturbation of either of these components may lead to sex reversal. © 2016 S. Karger AG, Basel.

  11. Project description: ORNL PWR blowdown heat transfer separate-effects program, Thermal-Hydraulic Test Facility (THTF)

    International Nuclear Information System (INIS)

    1976-02-01

    The ORNL Pressurized-Water Reactor Blowdown Heat Transfer (PWR-BDHT) Program is an experimental separate-effects study of the relations among the principal variables that can alter the rate of blowdown, the presence of flow reversal and rereversal, time delay to critical heat flux, the rate at which dryout progresses, and similar time-related functions that are important to LOCA analysis. Primary test results will be obtained from the Thermal-Hydraulic Test Facility (THTF), a large nonnuclear pressurized-water loop that incorporates a 49-rod electrically heated bundle. Supporting experiments will be carried out in two additional test loops - the Forced Convection Test Facility (FCTF), a small high-pressure facility in which single heater rods can be tested in annular geometry; and an air-water loop which is used to evaluate two-phase flow-measuring instrumentation

  12. Safety aspects of the using Gd as burnable poison in PWR's

    International Nuclear Information System (INIS)

    Vandenberg, C.; Bonet, H.; Charlier, A.

    1978-01-01

    The experience of BELGONUCLEAIRE in using Gd in LWR's has indicated the safety related advantages of this burnable poison. The successfully operation of the BR3 PWR power plant with 5% of Gd rods is presented and extrapolated to large PWR's. (authro)

  13. Reverse micelles directed synthesis of TiO{sub 2}-CeO{sub 2} mixed oxides and investigation of their crystal structure and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Matejova, Lenka, E-mail: matejova@icpf.cas.cz [Institute of Chemical Process Fundamentals of the ASCR, v. v. i., Department of Catalysis and Reaction Engineering, Rozvojova 135, 165 02 Prague 6 (Czech Republic); Vales, Vaclav [Charles University in Prague, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Fajgar, Radek [Institute of Chemical Process Fundamentals of the ASCR, v. v. i., Department of Aerosols and Laser Studies, Rozvojova 135, 165 02 Prague 6 (Czech Republic); Matej, Zdenek; Holy, Vaclav [Charles University in Prague, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Solcova, Olga [Institute of Chemical Process Fundamentals of the ASCR, v. v. i., Department of Catalysis and Reaction Engineering, Rozvojova 135, 165 02 Prague 6 (Czech Republic)

    2013-02-15

    The synthesis of TiO{sub 2}-CeO{sub 2} mixed oxides based on the sol-gel process controlled within reverse micelles of non-ionic surfactant Triton X-114 in cyclohexane is reported. The crystallization, phase composition, trends in nanoparticles growth and porous structure properties are studied as a function of Ti:Ce molar composition and annealing temperature by in-situ X-ray diffraction, Raman spectroscopy and physisorption. The brannerite-type CeTi{sub 2}O{sub 6} crystallizes as a single crystalline phase at Ti:Ce molar composition of 70:30 and in the mixture with cubic CeO{sub 2} and anatase TiO{sub 2} for composition 50:50. At Ti:Ce molar ratios 90:10 and 30:70 the mixtures of TiO{sub 2} anatase, rutile and cubic CeO{sub 2} appear. In these mixtures TiO{sub 2} rutile is formed at higher temperatures than conventionally. Additionally, the amount of a present amorphous phase in individual mixtures was estimated from diffraction data. The porous structure morphology depends both on molar composition and annealing temperature. This is correlated with the presence of carbon impurities of different character. - Graphical abstract: The phase composition of Ti90--Ce10 and Ti50--Ce50 oxide mixtures as a function of annealing temperature. The amount of the amorphous phase was estimated and attributed to TiO{sub 2}. Highlights: Black-Right-Pointing-Pointer Ti/Ce oxides were prepared using reverse micelles of Triton X-114. Black-Right-Pointing-Pointer Crystallization of TiO{sub 2}, CeO{sub 2} or CeTi{sub 2}O{sub 6} depends on Ti:Ce molar ratio. Black-Right-Pointing-Pointer Amorphous phase attributed to TiO{sub 2} was identified. Black-Right-Pointing-Pointer Metal oxides surface area is influenced by the character of present carbon impurities.

  14. LEARNING STRATEGY REFINEMENT REVERSES EARLY SENSORY CORTICAL MAP EXPANSION BUT NOT BEHAVIOR: SUPPORT FOR A THEORY OF DIRECTED CORTICAL SUBSTRATES OF LEARNING AND MEMORY

    Science.gov (United States)

    Elias, Gabriel A.; Bieszczad, Kasia M.; Weinberger, Norman M.

    2015-01-01

    Primary sensory cortical fields develop highly specific associative representational plasticity, notably enlarged area of representation of reinforced signal stimuli within their topographic maps. However, overtraining subjects after they have solved an instrumental task can reduce or eliminate the expansion while the successful behavior remains. As the development of this plasticity depends on the learning strategy used to solve a task, we asked whether the loss of expansion is due to the strategy used during overtraining. Adult male rats were trained in a three-tone auditory discrimination task to bar-press to the CS+ for water reward and refrain from doing so during the CS− tones and silent intertrial intervals; errors were punished by a flashing light and time-out penalty. Groups acquired this task to a criterion within seven training sessions by relying on a strategy that was “bar-press from tone-onset-to-error signal” (“TOTE”). Three groups then received different levels of overtraining: Group ST, none; Group RT, one week; Group OT, three weeks. Post-training mapping of their primary auditory fields (A1) showed that Groups ST and RT had developed significantly expanded representational areas, specifically restricted to the frequency band of the CS+ tone. In contrast, the A1 of Group OT was no different from naïve controls. Analysis of learning strategy revealed this group had shifted strategy to a refinement of TOTE in which they self-terminated bar-presses before making an error (“iTOTE”). Across all animals, the greater the use of iTOTE, the smaller was the representation of the CS+ in A1. Thus, the loss of cortical expansion is attributable to a shift or refinement in strategy. This reversal of expansion was considered in light of a novel theoretical framework (CONCERTO) highlighting four basic principles of brain function that resolve anomalous findings and explaining why even a minor change in strategy would involve concomitant shifts of

  15. Learning strategy refinement reverses early sensory cortical map expansion but not behavior: Support for a theory of directed cortical substrates of learning and memory.

    Science.gov (United States)

    Elias, Gabriel A; Bieszczad, Kasia M; Weinberger, Norman M

    2015-12-01

    Primary sensory cortical fields develop highly specific associative representational plasticity, notably enlarged area of representation of reinforced signal stimuli within their topographic maps. However, overtraining subjects after they have solved an instrumental task can reduce or eliminate the expansion while the successful behavior remains. As the development of this plasticity depends on the learning strategy used to solve a task, we asked whether the loss of expansion is due to the strategy used during overtraining. Adult male rats were trained in a three-tone auditory discrimination task to bar-press to the CS+ for water reward and refrain from doing so during the CS- tones and silent intertrial intervals; errors were punished by a flashing light and time-out penalty. Groups acquired this task to a criterion within seven training sessions by relying on a strategy that was "bar-press from tone-onset-to-error signal" ("TOTE"). Three groups then received different levels of overtraining: Group ST, none; Group RT, one week; Group OT, three weeks. Post-training mapping of their primary auditory fields (A1) showed that Groups ST and RT had developed significantly expanded representational areas, specifically restricted to the frequency band of the CS+ tone. In contrast, the A1 of Group OT was no different from naïve controls. Analysis of learning strategy revealed this group had shifted strategy to a refinement of TOTE in which they self-terminated bar-presses before making an error ("iTOTE"). Across all animals, the greater the use of iTOTE, the smaller was the representation of the CS+ in A1. Thus, the loss of cortical expansion is attributable to a shift or refinement in strategy. This reversal of expansion was considered in light of a novel theoretical framework (CONCERTO) highlighting four basic principles of brain function that resolve anomalous findings and explaining why even a minor change in strategy would involve concomitant shifts of involved brain

  16. Integral type small PWR with stand-alone safety

    International Nuclear Information System (INIS)

    Makihara, Yoshiaki

    2001-01-01

    A feasibility study is achieved on an integral type small PWR with stand-alone safety. It is designed to have the following features. (1) The coolant does not leak out at any accidental condition. (2) The fuel failure does never occur while it is supposed on the large scale PWR at the design base accident. (3) At any accidental condition the safety is secured without any support from the outside (stand-alone safety secure). (4) It has self-regulating characteristics and easy controllability. The above features can be satisfied by integrate the steam generator and CRDM in the reactor vessel while the pipe line break has to be considered on the conventional PWR. Several counter measures are planned to satisfy the above features. The economy feature is also attained by several simplifications such as (1) elimination of main coolant piping and pressurizer by the integration of primary cooling system and self-pressurizing, (2) elimination of RCP by application of natural circulating system, (3) elimination of ECCS and accumulator by application of static safety system, (4) large scale volume reduction of the container vessel by application of integrated primary cooling system, (5) elimination of boric acid treatment by deletion of chemical shim. The long operation period such as 10 years can be attained by the application of Gd fuel in one batch refueling. The construction period can be shortened by the standardizing the design and the introduction of modular component system. Furthermore the applicability of the reduced modulation core is also considered. (K. Tsuchihashi)

  17. MOX and UOX PWR fuel performances EDF operating experience

    International Nuclear Information System (INIS)

    Provost, Jean-Luc; Debes, Michel

    2005-01-01

    Based on a large program of experimentations implemented during the 90s, the industrial achievement of new FAs designs with increased performances opens up new prospects. The currently UOX fuels used on the 58 EDF PWR units are now authorized up to a maximum FA burn-up of 52 GWd/t with a large experience from 45 to 50 GWd/t. Today, the new products, along with the progress made in the field of calculation methods, still enable to increase further the fuel performances with respect to the safety margins. Thus, the conditions are met to implement in the next years new fuel managements on each NPPs series of the EDF fleet with increased enrichment (up to 4.5%) and irradiation limits (up to 62 GWd/t). The recycling of plutonium is part of EDF's reprocessing/recycling strategy. Up to now, 20 PWR 900 MW reactors are managed in MOX hybrid management. The feedback experience of 18 years of PWR operation with MOX is satisfactory, without any specific problem regarding manoeuvrability or plant availability. EDF is now looking to introduce MOX fuels with a higher plutonium content (up to 8.6%) equivalent to natural uranium enriched to 3.7%. It is the goal of the MOX Parity core management which achieve balance of MOX and UOX fuel performance with a significant increase of the MOX average discharge burn-up (BU max: 52 GWd/t for MOX and UOX). The industrial maturity of new FAs designs, with increased performances, allows the implementation in the next years of new fuel managements on each NPPs series of the EDF fleet. The scheduling of the implementation of the new fuel managements on the PWRs fleet is a great challenge for EDF, with important stakes: the nuclear KWh cost decrease with the improvement of the plant operation performance. (author)

  18. Thermal hydraulic design of hydride fueled PWR cores

    International Nuclear Information System (INIS)

    Malen, J.A.; Todreas, N.E.; Romano, A.

    2004-01-01

    The neutronic characteristics of hydride fuels permit increased fuel to coolant volume ratios in the core. A parametric study was developed to determine the optimum combination of lattice pitch, rod diameter, and channel shape - further referred to as geometry - for minimizing the total cost of operating existing PWRs loaded with UZrH 1.6 fuel. Results of the thermal hydraulic and fuel performance studies are presented here, and will be integrated into an economic model in the next stage of the research. The thermal hydraulic analysis was used to determine the maximum power that can be achieved by a given geometry, subject to four constraints - MDNBR, pressure drop, fuel temperature, and coolant flow velocity. The fuel performance analysis was used to determine the maximum burnup that can be achieved by a given geometry, subject to three additional constraints - fuel internal pressure and fission gas release, clad oxidation, and clad strain. This methodology was successfully validated by comparison of the predicted power and burnup of the current PWR geometry, with the actual power and burnup of an existing PWR. Assuming a 60 psia pressure drop can be sustained through the fuel bundle, we concluded the following for square channels: the peak achievable power is 5556 MWt for a rod diameter of 6.5 mm and a P/D ratio of 1.43, and the highest power that can be achieved using the existing 12.6 mm pitch and 10.2 mm fuel rods is 4586 MWt. These power levels are significantly higher than the 3800 MWt of the reference PWR. (author)

  19. BWR and PWR chemistry operating experience and perspectives

    International Nuclear Information System (INIS)

    Fruzzetti, K.; Garcia, S.; Lynch, N.; Reid, R.

    2014-01-01

    It is well recognized that proper control of water chemistry plays a critical role in ensuring the safe and reliable operation of Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). State-of-the-art water chemistry programs reduce general and localized corrosion of reactor coolant system, steam cycle equipment, and fuel cladding materials; ensure continued integrity of cycle components; and reduce radiation fields. Once a particular nuclear plant component has been installed or plant system constructed, proper water chemistry provides a global tool to mitigate materials degradation problems, thereby reducing the need for costly repairs or replacements. Recognizing the importance of proper chemistry control and the value in understanding the relationship between chemistry guidance and actual operating experience, EPRI continues to collect, monitor, and evaluate operating data from BWRs and PWRs around the world. More than 900 cycles of valuable BWR and PWR operating chemistry data has been collected, including online, startup and shutdown chemistry data over more than 10 years (> 20 years for BWRs). This paper will provide an overview of current trends in BWR and PWR chemistry, focusing on plants in the U.S.. Important chemistry parameters will be highlighted and discussed in the context of the EPRI Water Chemistry Guidelines requirements (i.e., those parameters considered to be of key importance as related to the major goals identified in the EPRI Guidelines: materials integrity; fuel integrity; and minimizing plant radiation fields). Perspectives will be provided in light of recent industry initiatives and changes in the EPRI BWR and PWR Water Chemistry Guidelines. (author)

  20. Plutonium recycle in PWR reactors (Brazilian Nuclear Program)

    International Nuclear Information System (INIS)

    Rubini, L.A.

    1978-02-01

    An evaluation is made of the material requirements of the nuclear fuel cycle with plutonium recycle. It starts from the calculation of a reference reactor and allows the evaluation of demand under two alternatives of nuclear fuel cycle for Pressurized Water Reactors (PWR): without plutonium recycle; and with plutonium recycle. Calculations of the reference reactor have been carried out with the CELL-CORE codes. For plutonium recycle, the concept of uranium and plutonium homogeneous mixture has been adopted, using self-produced plutonium at equilibrium, in order to get minimum neutronic perturbations in the reactor core. The refueling model studied in the reference reactor was the 'out-in' scheme with a constant number of changed fuel elements (approximately 1/3 of the core). Variations in the material requirements were studied considering changes in the installed nuclear capacity of PWR reactors, the capacity factor of these reactors, and the introduction of fast breeders. Recycling plutonium produced inside the system can reach economies of about 5%U 3 O 8 and 6% separative work units if recycle is assumed only after the 5th operation cycle of the thermal reactors. The cumulative amount of fissile plutonium obtained by the Brazilian Nuclear Program of PWR reactors by 1991 should be sufficient for a fast breeder with the same capacity as Angra 2. For the proposed fast breeder programs, the fissile plutonium produced by thermal reactors is sufficient to supply fast breeder initial necessities. Howewer, U 3 O 8 and SWU economy with recycle is not significant when the proposed fast breeder program is considered. (Author) [pt

  1. Study of the distribution of hydrogen in a PWR containment with CFD codes; Estudio de la distribucion de hidrogeno en una contencion PWR con codigos CFD

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, G.; Matias, R.; Fernandez, K.; Justo, D.; Bocanegra, R.; Mena, L.; Queral, C.

    2015-07-01

    During a severe accident in a PWR, the hydrogen generated may be distributed in the containment atmosphere and reach the combustion conditions that can cause the containment failure. In this research project, a preliminary study has been done about the capacities of ANSYS Fluent 15.0 and GOTHIC 8.0 to tri dimensional distribution of the hydrogen in a PWR containment during a severe accident. (Author)

  2. Estimating probable flaw distributions in PWR steam generator tubes

    International Nuclear Information System (INIS)

    Gorman, J.A.; Turner, A.P.L.

    1997-01-01

    This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regarding uncertainties and assumptions in the data and analyses

  3. Natural-circulation-cooling characteristics during PWR accident simulations

    International Nuclear Information System (INIS)

    Adams, J.P.; McCreery, G.E.; Berta, V.T.

    1983-01-01

    A description of natural circulation cooling characteristics is presented. Data were obtained from several pressurized water reactor accident simulations in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR). The reliability of natural circulation cooling, its cooling effectiveness, and the effect of changing system conditions are described. Quantitative comparison of flow rates and time constants with theory for both single- and two-phase fluid conditions were made. It is concluded that natural circulation cooling can be relied on in plant recovery procedures in the absence of forced convection whenever the steam generator heat sink is available

  4. Conversion ratio in epithermal PWR, in thorium and uranium cycle

    International Nuclear Information System (INIS)

    Barroso, D.E.G.

    1982-01-01

    Results obtained for the conversion ratio in PWR reactors with close lattices, operating in thorium and uranium cycles, are presented. The study of those reactors is done in an unitary fuel cell of the lattices with several ratios V sub(M)/V sub(F), considering only the equilibrium cycles and adopting a non-spatial depletion calculation model, aiming to simulate mass flux of reactor heavy elements in the reactor. The neutronic analysis and the cross sections generation are done with Hammer computer code, with one critical apreciation about the application of this code in epithermal systems and with modifications introduced in the library of basic data. (E.G.) [pt

  5. Sizewell B - analysis of British application of US PWR technology

    International Nuclear Information System (INIS)

    1983-05-01

    This report provides information on the staff's evaluation of major design differences and issues developed by the British in their application (Sizewell B) of US PWR technology. One design change, the addition of steam-driven charging pumps, was assessed to have a relatively high value compared to the other changes. However, the assessment is based on a number of assumptions for which inadequate data exist to make an unqualified judgment. Other changes to the US design (as typified by the SNUPPS design) were found to have relatively low or moderate safety benefits for US application

  6. Modelling local chemistry in PWR steam generator crevices

    International Nuclear Information System (INIS)

    The accumulation of impurities in local regions of PWR Steam Generators (SG) has resulted in the accelerated corrosion of SG materials. The chemical conditions in crevices and sludge piles is dependent on thermal hydraulic and mass transfer processes as well as the physical chemistry of the concentrated solution itself. This paper discusses the different modelling approaches which can be used to describe the concentration process and the local chemistry in these regions. The limitations of each approach and the applicability of model results to field conditions are discussed in the paper. EPRI's program in this area, including past accomplishments and the models used in the MULTEQ code are described in the paper. (author)

  7. Conversion ratio and consumption of fissile material in PWR reactors

    International Nuclear Information System (INIS)

    Tiba, C.

    1977-01-01

    It has been shown that the uranium resources will be insufficient for future projected demand. The many solutions to this problem are considered and, in particular, the effect of enrichment on the conversion ratio and hence total uranium comsumption is studied. The developed computacional method employs the one-group neutron diffusion theory. The model is verified by calculating typical burn-up, conversion ratio, U-235 comsumption and plutonium production values in PWR's, and comparing results with those in the published literature. The associated costs of U and U-Pu fuel cycles are also studied for various enrichment values [pt

  8. Model for calculating the boron concentration in PWR type reactors

    International Nuclear Information System (INIS)

    Reis Martins Junior, L.L. dos; Vanni, E.A.

    1986-01-01

    A PWR boron concentration model has been developed for use with RETRAN code. The concentration model calculates the boron mass balance in the primary circuit as the injected boron mixes and is transported through the same circuit. RETRAN control blocks are used to calculate the boron concentration in fluid volumes during steady-state and transient conditions. The boron reactivity worth is obtained from the core concentration and used in RETRAN point kinetics model. A FSAR type analysis of a Steam Line Break Accident in Angra I plant was selected to test the model and the results obtained indicate a sucessfull performance. (Author) [pt

  9. Upper internals of PWR with coolant flow separator

    International Nuclear Information System (INIS)

    Chevereau, G.; Heuze, A.

    1989-01-01

    The upper internals for a PWR has a collecting volume for the coolant merging from the core and an apparatus for separating the flow of coolant. This apparatus has a guide for the control rods, a lower plate perforated to allow the coolant through from the core, an upper plate also perforated to allow the coolant through to the collecting volume and a peripheral binding ring joining the two plates. Each guide comprises an envelope without holes and joined perceptibly tight to the plates [fr

  10. A study on thimble plug removal for PWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dong Soo; Lee, Chang Sup; Lee, Jae Yong; Jun, Hwang Yong [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    The thermal-hydraulic effects of removing the RCC guide thimble plugs are evaluated for 8 Westinghouse type PWR plants in Korea as a part of feasibility study: core outlet loss coefficient, thimble bypass flow, and best estimate flow. It is resulted that the best estimate thimble bypass flow increases about by 2% and the best estimate flow increases approximately by 1.2%. The resulting DNBR penalties can be covered with the current DNBR margin. Accident analyses are also investigated that the dropped rod transient is shown to be limiting and relatively sensitive to bypass flow variation. 8 refs., 5 tabs. (Author)

  11. Improvement in PWR flexibility the french program 1975-1995

    International Nuclear Information System (INIS)

    Gautier, A.; Miossec, C.

    1985-12-01

    Between 1975 and 1985, a substantial effort was launched in France to greatly improve PWR's flexibility, resulting in the current situation where both frequency control and load follow are now routinely performed on most plants in operation. Based on rapidly accumulating operational experience and on all expertise acquired in the past decade, a second-generation core control strategy is now being finalized for application on all future 1400 MW plants (with commercial operation scheduled in 1992 for first unit). This 20-year program is discussed

  12. New genetic algorithms (GA) to optimize PWR reactors

    International Nuclear Information System (INIS)

    Alim, Fatih; Ivanov, Kostadin; Levine, Samuel H.

    2008-01-01

    The objective of this study was to develop a unique scientific methodology as well as a practical tool for designing the loading pattern (LP) and burnable poison (BP) pattern for a given Pressurized Water Reactor (PWR) core. Because of the large number of possible combinations for the fuel assembly (FA) loading in the core, the design of the core configuration is a complex optimization problem. It requires finding an optimal FA arrangement and corresponding BP placement design that will achieve maximum cycle length while satisfying the safety constraints. To solve this optimization problem, a core reload optimization package, GARCO (Genetic Algorithm Reactor Code Optimization) code is developed. This code is applicable for all types of PWR cores having different geometries and designs with an unlimited number of FA types in the inventory. GARCO has three modes: the user can optimize the core configuration (LP pattern) with or without BPs in the first mode; the second mode is the optimization of BP placement in the core and the last mode is the user can optimize LP and BP placements simultaneously in mode 3. In this study, the first mode finds the optimal LPs using the Haling Power Depletion Method (HPD) for placing BPs in the core. The second mode, which depletes the core accurately, places BPs in the selected optimum LP pattern. This methodology is applied only to the TMI-1 PWR. However, the improved Mode 1 GA option was applied to both the VVER-1000 and the TMI-1 to demonstrate and verify the advantages of the new enhancements in optimizing the LP pattern only. The 'Moby-Dick' code is used as reactor physics code for VVER-1000 analysis in this research. The SIMULATE-3 code, which is an advanced two-group nodal code, is used to analyze the TMI-1. The libraries of the BP designs used in SIMULATE-3 in this study were produced by Yilmaz (2005) [Yilmaz, S., 2005. Multilevel optimization of burnable poison utilization for advanced PWR fuel management. Ph.D. Thesis in

  13. Fine numerical modelling of thermohydraulic phenomena in EDF PWR reactors

    International Nuclear Information System (INIS)

    Boulot, F.

    1993-01-01

    Over the last 20 years, EDF has developed a family of 2D and 3D industrial thermohydraulics software to solve problems encountered in existing PWR power plants and to design new reactors for the future. The equations used in the models are the averaged Navier-Stokes and energy equations. A brief description is given of the four main codes developed for single-phase and two-phase water-steam flows, some of which use finite differences or finite volumes methods, while others make use of finite elements methods. An example of application is given for each code. (author). 4 figs., 4 refs

  14. Electropolishing process development for PWR steam generator channel heads

    International Nuclear Information System (INIS)

    Asay, R.H.; Graves, P.; Guastaferro, C.T.; Spalaris, C.N.

    1991-04-01

    A broad range of process parameters was established to smoothen the surface of 309 L weld clad overlay, prototypic of surfaces common is channel heads of replacement PWR [pressurized water reactor] steam generators. Mechanical and electropolishing steps were studied to explore process boundaries, which result in acceptable degree of surface smoothness, without compromising metallurgical properties. Recommended processes and acceptance criteria established in this work, can be applied to electropolish steam generator channel heads. Smooth surfaces are less likely to retain radioactive species, and potentially develop lower radiation fields when these components are placed into service. 7 refs., 11 figs., 12 tabs

  15. Radiation protection optimization in the PWR type reactor dismantling

    International Nuclear Information System (INIS)

    Hilmoine, R.

    1998-01-01

    The studies made at the international level for the PWR type reactors, give dosimetric evaluations about 10 to 15 h.Sv for an immediate dismantling and around three to four times lower for a delayed dismantling according to the storage time. The technical hypothesis, the ambient dosimetry, the time of occupational exposure and the radioactive wastes management are not clearly specified so, Electricite de France has undertaken a more exhaustive study that takes into account, the radiation protection dimension in its universality from a complete radiological characterization in a standard installation. (N.C.)

  16. Chemical cleaning of PWR steam generators: application at Nogent 1

    International Nuclear Information System (INIS)

    Fiquet, J.M.; Veysset, J.P.; Esteban, L.; Saurin, P.

    1990-01-01

    EDF has developed and patented a chemical cleaning process for PWR steam generators, based on the use of a mixture of organic acids in order to: - dissolve iron oxides and copper with a single solution; - clean dented crevices. Qualification tests have permitted to demonstrate effectiveness of the solution and its inocuousness related to steam generator materials. The process, the license of which belongs to SOMAFER R.A. and FRAMATOME, has been implemented in France at Nogent. The goal was to dissolve iron oxides allowing metallic particles, aggregated on the tubesheet, to be released and mechanically removed. The effectiveness was satisfactory and this treatment is to be extended to other units [fr

  17. Life management plants at nuclear power plants PWR

    International Nuclear Information System (INIS)

    Esteban, G.

    2014-01-01

    Since in 2009 the CSN published the Safety Instruction IS-22 (1) which established the regulatory framework the Spanish nuclear power plants must meet in regard to Life Management, most of Spanish nuclear plants began a process of convergence of their Life Management Plants to practice 10 CFR 54 (2), which is the current standard of Spanish nuclear industry for Ageing Management, either during the design lifetime of the plant, as well as for Long-Term Operation. This article describe how Life Management Plans are being implemented in Spanish PWR NPP. (Author)

  18. Thermal-hydraulic analysis of PWR cores in transient condition

    International Nuclear Information System (INIS)

    Silva Galetti, M.R. da.

    1984-01-01

    A calculational methodology for thermal - hydraulic analysis of PWR cores under steady-state and transient condition was selected and made available to users. An evaluation of the COBRA-IIIP/MIT code, used for subchannel analysis, was done through comparison of the code results with experimental data on steady state and transient conditions. As a result, a comparison study allowing spatial and temporal localization of critical heat flux was obtained. A sensitivity study of the simulation model to variations in some empirically determined parameter is also presented. Two transient cases from Angra I FSAR were analysed, showing the evolution of minimum DNBR with time. (Author) [pt

  19. Modelling of pellet-cladding interaction in PWR's

    International Nuclear Information System (INIS)

    Esteves, A.M.; Silva, A.T. e.

    1992-01-01

    The pellet-cladding interaction that can occur in a PWR fuel rod design is modelled with the computer codes FRAPCON-1 and ANSYS. The fuel performance code FRAPCON-1 analyses the fuel rod irradiation behavior and generates the initial conditions for the localized fuel rod thermal and mechanical modelling in two and three-dimensional finite elements with ANSYS. In the mechanical modelling, a pellet fragment is placed in the fuel rod gap. Two types of fuel rod cladding materials are considered: Zircaloy and austenitic stainless steel. (author)

  20. The N4 plant: culmination of French PWR experience

    International Nuclear Information System (INIS)

    Bellet, J.; Houyez, A.; Journet, J.; Pierrard, J.H.

    1985-01-01

    The model N4 series of 1400MWe class PWR plants has been developed in France from a unique base of technical and operating experience. It meets the French government's requirement for a reactor free of constraints due to licensing agreements with overseas companies, with enhanced safety features and incorporating the lessons of Three Mile Island. In particular, improvements have been made to the reactor vessel, the steam generators, the primary pumps and control systems. The units are capable of daily load following and extended operation between refuelling. The N4 plant includes a new design of turbine-generator. (author)

  1. Substitution of cobalt alloying in PWR primary circuit gate valves

    International Nuclear Information System (INIS)

    Cachon, L.; Sudreau, F.; Brunel, L.

    1995-01-01

    The object of this study is qualify cobalt-free alternative alloys for valve applications. This paper focus on tribological characterization of numerous coatings is done by using the first one, of a classical type. Then tests are performed with the second one which simulates solicitations supported by gate valves in primary circuit of PWR. 35% Ni-Cr - 65% Cr 3 C 2 coating, deposited by detonation gun technology, gives us hope to find a substitute of Stelite 6. (author). 5 refs., 16 figs., 2 tabs

  2. Vertical Drop Of 21-PWR Waste Package On Unyielding Surface

    International Nuclear Information System (INIS)

    S. Mastilovic; A. Scheider; S.M. Bennett

    2001-01-01

    The objective of this calculation is to determine the structural response of a 21-PWR (pressurized-water reactor) Waste Package (WP) subjected to the 2-m vertical drop on an unyielding surface at three different temperatures. The scope of this calculation is limited to reporting the calculation results in terms of stress intensities in two different WP components. The information provided by the sketches (Attachment I) is that of the potential design of the type of WP considered in this calculation, and all obtained results are valid for that design only

  3. Reversion of somatic mutations of the respiratory syncytial virus-specific human monoclonal antibody Fab19 reveal a direct relationship between association rate and neutralizing potency.

    Science.gov (United States)

    Bates, John T; Keefer, Christopher J; Utley, Thomas J; Correia, Bruno E; Schief, William R; Crowe, James E

    2013-04-01

    The role of affinity in determining neutralizing potency of mAbs directed against viruses is not well understood. We investigated the kinetic, structural, and functional advantage conferred by individual naturally occurring somatic mutations in the Ab H chain V region of Fab19, a well-described neutralizing human mAb directed to respiratory syncytial virus. Comparison of the affinity-matured Ab Fab19 with recombinant Fab19 Abs that were variants containing reverted amino acids from the inferred unmutated ancestor sequence revealed the molecular basis for affinity maturation of this Ab. Enhanced binding was achieved through mutations in the third H chain CDR (HCDR3) that conferred a markedly faster on-rate and a desirable increase in antiviral neutralizing activity. In contrast, most somatic mutations in the HCDR1 and HCDR2 regions did not significantly enhance Ag binding or antiviral activity. We observed a direct relationship between the measured association rate (Kon) for F protein and antiviral activity. Modeling studies of the structure of the Ag-Ab complex suggested the HCDR3 loop interacts with the antigenic site A surface loop of the respiratory syncytial virus F protein, previously shown to contain the epitope for this Ab by experimentation. These studies define a direct relationship of affinity and neutralizing activity for a viral glycoprotein-specific human mAb.

  4. Reversible Statistics

    DEFF Research Database (Denmark)

    Tryggestad, Kjell

    2004-01-01

    The study aims is to describe how the inclusion and exclusion of materials and calculative devices construct the boundaries and distinctions between statistical facts and artifacts in economics. My methodological approach is inspired by John Graunt's (1667) Political arithmetic and more recent work...... within constructivism and the field of Science and Technology Studies (STS). The result of this approach is here termed reversible statistics, reconstructing the findings of a statistical study within economics in three different ways. It is argued that all three accounts are quite normal, albeit...... in different ways. The presence and absence of diverse materials, both natural and political, is what distinguishes them from each other. Arguments are presented for a more symmetric relation between the scientific statistical text and the reader. I will argue that a more symmetric relation can be achieved...

  5. The Ctp type IVb pilus locus of Agrobacterium tumefaciens directs formation of the common pili and contributes to reversible surface attachment.

    Science.gov (United States)

    Wang, Yi; Haitjema, Charles H; Fuqua, Clay

    2014-08-15

    Agrobacterium tumefaciens can adhere to plant tissues and abiotic surfaces and forms biofilms. Cell surface appendages called pili play an important role in adhesion and biofilm formation in diverse bacterial systems. The A. tumefaciens C58 genome sequence revealed the presence of the ctpABCDEFGHI genes (cluster of type IV pili; Atu0216 to Atu0224), homologous to tad-type pilus systems from several bacteria, including Aggregatibacter actinomycetemcomitans and Caulobacter crescentus. These systems fall into the type IVb pilus group, which can function in bacterial adhesion. Transmission electron microscopy of A. tumefaciens revealed the presence of filaments, significantly thinner than flagella and often bundled, associated with cell surfaces and shed into the external milieu. In-frame deletion mutations of all of the ctp genes, with the exception of ctpF, resulted in nonpiliated derivatives. Mutations in ctpA (a pilin homologue), ctpB, and ctpG decreased early attachment and biofilm formation. The adherence of the ctpA mutant could be restored by ectopic expression of the paralogous pilA gene. The ΔctpA ΔpilA double pilin mutant displayed a diminished biovolume and lower biofilm height than the wild type under flowing conditions. Surprisingly, however, the ctpCD, ctpE, ctpF, ctpH, and ctpI mutants formed normal biofilms and showed enhanced reversible attachment. In-frame deletion of the ctpA pilin gene in the ctpCD, ctpE, ctpF, ctpH, and ctpI mutants caused the same attachment-deficient phenotype as the ctpA single mutant. Collectively, these findings indicate that the ctp locus is involved in pilus assembly and that nonpiliated mutants, which retain the CtpA pilin, are proficient in attachment and adherence. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Effect of strain-path on stress corrosion cracking of AISI 304L stainless steel in PWR primary environment at 360 deg. C

    International Nuclear Information System (INIS)

    Couvant, T.; Vaillant, F.; Boursier, JM.; Delafosse, D.

    2004-01-01

    Austenitic stainless steels (ASS) are widespread in primary and auxiliary circuits of PWR. Moreover, some components suffer stress corrosion cracking (SCC) under neutron irradiation. This degradation could be the result of the increase of hardness or the modification of chemical composition at the grain boundary by irradiation. In order to avoid complex and costly corrosion facilities, the effects of irradiation on the material are commonly simulated by applying a cold work on non-irradiated material prior to stress corrosion cracking tests. Slow strain rate tests were conducted on an austenitic stainless steel (SS) AISI 304L in PWR environment (360 deg. C). Particular attention was directed towards pre-straining effects on crack growth rate (CGR) and crack growth path (CGP). Results have demonstrated that the susceptibility of 304L to SCC in high-temperature hydrogenated water was enhanced by pre-straining. It seemed that IGSCC was enhanced by complex strain paths. (authors)

  7. Effect of strain-path on stress corrosion cracking of AISI 304L stainless steel in PWR primary environment at 360 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Couvant, T.; Vaillant, F.; Boursier, JM. [EDF R and D - MMC, Route de Sens, 77818 Moret-sur-Loing (France); Delafosse, D. [Ecole des Mines de St-Etienne, 157 Cours Fauriel, 42023 St-Etienne cedex 2 (France)

    2004-07-01

    Austenitic stainless steels (ASS) are widespread in primary and auxiliary circuits of PWR. Moreover, some components suffer stress corrosion cracking (SCC) under neutron irradiation. This degradation could be the result of the increase of hardness or the modification of chemical composition at the grain boundary by irradiation. In order to avoid complex and costly corrosion facilities, the effects of irradiation on the material are commonly simulated by applying a cold work on non-irradiated material prior to stress corrosion cracking tests. Slow strain rate tests were conducted on an austenitic stainless steel (SS) AISI 304L in PWR environment (360 deg. C). Particular attention was directed towards pre-straining effects on crack growth rate (CGR) and crack growth path (CGP). Results have demonstrated that the susceptibility of 304L to SCC in high-temperature hydrogenated water was enhanced by pre-straining. It seemed that IGSCC was enhanced by complex strain paths. (authors)

  8. Environmental effect on cracking of an 304L austenitic stainless steels in PWR primary environment under cyclic loading

    International Nuclear Information System (INIS)

    Huin, N.

    2013-01-01

    The present study was undertaken in order to get further insights on cracking mechanisms in a 304L stainless steel. More precisely, a first objective of this study was to evaluate the effect of various cold working conditions on the cyclic stress-strain behavior and the fatigue life in air and in PWR primary environment. In air a prior hardening was found to reduce the fatigue life in the LCF regime but not in primary environment. In both environments, the fatigue limit of the hardened materials was increased after cold working.The second objective addresses the effect of the air and the PWR primary environments on the cracking mechanisms (initiation and propagation) in the annealed material in the LCF regime. More precisely, the kinetics of crack initiation and micro crack propagation were evaluated with a multi scale microscopic approach in air and in primary environment. In PWR primary environment, during the first cycles, preferential oxidation occurs along emerging dissociated dislocation and each cycle generates a new C-rich/Fe-rich oxide layer. Then, during cycling, the microstructure evolves from stacking fault into micro twinning and preferential oxidation occurs by continuous shearing and dissolution of the passive film. Beyond a certain crack depth (≤3 μm), the crack starts to propagate with a direction close to a 90 degrees angle from the surface. The crack continues its propagation by successive generation of shear bands and fatigue striations at each cycle up to failure. The role of corrosion hydrogen on these processes is finally discussed. (author)

  9. New instrumentation of reactor water level for PWR; Nueva Instrumentacion de nivel de agua del reactor para PWR

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, S.

    2005-07-01

    Today, many PWR reactors are equipped with a reactor water level instrumentation system based on different measurement methods. Due to obsolescence issues, FRAMATOME ANP started to develop and quality a new water level measurement system using heated und unheated thermocouple measurements. the measuring principle is based on the fact that the heat transfer in water is considerably higher than in steam. The electronic cabinet for signal processing is based on a proven technology already developed, qualified and installed by FRAMATOME ANP in several NPPs. It is equipped with and advanced temperature measuring transducer for acquisition and processing of thermocouple signals. (Author)

  10. Life management plants at nuclear power plants PWR; Planes de gestion de vida en centrales nucleares PWR

    Energy Technology Data Exchange (ETDEWEB)

    Esteban, G.

    2014-10-01

    Since in 2009 the CSN published the Safety Instruction IS-22 (1) which established the regulatory framework the Spanish nuclear power plants must meet in regard to Life Management, most of Spanish nuclear plants began a process of convergence of their Life Management Plants to practice 10 CFR 54 (2), which is the current standard of Spanish nuclear industry for Ageing Management, either during the design lifetime of the plant, as well as for Long-Term Operation. This article describe how Life Management Plans are being implemented in Spanish PWR NPP. (Author)

  11. Simulation of single-phase rod bundle flow. Comparison between CFD-code ESTET, PWR core code THYC and experimental results

    International Nuclear Information System (INIS)

    Mur, J.; Larrauri, D.

    1998-07-01

    Computer simulation of flow in configurations close to pressurized water reactor (PWR) geometry is of great interest for Electricite de France (EDF). Although simulation of the flow through a whole PWR core with an all purpose CFD-code is not yet achievable, such a tool cna be quite useful to perform numerical experiments in order to try and improve the modeling introduced in computer codes devoted to reactor core thermal-hydraulic analysis. Further to simulation in small bare rod bundle configurations, the present study is focused on the simulation, with CFD-code ESTET and PWR core code THYC, of the flow in the experimental configuration VATICAN-1. ESTET simulation results are compared on the one hand to local velocity and concentration measurements, on the other hand with subchannel averaged values calculated by THYC. As far as the comparison with measurements is concerned, ESTET results are quite satisfactory relatively to available experimental data and their uncertainties. The effect of spacer grids and the prediction of the evolution of an unbalanced velocity profile seem to be correctly treated. As far as the comparison with THYC subchannel averaged values is concerned, the difficulty of a direct comparison between subchannel averaged and local values is pointed out. ESTET calculated local values are close to experimental local values. ESTET subchannel averaged values are also close to THYC calculation results. Thus, THYC results are satisfactory whereas their direct comparison to local measurements could show some disagreement. (author)

  12. Gamma and Neutron Radiolysis in the 21-PWR Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    J.S. Tang

    2001-05-03

    The objective of this calculation is to compute gamma and neutron dose rates in order to determine the maximum radiolytic production of nitric acid and other chemical species inside the 21-PWR (pressurized-water reactor) waste package (WP). The scope of this calculation is limited to the time period between 5,000 and 100,000 years after emplacement. The information provided by the sketches attached to this calculation is that of the potential design for the type of WP considered in this calculation. The results of this calculation will be used to evaluate nitric acid corrosion of fuel cladding from radiolysis in the 21-PWR WP. This calculation was performed in accordance with the Technical Work Plan for: Waste Package Design Description for LA (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) 2000a). AP-3.124, Calculations, is used to perform the calculation and develop the document. This calculation is associated with the total system performance assessment (TSPA) of which the spent fuel cladding integrity is to be evaluated.

  13. Gamma and Neutron Radiolysis in the 21-PWR Waste Package

    International Nuclear Information System (INIS)

    J.S. Tang

    2001-01-01

    The objective of this calculation is to compute gamma and neutron dose rates in order to determine the maximum radiolytic production of nitric acid and other chemical species inside the 21-PWR (pressurized-water reactor) waste package (WP). The scope of this calculation is limited to the time period between 5,000 and 100,000 years after emplacement. The information provided by the sketches attached to this calculation is that of the potential design for the type of WP considered in this calculation. The results of this calculation will be used to evaluate nitric acid corrosion of fuel cladding from radiolysis in the 21-PWR WP. This calculation was performed in accordance with the Technical Work Plan for: Waste Package Design Description for LA (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000a). AP-3.124, Calculations, is used to perform the calculation and develop the document. This calculation is associated with the total system performance assessment (TSPA) of which the spent fuel cladding integrity is to be evaluated

  14. Four-fluid model of PWR degraded cores

    International Nuclear Information System (INIS)

    Dearing, J.F.

    1985-01-01

    This paper describes the new two-dimensional, four-fluid fluid dynamics and heat transfer (FLUIDS) module of the MELPROG code. MELPROG is designed to give an integrated, mechanistic treatment of pressurized water reactor (PWR) core meltdown accidents from accident initiation to vessel melt-through. The code has a modular data storage and transfer structure, with each module providing the others with boundary conditions at each computational time step. Thus the FLUIDS module receives mass and energy source terms from the fuel pin module, the structures module, and the debris bed module, and radiation energy source terms from the radiation module. MELPROG, which models the reactor vessel, is also designed to model the vessel as a component in the TRAC/PF1 networking solution of a PWR reactor coolant system (RCS). The coupling between TRAC and MELPROG is implicit in the fluid dynamics of the reactor coolant (liquid water and steam) allowing an accurate simulation of the coupling between the vessel and the rest of the RCS during an accident. This paper deals specifically with the numerical model of fluid dynamics and heat transfer within the reactor vessel, which allows a much more realistic simulation (with less restrictive assumptions on physical behavior) of the accident than has been possible before

  15. Beta and gamma dose calculations for PWR and BWR containments

    International Nuclear Information System (INIS)

    King, D.B.

    1989-07-01

    Analyses of gamma and beta dose in selected regions in PWR and BWR containment buildings have been performed for a range of fission product releases from selected severe accidents. The objective of this study was to determine the radiation dose that safety-related equipment could experience during the selected severe accident sequences. The resulting dose calculations demonstrate the extent to which design basis accident qualified equipment could also be qualified for the severe accident environments. Surry was chosen as the representative PWR plant while Peach Bottom was selected to represent BWRs. Battelle Columbus Laboratory performed the source term release analyses. The AB epsilon scenario (an intermediate to large LOCA with failure to recover onsite or offsite electrical power) was selected as the base case Surry accident, and the AE scenario (a large break LOCA with one initiating event and a combination of failures in two emergency cooling systems) was selected as the base case Peach Bottom accident. Radionuclide release was bounded for both scenarios by including spray operation and arrested sequences as variations of the base scenarios. Sandia National Laboratories used the source terms to calculate dose to selected containment regions. Scenarios with sprays operational resulted in a total dose comparable to that (2.20 x 10 8 rads) used in current equipment qualification testing. The base case scenarios resulted in some calculated doses roughly an order of magnitude above the current 2.20 x 10 8 rad equipment qualification test region. 8 refs., 23 figs., 12 tabs

  16. Transient analysis of blowdown thrust force under PWR LOCA

    International Nuclear Information System (INIS)

    Yano, Toshikazu; Miyazaki, Noriyuki; Isozaki, Toshikuni

    1982-10-01

    The analytical results of blowdown characteristics and thrust forces were compared with the experiments, which were performed as pipe whip and jet discharge tests under the PWR LOCA conditions. The blowdown thrust forces obtained by Navier-Stokes momentum equation about a single-phase, homogeneous and separated two-phase flow, assuming critical pressure at the exit if a critical flow condition was satisfied. The following results are obtained. (1) The node-junction method is useful for both the analyses of the blowdown thrust force and of the water hammer phenomena. (2) The Henry-Fauske model for subcooled critical flow is effective for the analysis of the maximum thrust force under the PWR LOCA conditions. The jet thrust parameter of the analysis and experiment is equal to 1.08. (3) The thrust parameter of saturated blowdown has the same one with the value under pressurized condition when the stagnant pressure is chosen as the saturated one. (4) The dominant terms of the blowdown thrust force in the momentum equation are the pressure and momentum terms except that the acceleration term has large contribution only just after the break. (5) The blowdown thrust force in the analysis greatly depends on the selection of the exit pressure. (author)

  17. Liquid radioactive waste processing improvement of PWR nuclear power plants

    International Nuclear Information System (INIS)

    Nery, Renata Wolter dos Reis; Martinez, Aquilino Senra; Monteiro, Jose Luiz Fontes

    2005-01-01

    The study evaluate an inorganic ion exchange to process the low level liquid radwaste of PWR nuclear plants, so that the level of the radioactivity in the effluents and the solid waste produced during the treatment of these liquid radwaste can be reduced. The work compares two types of ion exchange materials, a strong acid cation exchange resin, that is the material typically used to remove radionuclides from PWR nuclear plants wastes, and a mordenite zeolite. These exchange material were used to remove cesium from a synthetic effluent containing only this ion and another effluent containing cesium and cobalt. The breakthrough curves of the zeolite and resin using a fix bed reactor were compared. The results demonstrated that the zeolite is more efficient than the resin in removing cesium from a solution containing cesium and cobalt. The results also showed that a bed combining zeolite and resin can process more volume of an effluent containing cesium and cobalt than a bed resin alone. (author)

  18. Initial Release of Nucliders from Spent PWR Fuels

    International Nuclear Information System (INIS)

    Kim, S. S.; Chun, K. S.; Kim, Y. B.; Choi, J. W.

    1994-01-01

    The relationship between the leaching and gap inventory of spent fuel has been studied. When a specimen of J44H08 spent PWR fuel with 38 GWD/MTU has been leached in the synthetic granitic groundwater in Ar atmosphere, the released fraction of cesium was increased rapidly up to 0,7% at around 500 days and stayed below 0.8% until 3 years. This 0.7% of cesium might be released from the gap in this fuel. The measurement of gap inventory with C15I08 spent PWR fuel, having 35 GWD/MTU and 0.22% of fission gas release, was also determined near 0.6% for the cesium, which is a similar fraction of cesium released from the leaching experiment with J44H08 fuel. Its gap inventories of strontium and iodine were about 0.03 and less than 0.2% respectively. Respective fractions of cesium and strontium in grain boundary of C15I08 were 0.78, 0.009%

  19. 21-PWR Waste Package Side and End Impacts

    International Nuclear Information System (INIS)

    T. Schmitt

    2005-01-01

    The objective of this calculation is to determine the structural response of a 21-Pressurized Water Reactor (PWR) spent nuclear fuel waste package impacting an unyielding surface. A range of initial velocities and initial angles between the waste package and the unyielding surface is studied. The scope of this calculation is limited to estimating the area of the outer shell (OS) where the residual stress exceeds a given limit (hereafter ''damaged area''). The stress limit is defined as a fraction of the yield strength of the OS material, Alloy 22 (SB-575 N06022), at the appropriate temperature. The design of the 21-PWR waste package used in this calculation is that defined in Reference 8. However, a value of 4 mm was used for the gap between the inner shell and the OS, and the thickness of the OS was reduced by 2 mm. The sketch in Attachment I provides additional information not included in Reference 8. All obtained results are valid for this design only. This calculation is associated with the waste package design and was performed by the Specialty Analyses and Waste Package Design Section. The waste package (i.e. uncanistered spent nuclear fuel disposal container) is classified as Quality Level 1

  20. PWR reactor vessel in-service-inspection according to RSEM

    International Nuclear Information System (INIS)

    Algarotti, Marc; Dubois, Philippe; Hernandez, Luc; Landez, Jean Paul

    2006-01-01

    Nuclear services experience Framatome ANP (an AREVA and Siemens company) has designed and constructed 86 Pressurized Water Reactors (PWR) around the world including the three units lately commissioned at Ling Ao in the People's Republic of China and ANGRA 2 in Brazil; the company provided general and specialized outage services supporting numerous outages. Along with the American and German subsidiaries, Framatome ANP Inc. and Framatome ANP GmbH, Framatome ANP is among the world leading nuclear services providers, having experience of over 500 PWR outages on 4 continents, with current involvement in more than 50 PWR outages per year. Framatome ANP's experience in the examinations of reactor components began in the 1970's. Since then, each unit (American, French and German companies) developed automated NDT inspection systems and carried out pre-service and ISI (In-Service Inspections) using a large range of NDT techniques to comply with each utility expectations. These techniques have been validated by the utilities and the safety authorities of the countries where they were implemented. Notably Framatome ANP is fully qualified to provide full scope ISI services to satisfy ASME Section XI requirements, through automated NDE tasks including nozzle inspections, reactor vessel head inspections, steam generator inspections, pressurizer inspections and RPV (Reactor Pressure Vessel) inspections. Intercontrole (Framatome ANP subsidiary dedicated in supporting ISI) is one of the leading NDT companies in the world. Its main activity is devoted to the inspection of the reactor primary circuit in French and foreign PWR Nuclear Power Plants: the reactor vessel, the steam generators, the pressurizer, the reactor internals and reactor coolant system piping. NDT methods mastered by Intercontrole range from ultrasonic testing to eddy current and gamma ray examinations, as well as dye penetrant testing, acoustic monitoring and leak testing. To comply with the high requirements of

  1. Preliminary conceptual design of a geological disposal system for high-level wastes from the pyroprocessing of PWR spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui-Joo, E-mail: hjchoi@kaeri.re.kr [Korea Atomic Energy Research Institute, 1045 Daeduk-Daero, Yuseong, Daejon 305-353 (Korea, Republic of); Lee, Minsoo; Lee, Jong Youl [Korea Atomic Energy Research Institute, 1045 Daeduk-Daero, Yuseong, Daejon 305-353 (Korea, Republic of)

    2011-08-15

    Highlights: > A geological disposal system consists of disposal overpacks, a buffer, and a deposition hole or a disposal tunnel for high-level wastes from a pyroprocessing of PWR spent fuels is proposed. The amount and characteristics of high-level wastes are analyzed based on the material balance of pyroprocessing. > Four kinds of deposition methods, two horizontal and two vertical, are proposed. Thermal design is carried out with ABAQUS program. The spacing between the disposal modules is determined for the peak temperature in buffer not to exceed 100 deg. C. > The effect of the double-layered buffer is compared with the traditional single-layered buffer in terms of disposal density. Also, the effect of cooling time (aging) is illustrated. > All the thermal calculations are represented by comparing the disposal area of PWR spent fuels with the same cooling time. - Abstract: The inventories of spent fuels are linearly dependent on the production of electricity generated by nuclear energy. Pyroprocessing of PWR spent fuels is one of promising technologies which can reduce the volume of spent fuels remarkably. The properties of high-level wastes from the pyroprocessing are totally different from those of spent fuels. A geological disposal system is proposed for the high-level wastes from pyroprocessing of spent fuels. The amount and characteristics of high-level wastes are analyzed based on the material balance of pyroprocessing. Around 665 kg of monazite ceramic wastes are expected from the pyroprocessing of 10 MtU of PWR spent fuels. Decay heat from monazite ceramic wastes is calculated using the ORIGEN-ARP program. Disposal modules consisting of storage cans, overpacks, and a deposition hole or a disposal tunnel are proposed. Four kinds of deposition methods are proposed. Thermal design is carried out with ABAQUS program and geological data obtained from the KAERI Underground Research Tunnel. Through the thermal analysis, the spacing between the disposal modules

  2. Reference upper shelf fracture toughness properties of PWR pressure vessel materials: neutral/basic flux PWR submerged-arc welds

    International Nuclear Information System (INIS)

    Lidbury, D.P.G.

    1987-10-01

    A generic data base, relating to the upper shelf fracture toughness properties (O ≤ T ≤ 300 0 C) of pressurised water reactor (PWR) pressure vessel submerged-arc welds, deposited using neutral or basic fluxes, has been compiled and is presented in summary form within the main body of this report. A comparison with the A533B-1 plate and A508-3 forging data presented in the Second (1982) Report of the Light Water Reactor Study Group suggests the upper shelf fracture toughness properties of RPV submerged-arc welds metals are such that, over the temperature range appropriate to PWR plant operation: (i) initiation toughnesses are generally less than those associated with A533B-1/A508-3 base metals containing < 0.010 wt% S; (ii) enhanced toughnesses, corresponding to 2.0 mm stable crack extension, are comparable with those expected of A533B-1 plate materials containing < 0.010 wt% S. The information gathering exercise has also confirmed that upper shelf toughnesses associated with the use of basic or neutral fluxes are higher than those associated with the use of acidic fluxes. (author)

  3. Direct modification of hydrogen/deuterium-terminated diamond particles with polymers to form reversed and strong cation exchange solid phase extraction sorbents.

    Science.gov (United States)

    Yang, Li; Jensen, David S; Vail, Michael A; Dadson, Andrew; Linford, Matthew R

    2010-12-03

    We describe direct polymer attachment to hydrogen and deuterium-terminated diamond (HTD and DTD) surfaces using a radical initiator (di-tert-amyl peroxide, DTAP), a reactive monomer (styrene) and a crosslinking agent (divinylbenzene, DVB) to create polystyrene encapsulated diamond. Chemisorbed polystyrene is sulfonated with sulfuric acid in acetic acid. Surface changes were followed by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and diffuse reflectance Fourier transform infrared spectroscopy (DRIFT). Finally, both polystyrene-modified DTD and sulfonated styrene-modified DTD were used in solid phase extraction (SPE). Percent recovery and column capacity were investigated for both phenyl (polystyrene) and sulfonic acid treated polystyrene SPE columns. These diamond-based SPE supports are stable under basic conditions, which is not the case for silica-based SPE supports. Copyright © 2010. Published by Elsevier B.V.

  4. Design and retrofit of radiation monitoring system for the PWR nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Tao; Xiong Guohua; Lang Yukai; Guo Wei

    2011-01-01

    Radiation monitoring system is important for the PWR nuclear power plant, and the research of design methods and principles for the radiation monitoring system can greatly improve the design ability of the system for PWR nuclear power plant, and reduce the risk of system retrofit. According to the Nuclear power plant regulations and design specifications, and taking the design and retrofit experience of the radiation monitoring system in Daya Bay Nuclear Power Plant into account, the general design principles and requirements of the radiation monitoring system in the PWR nuclear power plant is proposed, and the retrofit method of the radiation monitoring system in Daya Bay Nuclear Power Plant is briefly introduced. (authors)

  5. Status and future perspectives of PWR and comparing views on WWER fuel technology

    International Nuclear Information System (INIS)

    Weidinger, H.

    2003-01-01

    The main purpose of this paper is to give an overview on status and future perspectives of the Western PWR fuel technology. For easer understanding and correlating, some comparing views to the WWER fuel technology are provided. This overview of the PWR fuel technology of course can not go into the details of the today used designs of fuel, fuel rods and fuel assemblies. However, it tries to describe the today achieved capability of PWR fuel technology with regard to reliability, efficiency and safety

  6. Preliminary study of the economics of enriching PWR fuel with a fusion hybrid reactor

    International Nuclear Information System (INIS)

    Kelly, J.L.

    1978-09-01

    This study is a comparison of the economics of enriching uranium oxide for pressurized water reactor (PWR) power plant fuel using a fusion hybrid reactor versus the present isotopic enrichment process. The conclusion is that privately owned hybrid fusion reactors, which simultaneously produce electrical power and enrich fuel, are competitive with the gaseous diffusion enrichment process if spent PWR fuel rods are reenriched without refabrication. Analysis of irradiation damage effects should be performed to determine if the fuel rod cladding can withstand the additional irradiation in the hybrid and second PWR power cycle. The cost competitiveness shown by this initial study clearly justifies further investigations

  7. TRANSPORT CHARACTERISTICS OF SELECTED PWR LOCA GENERATED DEBRIS

    International Nuclear Information System (INIS)

    MAJI, A. K.; MARSHALL, B.

    2000-01-01

    In the unlikely event of a Loss of Coolant Accident (LOCA) in a pressurized water reactor (PWR), break jet impingement would dislodge thermal insulation FR-om nearby piping, as well as other materials within the containment, such as paint chips, concrete dust, and fire barrier materials. Steam/water flows induced by the break and by the containment sprays would transport debris to the containment floor. Subsequently, debris would likely transport to and accumulate on the suction sump screens of the emergency core cooling system (ECCS) pumps, thereby potentially degrading ECCS performance and possibly even failing the ECCS. In 1998, the U. S. Nuclear Regulatory Commission (NRC) initiated a generic study (Generic Safety Issue-191) to evaluate the potential for the accumulation of LOCA related debris on the PWR sump screen and the consequent loss of ECCS pump net positive suction head (NPSH). Los Alamos National Laboratory (LANL), supporting the resolution of GSI-191, was tasked with developing a method for estimating debris transport in PWR containments to estimate the quantity of debris that would accumulate on the sump screen for use in plant specific evaluations. The analytical method proposed by LANL, to predict debris transport within the water that would accumulate on the containment floor, is to use computational fluid dynamics (CFD) combined with experimental debris transport data to predict debris transport and accumulation on the screen. CFD simulations of actual plant containment designs would provide flow data for a postulated accident in that plant, e.g., three-dimensional patterns of flow velocities and flow turbulence. Small-scale experiments would determine parameters defining the debris transport characteristics for each type of debris. The containment floor transport methodology will merge debris transport characteristics with CFD results to provide a reasonable and conservative estimate of debris transport within the containment floor pool and

  8. Three-dimensional transport coefficient model and prediction-correction numerical method for thermal margin analysis of PWR cores

    International Nuclear Information System (INIS)

    Chiu, C.

    1981-01-01

    Combustion Engineering Inc. designs its modern PWR reactor cores using open-core thermal-hydraulic methods where the mass, momentum and energy equations are solved in three dimensions (one axial and two lateral directions). The resultant fluid properties are used to compute the minimum Departure from Nuclear Boiling Ratio (DNBR) which ultimately sets the power capability of the core. The on-line digital monitoring and protection systems require a small fast-running algorithm of the design code. This paper presents two techniques used in the development of the on-line DNB algorithm. First, a three-dimensional transport coefficient model is introduced to radially group the flow subchannel into channels for the thermal-hydraulic fluid properties calculation. Conservation equations of mass, momentum and energy for this channels are derived using transport coefficients to modify the calculation of the radial transport of enthalpy and momentum. Second, a simplified, non-iterative numerical method, called the prediction-correction method, is applied together with the transport coefficient model to reduce the computer execution time in the determination of fluid properties. Comparison of the algorithm and the design thermal-hydraulic code shows agreement to within 0.65% equivalent power at a 95/95 confidence/probability level for all normal operating conditions of the PWR core. This algorithm accuracy is achieved with 1/800th of the computer processing time of its parent design code. (orig.)

  9. Sizewell 'B' PWR pre-construction safety report

    International Nuclear Information System (INIS)

    1982-04-01

    The Pre-Construction Safety Report (PCSR) for a PWR power station to be constructed as Sizewell 'B' is presented in 13 volumes containing 16 chapters. The PCSR has been submitted to the Nuclear Installations Inspectorate in support of the Central Electricity Generating Board's application for consent to the extension at Sizewell. It describes the design and provides the safety case for the proposed station, which comprises a 4-loop pressurized water reactor with associated generating plant and supporting auxiliary equipment. A general description of the station and its site is given. The strategy for ensuring nuclear safety is set out and the general design aspects of systems and plant outlined. The plant and systems, including their safety design bases and the fault analyses carried out for the design are described. Finally the way in which the plant will be decommissioned at the end of its useful life is outlined. (U.K.)

  10. Numerical regulation of a test facility of materials for PWR

    International Nuclear Information System (INIS)

    Zauq, M.H.

    1982-02-01

    The installation aims at testing materials used in nuclear power plants; tests consists in simulations of a design basis accident (failure of a primary circuit of a PWR type reactor) for a qualification of these materials. A description of the test installation, of the thermodynamic control, and of the control system is presented. The organisation of the software is then given: description of the sequence chaining monitor, operation, list and function of the programs. The analog information processing is also presented (data transmission). A real-time microcomputer and clock are used for this work. The microprocessor is the 6800 of MOTOROLA. The microcomputer used has been built around the MC 6800; its structure is described. The data acquisition include an analog data acquisition system and a numerical data acquisition system. Laboratory and on-site tests are finally presented [fr

  11. Reactor building seismic analysis of a PWR type - NPP

    International Nuclear Information System (INIS)

    Kakubo, Masao

    1983-01-01

    Earthquake engineering studies raised up in Brazil during design licensing and construction phases of Almirante Alvaro Alberto NPP, units 1 and 2. State of art of soil - structure interaction analysis with particular reference to the impedance function calculation analysis with particular reference to the impedance function calculation of a group of pile is presented in this M.Sc. Dissertation, as an example the reactor building dynamic response of a 1325 MWe NPP PWR type is calculated. The reactor building is supported by a pile foundation with 2002 end bearing piles. Upper and lower bound soil parameters are considered in order to observe their influence on dynamic response of structure. Dynamic response distribution on pile heads show pile-soil-pile interaction effects. (author)

  12. Neutron measurements in borated water for PWR fuel inspections

    International Nuclear Information System (INIS)

    Rinard, P.M.

    1984-07-01

    A fork detector has been developed for use in the international effort to safeguard irradiated fuel assemblies. To improve interpretation of data from a fork, the following three facets of the detector's neutron counting response have been examined using a tank of borated water and a PWR fresh-fuel assembly: (1) The detector's sensitivity to neutrons initiated at different positions within the assembly was measured and this sensitivity can be used to generate total responses to assemblies with uniform or nonuniform irradiation. (2) Using fission chambers with and without cadmium wrappings provided ratios of count rates that can give an independent estimate of the boron concentration in the water. The precision of a boron determination can be estimated from these measurements. (3) The water temperature was raised, causing small but possibly important effects on the count rates. These facets of the fork detector's neutron response were studied at boron concentrations ranging from 0 to about 3500 ppM

  13. B ampersand W PWR advanced control system algorithm development

    International Nuclear Information System (INIS)

    Winks, R.W.; Wilson, T.L.; Amick, M.

    1992-01-01

    This paper discusses algorithm development of an Advanced Control System for the B ampersand W Pressurized Water Reactor (PWR) nuclear power plant. The paper summarizes the history of the project, describes the operation of the algorithm, and presents transient results from a simulation of the plant and control system. The history discusses the steps in the development process and the roles played by the utility owners, B ampersand W Nuclear Service Company (BWNS), Oak Ridge National Laboratory (ORNL), and the Foxboro Company. The algorithm description is a brief overview of the features of the control system. The transient results show that operation of the algorithm in a normal power maneuvering mode and in a moderately large upset following a feedwater pump trip

  14. Specification of water quality for the FRAMATOME PWR secondary circuit

    International Nuclear Information System (INIS)

    Nordmann, F.

    1980-03-01

    This paper describes the purpose, theory and scope of secondary system chemical specifications for FRAMATOME PWR nuclear power plants. All volatile treatment was chosen: controlling the feedwater pH by means of a volatile amine (ammonia, morpholine), and excluding oxygen by the addition of hydrazine. The pollutants are monitored at the steam generator drains by completely automatic measurements using simple and reliable techniques: pH measurement and a diagram of the cation conductivity versus sodium. An explanation is given of the monitoring techniques and to the effect of the various kinds of possible pollutant. A new concept is described, the annual quota expressed in day.microsiements.cm -1 which enables the amount of absorbed pollutants in the steam generator to be evaluated. The methods used for maintaining the desired chemical quality are dealt with [fr

  15. Reliability assessment of the containment of a PWR

    International Nuclear Information System (INIS)

    Schueller, G.I.; Wellein, R.; Wittmann, F.H.; Boulahdour, T.; Mihashi, M.; Zorn, N.F.; Bauer, J.

    1981-09-01

    The aim of this research effort was to contribute to the development of methods to quantify the risk involved with nuclear power plants. Using a large component, i.e. the containment of the reference plant BIBLIS B (PWR) as sample structure a reliability analysis was performed which is based on realistic assumptions of loads and material properties. For this purpose in many fields it was necessary to develop new methods, collect data, and where not available, obtain data in tests. This effort concentrated on partial aspects and on the other hand on the development of a methodology for an overall reliability concept. According to the results of the previous project, the keypoints of this effort are the treatment of loss of coolant accidents (small leak), earthquake loading, the possibly resulting crackpropagation in the steel hull, and the structural mechanics and material strength aspects of the reinforced concrete hull subjected to impact loading (aircraft impact). (orig./HP) [de

  16. Neutronal aspects of PWR control for transient load following

    International Nuclear Information System (INIS)

    Cossic, A.

    1985-01-01

    The purpose of this thesis is to qualify the CRONOS diffusion code on a load transient in grey mode control. First of all, we have established a general axial calculational model and studied the important physical phenomena: xenon oscillation, grey rods absorption, radial leaks modelling, effect of the initial conditions in Iodine and Xenon. In a second stage, a three dimensional calculation has been performed, the results of which have been compared to a PWR 900 TRICASTIN 3 experiment and have been in good agreement. In the last part, we show that the results of the axial model using one-dimensional CRONOS calculations are quite consistent with the three-dimensional calculation [fr

  17. Delayed phenomena analysis from French PWR containment instrumentation system

    International Nuclear Information System (INIS)

    Costaz, J.L.

    1987-01-01

    The analysis of the large amount of measurements which has been now gathered by EDF on its twenty two PWR 900 MW shows that the behaviour of concrete under creep and shrinkage effects is in good agreement with the values given as correct estimates by french regulations and taken into account for the design of nuclear prestressed structures. None of the containment buildings studied here showed significant differences with the regulations theoretical values and consequently all the measurements remain in the field of the allowable strain variations used for design. On the other hand, if the instant loading elastic modulus is clearly determined for each containment, and its effect on theoretical creep taken into account, it was not possible up till now to extract from measurements some particular effects such as type of concrete and agregates or climatic effects. (orig.)

  18. PWR steam generator chemical cleaning, Phase I. Final report

    International Nuclear Information System (INIS)

    Rothstein, S.

    1978-07-01

    United Nuclear Industries (UNI) entered into a subcontract with Consolidated Edison Company of New York (Con Ed) on August 8, 1977, for the purpose of developing methods to chemically clean the secondary side tube to tube support crevices of the steam generators of Indian Point Nos. 1 and 2 PWR plants. This document represents the first reporting on activities performed for Phase I of this effort. Specifically, this report contains the results of a literature search performed by UNI for the purpose of determining state-of-the-art chemical solvents and methods for decontaminating nuclear reactor steam generators. The results of the search sought to accomplish two objectives: (1) identify solvents beyond those proposed at present by UNI and Con Ed for the test program, and (2) confirm the appropriateness of solvents and methods of decontamination currently in use by UNI

  19. Non linear identification applied to PWR steam generators

    International Nuclear Information System (INIS)

    Poncet, B.

    1982-11-01

    For the precise industrial purpose of PWR nuclear power plant steam generator water level control, a natural method is developed where classical techniques seem not to be efficient enough. From this essentially non-linear practical problem, an input-output identification of dynamic systems is proposed. Through Homodynamic Systems, characterized by a regularity property which can be found in most industrial processes with balance set, state form realizations are built, which resolve the exact joining of local dynamic behaviors, in both discrete and continuous time cases, avoiding any load parameter. Specifically non-linear modelling analytical means, which have no influence on local joined behaviors, are also pointed out. Non-linear autoregressive realizations allow us to perform indirect adaptive control under constraint of an admissible given dynamic family [fr

  20. Optimization of the decontamination in EDF PWR power plants

    International Nuclear Information System (INIS)

    Gosset, P.; Dupin, M.; Buisine, D.; Buet, J.F.; Brunel, V.

    2002-01-01

    The optimisation of decontamination in EDF PWR power plants is the result of a permanent collaborative work between the plant operators, the subcontractors, central services of nuclear power division of EDF. This collaborative work enables the saving of all the feedback experience. The main operations carried out on nuclear sites like mechanical decontamination of valves, use of the ''EMMAC'' process on big components (replacement of steam generator, hydraulic parts of the reactor coolant pumps), use of foam on pools walls and divers in highly contaminated pools have been discussed. This paper shows that the choice of decontamination processes is very dependant on the components, on the dose rate reduction to be aimed and on the possibility to treat the waste on site. (authors)

  1. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T. [Kansai Electric Power Company, Osaka (Japan); Shimizu, S.; Ogata, Y. [Mitsubishi Heavy Industries, Ltd., Kobe (Japan)

    1997-04-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  2. Analysis of reactivity insertion accidents in PWR reactors

    International Nuclear Information System (INIS)

    Camargo, C.T.M.

    1978-06-01

    A calculation model to analyze reactivity insertion accidents in a PWR reactor was developed. To analyze the nuclear power transient, the AIREK-III code was used, which simulates the conventional point-kinetic equations with six groups of delayed neutron precursors. Some modifications were made to generalize and to adapt the program to solve the proposed problems. A transient thermal analysis model was developed which simulates the heat transfer process in a cross section of a UO 2 fuel rod with Zircalloy clad, a gap fullfilled with Helium gas and the correspondent coolant channel, using as input the nulcear power transient calculated by AIREK-III. The behavior of ANGRA-i reactor was analized during two types of accidents: - uncontrolled rod withdrawal from subcritical condition; - uncontrolled rod withdrawal at power. The results and conclusions obtained will be used in the license process of the Unit 1 of the Central Nuclear Almirante Alvaro Alberto. (Author) [pt

  3. PWR steam generator chemical cleaning, Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rothstein, S.

    1978-07-01

    United Nuclear Industries (UNI) entered into a subcontract with Consolidated Edison Company of New York (Con Ed) on August 8, 1977, for the purpose of developing methods to chemically clean the secondary side tube to tube support crevices of the steam generators of Indian Point Nos. 1 and 2 PWR plants. This document represents the first reporting on activities performed for Phase I of this effort. Specifically, this report contains the results of a literature search performed by UNI for the purpose of determining state-of-the-art chemical solvents and methods for decontaminating nuclear reactor steam generators. The results of the search sought to accomplish two objectives: (1) identify solvents beyond those proposed at present by UNI and Con Ed for the test program, and (2) confirm the appropriateness of solvents and methods of decontamination currently in use by UNI.

  4. In situ corrosion monitoring of steam generators. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Kendig, M W; Isaacs, H S

    1978-06-01

    An ac electrochemical technique which meets the basic requirements for an in situ localized corrosion monitor within the secondary coolant of PWR steam generators has been investigated. The technique uses two electrodes to measure the electrochemical impedance of a surface in an occluded region with high heat flux. The impedance is related to the kinetics of corrosion. Marked decreases indicate the onset of a high corrosion rate. Experiments have demonstrated the ability of the technique to determine the onset of corrosion under conditions of high solution resistance and solution agitation due to local boiling. Experiments have shown the technique operates similarly in pressurized 300/sup 0/C water, 1,400 ppM in Na/sub 2/SO/sub 4/.

  5. Radiation risk analysis of tritium in PWR plants

    International Nuclear Information System (INIS)

    Yang Maochun; Wang Shimin

    1999-03-01

    Tritium is a common radionuclide in PWR nuclear power plant. In the normal operation conditions, its radiation risk to plant workers is the internal radiation exposure when tritium existing in air as HTO (hydrogen tritium oxide) is breathed in. As the HTO has the same physical and chemical characteristics as water, the main way that HTO entering the air is by evaporation. There are few opening systems in Nuclear Power Plant, the radiation risk of tritium mainly exists near the area of spent fuel pit and reactor pit. The highest possible radiation risk it may cause--the maximum concentration in air is the level when equilibrium is established between water and air phases for tritium. The author analyzed the relationship among the concentration of HTO in water, in air and the water temperature when equilibrium is established, the equilibrated HTO concentration in air increases with HTO concentration in water and water temperature. The analysis revealed that at 30 degree C, the equilibrated HTO concentration in air might reach 1 DAC (derived air concentration) when the HTO concentration in water is 28 GBq/m 3 . Owing to the operation of plant ventilation systems and the existence of moisture in the input air of the ventilation, the practical tritium concentration in air is much lower than its equilibrated levels, the radiation risk of tritium in PWR plant is quite limited. In 1997, Daya Bay Nuclear Power Plant's practical monitoring result of the HTO concentration in the air of the nuclear island and the urine of workers supported this conclusion. Based on this analysis, some suggestions to the reduction of tritium radiation risk were made

  6. Corrosion Resistance Evaluation of HANA Claddings in Commercial PWR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee-Hun; Kwon, Oh-Hyun; Kim, Hong-Jin; Yoo, Jong-Sung; Kim, Yong-Hwan [KEPCO NF, Daejeon (Korea, Republic of)

    2014-10-15

    Korea Atomic Energy Research Institute (KAERI) in collaboration with KEPCO Nuclear Fuel (KNF) developed newly-advanced alloy which are named HANA (High-performance Alloy for Nuclear Application) for high burnup PWR nuclear fuel, showed an excellent out-pile corrosion resistance in PWR simulating loop conditions. And in-pile corrosion resistance of HANA claddings, which was examined at the first provisional inspection after -185 FPD of irradiation in the Halden Reactor, and also shown superior to the other references alloy. Also, other researches showed a much better corrosion resistance when compared to the other Zr-based alloy in various corrosion conditions. In this study, the LTA program for newly-developed fuel assembly (HIPER) with the HANA claddings was implemented to justify the performance for 3 cycles of operation schedule in Hanul nuclear power plant. The objective of this study is to compare corrosion properties of reference alloy with HANA claddings loaded in Hanul nuclear power plant.. For the examination procedures, the oxide thickness measurements method and equipment of PSE are described in detail as follow in measurement methods chapter. Finally, based on the above mentioned measurements method, the summarized oxide thickness data obtained from PSE are evaluated for the corrosion resistance in commercial nuclear power plant and some discussion for the corrosion resistance are described. In the past, corrosion resistance of HANA claddings was successfully conducted in test reactor. In this study, the corrosion characteristic of HANA claddings which are applied to HIPER is examined in the commercial nuclear power plant. HANA claddings in the HIPER showed a more improved corrosion resistance than reference alloy claddings and are evaluated well with meeting the oxide thickness criteria.

  7. PWR and BWR spent fuel assembly gamma spectra measurements

    Science.gov (United States)

    Vaccaro, S.; Tobin, S. J.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Hu, J.; Schwalbach, P.; Sjöland, A.; Trellue, H.; Vo, D.

    2016-10-01

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative-Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

  8. Coordinated U. S. PWR Reactor Vessel Surveillance Program: Surveillance Data to Support Long Term Operations

    International Nuclear Information System (INIS)

    Hosler, Ryan; Troyer, Greg; Davidsaver, Sarah; Hardin, Timothy

    2012-01-01

    Irradiated reactor pressure vessel (RPV) surveillance data is used as the basis for embrittlement trend correlations (ETCs) which predict decreases in RP fracture toughness due to irradiation embrittlement. A limited amount of data exists today at fluences that many U. S. PWR RPVs will reach in 60 or more years of operation. However, there is a significant amount of test reactor data available at high fluences, which shows higher embrittlement shifts than the power reactor data-based correlations. A coordinated plan for withdrawal and testing of the U. S. PWR RPV surveillance capsules has been developed, with the intent of filling high fluence gaps in existing PWR data. This paper summarizes the methodology, optimization strategy, and current results of this coordinated U. S. PWR reactor vessel surveillance program (CRVSP). The Coordinated RVSP has been optimized to maximize the quantity and quality of high fluence data while minimizing the burden on the industry

  9. A method to determine the dampening system of control rod drop mechanism for PWR reactors

    International Nuclear Information System (INIS)

    Trindade, C.E.; Mattos, J.R.L. de; Perrotta, J.A.

    1988-08-01

    A method to determine the Control Assembly damping drop system (dashpot/guide tube) was developed. It's presented a theoretical model, an experimental device and the procedures to determine this system, which is used in PWR reactors. (author) [pt

  10. Aspects of PWR nuclear power plant secondary cycle relating to reactor safety

    International Nuclear Information System (INIS)

    Mueller, A.E.F.; Leal, M.R.L.V.; Dominguez, D.

    1981-01-01

    A safety study of the main steam system, condensate and feedwater systems and water treatment system that belong to the secondary cooling circuits of a PWR nuclear power plant is presented. (E.G.) [pt

  11. EDF's PWR power plants: anomalies concerning the reactor core instrumentation system

    International Nuclear Information System (INIS)

    1985-10-01

    This report presents the problems of fatigue and leaks found on the internal core instrumentation thimbles of several French PWR power plants, as also the solutions chosen according the reactor has already or not been operating [fr

  12. Validating Westinghouse atom 16 x 16 and 18 x 18 PWR fuel performance

    International Nuclear Information System (INIS)

    Andersson, S.; Gustafson, J.; Jourdain, P.; Lindstroem, L.; Hallstadius, L.; Hofling, C.G.

    2001-01-01

    Westinghouse Atom designs and fabricates PWR fuel for all major European fuel types: 17 x 17 standard (12 ft) and 17 x 17 XL (14 ft) for Westinghouse type PWRs, and 16 x 16 and 18 x 18 fuel for Siemens type PWRs. The W Atom PWR fuel designs are based on the extensive Westinghouse CE PWR fuel experience from combustion engineering type PWRs. The W atom designs utilise basic design features from the W CE fuel tradition, such as all-Zircaloy mid grids and the proven ( 6 rod years) Guardian TM debris catcher, which is integrated in the bottom Inconel grid. Several new features have been developed to meet with stringent European requirements originating from requirements on very high burnup, in combination with low-leakage core operating strategies and high coolant temperatures. The overall reliability of the Westinghouse Atom PWR fuel is very high; no fuel failure has been detected since 1997. (orig.)

  13. Development of an advanced 16x165 Westinghouse type PWR fuel assembly for Slovenia

    International Nuclear Information System (INIS)

    Boone, M. L.; King, S. J.; Pulver, E. F.; Jeon, K.-L.; Esteves, R.; Kurincic, B.

    2004-01-01

    Industrias Nucleares do Brasil (INB), KEPCO Nuclear Fuel Company, Ltd. (KNFC), and Westinghouse Electric Company (Westinghouse) have jointly designed an advanced 16x16 Westinghouse type PWR fuel assembly. This advanced 16x16 Westinghouse type PWR fuel assembly, which will be implemented in both Kori Unit 2 (in Korea) and Angra Unit 1 (in Brazil) in January and March 2005, respectively, is an integral part of the utilities fuel management strategy. This same fuel design has also been developed for future use in Krsko Unit 1 (in Slovenia). In this paper we will describe the front-end nuclear fuel management activities utilized by the joint development team and describe how these activities played an integral part in defining the direction of the advanced 16x16 Westinghouse type PWR fuel assembly design. Additionally, this paper will describe how this design demonstrates improved margins under high duty plant operating conditions. The major reason for initiating this joint development program was to update the current 16x16 fuel assembly, which is also called 16STD. The current 16STD fuel assembly contains a non-optimized fuel rod diameter for the fuel rod pitch (i.e. 9.5 mm OD fuel rods at a 0.485 inch pitch), non-neutronic efficient components (i.e. Inconel Mid grids), no Intermediate Flow Mixer (IFM) grids, and other mechanical features. The advanced 16x16 fuel assembly is being designed for peak rod average burnups of up to 75 MWd/kgU and will use an optimized fuel rod diameter (i.e. 9.14 mm OD ZIRLO TM fuel rods), neutronic efficient components (i.e. ZIRLO TM Mid grids), ZIRLO TM Intermediate Flow Mixer (IFM) grids to improve Departure from Nucleate Boiling (DNB) margin, and many other mechanical features that improve design margins. Nuclear design activities in the areas of fuel cycle cost and fuel management were performed in parallel to the fuel assembly design efforts. As the change in reactivity due to the change in the fuel rod diameter influences directly

  14. Resfria - a computational routine for thermal-hydraulic analysis of a cooldown in the PWR

    International Nuclear Information System (INIS)

    Silva Neto, A.J. da; Maciel Filho, L.A.

    1989-01-01

    This paper presents the computer code RESFRIA, designed to calculate the process parameters in a PWR nuclear power plant during a cooldown normal procedure. The procedure is described and some of the models developed to the simulation of systems and equipments are presented. A simplified flowchart of the computational routine and the results in the form of a diagram, for a typical PWR nuclear power plant, are also presented. (author)

  15. Characterization of Decommissioned PWR Vessel Internals Materials Samples: Material Certification, Fluence, and Temperature (Nonproprietary Version)

    International Nuclear Information System (INIS)

    Krug, M.; Shogan, R.; Fero, A.; Snyder, M.

    2004-01-01

    Pressurized water reactor (PWR) cores, operate under extreme environmental conditions due to coolant chemistry, operating temperature, and neutron exposure. Extending the life of PWRs require detailed knowledge of the changes in mechanical and corrosion properties of the structural austenitic stainless steel components adjacent to the fuel. This report contains basic material characterization information of the as-installed samples of reactor internals material which were harvested from a decommissioned PWR

  16. Teknologi Pembuatan Cermet Du0¬2 - Steel Untuk Wadah Limbah Bahan Bakar Bekas Pwr

    OpenAIRE

    Alimah, Siti; Budiarto, Budiarto

    2005-01-01

    DUO­2-STEEL CERMET MANUFACTURING TECHNOLOGY FOR PWR Spent Nuclear Fuel (SNF) CASKS. Assessment of DU02 - Steel cermet manufacturing technology for PWR SNF casks has been done. DU02 - Steel cermet consisting of DU02 particulates and other particulates, embedded in a steel matrix. Cermet SNF casks have the potential for superior performance compared with casks constructed of other materials. The addition of DU02 ceramic particulates can increase SNF cask capacity, improve of repository performa...

  17. Bias identification in PWR pressurizer instrumentation using the generalized liklihood-ratio technique

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1981-01-01

    A method for detecting and identifying biases in the pressure and level sensors of a pressurized water reactor (PWR) pressurizer is described. The generalized likelihood ratio (GLR) technique performs statistical tests on the innovations sequence of a Kalman filter state estimator and is capable of determining when a bias appears, in what sensor the bias exists, and estimating the bias magnitude. Simulation results using a second-order linear, discrete PWR pressurizer model demonstrate the capabilities of the GLR method

  18. Calibration of four neutron coincidence collars for PWR fresh fuel assemblies

    International Nuclear Information System (INIS)

    De Baere, P.; Carchon, R.; Smaers, G.; Smith, B.G.R.; Cranston, R.; Levy-Gorget, J.L.

    1988-05-01

    A measurement campaign was set up in order to calibrate four Neutron Coincidence Collars. For this purpose, a PWR fuel mock-up was used, as well as a series of real size PWR fuel assemblies. Calibration functions were set up, representing net real coincidence rate as a function of mass loading. All these calibration expressions have been referred to a general calibration expression, by applying some correction factors on the real coincidence count rate. (Author)

  19. Characterization of Decommissioned PWR Vessel Internals Material Samples: Tensile and SSRT Testing (Nonproprietary Version)

    International Nuclear Information System (INIS)

    Krug, M.; Shogan, R.

    2004-01-01

    Pressurized water reactor (PWR) cores operate under extreme environmental conditions due to coolant chemistry, operating temperature, and neutron exposure. Extending the life of PWRs requires detailed knowledge of the changes in mechanical and corrosion properties of the structural austenitic stainless steel components adjacent to the fuel (internals) subjected to such conditions. This project studied the effects of reactor service on the mechanical and corrosion properties of samples of baffle plate, former plate, and core barrel from a decommissioned PWR

  20. Characterization of Decommissioned PWR Vessel Internals Material Samples: Tensile and SSRT Testing (Nonproprietary Version)

    Energy Technology Data Exchange (ETDEWEB)

    M.Krug, R.Shogan

    2004-09-01

    Pressurized water reactor (PWR) cores operate under extreme environmental conditions due to coolant chemistry, operating temperature, and neutron exposure. Extending the life of PWRs requires detailed knowledge of the changes in mechanical and corrosion properties of the structural austenitic stainless steel components adjacent to the fuel (internals) subjected to such conditions. This project studied the effects of reactor service on the mechanical and corrosion properties of samples of baffle plate, former plate, and core barrel from a decommissioned PWR.

  1. Dry Ice Blast Decontamination to in-service equipment in Japanese PWR plant

    International Nuclear Information System (INIS)

    2016-01-01

    MHI had developed several mechanical decontamination methods. Mechanical decontamination is beneficial when it is applied to equipment whose surface is narrow. Especially in terms of secondary waste reduction, MHI started the study of application of Dry Ice Blast Decontamination to actual PWR plant. This paper provides an introduction to Dry Ice Blast Decontamination principle, its system and actual application result to PWR plant. (J.P.N.)

  2. Maintenance service for major component of PWR plant. Replacement of pressurizer safe end weld

    International Nuclear Information System (INIS)

    Miyoshi, Yoshiyuki; Kobayashi, Yuki; Yamamoto, Kazuhide; Ueda, Takeshi; Suda, Naoki; Shintani, Takashi

    2017-01-01

    In October 2016, MHI completed the replacement of safe end weld of pressurizer (Pz) of Ringhals unit 3, which was the first maintenance work for main component of pressurized water reactor (PWR) plant in Europe. For higher reliability and longer lifetime of PWR plant, MHI has conducted many kinds of maintenance works of main components of PWR plants in Japan against stress corrosion cracking due to aging degradation. Technical process for replacement of Pz safe end weld were established by MHI. MHI has experienced the work for 21 PWR units in Japan. That of Ringhals unit 3 was planned and conducted based on the experiences. In this work, Alloy 600 used for welds of nozzles of Pz was replaced with Alloy 690. Alloy 690 is more corrosive-resistant than Alloy 600. Specially designed equipment and technical process were developed and established by MHI to replace safe end weld of Pz and applied for the Ringhals unit 3 as a first application in Europe. The application had been performed in success and achieved the planned replacement work duration and total radiation dose by using sophisticated machining and welding equipment designed to meet the requirements to be small, lightweight and remote-controlled and operating by well skilled MHI personnel experienced in maintenance activities for major components of PWR plant in Japan. The success shows that the experience, activities and technology developed in Japan for main components of PWR plant shall be applicable to contribute reliable operations of nuclear power plants in Europe and other countries. (author)

  3. Contribution for the improvement of pressurized thermal shock assessment methodologies in PWR pressure vessels

    International Nuclear Information System (INIS)

    Gomes, Paulo de Tarso Vida

    2005-01-01

    The structural integrity assessment of nuclear reactor pressure vessel, concerned to Pressurized Thermal Shock (PTS) accidents, became a necessity and has been investigated since the eighty's. The recognition of the importance of PTS assessment has led the international nuclear technology community to devote a considerable research effort directed to the complete integrity assessment process of the Reactor Pressure Vessels (VPR). Researchers in Europe, Japan and U.S.A. have concentrated efforts in the VPR structural and fracture analysis, conducting experiments to best understand how specific factors act on the behavior of discontinuities, under PTS loading conditions. The main goal of this work is to study de structural behavior of an 'in scale' PWR nuclear reactor pressure vessel model, containing actual discontinuities, under loading conditions generated by a pressurized thermal shock. To construct the pressure vessel model utilized in this research, the approach developed by Barroso (1995) and based on likelihood studies, related to thermal-hydraulic behavior during the PTS was employed. To achieve the objective of this research, a new methodology to generate cracks, with known geometry and localization in the vessel model wall was developed. Additionally, an hydraulic circuit, able to flood the vessel model, heated to 300 deg C, with 10 m 3 of water at 8 deg C, in 170 seconds, was built. Thermo-hydraulic calculations using RELAP5/M0D 3.2.2γ computational code were done, to estimate the temperature profiles during the cooling time. The resulting data subsidized the thermo-structural calculations that were accomplished using ANSYS 7.01 computational code, for both 2D and 3D models. So, the stress profiles obtained with these calculations were associated with fracture mechanics concepts, to assess the crack growth behavior in the VPR model wall. After the PTS test, the VPR model was submitted to destructive and non-destructive inspections. The results

  4. RCC-M - Design and Conception Rules for Mechanical Components of PWR Nuclear Islands

    International Nuclear Information System (INIS)

    2007-01-01

    The design and construction rules applicable to mechanical components of PWR Nuclear Islands (RCC-M) are a part of the collection of design and construction rules for nuclear power plants. It covers the rules applicable to the design and manufacture of pressure boundaries of mechanical equipment of pressurized water reactors (PWR). The pressure components subject to the RCC-M are specified in A 4000. They include the reactor fluid systems (primary, secondary and auxiliary systems) and other components which are not subject to pressure: vessel internals, supports for pressure components subject to the RCC-M, nuclear island storage tanks. When a pressure equipment is subject to the RCC-M, all its elements subject to pressure are also, in accordance with the provisions of A 4000, and these elements are the same class as the component. In this case all the provisions of the RCC-M are applicable: design, procurement, manufacture, inspection and pressure testing. Elements which are not subject to pressure and which are subject to the RCC-M may be covered within the Code by limited specific provisions (procurement of materials for example). The other rules applicable to this equipment must be in contractual form. The assemblies comprising pressure equipment assembled by a manufacturer to constitute an integrated and functional whole, shall be subject to the rules indicated in this Code. Main objectives of Code Requirements are to ensure the integrity and mechanical stability over the equipment design life. Function ability and operability of equipment are not directly addressed in the Code. The RCC-M contributes to ensuring compliance with regulatory requirements. These requirements depend on the applicable regulatory context. The RCC-M is representative of the state of the art as concerns the design and manufacture of PWR components, ensuring an overall safety level tested through experience. The RCC-M consists of five sections, which provide rules for the design and

  5. MELCOR 1.8.2 assessment: Surry PWR TMLB` (with a DCH study)

    Energy Technology Data Exchange (ETDEWEB)

    Kmetyk, L.N.; Cole, R.K. Jr.; Smith, R.C.; Summers, R.M.; Thompson, S.L.

    1994-02-01

    MELCOR is a fully integrated, engineering-level computer code, being developed at Sandia National Laboratories for the USNRC. This code models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRs. As part of an ongoing assessment program, the MELCOR computer code has been used to analyze a station blackout transient in Surry, a three-loop Westinghouse PWR. Basecase results obtained with MELCOR 1.8.2 are presented, and compared to earlier results for the same transient calculated using MELCOR 1.8.1. The effects of new models added in MELCOR 1.8.2 (in particular, hydrodynamic interfacial momentum exchange, core debris radial relocation and core material eutectics, CORSOR-Booth fission product release, high-pressure melt ejection and direct containment heating) are investigated individually in sensitivity studies. The progress in reducing numeric effects in MELCOR 1.8.2, compared to MELCOR 1.8.1, is evaluated in both machine-dependency and time-step studies; some remaining sources of numeric dependencies (valve cycling, material relocation and hydrogen burn) are identified.

  6. The Analysis of PWR SBO Accident with RELAP5 Based on Linux

    Science.gov (United States)

    Xia, Zhimin; Zhang, Dafa

    RELAP5 is a relatively advanced light water reactor transient hydraulic and thermal analysis code, and it owns the signality of the safe-operating of nuclear reactor system when the safety analysis and operating simulation of the system was done with RELAP5. The RELAP5 operating mode based on Linux operating system was presented in this paper, utilizing Linux operating system's powerful document processing capabilities to deal with the output file of the RELAP5 for the valid data directly, and taking advantage of the system's programmable capabilities to improve the drawing functions of RELAP5. After the operating in Linux system, the precision of the calculating results is guaranteed and the period of the computing is shortened. During the work, for PWR Station Blackout (SBO) accident, the computing with RELAP5 based on Linux and Windows was respectively made. Through the comparison and analysis of the accident response curve of the main parameters such as power of nuclear reactor, average temperature and pressure of primary loop, it shows the operating analysis of nuclear reactor system is safe and reliable with RELAP5 based on Linux.

  7. PWR [pressurized water reactor] optimal reload configuration with an intelligent workstation

    International Nuclear Information System (INIS)

    Greek, K.J.; Robinson, A.H.

    1990-01-01

    In a previous paper, the implementation of a pressurized water reactor (PWR) refueling expert system that combined object-oriented programming in Smalltalk and a FORTRAN power calculation to evaluate loading patterns was discussed. The expert system applies heuristics and constraints that lead the search toward an optimal configuration. Its rate of improvement depends on the expertise coded for a search and the loading pattern from where the search begins. Due to its complexity, however, the solution normally cannot be served by a rule-based expert system alone. A knowledge base may take years of development before final acceptance. Also, the human pattern-matching capability to view a two-dimensional power profile, recognize an imbalance, and select an appropriate response has not yet been surpassed by a rule-based system. The user should be given the ability to take control of the search if he believes the solution needs a new direction and should be able to configure a loading pattern and resume the search. This paper introduces the workstation features of Shuffle important to aid the user to manipulate the configuration and retain a record of the solution

  8. Ductile crack growth resistance of PWR components. Application for structural integrity assessment

    International Nuclear Information System (INIS)

    Bethmont, M.; Eripret, C.; Le Delliou, P.; Frund, J.M.

    1995-01-01

    Structural integrity assessment of PWR components, as pressure vessel and piping, needs to evaluate the ductile crack growth resistance which is generally characterized by J resistance curves (or J-R curves) based on the path-independent J Integral. These curves are more often obtained from laboratory tests with small specimens as CT-specimens and their application to large component safety analysis could be questionable Indeed, it is well known that J-R curves could depend on the specimen size and on the loading mode (i.e. bending stress versus tensile stress) but this dependency could be different from one material to another. This means that it would depend not only on the stress-strain state but also on the actual local fracture mechanisms (i. e. the damage) occurring before the crack initiation or during the crack propagation. The purpose of this paper is to gather some results of crack growth resistance measurement studied at EDF with different materials in order to show how the effect of the parameters, as specimen geometry and mode of loading, is directly related to the local fracture mechanisms or the microstructure of the materials. For that a number of results are analysed by means of the local approach of fracture which is a very useful tool to predict quantitatively the J-R curve dependency, related to fracture mechanisms (authors). 12 refs., 9 figs

  9. Precursor evolution and SCC initiation of cold-worked alloy 690 in simulated PWR primary water

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Ziqing; Kruska, Karen; Toloczko, Mychailo B.; Bruemmer, Stephen M.

    2017-03-27

    Stress corrosion crack initiation of two thermally-treated, cold-worked (CW) alloy 690 materials was investigated in 360oC simulated PWR primary water using constant load tensile (CLT) tests and blunt notch compact tension (BNCT) tests equipped with direct current potential drop (DCPD) for in-situ detection of cracking. SCC initiation was not detected by DCPD for the 21% and 31%CW CLT specimens loaded at their yield stress after ~9,220 h, however intergranular (IG) precursor damage and isolated surface cracks were observed on the specimens. The two 31%CW BNCT specimens loaded at moderate stress intensity after several cyclic loading ramps showed DCPD-indicated crack initiation after 10,400h exposure at constant stress intensity, which resulted from significant growth of IG cracks. The 21%CW BNCT specimens only exhibited isolated small IG surface cracks and showed no apparent DCPD change throughout the test. Interestingly, post-test cross-section examinations revealed many grain boundary (GB) nano-cavities in the bulk of all the CLT and BNCT specimens particularly for the 31%CW materials. Cavities were also found along GBs extending to the surface suggesting an important role in crack nucleation. This paper provides an overview of the evolution of GB cavities and will discuss their effects on crack initiation in CW alloy 690.

  10. Analyses of PWR spent fuel composition using SCALE and SWAT code systems to find correction factors for criticality safety applications adopting burnup credit

    International Nuclear Information System (INIS)

    Shin, Hee Sung; Suyama, Kenya; Mochizuki, Hiroki; Okuno, Hiroshi; Nomura, Yasushi

    2001-01-01

    The isotopic composition calculations were performed for 26 spent fuel samples from the Obrigheim PWR reactor and 55 spent fuel samples from 7 PWR reactors using the SAS2H module of the SCALE4.4 code system with 27, 44 and 238 group cross-section libraries and the SWAT code system with the 107 group cross-section library. For the analyses of samples from the Obrigheim PWR reactor, geometrical models were constructed for each of SCALE4.4/SAS2H and SWAT. For the analyses of samples from 7 PWR reactors, the geometrical model already adopted in the SCALE/SAS2H was directly converted to the model of SWAT. The four kinds of calculation results were compared with the measured data. For convenience, the ratio of the measured to calculated values was used as a parameter. When the ratio is less than unity, the calculation overestimates the measurement, and the ratio becomes closer to unity, they have a better agreement. For many important nuclides for burnup credit criticality safety evaluation, the four methods applied in this study showed good coincidence with measurements in general. More precise observations showed, however: (1) Less unity ratios were found for Pu-239 and -241 for selected 16 samples out of the 26 samples from the Obrigheim reactor (10 samples were deselected because their burnups were measured with Cs-137 non-destructive method, less reliable than Nd-148 method the rest 16 samples were measured with); (2) Larger than unity ratios were found for Am-241 and Cm-242 for both the 16 and 55 samples; (3) Larger than unity ratios were found for Sm-149 for the 55 samples; (4) SWAT was generally accompanied by larger ratios than those of SAS2H with some exceptions. Based on the measured-to-calculated ratios for 71 samples of a combined set in which 16 selected samples and 55 samples were included, the correction factors that should be multiplied to the calculated isotopic compositions were generated for a conservative estimate of the neutron multiplication factor

  11. Scoping Study Investigating PWR Instrumentation during a Severe Accident Scenario

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J. L. [Rempe and Associates, LLC, Idaho Falls, ID (United States); Knudson, D. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lutz, R. J. [Lutz Nuclear Safety Consultant, LLC, Asheville, NC (United States)

    2015-09-01

    The accidents at the Three Mile Island Unit 2 (TMI-2) and Fukushima Daiichi Units 1, 2, and 3 nuclear power plants demonstrate the critical importance of accurate, relevant, and timely information on the status of reactor systems during a severe accident. These events also highlight the critical importance of understanding and focusing on the key elements of system status information in an environment where operators may be overwhelmed with superfluous and sometimes conflicting data. While progress in these areas has been made since TMI-2, the events at Fukushima suggests that there may still be a potential need to ensure that critical plant information is available to plant operators. Recognizing the significant technical and economic challenges associated with plant modifications, it is important to focus on instrumentation that can address these information critical needs. As part of a program initiated by the Department of Energy, Office of Nuclear Energy (DOE-NE), a scoping effort was initiated to assess critical information needs identified for severe accident management and mitigation in commercial Light Water Reactors (LWRs), to quantify the environment instruments monitoring this data would have to survive, and to identify gaps where predicted environments exceed instrumentation qualification envelop (QE) limits. Results from the Pressurized Water Reactor (PWR) scoping evaluations are documented in this report. The PWR evaluations were limited in this scoping evaluation to quantifying the environmental conditions for an unmitigated Short-Term Station BlackOut (STSBO) sequence in one unit at the Surry nuclear power station. Results were obtained using the MELCOR models developed for the US Nuclear Regulatory Commission (NRC)-sponsored State of the Art Consequence Assessment (SOARCA) program project. Results from this scoping evaluation indicate that some instrumentation identified to provide critical information would be exposed to conditions that

  12. Issues and remedies for secondary system of PWR/VVER

    International Nuclear Information System (INIS)

    Nordmann, Francis; Odar, Suat; Rochester, Dewey

    2012-09-01

    Secondary side degradation of steam generators (SG) and Flow Accelerated Corrosion (FAC) in the secondary system have been for a long time important issues in PWR and VVER types of Nuclear Power Plants. With the evolution of the design, the most important issues are progressively moving from secondary side corrosion of Alloy 600 SG tubing, which is being replaced, to a larger variety of risks associated with potential inadequate chemistries. As far as FAC of carbon steel is concerned, the evolution of treatment selection for minimizing corrosion products transport toward the SG, as well as progressive replacement of components in the feedwater train, decreases the risk of dramatic failures which have occurred in the past. After having briefly explained the reason for the past problems encountered in the secondary system of PWR and VVER, this paper evaluates the risk associated with various impurities or contaminants that may be present in the secondary system and how to mitigate them in the most appropriate, efficient, economical and environmental friendly way. The covered species are sodium, calcium, magnesium, chloride, sulfate and sulfur compounds, fluorides, organic compounds, silica, oxygen, lead, ion exchange resins. This paper also proposes the best remedies for mitigating the new issues that may be encountered in operating plants or units under construction. These are mainly: - Selecting a steam water treatment able to minimize the quantity of corrosion products transported toward the SG; - Mitigating the risk of Flow Induced Vibration by a proper control of deposits in sensitive areas; - Minimizing the risk of concentration of impurities in local areas where they may induce corrosion; - Avoiding the presence of abnormal quantities of some species in SG, such as the detrimental presence of lead and ion exchange resin debris or the controversial presence of organic compounds; - Optimizing costs of maintenance activities (SG mechanical, chemical cleaning

  13. Effect of cyclic loadings on the stress corrosion crack growth rate in Alloy 600 in PWR primary water

    Energy Technology Data Exchange (ETDEWEB)

    Guerre, Catherine; Raquet, Olivier [CEA, DEN/DPC/SCCME/LECA, bat.458, 91191 Gif-sur-Yvette Cedex (France); Duisabeau, Laure [CEA, DEN/DMN/SEMI/LCMI, bat.625, 91191 Gif-sur-Yvette Cedex (France); Turluer, G. [IRSN, DSR/SAMS, BP17, 92262 Fontenay-aux-roses Cedex (France)

    2004-07-01

    Fatigue air pre-cracked Compact Tensile (CT) specimens in Alloy 600 were tested in primary water (325 deg. C) of Pressurized Water Reactors (PWR). In order to assess the effect of cyclic loading on crack growth, CT specimens are tested under constant loadings and low frequencies cyclic loadings: triangular and saw-tooth. Two Alloy 600 materials, with different intrinsic susceptibility to Stress Corrosion Cracking (SCC), are studied. Crack growth rates are monitored in-situ by the direct current potential drop method and are validated by postmortem observations. Fracture surfaces are characterized by macroscopic and microscopic observations. Comparison of the crack growth rate and of the fracture features demonstrated that they depend on the characteristics of the mechanical loading (constant, triangular or sawtooth) and on the material intrinsic sensibility to SCC. (authors)

  14. The deformation of PWR fuel in a LOCA

    International Nuclear Information System (INIS)

    Mann, C.A.; Hindle, E.D.; Parsons, P.D.

    1982-04-01

    Available world-wide published data on the deformation of PWR fuel in a loss-of-coolant accident are reviewed. Adequate data exist for the oxidation of Zircaloy up to about 1500 0 C; data are increasingly sparse above this temperature and lacking above the melting point. The US NRC criteria for embrittlement are discussed and considered adequate for undeformed cladding, though they may be less so for deformed thinned material. Cladding deformation and the factors controlling it are considered in the light of data from the US, Germany, Japan and the UK. It is concluded that strains in the range 30% - 70% can be produced in experiments simulating LOCA conditions. The behaviour of cladding is strongly influenced by the spatial distribution of temperature, which is in turn dependent on heat transfer mechanisms at the surfaces of the cladding. No realistic experiment, i.e. one with a multirod array and simulated cooling, has produced deformations which would inhibit quenching. Such experiments have not, however, as yet covered the entire range of conditions which might obtain following a LOCA. (author)

  15. Sizewell B: consent application for Britain's first PWR power station

    International Nuclear Information System (INIS)

    1981-02-01

    The Central Electricity Generating Board has applied to the Secretary of State for Energy for consent and for other necessary permissions to construct a nuclear power station of about 1200 MW output capacity based on the pressurised water reactor (PWR) system on the Board's existing site at Sizewell (near Leiston) in Suffolk to be known as Sizewell B. Application has also been made to the Health and Safety Executive to extend the existing nuclear site licence to permit the use of the site for a pressurised water reactor. The Secretary of State for Energy has already stated that a Public Inquiry will be held into the application and this is expected to take place in 1982. The Board is making these applications now to give ample time for public discussion and consultation. Construction of the station could not begin until the outcome of the Public Inquiry is known and the necessary consents, nuclear licence and clearances have been given. The text of the application is presented. Some background information is given. (author)

  16. Effect of component aging on PWR control rod drive systems

    International Nuclear Information System (INIS)

    Grove, E.; Gunther, W.; Sullivan, K.

    1992-01-01

    An aging assessment of PWR control rod drive (CRD) systems has been completed as part of the US NRC Nuclear Plant Aging Research (NPAR) Program. The design, construction, maintenance, and operation of the Babcock ampersand Wilcox (B ampersand W), Combustion Engineering (CE), and Westinghouse (W) systems were evaluated to determine the potential for degradation as each system ages. Operating experience data were evaluated to identify the predominant failure modes, causes, and effects. This, coupled with an assessment of the materials of construction and operating environment, demonstrate that each design is subject to degradation, which if left unchecked, could affect its safety function as the plant ages. An industry survey, conducted with the assistance of EPRI and NUMARC, identified current CRD system maintenance and inspection practices. The results of this survey indicate that some plants have performed system modifications, replaced components, or augmented existing preventive maintenance practices in response to system aging. The survey results also supported the operating experience data, which concluded that the timely replacement of degraded components, prior to failure, was not always possible using existing condition monitoring techniques. The recommendations presented in this study also include a discussion of more advanced monitoring techniques, which provide trendable results capable of detecting aging

  17. Plutonium thermal utilization in PWR in Mihama No. 1 plant

    International Nuclear Information System (INIS)

    Yokote, Mitsuhiro; Kondo, Yoshiaki; Shimada, Shouichirou; Abeta, Sadaaki.

    1992-01-01

    On December 20, 1991, the use of four MOX fuels charged in Mihama No. 1 plant for three cycles ended, which is the verification project with small number of specimens on the plutonium thermal utilization in PWRs in Japan. There was not any symptom of showing abnormality in the safety of the core and the soundness of the fuel during the use. In this report, the verification project and the results are explained. In spent fuel, reusable fission substances such as Pu-239 and Pu-241 produced from U-235 and U-238 are contained. By recycling and effectively utilizing them, resources are protected and the effect to environment is reduced, the energy security in Japan with poor resources can be heightened, and waste management becomes proper. The course of the plutonium thermal utilization in PWR project in Mihama No. 1 plant, the design of MOX fuel and the core, the manufacture of MOX fuel in USA and its transport to Japan, the preservation, practical use and operation management of MOX fuel, the charging of MOX fuel in Mihama No. 1 plant and the use, and the plan of the plutonium thermal utilization in PWRs for hereafter are reported. (K.I.)

  18. Fluid-structure interactions in PWR vessels during blowdown

    International Nuclear Information System (INIS)

    Schumann, U.; Enderle, G.; Katz, F.; Ludwig, A.; Moesinger, H.; Schlechtendahl, E.G.

    1979-01-01

    For analysis of blowdown loadings and dynamic response of PWR vessel internals several computer codes have been developed at Karlsruhe. The goal is to provide advanced codes which permit a 'best estimate' analysis of the deformations and stresses of the internal structures, in particular the core barrel, such that the safety margins can be evaluated. The stresses reach their maxima during the initial subcooled period of the blowdown in which two-phase phenomena are important in the blowdown pipe only. In this period, the computed results with and without fluid-structural interactions show that the coupling between the water in the downcomer and the rather thin elastic core barrel is of dominant importance. Without coupling the core barrel oscillates with much higher frequencies than with coupling. The amplitudes and stresses are about twice as large initially. Later, the decoupled analysis can result in a meaningless overestimation of the structural response. By comparison of computations for incompressible and for compressible fluid with and without coupling we have found that a correct treatment of the fluid-structure coupling is more important than the description of pressure waves. (orig.)

  19. Mitsubishi PWR nuclear fuel with advanced design features

    Energy Technology Data Exchange (ETDEWEB)

    Kaua Goe, Toshiy Uki; Nuno kawa, Koi Chi [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    2008-10-15

    In the last few decades, the global warming has been a big issue. As the breakthrough in this crisis, advanced operations of the water reactor such as higher burn up, longer cycle, and up rating could be effective ways. From this viewpoint, Mitsubishi Heavy Industries (MHI) has developed the fuel for burn up extension, whose assembly burn-up limit is 55GWd/t(A), with the original and advanced designs such as corrosion resistant cladding material MDA, and supplied to Japanese PWR utilities. On the other hand, MHI intends to supply more advanced fuel assemblies not only to domestic market but to the global market. Actually MHI has submitted the application for standard design certification of USA . Advanced Pressurized Water Reactor on Jan. 2nd 2008. The fuel assembly for US APWR is 17x17 type with active fuel length of 14ft, characterized with three features, to {sup E}nhance Fuel Economy{sup ,} {sup E}nable Flexible Core Operation{sup ,} and to {sup I}mprove Reliability{sup .} MHI has also been conducting development activities for more advanced products, such as 70GWd/t(A) burn up limit fuel with cladding, guide thimble and spacer grid made from M-MDATM alloy that is new material with higher corrosion resistance, such as 12ft and 14ft active length fuel, such as fuel with countermeasure against grid fretting, debris fretting, and IRI. MHI will present its activities and advanced designs.

  20. Optimal design of passive containment cooling system for innovative PWR

    Directory of Open Access Journals (Sweden)

    Huiun Ha

    2017-08-01

    Full Text Available Using the Generation of Thermal-Hydraulic Information for Containments (GOTHIC code, thermal-hydraulic phenomena that occur inside the containment have been investigated, along with the preliminary design of the passive containment cooling system (PCCS of an innovative pressurized water reactor (PWR. A GOTHIC containment model was constructed with reference to the design data of the Advanced Power Reactor 1400, and report related PCCS. The effects of the design parameters were evaluated for passive containment cooling tank (PCCT geometry, PCCS heat exchanger (PCCX location, and surface area. The analyzed results, obtained using the single PCCT, showed that repressurization and reheating phenomena had occurred. To resolve these problems, a coupled PCCT concept was suggested and was found to continually decrease the containment pressure and temperature without repressurization and reheating. If the installation level of the PCCX is higher than that of the PCCT, it may affect the PCCS performance. Additionally, it was confirmed that various means of increasing the external surface area of the PCCX, such as fins, could help improve the energy removal performance of the PCCS. To improve the PCCS design and investigate its performance, further studies are needed.

  1. Optimal design of passive containment cooling system for innovative PWR

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Huiun; Lee, Sang Won; Kim, Hangon [Central Research Institute, Korea Hydro and Nuclear Power, Ltd., Daejeon (Korea, Republic of)

    2017-08-15

    Using the Generation of Thermal-Hydraulic Information for Containments (GOTHIC) code, thermal-hydraulic phenomena that occur inside the containment have been investigated, along with the preliminary design of the passive containment cooling system (PCCS) of an innovative pressurized water reactor (PWR). A GOTHIC containment model was constructed with reference to the design data of the Advanced Power Reactor 1400, and report related PCCS. The effects of the design parameters were evaluated for passive containment cooling tank (PCCT) geometry, PCCS heat exchanger (PCCX) location, and surface area. The analyzed results, obtained using the single PCCT, showed that repressurization and reheating phenomena had occurred. To resolve these problems, a coupled PCCT concept was suggested and was found to continually decrease the containment pressure and temperature without repressurization and reheating. If the installation level of the PCCX is higher than that of the PCCT, it may affect the PCCS performance. Additionally, it was confirmed that various means of increasing the external surface area of the PCCX, such as fins, could help improve the energy removal performance of the PCCS. To improve the PCCS design and investigate its performance, further studies are needed.

  2. Optimal design of passive containment cooling system for innovative PWR

    International Nuclear Information System (INIS)

    Ha, Huiun; Lee, Sang Won; Kim, Hangon

    2017-01-01

    Using the Generation of Thermal-Hydraulic Information for Containments (GOTHIC) code, thermal-hydraulic phenomena that occur inside the containment have been investigated, along with the preliminary design of the passive containment cooling system (PCCS) of an innovative pressurized water reactor (PWR). A GOTHIC containment model was constructed with reference to the design data of the Advanced Power Reactor 1400, and report related PCCS. The effects of the design parameters were evaluated for passive containment cooling tank (PCCT) geometry, PCCS heat exchanger (PCCX) location, and surface area. The analyzed results, obtained using the single PCCT, showed that repressurization and reheating phenomena had occurred. To resolve these problems, a coupled PCCT concept was suggested and was found to continually decrease the containment pressure and temperature without repressurization and reheating. If the installation level of the PCCX is higher than that of the PCCT, it may affect the PCCS performance. Additionally, it was confirmed that various means of increasing the external surface area of the PCCX, such as fins, could help improve the energy removal performance of the PCCS. To improve the PCCS design and investigate its performance, further studies are needed

  3. Break location effects on PWR small break LOCA phenomena

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro

    1989-01-01

    The report presents experimental results of a small lower plenum break test of SB-PV-01 conducted at the large-Scale Test Facility (LSTF) of the Rig-of-Safety Assessment (ROSA)-IV program. This test simulates a loss-of-coolant accident (LOCA) caused by instrument tubes break (break area corresponds to 0.5% of the cold leg flow area) in a Westinghouse-type pressurized water reactor (PWR) assuming both manual actuation for all of the high pressure injection (HPI) systems and failure of the auxiliary feedwater systems. The report clarifies long-term system responses, especially the core cooling conditions related to the primary mass inventory. Also it clarifies break location effects on small break LOCA phenomena by comparing other five similar LOCA tests with break locations at cold leg, hot leg, upper head, pressurizer top (TMI-type) and SG U-tubes. It is coucluded that the lower plenum break is the severest on core heatup due to the highest break flow rate and the least primary mass recovery after the ECCS among the six tests. (author)

  4. Source term aspects associated with future PWR containment systems

    International Nuclear Information System (INIS)

    Kuczera, B.; Kebler, G.; Ehrhardt, J.; Scholtyssek, W.

    1994-01-01

    The overall objective of reactor safety is to protect the population against dangerous releases of radioactive materials from nuclear power plants. In context with a reinforcement of the defense-in-depth strategy the common safety requirements on future nuclear power plants converge in the objective that these plants should be so safe that even in case of a severe accident there will be no need of off-site emergency actions such as an evacuation or resettlement of the population from the vicinity of a nuclear power plant. It is shown by the example of a future 1400 MWe pressurized water reactor (PWR) plant that this goal can be attained in principle by providing a double containment with the annulus vented via an appropriate emergency standby filter. Within the framework of severe accident consequence mitigation a set of parameters for accident conditions and emergency filter efficiencies is elaborated under which the German lower levels of intervention for evacuation are not attained. (author). 10 refs., 3 tabs., 5 figs

  5. Structural integrity evaluation of PWR nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Cruz, Julio R.B.; Mattar Neto, Miguel

    1999-01-01

    The reactor pressure vessel (RPV) is the most important structural component of a PWR nuclear power plant. It contains the reactor core and is the main component of the primary system pressure boundary, the system responsible for removing the heat generated by the nuclear reactions. It is considered not replaceable and, therefore, its lifetime is a key element to define the plant life as a whole. Three critical issues related to the reliability of the RPV structural integrity come out by reason of the radiation damage imposed to the vessel material during operation. These issues concern the definition of pressure versus temperature limits for reactor heatup and cooldown, pressurized thermal shock evaluation and assessment of reactor vessels with low upper shelf Charpy impact energy levels. This work aims to present the major aspects related to these topics. The requirements for preventing fracture of the RPV are reviewed as well as the available technology for assessing the safety margins. For each mentioned problem, the several steps for structural integrity evaluation are described and the analysis methods are discussed. (author)

  6. Aerosols behavior inside a PWR during an accident

    International Nuclear Information System (INIS)

    Hervouet, C.

    1983-01-01

    During very hypothetical accidents occurring in a pressurized water ractor, radioactive aerosols can be released, during core-melt, inside the reactor containment building. A good knowledge of their behavior in the humid containment atmosphere (mass concentration and size distribution) is essential in order to evaluate their harmfulness in case of environment contamination and to design possible filtration devices. Accordingly the Safety Analysis Department of the Atomic Energy Commission uses several computer models, describing the particle formation (BOIL/MARCH), then behavior in the primary circuits (TRAP-MELT), and in the reactor containment building (AEROSOLS-PARFDISEKO-III B). On the one hand, these models have been improved, in particular the one related to the aerosol formation (nature and mass of released particles) using recent experimental results. On the other hand, sensitivity analyses have been performed with the AEROSOLS code which emphasize the particle coagulation parameters: agglomerate shape factors and collision efficiency. Finally, the different computer models have been applied to the study of aerosol behavior during a 900 MWe PWR accident: loss-of-coolant-accident (small break with failure of all safety systems) [fr

  7. Water chemistry control of PWR nuclear power plant

    International Nuclear Information System (INIS)

    Hino, Yuichi; Makino, Ichiro; Yamauchi, Sumio; Fukuda, Fumihito.

    1992-01-01

    In PWR power plants, the primary system taking heat out of nuclear reactors and the secondary system generating steam and driving turbines are completely separated by steam generators, accordingly, by mutually independent water treatment, both systems are to be maintained in the optimal conditions. Namely, primary system is the closed water circulation circuit of simple liquid phase though under high temperature, high pressure condition, therefore, water shows the stable physical and chemical properties, and the minute water treatment for restraining the corrosion of structural materials and reducing radioactivity can be done. Secondary system is similar to the condensate and feedwater system of thermal power plants, and is the circuit for liquid-vapor two-phase transformation, but due to the local concentration of impurities by evaporation, the strict requirement is set for secondary water quality. However, secondary system can be treated in the state without radioactivity, and this is a great merit. The outline, basic concept and execution of primary water quality control, and the outline, concept, control criteria, facilities and execution of secondary water quality control are reported. (K.I.)

  8. Qualification tests for PWR control element drive mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Yong; Jin, Choon Eon; Choi Suhn [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-01-01

    It is necessary to perform the qualification test for the magnetic jack type CEDM to show the design compatibility because the CEDM is composed of many mechanical and electrical components complicatedly. ABB-CE performed various qualification tests during the development of the System80 CEDM to which Korea Standard Nuclear Plant (KSNP) CEDM referred. The qualification test for the CEDM is classified into the performance test and the dynamic test. The performance test is to verify operability of the CEDM, and the dynamic test is to find dynamic characteristics and to verify the structural integrity if the CEDM for the seismic accidents. Described in this report are the test requirements, the test facilities and the test methods for the performance and the dynamic qualification tests of the PWR magnetic jack type CEDM. The impacts of the design changes in the Korea Next Generation Reactor (KNGR) on the KSNP CEDM were analyzed to present the necessity for the tests. This report also proposes the facilities to perform the tests in KAERI including reasonable schedule for the tests. Attached to this report is the summary of qualification tests of System 80 CEDM performed by ABB-CE. 20 figs., 16 tabs., 21 refs. (Author) .new.

  9. Improvements of nuclear fuel management in pressurized water reactors (PWR)

    International Nuclear Information System (INIS)

    Schwartz, J.P.

    1978-07-01

    The severe variations to which the different elements contributing to the determination of the fuel cycle cost are subjected have led to a reopening of the problem of ''optimization'' of nuclear fuel management. The increase in costs of uranium ore, isotope separation work units (swu), reprocessing, the political implications of proliferation associated with the employment of reprocessing operations have been at the origin of a reassessment of present-day management. It therefore appeared to be appropriate to study variants with respect to a reference mode represented by the management of the PWR 900 MWe systems, without burnable poison in the cycle at equilibrium (Case 3 of Table 1). In order to obtain a complete view of impacts of such modifications, computations were carried out as far as the appraisal of the cycle cost and with reprocessing. There has likewise been added to this the estimate of the gain anticipated from certain improvements in the neutron balance contributed at the level of the lattice

  10. Integrated training support system for PWR operator training simulator

    International Nuclear Information System (INIS)

    Sakaguchi, Junichi; Komatsu, Yasuki

    1999-01-01

    The importance of operator training using operator training simulator has been recognized intensively. Since 1986, we have been developing and providing many PWR simulators in Japan. We also have developed some training support systems connected with the simulator and the integrated training support system to improve training effect and to reduce instructor's workload. This paper describes the concept and the effect of the integrated training support system and of the following sub-systems. We have PES (Performance Enhancement System) that evaluates training performance automatically by analyzing many plant parameters and operation data. It can reduce the deviation of training performance evaluation between instructors. PEL (Parameter and Event data Logging system), that is the subset of PES, has some data-logging functions. And we also have TPES (Team Performance Enhancement System) that is used aiming to improve trainees' ability for communication between operators. Trainee can have conversation with virtual trainees that TPES plays automatically. After that, TPES automatically display some advice to be improved. RVD (Reactor coolant system Visual Display) displays the distributed hydraulic-thermal condition of the reactor coolant system in real-time graphically. It can make trainees understand the inside plant condition in more detail. These sub-systems have been used in a training center and have contributed the improvement of operator training and have gained in popularity. (author)

  11. Tendency of nuclear pumps for PWR primary system

    International Nuclear Information System (INIS)

    Shibata, Takeshi

    1976-01-01

    At present, large PWR power stations of more than 1,000 MW are successively constructed, and the pumps used there have become large. The progress and tendency of the technical development of main pumps in primary system are described. The increase of the capacity of power stations is accomplished by increasing the circulating coolant quantity per loop or the number of loops. Same standard primary coolant pumps are employed in the plants from 500 to 1,100 MW. The type of primary coolant pumps changed from canned type to shaft seal type, and the advantages of the shaft seal type are cheap production cost, high efficiency, and the easy utilization of inertia force. The bearings and shaft seals are thermally insulated from primary coolant. As for auxiliary pumps, reciprocating filling-up pumps and centrifugal high pressure injection pumps are used for 500 MW plants, but only centrifugal pumps are used for both purposes in 800 MW plants, and in 1,100 MW plants, the pumps of both types for separate purposes and centrifugal pumps for combined purposes are installed. Horizontal or vertical pumps of same type are used as containment vessel-spraying pumps and excess heat-eliminating pumps. The type of boric acid pumps changed from canned type to mechanical seal type. (Kako, I.)

  12. Advanced methods for the study of PWR cores

    International Nuclear Information System (INIS)

    Lambert, M.; Salvatores, St.; Ferrier, A.; Pelet, J.; Nicaise, N.; Pouliquen, J.Y.; Foret, F.; Chauliac, C.; Johner, J.; Cohen, Ch.

    2003-01-01

    This document gathers the transparencies presented at the 6. technical session of the French nuclear energy society (SFEN) in October 2003. The transparencies of the annual meeting are presented in the introductive part: 1 - status of the French nuclear park: nuclear energy results, management of an exceptional climatic situation: the heat wave of summer 2003 and the power generation (J.C. Barral); 2 - status of the research on controlled thermonuclear fusion (J. Johner). Then follows the technical session about the advanced methods for the study of PWR reactor cores: 1 - the evolution approach of study methodologies (M. Lambert, J. Pelet); 2 - the point of view of the nuclear safety authority (D. Brenot); 3 - the improved decoupled methodology for the steam pipe rupture (S. Salvatores, J.Y. Pouliquen); 4 - the MIR method for the pellet-clad interaction (renovated IPG methodology) (E. Baud, C. Royere); 5 - the improved fuel management (IFM) studies for Koeberg (C. Cohen); 6 - principle of the methods of accident study implemented for the European pressurized reactor (EPR) (F. Foret, A. Ferrier); 7 - accident studies with the EPR, steam pipe rupture (N. Nicaise, S. Salvatores); 8 - the co-development platform, a new generation of software tools for the new methodologies (C. Chauliac). (J.S.)

  13. Robots in P.W.R. nuclear powerplants

    International Nuclear Information System (INIS)

    Dubourg, M.

    1987-01-01

    The satisfactory operation of 37 900-MWe PWR powerplants in France, Belgium and South-Africa and the start-up of 1300 MWe powerplants allowed the development of a wide range of automatic units and robots for the periodic maintenance of nuclear plants, reducing the risk of ionizing radiation for the personnel. A large number of automated tools have been built. Among them: - inspection and maintenance systems for the tube bundle of steam generators, - robotized arms ROTETA and ROMEO for the heavy maintenance and delicate operations such as tube extraction or shot peening of tubes to improve their resistance to corrosion; - the versatile manipulator T.A.M. with electrically controlled articulations. The development of functionally versatile tools and robots and the integration of new technologies such as 3-D vision allowed the construction of the self-guided vehicle FRASTAR capable of moving within a nuclear building and in a cluttered environment. This vehicle includes means for avoiding isolated obstacles and can move on stairs [fr

  14. Control rod effects with plutonium recycle in a PWR

    International Nuclear Information System (INIS)

    Nash, G.; Muehl, G.J.; Gibson, I.H.

    1979-03-01

    A study has been made on a PWR loaded partly and wholly with plutonium to determine the changes in shutdown margin compared with an enriched uranium core. Lattice calculations are used to generate cell constants for core calculations. Three fuel loadings were considered, all uranium, 30% (approximately) of the assemblies plutonium in natural uranium, and all plutonium. The equilibrium fuel management schemes adopted in each case are based on the standard three cycle equal size batch scheme. Detailed calculations of power and irradiation distributions through the cycles have been carried out to provide a starting point for the control rod worth and requirement calculations. Control rod worths are reduced in a plutonium core because of the harder spectrum and higher fuel absorption cross sections. Furthermore, the control rod requirements for shutdown increase because of the increase in fuel and moderator temperature coefficients. This results in a reduction in shutdown margin. The magnitude of these changes is fully analysed in the report. The significance of these reductions depends on the detail of the safety argument but reductions of these sizes are unlikely to be acceptable. The data provided in this report could be used to give a first estimate of the plutonium loading acceptable given the safety assessment of the normal uranium core. (U.K.)

  15. Applicability of oxygenated water chemistry for PWR secondary systems

    Energy Technology Data Exchange (ETDEWEB)

    Hermansson, H.P. [Studsvik Nuclear AB, Nykoeping (Sweden); Takiguchi, H.; Otoha, K. [Japan Atomic Power Co., Tokyo (Japan)

    2002-07-01

    Introduction of oxygenated water chemistry (OWC) in PWR secondary side is considered as a means to reduce the transportation of corrosion products into the steam generator and thus also minimizing crevice deposits and subsequent materials problems. One main concern, however, is the risk of inter-granular attack (IGA) in crevices. In order to study effects on crevice tube IGA by OWC, a series of experiments were performed in a steam generator (SG) simulating loop. This comprised a SG tube and a tube support plate (TSP) together forming the crevice. The over-all objective of the work accounted here was to demonstrate that it is possible to operate the steam generator secondary side with OWC without causing intolerable IGA or other types of attack on the tube in the crevice area. Tubes of sensitized Alloy 600 were exposed during a total of nine experiments in an autoclave using a TSP/tube arrangement with an asymmetric crevice design. Experiments were performed at high and low pH and potential under open and packed crevice conditions. The aggressiveness of the crevice environment was also further increased by addition of carbonate and chloride. Furthermore the tube was pressurized. Experimental parameters were monitored on the primary side as well as in the secondary bulk phase and in the crevice. (authors)

  16. PWR loading pattern optimization using Harmony Search algorithm

    International Nuclear Information System (INIS)

    Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.

    2013-01-01

    Highlights: ► Numerical results reveal that the HS method is reliable. ► The great advantage of HS is significant gain in computational cost. ► On the average, the final band width of search fitness values is narrow. ► Our experiments show that the search approaches the optimal value fast. - Abstract: In this paper a core reloading technique using Harmony Search, HS, is presented in the context of finding an optimal configuration of fuel assemblies, FA, in pressurized water reactors. To implement and evaluate the proposed technique a Harmony Search along Nodal Expansion Code for 2-D geometry, HSNEC2D, is developed to obtain nearly optimal arrangement of fuel assemblies in PWR cores. This code consists of two sections including Harmony Search algorithm and Nodal Expansion modules using fourth degree flux expansion which solves two dimensional-multi group diffusion equations with one node per fuel assembly. Two optimization test problems are investigated to demonstrate the HS algorithm capability in converging to near optimal loading pattern in the fuel management field and other subjects. Results, convergence rate and reliability of the method are quite promising and show the HS algorithm performs very well and is comparable to other competitive algorithms such as Genetic Algorithm and Particle Swarm Intelligence. Furthermore, implementation of nodal expansion technique along HS causes considerable reduction of computational time to process and analysis optimization in the core fuel management problems

  17. Reversible logic gates on Physarum Polycephalum

    International Nuclear Information System (INIS)

    Schumann, Andrew

    2015-01-01

    In this paper, we consider possibilities how to implement asynchronous sequential logic gates and quantum-style reversible logic gates on Physarum polycephalum motions. We show that in asynchronous sequential logic gates we can erase information because of uncertainty in the direction of plasmodium propagation. Therefore quantum-style reversible logic gates are more preferable for designing logic circuits on Physarum polycephalum

  18. Managing Reverse Logistics or Reversing Logistics Management?

    NARCIS (Netherlands)

    M.P. de Brito (Marisa)

    2004-01-01

    textabstractIn the past, supply chains were busy fine-tuning the logistics from raw material to the end customer. Today an increasing flow of products is going back in the chain. Thus, companies have to manage reverse logistics as well.This thesis contributes to a better understanding of reverse

  19. PWR-PSMS benchmarking results using thermocouple data from the summer-1 plant

    International Nuclear Information System (INIS)

    Peng, C.M.; Ipakchi, A.; Kim, J.H.

    1986-01-01

    In large pressurized water reactor (PWR) power plants, estimating the in-core power distribution from off-line predictions is based on data from global measurements with conservative assumptions. The off-line predictions are too independent of the actual process to reflect the true state of the reactor. The on-line core monitoring systems tend to balance between measurements and theoretical calculations, better utilizing information coming from measurements. The hybrid system, which incorporates measurements in predictions along with frequent model adaptations, will closely track the actual operating state of the plant. Since the detailed core flux mapping is performed with large time intervals for those PWRs without fixed in-core detectors, the on-line signals from thermocouples located at the top of selected fuel assemblies offer an alternative means of monitoring. The in-core thermocouples give a good indication of the average coolant temperature at the outlet of the instrumented assemblies and potentially can provide continuous information of the radial power distribution between flux maps. The PWR Power Shape Monitoring System (PWR-PSMS) has implemented this on-line monitoring feature based on thermocouple readings to evaluate the core performance and to improve core monitoring. The purpose of this paper is to present the benchmark results of PWR-PSMS using thermocouple data from the Summer-1 plant of a Westinghouse PWR

  20. HIV-1 reverse transcription.

    Science.gov (United States)

    Hu, Wei-Shau; Hughes, Stephen H

    2012-10-01

    Reverse transcription and integration are the defining features of the Retroviridae; the common name "retrovirus" derives from the fact that these viruses use a virally encoded enzyme, reverse transcriptase (RT), to convert their RNA genomes into DNA. Reverse transcription is an essential step in retroviral replication. This article presents an overview of reverse transcription, briefly describes the structure and function of RT, provides an introduction to some of the cellular and viral factors that can affect reverse transcription, and discusses fidelity and recombination, two processes in which reverse transcription plays an important role. In keeping with the theme of the collection, the emphasis is on HIV-1 and HIV-1 RT.

  1. Definition of thermal-hydraulics parameters of a naval PWR via energy balance of a Westinghouse PWR

    International Nuclear Information System (INIS)

    Chaves, Luiz C.; Curi, Marcos F.

    2017-01-01

    In this work, we used the operational parameters of the Angra 1 nuclear power plant, designed by Westinghouse, to estimate the thermal-hydraulic parameters for naval nuclear propulsion, focusing on the analysis of the reactor and steam generator. A thermodynamics analysis was made to reach the operational parameters of primary circuit such as pressure, temperature, power generated among others. Previous studies available in literature of 2-loop Westinghouse Nuclear Power Plants, which is based on a PWR and similar to Angra-1, support this analysis in the sense of a correct procedure to deal with many complex processes to energy generation from a nuclear source. Temperature profiles in reactor and steam generator were studied with concepts of heat transfer, fluid mechanics and also some concepts of nuclear systems, showing the behavior into them. In this simulation, the Angra 1 primary circuit was reduced on a scale of 1: 3.5 to fit in a Scorpène-class submarine. The reactor generates 85.7 MW of total thermal power. The maximum power and temperatures reached were lower than the operational safe limits established by Westinghouse. The number of tubes of the steam generator was determined in 990 U-tubes with 6.3 m of average length. (author)

  2. Definition of thermal-hydraulics parameters of a naval PWR via energy balance of a Westinghouse PWR

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Luiz C.; Curi, Marcos F., E-mail: marcos.curi@cefet-rj.br [Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET-RJ), Rio de Janeiro, RJ (Brazil). Department of Mechanical Engineering

    2017-07-01

    In this work, we used the operational parameters of the Angra 1 nuclear power plant, designed by Westinghouse, to estimate the thermal-hydraulic parameters for naval nuclear propulsion, focusing on the analysis of the reactor and steam generator. A thermodynamics analysis was made to reach the operational parameters of primary circuit such as pressure, temperature, power generated among others. Previous studies available in literature of 2-loop Westinghouse Nuclear Power Plants, which is based on a PWR and similar to Angra-1, support this analysis in the sense of a correct procedure to deal with many complex processes to energy generation from a nuclear source. Temperature profiles in reactor and steam generator were studied with concepts of heat transfer, fluid mechanics and also some concepts of nuclear systems, showing the behavior into them. In this simulation, the Angra 1 primary circuit was reduced on a scale of 1: 3.5 to fit in a Scorpène-class submarine. The reactor generates 85.7 MW of total thermal power. The maximum power and temperatures reached were lower than the operational safe limits established by Westinghouse. The number of tubes of the steam generator was determined in 990 U-tubes with 6.3 m of average length. (author)

  3. Parameterized representation of macroscopic cross section in the PWR fuel element considering burn-up cycles

    Energy Technology Data Exchange (ETDEWEB)

    Belo, Thiago F.; Fiel, Joao Claudio B., E-mail: thiagofbelo@hotmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Nuclear reactor core analysis involves neutronic modeling and the calculations require problem dependent nuclear data generated with few neutron energy groups, as for instance the neutron cross sections. The methods used to obtain these problem-dependent cross sections, in the reactor calculations, generally uses nuclear computer codes that require a large processing time and computational memory, making the process computationally very expensive. Presently, analysis of the macroscopic cross section, as a function of nuclear parameters, has shown a very distinct behavior that cannot be represented by simply using linear interpolation. Indeed, a polynomial representation is more adequate for the data parameterization. To provide the cross sections of rapidly and without the dependence of complex systems calculations, this work developed a set of parameterized cross sections, based on the Tchebychev polynomials, by fitting the cross sections as a function of nuclear parameters, which include fuel temperature, moderator temperature and density, soluble boron concentration, uranium enrichment, and the burn-up. In this study is evaluated the problem-dependent about fission, scattering, total, nu-fission, capture, transport and absorption cross sections for a typical PWR fuel element reactor, considering burn-up cycle. The analysis was carried out with the SCALE 6.1 code package. The results of comparison with direct calculations with the SCALE code system and also the test using project parameters, such as the temperature coefficient of reactivity and fast fission factor, show excellent agreements. The differences between the cross-section parameterization methodology and the direct calculations based on the SCALE code system are less than 0.03 percent. (author)

  4. Analysis of radiation safety for Small Modular Reactor (SMR) on PWR-100 MWe type

    Science.gov (United States)

    Udiyani, P. M.; Husnayani, I.; Deswandri; Sunaryo, G. R.

    2018-02-01

    Indonesia as an archipelago country, including big, medium and small islands is suitable to construction of Small Medium/Modular reactors. Preliminary technology assessment on various SMR has been started, indeed the SMR is grouped into Light Water Reactor, Gas Cooled Reactor, and Solid Cooled Reactor and from its site it is group into Land Based reactor and Water Based Reactor. Fukushima accident made people doubt about the safety of Nuclear Power Plant (NPP), which impact on the public perception of the safety of nuclear power plants. The paper will describe the assessment of safety and radiation consequences on site for normal operation and Design Basis Accident postulation of SMR based on PWR-100 MWe in Bangka Island. Consequences of radiation for normal operation simulated for 3 units SMR. The source term was generated from an inventory by using ORIGEN-2 software and the consequence of routine calculated by PC-Cream and accident by PC Cosyma. The adopted methodology used was based on site-specific meteorological and spatial data. According to calculation by PC-CREAM 08 computer code, the highest individual dose in site area for adults is 5.34E-02 mSv/y in ESE direction within 1 km distance from stack. The result of calculation is that doses on public for normal operation below 1mSv/y. The calculation result from PC Cosyma, the highest individual dose is 1.92.E+00 mSv in ESE direction within 1km distance from stack. The total collective dose (all pathway) is 3.39E-01 manSv, with dominant supporting from cloud pathway. Results show that there are no evacuation countermeasure will be taken based on the regulation of emergency.

  5. Parameter dependence of resonant spin torque magnetization reversal

    International Nuclear Information System (INIS)

    Fricke, L.; Serrano-Guisan, S.; Schumacher, H.W.

    2012-01-01

    We numerically study ultra fast resonant spin torque (ST) magnetization reversal in magnetic tunneling junctions (MTJ) driven by current pulses having a direct current (DC) and a resonant alternating current (AC) component. The precessional ST dynamics of the single domain MTJ free layer cell are modeled in the macro spin approximation. The energy efficiency, reversal time, and reversal reliability are investigated under variation of pulse parameters like direct and AC current amplitude, AC frequency and AC phase. We find a range of AC and direct current amplitudes where robust resonant ST reversal is obtained with faster switching time and reduced energy consumption per pulse compared to purely direct current ST reversal. However, for a certain range of AC and direct current amplitudes a strong dependence of the reversal properties on AC frequency and phase is found. Such regions of unreliable reversal must be avoided for ST memory applications.

  6. Parameter dependence of resonant spin torque magnetization reversal

    Science.gov (United States)

    Fricke, L.; Serrano-Guisan, S.; Schumacher, H. W.

    2012-04-01

    We numerically study ultra fast resonant spin torque (ST) magnetization reversal in magnetic tunneling junctions (MTJ) driven by current pulses having a direct current (DC) and a resonant alternating current (AC) component. The precessional ST dynamics of the single domain MTJ free layer cell are modeled in the macro spin approximation. The energy efficiency, reversal time, and reversal reliability are investigated under variation of pulse parameters like direct and AC current amplitude, AC frequency and AC phase. We find a range of AC and direct current amplitudes where robust resonant ST reversal is obtained with faster switching time and reduced energy consumption per pulse compared to purely direct current ST reversal. However, for a certain range of AC and direct current amplitudes a strong dependence of the reversal properties on AC frequency and phase is found. Such regions of unreliable reversal must be avoided for ST memory applications.

  7. [Acupuncture direction and analgesia].

    Science.gov (United States)

    Sun, Lu; Kou, Renzhong; Liu, Lanqing; Fan, Gangqi

    2017-03-12

    The acupuncture direction is closely related with the efficacy of acupuncture analgesia. In this article, the relationship between efficacy of acupuncture analgesia and factors, such as whether the needle towards disease location, whether the needle towards meridian direction, whether the needle following spinal cord direction and whether the needle following muscle direction, were analyzed. The previous clinical and literature research indicated that the needle towards disease location was superior to reverse direction, however, the efficacy of analgesia between needle following and reversing meridian, needle towards and at disease location, needles following and reversing spinal cord direction, needles following and reversing muscle direction was controversial. Therefore, the solutions to these problems will benefit the optimized acupuncture treatment plan for pain disorders.

  8. Hydraulic test for non-instrumented capsule of advanced PWR fuel pellet

    International Nuclear Information System (INIS)

    Jun, Hyung Gil; Yoon, Y. J.; Chun, S. Y.; Kim, D. H.; Lee, C. B.; Ryu, J.

    2001-04-01

    This report presents the results of pressure drop test, vibration test and endurance test for Non-instrumented Capsule of Advanced PWR Fuel Pellet which were designed fabricated by KAERI. From the pressure drop test results, it is noted that the flow rate across the Non-instrumented Capsule of Advanced PWR Fuel Pellet corresponding to the pressure drop of 200 kPa is measured to be about 7.45 kg/sec. Vibration frequency for the Non-instrumented Capsule of Advanced PWR Fuel Pellet ranges from 13.0 to 32.3 Hz. RMS(Root Mean Square) displacement for the fuel rig is less than 11.6 μm, and the maximum displacement is less than 30.5 μm. The endurance test was carried out for 103 days and 17 hours

  9. Sensitivity Verification of PWR Monitoring System Using Neuro-Expert For LOCA Detection

    International Nuclear Information System (INIS)

    Muhammad Subekti

    2009-01-01

    Sensitivity Verification of PWR Monitoring System Using Neuro-Expert For LOCA Detection. The present research was done for verification of previous developed method on Loss of Coolant Accident (LOCA) detection and perform simulations for knowing the sensitivity of the PWR monitoring system that applied neuro-expert method. The previous research continuing on present research, has developed and has tested the neuro-expert method for several anomaly detections in Nuclear Power Plant (NPP) typed Pressurized Water Reactor (PWR). Neuro-expert can detect the LOCA anomaly with sensitivity of primary coolant leakage of 7 gallon/min and the conventional method could not detect the primary coolant leakage of 30 gallon/min. Neuro expert method detects significantly LOCA anomaly faster than conventional system in Surry-1 NPP as well so that the impact risk is reducible. (author)

  10. Study on PCS heat and mass transfer of advanced PWR with CFD code

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X. G.; Cheng, X. [Shanghai Jiao Tong Univ., Shanghai (China); Wang, F. N.; Zhang, Z. D.; Cheng, X. [State Nuclear Power Technology Company, Beijing (China)

    2012-03-15

    During the hypothetical Double-Ended Cold Leg Guillotine (DECLG) of large advanced pressure water reactor (PWR), a large amount of steam ejects from the break into the containment. Passive containment cooling system (PCS) is implemented to prevent over-pressure and over-temperature. The computational fluid dynamics (CFD) code GASFLOW coupled with Film Coverage and Evaporation Model (FICEM) is applied in this study to analyze the PCS performance during DECLG.FICEM can calculate film coverage rate, film evaporation rate and containment heat removal capability. Results show that the modified GASFLOW version coupled with FICEM is feasible to analyze the thermal-hydraulic behavior in PCS of advanced passive PWR. Capability of PCS for large scale PWR is investigated through using the modified GASFLOW code.

  11. Evaluation and categorization of secondary system layup and cleanup practices for PWR plants

    International Nuclear Information System (INIS)

    Cleary, W.F.

    1982-12-01

    The EPRI Program S113-1, Evaluation of Secondary System Layup and Cleanup Proctices was established to study ways to minimize the transport of corrosion products into the secondary side PWR steam generators that occurs during plant startups following extended outages. As part of the EPRI Program, Task 200 objective was to identify and categorize the layup and cleanup practices now in use or proposed by utilities for PWR plants. The task study consisted of gathering information by conducting site visits to fourteen representative PWR plants in the USA, Europe and Japan, by conducting a search of the open literature, reviews of related EPRI Programs, and by evaluating the practices in terms of their potential effectiveness. The results show that about 30% of the plants attempt routine layup of secondary systems during outages and about 60% perform some form of system cleanup during the return to power following extended outages

  12. Assessment of PWR Steam Generator modelling in RELAP5/MOD2. International Agreement Report

    Energy Technology Data Exchange (ETDEWEB)

    Putney, J.M.; Preece, R.J. [National Power, Leatherhead (GB). Technology and Environment Centre

    1993-06-01

    An assessment of Steam Generator (SG) modelling in the PWR thermal-hydraulic code RELAP5/MOD2 is presented. The assessment is based on a review of code assessment calculations performed in the UK and elsewhere, detailed calculations against a series of commissioning tests carried out on the Wolf Creek PWR and analytical investigations of the phenomena involved in normal and abnormal SG operation. A number of modelling deficiencies are identified and their implications for PWR safety analysis are discussed -- including methods for compensating for the deficiencies through changes to the input deck. Consideration is also given as to whether the deficiencies will still be present in the successor code RELAP5/MOD3.

  13. Assessment of PWR Steam Generator modelling in RELAP5/MOD2

    International Nuclear Information System (INIS)

    Putney, J.M.; Preece, R.J.

    1993-06-01

    An assessment of Steam Generator (SG) modelling in the PWR thermal-hydraulic code RELAP5/MOD2 is presented. The assessment is based on a review of code assessment calculations performed in the UK and elsewhere, detailed calculations against a series of commissioning tests carried out on the Wolf Creek PWR and analytical investigations of the phenomena involved in normal and abnormal SG operation. A number of modelling deficiencies are identified and their implications for PWR safety analysis are discussed -- including methods for compensating for the deficiencies through changes to the input deck. Consideration is also given as to whether the deficiencies will still be present in the successor code RELAP5/MOD3

  14. Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR) are compared

    International Nuclear Information System (INIS)

    Greneche, D.

    2014-01-01

    This article compares the 2 types of light water reactors that are used to produce electricity: the Pressurized Water Reactor (PWR) and the Boiling Water Reactor (BWR). Historically the BWR concept was developed after the PWR concept. Today 80% of light water reactors operating in the world are of PWR-type. This comparison is comprehensive and detailed. First the main technical features are reviewed and compared: reactor architecture, core and fuel design, reactivity control, reactor vessel, cooling systems and reactor containment. Secondly, various aspects concerning reactor operations like reactor control, fuel management, maintenance, inspections, radiation protection, waste generation and reactor reliability are presented and compared for both reactors. As for the issue of safety, it is highlighted that the accidental situations are too different for the 2 reactors to be compared. The main features of reactor safety are explained for both reactors

  15. Principles of a reversible programming language

    DEFF Research Database (Denmark)

    Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert

    2008-01-01

    The principles of reversible programming languages are explicated and illustrated with reference to the design of a high-level imperative language, Janus. The fundamental properties for such languages include backward as well as forward determinism and reversible updates of data. The unique design...... features of the language include explicit post-condition assertions, direct access to an inverse semantics and the possibility of clean (i.e., garbage-free) computation of injective functions. We suggest the clean simulation of reversible Turing machines as a criterion for computing strength of reversible...... languages, and demonstrate this for Janus. We show the practicality of the language by implementation of a reversible fast Fourier transform. Our results indicate that the reversible programming paradigm has fundamental properties that are relevant to many different areas of computer science....

  16. Effect of water chemistry on deposition for PWR plant operation

    International Nuclear Information System (INIS)

    Le Calvar, Marc; Bretelle, J. L.; Cailleaux, J. P.; Lacroix, R.; Guivarch, M.; Gay, N.; Taunier, S.; Gressier, F.; Varry, P.; Corredera, G.; Alos-Ramos, O.; Dijoux, M.

    2012-09-01

    For Pressurized Water Reactor (PWR) operation, water chemistry guidelines, specifications and associated surveillance programs are key to avoid deposition of oxides. Deposition of oxides can be detrimental by disrupting results of flow measurements, decreasing the thermal exchange capacity, or even by impairing safety. This paper describes the most important cases of deposition, their consequences for operation, and the implemented improvements to avoid their reoccurrence. Deposition that led to a Crud Induced Power Shift (CIPS) is also described. In the primary and in the secondary sides, orifice plates are typically used for measuring feedwater flow rate in nuclear power plants. Feedwater flow rates are used for control purposes and are important safety parameters as they are used to determine the plant's operating power level. Fouling of orifice plates in the primary side has been found during surveillance testing. For reactor coolant pumps, the formation of deposits on the seal No.1 can cause abnormally high or low leak rates through the seal. The leak rate through this seal must be carefully maintained within a prescribed range during plant operation. In the secondary side, orifice plate fouling has been the cause of feedwater flow/reference thermal power drift. For the steam generators (SG), magnetite deposition has led to fouling of the tube bundle, clogging of the quadri-foiled support plate holes and hard sludge formation on the base plate. For the generators, copper hollow conductors are widely used. Buildup of copper oxides on the interior walls of copper conductors has caused insufficient heat transfer. All these deposition cases have received adequate attention, understanding and response via improvement of our surveillance programs. (authors)

  17. Draining water loop seals in a PWR plant

    International Nuclear Information System (INIS)

    Bhavnani, D.; Flaherty, J.; Coward, B.; Gorga, J.

    1994-01-01

    Pressurized Water Reactor (PWR) power plants include safety valves (SVs) on the pressurizer to provide over-pressure protection for the primary coolant system. In addition, power operated relief valves (PORV) are also included to allow pressure control. These valves are located in piping connecting the pressurizer to the pressurizer relief tank (PRT). In some plants, the SV inlet piping is oriented to specifically form a water loop seal adjacent to the valves. Steam from the pressurizer enters the piping and condenses to form a water seal against the valve. The water seal provides protection for the valve's internals and creates a better valve seal. Additionally, the PORV inlet piping may also be oriented to form a water loop seal similar to that for SVs. The SVs and PORVs are normally closed. During an over-pressure transient, the valves open and the water seals discharge through the valves and downstream piping to the PRT. This sudden discharge of the water slug through piping normally containing low pressure steam or air can cause significant unbalanced hydrodynamic forces on the piping and cause piping or pipe support damage. Utilities must demonstrate that these forces will not cause sufficient damage such that the piping will no longer function as designed. This paper describes a method for reducing these unbalanced forces by installing drains that allow the condensed loop seal water to flow back into the pressurizer. This approach, which is a passive modification in which no active components are added, reduces the mass of water available for acceleration through the valve and piping, significantly decreasing the hydrodynamic forces. Another important consideration is that the modification has little or no effect on plant operation and maintenance. Thermal hydraulic analyses are performed to estimate the hydrodynamic forces and time history finite element stress analyses are performed to calculate pipe stress and pipe support loads

  18. An EPRI perspective and overview of PWR primary chemistry optimization

    International Nuclear Information System (INIS)

    Perkins, David; Haas, Carey; Kucuk, Aylin; Reid, Rick

    2009-01-01

    Initiatives are underway to optimize primary water chemistry to promote long term equipment reliability, dose and fuel deposit management, and maintenance of system and core integrity. These initiatives include increased primary system pH(t), zinc injection, and optimization of primary system hydrogen concentration. The concurrent demands of higher core power densities and longer operating cycles make implementation and evaluation of such chemistry changes increasingly challenging to plant chemists and operators. One of the most significant changes has been the injection of zinc. The primary reason for zinc injection is dose reduction as part of an overall dose management program. Since initial implementation in 1994, zinc injection has been successfully initiated at more than 60 Pressurized Water Reactors (PWRs) worldwide. This equates to approximately 23% of the operating PWR's. Current projections show that greater than 25% of the fleet will be injecting zinc by the end of 2010. The EPRI Materials Reliability Program (MRP), Fuel Reliability Program (FRP) and Chemistry program have ongoing research related to zinc injection and elevated hydrogen to support industry efforts in dose reduction, mitigation of PWSCC in nickel-based alloys and improved fuel reliability. Fuel performance, effects on plant materials and safety implications must be considered prior to modification of primary system chemistry controls. Evaluation of these effects typically requires additional research, which may include fuel performance monitoring and post-shutdown fuel surveillances to understand and evaluate the impact of changes on system and fuel performance. The poster describes ongoing industry experience(s) and research work in the EPRI Chemistry, FRP, and MRP areas related to ongoing primary chemistry programmatic changes. (author)

  19. Analyses of PWR boron dilution consequences with the Arrotta code

    International Nuclear Information System (INIS)

    Johanson, E.; Cheng, H.W.; Sehgal, B.R.

    1998-03-01

    During the past few years, major attention has been paid to analyzing the issue of reactivity initiated accidents (RIAs), of which the boron dilution event is of very special interest to the countries having pressurized water reactors (PWRs) in their nuclear power delivery systems. The scenario considered is that if an inadvertent accumulation of boron free water in one loop during reactor startup operations of a PWR and the inadvertent startup of the reactor coolant pump (RCP) in the loop. This could then lead to a rapid boron dilution in the core, which can in turn give rise to a power excursion. This report is devoted to studying the potential physical and thermal hydraulic consequences of a slug of diluted coolant entering the core after one RCP start under a couple of postulated cases. The severity of the consequences of such a scenario is primarily determined by the amount of positive reactivity insertion, and they are also related to the reactivity insertion rate. Therefore, in the report, detailed calculations and analyses have been carried out from case to case by using the well-known space-time kinetics code, ARROTTA. As a result, the spatial distribution for nodal power, fuel enthalpy, fuel temperature and clad outside temperature as well as the change in core reactivity, total core power and peak fuel temperature can be provided. In general, the maximum fuel enthalpy, peak fuel temperature, and clad outside temperature, for all the cases considered in the report, do not exceed their respective routine safety limitations because of the strong Doppler effect and moderator temperature feedback, except if the safety limitations on fuel enthalpy addition for high burnup fuel are drastically reduced

  20. The reliability data acquisition system in PWR nuclear power plants

    International Nuclear Information System (INIS)

    Lienart, P.

    1984-01-01

    In April 1978, Electricite de France put a reliability data acquisition system (SRDF) into operation at its two nuclear power plant sites: Fessenheim and Bugey. In the light of the experience acquired and the advantages offered by such a data bank, this system has been progressively extended since 1982 to cover the entire PWR network. The SRDF was originally designed for the follow-up of 4000 items of equipment per pair of units. However, the various difficulties encountered in gathering data made it necessary - in order to safeguard the quality of the information - to reduce this number initially to 800 major mechanical or electromechanical items of equipment designed to ensure the safety or availability of the units. Subsequently, an increase to 1100 was possible. The SRDF consists of a centralized information bank linked by telephone to the various nuclear sites. The software enables the data-acquisition cards to be introduced, modified or deleted. Any user can gain access to the bank by simply making queries in real time. The quality of the acquisition and processing of the data depend on a list of equipment confined to essential operational systems and on a card design combining, as far as possible, the precision and accessibility of the data. A method of logical failure analysis has also been devised, its main purposes being to provide the following: (1) aid to card instruction; (2) an easier way of checking the uniformity of information concerning a failure; and (3) compatibility between the instructions and analysis of data, thereby facilitating development of the data-processing program. (author)

  1. Comparison of multiplex real-time PCR and PCR-reverse blot hybridization assay for the direct and rapid detection of bacteria and antibiotic resistance determinants in positive culture bottles.

    Science.gov (United States)

    Wang, Hye-Young; Kim, Seoyong; Kim, Jungho; Park, Soon Deok; Kim, Hyo Youl; Uh, Young; Lee, Hyeyoung

    2016-09-01

    The aim of this study was to evaluate the performance of a commercially available multiplex real-time PCR assay and a PCR-reverse blot hybridization assay (PCR-REBA) for the rapid detection of bacteria and identification of antibiotic resistance genes directly from blood culture bottles and to compare the results of these molecular assays with conventional culture methods. The molecular diagnostic methods were used to evaluate 593 blood culture bottles from patients with bloodstream infections. The detection positivity of multiplex real-time PCR assay for Gram-positive bacteria, Gram-negative bacteria and Candida spp. was equivalent to PCR-REBA as 99.6 %, 99.1 % and 100 %, respectively. Using conventional bacterial cultures as the gold standard, the sensitivity, specificity, positive predictive value and negative predictive value of these two molecular methods were 99.5 % [95 % confidence interval (CI), 0.980-1.000; PPCR assay targeting the mecA gene to detect methicillin resistance was lower than that of the PCR-REBA method, detecting an overall positivity of 98.4 % (n=182; 95 % CI, 0.964-1.000; P<0.009) and 99.5 % (n=184; 95 % CI, 0.985-1.000; P<0.0001), respectively. The entire two methods take about 3 h, while results from culture can take up to 48-72 h. Therefore, the use of these two molecular methods was rapid and reliable for the characterization of causative pathogens in bloodstream infections.

  2. Reverse logistics - a framework

    OpenAIRE

    de Brito, M.P.; Dekker, R.

    2002-01-01

    textabstractIn this paper we define and compare Reverse Logistics definitions. We start by giving an understanding framework of Reverse Logistics: the why-what-how. By this means, we put in context the driving forces for Reverse Logistics, a typology of return reasons, a classification of products, processes and actors. In addition we provide a decision framework for Reverse Logistics and we present it according to long, medium and short term decisions, i.e. strategic-tactic-operational decis...

  3. HIV-1 Reverse Transcription

    OpenAIRE

    Hu, Wei-Shau; Hughes, Stephen H.

    2012-01-01

    Reverse transcription and integration are the defining features of the Retroviridae; the common name “retrovirus” derives from the fact that these viruses use a virally encoded enzyme, reverse transcriptase (RT), to convert their RNA genomes into DNA. Reverse transcription is an essential step in retroviral replication. This article presents an overview of reverse transcription, briefly describes the structure and function of RT, provides an introduction to some of the cellular and viral fact...

  4. Reverse logistics - a framework

    NARCIS (Netherlands)

    M.P. de Brito (Marisa); R. Dekker (Rommert)

    2002-01-01

    textabstractIn this paper we define and compare Reverse Logistics definitions. We start by giving an understanding framework of Reverse Logistics: the why-what-how. By this means, we put in context the driving forces for Reverse Logistics, a typology of return reasons, a classification of

  5. A PWR reactor downcomer modification for reduction of ECC bypass flow during LOCA

    International Nuclear Information System (INIS)

    Popov, N.; Bosevski, T.

    1986-01-01

    The ECC bypass phenomenon in the PWR reactor down-comer, which delays the reactor vessel refilling, after cold leg large break LOCA accident, has been subject of analysis in this paper. In the paper, a particular construction modification of the reactor down-comer has been suggested by inserting vertical ribs, aimed to intensify the reactor ECC refilling following the LOCA accident, and to advance the thermal-hydraulics safety of post-accidental cooling of the PWR reactors. To verify the effectiveness of the suggested down-comer construction modification, some properly selected results, obtained by corresponding verified mathematical model, have been presented in this paper. (author)

  6. Contribution to the study of the conversion PWR type reactors to the thorium cycle

    International Nuclear Information System (INIS)

    Martins Filho, J.R.

    1980-01-01

    The use of the thorium cycle in PWR reactors is discussed. The fuel has been calculated in the equilibrium condition for a economic comparison with the uranium cycle (in the same condition). First of all, a code named EQUILIBRIO has been developed for the fuel equilibrium calculation. The results gotten by this code, were introduced in the LEOPARD code for the fuel depletion calculation (in the equilibrium cycle). Same important physics details of fuel depletion are studied, for instance: the neutron balance, power sharing, fuel burnup, etc. The calculations have been done taking as reference the Angra-1 PWR reactor. (Author) [pt

  7. Scope and procedures of fuel management for PWR nuclear power plant

    International Nuclear Information System (INIS)

    Yao Zenghua

    1997-01-01

    The fuel management scope of PWR nuclear power plant includes nuclear fuel purchase and spent fuel disposal, ex-core fuel management, in-core fuel management, core management and fuel assembly behavior follow up. A suit of complete and efficient fuel management procedures have to be created to ensure the quality and efficiency of fuel management work. The hierarchy of fuel management procedure is divided into four levels: main procedure, administration procedure, implement procedure and technic procedure. A brief introduction to the fuel management scope and procedures of PWR nuclear power plant are given

  8. Neutronic feasibility of PWR core with mixed oxide fuels in the Republic of Korea

    International Nuclear Information System (INIS)

    Kim, Y.J.; Joo, H.K.; Jung, H.G.; Sohn, D.S.

    1997-01-01

    Neutronic feasibility of a PWR core with mixed oxide (MOX) fuels has been investigated as part of the feasibility study for recycling spent fuels in Korea. A typical 3-loop PWR with 900 MWe capacity is selected as reference plant to develop equilibrium core designs with low-leakage fuel management scheme, while incorporating various MOX loading. The fuel management analyses and limited safety analyses show that, safely stated, MOX recycling with 1/3 reload fraction can be accommodated for both annual and 18 month fuel cycle schemes in Korean PWRs, without major design modifications on the reactor systems. (author). 12 refs, 4 figs, 3 tabs

  9. Assessment of options for the treatment of Sizewell PWR liquid effluent

    International Nuclear Information System (INIS)

    Hornby, J.; Allam, J.; Knibbs, R.H.

    1992-01-01

    This report describes the origins of PWR liquid waste streams, their composition and rates of arising. Data has been collected from operational PWRs and estimates obtained for Sizewell B PWR liquid waste streams. Current liquid waste treatment practices are reviewed and assessments made of established and novel treatment techniques which could be applicable to Sizewell B. A short list of treatment options is given and recommendations are made relating to established treatment technologies suitable for Sizewell B and also to development work on more novel treatments which could lead to a reduction in waste disposal volumes. (author)

  10. Effect of TOC [total organic carbon] on a PWR secondary cooling water system

    International Nuclear Information System (INIS)

    Gau, J.Y.; Oung, J.C.; Wang, T.Y.

    1989-01-01

    Increasing the amount of total organic carbon (TOC) during the wet layup of the steam generator was a problem in PWR nuclear power plant in Taiwan. The results of surveys of TOC in PWR secondary cooling water systems had shown that the impurity of hydrazine and the bacteria were the main reasons that increase TOC. These do not have a corrosion effect on Inconel 600 and carbon steel when the secondary cooling water containing the TOC is below 200 ppb. But the anaerobic bacteria from the steam generator in wet layup will increase corrosion rate of carbon steel and crevice corrosion of Inconel 600. (author)

  11. On-line analysis of ETA and organic acids in secondary systems of PWR plants

    International Nuclear Information System (INIS)

    Kurashina, Masahiko; Uzawa, Hideo; Utagawa, Koya; Takaku, Hiroshi

    2005-01-01

    To reduce the iron concentration in the secondary water of plants with pressurized water reactors (PWRs), ethanolamine (ETA) is used as an alkalizing agent in the secondary cycle. An on-line ion chromatography (IC) monitoring system for monitoring concentrations of ETA and anions of organic acids was developed, its performance was evaluated, and verification tests were conducted at an actual PWR plant. It was demonstrated that the concentration of both ETA and anions of organic acids may be successfully monitored by IC in PWR secondary cycle streams alkalized by ETA. (orig.)

  12. Prevention and mitigation of steam-generator water-hammer events in PWR plants

    International Nuclear Information System (INIS)

    Han, J.T.; Anderson, N.

    1982-11-01

    Water hammer in nuclear power plants is an unresolved safety issue under study at the NRC (USI A-1). One of the identified safety concerns is steam generator water hammer (SGWH) in pressurized-water reactor (PWR) plants. This report presents a summary of: (1) the causes of SGWH; (2) various fixes employed to prevent or mitigate SGWH; and (3) the nature and status of modifications that have been made at each operating PWR plant. The NRC staff considers that the issue of SGWH in top feedring designs has been technically resolved. This report does not address technical findings relevant to water hammer in preheat type steam generators. 10 figures, 2 tables

  13. Experiments on natural circulation during PWR severe accidents and their analysis

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Stewart, W.A.; Sha, W.T.

    1988-01-01

    Buoyancy-induced natural circulation flows will occur during the early-part of PWR high pressure accident scenarios. These flows affect several key parameters; in particular, the course of such accidents will most probably change due to local failures occurring in the primary coolant system (CS) before substantial core degradation. Natural circulation flow patterns were measured in a one-seventh scale PWR PCS facility at Westinghouse RandD laboratories. The measured flow and temperature distributions are report in this paper. The experiments were analyzed with the COMMIX code and good agreement was obtained between data and calculations. 10 refs., 8 figs., 2 tabs

  14. Nonlinear Fuzzy Model Predictive Control for a PWR Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Xiangjie Liu

    2014-01-01

    Full Text Available Reliable power and temperature control in pressurized water reactor (PWR nuclear power plant is necessary to guarantee high efficiency and plant safety. Since the nuclear plants are quite nonlinear, the paper presents nonlinear fuzzy model predictive control (MPC, by incorporating the realistic constraints, to realize the plant optimization. T-S fuzzy modeling on nuclear power plant is utilized to approximate the nonlinear plant, based on which the nonlinear MPC controller is devised via parallel distributed compensation (PDC scheme in order to solve the nonlinear constraint optimization problem. Improved performance compared to the traditional PID controller for a TMI-type PWR is obtained in the simulation.

  15. AREVA solutions to licensing challenges in PWR and BWR reload and safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Curca-Tivig, Florin [AREVA GmbH, Erlangen (Germany)

    2016-05-15

    Regulatory requirements for reload and safety analyses are evolving: new safety criteria, request for enlarged qualification databases, statistical applications, uncertainty propagation.. In order to address these challenges and access more predictable licensing processes, AVERA is implementing consistent code and methodology suites for PWR and BWR core design and safety analysis, based on first principles modeling and extremely broad verification and validation data base. Thanks to the high computational power increase in the last decades methods' development and application now include new capabilities. An overview of the main AREVA codes and methods developments is given covering PWR and BWR applications in different licensing environments.

  16. Analysis of the alternatives for the chemical treatment of the secondary circuit of PWR power plants

    International Nuclear Information System (INIS)

    Lopes, J.P.G.; Silva Neto, A.J. da; Braganca Junior, A.; Dominguez, D.

    1990-01-01

    The operational experiences within PWR power plants shows that the major problems which affect the plant availability occurs in the secondary side, mainly in the steam generators and condenser. The aim of this report is to perform an evaluation of the main chemical treatment processes, which are applied to the secondary side of PWR power plants in order to reduce the corrosion problems to which are exposed the system equipment, minimizing in this way the shut down and maintenance cost for repairs and replacement of damaged components. (author)

  17. Evaluation of PWR steam generator water hammer. Final technical report, June 1, 1976--December 31, 1976

    International Nuclear Information System (INIS)

    Block, J.A.; Crowley, C.J.; Rothe, P.H.; Wallis, G.B.; Young, L.R.

    1977-05-01

    An investigation of waterhammer in the main feedwater piping of PWR steam generators due to water slugs formed in the steam generator feedring is reported. The relevant evidence from PWR operation and testing is compiled and summarized. The state-of-the-art of analysis of related phenomena is reviewed. Original exploratory modeling experiments at 1 / 10 and 1 / 4 scale are reported. Bounding analyses of the behavior are performed and several key phenomena have been identified for the first time. Recommendations to the Nuclear Regulatory Commission are made

  18. Categorization of PWR accident sequences and guidelines for fault trees: seismic initiators

    International Nuclear Information System (INIS)

    Kimura, C.Y.

    1984-09-01

    This study developed a set of dominant accident sequences that could be applied generically to domestic commercial PWRs as a standardized basis for a probabilistic seismic risk assessment. This was accomplished by ranking the Zion 1 accident sequences. The pertinent PWR safety systems were compared on a plant-by-plant basis to determine the applicability of the dominant accident sequences of Zion 1 to other PWR plants. The functional event trees were developed to describe the system functions that must work or not work in order for a certain accident sequence to happen, one for pipe breaks and one for transients

  19. Study of PWR reactor efficiency as a function of turbine steam extractions; Estudo da otimizacao da eficiencia de reator PWR em funcao das extracoes de vapor da turbina

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Janine Gandolpho da; Alvim, Antonio Carlos Marques; Martinez, Aquilino Senra [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2002-07-01

    The objective of this work is to optimize the extractions of the low-pressure turbine of a PWR nuclear reactor, in order to obtain the best thermodynamic cycle efficiency. We have analyzed typical data of a 1300 MW PWR reactor, operating at 25%, 50%, 75% and 100% capacities, respectively. The first stage of this study consists of generating a mathematical model capable of describing the reactor behavior and efficiency at any power level. The second stage of this study consists of to combine the generated mathematical model in an optimization computer program that optimize the extractions flow of the low-pressure turbine until it finds the optimal system efficiency. This work does not alter the nuclear facility project in any way. (author)

  20. Zircaloy PWR fuel cladding deformation tests under mainly convective cooling conditions

    International Nuclear Information System (INIS)

    Hindle, E.D.; Mann, C.A.

    1980-01-01

    In a loss-of-coolant accident the temperature of the cladding of the fuel rods may rise to levels (650-810 0 C) where the ductility of Zircaloy is high (approximately 80%). The net outward pressure which will obtain if the coolant pressure falls to a small fraction of its normal working value produces stresses in the cladding which can result in large strain through secondary creep. An earlier study of the deformation of specimens of PWR Zircaloy cladding tubing 450 mm long under internal pressure had shown that strains of over 50% could be produced over considerable lengths (greater than twenty tube diameters). Extended deformation of this sort might be unacceptable if it occurred in a fuel element. The previous tests had been carried out under conditions of uniform radiative heat loss, and the work reported here extends the study to conditions of mainly convective heat loss believed to be more representative of a fuel element following a loss of coolant. Zircaloy-4 cladding specimens 450 mm long were filled with alumina pellets and tested at temperatures between 630 and 845 0 C in flowing steam at atmospheric pressure. Internal test pressures were in the range 2.9-11.0 MPa (400-1600 1b/in 2 ). Maximum strains were observed of the same magnitude as those seen in the previous tests, but the shape of the deformation differed; in these tests the deformation progressively increased in the direction of the steam flow. These results are compared with those from multi-rod tests elsewhere, and it is suggested that heat transfer has a dominant effect in determining deformation. The implications for the behaviour of fuel elements in a loss-of-coolant accident are outlined. (author)

  1. Analyses of conditions in a large, dry PWR containment during an TMLB' accident sequence

    International Nuclear Information System (INIS)

    Sweet, D.W.; Roberts, G.J.

    1994-01-01

    The aim of the paper is to give an assessment of the conditions which would develop in the large, dry containment of a modern Westinghouse-type PWR during a severe accident where all safety systems are unavailable. The analysis is based principally on the results of calculations using the CONTAIN code, with a 4 cell model of the containment, for a station blackout (TMLB') scenario in which the vessel is assumed to fail at high pressure. In particular, the following are noted: (i) If much of the debris is in contact with water, so that decay heat can boil water directly, then the pressure rises steadily to reach the assumed containment failure point after 11/2 to 2 days. If most of the debris becomes isolated from water, for example, because of water is held up on the containment floors and in sumps and drains, the pressure rises too slowly to threaten the containment on this timescale. (ii) If a core-concrete interaction occurs, most of the associated fission product release takes place soon after relocation of molten fuel to the containment. The aerosols which transport these (and other non-gaseous fission products released earlier in the accident) in the containment agglomerate and settle. As a result, 0.1% or less of the aerosols remain airborne a day after the start of the accident. (iii) Hydrogen and carbon monoxide, which would accumulate in the containment are not expected to burn because the atmosphere would be inerted by steam. If, however, enough of the steam is condensed, for example, by recovering the containment sprays, a burn could occur but the resulting pressure spike is unlikely to threaten the containment unless a transition to detonation occurs. 6 refs., 6 tabs., 12 figs

  2. Comparative study on plutonium and MA recycling in equilibrium burnup and standard burnup of PWR

    International Nuclear Information System (INIS)

    Waris, Abdul; Kurniadi, Rizal; Su'ud, Zaki; Permana, Sidik

    2005-01-01

    The equilibrium burnup model is a powerful method since its can handle all possible generated nuclides in any nuclear system. Moreover, this method is a simple time independent method. Hence the equilibrium burnup method could be very useful for evaluating and forecasting the characteristics of any nuclear fuel cycle, even the strange one, e.g. all nuclides are confined in the reactor. However, this method needs to be verified since the method is not a standard tool. The present study aimed to compare the characteristics of plutonium recycling and plutonium and minor actinides (MA) recycling in PWR with the equilibrium burnup and the standard burnup. In order to become more comprehensive study, an influence of moderator-to-fuel volume ratio (MFR) changes by changing the pin-pitch of fuel cell has been evaluated. The MFR ranges from 0.5 to 4.0. For the equilibrium burnup we used equilibrium cell-burnup code. We have employed 1368 nuclides in the equilibrium calculation with 129 of them are heavy metals (HMs). For standard burnup, SRAC2002 code has been utilized with 26 HMs and 66 fission products (FPs). The JENDL 3.2 library has been employed for both burnup schemes. The uranium, plutonium and MA vector, which resulted from the equilibrium burnup are directly used as fuel input composition for the standard burnup calculation. Both burnup results demonstrate that plutonium recycling and plutonium and MA recycling can be conducted safer in tight lattice core. They are also show the similar trend in neutron spectrum, which become harder with the increasing number of recycled heavy nuclides as well as the decreasing of the MFR values. However, there are some discrepancy on the effective multiplication factor and the conversion ratio, especially for the reactor core for MFR ≥ 2.0. (author)

  3. LES analysis of the flow in a simplified PWR assembly with mixing grid

    International Nuclear Information System (INIS)

    Bieder, Ulrich; Fauchet, Gauthier; Falk, Francois

    2014-01-01

    The flow in fuel assemblies of Pressurized Water Reactors (PWR) with mixing grids has been analysed with Computational Fluid Dynamics (CFD) by numerous authors. The comparisons between calculation and experiment are mostly focused on the flow in the near wake of the mixing grid, i.e. on the flow in the first 5 to 10 hydraulic diameters (dh) downstream of the grid. In the study presented here, the comparison between the measurements in the AGATE facility (5 * 5 tube bundle) and Trio-U calculations is done for the whole distance between two successive mixing grids that is up to about 50 d h downstream of the grid. The AGATE experiments have originally not been designed for CFD validation but to characterize different types of mixing grids. Nevertheless, the quality of the experimental data allows the quantitative comparison between measurement and calculation. The conclusions of the comparison are summarized below: Linear turbulent viscosity models seem to work rather well as long as the cross flow velocity in the rod gaps is advection controlled, that is directly downstream of the mixing grid, Further downstream, when the cross flow velocity is reduced and anisotropic turbulence becomes a more and more important mixing phenomena, linear viscosity models can fail, The mixing grid affects the cross flow velocity up to the successive grid. The flow in fuel assemblies is never similar to that in undisturbed rod bundles. The test section of the AGATE facility has been discretized on 300 million control volumes by using a staggered grid approach on tetrahedral meshes. 20 days of CPU on 4600 cores of the High Performance Computer (HPC) cluster CURIE of the Centre de Calcul, Recherche et Technologie (CCRT) were necessary to converge the statistics of the turbulent fluctuations, completely converge the mean velocity and incompletely converge the RMS of the turbulent fluctuations. (authors)

  4. PWR Secondary Water Chemistry Control Status: A Summary of Industry Initiatives, Experience and Trends Relative to the EPRI PWR Secondary Water Chemistry Guidelines

    International Nuclear Information System (INIS)

    Fruzzetti, Keith; Choi, Samuel

    2012-09-01

    The latest revision of the EPRI Pressurized Water Reactor (PWR) Secondary Water Chemistry Guidelines was issued in February 2009. The Guidelines continue to focus on minimizing stress corrosion cracking (SCC) of steam generator tubes, as well as minimizing degradation of other major components / subsystems of the secondary system. The Guidelines provide a technically-based framework for a plant-specific and effective PWR secondary water chemistry program. With the issuance of Revision 7 of the Guidelines in 2009, many plants have implemented changes that allow greater flexibility on startup. For example, the previous Guidelines (Revision 6) contained a possible low power hold at 5% power and a possible mid power hold at approximately 30% power based on chemistry constraints. Revision 7 has established a range over which a plant-specific value can be chosen for the possible low power hold (between 5% and 15%) and mid power hold (between 30% and 50%). This has provided plants the ability to establish significant plant evolutions prior to reaching the possible power hold; such as establishing seal steam to the condenser, placing feed pumps in service, or initiating forward flow of heater drains. The application of this flexibility in the industry will be explored. This paper also highlights the major initiatives and industry trends with respect to PWR secondary chemistry; and outlines the recent work to effectively address them. These will be presented in light of recent operating experience, as derived from EPRI's PWR Chemistry Monitoring and Assessment (CMA) program (which contains more than 400 cycles of operating chemistry data). (authors)

  5. Workshop on data-acquisition and -display systems: directions after TMI. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    The accident at Three Mile Island Unit-2 raised questions as to the adequacy of data acquisition and display systems in commercial nuclear power plants. A series of recommendations have developed from the various groups that have analyzed the accident in order to improve the oprator's overview of the plant safety conditions and to facilitate information transfer to technical support centers in emergency situations. This report is the result of an NSAC-sponsored workshop, where the various recommendations and emerging regulatory requirements were reviewed in an attempt to provide an integrated basis for their implementation.

  6. Reversible flowchart languages and the structured reversible program theorem

    DEFF Research Database (Denmark)

    Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert

    2008-01-01

    operators. Reversible flowcharts are r- Turing-complete, meaning that they can simuluate reversible Turing machines without garbage data. We also demonstrate the injectivization of classical flowcharts into reversible flowcharts. The reversible flowchart computation model provides a theoretical...

  7. PWR water chemistry controls: a perspective on industry initiatives and trends relative to operating experience and the EPRI PWR water chemistry guidelines

    International Nuclear Information System (INIS)

    Fruzzetti, K.; Choi, S.; Haas, C.; Pender, M.; Perkins, D.

    2010-01-01

    An effective PWR water chemistry control program must address the following goals: Minimize materials degradation (e.g., PWSCC, corrosion of fuel, corrosion damage of steam generator (SG) tubes); Maintain fuel integrity and good performance; Minimize corrosion product transport (e.g., transport and deposition on the fuel, transport into the SGs where it can foul tube surfaces and create crevice environments for the concentration of corrosive impurities); Minimize dose rates. Water chemistry control must be optimized to provide overall improvement considering the sometimes variant constraints of the goals listed above. New technologies are developed for continued mitigation of materials degradation, continued fuel integrity and good performance, continued reduction of corrosion product transport, and continued minimization of plant dose rates. The EPRI chemistry program, in coordination with other EPRI programs, strives to improve these areas through application of chemistry initiatives, focusing on these goals. This paper highlights the major initiatives and issues with respect to PWR primary and secondary system chemistry and outlines the recent, on-going, and proposed work to effectively address them. These initiatives are presented in light of recent operating experience, as derived from EPRI's PWR chemistry monitoring and assessment program, and EPRI's water chemistry guidelines. (author)

  8. On the impact analysis of a PWR spacer grid

    International Nuclear Information System (INIS)

    Song, Kee Nam; Lee, S. H.

    2012-01-01

    A spacer grid, which is an interconnected array of slotted grid straps and is welded at the intersections to form an egg crate structure, is one of the most important structural components in a PWR fuel assembly. From a structural point of view, the spacer grid is required to have sufficient crush strength under lateral loads so that nuclear fuel rods are maintained in a cool able geometry, and that control rods can be inserted. The capacity of a spacer grid to resist lateral loads is usually characterized in terms of its crush strength, and it was reported that the lateral crush strength of the spacer grid is closely related with welding quality of the spacer grid. Microstructures in the weld zone, including a heat affected zone (HAZ), are different from that in a parent material. Consequently, the mechanical properties in the weld zone are different from those in the parent material to some extent. When a welded structure is loaded, the mechanical behavior of the welded structure might be different from the case of a structure with homogeneous mechanical properties. Nonetheless, mechanical properties in the welded structure have been neglected in many structural analyses of the spacer grid due to a lack of mechanical properties in the weld zone. When the weld zone is very narrow and the interfaces are not clear, it is difficult to take tensile test specimens in the weld zone. The reason for this is that the mechanical properties in the parent material are usually used in the structural analyses in the welded structure. As an aside, it has been recently determined that the ball indentation technique has the potential to be an excellent substitute for a standard tensile test, particularly in the case of small specimens or property gradient materials such as welds. In this study, to investigate the effect on the mechanical behavior of the spacer grid when using weld mechanical properties, strength analyses considering the weld mechanical properties recently obtained

  9. Assessment of TRAC-PF1/MOD1 code for large break LOCA in PWR

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Ohnuki, Akira; Murao, Yoshio; Abe, Yutaka.

    1993-03-01

    As the first step of the REFLA/TRAC code development, the TRAC/PF1/MOD1 code has been assessed for various experiments that simulate postulated large-break loss-of-coolant accident (LBLOCA) in PWR to understand the predictive capability and to identify the problem areas of the code. The assessment calculations were performed for separate effect tests for critical flow, counter current flow, condensation at cold leg and reflood as well as integral tests to understand predictability for individual phenomena. This report summarizes results from the assessment calculations of the TRAC-PF1/MOD1 code for LBLOCA in PWR. The assessment calculations made clear the predictive capability and problem areas of the TRAC-PF1/MOD1 code for LBLOCA in PWR. The areas, listed below, should be improved for more realistic and effective simulation of LBLOCA in PWR: (1) core heat transfer model during blowdown, (2) ECC bypass model at downcomer during refill, (3) condensation model during accumulator injection, and (4) core thermal hydraulic model during reflood. (author) 57 refs

  10. Representing Operational Knowledge of PWR Plant by Using Multilevel Flow Modelling

    DEFF Research Database (Denmark)

    Zhang, Xinxin; Lind, Morten; Jørgensen, Sten Bay

    2014-01-01

    situation and support operational decisions. This paper will provide a general MFM model of the primary side in a standard Westinghouse Pressurized Water Reactor ( PWR ) system including sub - systems of Reactor Coolant System, Rod Control System, Chemical and Volume Control System, emergency heat removal...

  11. Criticality safety and sensitivity analyses of PWR spent nuclear fuel repository facilities

    NARCIS (Netherlands)

    Maucec, M; Glumac, B

    Monte Carlo criticality safety and sensitivity calculations of pressurized water reactor (PWR) spent nuclear fuel repository facilities for the Slovenian nuclear power plant Krsko are presented. The MCNP4C code was deployed to model and assess the neutron multiplication parameters of pool-based

  12. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    International Nuclear Information System (INIS)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented. 6 references, 4 figures

  13. Development and application of integrated digital I and C system in Japanese PWR plants

    International Nuclear Information System (INIS)

    Tominaga, M.

    1995-01-01

    The Integrated Digital Instrumentation and Control (I and C) System has been developed and applied to non-safety grade I and C systems in the latest 5 Japanese PWR plants in 1990's. Based on the experience in these plants, the Integrated Digital I and C System will be planned to apply also to safety grade I and C systems in Advanced PWR (APWR) as the overall application of digital technology. The basic design task has been just started for APWR which is to be in commercial operation in early 2000's and under the development about various issues of safety grade digital I and C systems. On the other hand, in conventional Japanese PWR plants, digital I and C systems have been applied step by step since 1980's. For example, digital I and C systems for radio-active waste processing system have been adopted to 13 units, and dedicated digital I and C systems for Local loop control system to 8 units. The trend and status of development and application of the digital I and C systems, especially the Integrated Digital I and C System in Japanese PWR plants are presented. (5 refs., 4 figs.)

  14. Atmea launches Atmea1 the mid-sized generation 3+ PWR you can rely on

    International Nuclear Information System (INIS)

    2008-01-01

    ATMEA, a daughter company of AREVA NP and Mitsubishi Heavy Industries, is developing and will supply ATMEA1, the most advanced 1100 MWe PWR plant with the combination of the unique set of competence and experience of its parent companies. This folder presents the ATMEA1 reactor main features. (J.S.)

  15. Fuel assemblies for PWR type reactors: fuel rods, fuel plates. CEA work presentation

    International Nuclear Information System (INIS)

    Delafosse, Jacques.

    1976-01-01

    French work on PWR type reactors is reported: basic knowledge on Zr and its alloys and on uranium oxide; experience gained on other programs (fast neutron and heavy water reactors); zircaloy-2 or zircaloy-4 clad UO 2 fuel rods; fuel plates consisting of zircaloy-2 clad UO 2 squares of thickness varying between 2 and 4mm [fr

  16. Programme of hot points eradication (Co-60) led on French PWR type reactors

    International Nuclear Information System (INIS)

    Rocher, A.; Ridoux, P.; Anthoni, S.; Brun, C.

    1998-01-01

    The question of hot points (pellets rich in cobalt 59 or in cobalt 60 in a PWR type reactor), is studied from the radiation protection point of view. The purpose is to see how to optimize the radiation protection, the elimination of these hot points can bring an improvement. (N.C.)

  17. Simulation of fission products behavior in severe accidents for advanced passive PWR

    International Nuclear Information System (INIS)

    Tong, L.L.; Huang, G.F.; Cao, X.W.

    2015-01-01

    Highlights: • A fission product analysis model based on thermal hydraulic module is developed. • An assessment method for fission product release and transport is constructed. • Fission products behavior during three modes of containment response is investigated. • Source term results for the three modes of containment response are obtained. - Abstract: Fission product behavior for common Pressurized Water Reactor (PWR) has been studied for many years, and some analytical tools have developed. However, studies specifically on the behavior of fission products related to advanced passive PWR is scarce. In the current study, design characteristics of advanced passive PWR influencing fission product behavior are investigated. An integrated fission products analysis model based on a thermal hydraulic module is developed, and the assessment method for fission products release and transport for advanced passive PWR is constructed. Three modes of containment response are simulated, including intact containment, containment bypass and containment overpressure failure. Fission products release from the core and corium, fission products transport and deposition in the Reactor Coolant System (RCS), fission products transport and deposition in the containment considering fission products retention in the in-containment refueling water storage tank (IRWST) and in the secondary side of steam generators (SGs) are simulated. Source term results of intact containment, containment bypass and containment overpressure failure are obtained, which can be utilized to evaluate the radiological consequences

  18. Conception and construction rules for mechanical components of PWR nuclear island

    International Nuclear Information System (INIS)

    1988-06-01

    These rules of conception and construction for mechanical components of PWR nuclear island used in France are divided into 5 tomes bearing on: Tome 1: components of nuclear islands - Tome 2: materials - Tome 3: control methods - Tome 4: welding - Tome 5: fabrication [fr

  19. Reactor analysis support package (RASP). Volume 7. PWR set-point methodology. Final report

    International Nuclear Information System (INIS)

    Temple, S.M.; Robbins, T.R.

    1986-09-01

    This report provides an overview of the basis and methodology requirements for determining Pressurized Water Reactor (PWR) technical specifications related setpoints and focuses on development of the methodology for a reload core. Additionally, the report documents the implementation and typical methods of analysis used by PWR vendors during the 1970's to develop Protection System Trip Limits (or Limiting Safety System Settings) and Limiting Conditions for Operation. The descriptions of the typical setpoint methodologies are provided for Nuclear Steam Supply Systems as designed and supplied by Babcock and Wilcox, Combustion Engineering, and Westinghouse. The description of the methods of analysis includes the discussion of the computer codes used in the setpoint methodology. Next, the report addresses the treatment of calculational and measurement uncertainties based on the extent to which such information was available for each of the three types of PWR. Finally, the major features of the setpoint methodologies are compared, and the principal effects of each particular methodology on plant operation are summarized for each of the three types of PWR

  20. Achievement of a training simulator for PWR power plant: application to control parametric studies

    International Nuclear Information System (INIS)

    Salomon-Sigogne, A.

    1982-09-01

    A simulation tool adapted to training tasks is developed. One presents the description of the simulator. One studies the management of a model by NEPTUN X2. A general description of a 900 MW PWR power station and the modelling of the power station are presented. The results obtained on the FIDIANE version of the simulator are finally analyzed [fr

  1. Operating experience with PWR in the FRG (Federal Republic of Germany)

    International Nuclear Information System (INIS)

    Cramer, H.

    1980-01-01

    Operating experiences with PWR's in the Federal Republic of Germany has been exclusively with KWU turnkey power plants with U tube steam generators. Such experience started with the 345 MW Obrigheim plant in 1968 and includes the 670 MW Stade plant, the 1200/1300 MW Biblis plants, The 900 MW Neckarwestheim and the 1300 MW Unterweser plants. (E.G.) [pt

  2. A simulated test of physical starting and reactor physics on zero power facility of PWR

    International Nuclear Information System (INIS)

    Yao Zewu; Ji Huaxiang; Chen Zhicheng; Yao Zhiquan; Chen Chen; Li Yuwen

    1995-01-01

    The core neutron economics has been verified through experiments conducted at a zero power reactor with baffles of various thickness. A simulated test of physical starting of Qinshan PWR has been introduced. The feasibility and safety of the programme are verified. The research provides a valuable foundation for developing physical starting programme

  3. ''The place of the fatigue risks in the PWR maintenance programs''

    International Nuclear Information System (INIS)

    Dechelotte, J.; Bordes, P.; Pages, C.; Friedrich, J.M.

    2001-01-01

    The parts of components submitted to fatigue risk are more particularly controlled in operation. Three main cases are identified: the mechanical oligo-cyclic fatigue, the vibrating fatigue and the thermal fatigue. These cases are presented in this paper. As a precaution a complementary investigation program is implementing during the Number two decennial inspections of the 900 MW PWR. (A.L.B.)

  4. Depletion of gadolinium burnable poison in a PWR assembly with high burnup fuel

    Energy Technology Data Exchange (ETDEWEB)

    Refeat, Riham Mahmoud [Nuclear and Radiological Regulatory Authority (NRRA), Cairo (Egypt). Safety Engineering Dept.

    2015-12-15

    A tendency to increase the discharge burnup of nuclear fuel for Advanced Pressurized Water Reactors (PWR) has been a characteristic of its operation for many years. It will be able to burn at very high burnup of about 70 GWd/t with UO{sub 2} fuels. The U-235 enrichment must be higher than 5 %, which leads to the necessity of using an extremely efficient burnable poison like Gadolinium oxide. Using gadolinium isotope is significant due to its particular depletion behavior (''Onion-Skin'' effect). In this paper, the MCNPX2.7 code is used to calculate the important neutronic parameters of the next generation fuels of PWR. K-infinity, local peaking factor and fission rate distributions are calculated for a PWR assembly which burn at very high burnup reaching 70 GWd/t. The calculations are performed using the recently released evaluated Gadolinium cross section data. The results obtained are close to those of a LWR next generation fuel benchmark problem. This demonstrates that the calculation scheme used is able to accurately model a PWR assembly that operates at high burnup values.

  5. Fuel Cycle Cost Calculations for a 120,000 shp PWR for Ship Propulsion. RCN Report

    International Nuclear Information System (INIS)

    Dekker, N.H.; Foggi, C.; Giacomazzi, G.

    1972-02-01

    A parametric study of the fuel cycle costs for a 120,000 SHP PWR for ship propulsion has been carried out. Variable parameters are: fuel pellet diameter, moderating ratio and refuelling scheme. Minimum fuel cycle costs can be obtained at moderating ratios of about 2.2. Both fuel cycle costs and reactor control requirements favour the two batch core. (author)

  6. Method for measuring feedwater flow rate using ultrasonic technique in PWR power plant

    International Nuclear Information System (INIS)

    Ozaki, Yoshihiko; Oda, Minoru; Tanaka, Mitsuo

    1988-01-01

    At present, differential pressure type flowmeters are widely used in feedwater systems of PWR plants. In these flowmeters, however, scales gradually deposit at the nozzle throat during the plant operation, causing the apparent flow rate to increase and consequently becoming a serious problem for efficient plant operations. Therefore, a new type of ultrasonic flowmeter (USFM) having good stability and free of the above phenomenon has been developed. A method to compensate for the effect of dependency of sound velocity on water temperature and pressure corresponding to PWR feedwater conditions was contrived. The validity of the method was confirmed in an experiment for investigating the sound velocity dependency in practice. The performance of the USFM was also examined using a water loop in various flow conditions with satisfactory results. After the basic studies, finally, the USFM was tested in an actual PWR feedwater system for almost 3 yr. The USFM met all the required characteristics for PWR feedwater systems, those being linearity, accuracy and stability. (author)

  7. Rupther: a simulation approach applied to a PWR vessel failure during a severe accident

    International Nuclear Information System (INIS)

    Mongabure, Ph.; Nicolas, L.; Devos, J.

    2000-01-01

    The Rupther program (Rupture Under Thermal Conditions) is a part of the international researches on severe accidents in the PWR type reactors. The aim of the program is the definition of failure simulation validated by experimental data on vessel steel 16MND5 mechanical properties. The paper presents the program and the first results. (A.L.B.)

  8. PWR pressure vessel life management French approach for integrity assessment and maintenance strategy

    Energy Technology Data Exchange (ETDEWEB)

    Bezdikian, G. [Electricite de France (EDF), 93 - Saint-Denis (France); Moinereau, D. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Pichon, C.; Faidy, C.; Ternon-Morin, F. [Electricite de France (EDF), 69 - Villeurbanne (France). SEPTEN; Brillaud, C. [Electricite de France (EDF), 37 - Avoine (France)

    1998-07-01

    This conference deals with the studies carried out in France to justify of a PWR pressure vessel lifetime of at least 40 years. The results of the irradiation surveillance programs and of the fluences evaluation in the end of life are given as well as the EDF maintenance strategy. (O.M.)

  9. Response of pressurized water reactor (PWR) to network power generation demands

    International Nuclear Information System (INIS)

    Schreiner, L.A.

    1991-01-01

    The flexibility of the PWR type reactor in terms of response to the variations of the network power demands, is demonstrated. The factors that affect the transitory flexibility and some design prospects that allow the reactor fits the requirements of the network power demands, are also discussed. (M.J.A.)

  10. Performance analysis of canned motor pump and shaft seal pump at PWR

    International Nuclear Information System (INIS)

    Wang Benzhen; Wang Qingzhou; Xu Yangyang

    2014-01-01

    This article mainly introduced the development and structure of canned motor pump and shaft seal pump at PWR. Especialy, the performance of canned motor pump for AP1000 and shaft seal pump was analyed and compared, their advantages and shortcomings were pointed out, which provided reference for the relevant nuclear power technical staff. (authors)

  11. SIVAR - Computer code for simulation of fuel rod behavior in PWR during fast transients

    International Nuclear Information System (INIS)

    Dias, A.F.V.

    1980-10-01

    Fuel rod behavior during a stationary and a transitory operation, is studied. A computer code aiming at simulating PWR type rods, was developed; however, it can be adapted for simulating other type of rods. A finite difference method was used. (E.G.) [pt

  12. Concept of voltage monitoring for a nuclear power plant emergency power supply system (PWR 1300 MWe)

    International Nuclear Information System (INIS)

    Andrade, R.B. de

    1988-01-01

    Voltage monitoring concept for a Nuclear Power Plant Emergency Power Supply Systems (PWR 1300 MWe) is described based on the phylosophy adopted for Angra 2 and 3 NPP's. Some suggested setpoints are only guidance values and can be modified during plant commissioning for a better performance of the whole protection system. (author) [pt

  13. Neutron Collar Evolution and Fresh PWR Assembly Measurements with a New Fast Neutron Passive Collar

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Geist, William H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Root, Margaret A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rael, Carlos D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Belian, Anthony P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-02

    The passive neutron collar approach removes the effect of poison rods when using a 1mm Gd liner. This project sets out to solve the following challenges: BWR fuel assemblies have less mass and less neutron multiplication than PWR; and effective removal of cosmic ray spallation neutron bursts needed via QC tests.

  14. Assessment of void swelling in austenitic stainless steel PWR core internals.

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. M.; Energy Technology

    2006-01-31

    As many pressurized water reactors (PWRs) age and life extension of the aged plants is considered, void swelling behavior of austenitic stainless steel (SS) core internals has become the subject of increasing attention. In this report, the available database on void swelling and density change of austenitic SSs was critically reviewed. Irradiation conditions, test procedures, and microstructural characteristics were carefully examined, and key factors that are important to determine the relevance of the database to PWR conditions were evaluated. Most swelling data were obtained from steels irradiated in fast breeder reactors at temperatures >385 C and at dose rates that are orders of magnitude higher than PWR dose rates. Even for a given irradiation temperature and given steel, the integral effects of dose and dose rate on void swelling should not be separated. It is incorrect to extrapolate swelling data on the basis of 'progressive compounded multiplication' of separate effects of factors such as dose, dose rate, temperature, steel composition, and fabrication procedure. Therefore, the fast reactor data should not be extrapolated to determine credible void swelling behavior for PWR end-of-life (EOL) or life-extension conditions. Although the void swelling data extracted from fast reactor studies is extensive and conclusive, only limited amounts of swelling data and information have been obtained on microstructural characteristics from discharged PWR internals or steels irradiated at temperatures and at dose rates comparable to those of a PWR. Based on this relatively small amount of information, swelling in thin-walled tubes and baffle bolts in a PWR is not considered a concern. As additional data and relevant research becomes available, the newer results should be integrated with existing data, and the worthiness of this conclusion should continue to be scrutinized. PWR baffle reentrant corners are the most likely location to experience high swelling

  15. Assessment of void swelling in austenitic stainless steel PWR core internals

    International Nuclear Information System (INIS)

    Chung, H.M.

    2006-01-01

    As many pressurized water reactors (PWRs) age and life extension of the aged plants is considered, void swelling behavior of austenitic stainless steel (SS) core internals has become the subject of increasing attention. In this report, the available database on void swelling and density change of austenitic SSs was critically reviewed. Irradiation conditions, test procedures, and microstructural characteristics were carefully examined, and key factors that are important to determine the relevance of the database to PWR conditions were evaluated. Most swelling data were obtained from steels irradiated in fast breeder reactors at temperatures >385 C and at dose rates that are orders of magnitude higher than PWR dose rates. Even for a given irradiation temperature and given steel, the integral effects of dose and dose rate on void swelling should not be separated. It is incorrect to extrapolate swelling data on the basis of 'progressive compounded multiplication' of separate effects of factors such as dose, dose rate, temperature, steel composition, and fabrication procedure. Therefore, the fast reactor data should not be extrapolated to determine credible void swelling behavior for PWR end-of-life (EOL) or life-extension conditions. Although the void swelling data extracted from fast reactor studies is extensive and conclusive, only limited amounts of swelling data and information have been obtained on microstructural characteristics from discharged PWR internals or steels irradiated at temperatures and at dose rates comparable to those of a PWR. Based on this relatively small amount of information, swelling in thin-walled tubes and baffle bolts in a PWR is not considered a concern. As additional data and relevant research becomes available, the newer results should be integrated with existing data, and the worthiness of this conclusion should continue to be scrutinized. PWR baffle reentrant corners are the most likely location to experience high swelling rates, and

  16. THALES, Thermohydraulic LOCA Analysis of BWR and PWR

    International Nuclear Information System (INIS)

    ABE, Kiyoharu

    1990-01-01

    reactor coolant system, combustible gas burning, atmosphere- structure heat transfer, ventilation, containment spray cooling, etc. After the molten core penetrates the reactor bottom head, steam generation, concrete disintegration and noncondensable gas generation are calculated in the reactor cavity or the pedestal. 2 - Method of solution: Each of the THALES member codes first establishes the steady state conditions after reading input data. Then iterative time-dependent calculation is continued, taking account of various phenomena and events and their interactions which will occur in the course of a postulated severe accident. The transient calculations are iterated by the physical times specified by input. Generally the RCS thermal hydraulic analysis with the THALES-PM or THALES-BM code is first carried out and its results are transferred to the following containment analysis with the THALES-CV code. Then both results are transferred to a code for analyzing fission product release and transport behavior. Automatic data transfer is possible in the case the JAERI's ART code is used for fission product behavior analysis. In overall thermal hydraulic analysis, a new method is adopted aiming at sufficiently accurate estimation of mixture levels in the reactor coolant system and the containment in a reasonable computer time. The heat transfer calculation in the core is carried out based on the backward method. 3 - Restrictions on the complexity of the problem: Restrictions relating to storage allocation are: (1) Maximum number of radial regions in the core : 10; (2) Maximum number of axial increments in the fuel rods : 50; (3) Maximum number of loops in the PWR primary system : 4; (4) Maximum number of volumes in the PWR primary system : 11; (5) Number of BWR recirculation loops: 2 (fixed); (6) Number of volumes in the BWR reactor coolant system : 7 (fixed); (7) Maximum number of compartments in the containment : 10. There is another restriction, which relates to time step

  17. Reversible colour change in Arthropoda.

    Science.gov (United States)

    Umbers, Kate D L; Fabricant, Scott A; Gawryszewski, Felipe M; Seago, Ainsley E; Herberstein, Marie E

    2014-11-01

    The mechanisms and functions of reversible colour change in arthropods are highly diverse despite, or perhaps due to, the presence of an exoskeleton. Physiological colour changes, which have been recorded in 90 arthropod species, are rapid and are the result of changes in the positioning of microstructures or pigments, or in the refractive index of layers in the integument. By contrast, morphological colour changes, documented in 31 species, involve the anabolism or catabolism of components (e.g. pigments) directly related to the observable colour. In this review we highlight the diversity of mechanisms by which reversible colour change occurs and the evolutionary context and diversity of arthropod taxa in which it has been observed. Further, we discuss the functions of reversible colour change so far proposed, review the limited behavioural and ecological data, and argue that the field requires phylogenetically controlled approaches to understanding the evolution of reversible colour change. Finally, we encourage biologists to explore new model systems for colour change and to engage scientists from other disciplines; continued cross-disciplinary collaboration is the most promising approach to this nexus of biology, physics, and chemistry. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  18. Introduction to reversible computing

    CERN Document Server

    Perumalla, Kalyan S

    2013-01-01

    Few books comprehensively cover the software and programming aspects of reversible computing. Filling this gap, Introduction to Reversible Computing offers an expanded view of the field that includes the traditional energy-motivated hardware viewpoint as well as the emerging application-motivated software approach. Collecting scattered knowledge into one coherent account, the book provides a compendium of both classical and recently developed results on reversible computing. It explores up-and-coming theories, techniques, and tools for the application of rever

  19. Analysis of difficulties accounting and evaluating nuclear material of PWR fuel plant

    International Nuclear Information System (INIS)

    Zhang Min; Jue Ji; Liu Tianshu

    2013-01-01

    Background: Nuclear materials accountancy must be developed for nuclear facilities, which is required by regulatory in China. Currently, there are some unresolved problems for nuclear materials accountancy of bulk nuclear facilities. Purpose: The retention values and measurement errors are analyzed in nuclear materials accountancy of Power Water Reactor (PWR) fuel plant to meet the regulatory requirements. Methods: On the basis of nuclear material accounting and evaluation data of PWR fuel plant, a deep analysis research including ratio among random error variance, long-term systematic error variance, short-term systematic error variance and total error involving Material Unaccounted For (MUF) evaluation is developed by the retention value measure in equipment and pipeline. Results: In the equipment pipeline, the holdup estimation error and its total proportion are not more than 5% and 1.5%, respectively. And the holdup estimation can be regraded as a constant in the PWR nuclear material accountancy. Random error variance, long-term systematic error variance, short-term systematic error variance of overall measurement, and analytical and sampling methods are also obtained. A valuable reference is provided for nuclear material accountancy. Conclusion: In nuclear material accountancy, the retention value can be considered as a constant. The long-term systematic error is a main factor in all errors, especially in overall measurement error and sampling error: The long-term systematic errors of overall measurement and sampling are considered important in the PWR nuclear material accountancy. The proposals and measures are applied to the nuclear materials accountancy of PWR fuel plant, and the capacity of nuclear materials accountancy is improved. (authors)

  20. Crack growth rates of nickel alloy welds in a PWR environment.

    Energy Technology Data Exchange (ETDEWEB)

    Alexandreanu, B.; Chopra, O. K.; Shack, W. J.; Energy Technology

    2006-05-31

    In light water reactors (LWRs), vessel internal components made of nickel-base alloys are susceptible to environmentally assisted cracking. A better understanding of the causes and mechanisms of this cracking may permit less conservative estimates of damage accumulation and requirements on inspection intervals. A program is being conducted at Argonne National Laboratory to evaluate the resistance of Ni alloys and their welds to environmentally assisted cracking in simulated LWR coolant environments. This report presents crack growth rate (CGR) results for Alloy 182 shielded-metal-arc weld metal in a simulated pressurized water reactor (PWR) environment at 320 C. Crack growth tests were conducted on 1-T compact tension specimens with different weld orientations from both double-J and deep-groove welds. The results indicate little or no environmental enhancement of fatigue CGRs of Alloy 182 weld metal in the PWR environment. The CGRs of Alloy 182 in the PWR environment are a factor of {approx}5 higher than those of Alloy 600 in air under the same loading conditions. The stress corrosion cracking for the Alloy 182 weld is close to the average behavior of Alloy 600 in the PWR environment. The weld orientation was found to have a profound effect on the magnitude of crack growth: cracking was found to propagate faster along the dendrites than across them. The existing CGR data for Ni-alloy weld metals have been compiled and evaluated to establish the effects of key material, loading, and environmental parameters on CGRs in PWR environments. The results from the present study are compared with the existing CGR data for Ni-alloy welds to determine the relative susceptibility of the specific Ni-alloy weld to environmentally enhanced cracking.

  1. Separation and direct detection of long chain fatty acids and their methylesters by the non-aqueous reversed phase HPLC and Silver Ion Chromotography, combined with CO laser pumped thermal lens spectrometry

    NARCIS (Netherlands)

    Bicanic, D.D.; Mocnik, G.; Franko, M.; Niederlander, H.A.G.; Bovenkamp, van de P.; Cozijnsen, J.L.; Klift, van der E.J.C.

    2006-01-01

    The potential of the CO laser pumped dual beam thermal lens spectrometer (TLS) used as the detector of infrared (IR) absorbance in non-aqueous reversed-phase high pressure liquid chromatography (NARP-HPLC) and argentation chromatography (Ag-HPLC-TLS) has been investigated. The linoleic acid C18:2

  2. Androgen induces gonadal soma-derived factor, Gsdf, in XX gonads correlated to sex-reversal but not Dmrt1 directly, in the teleost fish, northern medaka (Oryzias sakaizumii).

    Science.gov (United States)

    Horie, Yoshifumi; Myosho, Taijun; Sato, Tadashi; Sakaizumi, Mitsuru; Hamaguchi, Satoshi; Kobayashi, Tohru

    2016-11-15

    In the inbred HNI-II strain of Oryzias sakaizumii, Dmy and Gsdf are expressed in XY gonads from Stages 35 and 36, respectively, similarly to the inbred Hd-rR strain of Oryzias latipes. However, Dmrt1 respectively becomes detectable at Stage 36 and 5 days post hatching (dph) in the two strains. In XX HNI-II embryos, 17α-methyltestosterone (MT) induces Gsdf mRNA from Stage 36, accompanied by complete sex-reversal in all treated individuals (MT, 10 ng/mL), while Dmrt1 mRNA was first detectable at 5 dph. In XX d-rR, MT induced Gsdf mRNA expression and sex-reversal in only some of the treated individuals. Together, these results suggest the testis differentiation cascade in XY individuals differs between the HNI-II and Hd-rR strains. In addition, it is suggested that androgen-induced XX sex-reversal proceeds via an androgen-Gsdf-Dmrt1 cascade and that Gsdf plays an important role in sex-reversal in medaka. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Effects of aging in containment spray injection system of PWR reactor containment; Efeitos do envelhecimento no sistema de injecao de borrifo da contencao de reatores a agua pressurizada

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Diogo da S.; Lava, Deise D.; Affonso, Renato R.W.; Guimaraes, Antonio C.F.; Moreira, Maria de L., E-mail: diogosb@outlook.com, E-mail: deise_dy@hotmail.com, E-mail: raoniwa@yahoo.com.br, E-mail: tony@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    This paper presents a contribution to the study of the components aging process in commercial plants of Pressurized Water Reactors (PWR). The analysis is done by applying the method of Fault trees, Monte Carlo Method and Fussell-Vesely Importance Measurement. The study on the aging of nuclear plants, is related to economic factors involved directly with the extent of their operational life, and also provides important data on issues of safety. The most recent case involving the process of extending the life of a PWR plant can be seen in Angra 1 Nuclear Power Plant by investing $ 27 million in the installation of a new reactor cover. The corrective action generated an extension of the useful life of Angra 1 estimated in twenty years, and a great savings compared to the cost of building a new plant and the decommissioning of the first, if it had reached the operation time out 40 years. The extension of the lifetime of a nuclear power plant must be accompanied by special attention from the most sensitive components of the systems to the aging process. After the application of the methodology (aging analysis of Containment Spray Injection System (CSIS)) proposed in this paper, it can be seen that increasing the probability of failure of each component, due to the aging process, generate an increased general unavailability of the system that contains these basic components. The final results obtained were as expected and can contribute to the maintenance policy, preventing premature aging in nuclear power systems.

  4. Tensile and Fatigue Testing and Material Hardening Model Development for 508 LAS Base Metal and 316 SS Similar Metal Weld under In-air and PWR Primary Loop Water Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish [Argonne National Lab. (ANL), Argonne, IL (United States); Soppet, William [Argonne National Lab. (ANL), Argonne, IL (United States); Majumdar, Saurin [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, Ken [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in September 2015 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2015 report we presented a baseline mechanistic finite element model of a two-loop pressurized water reactor (PWR) for systemlevel heat transfer analysis and subsequent thermal-mechanical stress analysis and fatigue life estimation under reactor thermal-mechanical cycles. In the present report, we provide tensile and fatigue test data for 508 low-alloy steel (LAS) base metal, 508 LAS heat-affected zone metal in 508 LAS–316 stainless steel (SS) dissimilar metal welds, and 316 SS-316 SS similar metal welds. The test was conducted under different conditions such as in air at room temperature, in air at 300 oC, and under PWR primary loop water conditions. Data are provided on materials properties related to time-independent tensile tests and time-dependent cyclic tests, such as elastic modulus, elastic and offset strain yield limit stress, and linear and nonlinear kinematic hardening model parameters. The overall objective of this report is to provide guidance to estimate tensile/fatigue hardening parameters from test data. Also, the material models and parameters reported here can directly be used in commercially available finite element codes for fatigue and ratcheting evaluation of reactor components under in-air and PWR water conditions.

  5. Measurement of local flow pattern in boiling R12 simulating PWR conditions with multiple optical probes

    International Nuclear Information System (INIS)

    Garnier, J.

    1998-01-01

    For a comprehensive approach of boiling crisis phenomenon in order to get more reliable predictions of critical heat flux in PWR core, a flow pattern study is under progress at CEA GRENOBLE (in a joint program with Electricite de France: EdF). The first aim is to get experimental results on flow structure in the range of thermal hydraulic parameters involved in the core of a PWR (pressure up to 16 MPa, heat flux about 1 MW/m 2 , mass velocity up to 5000 kg/s/m 2 . As critical heat flux is a local phenomenon and is the result of the flow development, the data has to be measured from the beginning of boiling until boiling crisis, and from the bulk flow until the boundary layer close to the heating walls. Therefore, these results will be useful in modeling not only boiling crisis phenomenon but also condensation in subcooled boiling, coalescence, splitting up, mass and energy transfers at interfaces, and so on. In a first step, the test section is a vertical tube 19.2 mm internal diameter with an axial uniform heat flux over a 3.5m length. The study is performed on the DEBORA loop with Freon 12 as coolant fluid. We assume that basic boiling phenomena (and the knowledge we get about them) only depend on the fluid properties by means of dimensionless parameters but not on the fluid itself. In a first part, we briefly recall that interfacial detection is the most important parameter of a flow pattern study. Therefore, the use of probes able to measure the Phase Indicator Function (P.I.F.) is necessary. A first study of flow conditions shows that the flow pattern is essentially a bubbly one with vapor particles of low diameter (about 300 clm) and high velocity (up to 7 m/s). These criteria induce that a multiple optical probe is the most appropriate tool provided we improve the technology. We detail the way to obtain probes able to detect small particles at high velocity. Each fiber is stretched to get a tip of 10 Clm with the cladding kept on 50 μm length which defines

  6. Simulation model and methodology for calculating the damage by internal radiation in a PWR reactor; Modelo de simulacion y metodologia para el calculo del dano por irradiacion en los internos de un reactor PWR

    Energy Technology Data Exchange (ETDEWEB)

    Cadenas Mendicoa, A. M.; Benito Hernandez, M.; Barreira Pereira, P.

    2012-07-01

    This study involves the development of the methodology and three-dimensional models to estimate the damage to the vessel internals of a commercial PWR reactor from irradiation history of operating cycles.

  7. Design Development and Verification of a System Integrated Modular PWR

    International Nuclear Information System (INIS)

    Kim, S.-H.; Kim, K. K.; Chang, M. H.; Kang, C. S.; Park, G.-C.

    2002-01-01

    An advanced PWR with a rated thermal power of 330 MW has been developed at the Korea Atomic Energy Research Institute (KAERI) for a dual purpose: seawater desalination and electricity generation. The conceptual design of SMART ( System-Integrated Modular Advanced ReacTor) with a desalination system was already completed in March of 1999. The basic design for the integrated nuclear desalination system is currently underway and will be finished by March of 2002. The SMART co-generation plant with the MED seawater desalination process is designed to supply forty thousand (40,000) tons of fresh water per day and ninety (90) MW of electricity to an area with approximately a ten thousand (100,000) population or an industrialized complex. This paper describes advanced design features adopted in the SMART design and also introduces the design and engineering verification program. In the beginning stage of the SMART development, top-level requirements for safety and economics were imposed for the SMART design features. To meet the requirements, highly advanced design features enhancing the safety, reliability, performance, and operability are introduced in the SMART design. The SMART consists of proven KOFA (Korea Optimized Fuel Assembly), helical once-through steam generators, a self-controlled pressurizer, control element drive mechanisms, and main coolant pumps in a single pressure vessel. In order to enhance safety characteristics, innovative design features adopted in the SMART system are low core power density, large negative Moderator Temperature Coefficient (MTC), high natural circulation capability and integral arrangement to eliminate large break loss of coolant accident, etc. The progression of emergency situations into accidents is prevented with a number of advanced engineered safety features such as passive residual heat removal system, passive emergency core cooling system, safeguard vessel, and passive containment over-pressure protection. The preliminary

  8. Time reversibility, computer simulation, and chaos

    CERN Document Server

    Hoover, William Graham

    1999-01-01

    A small army of physicists, chemists, mathematicians, and engineers has joined forces to attack a classic problem, the "reversibility paradox", with modern tools. This book describes their work from the perspective of computer simulation, emphasizing the author's approach to the problem of understanding the compatibility, and even inevitability, of the irreversible second law of thermodynamics with an underlying time-reversible mechanics. Computer simulation has made it possible to probe reversibility from a variety of directions and "chaos theory" or "nonlinear dynamics" has supplied a useful

  9. Comparison of problems and experience of core operation with distorted fuel element assemblies in VVER-1000 and PWR reactors

    International Nuclear Information System (INIS)

    Afanas'ev, A.

    1999-01-01

    The main reactors leading to distortion of fuel element assemblies during reactor operation were studied. A series of actions which compensate this effect was proposed. Criteria of operation limitation in VVER-1000 and PWR reactors are described

  10. Pu recycling in a full Th-MOX PWR core. Part I: Steady state analysis

    International Nuclear Information System (INIS)

    Fridman, E.; Kliem, S.

    2011-01-01

    Research highlights: → Detailed 3D 100% Th-MOX PWR core design is developed. → Pu incineration increased by a factor of 2 as compared to a full MOX PWR core. → The core controllability under steady state conditions is demonstrated. - Abstract: Current practice of Pu recycling in existing Light Water Reactors (LWRs) in the form of U-Pu mixed oxide fuel (MOX) is not efficient due to continuous Pu production from U-238. The use of Th-Pu mixed oxide (TOX) fuel will considerably improve Pu consumption rates because virtually no new Pu is generated from thorium. In this study, the feasibility of Pu recycling in a typical pressurized water reactor (PWR) fully loaded with TOX fuel is investigated. Detailed 3-dimensional 100% TOX and 100% MOX PWR core designs are developed. The full MOX core is considered for comparison purposes. The design stages included determination of Pu loading required to achieve 18-month fuel cycle assuming three-batch fuel management scheme, selection of poison materials, development of the core loading pattern, optimization of burnable poison loadings, evaluation of critical boron concentration requirements, estimation of reactivity coefficients, core kinetic parameters, and shutdown margin. The performance of the MOX and TOX cores under steady-state condition and during selected reactivity initiated accidents (RIAs) is compared with that of the actual uranium oxide (UOX) PWR core. Part I of this paper describes the full TOX and MOX PWR core designs and reports the results of steady state analysis. The TOX core requires a slightly higher initial Pu loading than the MOX core to achieve the target fuel cycle length. However, the TOX core exhibits superior Pu incineration capabilities. The significantly degraded worth of control materials in Pu cores is partially addressed by the use of enriched soluble boron and B 4 C as a control rod absorbing material. Wet annular burnable absorber (WABA) rods are used to flatten radial power distribution

  11. The one-dimensional normalised generalised equivalence theory (NGET) for generating equivalent diffusion theory group constants for PWR reflector regions

    International Nuclear Information System (INIS)

    Mueller, E.Z.

    1991-01-01

    An equivalent diffusion theory PWR reflector model is presented, which has as its basis Smith's generalisation of Koebke's Equivalent Theory. This method is an adaptation, in one-dimensional slab geometry, of the Generalised Equivalence Theory (GET). Since the method involves the renormalisation of the GET discontinuity factors at nodal interfaces, it is called the Normalised Generalised Equivalence Theory (NGET) method. The advantages of the NGET method for modelling the ex-core nodes of a PWR are summarized. 23 refs

  12. PWR Blowdown Heat Transfer Separate-Effects Program. Thermal-Hydraulic Test Facility experimental data report for test 103

    Energy Technology Data Exchange (ETDEWEB)

    Clemons, V.D.; White, M.D.; Moore, P.A.; Hedrick, R.A.

    1978-03-07

    Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) test 103, which is part of the ORNL Pressurized-Water Reactor (PWR) Blowdown Heat Transfer Separate-Effects Program. The objective of the program is to investigate the thermal-hydraulic phenomenon governing the energy transfer and transport processes that occur during a loss-of-coolant accident in a PWR system.

  13. Reactivity and neutron emission measurements of burnt PWR fuel rod samples in LWR-PROTEUS phase II

    International Nuclear Information System (INIS)

    Murphy, M. F.; Jatuff, F.; Grimm, P.; Seiler, R.; Brogli, R.; Meier, G.; Berger, H. D.; Chawla, R.

    2004-01-01

    Measurements have been made of the reactivity effects and the neutron emission rates of uranium oxide and mixed oxide burnt fuel samples having a wide range of burnup values and coming from a Pressurised Water Reactor (PWR). The reactivity measurements have been made in a PWR lattice moderated in turn with: water, a water and heavy water mixture, and water containing boron. An interesting relationship has been found between the neutron emission rate and the measured reactivity. (authors)

  14. Development and application of methods and computer codes of fuel management and nuclear design of reload cycles in PWR

    International Nuclear Information System (INIS)

    Ahnert, C.; Aragones, J.M.; Corella, M.R.; Esteban, A.; Martinez-Val, J.M.; Minguez, E.; Perlado, J.M.; Pena, J.; Matias, E. de; Llorente, A.; Navascues, J.; Serrano, J.

    1976-01-01

    Description of methods and computer codes for Fuel Management and Nuclear Design of Reload Cycles in PWR, developed at JEN by adaptation of previous codes (LEOPARD, NUTRIX, CITATION, FUELCOST) and implementation of original codes (TEMP, SOTHIS, CICLON, NUDO, MELON, ROLLO, LIBRA, PENELOPE) and their application to the project of Management and Design of Reload Cycles of a 510 Mwt PWR, including comparison with results of experimental operation and other calculations for validation of methods. (author) [es

  15. Techniques and devices developed by the CEA for hot cell and in-situ examinations of PWR components and PWR fuel assembliess after irradiation

    International Nuclear Information System (INIS)

    Van Craeynest, J.C.; Leseur, A.; Lhermenier, A.; Cytermann, R.

    1981-11-01

    Within the framework of the electro-nuclear development of the PWR system, the CEA has provided itself with facilities for developing techniques for analyzing assemblies, pins and fuels. These are examinations and tests on irradiated heads and assemblies with the aid of the Fuel Examination Module (FEM), of machining of assemblies and examinations in the Celimene hot laboratory or detailed examinations and analyses on fuel elements using eddy currents, the electronic microprobe and the Fisher ''permeascope'' which enables the outline of the oxide coat present on the cladding to be followed [fr

  16. An algebra of reversible computation.

    Science.gov (United States)

    Wang, Yong

    2016-01-01

    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  17. Reversible logic synthesis methodologies with application to quantum computing

    CERN Document Server

    Taha, Saleem Mohammed Ridha

    2016-01-01

    This book opens the door to a new interesting and ambitious world of reversible and quantum computing research. It presents the state of the art required to travel around that world safely. Top world universities, companies and government institutions  are in a race of developing new methodologies, algorithms and circuits on reversible logic, quantum logic, reversible and quantum computing and nano-technologies. In this book, twelve reversible logic synthesis methodologies are presented for the first time in a single literature with some new proposals. Also, the sequential reversible logic circuitries are discussed for the first time in a book. Reversible logic plays an important role in quantum computing. Any progress in the domain of reversible logic can be directly applied to quantum logic. One of the goals of this book is to show the application of reversible logic in quantum computing. A new implementation of wavelet and multiwavelet transforms using quantum computing is performed for this purpose. Rese...

  18. Experiment data report for semiscale Mod-1 Test S-06-2 (LOFT counterpart test). [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Jr., M. L.; Collins, B. L.; Sackett, K. E.

    1977-08-01

    Recorded test data are presented for Test S-06-2 of the Semiscale Mod-1 LOFT counterpart test series. These tests are among several Semiscale Mod-1 experiments conducted to investigate the thermal and hydraulic phenomena accompanying an hypothesized loss-of-coolant accident in a pressurized water reactor (PWR) system. Test S-06-2 was conducted from initial conditions of 15 513 kPa and 563 K to investigate the response of the Semiscale Mod-1 system to a depressurization and reflood transient following a simulated double-ended offset shear of the broken loop cold leg piping. During the test, cooling water was injected into the cold leg of the intact loop to simulate emergency core coolant injection in a PWR. The heater rods in the electrically heated core were operated at an axial peak power density which was 50% of the maximum peak power density (52.5 kW/m).

  19. Experiment data report for semiscale Mod-1 test S-06-1 (LOFT counterpart test). [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Collins, B. L.; Patton, Jr., M. L.; Sackett, K. E.

    1977-07-01

    Recorded test data are presented for Test S-06-1 of the Semiscale Mod-1 LOFT counterpart test series. These tests are among several Semiscale Mod-1 experiments conducted to investigate the thermal and hydraulic phenomena accompanying an hypothesized loss-of-coolant accident in a pressurized water reactor (PWR) system. Test S-06-1 was conducted from initial conditions of 15 568 kPa and 564 K to investigate the response of the Semiscale Mod-1 system to a depressurization and reflood transient following a simulated double-ended offset shear of the broken loop cold leg piping. During the test, cooling water was injected into the cold leg of the intact loop to simulate emergency core coolant injection in a PWR. The heater rods in the electrically heated core were operated at an axial peak power density which was 30% of the maximum peak power density (52.5 kW/m).

  20. VAMCIS, a new measuring channel for continuous monitoring of leak rates inside PWR steam generators

    International Nuclear Information System (INIS)

    Champion, G.; Dubail, A.; Lefevre, F.

    1988-01-01

    In order to assess the primary to secondary leakage, radioactive isotopes, formed in the primary coolant as a result of fission or neutron capture, are usually monitored in the pressurized water reactor (PWR) secondary coolant. Conventional methods mainly based on the detection of 133 Xe, tritium, and 41 Ar are widely used on French Electricite de France (EdF) PWRs. Some years ago, it appeared necessary to improve both leak rate assessments and steam generator tube rupture (SGTR) detection. A volumetric activity measuring channel inside steam (VAMCIS) has been developed for this purpose. The SGTR that occurred at the North Anna PWR has focused the attention of safety authorities on this new measuring channel. It is planned to implement VAMCIS at North Anna in order to check the leak rate variations more accurately

  1. PENGARUH KONDISI ATMOSFERIK TERHADAP PERHITUNGAN PROBABILISTIK DAMPAK RADIOLOGI KECELAKAAN PWR 1000-MWe

    Directory of Open Access Journals (Sweden)

    Pande Made Udiyani

    2015-10-01

    Full Text Available ABSTRAK PENGARUH KONDISI ATMOSFERIK TERHADAP PERHITUNGAN PROBABILISTIK DAMPAK RADIOLOGI KECELAKAAN PWR 1000-MWe.  Perhitungan dampak kecelakaan radiologi terhadap lepasan produk fisi akibat kecelakaan potensial yang mungkin terjadi di Pressurized Water Reactor (PWR diperlukan secara probabilistik. Mengingat kondisi atmosfer sangat berperan terhadap dispersi radionuklida di lingkungan, dalam penelitian ini akan dianalisis pengaruh kondisi atmosferik terhadap perhitungan probabilistik dari konsekuensi kecelakaan reaktor.  Tujuan penelitian adalah melakukan analisis terhadap pengaruh kondisi atmosfer berdasarkan model data input meteorologi terhadap dampak radiologi kecelakaan PWR 1000-MWe yang disimulasikan pada tapak yang mempunyai kondisi meteorologi yang berbeda. Simulasi menggunakan program PC-Cosyma dengan moda perhitungan probabilistik, dengan data input meteorologi yang dieksekusi secara cyclic dan stratified, dan disimulasikan di Tapak Semenanjung Muria dan Pesisir Serang. Data meteorologi diambil setiap jam untuk jangka waktu satu tahun. Hasil perhitungan menunjukkan bahwa frekuensi kumulatif  untuk model input yang sama untuk Tapak pesisir Serang lebih tinggi dibandingkan dengan Semenanjung Muria. Untuk tapak yang sama, frekuensi kumulatif model input cyclic lebih tinggi dibandingkan model stratified. Model cyclic memberikan keleluasan dalam menentukan tingkat ketelitian perhitungan dan tidak membutuhkan data acuan dibandingkan dengan model stratified. Penggunaan model cyclic dan stratified melibatkan jumlah data yang besar dan pengulangan perhitungan  akan meningkatkan  ketelitian nilai-nilai statistika perhitungan. Kata kunci: dampak kecelakaan, PWR 1000-MWe,  probabilistik,  atmosferik, PC-Cosyma   ABSTRACT THE INFLUENCE OF ATMOSPHERIC CONDITIONS TO PROBABILISTIC CALCULATION OF IMPACT OF RADIOLOGY ACCIDENT ON PWR-1000MWe. The calculation of the radiological impact of the fission products releases due to potential accidents

  2. Optimization of small long-life PWR based on thorium fuel

    Science.gov (United States)

    Subkhi, Moh Nurul; Suud, Zaki; Waris, Abdul; Permana, Sidik

    2015-09-01

    A conceptual design of small long-life Pressurized Water Reactor (PWR) using thorium fuel has been investigated in neutronic aspect. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.2, while the multi-energy-group diffusion calculations were optimized in three-dimension X-Y-Z geometry of core by COREBN. The excess reactivity of thorium nitride with ZIRLO cladding is considered during 5 years of burnup without refueling. Optimization of 350 MWe long life PWR based on 5% 233U & 2.8% 231Pa, 6% 233U & 2.8% 231Pa and 7% 233U & 6% 231Pa give low excess reactivity.

  3. A new uncertainty reduction method for PWR cores with erbia bearing fuel

    International Nuclear Information System (INIS)

    Takeda, Toshikazu; Sano, Tadafumi; Kitada, Takanori; Kuroishi, Takeshi; Yamasaki, Masatoshi; Unesaki, Hironobu

    2008-01-01

    The concept of a PWR with erbia bearing high burnup fuel has been proposed. The erbia is added to all fuel with over 5% 235 U enrichment to retain the neutronics characteristics to that within 5% 235 U enrichment. There is a problem of the prediction accuracy of the neutronics characteristics with erbia bearing fuel because of the short of experimental data of erbia bearing fuel. The purpose of the present work is to reduce the uncertainty. A new method has been proposed by combining the bias factor method and the cross section adjustment method. For the PWR core, the uncertainty reduction, which shows the rate of reduction of uncertainty, of the k eff is 0.865 by the present method and 0.801 by the conventional bias factor method. Thus the prediction uncertainties are reduced by the present method compared to the bias factor method. (authors)

  4. An Empirical Approach to Bounding the Axial Reactivity Effects of PWR Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    O'Leary, P. M.; Scaglione, J. M.

    2001-01-01

    One of the significant issues yet to be resolved for using burnup credit (BUC) for spent nuclear fuel (SNF) is establishing a set of depletion parameters that produce an adequately conservative representation of the fuel's isotopic inventory. Depletion parameters (such as local power, fuel temperature, moderator temperature, burnable poison rod history, and soluble boron concentration) affect the isotopic inventory of fuel that is depleted in a pressurized water reactor (PWR). However, obtaining the detailed operating histories needed to model all PWR fuel assemblies to which BUC would be applied is an onerous and costly task. Simplifications therefore have been suggested that could lead to using ''bounding'' depletion parameters that could be broadly applied to different fuel assemblies. This paper presents a method for determining a set of bounding depletion parameters for use in criticality analyses for SNF

  5. Power ramp testing method for PWR fuel rod at research reactor

    International Nuclear Information System (INIS)

    Zhou Yidong; Zhang Peisheng; Zhang Aimin; Gao Yongguang; Wang Huarong

    2003-01-01

    A tentative power ramp test for short PWR fuel rod has been conducted at the Heavy Water Research Reactor (HWRR) in China Institute of Atomic Energy (CIAE). The test fuel rod was cooled by the circulating water in the test loop. The power ramp was realized by moving solid neutron-absorbing screen around the fuel rod. The linear power of the fuel rod increased from 220 W/cm to 340 W/cm with a power ramp rate of 20 W/cm/min. The power of the fuel rod was monitored by both in-core thermal and nuclear measurement sensors in the test rig. This test provides experiences for further developing the power ramp test methods for PWR fuel rods at research reactor. (author)

  6. The empirical intensity of PWR primary coolant pumps failure and repair

    International Nuclear Information System (INIS)

    Milivojevicj, S.; Riznicj, J.

    1988-01-01

    The wealth of operating experience concerning PWR type and nuclear reactors that has been regularly monitored and systematically processes since 1971, enabled an analysis of the PWR primary coolant pumps operation. Failure intensity α and repair intensity μ of the pump during its working life were calculated, as these values are necessary in order to determine the reliability and availability of the pump as the basis for analyzing its effect on the safety and efficiency of the nuclear power plant. The trend of failure intensity α follows the theoretically expected changes in α over time, and this is around 10 -5 in the majority of life-time. Repair intensity μ indicates a slow rise during life-time, i.e. its faster return to operation. (author).7 refs.; 5 figs

  7. Analysis of confinement effects for in-water seismic tests on PWR fuel assemblies

    International Nuclear Information System (INIS)

    Broc, Daniel; Queval, Jean-Claude; Rigaudeau, J.; Viallet, E.

    2001-01-01

    In the framework of a comprehensive program on the seismic behaviour of the PWR reactor cores, tests have been performed on a row of six PWR fuel assemblies, with two confinement configurations in water. Global fluid motion along the row is not allowed in the 'full confinement configuration', and is allowed in the 'lateral confinement configuration'. The seismic test results show that the impact forces at assembly grid levels are significantly smaller with the full confinement. This is due to damping, which is found to be larger in this configuration where the average fluid velocity inside the assembly (around the rods) is itself larger. We present analyses of these phenomena from theoretical and experimental standpoint. This involves both fluid models and structural models of the assembly row. (author)

  8. Hydroelastic model of PWR reactor internals SAFRAN 1 - Validation of a vibration calculation method

    International Nuclear Information System (INIS)

    Epstein, A.; Gibert, R.J.; Jeanpierre, F.; Livolant, M.

    1978-01-01

    The SAFRAN 1 test loop consists of an hydroelastic similitude of a 1/8 scale model of a 3 loop P.W.R. Vibrations of the main internals (thermal shield and core barrel) and pressure fluctuations in water thin sections between vessel and internals, and in inlet and outlet pipes, have been measured. The calculation method consists of: an evaluation of the main vibration and acoustic sources owing to the flow (unsteady jet impingement on the core barrel, turbulent flow in a water thin section). A calculation of the internal modal parameters taking into account the inertial effects of fluid (the computer codes AQUAMODE and TRISTANA have been used). A calculation of the acoustic response of the circuit (the computer code VIBRAPHONE has been used). The good agreement between the calculation and the experimental results allows using this method with better security for the prediction of the vibration levels of full scale P.W.R. internals

  9. Eddy current NDT: a suitable tool to measure oxide layer thickness in PWR fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Alencar, Donizete A.; Silva Junior, Silverio F. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)], e-mail: daa@cdtn.br, e-mail: silvasf@cdtn.br; Vieira, Andre L.P.S. [Industrias Nucleares do Brasil (INB S.A.), Resende, RJ (Brazil). Fabrica de Combustivel Nuclear], e-mail: andre@inb.gov.br; Soares, Adolpho [Technotest Consultoria e Acessoria Ltda., Belo Horizonte, MG (Brazil)], e-mail: adolpho@technotest.com.br

    2009-07-01

    Eddy current is a nondestructive test (NDT) widely used in industry to support integrity analysis of components and equipment. In the nuclear area it is frequently applied to inspect tubes installed in tube exchangers, such as steam generators and condensers in PWR plants, as well as turbine blades. Adequately assisted by means of robotic devices, that inspection method has been pointed as a suitable tool to perform accurate oxide layer thickness measurements in PWR fuel rods. This paper shows some theoretical aspects and physical operating principles of the inspection method, as well as test probes construction details, and the calibration reference standards fabrication processes. Furthermore, some data, experimentally obtained at INB laboratories and other technical information obtained from TECNATOM S.A. are presented, showing the accuracy and efficacy of such NDT method. (author)

  10. Eddy current NDT: a suitable tool to measure oxide layer thickness in PWR fuel rods

    International Nuclear Information System (INIS)

    Alencar, Donizete A.; Silva Junior, Silverio F.; Vieira, Andre L.P.S.

    2009-01-01

    Eddy current is a nondestructive test (NDT) widely used in industry to support integrity analysis of components and equipment. In the nuclear area it is frequently applied to inspect tubes installed in tube exchangers, such as steam generators and condensers in PWR plants, as well as turbine blades. Adequately assisted by means of robotic devices, that inspection method has been pointed as a suitable tool to perform accurate oxide layer thickness measurements in PWR fuel rods. This paper shows some theoretical aspects and physical operating principles of the inspection method, as well as test probes construction details, and the calibration reference standards fabrication processes. Furthermore, some data, experimentally obtained at INB laboratories and other technical information obtained from TECNATOM S.A. are presented, showing the accuracy and efficacy of such NDT method. (author)

  11. Some thermalhydraulics of closure head adapters in a 3 loops PWR

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, F.; Daubert, O.; Hecker, M. [EDF/DER/National Hydraulics Laboratory, Chatou (France)] [and others

    1995-09-01

    In 1993 a R&D action, based on numerical simulations and experiments on PWR`s upper head was initiated. This paper presents the test facility TRAVERSIN (a scale model of a 900 MW PWR adapter) and the calculations performed on the geometry of different upper head sections with the Thermalhydraulic Finite Element Code N3S used for 2D and 3D computations. The paper presents the method followed to bring the adapter and upper head study to a successful conclusion. Two complementary approaches are performed to obtain global results on complete fluid flow in the upper head and local results on the flow around the adapters of closure head. A validation test case of these experimental and numerical tools is also presented.

  12. Study for identification of control rod drops in PWR reactors at any burnup step

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Thiago J.; Martinez, Aquilino S.; Medeiros, Jose A.C.C.; Goncalves, Alessandro C., E-mail: tsouza@nuclear.ufrj.br, E-mail: aquilino@lmp.ufrj.br, E-mail: canedo@lmp.ufrj.br, E-mail: alessandro@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Palma, Daniel A.P., E-mail: dapalma@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The control rod drop event in PWR reactors induces an unsafe operating condition. Therefore, in a scenario of a control rod drop is important to quickly identify the rod to minimize undesirable effects. The objective of this work is to develop an on-line method for identification of control rod drop in PWR reactors. The method consists on the construction of a tool that is based on the ex-core detector responses. Therefore, it is proposed to recognize patterns in the neutron ex-core detectors responses and thus to identify on-line a control rod drop in the core during the reactor operation. The results of the study, as well as the behavior of the detector responses, demonstrated the feasibility of this method. (author)

  13. Study of PWR reactor efficiency as a function of turbine steam extractions

    International Nuclear Information System (INIS)

    Rocha, Janine Gandolpho da; Alvim, Antonio Carlos Marques; Martinez, Aquilino Senra

    2002-01-01

    The objective of this work is to optimize the extractions of the low-pressure turbine of a PWR nuclear reactor, in order to obtain the best thermodynamic cycle efficiency. We have analyzed typical data of a 1300 MW PWR reactor, operating at 25%, 50%, 75% and 100% capacities, respectively. The first stage of this study consists of generating a mathematical model capable of describing the reactor behavior and efficiency at any power level. The second stage of this study consists of to combine the generated mathematical model in an optimization computer program that optimize the extractions flow of the low-pressure turbine until it finds the optimal system efficiency. This work does not alter the nuclear facility project in any way. (author)

  14. Study for identification of control rod drops in PWR reactors at any burnup step

    International Nuclear Information System (INIS)

    Souza, Thiago J.; Martinez, Aquilino S.; Medeiros, Jose A.C.C.; Goncalves, Alessandro C.

    2013-01-01

    The control rod drop event in PWR reactors induces an unsafe operating condition. Therefore, in a scenario of a control rod drop is important to quickly identify the rod to minimize undesirable effects. The objective of this work is to develop an on-line method for identification of control rod drop in PWR reactors. The method consists on the construction of a tool that is based on the ex-core detector responses. Therefore, it is proposed to recognize patterns in the neutron ex-core detectors responses and thus to identify on-line a control rod drop in the core during the reactor operation. The results of the study, as well as the behavior of the detector responses, demonstrated the feasibility of this method. (author)

  15. CONCEPTUAL ISSUES REGARDING REVERSE LOGISTICS

    Directory of Open Access Journals (Sweden)

    Ioana Olariu

    2013-12-01

    Full Text Available As the power of consumers is growing, the product return for customer service and customer retention has become a common practice in the competitive market, which propels the recent practice of reverse logistics in companies. Many firms attracted by the value available in the flow, have proactively participated in handling returned products at the end of their usefulness or from other parts of the product life cycle. Reverse logistics is the flow and management of products, packaging, components and information from the point of consumption to the point of origin. It is a collection of practices similar to those of supply chain management, but in the opposite direction, from downstream to upstream. It involves activities such as reuse, repair, remanufacture, refurbish, reclaim and recycle. For the conventional forward logistics systems, the flow starts upstream as raw materials, later as manufactured parts and components to be assembled and continues downstream to reach customers as final products to be disposed once they reach their economic or useful lives. In reverse logistics, the disposed products are pushed upstream to be repaired, remanufactured, refurbished, and disassembled into components to be reused or as raw material to be recycled for later use.

  16. Tubal Ligation Reversal

    Science.gov (United States)

    ... and other factors. Success rates may be as high as 80 percent or as low as near 40 percent depending on your circumstances. Tubal ligation reversal is abdominal surgery, which carries a risk of infection, bleeding and ...

  17. Thermal-hydraulic analysis of NSSS and containment response during extended station blackout for Maanshan PWR plant

    Energy Technology Data Exchange (ETDEWEB)

    Yuann, Yng-Ruey, E-mail: ryyuann@iner.gov.tw; Hsu, Keng-Hsien, E-mail: hardlycampus@iner.gov.tw; Lin, Chin-Tsu, E-mail: jtling@iner.gov.tw

    2015-07-15

    Highlights: • Calculate NSSS and containment transient response during extended SBO of 24 h. • RELAP5-3D and GOTHIC models are developed for Maanshan PWR plant. • Reactor coolant pump seal leakage is specifically modeled for each loop. • Analyses are performed with and without secondary-side depressurization, respectively. • Considering different total available time for turbine driven auxiliary feedwater system. - Abstract: A thermal-hydraulic analysis has been performed with respect to the response of the nuclear steam supply system (NSSS) and the containment during an extended station blackout (SBO) duration of 24 h in Maanshan PWR plant. Maanshan plant is a Westinghouse three-loop PWR design with rated core thermal power of 2822 MWt. The analyses in the NSSS and the containment are based on the RELAP5-3D and GOTHIC models, respectively. Important design features of the plant in response to SBO are considered in the respective models, e.g., the steam generator PORVs, turbine driven auxiliary feedwater system (TDAFWS), accumulators, reactor coolant pump (RCP) seal design, various heat structures in the containment, etc. In the analysis it is assumed that the shaft seal in each RCP failed due to loss of seal cooling and the RCS fluid flows to the containment directly. Some parameters calculated from the RELPA5-3D model are input to the containment GOTHIC model, including the RCS average temperature and the RCP seal leakage flow and enthalpy. The RCS average temperature is used to drive the sensible heat transfer to the containment. It is found that the severity of the event depends mainly on whether the secondary side is depressurized or not. If the secondary side is depressurized in time (within 1 h after SBO) and the TDAFWS is available greater than 19 h, then the reactor core will be covered with water throughout the SBO duration, which ensures the integrity of the reactor core. On the contrary, if the secondary side is not depressurized, then the RCS

  18. Preventive detection of incipient failure and improvement of availability of French PWR using acoustic emission

    International Nuclear Information System (INIS)

    Audenard, B.; Marini, J.

    1982-08-01

    Laboratory tests, on site experience gained on PWR during start up test as well as during nominal functioning have given FRAMATOME very great confidence in A.E. techniques for preventive detection of incidents. Loose part and leakage monitoring are already being used on an industrial basis. Crack growth detection and monitoring are still in the investigation phase and various. Research and Development programs are presently being carried out

  19. Fluid-structure coupled dynamic response of PWR core barrel during LOCA

    International Nuclear Information System (INIS)

    Lu, M.W.; Zhang, Y.G.; Shi, F.

    1991-01-01

    This paper is engaged in the Fluid-Structure Interaction LOCA analysis of the core barrel of PWR. The analysis is performed by a multipurpose computer code SANES. The FSI inside the pressure vessel is treated by a FEM code including some structural and acoustic elements. The transient in the primary loop is solved by a two-phase flow code. Both codes are coupled one another. Some interesting conclusions are drawn. (author)

  20. Studi Unjuk Kerja Pwr Di Negara Penyedia Teknologi : Kasus Korea Selatan Dan Jepang

    OpenAIRE

    Sriyana, Sriyana

    2007-01-01

    PERFORMANCE OF PWR STUDY IN THE TECHNOLOGY SUPPLIER COUNTRIES: SOUTH KOREA AND JAPAN CASE. Electricity is needed as an infrastructure to support the national economic growth. For economic development sustainability, energy alternatives should be provided. Nuclear Power Plant (NPP) become the alternative of electricity generation for optimum energy mix in Indonesia and planned to operate in the 2016. Several studies have alredy done to prepare the NPP construction. This study focused on NPP pe...