WorldWideScience

Sample records for directed magnetic field

  1. Shaping magnetic fields to direct therapy to ears and eyes.

    Science.gov (United States)

    Shapiro, B; Kulkarni, S; Nacev, A; Sarwar, A; Preciado, D; Depireux, D A

    2014-07-11

    Magnetic fields have the potential to noninvasively direct and focus therapy to disease targets. External magnets can apply forces on drug-coated magnetic nanoparticles, or on living cells that contain particles, and can be used to manipulate them in vivo. Significant progress has been made in developing and testing safe and therapeutic magnetic constructs that can be manipulated by magnetic fields. However, we do not yet have the magnet systems that can then direct those constructs to the right places, in vivo, over human patient distances. We do not yet know where to put the external magnets, how to shape them, or when to turn them on and off to direct particles or magnetized cells-in blood, through tissue, and across barriers-to disease locations. In this article, we consider ear and eye disease targets. Ear and eye targets are too deep and complex to be targeted by a single external magnet, but they are shallow enough that a combination of magnets may be able to direct therapy to them. We focus on how magnetic fields should be shaped (in space and time) to direct magnetic constructs to ear and eye targets.

  2. SNR polarization and the direction of the magnetic field

    International Nuclear Information System (INIS)

    Milne, D.K.

    1988-01-01

    The authors are currently engaged in a program to map polarization in SNRs at 8.4 GHz. These results are compared with earlier Parkes 5 GHz maps to deduce the direction of magnetic field, Faraday rotation and depolarization

  3. A new device for production measurements of field integral and field direction of SC dipole magnets

    International Nuclear Information System (INIS)

    Preissner, H.; Bouchard, R.; Luethke, P.; Makulski, A.; Meinke, R.; Nesteruk, K.

    1990-01-01

    The performance of all superconducting magnets for HERA is tested in the DESY magnet test facility and their magnetic field is measured. For dipole magnets the magnitude and the direction of the field is measured point by point along the axis with a mole-type probe which is transported through the beam pipe. The positioning of the probe is done via a toothed belt with an accuracy of 1 mm. The probe houses two Hall probes perpendicular to each other, a gravitational tilt sensor and an NMR probe. The field in the plateau is measured by NMR, the fringe field is measured by the Hall probes and the field direction relative to gravity is obtained from the ratio of the two Hall voltages and the tilt sensor. The field integral is determined with an accuracy of 10 -4 and the average field direction is measured with an accuracy of 0.2 mrad. 4 refs., 4 figs

  4. Localized magnetic fields in arbitrary directions using patterned nanomagnets

    DEFF Research Database (Denmark)

    McNeil, Robert P G; Schneble, Jeff; Kataoka, Masaya

    2010-01-01

    Control of the local magnetic fields desirable for spintronics and quantum information technology is not well developed. Existing methods produce either moderately small local fields or one held orientation. We present designs of patterned magnetic elements that produce remanent fields of 50 mT (...

  5. Detection of the Magnetic Easy Direction in Steels Using Induced Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Edgard M. Silva

    2016-12-01

    Full Text Available Conventional manufacturing processes cause plastic deformation that leads to magnetic anisotropy in processed materials. A deeper understanding of materials characterization under rotational magnetization enables engineers to optimize the overall volume, mass, and performance of devices such as electrical machines in industry. Therefore, it is important to find the magnetic easy direction of the magnetic domains in a simple and straightforward manner. The Magnetic easy direction can be obtained through destructive tests such as the Epstein frame method and the Single Sheet Tester by taking measurements in regions of irreversible magnetization usually called domains. In the present work, samples of rolled SAE 1045 steel (formed by perlite and ferrite microstructures were submitted to induced magnetic fields in the reversibility region of magnetic domains to detect the magnetic easy direction. The magnetic fields were applied to circular samples with different thicknesses and angles varying from 0° to 360° with steps of 45°. A square sample with a fixed thickness was also tested. The results showed that the proposed non-destructive approach is promising to evaluate the magnetic anisotropy in steels independently of the geometry of the sample. The region studied presented low induction losses and was affected by magnetic anisotropy, which did not occur in other works that only took into account regions of high induction losses.

  6. Direct magnetic field estimation based on echo planar raw data.

    Science.gov (United States)

    Testud, Frederik; Splitthoff, Daniel Nicolas; Speck, Oliver; Hennig, Jürgen; Zaitsev, Maxim

    2010-07-01

    Gradient recalled echo echo planar imaging is widely used in functional magnetic resonance imaging. The fast data acquisition is, however, very sensitive to field inhomogeneities which manifest themselves as artifacts in the images. Typically used correction methods have the common deficit that the data for the correction are acquired only once at the beginning of the experiment, assuming the field inhomogeneity distribution B(0) does not change over the course of the experiment. In this paper, methods to extract the magnetic field distribution from the acquired k-space data or from the reconstructed phase image of a gradient echo planar sequence are compared and extended. A common derivation for the presented approaches provides a solid theoretical basis, enables a fair comparison and demonstrates the equivalence of the k-space and the image phase based approaches. The image phase analysis is extended here to calculate the local gradient in the readout direction and improvements are introduced to the echo shift analysis, referred to here as "k-space filtering analysis." The described methods are compared to experimentally acquired B(0) maps in phantoms and in vivo. The k-space filtering analysis presented in this work demonstrated to be the most sensitive method to detect field inhomogeneities.

  7. Utilization Of Second Harmonisa Fluxgate For Two Dimension Direct Magnetic Field

    International Nuclear Information System (INIS)

    Limansyah, Ivan; Djamal, Mitra

    2003-01-01

    Fluxgate magnetic field sensor is a cheap, accurate and simple solution to measure DC external weak magnetic field. With adding some modification, this sensor can be used to measure amplitude and direction of the external magnetic field. By adding another pick up coils that orthogonal with ordinary pick up coils, two dimensions fluxgate magnetic field sensor can be build

  8. Determination of errors in derived magnetic field directions in geosynchronous orbit: results from a statistical approach

    Science.gov (United States)

    Chen, Yue; Cunningham, Gregory; Henderson, Michael

    2016-09-01

    This study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Second, using a newly developed proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors ˜ 5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. This study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.

  9. Determination of microturbulence enhanced electron collisionality in magnetized coaxial accelerator channels by direct magnetic field measurement

    International Nuclear Information System (INIS)

    Black, D.C.; Mayo, R.M.; Caress, R.W.

    1997-01-01

    A miniature magnetic probe array, consisting of 10 spatially separated coils, has been used to obtain profile information on the time varying magnetic field within the 2.54 cm wide flow channel of the coaxial plasma source experiment (CPS-1) [R. M. Mayo et al., Plasma Sources Sci. Technol. 4, 47 (1995)]. The magnetic field data have been used, together with a resistive, Hall magnetohydrodynamic (MHD) model of applied field distortion by the flowing plasma, to obtain estimates of the microturbulent enhancement to electron collisionality within the CPS-1 flow channel. These measurements provide direct experimental evidence of anomalous electron collisionality, a previously predicted effect in these devices. The anomaly parameter, a=ν an /ν cl , determined both from the distortion of contours of constant magnetic flux, and from local B θ and B z measurements scales with the classical electron magnetization parameter (Ω cl =ω ce /ν e cl ), indicating that collisionality plays a strong role in determining the level of anomalous transport in the plasma. When this anomaly parameter scaling is cast in terms of the ratio ν e cl /ω lh , it is found that the resistivity enhancement scales with ν e cl /ω lh , and becomes significant at ν e cl /ω lh ≤1, suggesting that a lower hybrid drift instability may be the responsible mechanism for enhanced transport. copyright 1997 American Institute of Physics

  10. Dependence of the amount of open magnetic flux on the direction of the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Akasofu, S.I.; Ahn, B.H.

    1980-01-01

    The power generated by the solar wind-magnetosphere dynamo is proportional to the amount of the open magnetic flux phi. It is difficult to use this fact in determining observationally the dependence of phi on the orientation of the interplanetary magnetic field vector. It is shown that, for a simple vacuum superposition of the earth's dipole field and a uniform magnetic field, PHI is very closely proportional to sin(theta/2) for a wide range of the intensity of the uniform field, where theta denotes the polar angle of the interplanetary magnetic field vector in the Y-Z plane of solar-magnetospheric coordinates. (author)

  11. Direct Imaging of a Toroidal Magnetic Field in the Inner Jet of NRAO 150

    Directory of Open Access Journals (Sweden)

    Sol N. Molina

    2016-11-01

    Full Text Available Most formation models and numerical simulations cause a helical magnetic field to form, accelerate and collimate jets in active galactic nuclei (AGN. For this reason, observational direct evidence for the existence of these helical magnetic fields is of special relevance. In this work, we present ultra- high-resolution observations of the innermost regions of the jet in the quasar NRAO150. We study the polarization structure and report evidence of a helical magnetic field.

  12. Laser sub-Doppler cooling of atoms in an arbitrarily directed magnetic field

    International Nuclear Information System (INIS)

    Chang, Soo; Kwon, Taeg Yong; Lee, Ho Seong; Minogin, V.G.

    2002-01-01

    We analyze the influence of an arbitrarily directed uniform magnetic field on the laser sub-Doppler cooling of atoms. The analysis is done for a (3+5)-level atom excited by a σ + -σ - laser field configuration. Our analysis shows that the effects of the magnetic field depend strongly on the direction of the magnetic field. In an arbitrarily directed magnetic field the laser cooling configuration produces both the main resonance existing already at zero magnetic field and additional sub-Doppler resonances caused by two-photon and higher-order multiphoton processes. These sub-Doppler resonances are, however, well separated on the velocity scale if the Zeeman shift exceeds the widths of the resonances. This allows one to use the main sub-Doppler resonance for an effective laser cooling of atoms even in the presence of the magnetic field. The effective temperature of the atomic ensemble at the velocity of the main resonance is found to be almost the same as in the absence of the magnetic field. The defined structure of the multiphoton resonances may be of importance for the sub-Doppler laser cooling of atoms, atomic extraction from magneto-optical traps, and applications related to the control of atomic motion

  13. Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field

    KAUST Repository

    Zhang, Senfu; Zhang, Junwei; Zhang, Qiang; Barton, Craig; Neu, Volker; Zhao, Yuelei; Hou, Zhipeng; Wen, Yan; Gong, Chen; Kazakova, Olga; Wang, Wenhong; Peng, Yong; Garanin, Dmitry A.; Chudnovsky, Eugene M.; Zhang, Xixiang

    2018-01-01

    Magnetic skyrmions are topologically protected nanoscale spin textures exhibiting fascinating physical behaviors. Recent observations of room temperature skyrmions in sputtered multilayer films are an important step towards their use in ultra-low power devices. Such practical applications prefer skyrmions to be stable at zero magnetic fields and room temperature. Here, we report the creation of skyrmion lattices in Pt/Co/Ta multilayers by a scanning local field using magnetic force microscopy tips. We also show that those newly created skyrmion lattices are stable at both room temperature and zero fields. Lorentz transmission electron microscopy measurements reveal that the skyrmions in our films are of Néel-type. To gain a deeper understanding of the mechanism behind the creation of a skyrmion lattice by the scanning of local fields, we perform micromagnetic simulations and find the experimental results to be in agreement with our simulation data. This study opens another avenue for the creation of skyrmion lattices in thin films.

  14. Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field

    Science.gov (United States)

    Zhang, Senfu; Zhang, Junwei; Zhang, Qiang; Barton, Craig; Neu, Volker; Zhao, Yuelei; Hou, Zhipeng; Wen, Yan; Gong, Chen; Kazakova, Olga; Wang, Wenhong; Peng, Yong; Garanin, Dmitry A.; Chudnovsky, Eugene M.; Zhang, Xixiang

    2018-03-01

    Magnetic skyrmions are topologically protected nanoscale spin textures exhibiting fascinating physical behaviors. Recent observations of room temperature skyrmions in sputtered multilayer films are an important step towards their use in ultra-low power devices. Such practical applications prefer skyrmions to be stable at zero magnetic fields and room temperature. Here, we report the creation of skyrmion lattices in Pt/Co/Ta multilayers by a scanning local field using magnetic force microscopy tips. We also show that those newly created skyrmion lattices are stable at both room temperature and zero fields. Lorentz transmission electron microscopy measurements reveal that the skyrmions in our films are of Néel-type. To gain a deeper understanding of the mechanism behind the creation of a skyrmion lattice by the scanning of local fields, we perform micromagnetic simulations and find the experimental results to be in agreement with our simulation data. This study opens another avenue for the creation of skyrmion lattices in thin films.

  15. Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field

    KAUST Repository

    Zhang, Senfu

    2018-03-29

    Magnetic skyrmions are topologically protected nanoscale spin textures exhibiting fascinating physical behaviors. Recent observations of room temperature skyrmions in sputtered multilayer films are an important step towards their use in ultra-low power devices. Such practical applications prefer skyrmions to be stable at zero magnetic fields and room temperature. Here, we report the creation of skyrmion lattices in Pt/Co/Ta multilayers by a scanning local field using magnetic force microscopy tips. We also show that those newly created skyrmion lattices are stable at both room temperature and zero fields. Lorentz transmission electron microscopy measurements reveal that the skyrmions in our films are of Néel-type. To gain a deeper understanding of the mechanism behind the creation of a skyrmion lattice by the scanning of local fields, we perform micromagnetic simulations and find the experimental results to be in agreement with our simulation data. This study opens another avenue for the creation of skyrmion lattices in thin films.

  16. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS

    International Nuclear Information System (INIS)

    Kramar, M.; Lin, H.; Tomczyk, S.

    2016-01-01

    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments

  17. Directional Solidification Microstructure of a Ni-Based Superalloy: Influence of a Weak Transverse Magnetic Field

    Directory of Open Access Journals (Sweden)

    Xu Li

    2015-06-01

    Full Text Available A Ni-based superalloy CMSX-6 was directionally solidified at various drawing speeds (5–20 μm·s−1 and diameters (4 mm, 12 mm under a 0.5 T weak transverse magnetic field. The results show that the application of a weak transverse magnetic field significantly modified the solidification microstructure. It was found that if the drawing speed was lower than 10 μm·s−1, the magnetic field caused extensive macro-segregation in the mushy zone, and a change in the mushy zone length. The magnetic field significantly decreases the size of γ’ and the content of γ-γ’ eutectic. The formation of macro-segregation under a weak magnetic field was attributed to the interdendritic solute transport driven by the thermoelectric magnetic convection (TEMC. The γ’ phase refinement could be attributed to a decrease in nucleation activation energy owing to the magnetic field during solid phase transformation. The change of element segregation is responsible for the content decrease of γ-γ’ eutectic.

  18. Investigating Non-Equilibrium Fluctuations of Nanocolloids in a Magnetic Field Using Direct Imaging Methods

    Science.gov (United States)

    Rice, Ashley; Oprisan, Ana; Oprisan, Sorinel; Rice-Oprisan College of Charleston Team

    Nanoparticles of iron oxide have a high surface area and can be controlled by an external magnetic field. Since they have a fast response to the applied magnetic field, these systems have been used for numerous in vivo applications, such as MRI contrast enhancement, tissue repair, immunoassay, detoxification of biological fluids, hyperthermia, drug delivery, and cell separation. We performed three direct imaging experiments in order to investigate the concentration-driven fluctuations using magnetic nanoparticles in the absence and in the presence of magnetic field. Our direct imaging experimental setup involved a glass cell filled with magnetic nanocolloidal suspension and water with the concentration gradient oriented against the gravitational field and a superluminescent diode (SLD) as the light source. Nonequilibrium concentration-driven fluctuations were recorded using a direct imaging technique. We used a dynamic structure factor algorithm for image processing in order to compute the structure factor and to find the power law exponents. We saw evidence of large concentration fluctuations and permanent magnetism. Further research will use the correlation time to approximate the diffusion coefficient for the free diffusion experiment. Funded by College of Charleston Department of Undergraduate Research and Creative Activities SURF grant.

  19. Underground localization using dual magnetic field sequence measurement and pose graph SLAM for directional drilling

    International Nuclear Information System (INIS)

    Park, Byeolteo; Myung, Hyun

    2014-01-01

    With the development of unconventional gas, the technology of directional drilling has become more advanced. Underground localization is the key technique of directional drilling for real-time path following and system control. However, there are problems such as vibration, disconnection with external infrastructure, and magnetic field distortion. Conventional methods cannot solve these problems in real time or in various environments. In this paper, a novel underground localization algorithm using a re-measurement of the sequence of the magnetic field and pose graph SLAM (simultaneous localization and mapping) is introduced. The proposed algorithm exploits the property of the drilling system that the body passes through the previous pass. By comparing the recorded measurement from one magnetic sensor and the current re-measurement from another magnetic sensor, the proposed algorithm predicts the pose of the drilling system. The performance of the algorithm is validated through simulations and experiments. (paper)

  20. Underground localization using dual magnetic field sequence measurement and pose graph SLAM for directional drilling

    Science.gov (United States)

    Park, Byeolteo; Myung, Hyun

    2014-12-01

    With the development of unconventional gas, the technology of directional drilling has become more advanced. Underground localization is the key technique of directional drilling for real-time path following and system control. However, there are problems such as vibration, disconnection with external infrastructure, and magnetic field distortion. Conventional methods cannot solve these problems in real time or in various environments. In this paper, a novel underground localization algorithm using a re-measurement of the sequence of the magnetic field and pose graph SLAM (simultaneous localization and mapping) is introduced. The proposed algorithm exploits the property of the drilling system that the body passes through the previous pass. By comparing the recorded measurement from one magnetic sensor and the current re-measurement from another magnetic sensor, the proposed algorithm predicts the pose of the drilling system. The performance of the algorithm is validated through simulations and experiments.

  1. DIRECT OBSERVATION OF THE TURBULENT emf AND TRANSPORT OF MAGNETIC FIELD IN A LIQUID SODIUM EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Rahbarnia, Kian; Brown, Benjamin P.; Clark, Mike M.; Kaplan, Elliot J.; Nornberg, Mark D.; Rasmus, Alex M.; Taylor, Nicholas Zane; Forest, Cary B. [Department of Physics, University of Wisconsin-Madison, 1150 University Ave, Madison, WI 53706 (United States); Jenko, Frank; Limone, Angelo [Max-Planck-Institut fuer Plasmaphysik (IPP), EURATOM Association, D-85748 Garching (Germany); Pinton, Jean-Francois; Plihon, Nicolas; Verhille, Gautier, E-mail: kian.rahbarnia@ipp.mpg.de [Laboratoire de Physique de l' Ecole Normale Superieure de Lyon, CNRS and Universite de Lyon, F-69364 Lyon (France)

    2012-11-10

    For the first time, we have directly measured the transport of a vector magnetic field by isotropic turbulence in a high Reynolds number liquid metal flow. In analogy with direct measurements of the turbulent Reynolds stress (turbulent viscosity) that governs momentum transport, we have measured the turbulent electromotive force (emf) by simultaneously measuring three components of velocity and magnetic fields, and computed the correlations that lead to mean-field current generation. Furthermore, we show that this turbulent emf tends to oppose and cancel out the local current, acting to increase the effective resistivity of the medium, i.e., it acts as an enhanced magnetic diffusivity. This has important implications for turbulent transport in astrophysical objects, particularly in dynamos and accretion disks.

  2. DIRECT OBSERVATION OF THE TURBULENT emf AND TRANSPORT OF MAGNETIC FIELD IN A LIQUID SODIUM EXPERIMENT

    International Nuclear Information System (INIS)

    Rahbarnia, Kian; Brown, Benjamin P.; Clark, Mike M.; Kaplan, Elliot J.; Nornberg, Mark D.; Rasmus, Alex M.; Taylor, Nicholas Zane; Forest, Cary B.; Jenko, Frank; Limone, Angelo; Pinton, Jean-François; Plihon, Nicolas; Verhille, Gautier

    2012-01-01

    For the first time, we have directly measured the transport of a vector magnetic field by isotropic turbulence in a high Reynolds number liquid metal flow. In analogy with direct measurements of the turbulent Reynolds stress (turbulent viscosity) that governs momentum transport, we have measured the turbulent electromotive force (emf) by simultaneously measuring three components of velocity and magnetic fields, and computed the correlations that lead to mean-field current generation. Furthermore, we show that this turbulent emf tends to oppose and cancel out the local current, acting to increase the effective resistivity of the medium, i.e., it acts as an enhanced magnetic diffusivity. This has important implications for turbulent transport in astrophysical objects, particularly in dynamos and accretion disks.

  3. High magnetic field science and its application in the United States current status and future directions

    CERN Document Server

    National Research Council of the National Academies

    2013-01-01

    The Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States was convened by the National Research Council in response to a request by the National Science Foundation. This report answers three questions: (1) What is the current state of high-field magnet science, engineering, and technology in the United States, and are there any conspicuous needs to be addressed? (2) What are the current science drivers and which scientific opportunities and challenges can be anticipated over the next ten years? (3) What are the principal existing and planned high magnetic field facilities outside of the United States, what roles have U.S. high field magnet development efforts played in developing those facilities, and what potentials exist for further international collaboration in this area? A magnetic field is produced by an electrical current in a metal coil. This current exerts an expansive force on the coil, and a magnetic field is "high" if it challenges the str...

  4. Attainment of students’ conception in magnetic fields by using of direct observation and symbolic language ability

    Science.gov (United States)

    Desy Fatmaryanti, Siska; Suparmi; Sarwanto; Ashadi

    2017-11-01

    This study focuses on description attainment of students’ conception in the magnetic field. The conception was based by using of direct observation and symbolic language ability. The method used is descriptive quantitative research. The subject of study was about 86 students from 3 senior high school at Purworejo. The learning process was done by guided inquiry model. During the learning, students were required to actively investigate the concept of a magnetic field around a straight wire electrical current Data retrieval was performed using an instrument in the form of a multiple choice test reasoned and observation during the learning process. There was four indicator of direct observation ability and four indicators of symbolic language ability to grouping category of students conception. The results of average score showed that students conception about the magnitude more better than the direction of magnetic fields in view of symbolic language. From the observation, we found that students could draw the magnetic fields line not from a text book but their direct observation results. They used various way to get a good accuracy of observation results. Explicit recommendations are presented in the discussion section at the end of this paper.

  5. Current in the plasma moving in an arbitrary direction across a magnetic field

    International Nuclear Information System (INIS)

    Samokhin, M.V.

    1991-01-01

    Condition under which freezing-in equation is satisfied in case of arbitrarily changeable direction of rate of plasma flow across the magnetic field is considered. It is shown that in the ideally frozen-in plasma there should exist current independent on the flow rate

  6. Magnetic Field

    DEFF Research Database (Denmark)

    Olsen, Nils

    2015-01-01

    he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics...... of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced...... in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...

  7. Image restoration from non-uniform magnetic field influence for direct Fourier NMR imaging

    International Nuclear Information System (INIS)

    Sekihara, K.; Kuroda, M.; Kohno, H.

    1984-01-01

    A new technique is proposed for NMR image restoration from the influence of main magnetic field non-uniformities. This technique is applicable to direct Fourier NMR imaging. The mathematical basis and details of this technique are fully described. Modification to include image restoration from non-linear field gradient influence is also presented. Computer simulation demonstrates the effectiveness of this technique for both Fourier zeugmatography and spin-warp imaging. (author)

  8. Direct imaging of neural currents using ultra-low field magnetic resonance techniques

    Science.gov (United States)

    Volegov, Petr L [Los Alamos, NM; Matlashov, Andrei N [Los Alamos, NM; Mosher, John C [Los Alamos, NM; Espy, Michelle A [Los Alamos, NM; Kraus, Jr., Robert H.

    2009-08-11

    Using resonant interactions to directly and tomographically image neural activity in the human brain using magnetic resonance imaging (MRI) techniques at ultra-low field (ULF), the present inventors have established an approach that is sensitive to magnetic field distributions local to the spin population in cortex at the Larmor frequency of the measurement field. Because the Larmor frequency can be readily manipulated (through varying B.sub.m), one can also envision using ULF-DNI to image the frequency distribution of the local fields in cortex. Such information, taken together with simultaneous acquisition of MEG and ULF-NMR signals, enables non-invasive exploration of the correlation between local fields induced by neural activity in cortex and more `distant` measures of brain activity such as MEG and EEG.

  9. Effect of a high magnetic field on the microstructures in directionally solidified Zn–Cu peritectic alloys

    International Nuclear Information System (INIS)

    Li, Xi; Gagnoud, Annie; Wang, Jiang; Li, Xiaolong; Fautrelle, Yves; Ren, Zhongming; Lu, Xionggang; Reinhart, Guillaume; Nguyen-Thi, Henri

    2014-01-01

    The effect of an axial high magnetic field on the microstructures in directionally solidified Zn–Cu peritectic alloys was investigated. The experimental results indicated that the magnetic field induced the destabilization of the liquid–solid interface and the formation of a band-like structure. The magnetic field also caused the disruption of the columnar η-Zn and ε-Zn 5 Cu dendrites. As the applied magnetic field increased, the columnar-to-equiaxed transition occurred, and the size of the equiaxed grains gradually decreased. The magnetic effects, the magnetic moment and the thermoelectric magnetic effects during the directional solidification of Zn–Cu peritectic alloys under an axial magnetic field were studied. Regular ε-Zn 5 Cu hexagons appeared on the transverse section of the sample fabricated with a high magnetic field (i.e. 16 T). In addition, electron backscatter diffraction analysis revealed that the 〈0 0 0 1〉-crystal direction of the Zn 5 Cu crystal is not only its easy magnetization direction but also its preferred growth direction. The thermoelectric magnetic effects were numerically simulated. The results indicated that a thermoelectric magnetic force acts on the solid near the liquid–solid interface and increases linearly with an increase in the magnetic field. As the effect of the magnetic moment arising from the magnetic crystalline anisotropy is eliminated, the thermoelectric magnetic effect has a substantial effect on the solidification structure. Therefore, the destabilization of the liquid–solid interface and the disruption of the dendrites during directional solidification under the magnetic field are primarily due to the thermoelectric magnetic force acting on the solid

  10. Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization.

    Science.gov (United States)

    Zhang, H-S; Komvopoulos, K

    2008-07-01

    Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp3) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study.

  11. Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization

    International Nuclear Information System (INIS)

    Zhang, H.-S.; Komvopoulos, K.

    2008-01-01

    Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp 3 ) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study

  12. Transient anisotropic magnetic field calculation

    International Nuclear Information System (INIS)

    Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan

    2006-01-01

    For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement

  13. Correlation between magnetocapacitance effect and polarization flop direction in a slanted magnetic field in multiferroic helimagnets

    International Nuclear Information System (INIS)

    Abe, Nobuyuki; Sagayama, Hajime; Arima, Taka-hisa; Taniguchi, Kouji

    2011-01-01

    The relationship between the magnetocapacitance effect and rotation direction of electric polarization (P) in a canted magnetic field has been investigated for multiferroic RMnO 3 (R = Tb 1-x Dy x and Eu 0.6 Y 0.4 ). We observed a clear correlation between the enhancement of the magnetocapacitance effect and the rotation direction of P in a P-flop transition. These results indicate that the mobility and the stability of the 90 deg. domain wall in a P-flop transition are dominated by its thickness.

  14. Self-generated magnetic fields in direct-drive implosion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Igumenshchev, I. V.; Nilson, P. M.; Goncharov, V. N. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Zylstra, A. B.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-06-15

    Electric and self-generated magnetic fields in direct-drive implosion experiments on the OMEGA Laser Facility were investigated employing radiography with ∼10- to 60-MeV protons. The experiment used plastic-shell targets with imposed surface defects (glue spots, wires, and mount stalks), which enhance self-generated fields. The fields were measured during the 1-ns laser drive with an on-target intensity ∼10{sup 15} W/cm{sup 2}. Proton radiographs show multiple ring-like structures produced by electric fields ∼10{sup 7} V/cm and fine structures from surface defects, indicating self-generated fields up to ∼3 MG. These electric and magnetic fields show good agreement with two-dimensional magnetohydrodynamic simulations when the latter include the ∇T{sub e} × ∇n{sub e} source, Nernst convection, and anisotropic resistivity. The simulations predict that self-generated fields affect heat fluxes in the conduction zone and, through this, affect the growth of local perturbations.

  15. Measurement of magnetic fields in the direct proximity of power line conductors

    International Nuclear Information System (INIS)

    Mamishev, A.V.; Russell, B.D.

    1995-01-01

    Modeling and managing of power frequency magnetic fields requires verification of theory with actual measurements. Measurements only at ground level are not always sufficient for comprehensive studies. The technique and the results of three-dimensional mapping of the power frequency magnetic fields high above ground level are presented in this paper. Comparative calculations illustrate relevance and approximations of the existing theoretical approach to field modeling. The influence of harmonics on the elliptical rotation of the magnetic field vector is illustrated. The possibility of use of the magnetic fields for the power line proximity detection is discussed

  16. Permanent magnetic field, direct electric field, and infrared to reduce blood glucose level and hepatic function in mus musculus with diabetic mellitus

    Science.gov (United States)

    Suhariningsih; Basuki Notobroto, Hari; Winarni, Dwi; Achmad Hussein, Saikhu; Anggono Prijo, Tri

    2017-05-01

    Blood contains several electrolytes with positive (cation) and negative (anion) ion load. Both electrolytes deliver impulse synergistically adjusting body needs. Those electrolytes give specific effect to external disturbance such as electric, magnetic, even infrared field. A study has been conducted to reduce blood glucose level and liver function, in type 2 Diabetes Mellitus patients, using Biophysics concept which uses combination therapy of permanent magnetic field, electric field, and infrared. This study used 48 healthy mice (mus musculus), male, age 3-4 weeks, with approximately 25-30 g in weight. Mice was fed with lard as high fat diet orally, before Streptozotocin (STZ) induction become diabetic mice. Therapy was conducted by putting mice in a chamber that emits the combination of permanent magnetic field, electric field, and infrared, every day for 1 hour for 28 days. There were 4 combinations of therapy/treatment, namely: (1) permanent magnetic field, direct electric field, and infrared; (2) permanent magnetic field, direct electric field, without infrared; (3) permanent magnetic field, alternating electric field, and infrared; and (4) permanent magnetic field, alternating electric field, without infrared. The results of therapy show that every combination is able to reduce blood glucose level, AST, and ALT. However, the best result is by using combination of permanent magnetic field, direct electric field, and infrared.

  17. Permanent magnetic field, direct electric field, and infrared to reduce blood glucose level and hepatic function in mus musculus with diabetic mellitus

    International Nuclear Information System (INIS)

    Suhariningsih; Prijo, Tri Anggono; Notobroto, Hari Basuki; Winarni, Dwi; Hussein, Saikhu Achmad

    2017-01-01

    Blood contains several electrolytes with positive (cation) and negative (anion) ion load. Both electrolytes deliver impulse synergistically adjusting body needs. Those electrolytes give specific effect to external disturbance such as electric, magnetic, even infrared field. A study has been conducted to reduce blood glucose level and liver function, in type 2 Diabetes Mellitus patients, using Biophysics concept which uses combination therapy of permanent magnetic field, electric field, and infrared. This study used 48 healthy mice ( mus musculus ), male, age 3-4 weeks, with approximately 25-30 g in weight. Mice was fed with lard as high fat diet orally, before Streptozotocin (STZ) induction become diabetic mice. Therapy was conducted by putting mice in a chamber that emits the combination of permanent magnetic field, electric field, and infrared, every day for 1 hour for 28 days. There were 4 combinations of therapy/treatment, namely: (1) permanent magnetic field, direct electric field, and infrared; (2) permanent magnetic field, direct electric field, without infrared; (3) permanent magnetic field, alternating electric field, and infrared; and (4) permanent magnetic field, alternating electric field, without infrared. The results of therapy show that every combination is able to reduce blood glucose level, AST, and ALT. However, the best result is by using combination of permanent magnetic field, direct electric field, and infrared. (paper)

  18. Numerical Research on Magnetic Field, Temperature Field and Flow Field During Melting and Directionally Solidifying TiAl Alloys by Electromagnetic Cold Crucible

    Science.gov (United States)

    Chen, Ruirun; Yang, Yaohua; Gong, Xue; Guo, Jingjie; Su, Yanqing; Ding, Hongsheng; Fu, Hengzhi

    2017-12-01

    The electromagnetic cold crucible (EMCC) technique is an effective method to melt and directionally solidify reactive and high-temperature materials without contamination. The temperature field and fluid flow induced by the electromagnetic field are very important for melting and controlling the microstructure. In this article, a 3D EMCC model for calculating the magnetic field in the charges (TiAl alloys) using the T-Ω finite element method was established and verified. Magnetic fields in the charge under different electrical parameters, positions and dimensions of the charge were calculated and analyzed. The calculated results show that the magnetic field concentrates in the skin layer, and the magnetic flux density ( B) increases with increasing of the frequency, charge diameter and current. The maximum B in the charge is affected by the position of the charge in EMCC ( h 1) and the charge height ( h 2), which emerges at the middle of coils ( h c) when the relationship of h c < h 1 + h 2 < h c + δ is satisfied. Lower frequency and smaller charge diameter can improve the uniformity of the magnetic field in the charge. Consequently, the induced uniform electromagnetic stirring weakens the turbulence and improves temperature uniformity in the vicinity of the solid/liquid (S/L) interface, which is beneficial to forming a planar S/L interface during directional solidification. Based on the above conclusions, the TiAlNb alloy was successfully melted with lower power consumption and directionally solidified by the square EMCC.

  19. Direct Reconstruction of Two-Dimensional Currents in Thin Films from Magnetic-Field Measurements

    Science.gov (United States)

    Meltzer, Alexander Y.; Levin, Eitan; Zeldov, Eli

    2017-12-01

    An accurate determination of microscopic transport and magnetization currents is of central importance for the study of the electric properties of low-dimensional materials and interfaces, of superconducting thin films, and of electronic devices. Current distribution is usually derived from the measurement of the perpendicular component of the magnetic field above the surface of the sample, followed by numerical inversion of the Biot-Savart law. The inversion is commonly obtained by deriving the current stream function g , which is then differentiated in order to obtain the current distribution. However, this two-step procedure requires filtering at each step and, as a result, oversmooths the solution. To avoid this oversmoothing, we develop a direct procedure for inversion of the magnetic field that avoids use of the stream function. This approach provides enhanced accuracy of current reconstruction over a wide range of noise levels. We further introduce a reflection procedure that allows for the reconstruction of currents that cross the boundaries of the measurement window. The effectiveness of our approach is demonstrated by several numerical examples.

  20. DEPENDENCE OF SOLAR-WIND POWER SPECTRA ON THE DIRECTION OF THE LOCAL MEAN MAGNETIC FIELD

    International Nuclear Information System (INIS)

    Podesta, J. J.

    2009-01-01

    Wavelet analysis can be used to measure the power spectrum of solar-wind fluctuations along a line in any direction (θ, φ) with respect to the local mean magnetic field B 0 . This technique is applied to study solar-wind turbulence in high-speed streams in the ecliptic plane near solar minimum using magnetic field measurements with a cadence of eight vectors per second. The analysis of nine high-speed streams shows that the reduced spectrum of magnetic field fluctuations (trace power) is approximately azimuthally symmetric about B 0 in both the inertial range and dissipation range; in the inertial range the spectra are characterized by a power-law exponent that changes continuously from 1.6 ± 0.1 in the direction perpendicular to the mean field to 2.0 ± 0.1 in the direction parallel to the mean field. The large uncertainties suggest that the perpendicular power-law indices 3/2 and 5/3 are both consistent with the data. The results are similar to those found by Horbury et al. at high heliographic latitudes. Comparisons between solar-wind observations and the theories of strong incompressible MHD turbulence developed by Goldreich and Sridhar and Boldyrev are not rigorously justified because these theories only apply to turbulence with vanishing cross-helicity although the normalized cross-helicity of solar-wind turbulence is not negligible. Assuming these theories can be generalized in such a way that the three-dimensional wavevector spectra have similar functional forms when the cross-helicity is nonzero, then for the interval of Ulysses data analyzed by Horbury et al. the ratio of the spectra perpendicular and parallel to B 0 is more consistent with the Goldreich and Sridhar scaling P perpendicular /P || ∝ ν 1/3 than with the Boldyrev scaling ν 1/2 . The analysis of high-speed streams in the ecliptic plane does not yield a reliable measurement of this scaling law. The transition from a turbulent MHD-scale energy cascade to a kinetic Alfven wave (KAW

  1. Ionization and acoustical instability of a low temperature magnetized plasma in a combined (direct and alternating) electrical field

    International Nuclear Information System (INIS)

    Andropov, V.G.; Sinkevich, O.A.

    1983-01-01

    It is shown that the ionization front which moves through a gas along a magnetic field in a combined electrical field, which lies in the plane of the front, may be unstable, as a result of the development of an ionization instability in the plasma behind the front. The criterion of instability of the ionization front does not greatly differ from the criterion of instability of an infinite plasma. The ionization front in the magnetic field is stable only in an electrical field of circular polarization or in a combined field in which the direct and alternating electrical fields are orthogonal and the Joule heat liberation from them is equal. The generation of sound is possible in a magnetized plasma in an alternating electrical field orthogonal to a magnetic due to the parametric acoustical instability at the frequency of the external electrical field. 8 refs

  2. Direct URCA-processes in neutron star quark core with strong magnetic field.

    Directory of Open Access Journals (Sweden)

    Belyaev Vasily

    2017-01-01

    In evaluations, the strength of magnetic field corresponds to the case, where the quarks of medium occupy a lot of Landau levels, while the electrons are in ground Landau level. The analytical dependence of neutrino emissivity on chemical potentials of quarks and electrons, temperature and magnetic field strength is obtained and briefly discussed. The result could be important in application to a massive strongly magnetized neutron star with quark core.

  3. MAGNETIC FIELDS OF STARS

    OpenAIRE

    Bychkov, V. D.; Bychkova, L. V.; Madej, J.

    2008-01-01

    Now it is known about 1212 stars of the main sequence and giants (from them 610 stars - it is chemically peculiarity (CP) stars) for which direct measurements of magnetic fields were spent (Bychkov et al.,2008). Let's consider, what representations were generated about magnetic fields (MT) of stars on the basis of available observations data.

  4. Determination of magnetic field direction in tokamaks from laser-induced Lyman-α fluorescence

    International Nuclear Information System (INIS)

    Voslamber, D.

    1988-04-01

    Resonant laser scattering in the Lyman-α line of hydrogen is investigated as a possible tool for measuring the magnetic field direction in tokamak plasmas. The method is based on the depolarisation-dependence of the scattering process. Limitations arising from depolarising collisions are studied in detail by employing a previously developed theory for the collisional redistribution of light. An error analysis is performed to derive the expected experimental precision under various plasma conditions and for laser energies ranging between 1 micronJ and 10 mJ. This analysis also includes the measurement of neutral hydrogen densities. It is shown that with presently available laser powers application of the method would be restricted to the border regions of the plasma. Application to the central regions would require further developments in laser technology, especially with regard to higher powers at the wavelength of Lyman-α and (or) to fast repetition rates

  5. Self running actuators moving in the same direction as the exciting magnetic field

    International Nuclear Information System (INIS)

    Enokizono, M.; Todaka, T.; Goto, K.

    1998-01-01

    This paper presents two kinds of drive units whose rotation axes are parallel to the exciting outer magnetic field. One is a hard-material-type that uses permanent magnets and silicon steel sheets to obtain the radial components of the field strength, and the other is a soft-material-type that uses the vibration of an amorphous ribbon to induce a rotational force. These drive units were developed to improve the freedom of movement of sensing devices. By combining the developed units with conventional ones, it will be possible to control the movement of devices freely by means of the outer magnetic field. In this paper, the basic characteristics of the drive units and their applicability are discussed. (author)

  6. DIRECT DETECTION OF THE HELICAL MAGNETIC FIELD GEOMETRY FROM 3D RECONSTRUCTION OF PROMINENCE KNOT TRAJECTORIES

    Energy Technology Data Exchange (ETDEWEB)

    Zapiór, Maciej; Martinez-Gómez, David, E-mail: zapior.maciek@gmail.com [Physics Department, University of the Balearic Islands, Cra. de Valldemossa, km 7.5. Palma (Illes Balears), E-07122 (Spain)

    2016-02-01

    Based on the data collected by the Vacuum Tower Telescope located in the Teide Observatory in the Canary Islands, we analyzed the three-dimensional (3D) motion of so-called knots in a solar prominence of 2014 June 9. Trajectories of seven knots were reconstructed, giving information of the 3D geometry of the magnetic field. Helical motion was detected. From the equipartition principle, we estimated the lower limit of the magnetic field in the prominence to ≈1–3 G and from the Ampère’s law the lower limit of the electric current to ≈1.2 × 10{sup 9} A.

  7. Direct Detection of the Helical Magnetic Field Geometry from 3D Reconstruction of Prominence Knot Trajectories

    Science.gov (United States)

    Zapiór, Maciej; Martínez-Gómez, David

    2016-02-01

    Based on the data collected by the Vacuum Tower Telescope located in the Teide Observatory in the Canary Islands, we analyzed the three-dimensional (3D) motion of so-called knots in a solar prominence of 2014 June 9. Trajectories of seven knots were reconstructed, giving information of the 3D geometry of the magnetic field. Helical motion was detected. From the equipartition principle, we estimated the lower limit of the magnetic field in the prominence to ≈1-3 G and from the Ampère’s law the lower limit of the electric current to ≈1.2 × 109 A.

  8. Bias magnetic field and test period dependences of direct and converse magnetoelectric hysteresis of tri-layered magnetoelectric composite

    Science.gov (United States)

    Zhou, Yun; Li, Xiao-Hong; Wang, Jian-Feng; Zhou, Hao-Miao; Cao, Dan; Jiao, Zhi-Wei; Xu, Long; Li, Qi-Hao

    2018-04-01

    The direct and converse magnetoelectric hysteresis behavior for a tri-layered composite has been comparatively investigated and significant similarities have been observed. The results show that both the direct and converse magnetoelectric hysteresis is deeply affected by the bias magnetic field and test period. The test time hysteresis caused by a fast varying bias magnetic field can be reduced by prolonging the test period. The observed coercive field, remanence, and ratio of remanence of the direct and converse magnetoelectric effects with the test period obey an exponential decay law. A hysteretic nonlinear magnetoelectric theoretical model for the symmetrical tri-layered structure has been proposed based on a nonlinear constitutive model and pinning effect. The numerical calculation shows that the theoretical results are in good agreement with the experimental results. These findings not only provide insight into the examination and practical applications of magnetoelectric materials, but also propose a theoretical frame for studying the hysteretic characteristics of the magnetoelectric effect.

  9. Design and application of permanent magnet flux sources for mechanical testing of magnetoactive elastomers at variable field directions.

    Science.gov (United States)

    Hiptmair, F; Major, Z; Haßlacher, R; Hild, S

    2015-08-01

    Magnetoactive elastomers (MAEs) are a class of smart materials whose mechanical properties can be rapidly and reversibly changed by an external magnetic field. Due to this tunability, they are useable for actuators or in active vibration control applications. An extensive magnetomechanical characterization is necessary for MAE material development and requires experiments under cyclic loading in uniform but variable magnetic fields. MAE testing apparatus typically rely on fields of adjustable strength, but fixed (transverse) direction, often provided by electromagnets. In this work, two permanent magnet flux sources were developed as an add-on for a modular test stand, to allow for mechanical testing in uniform fields of variable direction. MAE specimens, based on a silicone matrix with isotropic and anisotropic carbonyl iron particle distributions, were subjected to dynamic mechanical analysis under different field and loading configurations. The magneto-induced increase of stiffness and energy dissipation was determined by the change of the hysteresis loop area and dynamic modulus values. A distinct influence of the composite microstructure and the loading state was observed. Due to the very soft and flexible matrix used for preparing the MAE samples, the material stiffness and damping behavior could be varied over a wide range via the applied field direction and intensity.

  10. Direct spectroscopic evidence for competition between thermal molecular agitation and magnetic field in a tetrameric protein in aqueous solution

    Science.gov (United States)

    Calabrò, Emanuele; Magazù, Salvatore

    2018-05-01

    Samples of a typical tetrameric protein, the hemoglobin, at the concentration of 150 mg/ml in bidistilled water solution, were exposed to a uniform magnetic field at 200 mT at different temperatures of 15∘C, 40∘C and 65∘C. Fourier Transform Infrared Spectroscopy was used to analyze the response of the secondary structure of the protein to both stress agents, heating and static magnetic field. The most relevant result which was observed was the significant increasing in intensity of the Amide I band after exposure to the uniform magnetic field at the room temperature of 15∘C. This result can be explained assuming that protein's α-helices aligned along the direction of the applied magnetic field due to their large dipole moment, inducing the alignment of the entire protein. Increasing of temperature up to 40∘C and 65∘C induced a significant reduction of the increasing in intensity of the Amide I band. This effect may be easily explained assuming that Brownian motion of the protein in water solution caused by thermal molecular agitation increased with increasing of temperature, contrasting the effect of the torque of the magnetic field applied to the protein in water solution.

  11. Magnetic Field Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...

  12. The Direct Effect of Toroidal Magnetic Fields on Stellar Oscillations: An Analytical Expression for the General Matrix Element

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, René; Schad, Ariane; Roth, Markus [Kiepenheuer-Institut für Sonnenphysik, Schöneckstraße 6, D-79104 Freiburg (Germany)

    2017-09-10

    Where is the solar dynamo located and what is its modus operandi? These are still open questions in solar physics. Helio- and asteroseismology can help answer them by enabling us to study solar and stellar internal structures through global oscillations. The properties of solar and stellar acoustic modes are changing with the level of magnetic activity. However, until now, the inference on subsurface magnetic fields with seismic measures has been very limited. The aim of this paper is to develop a formalism to calculate the effect of large-scale toroidal magnetic fields on solar and stellar global oscillation eigenfunctions and eigenfrequencies. If the Lorentz force is added to the equilibrium equation of motion, stellar eigenmodes can couple. In quasi-degenerate perturbation theory, this coupling, also known as the direct effect, can be quantified by the general matrix element. We present the analytical expression of the matrix element for a superposition of subsurface zonal toroidal magnetic field configurations. The matrix element is important for forward calculations of perturbed solar and stellar eigenfunctions and frequency perturbations. The results presented here will help to ascertain solar and stellar large-scale subsurface magnetic fields, and their geometric configuration, strength, and change over the course of activity cycles.

  13. Evaluation of occupational exposure to ELF magnetic fields at power plants in Greece in the context of European directives

    International Nuclear Information System (INIS)

    Christopoulou, Maria; Govari, Chrysa; Tsaprouni, Panagiota; Karabetsos, Efthymios

    2015-01-01

    The scope of this paper is to comparatively present the extremely low-frequency (ELF) measurements performed at four power plants in Greece, focusing on: (a) the worst-case exposure conditions, (b) the existence of magnetic field harmonic components, (c) the technical similarities among the power plants and (d) comparison of the measured percentages of reference levels at typical working areas in the power plants. A detailed measurement methodology is proposed, including broadband on-site inspection of the working areas, weighted averaged root-mean-square and peak values of magnetic flux density, percentage of reference levels, according to 1998 ICNIRP guidelines and harmonic analysis of the multi-frequency magnetic fields. During the analysis of the occupational exposure in all power plants, the new Directive 2013/35/EU has been taken into account. The study concludes by proposing a mapping procedure of working areas into certain zones, in order to take measures for workers safety. (authors)

  14. Magnetic Fields Versus Gravity

    Science.gov (United States)

    Hensley, Kerry

    2018-04-01

    Deep within giant molecular clouds, hidden by dense gas and dust, stars form. Unprecedented data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the intricate magnetic structureswoven throughout one of the most massive star-forming regions in the Milky Way.How Stars Are BornThe Horsehead Nebulasdense column of gas and dust is opaque to visible light, but this infrared image reveals the young stars hidden in the dust. [NASA/ESA/Hubble Heritage Team]Simple theory dictates that when a dense clump of molecular gas becomes massive enough that its self-gravity overwhelms the thermal pressure of the cloud, the gas collapses and forms a star. In reality, however, star formation is more complicated than a simple give and take between gravity and pressure. Thedusty molecular gas in stellar nurseries is permeated with magnetic fields, which are thought to impede the inward pull of gravity and slow the rate of star formation.How can we learn about the magnetic fields of distant objects? One way is by measuring dust polarization. An elongated dust grain will tend to align itself with its short axis parallel to the direction of the magnetic field. This systematic alignment of the dust grains along the magnetic field lines polarizes the dust grains emission perpendicular to the local magnetic field. This allows us to infer the direction of the magnetic field from the direction of polarization.Magnetic field orientations for protostars e2 and e8 derived from Submillimeter Array observations (panels a through c) and ALMA observations (panels d and e). Click to enlarge. [Adapted from Koch et al. 2018]Tracing Magnetic FieldsPatrick Koch (Academia Sinica, Taiwan) and collaborators used high-sensitivity ALMA observations of dust polarization to learn more about the magnetic field morphology of Milky Way star-forming region W51. W51 is one of the largest star-forming regions in our galaxy, home to high-mass protostars e2, e8, and North.The ALMA observations reveal

  15. A Novel Rotor and Stator Magnetic Fields Direct-Orthogonalized Vector Control Scheme for the PMSM Servo System

    Directory of Open Access Journals (Sweden)

    Shi-Xiong Zhang

    2014-02-01

    Full Text Available Permanent Magnet Synchronous motor (PMSM has received widespread acceptance in recent years. In this paper, a new rotor and stator Magnetic Fields Direct-Orthogonalized Vector Control (MFDOVC scheme is proposed for PMSM servo system. This method simplified the complex calculation of traditional vector control, a part of the system resource is economized. At the same time, through the simulation illustration validation, the performance of PMSM servo system with the proposed MFDOVC scheme can achieve the same with the complex traditional vector control method, but much simpler calculation is implemented using the proposed method.

  16. ISR Radial Field Magnet

    CERN Multimedia

    1983-01-01

    There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water

  17. Method and apparatus for sensing a desired component of an incident magnetic field using magneto resistive elements biased in different directions

    Science.gov (United States)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    1999-01-01

    A method and apparatus for sensing a desired component of a magnetic field using an isotropic magnetoresistive material. This is preferably accomplished by providing a bias field that is parallel to the desired component of the applied magnetic field. The bias field is applied in a first direction relative to a first set of magnetoresistive sensor elements, and in an opposite direction relative to a second set of magnetoresistive sensor elements. In this configuration, the desired component of the incident magnetic field adds to the bias field incident on the first set of magnetoresistive sensor elements, and subtracts from the bias field incident on the second set of magnetoresistive sensor elements. The magnetic field sensor may then sense the desired component of the incident magnetic field by simply sensing the difference in resistance of the first set of magnetoresistive sensor elements and the second set of magnetoresistive sensor elements.

  18. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1985-02-01

    The basic properties of the Hamiltonian representation of magnetic fields in canonical form are reviewed. The theory of canonical magnetic perturbation theory is then developed and applied to the time evolution of a magnetic field embedded in a toroidal plasma. Finally, the extension of the energy principle to tearing modes, utilizing the magnetic field line Hamiltonian, is outlined

  19. Magnetic field of Mercury

    International Nuclear Information System (INIS)

    Jackson, D.J.; Beard, D.B.

    1977-01-01

    The geomagnetic field, suitably scaled down and parameterized, is shown to give a very good fit to the magnetic field measurements taken on the first and third passes of the Mariner 10 space probe past Mercury. The excellence of the fit to a reliable planetary magnetospheric model is good evidence that the Mercury magnetosphere is formed by a simple, permanent, intrinsic planetary magnetic field distorted by the effects of the solar wind. The parameters used for a best fit to all the data are (depending slightly on the choice of data) 2.44--2.55 for the ratio of Mercury's magnetic field strength at the subsolar point to that of the earth's subsolar point field (this results in a dipole moment of 170 γR/sub M/ 3 (R/sub M/ is Mercury Radius), i.e., 2.41 x 10 22 G cm 3 in the same direction as the earth's dipole), approx.-113 γR/sub M/ 4 for the planetary quadrupole moment parallel to the dipole moment, 10degree--17degree for the tilt of the planet dipole toward the sun, 4.5degree for the tilt of the dipole toward dawn, and 2.5degree--7.6degree aberration angle for the shift in the tail axis from the planet-sun direction because of the planet's orbital velocity. The rms deviation overall for the entire data set compared with the theoretical fitted model for the magnetic field strength was 17 γ (approx.4% of the maximum field measured). If the data from the first pass that show presumed strong time variations are excluded, the overall rms deviation for the field magnitude is only 10 γ

  20. Magnetization reversal mechanisms under oblique magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ntallis, N.; Efthimiadis, K.G., E-mail: kge@auth.gr

    2017-03-01

    In this work finite element micromagnetic simulations were performed in order to study the reversal mechanisms of spherical ferromagnetic particles with uniaxial magnetocrystalline anisotropy, when they are magnetized along an oblique direction with respect to the anisotropy axis. Magnetization loops are taken in different directions of external magnetic field, at different anisotropy constants and particle sizes. In the simulation results, the three reversal mechanisms (coherent, curling and domains) are observed and new phenomena arise due to the action of oblique magnetic fields. Moreover, the dependence of the critical fields with respect to the angle of the external field is presented. - Highlights: • Finite element micromagnetic simulation of the three different reversal mechanisms. • For the curling mechanism, the new phenomenon is the rotation of the vortex. • In the domain reversal mechanism, the formed domain wall is smaller than 180°. • In soft ferromagnetic particles a rearrangement of the magnetic domains is observed.

  1. The Galactic magnetic fields

    International Nuclear Information System (INIS)

    Han Jinlin

    2006-01-01

    A good progress has been made on studies of Galactic magnetic fields in last 10 years. I describe what we want to know about the Galactic magnetic fields, and then review we current knowledge about magnetic fields in the Galactic disk, the Galactic halo and the field strengths. I also listed many unsolved problems on this area

  2. Fast superconducting magnetic field switch

    Science.gov (United States)

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  3. Fast superconducting magnetic field switch

    International Nuclear Information System (INIS)

    Goren, Y.; Mahale, N.K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs

  4. Transition from columnar to point pinning in coated conductors: critical currents that are independent of magnetic field direction

    International Nuclear Information System (INIS)

    Zuev, Yuri L; Hun Wee, Sung; Christen, David K

    2012-01-01

    We identify a sharp crossover in the vortex pinning of a high-temperature superconductor with nanocolumnar stacks of precipitates as strong vortex pinning centers. Above a particular, temperature-dependent field B X (T) the vortex response is no longer determined by the nanocolumns, and is instead determined by point-like pinning. This crossover is evident as a change in the dependence of the critical current density on the angle between the applied magnetic field and the nanocolumns. It also leads to the field-orientation-independent power law index n of the E–J curves. Below the transition, there is a strong maximum in J C when the field is aligned parallel to the columns and n depends on field direction. Above the transition, n is independent of the field direction and there is a J C minimum for H parallel to the columns. We discuss a possible mechanism for such behavior change, as well as testing and confirming a prediction that the crossover must become very broad at high temperatures and low fields. (paper)

  5. Templating Biomineralization: Surface Directed Protein Self-assembly and External Magnetic Field Stimulation of Osteoblasts

    Science.gov (United States)

    Ba, Xiaolan

    Biomineralization is a wide-spread phenomenon in the biological systems, which is the process of mineral formation by organisms through interaction between its organic contents and the inorganic minerals. The process is essential in a broad spectrum of biological phenomena ranging from bone and tooth formation to pathological mineralization under hypoxic conditions or cancerous formations. In this thesis I studied biomineralization at the earliest stages in order to obtain a better understanding of the fundamental principals involved. This knowledge is essential if we want to engineer devices which will increase bone regeneration or prevent unwanted mineral deposits. Extracellular matrix (ECM) proteins play an essential role during biomineralization in bone and engineered tissues. In this dissertation, I present an approach to mimic the ECM in vitro to probe the interactions of these proteins with calcium phosphate mineral and with each other. Early stage of mineralization is investigated by mechanical properties of the protein fibers using Scanning Probe Microscopy (SPM) and Shear Modulation Force Microscopy (SMFM). The development of mineral crystals on the protein matrices is also characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Grazing Incidence X-ray Diffraction (GIXRD). The results demonstrate complementary actions of the two ECM proteins to collect cations and template calcium phosphate mineral, respectively. Magnets have been clinically used as an "induction source" in various bone or orthodontic treatments. However, the mechanism and effects of magnetic fields remain unclear. In this dissertation, I also undertake the present investigation to study the effects of 150 mT static magnetic fields (SMF) on ECM development and cell biomineralization using MC3T3-E1 osteobalst-like cells. Early stage of biomineralization is characterized by SPM, SMFM and confocal laser scanning microscopy (CSLM). Late stage of

  6. Hall effect in a strong magnetic field: Direct comparisons of compressible magnetohydrodynamics and the reduced Hall magnetohydrodynamic equations

    International Nuclear Information System (INIS)

    Martin, L. N.; Dmitruk, P.; Gomez, D. O.

    2010-01-01

    In this work we numerically test a model of Hall magnetohydrodynamics in the presence of a strong mean magnetic field: the reduced Hall magnetohydrodynamic model (RHMHD) derived by [Gomez et al., Phys. Plasmas 15, 102303 (2008)] with the addition of weak compressible effects. The main advantage of this model lies in the reduction of computational cost. Nevertheless, up until now the degree of agreement with the original Hall MHD system and the range of validity in a regime of turbulence were not established. In this work direct numerical simulations of three-dimensional Hall MHD turbulence in the presence of a strong mean magnetic field are compared with simulations of the weak compressible RHMHD model. The results show that the degree of agreement is very high (when the different assumptions of RHMHD, such as spectral anisotropy, are satisfied). Nevertheless, when the initial conditions are isotropic but the mean magnetic field is maintained strong, the results differ at the beginning but asymptotically reach a good agreement at relatively short times. We also found evidence that the compressibility still plays a role in the dynamics of these systems, and the weak compressible RHMHD model is able to capture these effects. In conclusion the weak compressible RHMHD model is a valid approximation of the Hall MHD turbulence in the relevant physical context.

  7. BNL Direct Wind Superconducting Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Parker, B.; Anerella, M.; Escallier, J.; Ghosh, A.; Jain, A.; Marone, A.; Muratore, A.; Wanderer, P.

    2011-09-12

    BNL developed Direct Wind magnet technology is used to create a variety of complex multi-functional multi-layer superconducting coil structures without the need for creating custom production tooling and fixturing for each new project. Our Direct Wind process naturally integrates prestress into the coil structure so external coil collars and yokes are not needed; the final coil package transverse size can then be very compact. Direct Wind magnets are produced with very good field quality via corrections applied during the course of coil winding. The HERA-II and BEPC-II Interaction Region (IR) magnet, J-PARC corrector and Alpha antihydrogen magnetic trap magnets and our BTeV corrector magnet design are discussed here along with a full length ILC IR prototype magnet presently in production and the coils that were wound for an ATF2 upgrade at KEK. A new IR septum magnet design concept for a 6.2 T combined-function IR magnet for eRHIC, a future RHIC upgrade, is introduced here.

  8. Magnetic Field Grid Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...

  9. Omnigenous magnetic fields

    International Nuclear Information System (INIS)

    Stupakov, G.V.

    1982-01-01

    In omnigenous magnetic fields particles' drift surfaces coincide with plasma magnetic surfaces. In this paper we formulate equations of omnigenous magnetic fields in natural curvilinear coordinates. An analysis of fields which are omnigenous only in the paraxial approximation is presented. (author)

  10. Cosmic Magnetic Fields

    Science.gov (United States)

    Sánchez Almeida, J.; Martínez González, M. J.

    2018-05-01

    Magnetic fields play an important role in many astrophysical processes. They are difficult to detect and characterize since often their properties have to be inferred through interpreting the polarization of the light. Magnetic fields are also challenging to model and understand. Magnetized plasmas behave following highly non-linear differential equations having no general solution, so that every astrophysical problem represents a special case to be studied independently. Hence, magnetic fields are often an inconvenient subject which is overlooked or simply neglected (the elephant in the room, as they are dubbed in poster of the school). Such difficulty burdens the research on magnetic fields, which has evolved to become a very technical subject, with many small disconnected communities studying specific aspects and details. The school tried to amend the situation by providing a unifying view of the subject. The students had a chance to understand the behavior of magnetic fields in all astrophysical contexts, from cosmology to the Sun, and from starbursts to AGNs. The school was planed to present a balanced yet complete review of our knowledge, with excursions into the unknown to point out present and future lines of research. The subject of Cosmic Magnetic Fields was split into seven different topics: cosmic magnetic field essentials, solar magnetic fields, stellar magnetic fields, the role of magnetic fields on AGN feedback, magnetic fields in galaxies, magnetic fields in galaxy clusters and at larger scales, and primordial magnetic fields and magnetic fields in the early Universe. The corresponding lectures were delivered by seven well known and experienced scientists that have played key roles in the major advances of the field during the last years: F. Cattaneo, P. Judge, O. Kochukhov, R. Keppens, R. Beck, K. Dolag, and F. Finelli. Their lectures were recorded and are freely available at the IAC website: http://iactalks.iac.es/talks/serie/19.

  11. Satellite to study earth's magnetic field

    Science.gov (United States)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  12. Measurements of magnetic field alignment

    International Nuclear Information System (INIS)

    Kuchnir, M.; Schmidt, E.E.

    1987-01-01

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs

  13. Strong Magnetic Field Characterisation

    Science.gov (United States)

    2012-04-01

    an advertised surface field of approximately 0.5 T were used to supply the static magnetic field source. The disc magnet had a diameter of 50 mm and... colour bar indicates the magnetic field strength set to an arbitrary 0.25 T. The white area has a field >0.25 T. The size of the arrow is proportional...9 shows the magnetic field strength along a slice in the XZ plane. The colours represent the total UNCLASSIFIED 10 UNCLASSIFIED DSTO-TR-2699

  14. The Juno Magnetic Field Investigation

    DEFF Research Database (Denmark)

    Connerney, J. E. P.; Benn, Mathias; Bjarnø, Jonas Bækby

    2017-01-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor ...

  15. Cosmological magnetic fields - V

    Indian Academy of Sciences (India)

    Magnetic fields seem to be everywhere that we can look in the universe, from our own ... The field tensor is observer-independent, while the electric and magnetic .... based on string theory [11], in which vacuum fluctuations of the field are ...

  16. Organic magnetic field sensor

    Energy Technology Data Exchange (ETDEWEB)

    McCamey, Dane; Boehme, Christoph

    2017-01-24

    An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).

  17. Study of marine magnetic field

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattacharya, G.C.

    magnetized in the direction of the Earth’s magnetic field at that time. As seafloor spreading pulls the new oceanic crust apart, stripes of approximately the same size gets carried away from the ridge on each side. The basaltic oceanic crust formed...

  18. Magnetic field on board

    International Nuclear Information System (INIS)

    Estevez Radio, H.; Fernandez Arenal, C.A.

    1995-01-01

    Here, the calculation of the magnetic field on board ships is performed, using matrix calculus, in a similar way as when the magnetic field in matter is studied. Thus the final formulas are written in a more compact form and they are obtained through a simpler way, more suitable for the university education. (Author)

  19. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1984-03-01

    The magnetic field line Hamiltonian and the associated canonical form for the magnetic field are important concepts both for understanding toroidal plasma physics and for practical calculations. A number of important properties of the canonical or Hamiltonian representation are derived and their importance is explained

  20. Controlling magnetic field profiles

    International Nuclear Information System (INIS)

    Freeman, J.R.

    1979-04-01

    A method for designing solenoid magnets with controlled field profiles is discussed. The method, originated by D.B. Montgomery, minimizes both the field errors and the power consumption. An NOS time-sharing computer program for the CDC-6600, entitled MAGCOR, was constructed to provide an interactive magnet design capability. Results obtained during the design of magnets for a radial line electron accelerator are presented. 9 figures

  1. In-vivo Imaging of Magnetic Fields Induced by Transcranial Direct Current Stimulation (tDCS) in Human Brain using MRI

    Science.gov (United States)

    Jog, Mayank V.; Smith, Robert X.; Jann, Kay; Dunn, Walter; Lafon, Belen; Truong, Dennis; Wu, Allan; Parra, Lucas; Bikson, Marom; Wang, Danny J. J.

    2016-10-01

    Transcranial direct current stimulation (tDCS) is an emerging non-invasive neuromodulation technique that applies mA currents at the scalp to modulate cortical excitability. Here, we present a novel magnetic resonance imaging (MRI) technique, which detects magnetic fields induced by tDCS currents. This technique is based on Ampere’s law and exploits the linear relationship between direct current and induced magnetic fields. Following validation on a phantom with a known path of electric current and induced magnetic field, the proposed MRI technique was applied to a human limb (to demonstrate in-vivo feasibility using simple biological tissue) and human heads (to demonstrate feasibility in standard tDCS applications). The results show that the proposed technique detects tDCS induced magnetic fields as small as a nanotesla at millimeter spatial resolution. Through measurements of magnetic fields linearly proportional to the applied tDCS current, our approach opens a new avenue for direct in-vivo visualization of tDCS target engagement.

  2. Magnetic fields at Neptune

    International Nuclear Information System (INIS)

    Ness, N.F.; Acuna, M.H.; Burlaga, L.F.; Connerney, J.E.P.; Lepping, R.P.; Neubauer, F.M.

    1989-01-01

    The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10 -5 gauss) was observed near closest approach, at a distance of 1.18 R N . The planetary magnetic field between 4 and 15 R N can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R N and inclined by 47 degrees with respect to the rotation axis. Within 4 R N , the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes in the diurnally varying magnetosphere configuration. In an astrophysical context, the magnetic field of Neptune, like that of Uranus, may be described as that of an oblique rotator

  3. Studies on density dependence of charge separation in a direct energy converter using slanted Cusp magnetic field

    International Nuclear Information System (INIS)

    Munakata, Yoshiro; Kawaguchi, Takashi; Takeno, Hiromasa; Yasaka, Yasuyoshi; Ichimura, Kazuya; Nakashima, Yousuke

    2012-01-01

    In an advanced fusion, fusion-produced charged particles must be separated from each other for efficient energy conversion to electricity. The CuspDEC performs this function of separation and direct energy conversion. Analysis of working characteristics of CuspDEC on plasma density is an important subject. This paper summarizes and discusses experimental and theoretical works for high density plasma by using a small scale experimental device employing a slanted cusp magnetic field. When the incident plasma is low-density, good separation of the charged particles can be accomplished and this is explained by the theory based on a single particle motion. In high density plasma, however, this theory cannot be always applied due to space charge effects. In the experiment, as gradient of the field line increases, separation capability of the charged particles becomes higher. As plasma density becomes higher, however, separation capability becomes lower. This can be qualitatively explained by using calculations of the modified Störmer potential including space charge potential. (author)

  4. Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry

    Science.gov (United States)

    Law, K. F. F.; Bailly-Grandvaux, M.; Morace, A.; Sakata, S.; Matsuo, K.; Kojima, S.; Lee, S.; Vaisseau, X.; Arikawa, Y.; Yogo, A.; Kondo, K.; Zhang, Z.; Bellei, C.; Santos, J. J.; Fujioka, S.; Azechi, H.

    2016-02-01

    A kilo-tesla level, quasi-static magnetic field (B-field), which is generated with an intense laser-driven capacitor-coil target, was measured by proton deflectometry with a proper plasma shielding. Proton deflectometry is a direct and reliable method to diagnose strong, mm3-scale laser-produced B-field; however, this was not successful in the previous experiment. A target-normal-sheath-accelerated proton beam is deflected by Lorentz force in the laser-produced magnetic field with the resulting deflection pattern recorded on a radiochromic film stack. A 610 ± 30 T of B-field amplitude was inferred by comparing the experimental proton pattern with Monte-Carlo calculations. The amplitude and temporal evolutions of the laser-generated B-field were also measured by a differential magnetic probe, independently confirming the proton deflectometry measurement results.

  5. Magnetic fields in cosmology

    International Nuclear Information System (INIS)

    Madsen, M.S.

    1989-01-01

    The possible role of a large-scale relic magnetic field in the history of the Universe is considered. The perturbation of the cosmic microwave back-ground radiation on large angular scales due to a homogeneous magnetic field is estimated in a simple relativistic model. This allows corresponding limits to be placed on the magnitude of any such large-scale relic magnetic field at the present time. These limits are essentially the strongest which can be set on the largest scales. A corresponding bound is obtained by use of the requirement that the field should not spoil the predictions of primordial nucleosynthesis. It is noted that the existence of large-scale cosmic magnetic fields would circumvent the limits previously set - also on the basis of nucleosynthesis considerations - on the large-scale anisotropy now present in the Universe. (author)

  6. Magnetic field dosimeter development

    International Nuclear Information System (INIS)

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation

  7. Bats respond to very weak magnetic fields.

    Directory of Open Access Journals (Sweden)

    Lan-Xiang Tian

    Full Text Available How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here, the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT, despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05. Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.

  8. Cosmic magnetic fields

    CERN Document Server

    Kronberg, Philipp P

    2016-01-01

    Magnetic fields are important in the Universe and their effects contain the key to many astrophysical phenomena that are otherwise impossible to understand. This book presents an up-to-date overview of this fast-growing topic and its interconnections to plasma processes, astroparticle physics, high energy astrophysics, and cosmic evolution. The phenomenology and impact of magnetic fields are described in diverse astrophysical contexts within the Universe, from galaxies to the filaments and voids of the intergalactic medium, and out to the largest redshifts. The presentation of mathematical formulae is accessible and is designed to add insight into the broad range of topics discussed. Written for graduate students and researchers in astrophysics and related disciplines, this volume will inspire readers to devise new ways of thinking about magnetic fields in space on galaxy scales and beyond.

  9. The dynamic behavior of magnetic fluid adsorbed to small permanent magnet in alternating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Seiichi, E-mail: sudo@akita-pu.ac.j [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan); Asano, Daisaku [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan); Takana, Hidemasa; Nishiyama, Hideya [Institute of Fluid Science, Tohoku University, Katahira 2-1-1, Aobaku, Sendai 980-8577 (Japan)

    2011-05-15

    The dynamic behavior of a magnetic fluid adsorbed to a small NdFeB permanent magnet subjected to an alternating magnetic field was studied with a high speed video camera system. The directions of alternating magnetic field are parallel and opposite to that of the permanent magnet. It was found that the surface of magnetic fluid responds to the external alternating magnetic field in elongation and contraction with a lot of spikes. Generation of a capillary magnetic fluid jet was observed in the neighbourhood of a specific frequency of alternating field. The effect of gravitational force on surface phenomena of magnetic fluid adsorbed to the permanent magnet was revealed. - Research Highlights: Magnetic fluid of the system responds to alternating magnetic field with higher frequencies. Large-amplitude surface motions of magnetic fluid occur at the specific frequencies of the external field. Capillary jets of magnetic fluid are generated at the natural frequency of the system.

  10. Phospholipid micelle-based magneto-plasmonic nanoformulation for magnetic field-directed, imaging-guided photo-induced cancer therapy.

    Science.gov (United States)

    Ohulchanskyy, Tymish Y; Kopwitthaya, Atcha; Jeon, Mansik; Guo, Moran; Law, Wing-Cheung; Furlani, Edward P; Kim, Chulhong; Prasad, Paras N

    2013-11-01

    We present a magnetoplasmonic nanoplatform combining gold nanorods (GNR) and iron-oxide nanoparticles within phospholipid-based polymeric nanomicelles (PGRFe). The gold nanorods exhibit plasmon resonance absorbance at near infrared wavelengths to enable photoacoustic imaging and photothermal therapy, while the Fe3O4 nanoparticles enable magnetophoretic control of the nanoformulation. The fabricated nanoformulation can be directed and concentrated by an external magnetic field, which provides enhancement of a photoacoustic signal. Application of an external field also leads to enhanced uptake of the magnetoplasmonic formulation by cancer cells in vitro. Under laser irradiation at the wavelength of the GNR absorption peak, the PGRFe formulation efficiently generates plasmonic nanobubbles within cancer cells, as visualized by confocal microscopy, causing cell destruction. The combined magnetic and plasmonic functionalities of the nanoplatform enable magnetic field-directed, imaging-guided, enhanced photo-induced cancer therapy. In this study, a nano-formulation of gold nanorods and iron oxide nanoparticles is presented using a phospholipid micelle-based delivery system for magnetic field-directed and imaging-guided photo-induced cancer therapy. The gold nanorods enable photoacoustic imaging and photothermal therapy, while the Fe3O4 nanoparticles enable magnetophoretic control of the formulation. This and similar systems could enable more precise and efficient cancer therapy, hopefully in the near future, after additional testing. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Magnetic field of the Earth

    Science.gov (United States)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  12. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  13. Nuclear magnetic resonance and earth magnetic field

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Nuclear magnetic resonance concerns nuclei whose spin is different from 0. These nuclei exposed to a magnetic field is comparable to a peg top spinning around its axis while being moved by a precession movement called Larmor precession. This article presents an experiment whose aim is to reveal nuclear magnetism of nuclei by observing Larmor precession phenomena due to the earth magnetic field. The earth magnetic field being too weak, it is necessary to increase the magnetization of the sample during a polarization phase. First the sample is submitted to a magnetic field B perpendicular to the earth magnetic field B 0 , then B is cut off and the nuclei move back to their equilibrium position by executing a precession movement due to B 0 field. (A.C.)

  14. Dynamic shielding of the magnetic fields

    Directory of Open Access Journals (Sweden)

    RAU, M.

    2010-11-01

    Full Text Available The paper presents a comparative study of the methods used to control and compensate the direct and alternative magnetic fields. Two frequently used methods in the electromagnetic compatibility of the complex biomagnetism installations were analyzed. The two methods refer to the use of inductive magnetic field sensors (only for alternative fields and of fluxgate magnetometers as active transducers which measures both the direct and alternative components of the magnetic field. The applications of the dynamic control of the magnetic field are: control of the magnetic field of the military ships, control of parasite magnetic field produced by power transformers and the electrical networks, protection of the mass spectrometers, electronic microscopes, SQUID and optical pumping magnetometers for applications in biomagnetism.

  15. Designing magnets with prescribed magnetic fields

    International Nuclear Information System (INIS)

    Liu Liping

    2011-01-01

    We present a novel design method capable of finding the magnetization densities that generate prescribed magnetic fields. The method is based on the solution to a simple variational inequality and the resulting designs have simple piecewise-constant magnetization densities. By this method, we obtain new designs of magnets that generate commonly used magnetic fields: uniform magnetic fields, self-shielding fields, quadrupole fields and sextupole fields. Further, it is worth noting that this method is not limited to the presented examples, and in particular, three-dimensional designs can be constructed in a similar manner. In conclusion, this novel design method is anticipated to have broad applications where specific magnetic fields are important for the performance of the devices.

  16. Effects of low-frequency magnetic field on grain boundary segregation in horizontal direct chill casting of 2024 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Effects of low frequency electromagnetic field on grain boundary segregation in horizontal direct chill (HDC)casting process was investigated experimentally. The grain boundary segregation and microstructures of the ingots,which manufactured by conventional HDC casting and low frequency electromagnetic HDC casting were compared.Results show that low frequency electromagnetic field significantly refines the microstructures and reduces grain boundary segregation. Decreasing electromagnetic frequency or increasing electromagnetic intensity has great effects in reducing grain boundary segregation. Meanwhile, the governing mechanisms were discussed.

  17. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    Science.gov (United States)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  18. Magnetic field line reconnection experiments

    International Nuclear Information System (INIS)

    Gekelman, W.; Stenzel, R.L.; Wild, N.

    1982-01-01

    A laboratory experiment concerned with the basic physics of magnetic field line reconnection is discussed. Stimulated by important processes in space plasmas and anomalous transport in fusion plasmas the work addresses the following topics: Dynamic magnetic fields in a high beta plasma, magnetic turbulence, plasma dynamics and energy transport. First, the formation of magnetic neutral sheets, tearing and island coalescence are shown. Nonstationary magnetic fluctuations are statistically evaluated displaying the correlation tensor in the #betta#-k domain for mode identification. Then, the plasma properties are analyzed with particular emphasis on transport processes. Although the classical fluid flow across the separatrix can be observed, the fluctuation processes strongly modify the plasma dynamics. Direct measurements of the fluid force density and ion acceleration indicate the presence of an anomalous scattering process characterized by an effective scattering tensor. Turbulence also enhances the plasma resistivity by one to two orders of magnitude. Measurements of the three-dimensional electron distribution function using a novel energy analyzer exhibit the formation of runaway electrons in the current sheet. Associated micro-instabilities are observed. Finally, a macroscopic disruptive instability of the current sheet is observed. Excess magnetic field energy is converted at a double layer into particle kinetic energy and randomized through beam-plasma instabilities. These laboratory results are compared with related observations in space and fusion plasmas. (Auth.)

  19. Inertial fusion reactors and magnetic fields

    International Nuclear Information System (INIS)

    Cornwell, J.B.; Pendergrass, J.H.

    1985-01-01

    The application of magnetic fields of simple configurations and modest strengths to direct target debris ions out of cavities can alleviate recognized shortcomings of several classes of inertial confinement fusion (ICF) reactors. Complex fringes of the strong magnetic fields of heavy-ion fusion (HIF) focusing magnets may intrude into reactor cavities and significantly affect the trajectories of target debris ions. The results of an assessment of potential benefits from the use of magnetic fields in ICF reactors and of potential problems with focusing-magnet fields in HIF reactors conducted to set priorities for continuing studies are reported. Computational tools are described and some preliminary results are presented

  20. High magnetic field MRI system

    International Nuclear Information System (INIS)

    Maeda, Hideaki; Urata, Masami; Satoh, Kozo

    1990-01-01

    A high field superconducting magnet, 4-5 T in central magnetic field, is required for magnetic resonance spectroscopic imaging (MRSI) on 31 P, essential nuclei for energy metabolism of human body. This paper reviews superconducting magnets for high field MRSI systems. Examples of the cross-sectional image and the spectrum of living animals are shown in the paper. (author)

  1. Surface magnetic field measurement with magnetic shielding

    Czech Academy of Sciences Publication Activity Database

    Perevertov, Oleksiy

    2010-01-01

    Roč. 61, č. 7 (2010), 66-68 ISSN 1335-3632 Grant - others:AVČR(CZ) M100100906 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic hysteresis * magnetic field measurement * magnetic shielding * extrapolation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.270, year: 2010

  2. Vacuum arc behavior and its voltage characteristics in drawing process controlled by composite magnetic fields along axial and transverse directions

    International Nuclear Information System (INIS)

    Wang, Lijun; Deng, Jie; Wang, Haijing; Jia, Shenli; Qin, Kang; Shi, Zongqian

    2015-01-01

    In this research, drawing vacuum arc (VA) experiments were conducted using composite contacts under currents ranging from 5 kA to 20 kA root mean square (rms). The new type of contact comprised an axial magnetic field (AMF) configuration and a transverse magnetic field (TMF) configuration. The TMF plate was in the center, surrounded by the AMF plate. The contact generated both AMFs and TMFs simultaneously. VA appearances and arc voltages were recorded, and the VA was modeled as a conductor for electromagnetic force analysis in ANSYS software. The results showed that the coaxiality of operating mechanisms significantly influenced arc behavior just as the arc was ignited. When arc brightness did not increase after ignition, there was a voltage drop accompanied with diffusion of the VA. As to VA development, when an arc was ignited on an AMF plate, it spread on the plate and rotated. Over time the arc current increased, the constricting arc forms, and the arc column rotated on the TMF plate under the action of Ampere's force. With regard to the influence of a magnetic field on a VA at different stages, in the initial drawing arc stage the TMF was dominant, and the arc started to rotate under the action of Ampere's force. Afterwards, the AMF was dominant, with a steadily burning arc. As for contact melting, in the initial arcing period, a contracted short arc caused severe melting and erosion of the contact plate. When the ignition spot or root was close to the slot of plate, the electromagnetic force pushed the arc toward slot and contact edge, resulting in local erosion of the slot region

  3. The earth's magnetic field

    International Nuclear Information System (INIS)

    Merrill, R.T.

    1983-01-01

    After a historical introduction in Chapter 1, the more traditional aspects of geomagnetism relating to the present field and historical observations are presented in Chapter 2. The various methods and techniques and theoretical background of palaeomagnetism are given in Chapter 3. Chapters 4, 5 and 6 present the results of palaeomagnetic and archaeomagnetic studies in three topics. Chapter 4 relates to studies of the geomagnetic field roughly back to about 50,000 years ago. Chapter 5 is about reversals of the geomagnetic field and Chapter 6 presents studies of the field for times older than 50,000 years and on the geological time scale of millions or hundreds of millions of years. Chapters 7, 8 and 9 provide insight into dynamo theory. Chapter 7 is essentially a non-mathematical attempt to explain the physical basis of dynamo theories to palaeomagnetists. This is followed in Chapter 8 by a more advanced theoretical treatment. Chapter 9 explains theoretical aspects of secular variation and the origin of reversals of the geomagnetic field. Chapter 10 is our attempt to relate theory to experiment and vice versa. The final two chapters consider the magnetic fields of the moon, sun, planets and meteorites, in an attempt to determine the necessary and sufficient conditions for magnetic field generation in large solar system bodies. (author)

  4. Magnetic field driven domain-wall propagation in magnetic nanowires

    International Nuclear Information System (INIS)

    Wang, X.R.; Yan, P.; Lu, J.; He, C.

    2009-01-01

    The mechanism of magnetic field induced magnetic domain-wall (DW) propagation in a nanowire is revealed: A static DW cannot exist in a homogeneous magnetic nanowire when an external magnetic field is applied. Thus, a DW must vary with time under a static magnetic field. A moving DW must dissipate energy due to the Gilbert damping. As a result, the wire has to release its Zeeman energy through the DW propagation along the field direction. The DW propagation speed is proportional to the energy dissipation rate that is determined by the DW structure. The negative differential mobility in the intermediate field is due to the transition from high energy dissipation at low field to low energy dissipation at high field. For the field larger than the so-called Walker breakdown field, DW plane precesses around the wire, leading to the propagation speed oscillation.

  5. Motions and solar magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Krat, V A [AN SSSR, Leningrad. Glavnaya Astronomicheskaya Observatoriya

    1977-02-01

    Fine structure of magnetic fields in the Sun has been investigated. The data of the Soviet solar stratospheric observatory (SSO) with the telescope with a mirror first of 50 and then 100 cm in diameter obtained for the period of 1970-1973 served as material for research. The experiments give evidence of the presence of photospheric granulation with the characteristic dimension of granules below 150 km. The angular resolution of instruments does not make it possible to realize direct measurements of magnetic fields of such sizes. The indirect estimates indicate the fact that the magnetic fields of photosphere cannot be less than 10/sup 2/ Oe. A comparison of Hsub(..cap alpha..) lines with lines of metals and with the continuous spectrum shows that the least dimensions of chromosphere elements account for 500 km. Since in chromosphere density decreases drastically, than in order to suppress hydrodynamic flows fields should be of the order of 10/sup 3/ Oe. It has been concluded that the problem of the origin and evolution of the magnetic field of the Sun should be also solved by applying data on other stars.

  6. Magnetic field screens

    International Nuclear Information System (INIS)

    Mansfield, P.; Turner, R.; Chapman, B.L.W.; Bowley, R.M.

    1990-01-01

    A screen for a magnetic coil, for producing, for example, a homogeneous, gradient or RF field in nuclear magnetic resonance imaging, is described. It is provided by surround the coil with a set of electrical conductors. The currents within the conductors are controlled in such a manner that the field is neutralised in a specific region of space. The current distribution within the conductors is determined by calculating the current within a hypothetical superconductive shield which would have the effect of neutralising the field, the current through the conductors thereby being a substitute for the superconductive shield. The conductors may be evenly spaced and connected in parallel, their resistances being determined by thickness or composition to provide the desired current, or they may carry equal currents but be differently spaced. A further set or sets of controlled conductors outside the first set may ensure that the first set does not upset the field from the NMR coil. The shield may selectively reflect certain fields while transmitting others and may prevent acoustic vibration e.g. when switching gradient fields. An RF coil arrangement may consist of two orthogonal coils, one coil within the other for use as a transmit/receive set or as a double resonance transmitter; a shield between the coils is in series with, and formed from the same winding as, the inner coil. (author)

  7. Magnetic fields in diffuse media

    CERN Document Server

    Pino, Elisabete; Melioli, Claudio

    2015-01-01

    This volume presents the current knowledge of magnetic fields in diffuse astrophysical media. Starting with an overview of 21st century instrumentation to observe astrophysical magnetic fields, the chapters cover observational techniques, origin of magnetic fields, magnetic turbulence, basic processes in magnetized fluids, the role of magnetic fields for cosmic rays, in the interstellar medium and for star formation. Written by a group of leading experts the book represents an excellent overview of the field. Nonspecialists will find sufficient background to enter the field and be able to appreciate the state of the art.

  8. Direct measurement of the field from a magnetic recording head using an InAs Hall sensor on a contact write/read tester

    International Nuclear Information System (INIS)

    Gokemeijer, N.J.; Clinton, T.W.; Crawford, T.M.; Johnson, Mark

    2005-01-01

    At 1 Tbit/in 2 areal density magnetic recording dimensions, reliable magnetic field metrology does not exist. One technique to map the spatial profile of the magnetic field of a write head is to use a contact read/write tester. A magnetic recording head is brought into contact with a Hall sensor, and is subsequently scanned with nm resolution. For a 300 nm track width longitudinal recording head, the magnetic field of the head was mapped. Measurements include the down track field gradient and cross-track field profile and the current-field transfer curve. These results suggest this technique offers a viable write field metrology

  9. The influence of laser scribing on magnetic domain formation in grain oriented electrical steel visualized by directional neutron dark-field imaging

    Science.gov (United States)

    Rauscher, P.; Betz, B.; Hauptmann, J.; Wetzig, A.; Beyer, E.; Grünzweig, C.

    2016-12-01

    The performance and degree of efficiency of transformers are directly determined by the bulk magnetic properties of grain oriented electrical steel laminations. The core losses can be improved by post manufacturing methods, so-called domain refinement techniques. All these methods induce mechanical or thermal stress that refines the domain structure. The most commonly used technique is laser scribing due to the no-contact nature and the ease of integration in existing production systems. Here we show how directional neutron dark-field imaging allows visualizing the impact of laser scribing on the bulk and supplementary domain structure. In particular, we investigate the domain formation during magnetization of samples depending on laser treatment parameters such as laser energy and line distances. The directional dark-field imaging findings were quantitatively interpreted in the context with global magnetic hysteresis measurements. Especially we exploit the orientation sensitivity in the dark-field images to distinguish between different domain structures alignment and their relation to the laser scribing process.

  10. Earth's Magnetic Field

    DEFF Research Database (Denmark)

    This volume provides a comprehensive view on the different sources of the geomagnetic field both in the Earth’s interior and from the field’s interaction with the terrestrial atmosphere and the solar wind. It combines expertise from various relevant areas of geomagnetic and near Earth space...... research with the aim to better characterise the state and dynamics of Earth’s magnetic field. Advances in the exploitation of geomagnetic observations hold a huge potential not only for an improved quantitative description of the field source but also for a better understanding of the underlying processes...... and space observations, and on state-of-the-art empirical models and physics-based simulations. Thus, it provides an in-depth overview over recent achievements, current limitations and challenges, and future opportunities in the field of geomagnetism and space sciences....

  11. Magnetization reversal in ultrashort magnetic field pulses

    International Nuclear Information System (INIS)

    Bauer, M.; Lopusnik, R.; Fassbender, J.; Hillebrands, B.

    2000-01-01

    We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization reversal process. Comparing the case of perpendicular anisotropy with different kinds of in-plane anisotropies, a principal difference is found due to the symmetry of the shape anisotropy with respect to the anisotropy in question

  12. Nuclear resonance apparatus including means for rotating a magnetic field

    International Nuclear Information System (INIS)

    Sugimoto, H.

    1983-01-01

    A nuclear magnetic resonance apparatus including magnet apparatus for generating a homogeneous static magnetic field between its magnetic poles, shims of a magnetic substance mounted on the magnetic poles to apply a first gradient magnetic field intensity distribution in a direction orthogonal as to the direction of line of magnetic force of the static magnetic field, gradient magnetic field generating electromagnetic apparatus for generating a second gradient magnetic field having a gradient magnetic field intensity distribution in superimposition with the static magnetic field and for changing the magnetic field gradient of the first gradient magnetic field, an oscillator for generating an oscillating output having a frequency corresponding to the nuclear magnetic resonance condition of an atomic nucleus to be measured, a coil wound around a body to be examined for applying the output of said oscillator as electromagnetic waves upon the body, a receiver for detecting the nuclear magnetic resonance signals received by the coil, a gradient magnetic field controller making a magnetic field line equivalent to the combined gradient magnetic fields and for rotating the line along the section of the body to be examined by controlling said gradient magnetic field generating electromagnetic apparatus and devices for recording the nuclear magnetic resonance signals, for reconstructing the concentration distribution of the specific atomic nuclei in the section of the body, and a display unit for depicting the result of reconstruction

  13. Magnetic Field Topology in Jets

    Science.gov (United States)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  14. Low field magnetic resonance imaging

    Science.gov (United States)

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  15. The Capacitive Magnetic Field Sensor

    Science.gov (United States)

    Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.

    2016-01-01

    The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.

  16. Investigations on magnetic field induced optical transparency in magnetic nanofluids

    Science.gov (United States)

    Mohapatra, Dillip Kumar; Philip, John

    2018-02-01

    We study the magnetic field induced optical transparency and its origin in magnetic nanoemulsion of droplets of average size ∼200 nm containing superparamagnetic iron oxide nanoparticles. Beyond a certain volume fraction (Φ > 0.0021) of magnetic nanoemulsion and a critical magnetic field (Hc1), the transmitted light intensity increases drastically and reaches a maximum at another critical magnetic field (Hc2), beyond which the transmitted light intensity decreases and reaches a plateau. Interestingly, the transmitted light intensity at Hc2 is found to increase linearly with Φ and the critical magnetic fields Hc1 and Hc2 follow power law decay with Φ (i.e. Hc ∼ Φ-x), with exponents 0.48 and 0.27, respectively. The light intensity recovers to its initial value when the magnetic field is switched off, indicating the perfect reversibility of the field induced transparency process. The observed straight line scattered patterns above Hc2, on a screen placed perpendicular to the incident beam, confirms the formation of rod like anisotropic nanostructures perpendicular to the direction of light propagation. The magneto-optical measurements in the emulsion confirm that the observed field induced transparency in magnetic emulsions for Φ > 0.0021 is due to the optical birefringence caused by the rod like nanostructures. The reduced birefringence is found to be proportional to the square of the applied magnetic field. This finding offers several possibilities in using magnetic nanofluids in tunable optical devices.

  17. Magnetic vector field tag and seal

    Science.gov (United States)

    Johnston, Roger G.; Garcia, Anthony R.

    2004-08-31

    One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.

  18. Streaming flows produced by oscillating interface of magnetic fluid adsorbed on a permanent magnet in alternating magnetic field

    Science.gov (United States)

    Sudo, S.; Ito, M.; Ishimoto, Y.; Nix, S.

    2017-04-01

    This paper describes microstreaming flows generated by oscillating interface of magnetic fluid adsorbed on a circular cylindrical permanent magnet in alternating magnetic field. The interface of magnetic fluid adsorbed on the NdFeB magnet responds to the external alternating magnetic flied as harmonic oscillation. The directions of alternating magnetic field are parallel and antiparallel to the magnetic field of permanent magnet. The oscillation of magnetic fluid interface generates streaming flow around the magnet-magnetic fluid element in water. Microstreaming flows are observed with a high-speed video camera analysis system. The flow pattern generated by magnetic fluid motion depends on the Keulegan-Carpenter number and the Reynolds number.

  19. Observing Interstellar and Intergalactic Magnetic Fields

    Science.gov (United States)

    Han, J. L.

    2017-08-01

    Observational results of interstellar and intergalactic magnetic fields are reviewed, including the fields in supernova remnants and loops, interstellar filaments and clouds, Hii regions and bubbles, the Milky Way and nearby galaxies, galaxy clusters, and the cosmic web. A variety of approaches are used to investigate these fields. The orientations of magnetic fields in interstellar filaments and molecular clouds are traced by polarized thermal dust emission and starlight polarization. The field strengths and directions along the line of sight in dense clouds and cores are measured by Zeeman splitting of emission or absorption lines. The large-scale magnetic fields in the Milky Way have been best probed by Faraday rotation measures of a large number of pulsars and extragalactic radio sources. The coherent Galactic magnetic fields are found to follow the spiral arms and have their direction reversals in arms and interarm regions in the disk. The azimuthal fields in the halo reverse their directions below and above the Galactic plane. The orientations of organized magnetic fields in nearby galaxies have been observed through polarized synchrotron emission. Magnetic fields in the intracluster medium have been indicated by diffuse radio halos, polarized radio relics, and Faraday rotations of embedded radio galaxies and background sources. Sparse evidence for very weak magnetic fields in the cosmic web is the detection of the faint radio bridge between the Coma cluster and A1367. Future observations should aim at the 3D tomography of the large-scale coherent magnetic fields in our Galaxy and nearby galaxies, a better description of intracluster field properties, and firm detections of intergalactic magnetic fields in the cosmic web.

  20. Self-assembly of multiferroic core-shell particulate nanocomposites through DNA-DNA hybridization and magnetic field directed assembly of superstructures

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivasulu, Gollapudi; Srinivasan, Gopalan, E-mail: srinivas@oakland.edu, E-mail: chavez@oakland.edu [Department of Physics, Oakland University, Rochester, MI 48309-4401 (United States); Lochbiler, Thomas A.; Panda, Manashi; Chavez, Ferman A., E-mail: srinivas@oakland.edu, E-mail: chavez@oakland.edu [Department of Chemistry, Oakland University, Rochester, MI 48309-4401 (United States)

    2016-04-15

    Multiferroic composites of ferromagnetic and ferroelectric phases are of importance for studies on mechanical strain mediated coupling between the magnetic and electric subsystems. This work is on DNA-assisted self-assembly of superstructures of such composites with nanometer periodicity. The synthesis involved oligomeric DNA-functionalized ferroelectric and ferromagnetic nanoparticles, 600 nm BaTiO{sub 3} (BTO) and 200 nm NiFe{sub 2}O{sub 4} (NFO), respectively. Mixing BTO and NFO particles, possessing complementary DNA sequences, resulted in the formation of ordered core-shell heteronanocomposites held together by DNA hybridization. The composites were imaged by scanning electron microscopy and scanning microwave microscopy. The presence of heteroassemblies along with core-shell architecture is clearly observed. The reversible nature of the DNA hybridization allows for restructuring the composites into mm-long linear chains and 2D-arrays in the presence of a static magnetic field and ring-like structures in a rotating-magnetic field. Strong magneto-electric (ME) coupling in as-assembled composites is evident from static magnetic field H induced polarization and low-frequency magnetoelectric voltage coefficient measurements. Upon annealing the nanocomposites at high temperatures, evidence for the formation of bulk composites with excellent cross-coupling between the electric and magnetic subsystems is obtained by H-induced polarization and low-frequency ME voltage coefficient. The ME coupling strength in the self-assembled composites is measured to be much stronger than in bulk composites with randomly distributed NFO and BTO prepared by direct mixing and sintering.

  1. Field Mapping System for Solenoid Magnet

    Science.gov (United States)

    Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.

    2007-01-01

    A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.

  2. TFTR magnetic field design analyses

    International Nuclear Information System (INIS)

    Davies, K.; Iwinski, E.; McWhirter, J.M.

    1975-11-01

    The three main magnetic field windings for the TFTR are the toroidal field (TF) windings, the ohmic heating (OH) winding, and the equilibrium field (EF) winding. The following information is provided for these windings: (1) descriptions, (2) functions, (3) magnetic designs, e.g., number and location of turns, (4) design methods, and (5) descriptions of resulting magnetic fields. This report does not deal with the thermal, mechanical support, or construction details of the windings

  3. Magnetic blocking direct-recovery efficiency

    International Nuclear Information System (INIS)

    Whealton, J.H.; Wooten, J.H.; McGaffey, R.W.

    1981-10-01

    The ion recovery efficiency of a transverse magnetic field monochromatic direct recovery device intended for intense neutral beams is examined theoretically by solving a Poisson-Vlasov equation. An optimum in recovery efficiency is obtained for finite ion current density and excess initial speed

  4. Hyperfine magnetic fields in substituted Finemet alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brzózka, K., E-mail: k.brzozka@uthrad.pl [University of Technology and Humanities in Radom, Department of Physics (Poland); Sovák, P. [P.J. Šafárik University, Institute of Physics (Slovakia); Szumiata, T.; Gawroński, M.; Górka, B. [University of Technology and Humanities in Radom, Department of Physics (Poland)

    2016-12-15

    Transmission Mössbauer spectroscopy was used to determine the hyperfine fields of Finemet-type alloys in form of ribbons, substituted alternatively by Mn, Ni, Co, Al, Zn, V or Ge of various concentration. The comparative analysis of magnetic hyperfine fields was carried out which enabled to understand the role of added elements in as-quenched as well as annealed samples. Moreover, the influence of the substitution on the mean direction of the local hyperfine magnetic field was examined.

  5. Numerical and theoretical evaluations of AC losses for single and infinite numbers of superconductor strips with direct and alternating transport currents in external AC magnetic field

    Science.gov (United States)

    Kajikawa, K.; Funaki, K.; Shikimachi, K.; Hirano, N.; Nagaya, S.

    2010-11-01

    AC losses in a superconductor strip are numerically evaluated by means of a finite element method formulated with a current vector potential. The expressions of AC losses in an infinite slab that corresponds to a simple model of infinitely stacked strips are also derived theoretically. It is assumed that the voltage-current characteristics of the superconductors are represented by Bean's critical state model. The typical operation pattern of a Superconducting Magnetic Energy Storage (SMES) coil with direct and alternating transport currents in an external AC magnetic field is taken into account as the electromagnetic environment for both the single strip and the infinite slab. By using the obtained results of AC losses, the influences of the transport currents on the total losses are discussed quantitatively.

  6. Direct monitoring of erythrocytes aggregation under the effect of the low-intensity magnetic field by measuring light transmission at wavelength 800 nm

    Science.gov (United States)

    Elblbesy, Mohamed A.

    2017-12-01

    Interacting electromagnetic field with the living organisms and cells became of the great interest in the last decade. Erythrocytes are the most common types of the blood cells and have unique rheological, electrical, and magnetic properties. Aggregation is one of the important characteristics of the erythrocytes which has a great impact in some clinical cases. The present study introduces a simple method to monitor the effect of static magnetic field on erythrocytes aggregation using light transmission. Features were extracted from the time course curve of the light transmission through the whole blood under different intensities of the magnetic field. The findings of this research showed that static magnetic field could influence the size and the rate of erythrocytes aggregation. The strong correlations confirmed these results between the static magnetic field intensity and both the time of aggregation and sedimentation of erythrocytes. From this study, it can be concluded that static magnetic field can be used to modify the mechanisms of erythrocytes aggregation.

  7. Magnetic field modification of optical magnetic dipoles.

    Science.gov (United States)

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate.

  8. A Direct Search for Dirac Magnetic Monopoles

    Energy Technology Data Exchange (ETDEWEB)

    Mulhearn, Michael James [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2004-10-01

    Magnetic monopoles are highly ionizing and curve in the direction of the magnetic field. A new dedicated magnetic monopole trigger at CDF, which requires large light pulses in the scintillators of the time-of-flight system, remains highly efficient to monopoles while consuming a tiny fraction of the available trigger bandwidth. A specialized offline reconstruction checks the central drift chamber for large dE/dx tracks which do not curve in the plane perpendicular to the magnetic field. We observed zero monopole candidate events in 35.7 pb-1 of proton-antiproton collisions at √s = 1.96 TeV. This implies a monopole production cross section limit σ < 0.2 pb for monopoles with mass between 100 and 700 GeV, and, for a Drell-Yan like pair production mechanism, a mass limit m > 360 GeV.

  9. Mercury's magnetic field and interior

    International Nuclear Information System (INIS)

    Connerney, J.E.P.; Ness, N.F.

    1988-01-01

    The magnetic-field data collected on Mercury by the Mariner-10 spacecraft present substantial evidence for an intrinsic global magnetic field. However, studies of Mercury's thermal evolution show that it is most likely that the inner core region of Mercury solidified or froze early in the planet's history. Thus, the explanation of Mercury's magnetic field in the framework of the traditional planetary dynamo is less than certain

  10. Planetary nebulae and the interstellar magnetic field

    International Nuclear Information System (INIS)

    Heiligman, G.M.

    1980-01-01

    Previous workers have found a statistical correlation between the projected directions of the interstellar magnetic field and the major axes of planetary nebulae. This result has been examined theoretically using a numerical hydromagnetic model of a cold plasma nebula expanding into a uniform vacuum magnetic field, with nebular gas accreting on the surface. It is found that magnetic pressure alone is probably not sufficient to shape most planetary nebulae to the observed degree. Phenomena are discussed which could amplify simple magnetic pressure, alter nebular morphology and account for the observed correlation. (author)

  11. Magnetically modified biocells in constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, E.G.; Panina, L.K. [Saint Petersburg State University, St. Petersburg (Russian Federation); Kolikov, V.A., E-mail: kolikov1@yandex.ru [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Bogomolova, E.V. [Botanical Institute of the RAS after V.L.Komarov, St. Petersburg (Russian Federation); Snetov, V.N. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Cherepkova, I.A. [Saint Petersburg State Institute of Technology, St. Petersburg (Russian Federation); Kiselev, A.A. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation)

    2017-02-01

    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell’ size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae. - Highlights: • The inverse problem was solved for finding zero velocity isolines of magnetically modified biological cells. • Solution of the inverse problem depends on the size of cells and the number of nanoparticles attached to the single cell. • The experimental data are in agreement with theoretical solution.

  12. Comparison of adjustable permanent magnetic field sources

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders

    2010-01-01

    be altered are analyzed using numerical simulations, and compared based on the generated magnetic flux density in a sample volume and the amount of magnet material used. The designs are the concentric Halbach cylinder, the two half Halbach cylinders, the two linear Halbach arrays and the four and six rod...... and the direction of the magnetic field are measured and compared with numerical simulation and a good agrement is found....

  13. Magnetic response to applied electrostatic field in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); University of Florida, Department of Physics, Gainesville, FL (United States); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Shabad, A.E. [P. N. Lebedev Physics Institute, Moscow (Russian Federation)

    2014-04-15

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics. (orig.)

  14. Regulation of fields excited by permanent magnets

    International Nuclear Information System (INIS)

    Savchenko, I.S.

    1989-01-01

    Two methods of fast regulation of fields excited by permanent magnets in salient-pole electron-optical lenses are described: 1)the hybrid method realized using the additional electromagnet introduced to a magnetic chain sequentially its field being composed or substracted with magnetosolid exciter field; 2)the method with saturation of a part of a magnetic circuit, with saturation being achievable at the begining or in the end of a regulation cycle. In the second method it is proposed to direct orthogonally the main flux excited by permanent magnets and the flux in the saturated part of the magnetic circuit excited using an electromagnet. It is shown that the second method allows one to reduce the required ampere-coils by more than an order as compared to the first method at one and the same regulation range and other equal conditions. The frequency of field regulation in the experimental mock-up was 10 kHz. 3 refs.; 2 figs

  15. Bats Respond to Very Weak Magnetic Fields

    Science.gov (United States)

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (Preversed tens of times over the past fifty million years. PMID:25922944

  16. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy; Bontemps, P.; Rikken, Geert L J A

    2011-01-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  17. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  18. Magnetic Field Measurements in Beam Guiding Magnets

    CERN Document Server

    Henrichsen, K N

    1998-01-01

    Electromagnets used as beam guiding elements in particle accelerators and colliders require very tight tole-rances on their magnetic fields and on their alignment along the particle path. This article describes the methods and equipment used for magnetic measurements in beam transport magnets. Descriptions are given of magnetic resonance techniques, various induction coil methods, Hall generator measurements, the fluxgate magnetometer as well as the recently developed method of beam based alignment. References of historical nature as well as citations of recent work are given. The present commercial availability of the different sensors and asso-ciated equipment is indicated. Finally we shall try to analyze possible future needs for developments in those fields.

  19. Simultaneous transcranial direct current stimulation (tDCS) and whole-head magnetoencephalography (MEG): assessing the impact of tDCS on slow cortical magnetic fields.

    Science.gov (United States)

    Garcia-Cossio, Eliana; Witkowski, Matthias; Robinson, Stephen E; Cohen, Leonardo G; Birbaumer, Niels; Soekadar, Surjo R

    2016-10-15

    Transcranial direct current stimulation (tDCS) can influence cognitive, affective or motor brain functions. Whereas previous imaging studies demonstrated widespread tDCS effects on brain metabolism, direct impact of tDCS on electric or magnetic source activity in task-related brain areas could not be confirmed due to the difficulty to record such activity simultaneously during tDCS. The aim of this proof-of-principal study was to demonstrate the feasibility of whole-head source localization and reconstruction of neuromagnetic brain activity during tDCS and to confirm the direct effect of tDCS on ongoing neuromagnetic activity in task-related brain areas. Here we show for the first time that tDCS has an immediate impact on slow cortical magnetic fields (SCF, 0-4Hz) of task-related areas that are identical with brain regions previously described in metabolic neuroimaging studies. 14 healthy volunteers performed a choice reaction time (RT) task while whole-head magnetoencephalography (MEG) was recorded. Task-related source-activity of SCFs was calculated using synthetic aperture magnetometry (SAM) in absence of stimulation and while anodal, cathodal or sham tDCS was delivered over the right primary motor cortex (M1). Source reconstruction revealed task-related SCF modulations in brain regions that precisely matched prior metabolic neuroimaging studies. Anodal and cathodal tDCS had a polarity-dependent impact on RT and SCF in primary sensorimotor and medial centro-parietal cortices. Combining tDCS and whole-head MEG is a powerful approach to investigate the direct effects of transcranial electric currents on ongoing neuromagnetic source activity, brain function and behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. 'Fixed-axis' magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field?

    Science.gov (United States)

    Phillips, John B; Borland, S Chris; Freake, Michael J; Brassart, Jacques; Kirschvink, Joseph L

    2002-12-01

    suggestion that homing newts use the light-dependent magnetic compass to align a magnetite-based 'map detector' when obtaining the precise measurements necessary to derive map information from the magnetic field. However, aligning the putative map detector does not explain the fixed-axis response of newts tested under long-wavelength light. Preliminary evidence suggests that, in the absence of reliable directional information from the magnetic compass (caused by the 90 degrees rotation of the response of the magnetic compass under long-wavelength light), newts may resort to a systematic sampling strategy to identify alignment(s) of the map detector that yields reliable magnetic field measurements.

  1. Directed Magnetic Particle Transport above Artificial Magnetic Domains Due to Dynamic Magnetic Potential Energy Landscape Transformation.

    Science.gov (United States)

    Holzinger, Dennis; Koch, Iris; Burgard, Stefan; Ehresmann, Arno

    2015-07-28

    An approach for a remotely controllable transport of magnetic micro- and/or nanoparticles above a topographically flat exchange-bias (EB) thin film system, magnetically patterned into parallel stripe domains, is presented where the particle manipulation is achieved by sub-mT external magnetic field pulses. Superparamagnetic core-shell particles are moved stepwise by the dynamic transformation of the particles' magnetic potential energy landscape due to the external magnetic field pulses without affecting the magnetic state of the thin film system. The magnetic particle velocity is adjustable in the range of 1-100 μm/s by the design of the substrate's magnetic field landscape (MFL), the particle-substrate distance, and the magnitude of the applied external magnetic field pulses. The agglomeration of magnetic particles is avoided by the intrinsic magnetostatic repulsion of particles due to the parallel alignment of the particles' magnetic moments perpendicular to the transport direction and parallel to the surface normal of the substrate during the particle motion. The transport mechanism is modeled by a quantitative theory based on the precise knowledge of the sample's MFL and the particle-substrate distance.

  2. Direct observation of electronic and nuclear ground state splitting in external magnetic field by inelastic neutron scattering on oxidized ferrocene and ferrocene containing polymers

    Science.gov (United States)

    Appel, Markus; Frick, Bernhard; Elbert, Johannes; Gallei, Markus; Stühn, Bernd

    2015-01-01

    The quantum mechanical splitting of states by interaction of a magnetic moment with an external magnetic field is well known, e.g., as Zeeman effect in optical transitions, and is also often seen in magnetic neutron scattering. We report excitations observed in inelastic neutron spectroscopy on the redox-responsive polymer poly(vinylferrocene). They are interpreted as splitting of the electronic ground state in the organometallic ferrocene units attached to the polymer chain where a magnetic moment is created by oxidation. In a second experiment using high resolution neutron backscattering spectroscopy we observe the hyperfine splitting, i.e., interaction of nuclear magnetic moments with external magnetic fields leading to sub-μeV excitations observable in incoherent neutron spin-flip scattering on hydrogen and vanadium nuclei.

  3. Magnetization of dense neutron matter in a strong magnetic field

    International Nuclear Information System (INIS)

    Isaev, A.A.; Yang, J.

    2010-01-01

    Spin polarized states in neutron matter at a strong magnetic field up to 1018 G are considered in the model with the Skyrme effective interaction. Analyzing the self consistent equations at zero temperature, it is shown that a thermodynamically stable branch of solutions for the spin polarization parameter as a function of the density corresponds to the negative spin polarization when the majority of neutron spins are oriented oppositely to the direction of the magnetic field. In addition, beginning from some threshold density dependent on the magnetic field strength, the self-consistent equations have also two other branches of solutions for the spin polarization parameter with the positive spin polarization. The free energy corresponding to one of these branches turns out to be very close to the free energy corresponding to the thermodynamically preferable branch with the negative spin polarization. As a consequence, at a strong magnetic field, the state with the positive spin polarization can be realized as a metastable state at the high density region in neutron matter which changes into a thermodynamically stable state with the negative spin polarization with decrease in the density at some threshold value. The calculations of the neutron spin polarization parameter, energy per neutron, and chemical potentials of spin-up and spin-down neutrons as functions of the magnetic field strength show that the influence of the magnetic field remains small at the field strengths up to 1017 G.

  4. Magnetic field reconnexion in a sheared field

    International Nuclear Information System (INIS)

    Ugai, M.

    1981-01-01

    A nonlinear development of the Petschek mode in a sheared magnetic field where there is a field component Bsub(z) along an X line is numerically studied. It is found that finite-amplitude intermediate waves, adjacent to the slow shock, may eventually stand in the quasi-steady configuration; on the other hand, the fundamental characteristics of the Petschek-mode development are scarcely influenced, either qualitatively or quantitatively, by the Bsub(z) field. (author)

  5. Magnetic fields and scintillator performance

    International Nuclear Information System (INIS)

    Green, D.; Ronzhin, A.; Hagopian, V.

    1995-06-01

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University

  6. Field measurement of dipole magnets for TARN

    International Nuclear Information System (INIS)

    Hori, T.; Noda, A.; Hattori, T.; Fujino, T.; Yoshizawa, M.

    1980-05-01

    Eight dipole magnets of window-frame type with zero field gradient have been fabricated for TARN. Various characteristics of the field were examined by a measuring system with a Hall and an NMR probes. The accuracy of the measurement was better than 1 x 10 -4 at the maximum field strength of --9 kG, and the uniformity of the field in the radial direction was better than +-2 x 10 -4 over the whole useful aperture. The deviations both of the field strengths and of the effective lengths among the eight magnets are smaller than +-2 x 10 -3 . The sextupole component of the field and the variation of the effective length over the beam orbits contribute to chromaticities of the ring as the amount of -1.59 and 0.93 in the horizontal and vertical directions, respectively. (author)

  7. Measuring Earth's Magnetic Field Simply.

    Science.gov (United States)

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  8. ISR split-field magnet

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.

  9. The Juno Magnetic Field Investigation

    Science.gov (United States)

    Connerney, J. E. P.; Benn, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; Murphy, S.; Odom, J.; Oliversen, R.; Schnurr, R.; Sheppard, D.; Smith, E. J.

    2017-11-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ˜20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 106 nT per axis) with a resolution of ˜0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of

  10. High-Field Accelerator Magnets

    International Nuclear Information System (INIS)

    Rijk, G de

    2014-01-01

    In this lecture an overview is given of the present technology for high field accelerator magnets. We indicate how to get high fields and what are the most important parameters. The available conductors and their limitations are presented followed by the most relevant types of coils and support structures. We conclude by showing a number of recent examples of development magnets which are either pure R&D objects or models for the LHC luminosity upgrade

  11. Theorem on magnet fringe field

    International Nuclear Information System (INIS)

    Wei, Jie; Talman, R.

    1995-01-01

    Transverse particle motion in particle accelerators is governed almost totally by non-solenoidal magnets for which the body magnetic field can be expressed as a series expansion of the normal (b n ) and skew (a n ) multipoles, B y + iB x = summation(b n + ia n )(x + iy) n , where x, y, and z denote horizontal, vertical, and longitudinal (along the magnet) coordinates. Since the magnet length L is necessarily finite, deflections are actually proportional to ''field integrals'' such as bar BL ≡ ∫ B(x,y,z)dz where the integration range starts well before the magnet and ends well after it. For bar a n , bar b n , bar B x , and bar B y defined this way, the same expansion Eq. 1 is valid and the ''standard'' approximation is to neglect any deflections not described by this expansion, in spite of the fact that Maxwell's equations demand the presence of longitudinal field components at the magnet ends. The purpose of this note is to provide a semi-quantitative estimate of the importance of |Δp ∝ |, the transverse deflection produced by the ion-gitudinal component of the fringe field at one magnet end relative to |Δp 0 |, the total deflection produced by passage through the whole magnet. To emphasize the generality and simplicity of the result it is given in the form of a theorem. The essence of the proof is an evaluation of the contribution of the longitudinal field B x from the vicinity of one magnet end since, along a path parallel to the magnet axis such as path BC

  12. Magnetic resonance direct thrombus imaging at 3 T field strength in patients with lower limb deep vein thrombosis: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, S.A. [Imaging Sciences Department, Imperial College, Hammersmith Hospital, London (United Kingdom); O' Regan, D.P. [Imaging Sciences Department, Imperial College, Hammersmith Hospital, London (United Kingdom)]. E-mail: declan.oregan@imperial.ac.uk; Gibson, D. [Imaging Department, Hammersmith Hospitals NHS Trust, London (United Kingdom); Cunningham, C. [Imaging Department, Hammersmith Hospitals NHS Trust, London (United Kingdom); Fitzpatrick, J. [Imaging Sciences Department, Imperial College, Hammersmith Hospital, London (United Kingdom); Allsop, J. [Imaging Sciences Department, Imperial College, Hammersmith Hospital, London (United Kingdom); Larkman, D.J. [Imaging Sciences Department, Imperial College, Hammersmith Hospital, London (United Kingdom); Hajnal, J.V. [Imaging Sciences Department, Imperial College, Hammersmith Hospital, London (United Kingdom)

    2006-03-15

    AIM: To investigate the feasibility of imaging lower limb deep vein thrombosis using magnetic resonance imaging (MRI) at 3.0 T magnetic field strength with an optimized a T1 magnetization prepared rapid gradient echo technique (MP-RAGE) in patients with normal volunteers as controls. MATERIALS AND METHODS: Patients with deep vein thrombosis (n=4), thrombophlebitis (n=2) and healthy volunteers (n=9) were studied. MRI of the distal thigh and upper calf was performed at 3.0 T with MP-RAGE using two pre-pulses to suppress blood and fat (flip angle 15{sup o}, echo time 5 ms, and repetition time 10 ms). A qualitative analysis was performed for detection of thrombi and image quality. Contrast-to-noise ratios were determined in thrombosed and patent veins. RESULTS: Thrombi were clearly visible as high-signal intensity structures with good suppression of the anatomical background. A blinded reader accurately diagnosed 15 out of 16 cases. The contrast-to-noise ratio measurements showed a positive contrast of thrombus over background muscle 16.9 (SD 4.3, 95% CI: 12.5-21.3) and a negative contrast of the lumen to muscle in patent veins of normal volunteers -7.8 (SD 4.3, 95% CI: -11.1 to -4.5), with p=0.0015. CONCLUSION: Thrombi generate high signal intensity at 3.0 T allowing for their direct visualization if flowing blood, stationary blood and fat are sufficiently suppressed. This preliminary data supports the development of these techniques for other vascular applications.

  13. Magnetic field induced dynamical chaos.

    Science.gov (United States)

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2013-12-01

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x-y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

  14. Magnetic field effects on electrochemical metal depositions

    Directory of Open Access Journals (Sweden)

    Andreas Bund, Adriana Ispas and Gerd Mutschke

    2008-01-01

    Full Text Available This paper discusses recent experimental and numerical results from the authors' labs on the effects of moderate magnetic (B fields in electrochemical reactions. The probably best understood effect of B fields during electrochemical reactions is the magnetohydrodynamic (MHD effect. In the majority of cases it manifests itself in increased mass transport rates which are a direct consequence of Lorentz forces in the bulk of the electrolyte. This enhanced mass transport can directly affect the electrocrystallization. The partial currents for the nucleation of nickel in magnetic fields were determined using an in situ micro-gravimetric technique and are discussed on the basis of the nucleation model of Heerman and Tarallo. Another focus of the paper is the numerical simulation of MHD effects on electrochemical metal depositions. A careful analysis of the governing equations shows that many MHD problems must be treated in a 3D geometry. In most cases there is a complex interplay of natural and magnetically driven convection.

  15. An FDTD Study of Errors in Magnetic Direction Finding of Lightning Due to the Presence of Conducting Structure Near the Field Measuring Station

    Directory of Open Access Journals (Sweden)

    Yosuke Suzuki

    2016-07-01

    Full Text Available Lightning electromagnetic fields in the presence of conducting (grounded structure having a height of 60 m and a square cross-section of 40 m × 40 m within about 100 m of the observation point are analyzed using the 3D finite-difference time-domain (FDTD method. Influence of the conducting structure on the two orthogonal components of magnetic field is analyzed, and resultant errors in the estimated lightning azimuth are evaluated. Influences of ground conductivity and lightning current waveshape parameters are also examined. When the azimuth vector passes through the center of conducting structure diagonally (e.g., azimuth angle is 45° or parallel to its walls (e.g., azimuth angle is 0°, the presence of conducting structure equally influences Hx and Hy, so that Hx/Hy is the same as in the absence of structure. Therefore, no azimuth error occurs in those configurations. When the conducting structure is not located on the azimuth vector, the structure influences Hx and Hy differently, with the resultant direction finding error being greater when the structure is located closer to the observation point.

  16. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    2004-01-01

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation

  17. Swarm: ESA's Magnetic Field Mission

    Science.gov (United States)

    Plank, G.; Floberghagen, R.; Menard, Y.; Haagmans, R.

    2013-12-01

    Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in fall 2013. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of three identical satellites. The mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. In case the Swarm satellites are already in orbit, a summary of the on-going mission operations activities will be given. More information on Swarm can be found at www.esa.int/esaLP/LPswarm.html.

  18. UNDERSTANDING THE GEOMETRY OF ASTROPHYSICAL MAGNETIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Avery E [Canadian Institute for Theoretical Astrophysics, 60 St. George St., Toronto, ON M5S 3H8 (Canada); Blandford, Roger D., E-mail: aeb@cita.utoronto.c [Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Rd., Menlo Park, CA 94309 (United States)

    2010-08-01

    Faraday rotation measurements have provided an invaluable technique for probing the properties of astrophysical magnetized plasmas. Unfortunately, typical observations provide information only about the density-weighted average of the magnetic field component parallel to the line of sight. As a result, the magnetic field geometry along the line of sight, and in many cases even the location of the rotating material, is poorly constrained. Frequently, interpretations of Faraday rotation observations are dependent upon underlying models of the magnetic field being probed (e.g., uniform, turbulent, equipartition). However, we show that at sufficiently low frequencies, specifically below roughly 13(RM/1 rad m{sup -2}){sup 1/4}(B/1 G){sup 1/2} MHz, the character of Faraday rotation changes, entering what we term the 'super-adiabatic regime' in which the rotation measure (RM) is proportional to the integrated absolute value of the line-of-sight component of the field. As a consequence, comparing RMs at high frequencies with those in this new regime provides direct information about the geometry of the magnetic field along the line of sight. Furthermore, the frequency defining the transition to this new regime, {nu}{sub SA}, depends directly upon the local electron density and magnetic field strength where the magnetic field is perpendicular to the line of sight, allowing the unambiguous distinction between Faraday rotation within and in front of the emission region. Typical values of {nu}{sub SA} range from 10 kHz (below the ionospheric cutoff, but above the heliospheric cutoff) to 10 GHz, depending upon the details of the Faraday rotating environment. In particular, for resolved active galactic nuclei, including the black holes at the center of the Milky Way (Sgr A*) and M81, {nu}{sub SA} ranges from roughly 10 MHz to 10 GHz, and thus can be probed via existing and up-coming ground-based radio observatories.

  19. UNDERSTANDING THE GEOMETRY OF ASTROPHYSICAL MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Broderick, Avery E.; Blandford, Roger D.

    2010-01-01

    Faraday rotation measurements have provided an invaluable technique for probing the properties of astrophysical magnetized plasmas. Unfortunately, typical observations provide information only about the density-weighted average of the magnetic field component parallel to the line of sight. As a result, the magnetic field geometry along the line of sight, and in many cases even the location of the rotating material, is poorly constrained. Frequently, interpretations of Faraday rotation observations are dependent upon underlying models of the magnetic field being probed (e.g., uniform, turbulent, equipartition). However, we show that at sufficiently low frequencies, specifically below roughly 13(RM/1 rad m -2 ) 1/4 (B/1 G) 1/2 MHz, the character of Faraday rotation changes, entering what we term the 'super-adiabatic regime' in which the rotation measure (RM) is proportional to the integrated absolute value of the line-of-sight component of the field. As a consequence, comparing RMs at high frequencies with those in this new regime provides direct information about the geometry of the magnetic field along the line of sight. Furthermore, the frequency defining the transition to this new regime, ν SA , depends directly upon the local electron density and magnetic field strength where the magnetic field is perpendicular to the line of sight, allowing the unambiguous distinction between Faraday rotation within and in front of the emission region. Typical values of ν SA range from 10 kHz (below the ionospheric cutoff, but above the heliospheric cutoff) to 10 GHz, depending upon the details of the Faraday rotating environment. In particular, for resolved active galactic nuclei, including the black holes at the center of the Milky Way (Sgr A*) and M81, ν SA ranges from roughly 10 MHz to 10 GHz, and thus can be probed via existing and up-coming ground-based radio observatories.

  20. Neutron Scattering and High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Winn, Barry L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stone, Matthew B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-11-01

    The workshop “Neutron Scattering and High Magnetic Fields” was held September 4-5, 2014 at the Oak Ridge National Laboratory (ORNL). The workshop was held in response to a recent report by the National Research Council of the National Academy of Sciences entitled “High Magnetic Field Science and Its Application in the United States: Current Status and Future Directions.”1 This report highlights the fact that neutron scattering measurements carried out in high magnetic fields provide important opportunities for new science. The workshop explored the range of the scientific discoveries that could be enabled with neutron scattering measurements at high fields (25 Tesla or larger), the various technologies that might be utilized to build specialized instruments and sample environment equipment to enable this research at ORNL, and possible routes to funding and constructing these facilities and portable high field sample environments.

  1. Magnetic field effects in proteins

    Science.gov (United States)

    Jones, Alex R.

    2016-06-01

    Many animals can sense the geomagnetic field, which appears to aid in behaviours such as migration. The influence of man-made magnetic fields on biology, however, is potentially more sinister, with adverse health effects being claimed from exposure to fields from mobile phones or high voltage power lines. Do these phenomena have a common, biophysical origin, and is it even plausible that such weak fields can profoundly impact noisy biological systems? Radical pair intermediates are widespread in protein reaction mechanisms, and the radical pair mechanism has risen to prominence as perhaps the most plausible means by which even very weak fields might impact biology. In this New Views article, I will discuss the literature over the past 40 years that has investigated the topic of magnetic field effects in proteins. The lack of reproducible results has cast a shadow over the area. However, magnetic field and spin effects have proven to be useful mechanistic tools for radical mechanism in biology. Moreover, if a magnetic effect on a radical pair mechanism in a protein were to influence a biological system, the conditions necessary for it to do so appear increasing unlikely to have come about by chance.

  2. Separation of magnetic field lines

    International Nuclear Information System (INIS)

    Boozer, Allen H.

    2012-01-01

    The field lines of magnetic fields that depend on three spatial coordinates are shown to have a fundamentally different behavior from those that depend on two coordinates. Unlike two-coordinate cases, a flux tube in a magnetic field that depends on all three spatial coordinates that has a circular cross section at one location along the tube characteristically has a highly distorted cross section at other locations. In an ideal evolution of a magnetic field, the current densities typically increase. Crudely stated, if the current densities increase by a factor σ, the ratio of the long to the short distance across a cross section of a flux tube characteristically increases by e 2σ , and the ratio of the longer distance to the initial radius increases as e σ . Electron inertia prevents a plasma from isolating two magnetic field structures on a distance scale shorter than c/ω pe , which is about 10 cm in the solar corona, and reconnection must be triggered if σ becomes sufficiently large. The radius of the sun, R ⊙ =7×10 10 cm is about e 23 times larger, so when σ≳23, two lines separated by c/ω pe at one location can be separated by the full scale of any magnetic structures in the corona at another. The conditions for achieving a large exponentiation, σ, are derived, and the importance of exponentiation is discussed.

  3. Ferrofluid meniscus in a horizontal or vertical magnetic field

    International Nuclear Information System (INIS)

    Rosensweig, R.E.; Elborai, S.; Lee, S.-H.; Zahn, M.

    2005-01-01

    An optical system using reflections of a narrow laser beam to measure the height and shape of a ferrofluid meniscus in response to uniform applied magnetic fields finds that meniscus height on a vertical flat wall decreases in horizontal applied field and increases in vertical applied field. An approximate energy minimization analysis predicts meniscus height in directional agreement with measurements. This study is a first step in calculating the tangential surface force acting in flows where magnetization magnitude and direction lag a changing magnetic field direction, and the meniscus shape is magnetically perturbed

  4. SERPENTINE COIL TOPOLOGY FOR BNL DIRECT WIND SUPERCONDUCTING MAGNETS

    International Nuclear Information System (INIS)

    PARKER, B.; ESCALLIER, J.

    2005-01-01

    Serpentine winding, a recent innovation developed at BNL for direct winding superconducting magnets, allows winding a coil layer of arbitrary multipolarity in one continuous winding process and greatly simplifies magnet design and production compared to the planar patterns used before. Serpentine windings were used for the BEPC-II Upgrade and JPARC magnets and are proposed to make compact final focus magnets for the EC. Serpentine patterns exhibit a direct connection between 2D body harmonics and harmonics derived from the integral fields. Straightforward 2D optimization yields good integral field quality with uniformly spaced (natural) coil ends. This and other surprising features of Serpentine windings are addressed in this paper

  5. Lasers plasmas and magnetic field

    International Nuclear Information System (INIS)

    Albertazzi, Bruno

    2014-01-01

    We studied the coupling between a laser produced plasmas and a magnetic field in two cases: 1) in the context of Inertial Fusion Confinement (ICF), we first studied how magnetic fields are self generated during the interaction between a target and a laser, then 2) to progress in the understanding of the large-scale shaping of astrophysical jets, we studied the influence of an externally applied magnetic field on the dynamics of a laser-produced plasma expanding into vacuum. The first part of this thesis is thus dedicated to a numerical and experimental study of the self generated magnetic fields that are produced following the irradiation of a solid target by a high power laser (having pulse duration in the nanosecond and picosecond regimes). These fields play an important role in the frame of ICF since they influence the dynamics of the electrons produced during the laser-matter interaction, and thus condition the success of ICF experiments. The second part of this thesis is a numerical and experimental study of the influence of an externally applied magnetic field on the morphology of a laser produced plasma freely otherwise expanding into vacuum. This work aims at better understanding the observed large-scale collimation of astrophysical jets which cannot be understood in the frame of existing models. We notably show that a purely axial magnetic field can force an initially isotropic laboratory flow, scaled to be representative of a flow emerging from a Young Star Object, in a re-collimation shock, from which emerges a narrow, well collimated jet. We also show that the plasma heating induced at the re-collimation point could explain the 'puzzling' observations of stationary X ray emission zones embedded within astrophysical jets. (author) [fr

  6. Indoor localization using magnetic fields

    Science.gov (United States)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing

  7. Performance of silicon drift detectors in a magnetic field

    International Nuclear Information System (INIS)

    Castoldi, A.; Gatti, E.; Manzari, V.; Rehak, P.

    1997-01-01

    A study of the properties of silicon drift detectors in a magnetic field was carried out. A silicon drift detector with 41 anodes, providing unambiguous x and y position information, was used for measurements. Studies were done in three principal orientations of the detector relative to the direction of the magnetic field. The magnetic field was varied between 0 and 0.7 T and the drift field between 300 and 600 V/cm. Basic agreement with the theory of electron transport in semiconductors in a magnetic field was found. The transport properties of electrons in a magnetic field can be described by a mobility matrix. The components of the matrix depend on the electron mobility, Hall mobility and on the vector of the magnetic field. The precision of measurement was better than 0.2% for most of the parameters. For the electric field of a silicon drift detector, there is a first-order effect of the magnetic field only in one out of three principal directions. In this direction, the plane of the detector is perpendicular to the magnetic field and electrons drift at an angle α relative to the direction of the drift field. In two other principal directions, which are more important for tracking of the particles with drift detectors, there are no first-order magnetic effects. (orig.)

  8. Magnetic field gradients and their uses in the study of the earth's magnetic field

    Science.gov (United States)

    Harrison, C. G. A.; Southam, J. R.

    1991-01-01

    Magnetic field gradients are discussed from the standpoint of their usefulness in modeling crustal magnetizations. The fact that gradients enhance shorter wavelength features helps reduce both the core signal and the signal from external fields in comparison with the crustal signal. If the gradient device can be oriented, then directions of lineation can be determined from single profiles, and anomalies caused by unlineated sources can be identified.

  9. Nanoscale layer-selective readout of magnetization direction from a magnetic multilayer using a spin-torque oscillator

    International Nuclear Information System (INIS)

    Suto, Hirofumi; Nagasawa, Tazumi; Kudo, Kiwamu; Mizushima, Koichi; Sato, Rie

    2014-01-01

    Technology for detecting the magnetization direction of nanoscale magnetic material is crucial for realizing high-density magnetic recording devices. Conventionally, a magnetoresistive device is used that changes its resistivity in accordance with the direction of the stray field from an objective magnet. However, when several magnets are near such a device, the superposition of stray fields from all the magnets acts on the sensor, preventing selective recognition of their individual magnetization directions. Here we introduce a novel readout method for detecting the magnetization direction of a nanoscale magnet by use of a spin-torque oscillator (STO). The principles behind this method are dynamic dipolar coupling between an STO and a nanoscale magnet, and detection of ferromagnetic resonance (FMR) of this coupled system from the STO signal. Because the STO couples with a specific magnet by tuning the STO oscillation frequency to match its FMR frequency, this readout method can selectively determine the magnetization direction of the magnet. (papers)

  10. Isotope separation by magnetic fields

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1978-01-01

    One of the isotopes of an element having several isotopes can be separated from the others in a dense, neutral plasma. Thus initially a neutral plasma is prepared including the element in question. This may consist of positive ions and negative electrons or alternatively of positive and negative ions, or else of a mixture of positive ions, negative ions and electrons. The plasma may then be injected into a magnetic field or may be generated in the field where more energy is imparted to a selected isotope than to the others. Finally, the isotopes are separated from each other on the basis of their differential energies. For example, the selected isotope may be given more energy than the others by stimulating it within the plasma at its resonant frequency which may be close to the cyclotron frequency, either by an electric field or by a magnetic field. In order to excite the other isotope, a different resonant frequency is required which depends on the plasma density, the relative concentration of electrons if the plasma contains electrons, the strength of the magnetic field, the ratio of charge to mass of the isotope, and possibly on the physical parameters of the plasma apparatus itself, such as the ratio of the length of the plasma column to its radius. The more energetic isotope may be separated by energy dependent chemical reactions, it may be collected by a positively biased probe or else the isotopes may be separated from each other by magnetic fields or in various other ways

  11. Exploring Magnetic Fields with a Compass

    Science.gov (United States)

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this paper, we present a series of simple activities adapted from the Matter & Interactions textbook for doing just this. Interestingly, these simple measurements are comparable to predictions made by the Bohr model of the atom. Although antiquated, Bohr's atom can lead the way to a deeper analysis of the atomic properties of magnets. Although originally developed for an introductory calculus-based course, these activities can easily be adapted for use in an algebra-based class or even at the high school level.

  12. Photographing magnetic fields in superconductors

    International Nuclear Information System (INIS)

    Harrison, R.B.; Wright, L.S.

    Magneto-optic techniques coupled with high-speed photography are being used to study the destruction of superconductivity by a magnetic field. The phenomenon of superconductivity will be introduced with emphasis placed on the properties of type I and type II superconductors in a magnetic field. The Faraday effect and its application to the study of the penetration of magnetic fields into these superconductors will be described; the relative effectiveness of some types of paramagnetic glass will be demonstrated. A number of cinefilms will be shown to illustrate the versatility of the magneto-optic method for observing flux motion and patterns. The analysis of data obtained from a high speed film (10,200 fps) of a flux jump in Nb-Zr will be presented and discussed

  13. Reconnection of magnetic field lines

    International Nuclear Information System (INIS)

    Heyn, M.F.; Gratton, F.T.; Gnavi, G.; Heindler, M.

    1990-01-01

    Magnetic field line diffusion in a plasma is studied on the basis of the non-linear boundary layer equations of dissipative, incompressible magnetohydrodynamics. Non-linear steady state solutions for a class of plasma parameters have been obtained which are consistent with the boundary conditions appropriate for reconnection. The solutions are self-consistent in connecting a stagnation point flow of a plasma with reconnecting magnetic field lines. The range of the validity of the solutions, their relation to other fluid models of reconnection, and their possible applications to space plasma configurations are pointed out. (Author)

  14. Energy of magnetic moment of superconducting current in magnetic field

    International Nuclear Information System (INIS)

    Gurtovoi, V.L.; Nikulov, A.V.

    2015-01-01

    Highlights: • Quantization effects observed in superconducting loops are considered. • The energy of magnetic moment in magnetic field can not be deduced from Hamiltonian. • This energy is deduced from a history of the current state in the classical case. • It can not be deduced directly in the quantum case. • Taking this energy into account demolishes agreement between theory and experiment. - Abstract: The energy of magnetic moment of the persistent current circulating in superconducting loop in an externally produced magnetic field is not taken into account in the theory of quantization effects because of identification of the Hamiltonian with the energy. This identification misleads if, in accordance with the conservation law, the energy of a state is the energy expended for its creation. The energy of magnetic moment is deduced from a creation history of the current state in magnetic field both in the classical and quantum case. But taking this energy into account demolishes the agreement between theory and experiment. Impartial consideration of this problem discovers the contradiction both in theory and experiment

  15. Two dimensional magnetic field calculations for the SSC dipole magnets

    International Nuclear Information System (INIS)

    Krefta, M.P.; Pavlik, D.

    1991-01-01

    In this work two-dimensional methods are used to calculate the magnetic fields throughout the cross section of a SSC dipole magnet. Analytic techniques, which are based on closed form solutions to the defining field equations, are used to calculate the multipole content for any specified conductor positioning. The method is extended to investigate the effects of radial slots or keyways in the iron yoke. The multipole components of field, directly attributable to the slots or keyways, are examined as a function of size and location. It is shown that locating the slots or keyways at the magnet pole centers has a large effect on the multipole components; whereas, locating the keyways between the magnet poles has little effect on any of the multipoles. The investigation of nonlinear effects such as ferromagnetic saturation or superconductor magnetization relies on the use of numerical methods such as the finite element method. The errors associated with these codes are explained in terms of numerical round-off, spatial discretization error and the representation of distant boundaries. A method for increasing the accuracy of the multipole calculation from finite element solutions is set forth. It is shown that calculated multipole coefficients are sensitive to boundary conditions external to the cold mass during conditions of magnetic saturation

  16. Magnetic field coils for a thermonuclear device

    International Nuclear Information System (INIS)

    Oosaki, Osamu; Sanada, Yoshinao.

    1984-01-01

    Purpose: To generate magnetic fields with an excellent axis symmetry by reducing the error magnetic field, as well as improve the mechanical strength. Constitution: Pan cakes in which the radial innermost conductor is formed spirally and a conductor is successively wound around the outer radial side of the conductor are laminated in plurality, and a spacer having a generally circular inner radial configuration and a spiral outer radial configuration corresponding to the radial innermost conductor is disposed to the inner radial side of the radial inner most conductor. Accordingly, transfer portions between the turns are uniformly dispersed in the circumferential direction to improve the axial symmetry of the magnetic fields. Furthermore, disposition of the spacer can eliminate the gap within the coils and make the inner radial side circular to improve the mechanical strength. (Yoshino, Y.)

  17. Centimeter-order view for magnetic domain imaging with local magnetization direction by longitudinal Kerr effect

    Directory of Open Access Journals (Sweden)

    Sakae Meguro

    2016-05-01

    Full Text Available An observation system of centimeter-order of view of magnetic domain with local magnetization direction was developed by designing a telecentric optical system of finite design through the extension of microscope technology. The field of view realized in the developed system was 1.40 × 1.05 cm as suppressing defocus and distortion. Detection of the local magnetization direction has become possible by longitudinal Kerr observation from the orthogonal two directions. This system can be applied to the domain observation of rough surface samples and time resolved analysis for soft magnetic materials such as amorphous foil strips and soft magnetic thin films.

  18. ATLAS cavern magnetic field calculations

    International Nuclear Information System (INIS)

    Vorojtsov, S.B.; Vorozhtsov, A.S.; Butin, F.; Price, M.

    2000-01-01

    A new approach has been adopted in an attempt to produce a complete ATLAS cavern B-field map using a more precise methodological approach (variable magnetisation, depending on the external field) and the latest design taking into account of the structural elements. The basic idea was to produce a dedicated basic TOSCA model and then to insert a series of ferromagnetic structure elements to monitor the perturbative effect on the basic field map. Eventually, it was found: the bedplate field perturbation is an order of magnitude above the permissible level; manufacturing of the bedplates from nonmagnetic material or careful evaluation of their field contribution in the event reconstruction codes is required; the field value at the rack positions is higher than the permissible one; the final position of racks should be chosen taking into account the detailed magnetic field distribution

  19. Magnetic resonance signal moment determination using the Earth's magnetic field

    KAUST Repository

    Fridjonsson, Einar Orn; Creber, Sarah A.; Vrouwenvelder, Johannes S.; Johns, Michael L.

    2015-01-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  20. Magnetic resonance signal moment determination using the Earth's magnetic field

    KAUST Repository

    Fridjonsson, Einar Orn

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth\\'s magnetic field system.

  1. The ARASE (ERG) magnetic field investigation

    Science.gov (United States)

    Matsuoka, Ayako; Teramoto, Mariko; Nomura, Reiko; Nosé, Masahito; Fujimoto, Akiko; Tanaka, Yoshimasa; Shinohara, Manabu; Nagatsuma, Tsutomu; Shiokawa, Kazuo; Obana, Yuki; Miyoshi, Yoshizumi; Mita, Makoto; Takashima, Takeshi; Shinohara, Iku

    2018-03-01

    The fluxgate magnetometer for the Arase (ERG) spacecraft mission was built to investigate particle acceleration processes in the inner magnetosphere. Precise measurements of the field intensity and direction are essential in studying the motion of particles, the properties of waves interacting with the particles, and magnetic field variations induced by electric currents. By observing temporal field variations, we will more deeply understand magnetohydrodynamic and electromagnetic ion-cyclotron waves in the ultra-low-frequency range, which can cause production and loss of relativistic electrons and ring-current particles. The hardware and software designs of the Magnetic Field Experiment (MGF) were optimized to meet the requirements for studying these phenomena. The MGF makes measurements at a sampling rate of 256 vectors/s, and the data are averaged onboard to fit the telemetry budget. The magnetometer switches the dynamic range between ± 8000 and ± 60,000 nT, depending on the local magnetic field intensity. The experiment is calibrated by preflight tests and through analysis of in-orbit data. MGF data are edited into files with a common data file format, archived on a data server, and made available to the science community. Magnetic field observation by the MGF will significantly improve our knowledge of the growth and decay of radiation belts and ring currents, as well as the dynamics of geospace storms.

  2. Direct measurements of the magnetic entropy change

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Neves Bez, Henrique; von Moos, Lars

    2015-01-01

    An experimental device that can accurately measure the magnetic entropy change, Δs, as a function of temperature, T, and magnetic field, H, is presented. The magnetic field source is in this case a set of counter-rotating concentric Halbach-type magnets, which produce a highly homogeneous applied...... to the ambient are negligible in terms of the calorimetric determination of the magnetic entropy change, while the losses cannot be ignored when correcting for the actual sample temperature. We apply the device to two different types of samples; one is commercial grade Gd, i.e., a pure second-order phase...

  3. Water flow patterns induced by bridge oscillation of magnetic fluid between two permanent magnets subjected to alternating magnetic field

    International Nuclear Information System (INIS)

    Sudo, Seiichi; Yamamoto, Kazuki; Ishimoto, Yukitaka; Nix, Stephanie

    2017-01-01

    This paper describes the characteristics of water flow induced by the bridge oscillation of magnetic fluid between two permanent magnets subject to an external alternating magnetic field. The magnetic fluid bridge is formed in the space between a pair of identical coaxial cylindrical permanent magnets submerged in water. The direction of alternating magnetic field is parallel /antiparallel to the magnetic field produced by two permanent magnets. The magnetic fluid bridge responds to the external alternating magnetic field with harmonic oscillation. The oscillation of magnetic fluid bridge generates water flow around the bridge. Water flow is visualized using a thin milk film at the container bottom. Water flows are observed with a high-speed video camera analysis system. The experimental results show that the flow pattern induced by the bridge oscillation depends on the Keulegan–Carpenter number.

  4. Water flow patterns induced by bridge oscillation of magnetic fluid between two permanent magnets subjected to alternating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Seiichi, E-mail: sudo@akita-pu.ac.jp [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan); Yamamoto, Kazuki [Graduate School of Engineering, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577 (Japan); Ishimoto, Yukitaka; Nix, Stephanie [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan)

    2017-06-01

    This paper describes the characteristics of water flow induced by the bridge oscillation of magnetic fluid between two permanent magnets subject to an external alternating magnetic field. The magnetic fluid bridge is formed in the space between a pair of identical coaxial cylindrical permanent magnets submerged in water. The direction of alternating magnetic field is parallel /antiparallel to the magnetic field produced by two permanent magnets. The magnetic fluid bridge responds to the external alternating magnetic field with harmonic oscillation. The oscillation of magnetic fluid bridge generates water flow around the bridge. Water flow is visualized using a thin milk film at the container bottom. Water flows are observed with a high-speed video camera analysis system. The experimental results show that the flow pattern induced by the bridge oscillation depends on the Keulegan–Carpenter number.

  5. Galactic and intergalactic magnetic fields

    CERN Document Server

    Klein, Ulrich

    2014-01-01

    This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible.In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later c

  6. Microscopic observation of magnetic bacteria in the magnetic field of a rotating permanent magnet.

    Science.gov (United States)

    Smid, Pieter; Shcherbakov, Valeriy; Petersen, Nikolai

    2015-09-01

    Magnetotactic bacteria are ubiquitous and can be found in both freshwater and marine environments. Due to intracellular chains of magnetic single domain particles, they behave like swimming compass needles. In external magnetic fields like the Earth's magnetic field, a torque is acting on the chain. This will cause the bacterium to be rotated and aligned with the external field. The swimming direction of magnetotactic bacteria can be controlled with external magnetic fields, which makes it convenient to study them under a light microscope. Usually, a special set of coils arranged around a light microscope is used to control the swimming magnetotactic bacteria. Here, we present a simple mechanical system with a permanent magnet, which produces a rotating magnetic field of nearly constant amplitude in the focal plane of a light microscope. The device is placed beside the light microscope and easily adaptable to almost any microscope and thus convenient for field experiments. To describe the trajectories qualitatively, a theoretical model of the trajectories is presented. This device can be used to control the swimming direction of magnetotactic bacteria and also for studying their magnetic and hydrodynamic properties.

  7. Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Lazarian, A.; Yuen, Ka Ho; Lee, Hyeseung; Cho, J. [Department of Astronomy, University of Wisconsin-Madison, 2535 Sterling Hall, 475 North Charter Street, Madison, WI 53706-1507 (United States)

    2017-06-10

    On the basis of the modern understanding of MHD turbulence, we propose a new way of using synchrotron radiation: using synchrotron intensity gradients (SIGs) for tracing astrophysical magnetic fields. We successfully test the new technique using synthetic data obtained with 3D MHD simulations and provide the demonstration of the practical utility of the technique by comparing the directions of magnetic fields that are obtained with PLANCK synchrotron intensity data to the directions obtained with PLANCK synchrotron polarization data. We demonstrate that the SIGs can reliably trace magnetic fields in the presence of noise and can provide detailed maps of magnetic field directions. We also show that the SIGs are relatively robust for tracing magnetic fields while the low spatial frequencies of the synchrotron image are removed. This makes the SIGs applicable to the tracing of magnetic fields using interferometric data with single-dish measurement absent. We discuss the synergy of using the SIGs together with synchrotron polarization in order to find the actual direction of the magnetic fields and quantify the effects of Faraday rotation as well as with other ways of studying astrophysical magnetic fields. We test our method in the presence of noise and the resolution effects. We stress the complementary nature of the studies using the SIG technique and those employing the recently introduced velocity gradient techniques that trace magnetic fields using spectroscopic data.

  8. Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields

    International Nuclear Information System (INIS)

    Lazarian, A.; Yuen, Ka Ho; Lee, Hyeseung; Cho, J.

    2017-01-01

    On the basis of the modern understanding of MHD turbulence, we propose a new way of using synchrotron radiation: using synchrotron intensity gradients (SIGs) for tracing astrophysical magnetic fields. We successfully test the new technique using synthetic data obtained with 3D MHD simulations and provide the demonstration of the practical utility of the technique by comparing the directions of magnetic fields that are obtained with PLANCK synchrotron intensity data to the directions obtained with PLANCK synchrotron polarization data. We demonstrate that the SIGs can reliably trace magnetic fields in the presence of noise and can provide detailed maps of magnetic field directions. We also show that the SIGs are relatively robust for tracing magnetic fields while the low spatial frequencies of the synchrotron image are removed. This makes the SIGs applicable to the tracing of magnetic fields using interferometric data with single-dish measurement absent. We discuss the synergy of using the SIGs together with synchrotron polarization in order to find the actual direction of the magnetic fields and quantify the effects of Faraday rotation as well as with other ways of studying astrophysical magnetic fields. We test our method in the presence of noise and the resolution effects. We stress the complementary nature of the studies using the SIG technique and those employing the recently introduced velocity gradient techniques that trace magnetic fields using spectroscopic data.

  9. Electron dynamics in inhomogeneous magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Nogaret, Alain, E-mail: A.R.Nogaret@bath.ac.u [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom)

    2010-06-30

    This review explores the dynamics of two-dimensional electrons in magnetic potentials that vary on scales smaller than the mean free path. The physics of microscopically inhomogeneous magnetic fields relates to important fundamental problems in the fractional quantum Hall effect, superconductivity, spintronics and graphene physics and spins out promising applications which will be described here. After introducing the initial work done on electron localization in random magnetic fields, the experimental methods for fabricating magnetic potentials are presented. Drift-diffusion phenomena are then described, which include commensurability oscillations, magnetic channelling, resistance resonance effects and magnetic dots. We then review quantum phenomena in magnetic potentials including magnetic quantum wires, magnetic minibands in superlattices, rectification by snake states, quantum tunnelling and Klein tunnelling. The third part is devoted to spintronics in inhomogeneous magnetic fields. This covers spin filtering by magnetic field gradients and circular magnetic fields, electrically induced spin resonance, spin resonance fluorescence and coherent spin manipulation. (topical review)

  10. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    Science.gov (United States)

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  11. Magnetomigration of rare-earth ions in inhomogeneous magnetic fields.

    Science.gov (United States)

    Franczak, Agnieszka; Binnemans, Koen; Jan Fransaer

    2016-10-05

    The effects of external inhomogenous (gradient) magnetic fields on the movement of the rare-earth ions: Dy 3+ , Gd 3+ and Y 3+ , in initially homogeneous aqueous solutions have been investigated. Differences in the migration of rare-earth ions in gradient magnetic fields were observed, depending on the magnetic character of the ions: paramagnetic ions of Dy 3+ and Gd 3+ move towards regions of the sample where the magnetic field gradient is the strongest, while diamagnetic ions of Y 3+ move in the opposite direction. It has been showed that the low magnetic field gradients, such the ones generated by permanent magnets, are sufficient to observe the magnetomigration effects of the ions in solution. The present work clearly establishes the behavior of magnetically different ions in initially homogeneous aqueous solutions exposed to magnetic field gradients. To this avail, a methodology for measuring the local concentration differences of metal ions in liquid samples was developed.

  12. TRIANGULATION OF THE INTERSTELLAR MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Schwadron, N. A.; Moebius, E. [University of New Hampshire, Durham, NH 03824 (United States); Richardson, J. D. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Burlaga, L. F. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); McComas, D. J. [Southwest Research Institute, San Antonio, TX 78228 (United States)

    2015-11-01

    Determining the direction of the local interstellar magnetic field (LISMF) is important for understanding the heliosphere’s global structure, the properties of the interstellar medium, and the propagation of cosmic rays in the local galactic medium. Measurements of interstellar neutral atoms by Ulysses for He and by SOHO/SWAN for H provided some of the first observational insights into the LISMF direction. Because secondary neutral H is partially deflected by the interstellar flow in the outer heliosheath and this deflection is influenced by the LISMF, the relative deflection of H versus He provides a plane—the so-called B–V plane in which the LISMF direction should lie. Interstellar Boundary Explorer (IBEX) subsequently discovered a ribbon, the center of which is conjectured to be the LISMF direction. The most recent He velocity measurements from IBEX and those from Ulysses yield a B–V plane with uncertainty limits that contain the centers of the IBEX ribbon at 0.7–2.7 keV. The possibility that Voyager 1 has moved into the outer heliosheath now suggests that Voyager 1's direct observations provide another independent determination of the LISMF. We show that LISMF direction measured by Voyager 1 is >40° off from the IBEX ribbon center and the B–V plane. Taking into account the temporal gradient of the field direction measured by Voyager 1, we extrapolate to a field direction that passes directly through the IBEX ribbon center (0.7–2.7 keV) and the B–V plane, allowing us to triangulate the LISMF direction and estimate the gradient scale size of the magnetic field.

  13. RESICALC: Magnetic field modeling program

    International Nuclear Information System (INIS)

    Silva, J.M.

    1992-12-01

    RESICALC, Version 1.0, is a Microsoft Windows application that describes the magnetic field environment produced by user-defined arrays of transmission lines, distribution lines, and custom conductors. These arrays simulate specific situations that may be encountered in real-world community settings. RESICALC allows the user to define an area or ''world'' that contains the transmission and/or distribution lines, user-defined conductors, and locations of residences. The world contains a ''reference grid'' within which RESICALC analyzes the magnetic field environment due to all conductors within the world. Unique physical parameters (e.g., conductor height and spacing) and operating characteristics can be assigned to all electrical conductors. RESICALC's output is available for the x, y, z axis separately, the resultant (the three axes added in quadrature), and the major axis, each in three possible formats: a three-dimensional map of the magnetic field, two dimensional-contours, and as a table with statistical values. All formats may be printed, accompanied by a three-dimensional view of the world the user has drawn. The view of the world and the corresponding three-dimensional field map may be adjusted to the elevation and rotation angle of the user's preference

  14. Diagnostics of vector magnetic fields

    Science.gov (United States)

    Stenflo, J. O.

    1985-01-01

    It is shown that the vector magnetic fields derived from observations with a filter magnetograph will be severely distorted if the spatially unresolved magnetic structure is not properly accounted for. Thus the apparent vector field will appear much more horizontal than it really is, but this distortion is strongly dependent on the area factor and the temperature line weakenings. As the available fluxtube models are not sufficiently well determined, it is not possible to correct the filter magnetograph observations for these effects in a reliable way, although a crude correction is of course much better than no correction at all. The solution to this diagnostic problem is to observe simultaneously in suitable combinations of spectral lines, and/or use Stokes line profiles recorded with very high spectral resolution. The diagnostic power of using a Fourier transform spectrometer for polarimetry is shown and some results from I and V spectra are illustrated. The line asymmetries caused by mass motions inside the fluxtubes adds an extra complication to the diagnostic problem, in particular as there are indications that the motions are nonstationary in nature. The temperature structure appears to be a function of fluxtube diameter, as a clear difference between plage and network fluxtubes was revealed. The divergence of the magnetic field with height plays an essential role in the explanation of the Stokes V asymmetries (in combination with the mass motions). A self consistent treatment of the subarcsec field geometry may be required to allow an accurate derivation of the spatially averaged vector magnetic field from spectrally resolved data.

  15. Hofstadter spectrum in electric and magnetic fields

    International Nuclear Information System (INIS)

    Kunold, Alejandro; Torres, Manuel

    2005-01-01

    The problem of Bloch electrons in two dimensions subjected to magnetic and intense electric fields is investigated. Magnetic translations, electric evolution, and energy translation operators are used to specify the solutions of the Schroedinger equation. For rational values of the magnetic flux quanta per unit cell and commensurate orientations of the electric field relative to the original lattice, an extended superlattice can be defined and a complete set of mutually commuting space-time symmetry operators is obtained. Dynamics of the system is governed by a finite difference equation that exactly includes the effects of: an arbitrary periodic potential, an electric field orientated in a commensurable direction of the lattice, and coupling between Landau levels. A weak periodic potential broadens each Landau level in a series of minibands, separated by the corresponding minigaps. The addition of the electric field induces a series of avoided and exact crossing of the quasienergies, for sufficiently strong electric field the spectrum evolves into equally spaced discreet levels, in this 'magnetic Stark ladder' the energy separation is an integer multiple of hE/aB, with a the lattice parameter

  16. Magnetic fields in an expanding universe

    International Nuclear Information System (INIS)

    Kastor, David; Traschen, Jennie

    2014-01-01

    We find a solution to 4D Einstein–Maxwell theory coupled to a massless dilaton field, for all values of the dilaton coupling, describing a Melvin magnetic field in an expanding universe with ‘stiff matter’ equation of state parameter w = +1. As the universe expands, magnetic flux becomes more concentrated around the symmetry axis for dilaton coupling a<1/√3 and more dispersed for a>1/√3. An electric field circulates around the symmetry axis in the direction determined by Lenz's law. For a = 0 the magnetic flux through a disc of fixed comoving radius is proportional to the proper area of the disc. This result disagrees with the usual expectation based on a test magnetic field that this flux should be constant, and we show why this difference arises. We also find a Melvin solution in an accelerating universe with w = −7/9 for a dilaton field with a certain exponential potential. (paper)

  17. Macroscopic Magnetization Control by Symmetry Breaking of Photoinduced Spin Reorientation with Intense Terahertz Magnetic Near Field

    Science.gov (United States)

    Kurihara, Takayuki; Watanabe, Hiroshi; Nakajima, Makoto; Karube, Shutaro; Oto, Kenichi; Otani, YoshiChika; Suemoto, Tohru

    2018-03-01

    We exploit an intense terahertz magnetic near field combined with femtosecond laser excitation to break the symmetry of photoinduced spin reorientation paths in ErFeO3 . We succeed in aligning macroscopic magnetization reaching up to 80% of total magnetization in the sample to selectable orientations by adjusting the time delay between terahertz and optical pump pulses. The spin dynamics are well reproduced by equations of motion, including time-dependent magnetic potential. We show that the direction of the generated magnetization is determined by the transient direction of spin tilting and the magnetic field at the moment of photoexcitation.

  18. Generation of magnetic fields for accelerators with permanent magnets

    International Nuclear Information System (INIS)

    Meinander, T.

    1994-01-01

    Commercially available permanent magnet materials and their properties are reviewed. Advantages and disadvantages of using permanent magnets as compared to electromagnets for the generation of specific magnetic fields are discussed. Basic permanent magnet configurations in multipole magnets and insertion devices are presented. (orig.)

  19. Biomaterials and Magnetic fields for Cancer Therapy

    Science.gov (United States)

    Ramachandran, Narayanan; Mazuruk, Konstanty

    2003-01-01

    The field of biomaterials has emerged as an important topic in the purview of NASA s new vision of research activities in the Microgravity Research Division. Although this area has an extensive track record in the medical field as borne out by the routine use of polymeric sutures, implant devices, and prosthetics, novel applications such as tissue engineering, artificial heart valves and controlled drug delivery are beginning to be developed. Besides the medical field, biomaterials and bio-inspired technologies are finding use in a host of emerging interdisciplinary fields such as self-healing and self-assembling structures, biosensors, fuel systems etc. The field of magnetic fluid technology has several potential applications in medicine. One of the emerging fields is the area of controlled drug delivery, which has seen its evolution from the basic oral delivery system to pulmonary to transdermal to direct inoculations. In cancer treatment by chemotherapy for example, targeted and controlled drug delivery has received vast scrutiny and substantial research and development effort, due to the high potency of the drugs involved and the resulting requirement to keep the exposure of the drugs to surrounding healthy tissue to a minimum. The use of magnetic particles in conjunction with a static magnetic field allows smart targeting and retention of the particles at a desired site within the body with the material transport provided by blood perfusion. Once so located, the therapeutical aspect (radiation, chemotherapy, hyperthermia, etc.) of the treatment, now highly localized, can be implemented.

  20. Magnetic fluid bridge in a non-uniform magnetic field

    International Nuclear Information System (INIS)

    Pelevina, D.A.; Naletova, V.A.; Turkov, V.A.

    2017-01-01

    The shape of a magnetic fluid bridge between a horizontal ferrite rod of circular cross-section and a horizontal plate above the rod in a vertical applied uniform magnetic field is studied. Various static shapes of the bridges are obtained theoretically and experimentally for the same magnetic field value. Abrupt changes and the hysteresis of the bridge shape in alternating magnetic fields are observed experimentally. - Highlights: • Magnetic fluid bridge between rod and horizontal plate in magnetic field is studied. • Magnetic field is created by a ferrite rod in a uniform vertical magnetic field. • Various static bridge shapes for fixed field are obtained in theory and experiment. • A good agreement of experimental and theoretical results is obtained. • Hysteresis of the bridge shape in alternating field is observed experimentally.

  1. Establishment of magnetic coordinates for a given magnetic field

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1981-04-01

    A method is given for expressing the magnetic field strength in magnetic coordinates for a given field. This expression is central to the study of equilibrium, stability, and transport in asymmetric plasmas

  2. Magnetic fluid bridge in a non-uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Pelevina, D.A., E-mail: pelevina.daria@gmail.com; Naletova, V.A.; Turkov, V.A.

    2017-06-01

    The shape of a magnetic fluid bridge between a horizontal ferrite rod of circular cross-section and a horizontal plate above the rod in a vertical applied uniform magnetic field is studied. Various static shapes of the bridges are obtained theoretically and experimentally for the same magnetic field value. Abrupt changes and the hysteresis of the bridge shape in alternating magnetic fields are observed experimentally. - Highlights: • Magnetic fluid bridge between rod and horizontal plate in magnetic field is studied. • Magnetic field is created by a ferrite rod in a uniform vertical magnetic field. • Various static bridge shapes for fixed field are obtained in theory and experiment. • A good agreement of experimental and theoretical results is obtained. • Hysteresis of the bridge shape in alternating field is observed experimentally.

  3. Field errors in superconducting magnets

    International Nuclear Information System (INIS)

    Barton, M.Q.

    1982-01-01

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence

  4. Magnetic Fields of Neutron Stars

    Indian Academy of Sciences (India)

    Sushan Konar

    2017-09-12

    Sep 12, 2017 ... the material properties of the region where currents supporting the .... 1The evolution of magnetic field in neutron stars, in particular, the question of .... −10, 10. −9, 10. −8. M⊙/yr respec- tively. See Konar & Bhattacharya (1997) for details. Peq ≃ 1.9 ms ..... ported by a grant (SR/WOS-A/PM-1038/2014) from.

  5. Pose control of the chain composed of magnetic particles using external uniform and gradient magnetic fields

    International Nuclear Information System (INIS)

    Zhou, J. F.; Shao, C. L.; Gu, B. Q.

    2016-01-01

    Magnetic particles (MPs) are known to respond to a magnetic field and can be moved by magnetic force, which make them good carriers in bioengineering and pharmaceutical engineering. In this paper, a pose control method for the straight chain composed of MPs is proposed, and the chain with one pose can be moved to another position with another pose using alternately employed uniform and gradient magnetic fields. Based on computer simulations, it is revealed that in the uniform magnetic field, the MPs form a straight chain with the same separation space along the field lines, and once the uniform magnetic field rotates, the chain also rotates with the field. In the gradient magnetic field, the MPs move toward the higher field so that the translation of the chain can be realized. The simulation results indicate that while the uniform magnetic field is rotating, there exists certain hysteresis between the chain and the field, and the chain is not straight anymore. So the uniform magnetic field should rest at the target angle for a period to make the chain fully relax to be straight. For nanoMP, its magnetic moment directly determines the gradient magnetic force which is much smaller than the dipole–dipole force among MPs. Therefore, the translation of the chain is much more time-consuming than rotation. To enlarge the translational velocity, it is suggested to increase the size of MPs or the magnetic field gradient

  6. Spline techniques for magnetic fields

    International Nuclear Information System (INIS)

    Aspinall, J.G.

    1984-01-01

    This report is an overview of B-spline techniques, oriented toward magnetic field computation. These techniques form a powerful mathematical approximating method for many physics and engineering calculations. In section 1, the concept of a polynomial spline is introduced. Section 2 shows how a particular spline with well chosen properties, the B-spline, can be used to build any spline. In section 3, the description of how to solve a simple spline approximation problem is completed, and some practical examples of using splines are shown. All these sections deal exclusively in scalar functions of one variable for simplicity. Section 4 is partly digression. Techniques that are not B-spline techniques, but are closely related, are covered. These methods are not needed for what follows, until the last section on errors. Sections 5, 6, and 7 form a second group which work toward the final goal of using B-splines to approximate a magnetic field. Section 5 demonstrates how to approximate a scalar function of many variables. The necessary mathematics is completed in section 6, where the problems of approximating a vector function in general, and a magnetic field in particular, are examined. Finally some algorithms and data organization are shown in section 7. Section 8 deals with error analysis

  7. Investigation of magnetic drift on transport of plasma across magnetic field

    International Nuclear Information System (INIS)

    Hazarika, Parismita; Chakraborty, Monojit; Das, Bidyut; Bandyopadhyay, Mainak

    2015-01-01

    When a metallic body is inserted inside plasma chamber it is always associated with sheath which depends on plasma and wall condition. The effect of sheath formed in the magnetic drift and magnetic field direction on cross field plasma transport has been investigated in a double Plasma device (DPD). The drifts exist inside the chamber in the transverse magnetic field (TMF) region in a direction perpendicular to both magnetic field direction and axis of the DPD chamber. The sheath are formed in the magnetic drift direction in the experimental chamber is due to the insertion of two metallic plates in these directions and in the magnetic field direction sheath is formed at the surface of the TMF channels. These metallic plates are inserted in order to obstruct the magnetic drift so that we can minimised the loss of plasma along drift direction and density in the target region is expected to increase due to the obstruction. It ultimately improves the negative ion formation parameters. The formation of sheath in the transverse magnetic field region is studied by applying electric field both parallel and antiparallel to drift direction. Data are acquired by Langmuir probe in source and target region of our chamber. (author)

  8. Axial-field permanent magnet motors for electric vehicles

    Science.gov (United States)

    Campbell, P.

    1981-01-01

    The modelling of an anisotropic alnico magnet for the purpose of field computation involves assigning a value for the material's permeability in the transverse direction. This is generally based upon the preferred direction properties, being all that are easily available. By analyzing the rotation of intrinsic magnetization due to the self demagnetizing field, it is shown that the common assumptions relating the transverse to the preferred direction are not accurate. Transverse magnetization characteristics are needed, and these are given for Alnico 5, 5-7, and 8 magnets, yielding appropriate permeability values.

  9. Behaviour of magnetic superconductors in a magnetic field

    International Nuclear Information System (INIS)

    Buzdin, A.I.

    1984-01-01

    The behaviour of magnetic superconductors with close ferromagnetic and superconducting transition temperatures in a magnetic field is considered. It is shown that on lowering of the temperature the superconducting transition changes from a second to first order transition. The respective critical fields and dependence of the magnetization on the magnetic field and temperature are found. The magnetization discontinuity in the vortex core in magnetic superconductors is noted. Due to this property and the relatively large scattering cross section, magnetic superconductors are convenient for studying the superconducting vortex lattice by neutron diffraction techniques

  10. Plasma flow in a curved magnetic field

    International Nuclear Information System (INIS)

    Lindberg, L.

    1977-09-01

    A beam of collisionless plasma is injected along a longitudinal magnetic field into a region of curved magnetic field. Two unpredicted phenomena are observed: The beam becomes deflected in the direction opposite to that in which the field is curved, and it contracts to a flat slab in the plane of curvature of the magnetic field. The phenomenon is of a general character and can be expected to occur in a very wide range of densities. The lower density limit is set by the condition for self-polarization, nm sub(i)/epsilon 0 B 2 >> 1 or, which is equivalent, c 2 /v 2 sub(A) >> 1, where c is the velocity of light, and v sup(A) the Alfven velocity. The upper limit is presumably set by the requirement ωsub(e)tau(e) >> 1. The phenomenon is likely to be of importance e.g. for injection of plasma into magnetic bottles and in space and solar physics. The paper illustrates the comlexity of plasma flow phenomena and the importance of close contact between experimental and theoretical work. (author)

  11. Magnetic field coil in nuclear fusion device

    International Nuclear Information System (INIS)

    Yamaguchi, Mitsugi; Takano, Hirohisa.

    1975-01-01

    Object: To provide an electrical-insulatively stabilized magnetic field coil in nuclear fusion device, restraining an increase in voltage when plasma current is rapidly changed. Structure: A magnetic field coil comprises coils arranged coaxial with respective vacuum vessels, said coils being wound in positive and reverse polarities so as to form a vertical magnetic field within the plasma. The coils of the positive polarity are arranged along the vacuum vessel inside of an axis vertical in section of the annular plasma and are arranged symmetrically up and down of a horizontal axis. On the other hand, the coils of the reverse polarity are arranged along the vacuum vessel outside of a vertical axis and arranged symmetrically up and down of the horizontal axis. These positive and reverse polarity coils are alternately connected in series, and lead portions of the coils are connected to a power source by means of connecting wires. In this case, lead positions of the coils are arranged in one direction, and the connecting wires are disposed in closely contact relation to offset magnetic fields formed by the connecting wires each other. (Kawakami, Y.)

  12. Measurements of Solar Vector Magnetic Fields

    Science.gov (United States)

    Hagyard, M. J. (Editor)

    1985-01-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

  13. Shaped superconductor cylinder retains intense magnetic field

    Science.gov (United States)

    Hildebrandt, A. F.; Wahlquist, H.

    1964-01-01

    The curve of the inner walls of a superconducting cylinder is plotted from the flux lines of the magnetic field to be contained. This shaping reduces maximum flux densities and permits a stronger and more uniform magnetic field.

  14. Anisotropic magnetism in field-structured composites

    International Nuclear Information System (INIS)

    Martin, James E.; Venturini, Eugene; Odinek, Judy; Anderson, Robert A.

    2000-01-01

    Magnetic field-structured composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g., rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chainlike particle structures, and a biaxial field produces sheetlike particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCs of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material. (c) 2000 The American Physical Society

  15. Measurements of Solar Vector Magnetic Fields

    International Nuclear Information System (INIS)

    Hagyard, M.J.

    1985-05-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display

  16. Statistical Study of the Magnetic Field Orientation in Solar Filaments

    Science.gov (United States)

    Hanaoka, Yoichiro; Sakurai, Takashi

    2017-12-01

    We have carried out a statistical study of the average orientation of the magnetic field in solar filaments with respect to their axes for more than 400 samples, based on data taken with daily full-Sun, full-Stokes spectropolarimetric observations using the He I 1083.0 nm line. The major part of the samples are the filaments in the quiet areas, but those in the active areas are included as well. The average orientation of the magnetic field in filaments shows a systematic property depending on the hemisphere; the direction of the magnetic field in filaments in the northern (southern) hemisphere mostly deviates clockwise (counterclockwise) from their axes, which run along the magnetic polarity inversion line. The deviation angles of the magnetic field from the axes are concentrated between 10° and 30°. This hemispheric pattern is consistent with that revealed for chirality of filament barbs, filament channels, and for other solar features found to possess chirality. For some filaments, it was confirmed that their magnetic field direction is locally parallel to their structure seen in Hα images. Our results for the first time confirmed this hemispheric pattern with the direct observation of the magnetic field in filaments. Interestingly, the filaments which show the opposite magnetic field deviation to the hemispheric pattern, are in many cases found above the polarity inversion line whose ambient photospheric magnetic field has the polarity alignment being opposite to that of active regions following the Hale–Nicholson law.

  17. Rotating magnetic field current drive-theory and experiment

    International Nuclear Information System (INIS)

    Donnelly, I.J.

    1989-01-01

    Rotating magnetic fields have been used to drive plasma current and establish a range of compact torus configurations, named rotamaks. The current drive mechanism involves a ponderomotive force acting on the electron fluid. Recent extensions of the theory indicate that this method is most suitable for driving currents in directions perpendicular to the steady magnetic fields

  18. Method of using triaxial magnetic fields for making particle structures

    Science.gov (United States)

    Martin, James E.; Anderson, Robert A.; Williamson, Rodney L.

    2005-01-18

    A method of producing three-dimensional particle structures with enhanced magnetic susceptibility in three dimensions by applying a triaxial energetic field to a magnetic particle suspension and subsequently stabilizing said particle structure. Combinations of direct current and alternating current fields in three dimensions produce particle gel structures, honeycomb structures, and foam-like structures.

  19. Biotropic parameters of magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Shishlo, M.A.

    The use of magnetic fields (MF) in biology and medicine to control biological systems has led to appearance of the term, biotropic parameters of MF. They include the physical characteristics of MF, which determine the primary biologically significant physicochemical mechanisms of field action causing formation of corresponding reactions on the level of the integral organism. These parameters include MF intensity, gradient, vector, pulse frequency and shape, and duration of exposure. Factors that elicit responses by the biological system include such parameter of MF interaction with the integral organism as localization of exposure and volume of tissues interacting with the field, as well as the initial state of the organism. In essence, the findings of experimental studies of biotropic parameters of MF make it possible to control physiological processes and will aid in optimizing methods of MF therapy.

  20. Method of regulating magnetic field of magnetic pole center

    International Nuclear Information System (INIS)

    Watanabe, Masao; Yamada, Teruo; Kato, Norihiko; Toda, Yojiro; Kaneda, Yasumasa.

    1978-01-01

    Purpose: To provide the subject method comprising using a plurality of magnetic metal pieces having different thicknesses, regulating very easily symmetry of the field of the magnetic pole center depending upon the combination of said metal pieces, thereby obtaining a magnetic field of high precision. Method: The regulation of magnetic field at the central part of the magnetic field is not depending only upon processing of the center plug, axial movement of trim coil and ion source but by providing a magnetic metal piece such as an iron ring, primary higher harmonics of the field at the center of the magnetic field can be regulated simply while the position of the ion source slit is on the equipotential surface in the field. (Yoshihara, H.)

  1. Magnetic fields for transporting charged beams

    International Nuclear Information System (INIS)

    Parzen, G.

    1976-01-01

    The transport of charged particle beams requires magnetic fields that must be shaped correctly and very accurately. During the last 20 years or so, many studies have been made, both analytically and through the use of computer programs, of various magnetic shapes that have proved to be useful. Many of the results for magnetic field shapes can be applied equally well to electric field shapes. A report is given which gathers together the results that have more general significance and would be useful in designing a configuration to produce a desired magnetic field shape. The field shapes studied include the fields in dipoles, quadrupoles, sextupoles, octupoles, septum magnets, combined-function magnets, and electrostatic septums. Where possible, empirical formulas are proposed, based on computer and analytical studies and on magnetic field measurements. These empirical formulas are often easier to use than analytical formulas and often include effects that are difficult to compute analytically. In addition, results given in the form of tables and graphs serve as illustrative examples. The field shapes studied include uniform fields produced by window-frame magnets, C-magnets, H-magnets, and cosine magnets; linear fields produced by various types of quadrupoles; quadratic and cubic fields produced by sextupoles and octupoles; combinations of uniform and linear fields; and septum fields with sharp boundaries

  2. Static and low frequency electric and magnetic fields

    International Nuclear Information System (INIS)

    Thommesen, G.; Tynes, T.

    1994-01-01

    The biological effects of exposure to low frequency electric and magnetic fields are reviewed with the objective of summarizing effects directly relevant to considerations of the health and safety of exposed people. Static and low frequency electric and magnetic fields may elicit biological reactions. Whether exposure to such fields may affect human health at field strengths present in everyday or occupational life is still unsettled. There is unsufficient knowledge to establish any dose concept relevant to health risk. 196 refs., 6 tabs

  3. Probing Black Hole Magnetic Fields with QED

    Directory of Open Access Journals (Sweden)

    Ilaria Caiazzo

    2018-05-01

    Full Text Available The effect of vacuum birefringence is one of the first predictions of quantum electrodynamics (QED: the presence of a charged Dirac field makes the vacuum birefringent when threaded by magnetic fields. This effect, extremely weak for terrestrial magnetic fields, becomes important for highly magnetized astrophysical objects, such as accreting black holes. In the X-ray regime, the polarization of photons traveling in the magnetosphere of a black hole is not frozen at emission but is changed by the local magnetic field. We show that, for photons traveling along the plane of the disk, where the field is expected to be partially organized, this results in a depolarization of the X-ray radiation. Because the amount of depolarization depends on the strength of the magnetic field, this effect can provide a way to probe the magnetic field in black-hole accretion disks and to study the role of magnetic fields in astrophysical accretion in general.

  4. Phenomenon of the time-reversal violating magnetic field generation by a static electric field in a medium and vacuum

    OpenAIRE

    Baryshevsky, Vladimir G.

    1999-01-01

    It is shown that the T- and P-odd weak interactions yield to the existence of both electric field and magnetic (directed along the electric field) field around an electric charge. Similarly the assotiated magnetic field is directed along the vector of strength of stationary gravitational field.

  5. Effective magnetic moment of neutrinos in strong magnetic fields

    International Nuclear Information System (INIS)

    Perez M, A.; Perez R, H.; Masood, S.S.; Gaitan, R.; Rodriguez R, S.

    2002-01-01

    In this paper we compute the effective magnetic moment of neutrinos propagating in dense high magnetized medium. Taking typical values of magnetic field and densities of astrophysical objects (such as the cores of supernovae and neutron stars) we obtain an effective type of dipole magnetic moment in agreement with astrophysical and cosmological bounds. (Author)

  6. Magnetic field measuring system for remapping the ORIC magnetic field

    International Nuclear Information System (INIS)

    Mosko, S.W.; Hudson, E.D.; Lord, R.S.; Hensley, D.C.; Biggerstaff, J.A.

    1977-01-01

    The Holifield Heavy Ion Research Facility will integrate a new 25 MV tandem electrostatic acccelerator into the existing cyclotron laboratory which includes the Oak Ridge Isochronous Cyclotron (ORIC). Computations of ion paths for beam injection from the new tandem into ORIC require field mapping in the regions traversed by the beam. Additional field data is also desired for the higher levels (approx.19 kG) now used for most heavy ion beams. The magnetic field measurement system uses 39 flip coil/current integrator sets with computer controlled data scanning. The coils are spaced radially at 1 inch intervals in an arm which can be rotated azimuthally in 2 degree increments. The entire flip coil assembly can be shifted to larger radii to measure fields beyond the pole boundary. Temperature stabilization of electronic circuitry permits a measurement resolution of +-1 gauss over a dynamic range of +-25,000 gauss. The system will process a scan of 8000 points in about one hour

  7. System and method for magnetic current density imaging at ultra low magnetic fields

    Science.gov (United States)

    Espy, Michelle A.; George, John Stevens; Kraus, Robert Henry; Magnelind, Per; Matlashov, Andrei Nikolaevich; Tucker, Don; Turovets, Sergei; Volegov, Petr Lvovich

    2016-02-09

    Preferred systems can include an electrical impedance tomography apparatus electrically connectable to an object; an ultra low field magnetic resonance imaging apparatus including a plurality of field directions and disposable about the object; a controller connected to the ultra low field magnetic resonance imaging apparatus and configured to implement a sequencing of one or more ultra low magnetic fields substantially along one or more of the plurality of field directions; and a display connected to the controller, and wherein the controller is further configured to reconstruct a displayable image of an electrical current density in the object. Preferred methods, apparatuses, and computer program products are also disclosed.

  8. Field measurement for large bending magnets

    International Nuclear Information System (INIS)

    Lazzaro, A.; Cappuzzello, F.; Cunsolo, A.; Cavallaro, M.; Foti, A.; Orrigo, S.E.A.; Rodrigues, M.R.D.; Winfield, J.S.

    2008-01-01

    The results of magnetic field measurements of the large bending magnet of the MAGNEX spectrometer are presented. The experimental values are used to build an Enge function by the least-squares method. The resulting field is compared to the measured one, showing too large deviation for application to ray reconstruction techniques. Similarly, the experimental values are compared with results from a three-dimensional finite elements calculation. Again the deviations between measured and calculated field are too large for a direct application of the latter to ray reconstruction, while its reliability is sufficient for analysis purposes. In particular, it has been applied to study the effect of the inaccuracies in the probe location and orientation on the precision of field reconstruction, and to establish the requirements for the field interpolation. These inaccuracies are found to be rather important, especially for the transversal components of the field, with the consequence that their effect on the reconstructed field should be minimized by special interpolation algorithms

  9. Synthesis of magnetic systems producing field with maximal scalar characteristics

    International Nuclear Information System (INIS)

    Klevets, Nickolay I.

    2005-01-01

    A method of synthesis of the magnetic systems (MSs) consisting of uniformly magnetized blocks is proposed. This method allows to synthesize MSs providing maximum value of any magnetic field scalar characteristic. In particular, it is possible to synthesize the MSs providing the maximum of a field projection on a given vector, a gradient of a field modulus and a gradient of a field energy on a given directing vector, a field magnitude, a magnetic flux through a given surface, a scalar product of a field or a force by a directing function given in some area of space, etc. The synthesized MSs provide maximal efficiency of permanent magnets utilization. The usage of the proposed method of MSs synthesis allows to change a procedure of projecting in principal, namely, to execute it according to the following scheme: (a) to choose the sizes, a form and a number of blocks of a system proceeding from technological (economical) reasons; (b) using the proposed synthesis method, to find an orientation of site magnetization providing maximum possible effect of magnet utilization in a system obtained in (a). Such approach considerably reduces a time of MSs projecting and guarantees maximal possible efficiency of magnets utilization. Besides it provides absolute assurance in 'ideality' of a MS design and allows to obtain an exact estimate of the limit parameters of a field in a working area of a projected MS. The method is applicable to a system containing the components from soft magnetic material with linear magnetic properties

  10. The vector structure of active magnetic fields

    Science.gov (United States)

    Parker, E. N.

    1985-01-01

    Observations are needed to show the form of the strains introduced into the fields above the surface of the Sun. The longitudinal component alone does not provide the basic information, so that it has been necessary in the past to use the filamentary structure observed in H sub alpha to supplement the longitudinal information. Vector measurements provide the additional essential information to determine the strains, with the filamentary structure available as a check for consistency. It is to be expected, then, that vector measurements will permit a direct mapping of the strains imposed on the magnetic fields of active regions. It will be interesting to study the relation of those strains to the emergence of magnetic flux, flares, eruptive prominences, etc. In particular we may hope to study the relaxation of the strains via the dynamical nonequilibrium.

  11. Self-generation of magnetic fields

    International Nuclear Information System (INIS)

    Dolan, T.J.

    2000-01-01

    The stars generate self-magnetic fields on large spatial scales and long time scales,and laser-produced plasmas generate intense self-magnetic fields on very short spatial and time scales. Two questions are posed : (1) Could a self-magnetic field be generated in a laboratory plasma with intermediate spatial and time scales? (2) If a self-magnetic field were generated,would it evolve towards a minimum energy state? If the answers turned out to be affirmative,then self-magnetic fields could possibly have interesting applications

  12. The measurement of solar magnetic fields

    International Nuclear Information System (INIS)

    Stenflo, J.O.

    1978-01-01

    Solar activity is basically caused by the interaction between magnetic fields, solar rotation and convective motions. Detailed mapping of the Sun's rapidly varying magnetic field helps in the understanding of the mechanisms of solar activity. Observations in recent years have revealed unexpected and intriguing properties of solar magnetic fields, the explanation of which has become a challenge to plasma physicists. This review deals primarily with how the Sun's magnetic field is measured, but it also includes a brief review of the present observational picture of the magnetic field, which is needed to understand the problems of how to properly interpret the observations. 215 references. (author)

  13. Magnetic-Field-Tunable Superconducting Rectifier

    Science.gov (United States)

    Sadleir, John E.

    2009-01-01

    Superconducting electronic components have been developed that provide current rectification that is tunable by design and with an externally applied magnetic field to the circuit component. The superconducting material used in the device is relatively free of pinning sites with its critical current determined by a geometric energy barrier to vortex entry. The ability of the vortices to move freely inside the device means this innovation does not suffer from magnetic hysteresis effects changing the state of the superconductor. The invention requires a superconductor geometry with opposite edges along the direction of current flow. In order for the critical current asymmetry effect to occur, the device must have different vortex nucleation conditions at opposite edges. Alternative embodiments producing the necessary conditions include edges being held at different temperatures, at different local magnetic fields, with different current-injection geometries, and structural differences between opposite edges causing changes in the size of the geometric energy barrier. An edge fabricated with indentations of the order of the coherence length will significantly lower the geometric energy barrier to vortex entry, meaning vortex passage across the device at lower currents causing resistive dissipation. The existing prototype is a two-terminal device consisting of a thin-film su - perconducting strip operating at a temperature below its superconducting transition temperature (Tc). Opposite ends of the strip are connected to electrical leads made of a higher Tc superconductor. The thin-film lithographic process provides an easy means to alter edge-structures, current-injection geo - metries, and magnetic-field conditions at the edges. The edge-field conditions can be altered by using local field(s) generated from dedicated higher Tc leads or even using the device s own higher Tc superconducting leads.

  14. Measurements of magnetic field sources in schools

    International Nuclear Information System (INIS)

    Johnson, G.B.

    1992-01-01

    The Electrical Systems Division of the Electric Power Research Institute (EPRI) has initiated several research projects to investigate magnetic field levels, their characteristics, and their sources. This paper describes measurements of magnetic field sources in schools. Magnetic field measurements were made at four schools in the service areas of two utility companies. Magnetic field measurements included profiles of the magnetic field versus distance near power lines, around the perimeter of the school buildings, and at several locations within each school. Twenty-four hour measurements were also made to record the temporal variation of the magnetic field at several locations at each school. The instrumentation, measurement techniques, and magnetic field sources identified are discussed

  15. Transient finite element magnetic field calculation method in the anisotropic magnetic material based on the measured magnetization curves

    International Nuclear Information System (INIS)

    Jesenik, M.; Gorican, V.; Trlep, M.; Hamler, A.; Stumberger, B.

    2006-01-01

    A lot of magnetic materials are anisotropic. In the 3D finite element method calculation, anisotropy of the material is taken into account. Anisotropic magnetic material is described with magnetization curves for different magnetization directions. The 3D transient calculation of the rotational magnetic field in the sample of the round rotational single sheet tester with circular sample considering eddy currents is made and compared with the measurement to verify the correctness of the method and to analyze the magnetic field in the sample

  16. Fringing field measurement of dipole magnet

    International Nuclear Information System (INIS)

    Lu Hongyou; Jiang Weisheng; Mao Naifeng; Mao Xingwang

    1985-01-01

    The fringing field of a dipole magnet with a C-type circuit and homogeneous field in the gap has been measured including the distributions of fringing fields with and without magnetic shield. The measured data was analyzed by using the concept of virtual field boundary

  17. Generating the optimal magnetic field for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Insinga, Andrea Roberto; Smith, Anders

    2016-01-01

    In a magnetic refrigeration device the magnet is the single most expensive component, and therefore it is crucially important to ensure that an effective magnetic field as possible is generated using the least amount of permanent magnets. Here we present a method for calculating the optimal...... remanence distribution for any desired magnetic field. The method is based on the reciprocity theorem, which through the use of virtual magnets can be used to calculate the optimal remanence distribution. Furthermore, we present a method for segmenting a given magnet design that always results...... in the optimal segmentation, for any number of segments specified. These two methods are used to determine the optimal magnet design of a 12-piece, two-pole concentric cylindrical magnet for use in a continuously rotating magnetic refrigeration device....

  18. Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.

    Science.gov (United States)

    Danieli, E; Perlo, J; Blümich, B; Casanova, F

    2013-05-03

    Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.

  19. Strong and superstrong pulsed magnetic fields generation

    CERN Document Server

    Shneerson, German A; Krivosheev, Sergey I

    2014-01-01

    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  20. Accurate method of the magnetic field measurement of quadrupole magnets

    International Nuclear Information System (INIS)

    Kumada, M.; Sakai, I.; Someya, H.; Sasaki, H.

    1983-01-01

    We present an accurate method of the magnetic field measurement of the quadrupole magnet. The method of obtaining the information of the field gradient and the effective focussing length is given. A new scheme to obtain the information of the skew field components is also proposed. The relative accuracy of the measurement was 1 x 10 -4 or less. (author)

  1. Electrolytic tiltmeters inside magnetic fields: Some observations

    International Nuclear Information System (INIS)

    Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Luque, J.M.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C.; Calderon, A.; Garcia-Moral, L.A.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Scodellaro, L.; Sobron, M.; Vila, I.; Virto, A.L.

    2007-01-01

    We present observations of the electrolytic clinometers behaviour inside magnetic field environments introducing phenomenological expressions to account for the measured output voltage variations as functions of field gradients and field strengths

  2. Electrolytic tiltmeters inside magnetic fields: Some observations

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J. [CIEMAT, Madrid (Spain); Arce, P. [CIEMAT, Madrid (Spain); Barcala, J.M. [CIEMAT, Madrid (Spain); Calvo, E. [CIEMAT, Madrid (Spain); Ferrando, A. [CIEMAT, Madrid (Spain)]. E-mail: antonio.ferrando@ciemat.es; Josa, M.I. [CIEMAT, Madrid (Spain); Luque, J.M. [CIEMAT, Madrid (Spain); Molinero, A. [CIEMAT, Madrid (Spain); Navarrete, J. [CIEMAT, Madrid (Spain); Oller, J.C. [CIEMAT, Madrid (Spain); Yuste, C. [CIEMAT, Madrid (Spain); Calderon, A. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Garcia-Moral, L.A. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Gomez, G. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Gonzalez-Sanchez, F.J. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Martinez-Rivero, C. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Matorras, F. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Rodrigo, T. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Ruiz-Arbol, P. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Scodellaro, L. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Sobron, M. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Vila, I. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Virto, A.L. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain)

    2007-04-21

    We present observations of the electrolytic clinometers behaviour inside magnetic field environments introducing phenomenological expressions to account for the measured output voltage variations as functions of field gradients and field strengths.

  3. Lazer-produced plasma in a strong magnetic field

    International Nuclear Information System (INIS)

    Kaitmazov, S.D.; Shklovskij, E.I.

    1978-01-01

    Investigations on interaction of laser plasma with the magnetic field in the range of 100-300 kOe are surveyed. Problems associated with the effect of the field on the optical breakdown threshold in gases, the geometry (kinetics) of laser plasma and its radiation are mainly considered. It is noted that the magnetic field may reduce the o tical breakdown threshold in gases, promote the spreading of plasma predominantly in the direction of tice magnetic field, and also affect (increase in the visible range) the radiation intensity of the laser plasma. The effect of the magnetic field on the temperature of the laser plasma is not completely understood yet, but the very fact of existence of this dependence is important; it enables one to search for conditions under which the magnetic field would promote the increase at the temperature of laser plasma

  4. The loop I superbubble and the local interstellar magnetic field

    International Nuclear Information System (INIS)

    Frisch, Priscilla Chapman

    2014-01-01

    Recent data on the interstellar magnetic field in the low density nearby interstellar medium suggest a new perspective for understanding interstellar clouds within 40 pc. The directions of the local interstellar magnetic field found from measurements of optically polarized starlight and the very local field found from the Ribbon of energetic neutral atoms discovered by IBEX nearly agree. The geometrical relation between the local magnetic field, the positions and kinematics of local interstellar clouds, and the Loop I S1 superbubble, suggest that the Sun is located in the boundary of this evolved superbubble. The quasiperpendicular angle between the bulk kinematics and magnetic field of the local ISM indicates that a complete picture of low density interstellar clouds needs to include information on the interstellar magnetic field.

  5. A ferrofluid based artificial tactile sensor with magnetic field control

    Energy Technology Data Exchange (ETDEWEB)

    Volkova, T.I., E-mail: tatiana.volkova@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany); Böhm, V., E-mail: valter.boehm@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany); Naletova, V.A., E-mail: naletova@imec.msu.ru [Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Kaufhold, T., E-mail: tobias.kaufhold@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany); Becker, F., E-mail: felix.becker@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany); Zeidis, I., E-mail: igor.zeidis@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany); Zimmermann, K., E-mail: klaus.zimmermann@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany)

    2017-06-01

    The paper deals with a tactile sensor inspired by biological hairs of mammals. The working principle is based on the effect of the magnetic force exerted on a paramagnetic body submerged into a ferrofluid volume under the influence of a nonuniform magnetic field. The deflection of the sensor's rod caused by external mechanical stimuli may be unambiguously identified by the distortion of the magnetic field, which occurs due to the motion of the attached body in the ferrofluid. The magnetic force acting on the body is evaluated experimentally and theoretically for the nonuniform magnetic field of a permanent magnet. The controlled oscillations of the rod are realised by applying a nonuniform magnetic field of periodically altering direction. - Highlights: • A design approach of a tactile sensor inspired by special mammalian hairs is presented. • The working principle is based on magnetic properties of a ferrofluid in magnetic fields. • The magnetic force acting on a body submerged into a ferrofluid volume is evaluated. • External mechanical stimuli may be identified by the distortion of the magnetic field. • The controlled whisking-like oscillations of the sensor's rod are realised experimentally.

  6. A ferrofluid based artificial tactile sensor with magnetic field control

    International Nuclear Information System (INIS)

    Volkova, T.I.; Böhm, V.; Naletova, V.A.; Kaufhold, T.; Becker, F.; Zeidis, I.; Zimmermann, K.

    2017-01-01

    The paper deals with a tactile sensor inspired by biological hairs of mammals. The working principle is based on the effect of the magnetic force exerted on a paramagnetic body submerged into a ferrofluid volume under the influence of a nonuniform magnetic field. The deflection of the sensor's rod caused by external mechanical stimuli may be unambiguously identified by the distortion of the magnetic field, which occurs due to the motion of the attached body in the ferrofluid. The magnetic force acting on the body is evaluated experimentally and theoretically for the nonuniform magnetic field of a permanent magnet. The controlled oscillations of the rod are realised by applying a nonuniform magnetic field of periodically altering direction. - Highlights: • A design approach of a tactile sensor inspired by special mammalian hairs is presented. • The working principle is based on magnetic properties of a ferrofluid in magnetic fields. • The magnetic force acting on a body submerged into a ferrofluid volume is evaluated. • External mechanical stimuli may be identified by the distortion of the magnetic field. • The controlled whisking-like oscillations of the sensor's rod are realised experimentally.

  7. Using axial magnetized permanent rings to build axial gradient magnetic field

    International Nuclear Information System (INIS)

    Peng Quanling

    2003-01-01

    Axial field produced by an axially magnetized permanent ring was studied. For two permanent magnet rings, if they are magnetized in the same direction, a nearly uniform axial field can be produced; if they are magnetized in opposite direction, an axial gradient field can be produced in the region between the two permanent rings, with the field strength changing from -B 0 to B 0 . A high gradient axial magnetic field has been built by using two axially magnetized permanent rings, the measured field results agree with the PANDIRA calculation very well. It is desirable that the field gradient can be varied to match various requirements. A method to produce the variable gradient field is presented. Axial gradient field can also be used as a beam focusing facility for linear accelerator if axial periodic field can be produced. Its magnetic field is similar to that of a solenoid, in which, large stray field will leak to the outside environment. A method for shielding the outside stray field is discussed

  8. Tripolar electric field Structure in guide field magnetic reconnection

    OpenAIRE

    S. Fu; S. Huang; M. Zhou; B. Ni; X. Deng

    2018-01-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplit...

  9. The relationship between anatomically correct electric and magnetic field dosimetry and publishe delectric and magnetic field exposure limits.

    Science.gov (United States)

    Kavet, Robert; Dovan, Thanh; Reilly, J Patrick

    2012-12-01

    Electric and magnetic field exposure limits published by International Commission for Non-Ionizing Radiation Protection and Institute of Electrical and Electronics Engineers are aimed at protection against adverse electrostimulation, which may occur by direct coupling to excitable tissue and, in the case of electric fields, through indirect means associated with surface charge effects (e.g. hair vibration, skin sensations), spark discharge and contact current. For direct coupling, the basic restriction (BR) specifies the not-to-be-exceeded induced electric field. The key results of anatomically based electric and magnetic field dosimetry studies and the relevant characteristics of excitable tissue were first identified. This permitted us to assess the electric and magnetic field exposure levels that induce dose in tissue equal to the basic restrictions, and the relationships of those exposure levels to the limits now in effect. We identify scenarios in which direct coupling of electric fields to peripheral nerve could be a determining factor for electric field limits.

  10. Magnetic field measurements of the superEBIS superconducting magnet

    International Nuclear Information System (INIS)

    Herschcovitch, A.; Kponou, A.; Clipperton, R.; Hensel, W.; Usack, F.

    1994-01-01

    SuperEBIS was designed to have a solenoidal magnetic field of a 5 Tesla strength with a 120 cm long bore. The field was specified to be straight within 1 part in 10000 within the bore, and uniform to within 1 part in 1000 within the central 90 cm. Magnetic field measurements were performed with a computerized magnetic field measuring setup that was borrowed from W. Sampson's group. A preliminary test was made of a scheme to determine if the magnetic and mechanical axes of the solenoid coincided, and, if not, by how much

  11. Evolution of coronal and interplanetary magnetic fields

    International Nuclear Information System (INIS)

    Levine, R.H.

    1980-01-01

    Numerous studies have provided the detailed information necessary for a substantive synthesis of the empirical relation between the magnetic field of the sun and the structure of the interplanetary field. The author points out the latest techniques and studies of the global solar magnetic field and its relation to the interplanetary field. The potential to overcome most of the limitations of present methods of analysis exists in techniques of modelling the coronal magnetic field using observed solar data. Such empirical models are, in principle, capable of establishing the connection between a given heliospheric point and its magnetically-connected photospheric point, as well as the physical basis for the connection. (Auth.)

  12. Low frequency electric and magnetic fields

    Science.gov (United States)

    Spaniol, Craig

    1989-01-01

    Following preliminary investigations of the low frequency electric and magnetic fields that may exists in the Earth-ionospheric cavity, measurements were taken with state-of-the art spectrum analyzers. As a follow up to this activity, an investigation was initiated to determine sources and values for possible low frequency signal that would appear in the cavity. The lowest cavity resonance is estimated at about 8 Hz, but lower frequencies may be an important component of our electromagnetic environment. The potential field frequencies produced by the electron were investigated by a classical model that included possible cross coupling of the electric and gravitation fields. During this work, an interesting relationship was found that related the high frequency charge field with the extremely low frequency of the gravitation field. The results of numerical calculations were surprisingly accurate and this area of investigation is continuing. The work toward continued development of a standardized monitoring facility is continuing with the potential of installing the prototype at West Virginia State College early in 1990. This installation would be capable of real time monitoring of ELF signals in the Earth-ionoshpere cavity and would provide some directional information. A high gain, low noise, 1/f frequency corrected preamplifier was designed and tested for the ferrite core magnetic sensor. The potential application of a super conducting sensor for the ELF magnetic field detection is under investigation. It is hoped that a fully operational monitoring network could pinpoint the location of ELF signal sources and provide new information on where these signals originate and what causes them, assuming that they are natural in origin.

  13. Plasma Flows in Crossed Magnetic and Electric Fields

    International Nuclear Information System (INIS)

    Belikov, A.G.

    2005-01-01

    The effect of the magnitude and direction of an external electric field on the plasma flowing through a magnetic barrier is studied by numerically solving two-fluid MHD equations. The drift velocity of the plasma flow and the distribution of the flow electrons over transverse velocities are found to depend on the magnitude and direction of the electric field. It is shown that the direction of the induced longitudinal electric field is determined by the direction of the external field and that the electric current generated by the plasma flow significantly disturbs the barrier field

  14. Cosmic Rays in Intermittent Magnetic Fields

    International Nuclear Information System (INIS)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S.; Snodin, Andrew P.

    2017-01-01

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  15. Cosmic Rays in Intermittent Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S. [School of Mathematics and Statistics, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); Snodin, Andrew P., E-mail: a.seta1@ncl.ac.uk, E-mail: amitseta90@gmail.com [Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800 (Thailand)

    2017-04-10

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  16. Nonlinear physics of twisted magnetic field lines

    International Nuclear Information System (INIS)

    Yoshida, Zensho

    1998-01-01

    Twisted magnetic field lines appear commonly in many different plasma systems, such as magnetic ropes created through interactions between the magnetosphere and the solar wind, magnetic clouds in the solar wind, solar corona, galactic jets, accretion discs, as well as fusion plasma devices. In this paper, we study the topological characterization of twisted magnetic fields, nonlinear effect induced by the Lorentz back reaction, length-scale bounds, and statistical distributions. (author)

  17. Dilute Potts chain in a magnetic field

    International Nuclear Information System (INIS)

    Chaves, C.M.; Riera, R.

    1983-03-01

    The Potts lattice gas in presence of a uniform magnetic field is solved exactly in one dimension. For negative values of the exchange parameter, the magnetization curve exhibits two or three steps, depending on the concentration of vacancies. These steps arise as a result of the competition between the exchange interaction and the magnetic field, being associated to different structural distribution of vacancies and to the magnetic ordering of one or both sublattices. (Author) [pt

  18. 3D Biomimetic Magnetic Structures for Static Magnetic Field Stimulation of Osteogenesis

    OpenAIRE

    Irina Alexandra Paun; Roxana Cristina Popescu; Bogdan Stefanita Calin; Cosmin Catalin Mustaciosu; Maria Dinescu; Catalin Romeo Luculescu

    2018-01-01

    We designed, fabricated and optimized 3D biomimetic magnetic structures that stimulate the osteogenesis in static magnetic fields. The structures were fabricated by direct laser writing via two-photon polymerization of IP-L780 photopolymer and were based on ellipsoidal, hexagonal units organized in a multilayered architecture. The magnetic activity of the structures was assured by coating with a thin layer of collagen-chitosan-hydroxyapatite-magnetic nanoparticles composite. In vitro experime...

  19. Behavior of small ferromagnetic particles in traveling magnetic field

    Science.gov (United States)

    Deych, V. G.; Terekhov, V. P.

    1985-03-01

    Forces and moments acting on a magnetizable body in a traveling magnetic field are calculated for a body with dimensions much smaller than the wavelength of the magnetic field. It is assumed that a particle of given linear dimension does not have a constant magnetic moment. The material of a particle is characterized by its magnetic permeability and electrical conductivity. The hypothesis that rotation plays a major role in the behavior of small particles is confirmed and the fact that a small particle rolls on a plane, without sliding, when the surface is perfectly rough, in the opposite direction from which the magnetic field travels is explained. Calculations are based on the magnetohydrodynamic equations for a quasi steady magnetic field, and the induced Foucault eddy currents are considered. The results are applicable to transport of ferrofluids and to such metallurgical devices as separators.

  20. Magnetic field dependent atomic tunneling in non-magnetic glasses

    International Nuclear Information System (INIS)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-01-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field

  1. Magnetic field dependent atomic tunneling in non-magnetic glasses

    Science.gov (United States)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-05-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field.

  2. High-magnetic-field research collaborations

    International Nuclear Information System (INIS)

    Goettee, J.

    1998-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The purpose of this project was to develop collaborations with the academic community to exploit scientific research potential of the pulsed magnetic fields that might be possible with electrically pulsed devices, as well as magneto-cumulative generators. The author started with a campaign of experiments using high-explosive-driven flux compression generators. The campaign's objective was to explore completely novel ideas in condensed-matter physics and chemistry. The initiative was very successful in pulling together top researchers from around the world

  3. Magnetic field shielding effect for CFETR TF coil-case

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weiwei; Liu, Xufeng, E-mail: Lxf@ipp.ac.cn; Du, Shuangsong; Zheng, Jinxing

    2017-05-15

    Highlights: • The eddy current of CFETR vacuum vessel can be calculated by using a series of ideal current loops. • The shielding effect with different eddy current is studied by decomposing the exciting magnetic field as two orthogonal components. • The shielding effect can be determined from the rate of eddy current magnetic field to the external magnetic field. - Abstract: The operation of superconducting magnet for fusion device is under the complex magnetic field condition, which affect the stabilization of superconductor. The coil-case of TF coil can shield the magnetic field to some extent. The shielding effect is related to the eddy current of coil-case. The shielding effect with different eddy current is studied by decomposing the exciting magnetic field as two orthogonal components, respectively. The results indicate that the shielding effect of CFETR TF coil-case has obvious different with the different directional magnetic field, and it’s larger for tangential magnetic compared with that for normal field.

  4. Strongly interacting matter in magnetic fields

    CERN Document Server

    Landsteiner, Karl; Schmitt, Andreas; Yee, Ho-Ung

    2013-01-01

    The physics of strongly interacting matter in an external magnetic field is presently emerging as a topic of great cross-disciplinary interest for particle, nuclear, astro- and condensed matter physicists. It is known that strong magnetic fields are created in heavy ion collisions, an insight that has made it possible to study a variety of surprising and intriguing phenomena that emerge from the interplay of quantum anomalies, the topology of non-Abelian gauge fields, and the magnetic field. In particular, the non-trivial topological configurations of the gluon field induce a non-dissipative electric current in the presence of a magnetic field. These phenomena have led to an extended formulation of relativistic hydrodynamics, called chiral magnetohydrodynamics. Hitherto unexpected applications in condensed matter physics include graphene and topological insulators. Other fields of application include astrophysics, where strong magnetic fields exist in magnetars and pulsars. Last but not least, an important ne...

  5. High magnetic fields science and technology

    CERN Document Server

    Miura, Noboru

    2003-01-01

    This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological syst

  6. Structure and magnetic field of periodic permanent magnetic focusing system with open magnetic rings

    International Nuclear Information System (INIS)

    Peng Long; Li Lezhong; Yang Dingyu; Zhu Xinghua; Li Yuanxun

    2011-01-01

    The magnetic field along the central axis for an axially magnetized permanent magnetic ring was investigated by analytical and finite element methods. For open magnetic rings, both calculated and measured results show that the existence of the radial magnetic field creates a remarkable cosine distribution field along the central axis. A new structure of periodic permanent magnet focusing system with open magnetic rings is proposed. The structure provides a satisfactory magnetic field with a stable peak value of 120 mT for a traveling wave tube system. - Research highlights: → For open magnetic rings, both calculated and measured results show that the existence of the radial magnetic field creates a remarkable cosine distribution field along the central axis. → A new structure of periodic permanent magnet (PPM) focusing system with open magnetic rings is proposed. → The new PPM focusing system with open magnetic rings meets the requirements for TWT system.

  7. Synchrotron Applications of High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This workshop aims at discussing the scientific potential of X-ray diffraction and spectroscopy in magnetic fields above 30 T. Pulsed magnetic fields in the range of 30 to 40 T have recently become available at Spring-8 and the ESRF (European synchrotron radiation facility). This document gathers the transparencies of the 6 following presentations: 1) pulsed magnetic fields at ESRF: first results; 2) X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transition and frustrated magnet; 3) R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}: an ideal system to be studied in X-ray under high magnetic field?; 4) high field studies at the Advanced Photon Source: present status and future plans; 5) synchrotron X-ray diffraction studies under extreme conditions; and 6) projects for pulsed and steady high magnetic fields at the ESRF.

  8. Demagnetizing fields in active magnetic regenerators

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian R.H.; Smith, Anders

    2014-01-01

    A magnetic material in an externally applied magnetic field will in general experience a spatially varying internal magnetic field due to demagnetizing effects. When the performance of active magnetic regenerators (AMRs) is evaluated using numerical models the internal field is often assumed...... is in general both a function of the overall shape of the regenerator and its morphology (packed particles, parallel plates etc.) as well as the magnetization of the material. Due to the pronounced temperature dependence of the magnetization near the Curie temperature, the demagnetization field is also...... temperature dependent. We propose a relatively straightforward method to correct sufficiently for the demagnetizing field in AMR models. We discuss how the demagnetizing field behaves in regenerators made of packed spheres under realistic operation conditions....

  9. Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization

    International Nuclear Information System (INIS)

    Ida, Tetsuya; Watasaki, Masahiro; Kimura, Yosuke; Miki, Motohiro; Izumi, Mitsuru

    2010-01-01

    For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

  10. Parahydrogen-enhanced zero-field nuclear magnetic resonance

    Science.gov (United States)

    Theis, T.; Ganssle, P.; Kervern, G.; Knappe, S.; Kitching, J.; Ledbetter, M. P.; Budker, D.; Pines, A.

    2011-07-01

    Nuclear magnetic resonance, conventionally detected in magnetic fields of several tesla, is a powerful analytical tool for the determination of molecular identity, structure and function. With the advent of prepolarization methods and detection schemes using atomic magnetometers or superconducting quantum interference devices, interest in NMR in fields comparable to the Earth's magnetic field and below (down to zero field) has been revived. Despite the use of superconducting quantum interference devices or atomic magnetometers, low-field NMR typically suffers from low sensitivity compared with conventional high-field NMR. Here we demonstrate direct detection of zero-field NMR signals generated through parahydrogen-induced polarization, enabling high-resolution NMR without the use of any magnets. The sensitivity is sufficient to observe spectra exhibiting 13C-1H scalar nuclear spin-spin couplings (known as J couplings) in compounds with 13C in natural abundance, without the need for signal averaging. The resulting spectra show distinct features that aid chemical fingerprinting.

  11. Effect of magnetic field on food freezing

    OpenAIRE

    村田, 圭治; 奥村, 太一; 荒賀, 浩一; 小堀, 康功

    2010-01-01

    [Abstract] This paper presents an experimental investigation on effects of magnetic field on food freezing process. Although purpose of food freezing is to suppress the deterioration of food, freezing breaks food tissue down, and some nutrient and delicious element flow out after thawing. Recently, a few of refrigeration equipments with electric and magnetic fields have attracted attention from food production companies and mass media. Water and tuna were freezed in magnetic field (100kH, 1.3...

  12. Cyclotron Lines: From Magnetic Field Strength Estimators to ...

    Indian Academy of Sciences (India)

    Chandreyee Maitra

    2017-09-12

    Sep 12, 2017 ... context can provide, to build a complete picture for the physics of accretion and ... cesses which occur near the NS surface, where the ... CRSF) which is the focal point of discussion in this arti- .... first direct measurement of the magnetic field strength of .... The above model requires a gradient in the magnetic.

  13. Novel Electrochemical Phenomena in Magnetic Fields(Research in High Magnetic Fields)

    OpenAIRE

    Mogi, Iwao; Kamiko, Masao

    1996-01-01

    Recent two topics are given of electrochemical studies in steady magnetic fields at the High Field Laboratory of Tohoku University. One is the magnetic-field-induced diffusion-limited-aggregation in the pattern formation of silver electrodeposits . The other is the magnetic field effect on the learning effect in a dopant-exchange process of an organic conducting polymer polypyrrole.

  14. Magnetic field measurements and mapping techniques

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    These lectures will present an overview of the most common techniques used for the measurement of magnetic field in accelerator magnets. The formalism for a harmonic description of the magnetic field will be presented, including a discussion of harmonics allowed under various types of symmetries in the magnet. The harmonic coil technique for measurement of field harmonics will be covered in depth. Using examples from recent projects, magnetic measurements will be shown to be a powerful tool for monitoring magnet production. Measurements of magnetic axis using extensions of the harmonic coil technique, as well as other techniques, such as the colloidal cell and stretched wire, will be covered. Topics of interest in superconducting magnets, such as time decay and snapback, requiring relatively fast measurements of the harmonics, will also be described.

  15. Minimizing magnetic fields for precision experiments

    Energy Technology Data Exchange (ETDEWEB)

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S., E-mail: stefan.stuiber@ph.tum.de; Sturm, M.; Taggart Singh, J.; Taubenheim, B. [Physikdepartment, Technische Universität München, D-85748 Garching (Germany); Rohrer, H. K. [Rohrer GmbH, D-80667 München (Germany); Schläpfer, U. [IMEDCO AG, CH-4614 Hägendorf (Switzerland)

    2015-06-21

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  16. Minimizing magnetic fields for precision experiments

    International Nuclear Information System (INIS)

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S.; Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.

    2015-01-01

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application

  17. The origin of the Earth's magnetic field

    International Nuclear Information System (INIS)

    Hibberd, F.H.

    1979-01-01

    A theory is developed and a model described for a homogeneous axi-symmetric generator of the geomagnetic field, based on the Nernst effect associated with a radially outward flow of heat from heat sources within the core region of the earth across an initial meridional magnetic field. The thermomagnetic e.m.f. drives a system of two azimuthal current shells in the core region, one nested inside the other, with the currents flowing in opposite directions. The current shells slowly expand radially. As the outer shell decays a new current shell develops inside the inner shell. The resultant magnetic field near and beyond the Earth's surface approximates to a dipole field that undergoes repeated reversals. A rough estimate of the required magnitude of the Nernst coefficient indicates that the effect could be large enough to drive the generator. The generator does not violate Cowling's theorem because the temperature gradient, which plays a part analogous to fluid velocity in conventional homogeneous fluid dynamo theory, has a non-zero divergence in regions where heat is being evolved. (author)

  18. Magnetic field and magnetic isotope effects on photochemical reactions

    International Nuclear Information System (INIS)

    Wakasa, Masanobu

    1999-01-01

    By at present exact experiments and the theoretical analysis, it was clear that the magnetic field less than 2 T affected a radical pair reaction and biradical reaction. The radical pair life and the dissipative radical yield showed the magnetic field effects on chemical reactions. The radical pair mechanism and the triplet mechanism were known as the mechanism of magnetic field effects. The radical pair mechanism consists of four mechanisms such as the homogeneous hyperfine interaction (HFC), the delta-g mechanism, the relaxation mechanism and the level cross mechanism. In order to observe the magnetic effects of the radical pair mechanism, two conditions need, namely, the recombination rate of singlet radical pair > the dissipation rate and the spin exchange rate > the dissipation rate. A nanosecond laser photo-decomposition equipment can observe the magnetic field effects. The inversion phenomena of magnetic field effect, isolation of the relaxation mechanism and the delta-g mechanism, the magnetic field effect of heavy metal radical reaction, the magnetic field effect in homogeneous solvent, saturation of delta-g mechanism are explained. The succeeded examples of isotope concentration by the magnetic isotope effect are 17 O, 19 Si, 33 S, 73 Ge and 235 U. (S.Y.)

  19. Ferroelectric Cathodes in Transverse Magnetic Fields

    International Nuclear Information System (INIS)

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-01-01

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode

  20. Five years of magnetic field management

    International Nuclear Information System (INIS)

    Durkin, C.J.; Fogarty, R.P.; Halleran, T.M.; Mark, Dr. D.A.; Mukhopadhyay, A.

    1995-01-01

    The extensive publicity of epidemiological studies inferring correlation between 60 Hz magnetic fields and childhood leukemia prompted world wide research programs that have as a goal to determine if low frequency magnetic fields represent any risk for the general population, children or utility workers. While supporting this research effort through EPRI, Con Edison embarked on a technical research program aimed to: characterize magnetic fields as to intensity and variation in time; and investigate practical means to manage these magnetic fields through currently known methods. The final goal of these research projects is to establish viable methods to reduce magnetic field intensity to desired values at reasonable distances from the sources. This goal was pursued step by step, starting with an inventory of the main sources of magnetic fields in substations, distribution and transmission facilities and generating plants. The characterization of the sources helped to identify typical cases and select specific cases, far practical applications. The next step was to analyze the specific cases and develop design criteria for managing the magnetic fields in new installations. These criteria included physical arrangement of equipment based oil calculation of magnetic fields, cancellation effect, desired maximum field intensity at specific points and shielding with high magnetic permeability metals (mu-metal and steel). This paper summarizes the authors' experiences and shows the results of the specific projects completed in recent years

  1. Numerical analysis of magnetic field in superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Kanamaru, Y.; Amemiya, Y.

    1991-01-01

    This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES for reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method

  2. The strongest magnetic fields in the universe

    CERN Document Server

    Balogh, A; Falanga, M; Lyutikov, M; Mereghetti, S; Piran, T; Treumann, RA

    2016-01-01

    This volume extends the ISSI series on magnetic fields in the Universe into the domain of what are by far the strongest fields in the Universe, and stronger than any field that could be produced on Earth. The chapters describe the magnetic fields in non-degenerate strongly magnetized stars, degenerate stars (such as white dwarfs and neutron stars), exotic members called magnetars, and in their environments, as well as magnetic fields in the environments of black holes. These strong fields have a profound effect on the behavior of matter, visible in particular in highly variable processes like radiation in all known wavelengths, including Gamma-Ray bursts. The generation and structure of such strong magnetic fields and effects on the environment are also described.

  3. Resonance double magnetic bremsstrahlung in a strong magnetic field

    International Nuclear Information System (INIS)

    Fomin, P.I.; Kholodov, R.I.

    2003-01-01

    The possibility of resonance double magnetic bremsstrahlung in the approximation of weakly excited electron states in a strong external magnetic field is analyzed. The differential probability of this process in the Breit-Wigner form is obtained. The probability of double magnetic bremsstrahlung (second-order process of perturbation theory) is compared with the probability of magnetic bremsstrahlung (first-order process of perturbation theory)

  4. Reducing Field Distortion in Magnetic Resonance Imaging

    Science.gov (United States)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  5. NMR magnetic field controller for pulsed nuclear magnetic resonance experiments

    International Nuclear Information System (INIS)

    Scheler, G.; Anacker, M.

    1975-01-01

    A nuclear magnetic resonance controller for magnetic fields, which can also be used for pulsed NMR investigations, is described. A longtime stability of 10 -7 is achieved. The control signal is generated by a modified time sharing circuit with resonance at the first side band of the 2 H signal. An exact calibration of the magnetic field is achieved by the variation of the H 1 - or of the time-sharing frequency. (author)

  6. High-field superferric MR magnet

    International Nuclear Information System (INIS)

    Huson, F.R.; Carcagno, R.; Colvin, J.

    1987-01-01

    Current large-bore (>20 cm), high-field (2-T) MR magnets have major implementation disadvantages, mostly related to the extensive stray field of traditional air-core superconducting magnets. To circumvent this problem, the authors designed, constructed, and tested a 30-cm prototype superconducting, self-shielded, high field magnet. This unshimmed superferric magnet can operate between 0.5 and 4 T with a field quality of about one part per million over one quarter of its aperture. The magnet can be ramped from one field strength to another in approximately 10 minutes. The 5-Gauss line extends less than 1 meter outside the magnet structure. Further details, including MR measurements and images, are demonstrated, as well as 1-meter bore scale-up projections

  7. Principles of power frequency magnetic field management

    International Nuclear Information System (INIS)

    Fugate, D.; Feero, W.

    1995-01-01

    At the most general level, magnetic field management is the creation, elimination, or modification of sources in order to alter the spatial distribution of magnetic fields over some region of space. The two main options for magnetic field management are source modification (elimination or modification of original sources) and cancellation (creation of new sources). Source modification includes any changes in the layout or location of field sources, elimination of ground paths, or any options that increase the distance between sources and regions of interest. Cancellation involves the creation of new magnetic field sources, passive and/or active that produce magnetic fields that are opposite to the original fields in the region of interest. Shielding using materials of high conductivity and/or high permeability falls under the cancellation option. Strategies for magnetic field management, whether they are source modification or cancellation, typically vary on a case to case basis depending on the regions of interest, the types of sources and resulting complexity of the field structure, the field levels, and the attenuation requirements. This paper gives an overview of magnetic field management based on fundamental concepts. Low field design principles are described, followed by a structured discussion of cancellation and shielding. The two basic material shielding mechanisms, induced current shielding, and flux-shunting are discussed

  8. SIMULATING MAGNETIC FIELDS IN THE ANTENNAE GALAXIES

    International Nuclear Information System (INIS)

    Kotarba, H.; Karl, S. J.; Naab, T.; Johansson, P. H.; Lesch, H.; Dolag, K.; Stasyszyn, F. A.

    2010-01-01

    We present self-consistent high-resolution simulations of NGC 4038/4039 (the A ntennae galaxies ) including star formation, supernova feedback, and magnetic fields performed with the N-body/smoothed particle hydrodynamic (SPH) code GADGET, in which magnetohydrodynamics are followed with the SPH method. We vary the initial magnetic field in the progenitor disks from 10 -9 to 10 -4 G. At the time of the best match with the central region of the Antennae system, the magnetic field has been amplified by compression and shear flows to an equilibrium field value of ∼10 μG, independent of the initial seed field. These simulations are a proof of the principle that galaxy mergers are efficient drivers for the cosmic evolution of magnetic fields. We present a detailed analysis of the magnetic field structure in the central overlap region. Simulated radio and polarization maps are in good morphological and quantitative agreement with the observations. In particular, the two cores with the highest synchrotron intensity and ridges of regular magnetic fields between the cores and at the root of the southern tidal arm develop naturally in our simulations. This indicates that the simulations are capable of realistically following the evolution of the magnetic fields in a highly nonlinear environment. We also discuss the relevance of the amplification effect for present-day magnetic fields in the context of hierarchical structure formation.

  9. SQUIDs De-fluxing Using a Decaying AC Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Matlashov, Andrei Nikolaevich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Semenov, Vasili Kirilovich [State Univ. of New York (SUNY), Plattsburgh, NY (United States); Anderson, Bill [Senior Scientific, LLC, Albuquerque, NM (United States)

    2016-06-08

    Flux trapping is the Achilles’ heel of all superconductor electronics. The most direct way to avoid flux trapping is a prevention of superconductor circuits from exposure to magnetic fields. Unfortunately this is not feasible if the circuits must be exposed to a strong DC magnetic field even for a short period of time. For example, such unavoidable exposures take place in superparamagnetic relaxation measurements (SPMR) and ultra-low field magnetic resonance imaging (ULF MRI) using unshielded thin-film SQUID-based gradiometers. Unshielded SQUIDs stop working after being exposed to DC magnetic fields of only a few Gauss in strength. In this paper we present experimental results with de-fluxing of planar thin-film LTS SQUID-based gradiometers using a strong decaying AC magnetic field. We used four commercial G136 gradiometers for SPMR measurements with up to a 10 mT magnetizing field. Strong 12.9 kHz decaying magnetic field pulses reliably return SQUIDs to normal operation 50 ms after zeroing the DC magnetizing field. This new AC de-fluxing method was also successfully tested with seven other different types of LTS SQUID sensors and has been shown to dissipate extremely low energy.

  10. Probing High Temperature Superconductors with Magnetometry in Ultrahigh Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-07-26

    The objective of this research is to investigate the high-field magnetic properties of high temperature superconductors, materials that conduct electricity without loss. A technique known as high-resolution torque magnetometry that was developed to directly measure the magnetization of high temperature superconductors. This technique was implemented using the 65 Tesla pulsed magnetic field facility that is part of the National High Magnetic Field Laboratory at Los Alamos National Laboratory. This research addressed unanswered questions about the interplay between magnetism and superconductivity, determine the electronic structure of high temperature superconductors, and shed light on the mechanism of high temperature superconductivity and on potential applications of these materials in areas such as energy generation and power transmission. Further applications of the technology resolve the novel physical phenomena such as correlated topological insulators, and spin liquid state in quantum magnets.

  11. Acceleration of auroral particles by magnetic-field aligned electric fields

    International Nuclear Information System (INIS)

    Block, L.P.

    1988-01-01

    Measurements on the S3-3 and Viking satellites appear to show that at least a large fraction of magnetic field-aligned potential drops are made up of multiple double layers. Solitons and double layers in U-shaped potential structures give rise to spiky electric fields also perpendicular to the magnetic field in agreement with satellite measurements. The large scale potential structures associated with inverted V-events are built up of many similar short-lived structures on a small scale. Viking measurements indicate that electric fields parallel to the magnetic field are almost always directed upward

  12. Structure of magnetic field in Tokamaks

    International Nuclear Information System (INIS)

    Heller, M.V.A.P.; Caldas, I.L.

    1990-01-01

    Magnetic surfaces, necessary to plasma confinement, can be extinguished by resonant helical perturbations with small intensities due to plasma oscillations or external helical currents. The mapping of magnetic field is obtained intergrating numerically the differential equation of its lines. Criteria which evaluate the chaotic distribution of lines between resonant magnetic islands are presented. (M.C.K.) [pt

  13. Magnetically actuated bi-directional microactuators with permalloy and Fe/Pt hard magnet

    International Nuclear Information System (INIS)

    Pan, C.T.; Shen, S.C.

    2005-01-01

    Bi-directional polyimide (PI) electromagnetic microactuator with different geometries are designed, fabricated and tested. Fabrication of the electromagnetic microactuator consists of 10 μm thick Ni/Fe (80/20) permalloy deposition on the PI diaphragm by electroplating, high aspect ratio electroplating of copper planar coil with 10 μm in thickness, bulk micromachining, and excimer laser selective ablation. They were fabricated by a novel concept avoiding the etching selectivity and residual stress problems during wafer etching. A mathematical model is created by ANSYS software to analyze the microactuator. The external magnetic field intensity (H ext ) generated by the planar coil is simulated by ANSYS software. ANSYS software is used to predict the deflection angle of the microactuator. Besides, to provide bi-directional and large deflection angle of microactuator, hard magnet Fe/Pt is deposited at a low temperature of 300 deg. C by sputtering onto the PI diaphragm to produce a perpendicular magnetic anisotropic field. This magnetic field can enhance the interaction with H ext to induce attractive and repulsive bi-directional force to provide large displacement. The results of magnetic microactuator with and without hard magnets are compared and discussed. The preliminary result reveals that the electromagnetic microactuator with hard magnet shows a greater deflection angle than that without one

  14. Tracing magnetic fields with aligned grains

    International Nuclear Information System (INIS)

    Lazarian, A.

    2007-01-01

    Magnetic fields play a crucial role in various astrophysical processes, including star formation, accretion of matter, transport processes (e.g., transport of heat), and cosmic rays. One of the easiest ways to determine the magnetic field direction is via polarization of radiation resulting from extinction or/and emission by aligned dust grains. Reliability of interpretation of the polarization maps in terms of magnetic fields depends on how well we understand the grain-alignment theory. Explaining what makes grains aligned has been one of the big issues of the modern astronomy. Numerous exciting physical effects have been discovered in the course of research undertaken in this field. As both the theory and observations matured, it became clear that the grain-alignment phenomenon is inherent not only in diffuse interstellar medium or molecular clouds but also is a generic property of the dust in circumstellar regions, interplanetary space and cometary comae. Currently the grain-alignment theory is a predictive one, and its results nicely match observations. Among its predictions is a subtle phenomenon of radiative torques. This phenomenon, after having stayed in oblivion for many years after its discovery, is currently viewed as the most powerful means of alignment. In this article, I shall review the basic physical processes involved in grain alignment, and the currently known mechanisms of alignment. I shall also discuss possible niches for different alignment mechanisms. I shall dwell on the importance of the concept of grain helicity for understanding of many properties of grain alignment, and shall demonstrate that rather arbitrarily shaped grains exhibit helicity when they interact with gaseous and radiative flows

  15. Dirac equation in magnetic-solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Dept. Fisica e Quimica, UNESP, Campus de Guaratingueta (Brazil); Gitman, D.M.; Smirnov, A.A. [Instituto de Fisica, Universidade de Sao Paulo (Brazil)

    2004-07-01

    We consider the Dirac equation in the magnetic-solenoid field (the field of a solenoid and a collinear uniform magnetic field). For the case of Aharonov-Bohm solenoid, we construct self-adjoint extensions of the Dirac Hamiltonian using von Neumann's theory of deficiency indices. We find self-adjoint extensions of the Dirac Hamiltonian and boundary conditions at the AB solenoid. Besides, for the first time, solutions of the Dirac equation in the magnetic-solenoid field with a finite radius solenoid were found. We study the structure of these solutions and their dependence on the behavior of the magnetic field inside the solenoid. Then we exploit the latter solutions to specify boundary conditions for the magnetic-solenoid field with Aharonov-Bohm solenoid. (orig.)

  16. Magnetic field decay in model SSC dipoles

    International Nuclear Information System (INIS)

    Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.

    1988-08-01

    We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs

  17. The Evolution of the Earth's Magnetic Field.

    Science.gov (United States)

    Bloxham, Jeremy; Gubbins, David

    1989-01-01

    Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)

  18. Interaction of magnetic resonators studied by the magnetic field enhancement

    Directory of Open Access Journals (Sweden)

    Yumin Hou

    2013-12-01

    Full Text Available It is the first time that the magnetic field enhancement (MFE is used to study the interaction of magnetic resonators (MRs, which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.

  19. Tripolar electric field Structure in guide field magnetic reconnection

    Science.gov (United States)

    Fu, Song; Huang, Shiyong; Zhou, Meng; Ni, Binbin; Deng, Xiaohua

    2018-03-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  20. Tripolar electric field Structure in guide field magnetic reconnection

    Directory of Open Access Journals (Sweden)

    S. Fu

    2018-03-01

    Full Text Available It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection. In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg. Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  1. Anchoring Polar Magnetic Field in a Stationary Thick Accretion Disk

    Energy Technology Data Exchange (ETDEWEB)

    Samadi, Maryam; Abbassi, Shahram, E-mail: samadimojarad@um.ac.ir [Department of Physics, School of Sciences, Ferdowsi University of Mashhad, Mashhad, 91775-1436 (Iran, Islamic Republic of)

    2017-08-20

    We investigate the properties of a hot accretion flow bathed in a poloidal magnetic field. We consider an axisymmetric viscous-resistive flow in the steady-state configuration. We assume that the dominant mechanism of energy dissipation is due to turbulence viscosity and magnetic diffusivity. A certain fraction of that energy can be advected toward the central compact object. We employ the self-similar method in the radial direction to find a system of ODEs with just one varible, θ in the spherical coordinates. For the existence and maintenance of a purely poloidal magnetic field in a rotating thick disk, we find that the necessary condition is a constant value of angular velocity along a magnetic field line. We obtain an analytical solution for the poloidal magnetic flux. We explore possible changes in the vertical structure of the disk under the influences of symmetric and asymmetric magnetic fields. Our results reveal that a polar magnetic field with even symmetry about the equatorial plane makes the disk vertically thin. Moreover, the accretion rate decreases when we consider a strong magnetic field. Finally, we notice that hot magnetized accretion flows can be fully advected even in a slim shape.

  2. Spectral Analysis of Vector Magnetic Field Profiles

    Science.gov (United States)

    Parker, Robert L.; OBrien, Michael S.

    1997-01-01

    We investigate the power spectra and cross spectra derived from the three components of the vector magnetic field measured on a straight horizontal path above a statistically stationary source. All of these spectra, which can be estimated from the recorded time series, are related to a single two-dimensional power spectral density via integrals that run in the across-track direction in the wavenumber domain. Thus the measured spectra must obey a number of strong constraints: for example, the sum of the two power spectral densities of the two horizontal field components equals the power spectral density of the vertical component at every wavenumber and the phase spectrum between the vertical and along-track components is always pi/2. These constraints provide powerful checks on the quality of the measured data; if they are violated, measurement or environmental noise should be suspected. The noise due to errors of orientation has a clear characteristic; both the power and phase spectra of the components differ from those of crustal signals, which makes orientation noise easy to detect and to quantify. The spectra of the crustal signals can be inverted to obtain information about the cross-track structure of the field. We illustrate these ideas using a high-altitude Project Magnet profile flown in the southeastern Pacific Ocean.

  3. Simulations of Magnetic Fields in Tidally Disrupted Stars

    Energy Technology Data Exchange (ETDEWEB)

    Guillochon, James [Harvard-Smithsonian Center for Astrophysics, The Institute for Theory and Computation, 60 Garden Street, Cambridge, MA 02138 (United States); McCourt, Michael, E-mail: jguillochon@cfa.harvard.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

    2017-01-10

    We perform the first magnetohydrodynamical simulations of tidal disruptions of stars by supermassive black holes. We consider stars with both tangled and ordered magnetic fields, for both grazing and deeply disruptive encounters. When the star survives disruption, we find its magnetic field amplifies by a factor of up to 20, but see no evidence for a self-sustaining dynamo that would yield arbitrary field growth. For stars that do not survive, and within the tidal debris streams produced in partial disruptions, we find that the component of the magnetic field parallel to the direction of stretching along the debris stream only decreases slightly with time, eventually resulting in a stream where the magnetic pressure is in equipartition with the gas. Our results suggest that the returning gas in most (if not all) stellar tidal disruptions is already highly magnetized by the time it returns to the black hole.

  4. Ion Motion in a Plasma Interacting with Strong Magnetic Fields

    International Nuclear Information System (INIS)

    Weingarten, A.; Grabowski, C.; Chakrabarti, N.; Maron, Y.; Fruchtmant, A.

    1999-01-01

    The interaction of a plasma with strong magnetic fields takes place in many laboratory experiments and astrophysical plasmas. Applying a strong magnetic field to the plasma may result in plasma displacement, magnetization, or the formation of instabilities. Important phenomena in plasma, such as the energy transport and the momentum balance, take a different form in each case. We study this interaction in a plasma that carries a short-duration (80-ns) current pulse, generating a magnetic field of up to 17 kG. The evolution of the magnetic field, plasma density, ion velocities, and electric fields are determined before and during the current pulse. The dependence of the plasma limiting current on the plasma density and composition are studied and compared to theoretical models based on the different phenomena. When the plasma collisionality is low, three typical velocities should be taken into consideration: the proton and heavier-ion Alfven velocities (v A p and v A h , respectively) and the EMHD magnetic-field penetration velocity into the plasma (v EMHD ). If both Alfven velocities are larger than v EMHD the plasma is pushed ahead of the magnetic piston and the magnetic field energy is dissipated into ion kinetic energy. If v EMHD is the largest of three velocities, the plasma become magnetized and the ions acquire a small axial momentum only. Different ion species may drift in different directions along the current lines. In this case, the magnetic field energy is probably dissipated into electron thermal energy. When vs > V EMHD > vi, as in the case of one of our experiments, ion mass separation occurs. The protons are pushed ahead of the piston while the heavier-ions become magnetized. Since the plasma electrons are unmagnetized they cannot cross the piston, and the heavy ions are probably charge-neutralized by electrons originating from the cathode that are 'born' magnetized

  5. Coulomb blockade induced by magnetic field

    International Nuclear Information System (INIS)

    Kusmartsev, F.V.

    1992-01-01

    In this paper, the authors found that a Coulomb blockade can be induced by magnetic field. The authors illustrated this effect on the example of a ring consisting of two and many Josephson junctions. For the ring with two junctions we present an exact solution. The transition into Coulomb blockade state on a ring transforms into a linear array of Josephson junctions, although in latter case the effect of magnetic field disappears. In the state of Coulomb blockade the magnetization may be both diamagnetic and paramagnetic. The Coulomb blockade may also be removed by external magnetic field

  6. Magnetic field errors tolerances of Nuclotron booster

    Science.gov (United States)

    Butenko, Andrey; Kazinova, Olha; Kostromin, Sergey; Mikhaylov, Vladimir; Tuzikov, Alexey; Khodzhibagiyan, Hamlet

    2018-04-01

    Generation of magnetic field in units of booster synchrotron for the NICA project is one of the most important conditions for getting the required parameters and qualitative accelerator operation. Research of linear and nonlinear dynamics of ion beam 197Au31+ in the booster have carried out with MADX program. Analytical estimation of magnetic field errors tolerance and numerical computation of dynamic aperture of booster DFO-magnetic lattice are presented. Closed orbit distortion with random errors of magnetic fields and errors in layout of booster units was evaluated.

  7. Effect of magnetic field on noncollinear magnetism in classical bilinear-biquadratic Heisenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Pasrija, Kanika, E-mail: kanikapasrija@iisermohali.ac.in; Kumar, Sanjeev, E-mail: sanjeev@iisermohali.ac.in [Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Manauli PO 140306 (India)

    2016-05-06

    We present a Monte Carlo simulation study of a bilinear-biquadratic Heisenberg model on a two-dimensional square lattice in the presence of an external magnetic field. The study is motivated by the relevance of this simple model to the non-collinear magnetism and the consequent ferroelectric behavior in the recently discovered high-temperature multiferroic, cupric oxide (CuO). We show that an external magnetic field stabilizes a non-coplanar magnetic phase, which is characterized by a finite ferromagnetic moment along the direction of the applied magnetic field and a spiral spin texture if projected in the plane perpendicular to the magnetic field. Real-space analysis highlights a coexistence of non-collinear regions with ferromagnetic clusters. The results are also supported by simple variational calculations.

  8. Particle reflection along the magnetic field in nonlinear magnetosonic pulses

    Science.gov (United States)

    Ohsawa, Yukiharu

    2017-11-01

    Reflection of electrons and positrons in oblique, nonlinear magnetosonic pulses is theoretically analyzed. With the use of the parallel pseudo potential F, which is the integral of the parallel electric field along the magnetic field, a simple equation for reflection conditions is derived, which shows that reflection along the magnetic field is caused by two forces: one arising from the parallel pseudo potential multiplied by the particle charge and the other from the magnetic mirror effect. The two forces push electrons in the opposite directions. In compressive solitons, in which the magnetic field is intensified, electrons with large magnetic moments can be reflected by the magnetic mirror effect, whereas in rarefactive solitons, in which the magnetic field is weaker than outside, electrons with small magnetic moments can be reflected by the parallel pseudo potential. Although F is basically positive and large in shock waves, it occasionally becomes negative in some regions behind the shock front in nonstationary wave evolution. These negative spikes of F can reflect electrons. In contrast to the case of electrons, the two forces push positrons in the same direction. For this reason, compressive solitons in an electron-positron-ion plasma reflect a large fraction of positrons compared with electrons, whereas rarefactive solitons will reflect no positrons. A shock wave can reflect a majority of positrons with its large F. However, in a pure electron-positron plasma, in which F becomes zero, positron reflection will rarely occur.

  9. SYNTHETIC OBSERVATIONS OF MAGNETIC FIELDS IN PROTOSTELLAR CORES

    International Nuclear Information System (INIS)

    Lee, Joyce W. Y.; Hull, Charles L. H.; Offner, Stella S. R.

    2017-01-01

    The role of magnetic fields in the early stages of star formation is not well constrained. In order to discriminate between different star formation models, we analyze 3D magnetohydrodynamic simulations of low-mass cores and explore the correlation between magnetic field orientation and outflow orientation over time. We produce synthetic observations of dust polarization at resolutions comparable to millimeter-wave dust polarization maps observed by the Combined Array for Research in Millimeter-wave Astronomy and compare these with 2D visualizations of projected magnetic field and column density. Cumulative distribution functions of the projected angle between the magnetic field and outflow show different degrees of alignment in simulations with differing mass-to-flux ratios. The distribution function for the less magnetized core agrees with observations finding random alignment between outflow and field orientations, while the more magnetized core exhibits stronger alignment. We find that fractional polarization increases when the system is viewed such that the magnetic field is close to the plane of the sky, and the values of fractional polarization are consistent with observational measurements. The simulation outflow, which reflects the underlying angular momentum of the accreted gas, changes direction significantly over over the first ∼0.1 Myr of evolution. This movement could lead to the observed random alignment between outflows and the magnetic fields in protostellar cores.

  10. Programming the control of magnetic field measurements

    International Nuclear Information System (INIS)

    David, L.

    1998-01-01

    This paper gives a short review concerning the new NMR probe measurement control system. Then it presents the new program 'CYCLOCHAMP' attached to the magnetic field measurement which also allows to cycle the magnetic field inside the cyclotrons and to equilibrate it among the SSC sectors. (authors)

  11. Strong magnetic field generation in laser plasma

    International Nuclear Information System (INIS)

    Nakarmi, J.J.; Jha, L.N.

    1996-12-01

    An attempt has been made to solve the magnetic field evolution equation by using Green function and taking convective, diffusion and nabla n x nabla T as a dominant source term. The maximum magnetic field is obtained to be an order of megagauss. (author). 14 refs, 1 fig

  12. Hydrogen atom moving across a magnetic field

    International Nuclear Information System (INIS)

    Lozovik, Yu.E.; Volkov, S.Yu.

    2004-01-01

    A hydrogen atom moving across a magnetic field is considered in a wide region of magnitudes of magnetic field and atom momentum. We solve the Schroedinger equation of the system numerically using an imaginary time method and find wave functions of the lowest states of atom. We calculate the energy and the mean electron-nucleus separation as a function of atom momentum and magnetic field. All the results obtained could be summarized as a phase diagram on the 'atom-momentum - magnetic-field' plane. There are transformations of wave-function structure at critical values of atom momentum and magnetic field that result in a specific behavior of dependencies of energy and mean interparticle separation on the atom momentum P. We discuss a transition from the Zeeman regime to the high magnetic field regime. A qualitative analysis of the complicated behavior of wave functions vs P based on the effective potential examination is given. We analyze a sharp transition at the critical momentum from a Coulomb-type state polarized due to atom motion to a strongly decentered (Landau-type) state at low magnetic fields. A crossover occurring at intermediate magnetic fields is also studied

  13. Advances in the measurement of weak magnetic fields

    International Nuclear Information System (INIS)

    Li Damin; Huang Minzhe.

    1992-01-01

    The state-of-art and general features of instruments for measuring weak magnetic fields (such as the non-directional magnetometer, induced coil magnetometer, proton magnetometer, optical pumping magnetometer, flux-gate magnetometer and superconducting quantum magnetometer) are briefly described. Emphasis is laid on the development of a novel technique used in the flux-gate magnetometer and the liquid nitrogen SQUID. Typical applications of the measuring techniques for weak magnetic fields are given

  14. Magnetic resonance imaging: effects of magnetic field strength

    International Nuclear Information System (INIS)

    Crooks, L.E.; Arakawa, M.; Hoenninger, J.; McCarten, B.; Watts, J.; Kaufman, L.

    1984-01-01

    Magnetic resonance images of the head, abdomen, and pelvis of normal adult men were obtained using varying magnetic field strength, and measurements of T1 and T2 relaxations and of signal-to-noise (SN) ratios were determined. For any one spin echo sequence, gray/white matter contrast decreases and muscle/fat contrast increases with field. SN levels rise rapidly up to 3.0 kgauss and then change more slowly, actually dropping for muscle. The optimum field for magnetic resonance imaging depends on tissue type, body part, and imaging sequence, so that it does not have a unique value. Magnetic resonance systems that operate in the 3.0-5.0 kgauss range achieve most or all of the gains that can be achieved by higher magnetic fields

  15. Earth magnetism a guided tour through magnetic fields

    CERN Document Server

    Campbell, Wallace H

    2001-01-01

    An introductory guide to global magnetic field properties, Earth Magnetism addresses, in non-technical prose, many of the frequently asked questions about Earth''s magnetic field. Magnetism surrounds and penetrates our Earth in ways basic science courses can rarely address. It affects navigation, communication, and even the growth of crystals. As we observe and experience an 11-year solar maximum, we may witness spectacular satellite-destroying solar storms as they interact with our magnetic field. Written by an acknowledged expert in the field, this book will enrich courses in earth science, atmospheric science, geology, meteorology, geomagnetism, and geophysics. Contains nearly 200 original illustrations and eight pages of full-color plates.* Largely mathematics-free and with a wide breadth of material suitable for general readers* Integrates material from geomagnetism, paleomagnetism, and solar-terrestrial space physics.* Features nearly 200 original illustrations and 4 pages of colour plates

  16. Magnetic Field Analysis of Plasma Guide in Galathea Trimyx

    Directory of Open Access Journals (Sweden)

    Jin Xianji

    2016-01-01

    Full Text Available You Galathea Trimyx is a kind of small size, multipole magnetic confinement devices in controlled thermonuclear fusion. Plasma guide is one of important part in Galathea Trimyx which is responsible for transporting fast and slow plasma bunches ejected from plasma gun. The distribution and uniformity of magnetic field in completed plasma guide is analyzed in detail, including in x -axis direction and in z-axis direction. On the basis, the motion of plasma in the guide is discussed.

  17. Parameterization and measurements of helical magnetic fields

    International Nuclear Information System (INIS)

    Fischer, W.; Okamura, M.

    1997-01-01

    Magnetic fields with helical symmetry can be parameterized using multipole coefficients (a n , b n ). We present a parameterization that gives the familiar multipole coefficients (a n , b n ) for straight magnets when the helical wavelength tends to infinity. To measure helical fields all methods used for straight magnets can be employed. We show how to convert the results of those measurements to obtain the desired helical multipole coefficients (a n , b n )

  18. Classical theory of electric and magnetic fields

    CERN Document Server

    Good, Roland H

    1971-01-01

    Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma

  19. Mechanics of magnetic fluid column in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Polunin, V.M.; Ryapolov, P.A., E-mail: r-piter@yandex.ru; Platonov, V.B.

    2017-06-01

    Elastic-and magnetic properties of magnetic fluid confined by ponderomotive force in a tube fixed in horizontal position are considered. The system is placed in a strong magnetic field under the influence of external static and dynamic perturbations. An experimental setup has been developed. A theoretical basis of the processes of magnetic colloid elastic deformation has been proposed. The values of the static ponderomotive elasticity coefficient and the elasticity coefficient under dynamic action are experimentally determined. The calculations of the saturation magnetization for two magnetic fluid samples, carried out according to the equation containing the dynamic elasticity coefficient, are in good agreement with the experimental magnetization curve. The described method is of interest when studying magnetophoresis and aggregation of nanoparticles in magnetic colloids.

  20. Levitation of a magnet by an alternating magnetic field

    International Nuclear Information System (INIS)

    Gough, W; Hunt, M O; Summerskill, W S H

    2013-01-01

    An experiment is described in which a small strong cylindrical magnet is levitated by a vertical non-uniform alternating magnetic field. Surprisingly, no superimposed constant field is necessary, but the levitation can be explained when the vertical motion of the magnet is taken into account. The theoretical mean levitation force is (0.26 ± 0.06) N, which is in good agreement with the levitated weight of (0.239 ± 0.001) N. This experiment is suitable for an undergraduate laboratory, particularly as a final year project. Students have found it interesting, and it sharpens up knowledge of basic magnetism. (paper)

  1. Magnetic Fields in the Solar Convection Zone

    Directory of Open Access Journals (Sweden)

    Fan Yuhong

    2004-07-01

    Full Text Available Recent studies of the dynamic evolution of magnetic flux tubes in the solar convection zone are reviewed with focus on emerging flux tubes responsible for the formation of solar active regions. The current prevailing picture is that active regions on the solar surface originate from strong toroidal magnetic fields generated by the solar dynamo mechanism at the thin tachocline layer at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. This review discusses results with regard to the following major topics: 1. the equilibrium properties of the toroidal magnetic fields stored in the stable overshoot region at the base of the convection zone, 2. the buoyancy instability associated with the toroidal magnetic fields and the formation of buoyant magnetic flux tubes, 3. the rise of emerging flux loops through the solar convective envelope as modeled by the thin flux tube calculations which infer that the field strength of the toroidal magnetic fields at the base of the solar convection zone is significantly higher than the value in equipartition with convection, 4. the minimum twist needed for maintaining cohesion of the rising flux tubes, 5. the rise of highly twisted kink unstable flux tubes as a possible origin of d -sunspots, 6. the evolution of buoyant magnetic flux tubes in 3D stratified convection, 7. turbulent pumping of magnetic flux by penetrative compressible convection, 8. an alternative mechanism for intensifying toroidal magnetic fields to significantly super-equipartition field strengths by conversion of the potential energy associated with the superadiabatic stratification of the solar convection zone, and finally 9. a brief overview of our current understanding of flux emergence at the surface and post-emergence evolution of the subsurface magnetic fields.

  2. Orienting Paramecium with intense static magnetic fields

    Science.gov (United States)

    Valles, James M., Jr.; Guevorkian, Karine; Quindel, Carl

    2004-03-01

    Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic fields, 2.5 T Paramecium Caudatum that were suspended in a density matched medium. The organisms align with their long axis parallel to the applied magnetic field. Their intrinsic diamagnetic anisotropy is 3x10-11 in cgs units. We will discuss the implications of these results for employing magnetic fields to probe the behavior of swimming Paramecium. [1] J. M. Valles, Jr. et al., Expt. Cell Res.274, 112-118 (2002).

  3. Development of high field superconducting magnet

    International Nuclear Information System (INIS)

    Irie, Fujio; Takeo, Masakatsu.

    1986-01-01

    Recently, in connection with nuclear fusion research, the development of high field superconducting magnets showed rapid progress. The development of high field magnets of 15 T class by the techniques of winding after heat treatment has been continued in various places, as these techniques are suitable to make large magnets. In 1985, Kyushu University attained the record of 15.5 T. However in high field magnets, there are many problems peculiar to them, and the basic research related to those is demanded. In this report, these general problems, the experience of the design and manufacture in Kyushu University and the related problems are described. The superconducting magnet installed in the Superconducting Magnet Research Center of Kyushu University attained the record of 15.5 T for the first time in March, 1985. In superconducting magnets, very difficult problem must be solved since superconductivity, heat and mechanical force are inter related. The problems of the wire materials for high field, the scale of high field magnets, the condition limiting mean current density, and the development of high field magnets in Kyushu University are described. (Kako, I.)

  4. Line formation in microturbulent magnetic fields

    International Nuclear Information System (INIS)

    Domke, H.; Pavlov, G.G.

    1979-01-01

    The formation of Zeeman lines in Gaussian microturbulent magnetic fields is considered assuming LTE. General formulae are derived for the local mean values of the transfer matrix elements. The cases of one-dimensional (longitudinal), isotropic, and two-dimensional (transversal) magnetic microturbulence are studied in some detail. Asymptotic formulae are given for small mean as well as for small microturbulent magnetic fields. Characteristic effects of magnetic microturbulence on the transfer coefficients are: (i) the broadening of the frequency contours, although only for the case of longitudinal Zeeman effect and longitudinal magnetic microturbulence this effect can be described analogous to Doppler broadening, (ii) the appearance of a pseudo-Zeeman structure for nonlongitudinal magnetic microturbulence, (iii) the reduction of maximal values of circular polarization, and (iv) the appearance of characteristic linear polarization effects due to the anisotropy of the magnetic microturbulence. Line contours and polarization of Zeeman triplets are computed for Milne-Eddington atmospheres. It is shown that magnetic intensification due to microturbulent magnetic fields may be much more efficient than that due to regular fields. The gravity center of a Zeeman line observed in circularly polarized light remains a reasonable measure of the line of sight component of the mean magnetic field for a line strength eta 0 < approx. 2. For saturated lines, the gravity center distance depends significantly on the magnetic microturbulence and its anisotropy. The influence of magnetic microturbulence on the ratio of longitudinal field magnetographic signals shows that unique conclusions about the magnetic microstructure can be drawn from the line ratio measurements only in combination with further spectroscopic data or physical reasoning. (orig.)

  5. Polarization of spin-1 particles without an anomalous magnetic moment in a uniform magnetic field

    OpenAIRE

    Silenko, Alexander J.

    2008-01-01

    The polarization operator projections onto four directions remain unchanged for spin-1 particles without an anomalous magnetic moment in a uniform magnetic field. The approximate conservation of the polarization operator projections onto the horizontal axes of the cylindrical coordinate system takes place.

  6. Magnetic fields of HgMn stars

    DEFF Research Database (Denmark)

    Hubrig, S.; González, J. F.; Ilyin, I.

    2012-01-01

    Context. The frequent presence of weak magnetic fields on the surface of spotted late-B stars with HgMn peculiarity in binary systems has been controversial during the two last decades. Recent studies of magnetic fields in these stars using the least-squares deconvolution (LSD) technique have...... failed to detect magnetic fields, indicating an upper limit on the longitudinal field between 8 and 15G. In these LSD studies, assumptions were made that all spectral lines are identical in shape and can be described by a scaled mean profile. Aims. We re-analyse the available spectropolarimetric material...

  7. The topology of intrasector reversals of the interplanetary magnetic field

    Science.gov (United States)

    Kahler, S. W.; Crooker, N. U.; Gosling, J. T.

    1996-11-01

    A technique has been developed recently to determine the polarities of interplanetary magnetic fields relative to their origins at the Sun by comparing energetic electron flow directions with local magnetic field directions. Here we use heat flux electrons from the Los Alamos National Laboratory (LANL) plasma detector on the ISEE 3 spacecraft to determine the field polarities. We examine periods within well-defined magnetic sectors when the field directions appear to be reversed from the normal spiral direction of the sector. About half of these intrasector field reversals (IFRs) are cases in which the polarities match those of the surrounding sectors, indicating that those fields have been folded back toward the Sun. The more interesting cases are those with polarity reversals. We find no clear cases of isolated reverse polarity fields, which suggests that islands of reverse polarity in the solar source dipole field probably do not exist. The IFRs with polarity reversals are strongly associated with periods of bidirectional electron flows, suggesting that those fields occur only in conjunction with closed fields. We propose that both those IFRs and the bidirectional flows are signatures of coronal mass ejections (CMEs). In that case, many interplanetary CMEs are larger and more complex than previously thought, consisting of both open and closed field components.

  8. Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops

    Directory of Open Access Journals (Sweden)

    Fei Sun

    2015-09-01

    Full Text Available A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.

  9. Magnetic islands modelled by a phase-field-crystal approach

    Science.gov (United States)

    Faghihi, Niloufar; Mkhonta, Simiso; Elder, Ken R.; Grant, Martin

    2018-03-01

    Using a minimal model based on the phase-field-crystal formalism, we study the coupling between the density and magnetization in ferromagnetic solids. Analytical calculations for the square phase in two dimensions are presented and the small deformation properties of the system are examined. Furthermore, numerical simulations are conducted to study the influence of an external magnetic field on various phase transitions, the anisotropic properties of the free energy functional, and the scaling behaviour of the growth of the magnetic domains in a crystalline solid. It is shown that the energy of the system can depend on the direction of the magnetic moments, with respect to the crystalline direction. Furthermore, the growth of the magnetic domains in a crystalline solid is studied and is shown that the growth of domains is in agreement with expected behaviour.

  10. CSEM-steel hybrid wiggler/undulator magnetic field studies

    International Nuclear Information System (INIS)

    Halbach, K.; Hoyer, E.; Marks, S.; Plate, D.; Shuman, D.

    1985-05-01

    Current design of permanent magnet wiggler/undulators use either pure charge sheet equivalent material (CSEM) or the CSEM-Steel hybrid configuration. Hybrid configurations offer higher field strength at small gaps, field distributions dominated by the pole surfaces and pole tuning. Nominal performance of the hybrid is generally predicted using a 2-D magnetic design code neglecting transverse geometry. Magnetic measurements are presented showing transverse configuration influence on performance, from a combination of models using CSEMs, REC (H/sub c/ = 9.2 kOe) and NdFe (H/sub c/ = 10.7 kOe), different pole widths and end configurations. Results show peak field improvement using NdFe in place of REC in identical models, gap peak field decrease with pole width decrease (all results less than computed 2-D fields), transverse gap field distributions, and importance of CSEM material overhanging the poles in the transverse direction for highest gap fields

  11. Magnetic fields in noninvasive brain stimulation.

    Science.gov (United States)

    Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

    2014-04-01

    The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985.

  12. Hypernuclear matter in strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Monika [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany); Indian Institute of Technology Rajasthan, Old Residency Road, Ratanada, Jodhpur 342011 (India); Mukhopadhyay, Banibrata [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Sedrakian, Armen, E-mail: sedrakian@th.physik.uni-frankfurt.de [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany)

    2013-01-17

    Compact stars with strong magnetic fields (magnetars) have been observationally determined to have surface magnetic fields of order of 10{sup 14}–10{sup 15} G, the implied internal field strength being several orders larger. We study the equation of state and composition of dense hypernuclear matter in strong magnetic fields in a range expected in the interiors of magnetars. Within the non-linear Boguta–Bodmer–Walecka model we find that the magnetic field has sizable influence on the properties of matter for central magnetic field B⩾10{sup 17} G, in particular the matter properties become anisotropic. Moreover, for the central fields B⩾10{sup 18} G, the magnetized hypernuclear matter shows instability, which is signalled by the negative sign of the derivative of the pressure parallel to the field with respect to the density, and leads to vanishing parallel pressure at the critical value B{sub cr}≃10{sup 19} G. This limits the range of admissible homogeneously distributed fields in magnetars to fields below the critical value B{sub cr}.

  13. INTERSTELLAR MAGNETIC FIELD SURROUNDING THE HELIOPAUSE

    International Nuclear Information System (INIS)

    Whang, Y. C.

    2010-01-01

    This paper presents a three-dimensional analytical solution, in the limit of very low plasma β-ratio, for the distortion of the interstellar magnetic field surrounding the heliopause. The solution is obtained using a line dipole method that is the integration of point dipole along a semi-infinite line; it represents the magnetic field caused by the presence of the heliopause. The solution allows the variation of the undisturbed magnetic field at any inclination angle. The heliosphere is considered as having blunt-nosed geometry on the upwind side and it asymptotically approaches a cylindrical geometry having an open exit for the continuous outflow of the solar wind on the downwind side. The heliopause is treated as a magnetohydrodynamic tangential discontinuity; the interstellar magnetic field lines at the boundary are tangential to the heliopause. The interstellar magnetic field is substantially distorted due to the presence of the heliopause. The solution shows the draping of the field lines around the heliopause. The magnetic field strength varies substantially near the surface of the heliopause. The effect on the magnetic field due to the presence of the heliopause penetrates very deep into the interstellar space; the depth of penetration is of the same order of magnitude as the scale length of the heliosphere.

  14. Magnetic field compression using pinch-plasma

    International Nuclear Information System (INIS)

    Koyama, K.; Tanimoto, M.; Matsumoto, Y.; Veno, I.

    1987-01-01

    In a previous report, the method for ultra-high magnetic field compression by using the pinchplasma was discussed. It is summarized as follows. The experiment is performed with the Mather-type plasma focus device tau/sub 1/4/ = 2 μs, I=880 kA at V=20 kV). An initial DC magnetic field is fed by an electromagnet embedded in the inner electrode. The axial component of the magnetic field diverges from the maximum field of 1 kG on the surface of the inner electrode. The density profile deduced from a Mach-Zehnder interferogram with a 2-ns N/sub 2/-laser shows a density dip lasting for 30 ns along the axes. Using the measured density of 8 x 10/sup 18/ cm/sup -3/, the temperature of 1.5 keV and the pressure balance relation, the magnitude of the trapped magnetic field is estimated to be 1.0 MG. The magnitude of the compressed magnetic field is also measured by Faraday rotation in a single-mode quartz fiber and a magnetic pickup soil. A protective polyethylene tube (3-mm o.d.) is used along the central axis through the inner electrode and the discharge chamber. The peak value of the compressed field range from 150 to 190 kG. No signal of the magnetic field appears up to the instance of the maximum pinch

  15. Magnetic Field Measurements In Magnetized Plasmas Using Zeeman Broadening Diagnostics

    Science.gov (United States)

    Haque, Showera; Wallace, Matthew; Presura, Radu; Neill, Paul

    2017-10-01

    The Zeeman effect has been used to measure the magnetic field in high energy density plasmas. This method is limited when plasma conditions are such that the line broadening due to the high plasma density and temperature surpasses the Zeeman splitting. We have measured magnetic fields in magnetized laser plasmas under conditions where the Zeeman splitting was not spectrally resolved. The magnetic field strength was determined from the difference in widths of two doublet components, using an idea proposed by Tessarin et al. (2011). Time-gated spectra with one-dimensional space-resolution were obtained at the Nevada Terawatt Facility for laser plasmas created by 20 J, 1 ns Leopard laser pulses, and expanding in the azimuthal magnetic field produced by the 0.6 MA Zebra pulsed power generator. We explore the response of the Al III 4s 2S1/2 - 4p 2P1 / 2 , 3 / 2 doublet components to the external magnetic field spatially along the plasma. Radial magnetic field and electron density profiles were measured within the plasma plume. This work was supported by the DOE/OFES Grant DE-SC0008829 and DOE/NNSA contract DE-FC52-06NA27616.

  16. The levitation characteristics of the magnetic substances using trapped HTS bulk annuli with various magnetic field distributions

    International Nuclear Information System (INIS)

    Kim, S.B.; Ikegami, T.; Matsunaga, J.; Fujii, Y.; Onodera, H.

    2013-01-01

    Highlights: •The spherical solenoid magnet can make a various magnetic field distributions. •We generated a large magnetic gradient at inner space of HTS bulks. •The levitation height of samples was improved by the reapplied field method. •The levitation height depends on the variation rate of magnetic field gradient. -- Abstract: We have been investigating the levitation system without any mechanical contact which is composed of a field-cooled ring-shaped high temperature superconducting (HTS) bulks [1]. In this proposed levitation system, the trapped magnetic field distributions of stacked HTS bulk are very important. In this paper, the spherical solenoid magnet composed of seven solenoid coils with different inner and outer diameters was designed and fabricated as a new magnetic source. The fabricated spherical solenoid magnet can easily make a homogeneous and various magnetic field distributions in inner space of stacked HTS bulk annuli by controlling the emerging currents of each coil. By using this spherical solenoid magnet, we tried to make a large magnetic field gradient in inner space of HTS bulk annuli, and it is very important on the levitation of magnetic substances. In order to improve the levitation properties of magnetic substances with various sizes, the external fields were reapplied to the initially trapped HTS bulk magnets. We could generate a large magnetic field gradient along the axial direction in inner space of HTS bulk annuli, and obtain the improved levitation height of samples by the proposed reapplied field method

  17. Ohm's law for mean magnetic fields

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1986-05-01

    The magnetic fields associated with plasmas frequently exhibit small amplitude MHD fluctuations. It is useful to have equations for the magnetic field averaged over these fluctuations, the so-called mean field equations. Under very general assumptions it is shown that the effect of MHD fluctuations on a force-free plasma can be represented by one parameter in Ohm's law, which is effectively the coefficient of electric current viscosity

  18. Ohm's law for mean magnetic fields

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1986-01-01

    The magnetic fields associated with plasmas frequently exhibit small-amplitude MHD fluctuations. It is useful to have equations for the magnetic field averaged over these fluctuations, the so-called mean field equations. Under very general assumptions, it is shown that the effect of MHD fluctuations on a force-free plasma can be represented by one parameter in Ohm's law, which is effectively the coefficient of electric current viscosity. (author)

  19. Lightning magnetic field measuring system in Bogota

    OpenAIRE

    Escobar Alvarado, Oscar Fernardo

    2013-01-01

    This thesis presents the configuration and performance of a lightning radiated electromagnetic field measuring system in Bogotá Colombia. The system is composed by both magnetic and electric field measuring systems working as separated sensors. The aim of the thesis is the design and construction of a Magnetic Field Measuring System and the implementation of a whole lightning measuring system in Bogotá. The theoretical background, design process, construction and implementation of the system ...

  20. Tuning permanent magnets with adjustable field clamps

    International Nuclear Information System (INIS)

    Schermer, R.I.

    1987-01-01

    The effective length of a permanent-magnet assembly can be varied by adjusting the geometrical parameters of a field clamp. This paper presents measurements on a representative dipole and quadrupole as the field clamp is withdrawn axially or radially. The detailed behavior depends upon the magnet multipolarity and geometry. As a rule-of-thumb, a 3-mm-thick iron plate placed at one end plane of the magnet will shorten the length by one-third of the magnet bore radius

  1. Neutron stars velocities and magnetic fields

    Science.gov (United States)

    Paret, Daryel Manreza; Martinez, A. Perez; Ayala, Alejandro.; Piccinelli, G.; Sanchez, A.

    2018-01-01

    We study a model that explain neutron stars velocities due to the anisotropic emission of neutrinos. Strong magnetic fields present in neutron stars are the source of the anisotropy in the system. To compute the velocity of the neutron star we model its core as composed by strange quark matter and analice the properties of a magnetized quark gas at finite temperature and density. Specifically we have obtained the electron polarization and the specific heat of magnetized fermions as a functions of the temperature, chemical potential and magnetic field which allow us to study the velocity of the neutron star as a function of these parameters.

  2. Tuning bacterial hydrodynamics with magnetic fields

    Science.gov (United States)

    Pierce, C. J.; Mumper, E.; Brown, E. E.; Brangham, J. T.; Lower, B. H.; Lower, S. K.; Yang, F. Y.; Sooryakumar, R.

    2017-06-01

    Magnetotactic bacteria are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nanoparticles called magnetosomes. This study exploits their innate magnetism to investigate previously unexplored facets of bacterial hydrodynamics at surfaces. Through use of weak, uniform, external magnetic fields and local, micromagnetic surface patterns, the relative strength of hydrodynamic, magnetic, and flagellar force components is tuned through magnetic control of the bacteria's orientation. The resulting swimming behaviors provide a means to experimentally determine hydrodynamic parameters and offer a high degree of control over large numbers of living microscopic entities. The implications of this controlled motion for studies of bacterial motility near surfaces and for micro- and nanotechnology are discussed.

  3. Magnetic Fields in the Early Universe

    CERN Document Server

    Grasso, D; Grasso, D

    2001-01-01

    This review concerns the origin and the possible effects of magnetic fields in the early Universe. We start by providing to the reader with a short overview of the current state of art of observations of cosmic magnetic fields. We then illustrate the arguments in favour of a primordial origin of magnetic fields in the galaxies and in the clusters of galaxies. We argue that the most promising way to test this hypothesis is to look for possible imprints of magnetic fields on the temperature and polarization anisotropies of the cosmic microwave background radiation (CMBR). With this purpose in mind, we provide a review of the most relevant effects of magnetic fields on the CMBR. A long chapter of this review is dedicated to particle physics inspired models which predict the generation of magnetic fields during the early Universe evolution. Although it is still unclear if any of these models can really explain the origin of galactic and intergalactic magnetic fields, we show that interesting effects may arise any...

  4. The characterisation of magnetic pigment dispersions using pulsed magnetic fields

    International Nuclear Information System (INIS)

    Blackwell, J.J.; O'Grady, K.; Nelson, N.K.; Sharrock, M.P.

    2003-01-01

    In this work, we describe the application of pulsed field magnetometry techniques for the characterisation of magnetic pigment dispersions. Magnetic pigment dispersions are important technological materials as in one form they are the material which are used to coat base film in order to make magnetic recording tape. It is these materials that have been evaluated. In this work, we describe the use of two pulsed field magnetometers, one being a low-field instrument with a maximum field of 750 Oe and the other a high-field instrument with a maximum field of 4.1 kOe. Using inductive sensing, the magnetisation is monitored in real time as the pulse is applied. We find that using these techniques we can successfully monitor the progress of the dispersion process, the effects of different resin systems and the effect of different processing conditions. We find that our results are consistent with rheological and other measurements

  5. The characterisation of magnetic pigment dispersions using pulsed magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Blackwell, J.J.; O' Grady, K. E-mail: kog1@york.ac.uk; Nelson, N.K.; Sharrock, M.P

    2003-10-01

    In this work, we describe the application of pulsed field magnetometry techniques for the characterisation of magnetic pigment dispersions. Magnetic pigment dispersions are important technological materials as in one form they are the material which are used to coat base film in order to make magnetic recording tape. It is these materials that have been evaluated. In this work, we describe the use of two pulsed field magnetometers, one being a low-field instrument with a maximum field of 750 Oe and the other a high-field instrument with a maximum field of 4.1 kOe. Using inductive sensing, the magnetisation is monitored in real time as the pulse is applied. We find that using these techniques we can successfully monitor the progress of the dispersion process, the effects of different resin systems and the effect of different processing conditions. We find that our results are consistent with rheological and other measurements.

  6. Design of integral magnetic field sensor

    International Nuclear Information System (INIS)

    Ma Liang; Cheng Yinhui; Wu Wei; Li Baozhong; Zhou Hui; Li Jinxi; Zhu Meng

    2010-01-01

    Magnetic field is one of the important physical parameters in the measuring process of pulsed EMP. We researched on anti-interference and high-sensitivity measurement technique of magnetic field in this report. Semi rigid cables were to bent into ringed antenna so that the antenna was shielded from electric-field interference and had little inductance; In order to have high sensitivity, operational transconductance amplifier was used to produce an active integrator; We designed an optical-electronic transferring module to upgrade anti-interference capability of the magnetic-field measurement system. A measurement system of magnetic field was accomplished. The measurement system was composed of antenna, integrator, and optical-electric transferring module and so on. We calibrated the measurement system in coaxial TEM cell. It indicates that, the measurement system's respondence of rise time is up to 2.5 ns, and output width at 90%-maximum of the pulse is wider than 200 ns. (authors)

  7. Magnetic field aberration induced by cycle stress

    International Nuclear Information System (INIS)

    Yang En; Li Luming; Chen Xing

    2007-01-01

    Magneto-mechanical effect has been causing people's growing interest because of its relevance to several technology problems. One of them is the variation of surface magnetic field induced by stress concentration under the geomagnetic field. It can be used as an innovative, simple and convenient potential NDE method, called as magnetic memory method. However, whether and how this can be used as a quantitative measurement method, is still a virginal research field where nobody sets foot in. In this paper, circle tensile stress within the elastic region was applied to ferromagnetic sample under geomagnetic field. Experiment results on the relation between surface magnetic field and elastic stress were presented, and a simple model was derived. Simulation of the model was reconciled with the experimental results. This can be of great importance for it provides a brighter future for the promising Magnetic Memory NDE method-the potential possibility of quantitative measurement

  8. Graphene spin capacitor for magnetic field sensing

    OpenAIRE

    Semenov, Y. G.; Zavada, J. M.; Kim, K. W.

    2010-01-01

    An analysis of a novel magnetic field sensor based on a graphene spin capacitor is presented. The proposed device consists of graphene nanoribbons on top of an insulator material connected to a ferromagnetic source/drain. The time evolution of spin polarized electrons injected into the capacitor can be used for an accurate determination at room temperature of external magnetic fields. Assuming a spin relaxation time of 100 ns, magnetic fields on the order of $\\sim 10$ mOe may be detected at r...

  9. Dissipative charged fluid in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Navid; Davody, Ali, E-mail: davody.phy@gmail.com

    2016-05-10

    We study the collective excitations in a dissipative charged fluid at zero chemical potential when an external magnetic field is present. While in the absence of magnetic field, four collective excitations appear in the fluid, we find five hydrodynamic modes here. This implies that the magnetic field splits the degeneracy between the transverse shear modes. Using linear response theory, we then compute the retarded response functions. In particular, it turns out that the correlation between charge and the energy fluctuations will no longer vanish, even at zero chemical potential. By use of the response functions, we also derive the relevant Kubo formulas for the transport coefficients.

  10. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Shocks

    Science.gov (United States)

    Nishikawa, Ken-IchiI.; Hededal, C.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (m) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  11. Particle Acceleration, Magnetic Field Generation in Relativistic Shocks

    Science.gov (United States)

    Nishikawa, Ken-Ichi; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.

    2005-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  12. Probing intergalactic magnetic fields with simulations of electromagnetic cascades

    Energy Technology Data Exchange (ETDEWEB)

    Alves Batista, Rafael [Oxford Univ. (United Kingdom). Dept. of Physics and Astrophysics; Saveliev, Andrey [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Russian Academy of Sciences, Moscow (Russian Federation). Keldysh Inst. of Applied Mathematics; Sigl, Guenter [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Vachaspati, Tanmay [Arizona State Univ., Tempe, AZ (United States). Dept. of Physics

    2016-12-15

    We determine the effect of intergalactic magnetic fields on the distribution of high energy gamma rays by performing three-dimensional Monte Carlo simulations of the development of gamma-ray-induced electromagnetic cascades in the magnetized intergalactic medium. We employ the so-called ''Large Sphere Observer'' method to efficiently simulate blazar gamma ray halos. We study magnetic fields with a Batchelor spectrum and with maximal left- and right-handed helicities. We also consider the case of sources whose jets are tilted with respect to the line of sight. We verify the formation of extended gamma ray halos around the source direction, and observe spiral-like patterns if the magnetic field is helical. We apply the Q-statistics to the simulated halos to extract their spiral nature and also propose an alternative method, the S-statistics. Both methods provide a quantative way to infer the helicity of the intervening magnetic fields from the morphology of individual blazar halos for magnetic field strengths B>or similar 10{sup -15} G and magnetic coherence lengths L{sub c}>or similar 100 Mpc. We show that the S-statistics has a better performance than the Q-statistics when assessing magnetic helicity from the simulated halos.

  13. Probing intergalactic magnetic fields with simulations of electromagnetic cascades

    International Nuclear Information System (INIS)

    Alves Batista, Rafael; Saveliev, Andrey; Russian Academy of Sciences, Moscow; Sigl, Guenter; Vachaspati, Tanmay

    2016-12-01

    We determine the effect of intergalactic magnetic fields on the distribution of high energy gamma rays by performing three-dimensional Monte Carlo simulations of the development of gamma-ray-induced electromagnetic cascades in the magnetized intergalactic medium. We employ the so-called ''Large Sphere Observer'' method to efficiently simulate blazar gamma ray halos. We study magnetic fields with a Batchelor spectrum and with maximal left- and right-handed helicities. We also consider the case of sources whose jets are tilted with respect to the line of sight. We verify the formation of extended gamma ray halos around the source direction, and observe spiral-like patterns if the magnetic field is helical. We apply the Q-statistics to the simulated halos to extract their spiral nature and also propose an alternative method, the S-statistics. Both methods provide a quantative way to infer the helicity of the intervening magnetic fields from the morphology of individual blazar halos for magnetic field strengths B>or similar 10"-"1"5 G and magnetic coherence lengths L_c>or similar 100 Mpc. We show that the S-statistics has a better performance than the Q-statistics when assessing magnetic helicity from the simulated halos.

  14. Relativistic stars with purely toroidal magnetic fields

    International Nuclear Information System (INIS)

    Kiuchi, Kenta; Yoshida, Shijun

    2008-01-01

    We investigate the effects of the purely toroidal magnetic field on the equilibrium structures of the relativistic stars. The basic equations for obtaining equilibrium solutions of relativistic rotating stars containing purely toroidal magnetic fields are derived for the first time. To solve these basic equations numerically, we extend the Cook-Shapiro-Teukolsky scheme for calculating relativistic rotating stars containing no magnetic field to incorporate the effects of the purely toroidal magnetic fields. By using the numerical scheme, we then calculate a large number of the equilibrium configurations for a particular distribution of the magnetic field in order to explore the equilibrium properties. We also construct the equilibrium sequences of the constant baryon mass and/or the constant magnetic flux, which model the evolution of an isolated neutron star as it loses angular momentum via the gravitational waves. Important properties of the equilibrium configurations of the magnetized stars obtained in this study are summarized as follows: (1) For the nonrotating stars, the matter distribution of the stars is prolately distorted due to the toroidal magnetic fields. (2) For the rapidly rotating stars, the shape of the stellar surface becomes oblate because of the centrifugal force. But, the matter distribution deep inside the star is sufficiently prolate for the mean matter distribution of the star to be prolate. (3) The stronger toroidal magnetic fields lead to the mass shedding of the stars at the lower angular velocity. (4) For some equilibrium sequences of the constant baryon mass and magnetic flux, the stars can spin up as they lose angular momentum.

  15. Conductance of auroral magnetic field lines

    International Nuclear Information System (INIS)

    Weimer, D.R.; Gurnett, D.A.; Goertz, C.K.

    1986-01-01

    DE-1 high-resolution double-probe electric-field data and simultaneous magnetic-field measurements are reported for two 1981 events with large electric fields which reversed over short distances. The data are presented graphically and analyzed in detail. A field-line conductance of about 1 nmho/sq m is determined for both upward and downward currents, and the ionospheric conductivity is shown, in the short-wavelength limit, to have little effect on the relationship between the (N-S) electric and (E-W) magnetic fields above the potential drop parallel to the magnetic-field lines. The results are found to be consistent with a linear relationship between the field-aligned current density and the parallel potential drop. 14 references

  16. Magnetic fields in the early solar system

    International Nuclear Information System (INIS)

    Strangway, D.W.

    1980-01-01

    Most of the terrestrial planets and the meteorites contain records of early magnetic fields. In the Allende meteorite some of the chondrules were magnetized in fields of about 10 Oe. When assembled into the meteorite, they remained randomly oriented but were partially remagnetized in a field of 1 Oe at temperatures of 200-300 0 C. They present dipole moment of Mercury and the weak dipole moment of Mars may be due to the cooling of a crust in the presence of early magnetic fields. The Earth on the other hand, has had an active dynamo for at least 3 Ga and probably longer, although there is no discernible record of earlier fields due to extensive reheating of the magnetic carriers. Venus has no dynamo field and its surface temperature is too high to carry a crustal remanence. The Moon has no dipole, but local islands of magnetization are believed to be the results of breccias cooling in the presence of an early field, possibly in itself a crustal memory. As we learn about the fields of the planets and the magnetic record contained in their samples we may be able to put sharp constraints on the earliest history of planet formation and evolution. (Auth.)

  17. Magnetic field decay in black widow pulsars

    Science.gov (United States)

    Mendes, Camile; de Avellar, Marcio G. B.; Horvath, J. E.; Souza, Rodrigo A. de; Benvenuto, O. G.; De Vito, M. A.

    2018-04-01

    We study in this work the evolution of the magnetic field in `redback-black widow' pulsars. Evolutionary calculations of these `spider' systems suggest that first the accretion operates in the redback stage, and later the companion star ablates matter due to winds from the recycled pulsar. It is generally believed that mass accretion by the pulsar results in a rapid decay of the magnetic field when compared to the rate of an isolated neutron star. We study the evolution of the magnetic field in black widow pulsars by solving numerically the induction equation using the modified Crank-Nicolson method with intermittent episodes of mass accretion on to the neutron star. Our results show that the magnetic field does not fall below a minimum value (`bottom field') in spite of the long evolution time of the black widow systems, extending the previous conclusions for much younger low-mass X-ray binary systems. We find that in this scenario, the magnetic field decay is dominated by the accretion rate, and that the existence of a bottom field is likely related to the fact that the surface temperature of the pulsar does not decay as predicted by the current cooling models. We also observe that the impurity of the pulsar crust is not a dominant factor in the decay of magnetic field for the long evolution time of black widow systems.

  18. Electromagnetic fields of rotating magnetized NUT stars

    International Nuclear Information System (INIS)

    Ahmedov, B.J.; Khugaev, A.V.; Ahmedov, B.J.

    2004-01-01

    Full text: Analytic general relativistic expressions for the electromagnetic fields external to a slowly-rotating magnetized NUT star with nonvanishing gravitomagnetic charge have been presented. Solutions for the electric and magnetic fields have been found after separating the Maxwell equations in the external background spacetime of a slowly rotating NUT star into angular and radial parts in the lowest order approximation. The star is considered isolated and in vacuum, with different models for stellar magnetic field: i) monopolar magnetic field and II) dipolar magnetic field aligned with the axis of rotation. We have shown that the general relativistic corrections due to the dragging of reference frames and gravitomagnetic charge are not present in the form of the magnetic fields but emerge only in the form of the electric fields. In particular, we have shown that the frame-dragging and gravitomagnetic charge provide an additional induced electric field which is analogous to the one introduced by the rotation of the star in the flat spacetime limit

  19. Generation of high magnetic fields using superconducting magnets

    International Nuclear Information System (INIS)

    Kiyoshi, T.; Otsuka, A.; Kosuge, M.; Yuyama, M.; Nagai, H.; Matsumoto, F.

    2006-01-01

    High-field superconducting magnets have opened new frontiers for several kinds of applications, such as fusion reactors, particle accelerators, and nuclear magnetic resonance (NMR) spectrometers. The present record for the highest field in a fully superconducting state is 23.4 T. It was achieved with a combination of NbTi, Nb 3 Sn, and Bi-2212 conductors in 1999. Since high T c (critical temperature) superconductors (HTS) have sufficiently high critical current density even in excess of 30 T, they are promising for use as high-field superconducting magnets. However, several problems still remain to be resolved for practical applications, and the use of HTS coils will be limited to the inner part of a high-field magnet system in the near future. The required technologies to develop a high-field superconducting magnet with a field of up to 28 T have already been established. Such a magnet is certain to provide information to all leading research areas

  20. Working in the magnetic field of ultrahigh field MRI

    International Nuclear Information System (INIS)

    Leitgeb, N.; Gombotz, H.

    2013-01-01

    Development of magnetic resonance imaging (MRI) device technology continues to increase the static magnetic flux densities applied and consequently leads to considerably increased occupational exposure. This has already made it necessary to review limits of occupational exposure and to postpone European legal regulations for occupational exposure to electromagnetic fields. This raises the question whether and if so which adverse health effects and health risks might be associated with occupational exposure to MRI ultra-high static magnetic fields. Based on a survey on interaction mechanisms recommendations and safety rules are presented to help minimize adverse health effects of emerging ultra-high field MRI. (orig.) [de

  1. Relaxed plasmas in external magnetic fields

    International Nuclear Information System (INIS)

    Spies, G.O.; Li, J.

    1991-08-01

    The well-known theory of relaxed plasmas (Taylor states) is extended to external magnetic fields whose field lines intersect the conducting toroidal boundary. Application to an axially symmetric, large-aspect-ratio torus with circular cross section shows that the maximum pinch ratio, and hence the phenomenon of current saturation, is independent of the external field. The relaxed state is explicitly given for an external octupole field. In this case, field reversal is inhibited near parts of the boundary if the octupole generates magnetic x-points within the plasma. (orig.)

  2. Field simulations for large dipole magnets

    International Nuclear Information System (INIS)

    Lazzaro, A.; Cappuzzello, F.; Cunsolo, A.; Cavallaro, M.; Foti, A.; Khouaja, A.; Orrigo, S.E.A.; Winfield, J.S.

    2007-01-01

    The problem of the description of magnetic field for large bending magnets is addressed in relation to the requirements of modern techniques of trajectory reconstruction. The crucial question of the interpolation and extrapolation of fields known at a discrete number of points is analysed. For this purpose a realistic field model of the large dipole of the MAGNEX spectrometer, obtained with finite elements three dimensional simulations, is used. The influence of the uncertainties in the measured field to the quality of the trajectory reconstruction is treated in detail. General constraints for field measurements in terms of required resolutions, step sizes and precisions are thus extracted

  3. Dynamically important magnetic fields near accreting supermassive black holes.

    Science.gov (United States)

    Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A

    2014-06-05

    Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets.

  4. Advanced measurements and techniques in high magnetic fields

    International Nuclear Information System (INIS)

    Campbell, L.J.; Rickel, D.G.; Lacerda, A.H.; Kim, Y.

    1997-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). High magnetic fields present a unique environment for studying the electronic structure of materials. Two classes of materials were chosen for experiments at the national high Magnetic Field Laboratory at Los Alamos: highly correlated electron systems and semiconductors. Magnetotransport and thermodynamic experiments were performed on the renormalized ground states of highly correlated electron systems (such as heavy fermion materials and Kondo insulators) in the presence of magnetic fields that are large enough to disrupt the many-body correlations. A variety of optical measurements in high magnetic fields were performed on semiconductor heterostructures including GaAs/AlGaAs single heterojunctions (HEMT structure), coupled double quantum wells (CDQW), asymmetric coupled double quantum wells (ACDQW), multiple quantum wells and a CdTe single crystal thin film

  5. Interferometric methods for mapping static electric and magnetic fields

    DEFF Research Database (Denmark)

    Pozzi, Giulio; Beleggia, Marco; Kasama, Takeshi

    2014-01-01

    The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensi......) the model-independent determination of the locations and magnitudes of field sources (electric charges and magnetic dipoles) directly from electron holographic data.......The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensity...... on theoretical models that form the basis of the quantitative interpretation of electron holographic data. We review the application of electron holography to a variety of samples (including electric fields associated with p–n junctions in semiconductors, quantized magnetic flux in superconductors...

  6. Field reconstruction for the KEK large-aperture-spectrometer-magnet 'TOKIWA'

    International Nuclear Information System (INIS)

    Amako, K.; Kawano, K.; Sugimoto, S.; Matsui, T.

    1978-10-01

    Field reconstruction has been performed for the KEK large-aperture-magnet ''TOKIWA''. The magnetic field components are determined point-by-point by an iteration method in which the output voltage from the Hall probes placed in three dimensional directions are used simultaneously. The field components are thus reconstructed accurately within 32 G everywhere in the magnet volume. (author)

  7. The CMS Magnetic Field Map Performance

    CERN Document Server

    Klyukhin, V.I.; Andreev, V.; Ball, A.; Cure, B.; Herve, A.; Gaddi, A.; Gerwig, H.; Karimaki, V.; Loveless, R.; Mulders, M.; Popescu, S.; Sarycheva, L.I.; Virdee, T.

    2010-04-05

    The Compact Muon Solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive featuresinclude a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in the CMS detector is required. During two major tests of the CMS magnet the magnetic flux density was measured inside the coil in a cylinder of 3.448 m diameter and 7 m length with a specially designed field-mapping pneumatic machine as well as in 140 discrete regions of the CMS yoke with NMR probes, 3-D Hall sensors and flux-loops. A TOSCA 3-D model of the CMS magnet has been developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. A volume based representation of the magnetic field is used to provide the CMS simulation and reconstruction software with the magnetic field ...

  8. Field quality of LHC superconducting dipole magnets

    International Nuclear Information System (INIS)

    Mishra, R.K.

    2003-01-01

    The author reports here the main results of field measurements performed so far on the LHC superconducting dipoles at superfluid helium temperature. The main field strength at injection, collision conditions and higher order multipoles are discussed. Superconducting magnets exhibit additional field imperfections due to diamagnetic properties of superconducting cables, apart from geometric error, saturation of iron yoke and eddy currents error. Dynamic effects on field harmonics, such as field decay at injection and subsequent snap back are also discussed. (author)

  9. Open magnetic fields in active regions

    International Nuclear Information System (INIS)

    Svestka, Z.; Solodyna, C.V.; Levine, R.H.

    1977-01-01

    Soft X-ray observations confirm that some of the dark gaps seen between interconnecting loops and inner cores of active regions may be loci of open fields, as it has been predicted by global potential extrapolation of photospheric magnetic fields. It seems that the field lines may open only in a later state of the active region development. (Auth.)

  10. Magnetic monopoles in field theory and cosmology.

    Science.gov (United States)

    Rajantie, Arttu

    2012-12-28

    The existence of magnetic monopoles is predicted by many theories of particle physics beyond the standard model. However, in spite of extensive searches, there is no experimental or observational sign of them. I review the role of magnetic monopoles in quantum field theory and discuss their implications for particle physics and cosmology. I also highlight their differences and similarities with monopoles found in frustrated magnetic systems.

  11. Calculation of magnetic fields for engineering devices

    International Nuclear Information System (INIS)

    Colonias, J.S.

    1976-06-01

    The methodology of magnet technology and its application to various engineering devices are discussed. Magnet technology has experienced a rigid growth in the past few years as a result of the advances made in superconductivity, numerical methods and computational techniques. Included are discussions on: (1) mathematical models for solving magnetic field problems; (2) the applicability, usefulness, and limitations of computer programs that utilize these models; (3) examples of application in various engineering disciplines; and (4) areas where further contributions are needed

  12. Magnetic field considerations in fusion power plant environs

    International Nuclear Information System (INIS)

    Liemohn, H.B.; Lessor, D.L.; Duane, B.H.

    1976-09-01

    A summary of magnetic field production mechanisms and effects is given. Discussions are included on the following areas: (1) stray magnetic and electric fields from tokamaks, (2) methods for reducing magnetic fields, (3) economics of magnetic field reductions, (4) forces on magnetizable objects near magnetic confinement fusion reactors, (5) electric field transients in tokamaks, (6) attenuation and decay of electromagnetic fields, and (7) magnetic field transients from tokamak malfunctions

  13. Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems

    Science.gov (United States)

    Gaunkar, Neelam Prabhu; Selvaraj, Jayaprakash; Theh, Wei-Shen; Weber, Robert; Mina, Mani

    2018-05-01

    Pulsed magnetic fields can be used to provide instantaneous localized magnetic field variations. In presence of static fields, pulsed field variations are often used to apply torques and in-effect to measure behavior of magnetic moments in different states. In this work, the design and experimental performance of a pulsed magnetic field generator suited for low static field nuclear magnetic resonance (NMR) applications is presented. One of the challenges of low bias field NMR measurements is low signal to noise ratio due to the comparable nature of the bias field and the pulsed field. Therefore, a circuit is designed to apply pulsed currents through an inductive load, leading to generation of pulsed magnetic fields which can temporarily overpower the effect of the bias field on magnetic moments. The designed circuit will be tuned to operate at the precession frequency of 1H (protons) placed in a bias field produced by permanent magnets. The designed circuit parameters may be tuned to operate under different bias conditions. Therefore, low field NMR measurements can be performed for different bias fields. Circuit simulations were used to determine design parameters, corresponding experimental measurements will be presented in this work.

  14. On the helicity of open magnetic fields

    International Nuclear Information System (INIS)

    Prior, C.; Yeates, A. R.

    2014-01-01

    We reconsider the topological interpretation of magnetic helicity for magnetic fields in open domains, and relate this to the relative helicity. Specifically, our domains stretch between two parallel planes, and each of these ends may be magnetically open. It is demonstrated that, while the magnetic helicity is gauge-dependent, its value in any gauge may be physically interpreted as the average winding number among all pairs of field lines with respect to some orthonormal frame field. In fact, the choice of gauge is equivalent to the choice of reference field in the relative helicity, meaning that the magnetic helicity is no less physically meaningful. We prove that a particular gauge always measures the winding with respect to a fixed frame, and propose that this is normally the best choice. For periodic fields, this choice is equivalent to measuring relative helicity with respect to a potential reference field. However, for aperiodic fields, we show that the potential field can be twisted. We prove by construction that there always exists a possible untwisted reference field.

  15. High-field superconducting nested coil magnet

    Science.gov (United States)

    Laverick, C.; Lobell, G. M.

    1970-01-01

    Superconducting magnet, employed in conjunction with five types of superconducting cables in a nested solenoid configuration, produces total, central magnetic field strengths approaching 70 kG. The multiple coils permit maximum information on cable characteristics to be gathered from one test.

  16. Deformable nematic droplets in a magnetic field

    NARCIS (Netherlands)

    Otten, R.H.J.; van der Schoot, P. P. A. M.

    2012-01-01

    We present a Frank-Oseen elasticity theory for the shape and structure of deformable nematic droplets with homeotropic surface anchoring in the presence of a magnetic field. Inspired by recent experimental observations, we focus on the case where the magnetic susceptibility is negative, and find

  17. An active antenna for ELF magnetic fields

    Science.gov (United States)

    Sutton, John F.; Spaniol, Craig

    1994-01-01

    The work of Nikola Tesla, especially that directed toward world-wide electrical energy distribution via excitation of the earth-ionosphere cavity resonances, has stimulated interest in the study of these resonances. Not only are they important for their potential use in the transmission of intelligence and electrical power, they are important because they are an integral part of our natural environment. This paper describes the design of a sensitive, untuned, low noise active antenna which is uniquely suited to modern earth-ionosphere cavity resonance measurements employing fast-Fourier transform techniques for near-real-time data analysis. It capitalizes on a little known field-antenna interaction mechanism. Recently, the authors made preliminary measurements of the magnetic fields in the earth-ionosphere cavity. During the course of this study, the problem of designing an optimized ELF magnetic field sensor presented itself. The sensor would have to be small, light weight (for portable use), and capable of detecting the 5-50 Hz picoTesla-level signals generated by the natural excitations of the earth-ionosphere cavity resonances. A review of the literature revealed that past researchers had employed very large search coils, both tuned and untuned. Hill and Bostick, for example, used coils of 30,000 turns wound on high permeability cores of 1.83 m length, weighing 40 kg. Tuned coils are unsuitable for modern fast-Fourier transform data analysis techniques which require a broad spectrum input. 'Untuned' coils connected to high input impedance voltage amplifiers exhibit resonant responses at the resonant frequency determined by the coil inductance and the coil distributed winding capacitance. Also, considered as antennas, they have effective areas equal only to their geometrical areas.

  18. Effect of the magnetic field on positron range using GATE for PET-MR

    International Nuclear Information System (INIS)

    Eleftheriou, Afroditi; Tsoumpas, Charalampos; Bertolli, Ottavia; Stiliaris, Efstathios

    2014-01-01

    Positron range is an important spatial resolution limiting factor in PET. When imaging inside a magnetic field the positron range is non-uniformly affected. A decrease of the positron range is expected in the directions perpendicular to the direction of the magnetic field, whereas no variation is expected in the direction of the magnetic field. Monte Carlo simulations were performed to validate these expectations.

  19. Magnetic fields in laser heated plasmas

    International Nuclear Information System (INIS)

    Amiranoff, F.; Brackbill, J.; Colombant, D.; Grandjouan, N.

    1984-01-01

    With a fixed-ion code for the study of self-generated magentic fields in laser heated plasmas, the inhibition of thermal transport and the effect of the Nernst term are modeled for a KrF laser. For various values of the flux limiter, the response of a foil to a focused laser is calculated without a magnetic field and compared with the response calculated with a magnetic field. The results are: The Nernst term convects the magnetic field to densities above critical as found by Nishiguchi et al. (1984), but the field does not strongly inhibit transport into the foil. The field is also transported to sub-critical densities, where it inhibits thermal diffusion and enhance lateral transport by convection

  20. External magnetic field configurations for EXTRAP

    International Nuclear Information System (INIS)

    Bonnevier, B.

    1982-08-01

    The strongly inhomogeneous magnetic field for stabilization of a pinch in an Extrap configuration can be created in various ways. Some possibilities both for the linear case and for the toroidal case are discussed. (author)

  1. Hydrogen atoms in a strong magnetic field

    International Nuclear Information System (INIS)

    Santos, R.R. dos.

    1975-07-01

    The energies and wave functions of the 14 lowest states of a Hydrogen atom in a strong magnetic field are calculated, using a variational scheme. The equivalence between the atomic problem and the problems related with excitons and impurities in semiconductors in the presence of a strong magnetic field are shown. The calculations of the energies and wave functions have been divided in two regions: the first, for the magnetic field ranging between zero and 10 9 G; in the second the magnetic field ranges between 10 9 and 10 11 G. The results have been compared with those obtained by previous authors. The computation time necessary for the calculations is small. Therefore this is a convenient scheme to obtain the energies and wave functions for the problem. Transition probabilities, wavelengths and oscillator strengths for some allowed transitions are also calculated. (Author) [pt

  2. The significance of vector magnetic field measurements

    Science.gov (United States)

    Hagyard, M. J.

    1990-01-01

    Observations of four flaring solar active regions, obtained during 1980-1986 with the NASA Marshall vector magnetograph (Hagyard et al., 1982 and 1985), are presented graphically and characterized in detail, with reference to nearly simultaneous Big Bear Solar Observatory and USAF ASW H-alpha images. It is shown that the flares occurred where local photospheric magnetic fields differed most from the potential field, with initial brightening on either side of a magnetic-neutral line near the point of maximum angular shear (rather than that of maximum magnetic-field strength, typically 1 kG or greater). Particular emphasis is placed on the fact that these significant nonpotential features were detected only by measuring all three components of the vector magnetic field.

  3. Magnetic Field Strength Evaluation Yu. S. Yefimov

    Indian Academy of Sciences (India)

    physical task is to evaluate the strength and topology of magnetic field in blazars and related ... polarization, spectral index of radiation, ratio of apparent velocity of the motion of matter along .... A detailed analysis of the evaluation of physical.

  4. Compact muon solenoid magnet reaches full field

    CERN Multimedia

    2006-01-01

    Scientist of the U.S. Department of Energy in Fermilab and collaborators of the US/CMS project announced that the world's largest superconducting solenoid magnet has reached full field in tests at CERN. (1 apge)

  5. Effect of sample shape on nonlinear magnetization dynamics under an external magnetic field

    International Nuclear Information System (INIS)

    Vagin, Dmitry V.; Polyakov, Oleg P.

    2008-01-01

    Effect of sample shape on the nonlinear collective dynamics of magnetic moments in the presence of oscillating and constant external magnetic fields is studied using the Landau-Lifshitz-Gilbert (LLG) approach. The uniformly magnetized sample is considered to be an ellipsoidal axially symmetric particle described by demagnetization factors and uniaxial crystallographic anisotropy formed some angle with an applied field direction. It is investigated as to how the change in particle shape affects its nonlinear magnetization dynamics. To produce a regular study, all results are presented in the form of bifurcation diagrams for all sufficient dynamics regimes of the considered system. In this paper, we show that the sample's (particle's) shape and its orientation with respect to the external field (system configuration) determine the character of magnetization dynamics: deterministic behavior and appearance of chaotic states. A simple change in the system's configuration or in the shapes of its parts can transfer it from chaotic to periodic or even static regime and back. Moreover, the effect of magnetization precession stall and magnetic moments alignment parallel or antiparallel to the external oscillating field is revealed and the way of control of such 'polarized' states is found. Our results suggest that varying the particle's shape and fields' geometry may provide a useful way of magnetization dynamics control in complex magnetic systems

  6. Magnetic properties in BaFe12O19 nanoparticles prepared under a magnetic field

    International Nuclear Information System (INIS)

    Wang Jun; Chen Qianwang; Che Shan

    2004-01-01

    It was observed that the nanocrystallites of BaFe 12 O 19 formed at 140 deg. C under a 0.25 T magnetic field exhibited a higher saturation magnetization (6.1 emu/g at room temperature) than that of the sample (1.1 emu/g) obtained under zero magnetic field. Both of the two approaches yielded plain-like particles with an average particle size of 12 nm. However, the Curie temperature (T c ), a direct measuring of the strength of superexchange interaction of Fe 3+ -O 2- -Fe 3+ , increased from 410 deg. C for the nanoparticles prepared without an external field applied to 452 deg. C for the particles formed under a 0.25 T magnetic field, which indicates that external magnetic fields can improve the occupancy of magnetic ions and then increase the superexchange interaction. This was confirmed by electron paramagnetic resonance and Moessbauer spectrum analysis. The results present in this paper suggest that in addition to oxygen defects, surface non-magnetic layer and a fraction of finer particles in the superparamagnetic range, cation vacancies should be responsible for the decreasing of saturation magnetization in magnetic nanoparticles

  7. Split-Field Magnet facility upgraded

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    The Split Field Magnet (SFM) was the largest spectrometer for particles from beam-beam collisions in the ISR. It could determine particle momenta in a large solid angle, but was designed mainly for the analysis of forward travelling particles.As the magnet was working on the ISR circulating beams, its magnetic field had to be such as to restore the correct proton orbit.The SFM, therefore, produced zero field at the crossing point and fields of opposite signs upstream and downstream of it and was completed by 2 large and 2 small compensator magnets. The gradient effects were corrected by magnetic channels equipped with movable flaps. The useful magnetic field volume was 28 m3, the induction in the median plane 1.14 T, the gap heigth 1.1 m, the length 10.5 m, the weight about 1000 ton. Concerning the detectors, the SFM was the first massive application of multiwire proportional chambers (about 70000 wires) which filled the main and the large compensator magnets. In 1976 an improved programme was started with tw...

  8. Motions and magnetic fields in the solar atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Krat, V A [AN SSSR, Leningrad. Glavnaya Astronomicheskaya Observatoriya

    1977-09-01

    The measured magnetic fields generally cannot be regarded as ''mean'' values of the magnetic field intensity H due to depolarization effects in the sum of the Zeeman components of small elements. A picture of smallest magnetic elements in the photosphere can be identified with the photospheric network of the granulation. A relatively long lifetime of the elements of this network and characteristics of its evolution show that a magnetic field of H > or approximately = 10/sup 2/ Oe is concentrated in the dark network between granules near to the solar disc center. Direct measurements of H in solar prominences give values of H ranging from 10 to 10/sup 2/ Oe. At their boundary they cannot be smaller than 10/sup 2/ Oe. The chromospheric elements seen in the center of H/sub a/ (spectrograms obtained on the solar stratospheric observatory (SSO) in 1970-1973) are about four times wider than photospheric elements. The growth in size of the structure elements from the photosphere to the chromosphere results from the magnetic expansion of elements floating up in the atmosphere. On the basis of the stratospheric and best filter observations it is shown that typical configurations of the field are magnetic arcs. Sunspots are considered as stationary processes dissipating due to magnetohydrodynamic instabilities. They have (observations on the SSO) considerable regions of a homogeneous magnetic field inside the umbra. The complicated system of twisted magnetic ropes in outer parts of the umbra and penumbra results from the dissipation of the main configuration. The most plausible model of a sunspot seems to be a twisted toroid with a steady magnetic field directed along the axis of symmetry inside the toroid. This model explains the fact of appearance of a secondary sunspot group inside the primary main group. The axis of the sunspot toroid always remains in the photosphere. Some properties of ''super-granules'' and ''giant granules'' are discussed.

  9. Barkhausen noise sensor with direct field control

    Czech Academy of Sciences Publication Activity Database

    Stupakov, Oleksandr

    2013-01-01

    Roč. 11, č. 1 (2013), s. 209-212 ISSN 1546-198X R&D Projects: GA ČR GP102/09/P108 Institutional research plan: CEZ:AV0Z10100520 Keywords : Barkhausen noise * field measurement * magnetic non-destructive testing Subject RIV: JB - Sensor s, Measurment, Regulation Impact factor: 0.558, year: 2013

  10. Ehrenfest force in inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Sisakyan, A.N.; Shevchenko, O.Yu.; Samojlov, V.N.

    2000-01-01

    The Ehrenfest force in an inhomogeneous magnetic field is calculated. It is shown that there exist such (very rare) topologically nontrivial physical situations when the Gauss theorem in its classic formulation fails and, as a consequence, apart from the usual Lorentz force an additional, purely imaginary force acts on the charged particle. This force arises only in inhomogeneous magnetic fields of special configurations, has a purely quantum origin, and disappears in the classical limit

  11. Core Processes: Earth's eccentric magnetic field

    DEFF Research Database (Denmark)

    Finlay, Chris

    2012-01-01

    Earth’s magnetic field is characterized by a puzzling hemispheric asymmetry. Calculations of core dynamo processes suggest that lopsided growth of the planet’s inner core may be part of the cause.......Earth’s magnetic field is characterized by a puzzling hemispheric asymmetry. Calculations of core dynamo processes suggest that lopsided growth of the planet’s inner core may be part of the cause....

  12. Neutron oscillations and the primordial magnetic field

    International Nuclear Information System (INIS)

    Sarkar, S.

    1988-01-01

    It has been claimed that a primordial magnetic field must exist in order to suppress possible oscillations of neutrons into antineutrons which would otherwise affect the cosmological synthesis of helium. We demonstrate that such oscillations, even if they do occur, have a negligible effect on primordial nucleosynthesis, thus refuting the above claim. Hence the possible existence of a primordial magnetic field, relevant to current speculations concerning superconducting 'cosmic strings', remains an open question. (author)

  13. Wake field in matched kicker magnet

    International Nuclear Information System (INIS)

    Miyahara, Y.

    1979-01-01

    Coherent transverse instability observed in KEK booster proton synchrotron has been reported previously. This instability is induced by the interaction of the beam with kicker magnet for the fast beam extraction. To understand the mechanism completely, it is necessary to know the wake field in detail. Here, the wake field or induced current in the kicker magnet which is terminated with matched resistance is considered

  14. Magnetic fields and massive star formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Girart, Josep M.; Juárez, Carmen [Institut de Ciències de l' Espai, (CSIC-IEEC), Campus UAB, Facultat de Ciències, C5p 2, E-08193 Bellaterra, Catalonia (Spain); Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Li, Zhi-Yun [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Frau, Pau [Observatorio Astronómico Nacional, Alfonso XII, 3 E-28014 Madrid (Spain); Li, Hua-Bai [Department of Physics, The Chinese University of Hong Kong, Hong Kong (China); Padovani, Marco [Laboratoire de Radioastronomie Millimétrique, UMR 8112 du CNRS, École Normale Supérieure et Observatoire de Paris, 24 rue Lhomond, F-75231 Paris Cedex 05 (France); Bontemps, Sylvain [OASU/LAB-UMR5804, CNRS, Université Bordeaux 1, F-33270 Floirac (France); Csengeri, Timea, E-mail: qzhang@cfa.harvard.edu [Max Planck Institute for Radioastronomy, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2014-09-10

    Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  15. Explosion of soliton in a magnetic field

    International Nuclear Information System (INIS)

    Nishinari, K.; Abe, K.; Satsuma, J.

    1994-01-01

    A dynamics of a solitary pulse of the electrostatic ion cyclotron wave that propagates perpendicular to an applied magnetic field is considered. It is shown that the solitary wave will be singular in some range of parameters in the system, such as the plasma density and the magnitude of an applied magnetic field. This fact shows that there is a possibility of controlling the place where explosion of the solitary wave occurs

  16. Improvement of vector compensation method for vehicle magnetic distortion field

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Hongfeng, E-mail: panghongfeng@126.com; Zhang, Qi; Li, Ji; Luo, Shitu; Chen, Dixiang; Pan, Mengchun; Luo, Feilu

    2014-03-15

    Magnetic distortions such as eddy-current field and low frequency magnetic field have not been considered in vector compensation methods. A new compensation method is proposed to suppress these magnetic distortions and improve compensation performance, in which the magnetic distortions related to measurement vectors and time are considered. The experimental system mainly consists of a three-axis fluxgate magnetometer (DM-050), an underwater vehicle and a proton magnetometer, in which the scalar value of magnetic field is obtained with the proton magnetometer and considered to be the true value. Comparing with traditional compensation methods, experimental results show that the magnetic distortions can be further reduced by two times. After compensation, error intensity and RMS error are reduced from 11684.013 nT and 7794.604 nT to 16.219 nT and 5.907 nT respectively. It suggests an effective way to improve the compensation performance of magnetic distortions. - Highlights: • A new vector compensation method is proposed for vehicle magnetic distortion. • The proposed model not only includes magnetometer error but also considers magnetic distortion. • Compensation parameters are computed directly by solving nonlinear equations. • Compared with traditional methods, the proposed method is not related with rotation angle rate. • Error intensity and RMS error can be reduced to 1/2 of the error with traditional methods.

  17. Improvement of vector compensation method for vehicle magnetic distortion field

    International Nuclear Information System (INIS)

    Pang, Hongfeng; Zhang, Qi; Li, Ji; Luo, Shitu; Chen, Dixiang; Pan, Mengchun; Luo, Feilu

    2014-01-01

    Magnetic distortions such as eddy-current field and low frequency magnetic field have not been considered in vector compensation methods. A new compensation method is proposed to suppress these magnetic distortions and improve compensation performance, in which the magnetic distortions related to measurement vectors and time are considered. The experimental system mainly consists of a three-axis fluxgate magnetometer (DM-050), an underwater vehicle and a proton magnetometer, in which the scalar value of magnetic field is obtained with the proton magnetometer and considered to be the true value. Comparing with traditional compensation methods, experimental results show that the magnetic distortions can be further reduced by two times. After compensation, error intensity and RMS error are reduced from 11684.013 nT and 7794.604 nT to 16.219 nT and 5.907 nT respectively. It suggests an effective way to improve the compensation performance of magnetic distortions. - Highlights: • A new vector compensation method is proposed for vehicle magnetic distortion. • The proposed model not only includes magnetometer error but also considers magnetic distortion. • Compensation parameters are computed directly by solving nonlinear equations. • Compared with traditional methods, the proposed method is not related with rotation angle rate. • Error intensity and RMS error can be reduced to 1/2 of the error with traditional methods

  18. Total Magnetic Field Signatures over Submarine HVDC Power Cables

    Science.gov (United States)

    Johnson, R. M.; Tchernychev, M.; Johnston, J. M.; Tryggestad, J.

    2013-12-01

    Mikhail Tchernychev, Geometrics, Inc. Ross Johnson, Geometrics, Inc. Jeff Johnston, Geometrics, Inc. High Voltage Direct Current (HVDC) technology is widely used to transmit electrical power over considerable distances using submarine cables. The most commonly known examples are the HVDC cable between Italy and Greece (160 km), Victoria-Tasmania (300 km), New Jersey - Long Island (82 km) and the Transbay cable (Pittsburg, California - San-Francisco). These cables are inspected periodically and their location and burial depth verified. This inspection applies to live and idle cables; in particular a survey company could be required to locate pieces of a dead cable for subsequent removal from the sea floor. Most HVDC cables produce a constant magnetic field; therefore one of the possible survey tools would be Marine Total Field Magnetometer. We present mathematical expressions of the expected magnetic fields and compare them with fields observed during actual surveys. We also compare these anomalies fields with magnetic fields produced by other long objects, such as submarine pipelines The data processing techniques are discussed. There include the use of Analytic Signal and direct modeling of Total Magnetic Field. The Analytic Signal analysis can be adapted using ground truth where available, but the total field allows better discrimination of the cable parameters, in particular to distinguish between live and idle cable. Use of a Transverse Gradiometer (TVG) allows for easy discrimination between cable and pipe line objects. Considerable magnetic gradient is present in the case of a pipeline whereas there is less gradient for the DC power cable. Thus the TVG is used to validate assumptions made during the data interpretation process. Data obtained during the TVG surveys suggest that the magnetic field of a live HVDC cable is described by an expression for two infinite long wires carrying current in opposite directions.

  19. The Strongest Magnetic Field in Sunspots

    Science.gov (United States)

    Okamoto, J.; Sakurai, T.

    2017-12-01

    Sunspots are concentrations of magnetic fields on the solar surface. Generally, the strongest magnetic field in each sunspot is located in the dark umbra in most cases. A typical field strength in sunspots is around 3,000 G. On the other hand, some exceptions also have been found in complex sunspots with bright regions such as light bridges that separate opposite polarity umbrae, for instance with a strength of 4,300 G. However, the formation mechanism of such strong fields outside umbrae is still puzzling. Here we report an extremely strong magnetic field in a sunspot, which was located in a bright region sandwiched by two opposite-polarity umbrae. The strength is 6,250 G, which is the largest ever observed since the discovery of magnetic field on the Sun in 1908 by Hale. We obtained 31 scanned maps of the active region observed by Hinode/SOT/SP with a cadence of 3 hours over 5 days (February 1-6, 2014). Considering the spatial and temporal evolution of the vector magnetic field and the Doppler velocity in the bright region, we suggested that this strong field region was generated as a result of compression of one umbra pushed by the outward flow from the other umbra (Evershed flow), like the subduction of the Earth's crust in plate tectonics.

  20. An evaluation of Tsyganenko magnetic field model

    International Nuclear Information System (INIS)

    Fairfield, D.H.

    1991-01-01

    A long-standing goal of magnetospheric physics has been to produce a model of the Earth's magnetic field that can accurately predict the field vector at all locations within the magnetosphere for all dipole tilt angles and for various solar wind or magnetic activity conditions. A number of models make such predictions, but some only for limited spatial regions, some only for zero tilt angle, and some only for arbitrary conditions. No models depend explicitly on solar wind conditions. A data set of more than 22,000 vector averages of the magnetosphere magnetic field over 0.5 R E regions is used to evaluate Tsyganenko's 1982 and 1987 magnetospheric magnetic field models. The magnetic field predicted by the model in various regions is compared to observations to find systematic discrepancies which future models might address. While agreement is generally good, discrepancies are noted which include: (1) a lack of adequate field line stretching in the tail and ring current regions; (2) an inability to predict weak enough fields in the polar cusps; and (3) a deficiency of Kp as a predictor of the field configuration

  1. Magnetically insulated fission electric cells for direct energy conversion

    International Nuclear Information System (INIS)

    Slutz, S.A.; Seidel, D.B.; Lipinski, R.J.; Rochau, G.E.; Brown, L.C.

    2003-01-01

    The principles of fission electric cells are reviewed. A detailed Monte Carlo model of the efficiency of a fission electric cell is presented and a theory of magnetically insulated fission electric cells (MIFECs) is developed. It is shown that the low operating voltages observed in previous MIFEC experiments were due to nonoptimal magnetic field profiles. Improved magnetic field profiles are presented. It is further shown that the large electric field present in a MIFEC limits the structure of the cathode and can lead to a displacement instability of the cathode toward the anode. This instability places constraints on the number of cells that can be strung together without some external cathode support. The large electric field stress also leads to electrical surface breakdown of the cathode. It is shown that this leads to the formation of a virtual cathode resulting in geometry constraints for spherical cells. Finally it is shown that the requirements of magnetic insulation and high efficiency leads to very low average density of the fissile material. Thus a reactor using fission electric cells for efficient direct energy conversion will be large and require a very large number of cells. This could be mitigated somewhat by the use of exotic fuels

  2. Casting the Coronal Magnetic Field Reconstructions with Magnetic Field Constraints above the Photosphere in 3D Using MHD Bifrost Model

    Science.gov (United States)

    Fleishman, G. D.; Anfinogentov, S.; Loukitcheva, M.; Mysh'yakov, I.; Stupishin, A.

    2017-12-01

    Measuring and modeling coronal magnetic field, especially above active regions (ARs), remains one of the central problems of solar physics given that the solar coronal magnetism is the key driver of all solar activity. Nowadays the coronal magnetic field is often modelled using methods of nonlinear force-free field reconstruction, whose accuracy has not yet been comprehensively assessed. Given that the coronal magnetic probing is routinely unavailable, only morphological tests have been applied to evaluate performance of the reconstruction methods and a few direct tests using available semi-analytical force-free field solution. Here we report a detailed casting of various tools used for the nonlinear force-free field reconstruction, such as disambiguation methods, photospheric field preprocessing methods, and volume reconstruction methods in a 3D domain using a 3D snapshot of the publicly available full-fledged radiative MHD model. We take advantage of the fact that from the realistic MHD model we know the magnetic field vector distribution in the entire 3D domain, which enables us to perform "voxel-by-voxel" comparison of the restored magnetic field and the true magnetic field in the 3D model volume. Our tests show that the available disambiguation methods often fail at the quiet sun areas, where the magnetic structure is dominated by small-scale magnetic elements, while they work really well at the AR photosphere and (even better) chromosphere. The preprocessing of the photospheric magnetic field, although does produce a more force-free boundary condition, also results in some effective `elevation' of the magnetic field components. The effective `elevation' height turns out to be different for the longitudinal and transverse components of the magnetic field, which results in a systematic error in absolute heights in the reconstructed magnetic data cube. The extrapolation performed starting from actual AR photospheric magnetogram (i.e., without preprocessing) are

  3. Magnetic field transfer device and method

    Science.gov (United States)

    Wipf, S.L.

    1990-02-13

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180[degree] from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180[degree] from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils. 16 figs.

  4. Thermal conductivity of niobium single crystals in a magnetic field

    International Nuclear Information System (INIS)

    Gladun, C.; Vinzelberg, H.

    1980-01-01

    The thermal conductivity in longitudinal magnetic fields up to 5 T and in the temperature range 3.5 to 15 K is measured in two high purity niobium single crystals having residual resistivity ratios of 22700 and 19200 and orientations of the rod axis [110] and [100]. The investigations show that by means of the longitudinal magnetic field the thermal conductivity may decrease only to a limiting value. In the crystal directions [110] and [100] for the ratio of the thermal conductivity in zero field and the thermal conductivity in the saturation field the temperature-independent factors 1.92 and 1.27, respectively, are determined. With the aid of these factors the thermal conductivity in the normal state is evaluated from the measured values of thermal conductivity below Tsub(c) in the magnetic field. The different conduction and scattering mechanisms are discussed. (author)

  5. Production and detection of atomic hexadecapole at Earth's magnetic field.

    Science.gov (United States)

    Acosta, V M; Auzinsh, M; Gawlik, W; Grisins, P; Higbie, J M; Jackson Kimball, D F; Krzemien, L; Ledbetter, M P; Pustelny, S; Rochester, S M; Yashchuk, V V; Budker, D

    2008-07-21

    Optical magnetometers measure magnetic fields with extremely high precision and without cryogenics. However, at geomagnetic fields, important for applications from landmine removal to archaeology, they suffer from nonlinear Zeeman splitting, leading to systematic dependence on sensor orientation. We present experimental results on a method of eliminating this systematic error, using the hexadecapole atomic polarization moment. In particular, we demonstrate selective production of the atomic hexadecapole moment at Earth's magnetic field and verify its immunity to nonlinear Zeeman splitting. This technique promises to eliminate directional errors in all-optical atomic magnetometers, potentially improving their measurement accuracy by several orders of magnitude.

  6. High-Field Magnetization of Light Rare-Earth Metals

    DEFF Research Database (Denmark)

    McEwen, K.A.; Cock, G.J.; Roeland, L.W.

    1973-01-01

    The magnetization of single crystals of Eu, Sm, Nd, Pr, and Pr-Nd alloys has been measured in fields up to 37 T (370 kG). The results give new information on the magnetic properties of these metals. Of particular interest is a first-order transition from a nonmagnetic to a metamagnetic phase...... in double-hexagonal close-packed Pr, due to the crossing of crystal-field levels, when a field of about 32 T is applied in the hard direction at low temperatures....

  7. Vesicle biomechanics in a time-varying magnetic field.

    Science.gov (United States)

    Ye, Hui; Curcuru, Austen

    2015-01-01

    Cells exhibit distortion when exposed to a strong electric field, suggesting that the field imposes control over cellular biomechanics. Closed pure lipid bilayer membranes (vesicles) have been widely used for the experimental and theoretical studies of cellular biomechanics under this electrodeformation. An alternative method used to generate an electric field is by electromagnetic induction with a time-varying magnetic field. References reporting the magnetic control of cellular mechanics have recently emerged. However, theoretical analysis of the cellular mechanics under a time-varying magnetic field is inadequate. We developed an analytical theory to investigate the biomechanics of a modeled vesicle under a time-varying magnetic field. Following previous publications and to simplify the calculation, this model treated the inner and suspending media as lossy dielectrics, the membrane thickness set at zero, and the electric resistance of the membrane assumed to be negligible. This work provided the first analytical solutions for the surface charges, electric field, radial pressure, overall translational forces, and rotational torques introduced on a vesicle by the time-varying magnetic field. Frequency responses of these measures were analyzed, particularly the frequency used clinically by transcranial magnetic stimulation (TMS). The induced surface charges interacted with the electric field to produce a biomechanical impact upon the vesicle. The distribution of the induced surface charges depended on the orientation of the coil and field frequency. The densities of these charges were trivial at low frequency ranges, but significant at high frequency ranges. The direction of the radial force on the vesicle was dependent on the conductivity ratio between the vesicle and the medium. At relatively low frequencies (biomechanics under a time-varying magnetic field. Biological effects of clinical TMS are not likely to occur via alteration of the biomechanics of brain

  8. Measurement of the magnetic field coefficients of particle accelerator magnets

    International Nuclear Information System (INIS)

    Herrera, J.; Ganetis, G.; Hogue, R.; Rogers, E.; Wanderer, P.; Willen, E.

    1989-01-01

    An important aspect in the development of magnets to be used in particle accelerators is the measurement of the magnetic field in the beam aperture. In general it is necessary to measure the harmonic multipoles in the dipole, quadrupole, and sextupole magnets for a series of stationary currents (plateaus). This is the case for the Superconducting Super Collider (SSC) which will be ramped to high field over a long period (/approximately/1000 sec.) and then remain on the flat top for the duration of the particle collision phase. In contrast to this mode of operation, the Booster ring being constructed for the Brookhaven AGS, will have a fast ramp rate of approximately 10 Hz. The multipole fields for these Booster magnets must therefore be determined ''on the ramp.'' In this way the effect of eddy currents will be taken into account. The measurement system which we will describe in this paper is an outgrowth of that used for the SSC dipoles. It has the capability of measuring the field multipoles on both a plateau or during a fast ramp. In addition, the same basic coil assembly is used to obtain the magnetic multipoles in dipole, quadrupole, and sextupole magnets. 2 refs., 3 figs., 1 tab

  9. Measurement of the terrestrial magnetic field and its anomalies

    International Nuclear Information System (INIS)

    Duret, D.

    1994-01-01

    After a presentation of the terrestrial magnetic field and its various anomalies, the different types of magnetometers commonly used are reviewed with their characteristics and performances: scalar magnetometers (free precession and continuous polarization proton magnetometers, dynamic polarization proton magnetometers, optical pumping magnetometers, electronic resonance scalar magnetometers (without pumping)); vectorial magnetometers (flux gate magnetometers, induction magnetometers, suspended magnet magnetometers, superconducting magnetometers, integrated magnetometers, resonance directional magnetometers). The magnetometry market and applications are discussed. 20 figs., 9 tabs., 72 refs

  10. The effect of magnetic field induced aggregates on ultrasound propagation in aqueous magnetic fluid

    International Nuclear Information System (INIS)

    Parekh, Kinnari; Upadhyay, R.V.

    2017-01-01

    Ultrasonic wave propagation in the aqueous magnetic fluid is investigated for different particle concentrations. The sound velocity decreases while acoustic impedance increases with increasing concentrations. The velocity anisotropy is observed upon application of magnetic field. The velocity anisotropy fits with Tarapov’s theory suggests the presence of aggregates in the system. We report that these aggregates are thermodynamically unstable and the length of aggregate changes continuously with increasing concentration and, or magnetic field and resulted in a decrease in effective magnetic moment. The Taketomi's theory fits well with the experimental data suggesting that the particle clusters are aligned in the direction of the magnetic field. The radius of cluster found to increase with increasing concentration, and then decreases whereas the elastic force constant increases and then becomes constant. The increase in cluster radius indicates elongation of aggregate length due to tip-to-tip interaction of aggregates whereas for higher concentration, the lateral alignment is more favorable than tip-to-tip alignment of aggregates which reduces the cluster radius making elastic force constant to raise. Optical images show that the chains are fluctuating and confirming the lateral alignment of chains at higher fields. - Highlights: • Magnetic field induced aggregates investigated using ultrasonic wave in aqueous magnetic fluid. • Velocity anisotropy induces upon applications of magnetic field. • Tarapov’s theory fit shows reduction in effective magnetic moment as concentration increases. • Taketomi's theory shows alignment of clusters in field direction. • Cluster radius increases and then decreases with increasing volume fractions. • Optical images show that fluctuating chains and lateral alignment of chains at higher fields.

  11. The effect of magnetic field induced aggregates on ultrasound propagation in aqueous magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Parekh, Kinnari, E-mail: kinnariparekh.rnd@charusat.ac.in [Dr. KC Patel R& D Center, Charotar University of Science & Technology, Changa, 388421 Dist. Anand, Gujarat (India); Upadhyay, R.V. [PD Patel Institute of Applied Sciences, Charotar University of Science & Technology, Changa, 388421 Dist. Anand, Gujarat (India)

    2017-06-01

    Ultrasonic wave propagation in the aqueous magnetic fluid is investigated for different particle concentrations. The sound velocity decreases while acoustic impedance increases with increasing concentrations. The velocity anisotropy is observed upon application of magnetic field. The velocity anisotropy fits with Tarapov’s theory suggests the presence of aggregates in the system. We report that these aggregates are thermodynamically unstable and the length of aggregate changes continuously with increasing concentration and, or magnetic field and resulted in a decrease in effective magnetic moment. The Taketomi's theory fits well with the experimental data suggesting that the particle clusters are aligned in the direction of the magnetic field. The radius of cluster found to increase with increasing concentration, and then decreases whereas the elastic force constant increases and then becomes constant. The increase in cluster radius indicates elongation of aggregate length due to tip-to-tip interaction of aggregates whereas for higher concentration, the lateral alignment is more favorable than tip-to-tip alignment of aggregates which reduces the cluster radius making elastic force constant to raise. Optical images show that the chains are fluctuating and confirming the lateral alignment of chains at higher fields. - Highlights: • Magnetic field induced aggregates investigated using ultrasonic wave in aqueous magnetic fluid. • Velocity anisotropy induces upon applications of magnetic field. • Tarapov’s theory fit shows reduction in effective magnetic moment as concentration increases. • Taketomi's theory shows alignment of clusters in field direction. • Cluster radius increases and then decreases with increasing volume fractions. • Optical images show that fluctuating chains and lateral alignment of chains at higher fields.

  12. Cooling Curve of Strange Star in Strong Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Qin; LUO Zhi-Quan

    2008-01-01

    In this paper, firstly, we investigate the neutrino emissivity from quark Urca process in strong magnetic field. Then, we discuss the heat capacity of strange stars in strong magnetic field. Finally, we give the cooling curve in strong magnetic field. In order to make a comparison, we also give the corresponding cooling curve in the case of null magnetic field. It turns out that strange stars cool faster in strong magnetic field than that without magnetic field.

  13. High-magnetic field atomic physics

    International Nuclear Information System (INIS)

    Gay, J.C.

    1984-01-01

    This chapter discusses both the traditional developments of Zeeman techniques at strong fields and the fundamental concepts of diamagnetism. Topics considered include historical aspects, the production of high fields, the atom in a magnetic field (Hamiltonian and symmetries, the various magnetic regimes in atomic spectra), applications of the Zeeman effect at strong B fields, the Landau regime for loosely bound particles, theoretical concepts of atomic diamagnetism, and the ultra-high-field regime and quantum electrodynamics. It is concluded that the wide implications of the problem of the strongly magnetized hydrogen atom in various domains of physics and its conceptual importance concerning theoretical methods of classical and quantum mechanics justify the experimental and theoretical efforts in atomic physics

  14. Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)

    International Nuclear Information System (INIS)

    Tessema, G.X.; Gamble, B.K.; Skove, M.J.; Lacerda, A.H.; Mielke, C.H.

    1998-01-01

    The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond H c2 as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field H c2 . This negates the conventional thinking that superconductivity and magnetic fields are antagonistic

  15. Dynamics of molecular superrotors in an external magnetic field

    Science.gov (United States)

    Korobenko, Aleksey; Milner, Valery

    2015-08-01

    We excite diatomic oxygen and nitrogen to high rotational states with an optical centrifuge and study their dynamics in an external magnetic field. Ion imaging is employed to directly visualize, and follow in time, the rotation plane of the molecular superrotors. The two different mechanisms of interaction between the magnetic field and the molecular angular momentum in paramagnetic oxygen and non-magnetic nitrogen lead to qualitatively different behaviour. In nitrogen, we observe the precession of the molecular angular momentum around the field vector. In oxygen, strong spin-rotation coupling results in faster and richer dynamics, encompassing the splitting of the rotation plane into three separate components. As the centrifuged molecules evolve with no significant dispersion of the molecular wave function, the observed magnetic interaction presents an efficient mechanism for controlling the plane of molecular rotation.

  16. Dynamics of molecular superrotors in an external magnetic field

    International Nuclear Information System (INIS)

    Korobenko, Aleksey; Milner, Valery

    2015-01-01

    We excite diatomic oxygen and nitrogen to high rotational states with an optical centrifuge and study their dynamics in an external magnetic field. Ion imaging is employed to directly visualize, and follow in time, the rotation plane of the molecular superrotors. The two different mechanisms of interaction between the magnetic field and the molecular angular momentum in paramagnetic oxygen and non-magnetic nitrogen lead to qualitatively different behaviour. In nitrogen, we observe the precession of the molecular angular momentum around the field vector. In oxygen, strong spin–rotation coupling results in faster and richer dynamics, encompassing the splitting of the rotation plane into three separate components. As the centrifuged molecules evolve with no significant dispersion of the molecular wave function, the observed magnetic interaction presents an efficient mechanism for controlling the plane of molecular rotation. (paper)

  17. TANGLED MAGNETIC FIELDS IN SOLAR PROMINENCES

    International Nuclear Information System (INIS)

    Van Ballegooijen, A. A.; Cranmer, S. R.

    2010-01-01

    Solar prominences are an important tool for studying the structure and evolution of the coronal magnetic field. Here we consider so-called hedgerow prominences, which consist of thin vertical threads. We explore the possibility that such prominences are supported by tangled magnetic fields. A variety of different approaches are used. First, the dynamics of plasma within a tangled field is considered. We find that the contorted shape of the flux tubes significantly reduces the flow velocity compared to the supersonic free fall that would occur in a straight vertical tube. Second, linear force-free models of tangled fields are developed, and the elastic response of such fields to gravitational forces is considered. We demonstrate that the prominence plasma can be supported by the magnetic pressure of a tangled field that pervades not only the observed dense threads but also their local surroundings. Tangled fields with field strengths of about 10 G are able to support prominence threads with observed hydrogen density of the order of 10 11 cm -3 . Finally, we suggest that the observed vertical threads are the result of Rayleigh-Taylor instability. Simulations of the density distribution within a prominence thread indicate that the peak density is much larger than the average density. We conclude that tangled fields provide a viable mechanism for magnetic support of hedgerow prominences.

  18. Neutrino oscillations in strong magnetic fields

    International Nuclear Information System (INIS)

    Likhachev, G.G.; Studenikin, A.I.

    1994-07-01

    Neutrino conversion processes between two neutrino species and the corresponding oscillations induced by strong magnetic fields are considered. The value of the critical strength of magnetic field B cr as a function of characteristics of neutrinos in vacuum (Δm 2 ν , mixing angle θ), effective particle density of matter n eff , neutrino (transition) magnetic moment μ-tilde and energy E is introduced. It is shown that the neutrino conversion and oscillations effects induced by magnetic fields B ≥ B cr are important and may result in the depletion of the initial type of ν's in the bunch. A possible increase of these effects in the case when neutrinos pass through a sudden decrease of density of matter (''cross-boundary effect'') and applications to neutrinos from neutron stars and supernova are discussed. (author). 25 refs

  19. On the absorbing force of magnetic fields acting on magnetic particle under magnetic particle examination

    International Nuclear Information System (INIS)

    Maeda, N.

    1988-01-01

    During the magnetic particle examination, magnetic particles near defects are deposited by an absorbing force of magnetic fields acting on the magnetic particles. Therefore, a quantitative determination of this absorbing force is a theoretical and experimental basis for solving various problems associated with magnetic particle examinations. The absorbing force is formulated based on a magnetic dipole model, and a measuring method of the absorbing force using magnetic fields formed around linear current is proposed. Measurements according to this method produced appropriate results, verifying the validation of the concept and the measuring method

  20. Microstructural, magnetic and magnetostrictive properties of Tb0.3Dy0.7Fe1.95 prepared by solidification in a high magnetic field

    International Nuclear Information System (INIS)

    Liu Tie; Liu Yin; Wang Qiang; Gao Pengfei; He Jicheng; Iwai, Kazuhiko

    2013-01-01

    The microstructure evolution and magnetization and magnetostriction properties of Tb 0.3 Dy 0.7 Fe 1.95 alloy solidified in a high magnetic field were investigated. A cellular microstructure was produced, with the grains highly aligned along the direction of the magnetic field. The (Tb,Dy)Fe 2 phase was highly oriented, with its 〈1 1 1〉 axis along the magnetic field direction. The easy magnetization direction of the alloy lay along the magnetic field direction. The magnetostriction at room temperature significantly increased to double that of the sample prepared without high magnetic field; in addition, a sharp rise in the initial magnetostriction at low fields was observed. Applying a high magnetic field during the solidification process is proposed as an effective route for fabricating 〈1 1 1〉 oriented Tb–Dy–Fe compounds, and improving their magnetic and magnetostrictive properties. (paper)

  1. Magnetic fields of Jupiter and Saturn

    International Nuclear Information System (INIS)

    Ness, N.F.

    1981-01-01

    The magnetic fields of Jupiter and Saturn and the characteristics of their magnetospheres, formed by interaction with the solar wind, are discussed. The origins of both magnetic fields are associated with a dynamo process deep in the planetary interior. The Jovian magnetosphere is analogous to that of a pulsar magnetosphere: a massive central body with a rapid rotation and an associated intense magnetic field. Its most distinctive feature is its magnetodisk of concentrated plasma and particle flux, and reduced magnetic field intensity. The magnetopause near the subsolar point has been observed at radial distances ranging over 50 to 100 Jovian radii, implying a relatively compressible obstacle to solar wind flow. The composition of an embedded current sheet within the magnetic tail is believed to be influenced by volcanic eruptions and emissions from Io. Spectral troughs of the Jovian radiation belts have been interpreted as possible ring particles. The Saturnian magnetosphere appears to be more like the earth in its topology. It is mainly characterized by a dipole axis parallel to the rotational axis of the planet and a magnetic field intensity much less than expected

  2. Electromagnetic fields: the new European directive

    International Nuclear Information System (INIS)

    Moureaux, Patrick

    2014-01-01

    A European directive is specifying the thresholds for exposure to electromagnetic fields. The risk assessment approach proposed should enable worker health to be taken better into account. An overview of the new provisions. (author)

  3. Use of along-track magnetic field differences in lithospheric field modelling

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Finlay, Chris; Olsen, Nils

    2015-01-01

    . Experiments in modelling the Earth's lithospheric magnetic field with along-track differences are presented here as a proof of concept. We anticipate that use of such along-track differences in combination with east–west field differences, as are now provided by the Swarm satellite constellation......We demonstrate that first differences of polar orbiting satellite magnetic data in the along-track direction can be used to obtain high resolution models of the lithospheric field. Along-track differences approximate the north–south magnetic field gradients for non-polar latitudes. In a test case......, using 2 yr of low altitude data from the CHAMP satellite, we show that use of along-track differences of vector field data results in an enhanced recovery of the small scale lithospheric field, compared to the use of the vector field data themselves. We show that the along-track technique performs...

  4. Interaction of plasma with magnetic fields in coaxial discharge

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, H.M.; Masoud, M.M. (National Research Centre, Cairo (Egypt))

    1991-01-01

    Previous experiments have shown that, in normal mode of focus operation (67 KJ-20 KV) i.e. without external magnetic fields, the focus exhibits instability growths as revealed by the time integrated X-ray pinhole photographs. A magnetic field which is trapped ahead of the current sheath will reduce the high ejection rate of plasma which occurs during the (r,z) collapse stage. This reduction should lead to a more uniform plasma of larger dimension. If an externally excited axial magnetic field of (10[sup 2]-10[sup 3] G) is introduced at the end of the central electrode of coaxial discharge with 45 [mu]f capacitor bank, U[sub ch]=13-17 KV, peak current [approx]0.5 MA, the decay rate of the current sheath is slowed down and the minimum radius of the column remains large enough. Experiment investigation of the X-ray emission in axial direction from a (12 KJ/20 KV, 480 KA), Mather type focus, showed that the X-ray intensity changes drastically, by superimposing an axial magnetic field of 55 G on the focus. By introducing an external axial magnetic field of intensity 2.4 KG along the coaxial electrodes, this magnetic field has a radial component at distances approach to muzzle of coaxial discharge with charging voltage 10 KV and peak discharge current 100 KA. Presence of these magnetic fields, will cause an increase in intensity of soft X-ray emission. The main purpose of this work is to study the interactions of axial and transverse magnetic fields with plasma sheath during the axial interelectrode propagation, and its effects on the X-ray emission from plasma focus. (author) 4 refs., 7 figs.

  5. Interaction of plasma with magnetic fields in coaxial discharge

    International Nuclear Information System (INIS)

    Soliman, H.M.; Masoud, M.M.

    1991-01-01

    Previous experiments have shown that, in normal mode of focus operation (67 KJ-20 KV) i.e. without external magnetic fields, the focus exhibits instability growths as revealed by the time integrated X-ray pinhole photographs. A magnetic field which is trapped ahead of the current sheath will reduce the high ejection rate of plasma which occurs during the (r,z) collapse stage. This reduction should lead to a more uniform plasma of larger dimension. If an externally excited axial magnetic field of (10 2 -10 3 G) is introduced at the end of the central electrode of coaxial discharge with 45 μf capacitor bank, U ch =13-17 KV, peak current ∼0.5 MA, the decay rate of the current sheath is slowed down and the minimum radius of the column remains large enough. Experiment investigation of the X-ray emission in axial direction from a (12 KJ/20 KV, 480 KA), Mather type focus, showed that the X-ray intensity changes drastically, by superimposing an axial magnetic field of 55 G on the focus. By introducing an external axial magnetic field of intensity 2.4 KG along the coaxial electrodes, this magnetic field has a radial component at distances approach to muzzle of coaxial discharge with charging voltage 10 KV and peak discharge current 100 KA. Presence of these magnetic fields, will cause an increase in intensity of soft X-ray emission. The main purpose of this work is to study the interactions of axial and transverse magnetic fields with plasma sheath during the axial interelectrode propagation, and its effects on the X-ray emission from plasma focus. (author) 4 refs., 7 figs

  6. Neutron stars, magnetic fields, and gravitational waves

    International Nuclear Information System (INIS)

    Lamb, F.K.

    2001-01-01

    The r-modes of rapidly spinning young neutron stars have recently attracted attention as a promising source of detectable gravitational radiation. These neutron stars are expected to have magnetic fields ∼ 10 12 G. The r-mode velocity perturbation causes differential motion of the fluid in the star; this is a kinematic effect. In addition, the radiation-reaction associated with emission of gravitational radiation by r-waves drives additional differential fluid motions; this is a dynamic effect. These differential fluid motions distort the magnetic fields of neutron stars and may therefore play an important role in determining the structure of neutron star magnetic fields. If the stellar field is ∼ 10 16 (Ω/Ω B ) G or stronger, the usual r-modes are no longer normal modes of the star; here Ω and Ω B are the angular velocities of the star and at which mass shedding occurs. Much weaker magnetic fields can prevent gravitational radiation from amplifying the r-modes or damp existing r-mode oscillations on a relatively short timescale by extracting energy from the modes faster than gravitational wave emission can pump energy into them. The onset of proton superconductivity in the cores of newly formed magnetic neutron stars typically increases the effect on the r-modes of the magnetic field in the core by many orders of magnitude. Once the core has become superconducting, magnetic fields of the order of 10 12 G or greater are usually sufficient to damp r-modes that have been excited by emission of gravitational radiation and to suppress any further emission. A rapid drop in the strength of r-mode gravitational radiation from young neutron stars may therefore signal the onset of superconductivity in the core and provide a lower bound on the strength of the magnetic field there. Hence, measurements of r-mode gravitational waves from newly formed neutron stars may provide valuable diagnostic information about magnetic field strengths, cooling processes, and the

  7. Magnetization relaxation of single molecule magnets after field cooling

    Science.gov (United States)

    Fernandez, Julio F.; Alonso, Juan J.

    2004-03-01

    Magnetic clusters, such as Fe8 and Mn_12, behave at low temperatures as large single spins S. In crystals, anisotropy energies U allow magnetic relaxation only through tunneling at k_BTstackrelspins with dipolar interactions. To mimic tunneling effects, a spin on a lattice site where h is within some tunnel window -h_wmagnetic dipole field drift.

  8. Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata

    Directory of Open Access Journals (Sweden)

    Wiltschko Wolfgang

    2009-10-01

    Full Text Available Abstract Background Zebra finches can be trained to use the geomagnetic field as a directional cue for short distance orientation. The physical mechanisms underlying the primary processes of magnetoreception are, however, largely unknown. Two hypotheses of how birds perceive magnetic information are mainly discussed, one dealing with modulation of radical pair processes in retinal structures, the other assuming that iron deposits in the upper beak of the birds are involved. Oscillating magnetic fields in the MHz range disturb radical pair mechanisms but do not affect magnetic particles. Thus, application of such oscillating fields in behavioral experiments can be used as a diagnostic tool to decide between the two alternatives. Methods In a setup that eliminates all directional cues except the geomagnetic field zebra finches were trained to search for food in the magnetic north/south axis. The birds were then tested for orientation performance in two magnetic conditions. In condition 1 the horizontal component of the geomagnetic field was shifted by 90 degrees using a helmholtz coil. In condition 2 a high frequently oscillating field (1.156 MHz was applied in addition to the shifted field. Another group of birds was trained to solve the orientation task, but with visual landmarks as directional cue. The birds were then tested for their orientation performance in the same magnetic conditions as applied for the first experiment. Results The zebra finches could be trained successfully to orient in the geomagnetic field for food search in the north/south axis. They were also well oriented in test condition 1, with the magnetic field shifted horizontally by 90 degrees. In contrast, when the oscillating field was added, the directional choices during food search were randomly distributed. Birds that were trained to visually guided orientation showed no difference of orientation performance in the two magnetic conditions. Conclusion The results

  9. Improved magnetic field line design for TMX

    International Nuclear Information System (INIS)

    Logan, B.G.; Baldwin, D.E.; Foote, J.H.; Chargin, A.K.; Hinkle, R.E.; Hussung, R.O.; Damm, C.C.

    1977-01-01

    Optimization of the currents in the TMX magnet set leads to a field line configuration which has a central solenoidal region uniform in parallel B parallel to within 10 percent over a 2m length. The field design has sufficient flexibility to meet all three physics objectives of the TMX experiment

  10. Surface Magnetic Fields on Giants and Supergiants

    Science.gov (United States)

    Lebre, Agnès

    2018-04-01

    After a short introduction to spectropolarimetry and the tecnics allowing for the detection of surface fields, I will review the numerous and various detections of magnetic fields at the surface of giant and supergiant stars. On Betelgeuse, the prototype of Red Supergiants, I will present recent results collected after a 10 years long spectropolarimetric survey.

  11. Opening the cusp. [using magnetic field topology

    Science.gov (United States)

    Crooker, N. U.; Toffoletto, F. R.; Gussenhoven, M. S.

    1991-01-01

    This paper discusses the magnetic field topology (determined by the superposition of dipole, image, and uniform fields) for mapping the cusp to the ionosphere. The model results are compared to both new and published observations and are then used to map the footprint of a flux transfer event caused by a time variation in the merging rate. It is shown that the cusp geometry distorts the field lines mapped from the magnetopause to yield footprints with dawn and dusk protrusions into the region of closed magnetic flux.

  12. Plasma heating in a variable magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kichigin, G. N., E-mail: king@iszf.irk.ru [Russian Academy of Sciences, Institute of Solar-Terrestrial Physics (Russian Federation)

    2013-05-15

    The problem of particle acceleration in a periodically variable magnetic field that either takes a zero value or passes through zero is considered. It is shown that, each time the field [0]passes through zero, the particle energy increases abruptly. This process can be regarded as heating in the course of which plasma particles acquire significant energy within one field period. This mechanism of plasma heating takes place in the absence of collisions between plasma particles and is analogous to the mechanism of magnetic pumping in collisional plasma considered by Alfven.

  13. Measurement of gradient magnetic field temporal characteristics

    International Nuclear Information System (INIS)

    Bartusek, K.; Jflek, B.

    1994-01-01

    We describe a technique of measuring the time dependence and field distortions of magnetic fields due to eddy currents (EC) produced by time-dependent magnetic field gradients. The EC measuring technique makes use of a large volume sample and selective RF excitation pulses and free induction decay (FID) (or a spin or gradient echo) to measure the out-of-phase component of the FID, which is proportional to γδB, i.e. the amount the signal is off resonance. The measuring technique is sensitive, easy to implement and interpret, and used for determining pre-emphasis compensation parameters

  14. IMAGINE: Interstellar MAGnetic field INference Engine

    Science.gov (United States)

    Steininger, Theo

    2018-03-01

    IMAGINE (Interstellar MAGnetic field INference Engine) performs inference on generic parametric models of the Galaxy. The modular open source framework uses highly optimized tools and technology such as the MultiNest sampler (ascl:1109.006) and the information field theory framework NIFTy (ascl:1302.013) to create an instance of the Milky Way based on a set of parameters for physical observables, using Bayesian statistics to judge the mismatch between measured data and model prediction. The flexibility of the IMAGINE framework allows for simple refitting for newly available data sets and makes state-of-the-art Bayesian methods easily accessible particularly for random components of the Galactic magnetic field.

  15. Acceleration of superparamagnetic particles with magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Stange, R., E-mail: Robert.stange@tu-dresden.de; Lenk, F.; Bley, T.; Boschke, E.

    2017-04-01

    High magnetic capture efficiency in the context of Biomagnetic Separation (BMS) using superparamagnetic particles (SMPs) requires efficient mixing and high relative velocities between cellular and other targets and SMPs. For this purpose, batch processes or microfluidic systems are commonly used. Here, we analyze the characteristics of an in-house developed batch process experimental setup, the Electromagnetic Sample Mixer (ESM) described earlier. This device uses three electromagnets to increase the relative velocity between SMPs and targets. We carry out simulations of the magnetic field in the ESM and in a simpler paradigmatic setup, and thus were able to calculate the force field acting on the SMPs and to simulate their relative velocities and fluid dynamics due to SMP movement. In this way we were able to show that alternate charging of the magnets induces a double circular stream of SMPs in the ESM, resulting in high relative velocities of SMPs to the targets. Consequently, due to the conservation of momentum, the fluid experiences an acceleration induced by the SMPs. We validated our simulations by microscopic observation of the SMPs in the magnetic field, using a homemade apparatus designed to accommodate a long working-distance lens. By comparing the results of modeling this paradigmatic setup with the experimental observations, we determined that the velocities of the SMPs corresponded to the results of our simulations. - Highlights: • Investigation of a batch process setup for complex forming at Biomagnetic Separation. • Simulation of fluid flow characteristics in this Electro Magnetic Samplemixer. • Simulation of relative velocities between magnetic particles and fluid in the setup. • Simulation of fluid flow induced by the acceleration of magnet particles. • Validation of magnetic fields and flow characteristics in paradigmatic setups. • Reached relative velocity is higher than the sedimentation velocity of the particles • Alternating

  16. Electric arc behaviour in dynamic magnetic fields

    International Nuclear Information System (INIS)

    Put'ko, V.F.

    2000-01-01

    The behaviour of an electric arc in different time-dependent (dynamic) magnetic fields was investigated. New possibilities were found for spatial and energy stabilisation of a discharge, for intensifying heat exchange, extending the electric arc and distributed control of electric arc plasma. Rotating, alternating and travelling magnetic fields were studied. It was found that under the effect of a relatively low frequency of variations of dynamic magnetic fields (f 1000 Hz) the arc stabilised at the axis of the discharge chamber, the pulsation level decreased and discharge stability increased. The borders between these two arc existence modes were formed by a certain critical field variation frequency the period of which was determined by the heat relaxation time of the discharge. (author)

  17. Magnetic droplet soliton nucleation in oblique fields

    Science.gov (United States)

    Mohseni, Morteza; Hamdi, M.; Yazdi, H. F.; Banuazizi, S. A. H.; Chung, S.; Sani, S. R.; Åkerman, Johan; Mohseni, Majid

    2018-05-01

    We study the auto-oscillating magnetodynamics in orthogonal spin-torque nano-oscillators (STNOs) as a function of the out-of-plane (OOP) magnetic-field angle. In perpendicular fields and at OOP field angles down to approximately 50°, we observe the nucleation of a droplet. However, for field angles below 50°, experiments indicate that the droplet gives way to propagating spin waves, in agreement with our micromagnetic simulations. Theoretical calculations show that the physical mechanism behind these observations is the sign changing of spin-wave nonlinearity (SWN) by angle. In addition, we show that the presence of a strong perpendicular magnetic anisotropy free layer in the system reverses the angular dependence of the SWN and dynamics in STNOs with respect to the known behavior determined for the in-plane magnetic anisotropy free layer. Our results are of fundamental interest in understanding the rich dynamics of nanoscale solitons and spin-wave dynamics in STNOs.

  18. Intermittent character of interplanetary magnetic field fluctuations

    International Nuclear Information System (INIS)

    Bruno, Roberto; Carbone, Vincenzo; Chapman, Sandra; Hnat, Bogdan; Noullez, Alain; Sorriso-Valvo, Luca

    2007-01-01

    Interplanetary magnetic field magnitude fluctuations are notoriously more intermittent than velocity fluctuations in both fast and slow wind. This behavior has been interpreted in terms of the anomalous scaling observed in passive scalars in fully developed hydrodynamic turbulence. In this paper, the strong intermittent nature of the interplanetary magnetic field is briefly discussed comparing results performed during different phases of the solar cycle. The scaling properties of the interplanetary magnetic field magnitude show solar cycle variation that can be distinguished in the scaling exponents revealed by structure functions. The scaling exponents observed around the solar maximum coincide, within the errors, to those measured for passive scalars in hydrodynamic turbulence. However, it is also found that the values are not universal in the sense that the solar cycle variation may be reflected in dependence on the structure of the velocity field

  19. Assessment of inhomogeneous ELF magnetic field exposures

    International Nuclear Information System (INIS)

    Leitgeb, N.; Cech, R.; Schroettner, J.

    2008-01-01

    In daily life as well as at workplaces, exposures to inhomogeneous magnetic fields become very frequent. This makes easily applicable compliance assessment methods increasingly important. Reference levels have been defined linking basic restrictions to levels of homogeneous fields at worst-case exposure conditions. If reference levels are met, compliance with basic restrictions can be assumed. If not, further investigations could still prove compliance. Because of the lower induction efficiency, inhomogeneous magnetic fields such as from electric appliances could be allowed exceeding reference levels. To easily assess inhomogeneous magnetic fields, a quick and flexible multi-step assessment procedure is proposed. On the basis of simulations with numerical, anatomical human models reference factors were calculated elevating reference levels to link hot-spot values measured at source surfaces to basic limits and allowing accounting for different source distance, size, orientation and position. Compliance rules are proposed minimising assessment efforts. (authors)

  20. Entanglement of two-qubit photon beam by magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Levin, A.D.; Castro, R.A. [University of Sao Paulo, Institute of Physics, CP 66318, Sao Paulo (Brazil); Gitman, D.M. [University of Sao Paulo, Institute of Physics, CP 66318, Sao Paulo (Brazil); P.N. Lebedev Physical Institute, Moscow (Russian Federation); Tomsk State University, Tomsk (Russian Federation)

    2014-09-15

    We study the possibility of affecting the entanglement in a two-qubit system consisting of two photons with different fixed frequencies but with two arbitrary linear polarizations, moving in the same direction, with the help of an applied external magnetic field. The interaction between the magnetic field and the photons in our model is achieved through intermediate electrons that interact both with the photons and the magnetic field. The possibility of an exact theoretical analysis of this scheme is based on well-known exact solutions that describe the interaction of an electron subjected to an external magnetic field (or a medium of electrons not interacting with each other) with a quantized field of two photons. We adapt these exact solutions to the case under consideration. Using explicit wave functions for the resulting electromagnetic field, we calculate the entanglement measures (the information and the Schmidt ones) of the photon beam as functions of the applied magnetic field and the parameters of the electron medium. (orig.)

  1. Accurate computation of transfer maps from magnetic field data

    International Nuclear Information System (INIS)

    Venturini, Marco; Dragt, Alex J.

    1999-01-01

    Consider an arbitrary beamline magnet. Suppose one component (for example, the radial component) of the magnetic field is known on the surface of some imaginary cylinder coaxial to and contained within the magnet aperture. This information can be obtained either by direct measurement or by computation with the aid of some 3D electromagnetic code. Alternatively, suppose that the field harmonics have been measured by using a spinning coil. We describe how this information can be used to compute the exact transfer map for the beamline element. This transfer map takes into account all effects of real beamline elements including fringe-field, pseudo-multipole, and real multipole error effects. The method we describe automatically takes into account the smoothing properties of the Laplace-Green function. Consequently, it is robust against both measurement and electromagnetic code errors. As an illustration we apply the method to the field analysis of high-gradient interaction region quadrupoles in the Large Hadron Collider (LHC)

  2. TH-CD-BRA-05: First Water Calorimetric Dw Measurement and Direct Measurement of Magnetic Field Correction Factors, KQ,B, in a 1.5 T B-Field of An MRI Linac

    Energy Technology Data Exchange (ETDEWEB)

    Prez, L de; Pooter, J de; Jansen, B [VSL, Delft (Netherlands); Wolthaus, J; Asselen, B van; Woodings, S; Soest, T; Kok, J; Raaymakers, B [University Medical Center Utrecht, Utrecht (Netherlands)

    2016-06-15

    Purpose: Reference dosimetry in MR-guided radiotherapy is performed in the presence of a B-field. As a consequence the response of ionization chambers changes considerably and depends on parameters not considered in traditional reference dosimetry. Therefore future Codes of Practices need ionization chamber correction factors to correct for both the change in beam quality and the presence of a B-field. The objective was to study the feasibility of water calorimetric absorbed-dose measurements in a 1.5 T B-field of an MRLinac and the direct measurement of kQ,B calibration of ionization chambers. Methods: Calorimetric absorbed dose to water Dw was measured with a new water calorimeter in the bore of an MRLinac (TPR20,10 of 0.702). Two waterproof ionization chambers (PTW 30013, IBA FC-65G) were calibrated inside the calorimeter phantom (ND,w,Q,B). Both measurements were normalized to a monitor ionization chamber. Ionization chamber measurements were corrected for conventional influence parameter. Based on the chambers’ Co-60 calibrations (ND,w,Q0), measured directly against the calorimeter. In this study the correction factors kQ,B was determined as the ratio of the calibration coefficients in the MRLinac and in Co-60. Additionally, kB was determined based on kQ values obtained with the IAEA TRS-398 Code of Practice. Results: The kQ,B factors of the ionization chambers mentioned above were respectively 0.9488(8) and 0.9445(8) with resulting kB factors of 0.961(13) and 0.952(13) with standard uncertainties on the least significant digit(s) between brackets. Conclusion: Calorimetric Dw measurements and calibration of waterproof ionization chambers were successfully carried out in the 1.5 T B-field of an MRLinac with a standard uncertainty of 0.7%. Preliminary kQ,B and kB factors were determined with standard uncertainties of respectively 0.8% and 1.3%. The kQ,B agrees with an alternative method within 0.4%. The feasibility of water calorimetry in the presence of B-fields

  3. Magnetic Fields in the Interstellar Medium

    Science.gov (United States)

    Clark, Susan

    2017-01-01

    The Milky Way is magnetized. Invisible magnetic fields thread the Galaxy on all scales and play a vital but still poorly understood role in regulating flows of gas in the interstellar medium and the formation of stars. I will present highlights from my thesis work on magnetic fields in the diffuse interstellar gas and in accretion disks. At high Galactic latitudes, diffuse neutral hydrogen is organized into an intricate network of slender linear features. I will show that these neutral hydrogen “fibers” are extremely well aligned with the ambient magnetic field as traced by both starlight polarization (Clark et al. 2014) and Planck 353 GHz polarized dust emission (Clark et al. 2015). The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. Because the orientation of neutral hydrogen is an independent predictor of the local dust polarization angle, our work provides a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination. Magnetic fields also drive accretion in astrophysical disks via the magnetorotational instability (MRI). I analytically derive the behavior of this instability in the weakly nonlinear regime and show that the saturated state of the instability depends on the geometry of the background magnetic field. The analytical model describes the behavior of the MRI in a Taylor-Couette flow, a set-up used by experimentalists in the ongoing quest to observe MRI in the laboratory (Clark & Oishi 2016a, 2016b).

  4. Electrically induced magnetic fields; a consistent approach

    Science.gov (United States)

    Batell, Brian; Ferstl, Andrew

    2003-09-01

    Electromagnetic radiation exists because changing magnetic fields induce changing electric fields and vice versa. This fact often appears inconsistent with the way some physics textbooks solve particular problems using Faraday's law. These types of problems often ask students to find the induced electric field given a current that does not vary linearly with time. A typical example involves a long solenoid carrying a sinusoidal current. This problem is usually solved as an example or assigned as a homework exercise. The solution offered by many textbooks uses the approximation that the induced, changing electric field produces a negligible magnetic field, which is only valid at low frequencies. If this approximation is not explicitly acknowledged, then the solution appears inconsistent with the description of electromagnetic radiation. In other cases, when the problem is solved without this approximation, the electric and magnetic fields are derived from the vector potential. We present a detailed calculation of the electric and magnetic fields inside and outside the long solenoid without using the vector potential. We then offer a comparison of our solution and a solution given in an introductory textbook.

  5. Upper critical magnetic field of superconducting films with magnetic impurities

    International Nuclear Information System (INIS)

    Lemberger, T.R.

    1978-01-01

    The upper critical magnetic field, H/sub c2/(T), of In-Mn and Pb-Mn alloy films was measured. H/sub c2/ was determined from the resistance of the films. The results were compared with the theory of Fulde and Maki. This theory assumes that the electron-phonon coupling is weak, and that the interaction between the impurity spins and the conduction electron spins is weak. The theory predicts that the pair-breaking effect of the magnetic impurities is temperature-independent, and that the pair-breaking effects of the magnetic impurities and the applied magnetic field are additive. Furthermore, it predicts explicitly the temperature dependence of H/sub c2/. The temperature dependence of H/sub c2/ for the In-Mn alloy films is well described by the Fulde-Maki theory, despite the moderately strong electron-phonon coupling and the strong interaction between the impurity spins and the conduction electron spins. The temperature dependence of H/sub c2/ for the Pb-Mn alloy films is not well described by the Fulde-Maki theory, probably due to the strong electron-phonon coupling in Pb. However, even without a quantitatively correct theory, one can conclude from the Pb-Mn data that the pair-breaking effect of the magnetic impurities is temperature independent, and that the pair-breaking effects of the magnetic impurities and the applied magnetic field are additive. For some of the Pb-Mn alloy films, there was a region of positive curvature in H/sub c2/(T) near the zero-field transition temperature. This positive curvature is not understood

  6. Analysis of an adjustable field permanent magnet solenoid

    Science.gov (United States)

    Burris-Mog, T.; Burns, M.; Chavez, A.; Schillig, J.

    2017-10-01

    A feasibility study has been performed on an adjustable-field permanent magnet (PM) solenoid concept in an effort to reduce the dependence that linear induction accelerators have on large direct current power supplies and associated cooling systems. The concept relies on the ability to reorient sections of the PMs and thus redirect their magnetization vector to either add to or subtract from the on-axis magnetic field. This study concentrated on the focal strengths and emittance growths for two different designs, both with 19 cm bore diameters extending 53 cm in length. The first design is expected to produce peak magnetic fields ranging from 260 to 900 G (0.026 to 0.09 T) while the second design is expected to produce peak magnetic fields ranging from 580 to 2100 G (0.058 to 0.21 T). Although the PM configuration generates a variable magnetic field and the torques acting on PMs within the assembly appear manageable, the emittance growth is larger than that of a DC solenoid.

  7. Instabilities in the flow past localized magnetic fields

    International Nuclear Information System (INIS)

    Beltran, Alberto; Cuevas, Sergio; Smolentsev, Sergey

    2007-01-01

    The flow in a shallow layer of an electrically conducting fluid past a localized magnetic field is analyzed numerically. The field occupies only a small fraction of the total flow domain and resemblances the magnetic field created by a permanent magnet located close to the fluid layer. Two different physical cases are considered. In the first one, the fluid layer is free from externally injected electric currents, therefore, only induced currents are present. In the second case, an external electric current is injected to the fluid layer, transversally to the main flow direction. It is shown that the Lorentz force created by the interaction of the electric currents with the non-uniform magnetic field acts as an obstacle for the flow and creates different flow patterns similar to those observed in the flow past bluff bodies. A quasi-two-dimensional model that takes into account the existence of the bottom wall through a linear Hartmann-Rayleigh friction term is considered. When inertial and magnetic forces are strong enough, the wake formed behind the zone of high magnetic field is destabilized and a periodic vortex shedding similar to the classical von Karman street is found. The effect of Hartmann-Rayleigh friction in the emergence of the instability is analyzed

  8. Magnetic field effects on the crust structure of neutron stars

    Science.gov (United States)

    Franzon, B.; Negreiros, R.; Schramm, S.

    2017-12-01

    We study the effects of high magnetic fields on the structure and on the geometry of the crust in neutron stars. We find that the crust geometry is substantially modified by the magnetic field inside the star. We build stationary and axis-symmetric magnetized stellar models by using well-known equations of state to describe the neutron star crust, namely, the Skyrme model for the inner crust and the Baym-Pethick-Sutherland equation of state for the outer crust. We show that the magnetic field has a dual role, contributing to the crust deformation via the electromagnetic interaction (manifested in this case as the Lorentz force) and by contributing to curvature due to the energy stored in it. We also study a direct consequence of the crust deformation due to the magnetic field: the thermal relaxation time. This quantity, which is of great importance to the thermal evolution of neutron stars, is sensitive to the crust properties, and, as such, we show that it may be strongly affected by the magnetic field.

  9. Magnetic Field Response Measurement Acquisition System

    Science.gov (United States)

    Woodard, Stanley E.; Taylor,Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2007-01-01

    This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed.

  10. Magnetic field measurements in xi Bootis A

    International Nuclear Information System (INIS)

    Boesgaard, A.M.; Chesley, D.; Preston, G.W.

    1975-01-01

    Four Zeeman spectrograms from Lick Observatory of xi Boo A and two of iota Peg at 2 A mm -1 have been measured to determine if a weak magnetic field is present in xi Boo A. The results indicate that the field is too weak to be measured by this technique on these spectrograms, although remeasurements of spectrograms from Mauna Kea at 3.4 A mm -1 still give a positive field of 170 gauss. (U.S.)

  11. Theoretical study of in-plane response of magnetic field sensor to magnetic beads in an in-plane homogeneous field

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Hansen, Mikkel Fougt

    2008-01-01

    We present a systematic theoretical study of the average in-plane magnetic field on square and rectangular magnetic field sensors from a single magnetic bead and a monolayer of magnetic beads magnetized by an in-plane externally applied homogeneous magnetic field. General theoretical expressions...... are derived such that the sensor response and its dependence on the sensor size, spacer layer thickness, bead diameter, and bead susceptibility can easily be evaluated. The average magnetic field from a single bead close to the sensor shows a strong dependence on the position of the bead and a change of sign...... when the bead passes the edge of the sensor in the direction of the applied field. Analytical approximations are derived for the average field from a homogeneous monolayer of beads for beads much smaller than the sensor dimension and for a bead size chosen to minimize the position sensitivity...

  12. Magnetic Thermometer: Thermal effect on the Agglomeration of Magnetic Nanoparticles by Magnetic field

    Science.gov (United States)

    Jin, Daeseong; Kim, Hackjin

    2018-03-01

    We have investigated the agglomeration of magnetite nanoparticles in the aqueous solution under magnetic field by measuring temporal change of magnetic weight. The magnetic weight corresponds to the force due to the magnetization of magnetic materials. Superparamagnetic magnetite nanoparticles are synthesized and used in this work. When the aqueous solution of magnetite nanoparticle is placed under magnetic field, the magnetic weight of the sample jumps instantaneously by Neel and Brown mechanisms and thereafter increases steadily following a stretched exponential function as the nanoparticles agglomerate, which results from the distribution of energy barriers involved in the dynamics. Thermal motions of nanoparticles in the agglomerate perturb the ordered structure of the agglomerate to reduce the magnetic weight. Fluctuation of the structural order of the agglomerate by temperature change is much faster than the formation of agglomerate and explained well with the Boltzmann distribution, which suggests that the magnetic weight of the agglomerate works as a magnetic thermometer.

  13. Plasma diffusion due to magnetic field fluctuations

    International Nuclear Information System (INIS)

    Okuda, H.; Lee, W.W.; Lin, A.T.

    1979-01-01

    Plasma diffusion due to magnetic field fluctuations has been studied in two dimensions for a plasma near thermal equilibrium and when the fluctuations are suprathermal. It is found that near thermal equilibrium electron diffusion varies as B -2 when the collisionless skin depth is greater than the thermal electron gyroradius and is generally smaller than the diffusion due to collisions or electrostatic fluctuations for a low-β plasma. When the suprathermal magnetic fluctuation exists because of macroscopic plasma currents, electron diffusion is enhanced due to the coalescence of current filaments and magnetic islands. Magnetic field energy is found to condense to the longest wavelength available in the system and stays there longer than the electron diffusion time scale

  14. Anisotropies in magnetic field evolution and local Lyapunov exponents

    International Nuclear Information System (INIS)

    Tang, X.Z.; Boozer, A.H.

    2000-01-01

    The natural occurrence of small scale structures and the extreme anisotropy in the evolution of a magnetic field embedded in a conducting flow is interpreted in terms of the properties of the local Lyapunov exponents along the various local characteristic (un)stable directions for the Lagrangian flow trajectories. The local Lyapunov exponents and the characteristic directions are functions of Lagrangian coordinates and time, which are completely determined once the flow field is specified. The characteristic directions that are associated with the spatial anisotropy of the problem, are prescribed in both Lagrangian and Eulerian frames. Coordinate transformation techniques are employed to relate the spatial distributions of the magnetic field, the induced current density, and the Lorentz force, which are usually followed in Eulerian frame, to those of the local Lyapunov exponents, which are naturally defined in Lagrangian coordinates

  15. A model of the magnetosheath magnetic field during magnetic clouds

    Directory of Open Access Journals (Sweden)

    L. Turc

    2014-02-01

    Full Text Available Magnetic clouds (MCs are huge interplanetary structures which originate from the Sun and have a paramount importance in driving magnetospheric storms. Before reaching the magnetosphere, MCs interact with the Earth's bow shock. This may alter their structure and therefore modify their expected geoeffectivity. We develop a simple 3-D model of the magnetosheath adapted to MCs conditions. This model is the first to describe the interaction of MCs with the bow shock and their propagation inside the magnetosheath. We find that when the MC encounters the Earth centrally and with its axis perpendicular to the Sun–Earth line, the MC's magnetic structure remains mostly unchanged from the solar wind to the magnetosheath. In this case, the entire dayside magnetosheath is located downstream of a quasi-perpendicular bow shock. When the MC is encountered far from its centre, or when its axis has a large tilt towards the ecliptic plane, the MC's structure downstream of the bow shock differs significantly from that upstream. Moreover, the MC's structure also differs from one region of the magnetosheath to another and these differences vary with time and space as the MC passes by. In these cases, the bow shock configuration is mainly quasi-parallel. Strong magnetic field asymmetries arise in the magnetosheath; the sign of the magnetic field north–south component may change from the solar wind to some parts of the magnetosheath. We stress the importance of the Bx component. We estimate the regions where the magnetosheath and magnetospheric magnetic fields are anti-parallel at the magnetopause (i.e. favourable to reconnection. We find that the location of anti-parallel fields varies with time as the MCs move past Earth's environment, and that they may be situated near the subsolar region even for an initially northward magnetic field upstream of the bow shock. Our results point out the major role played by the bow shock configuration in modifying or keeping the

  16. Magnetic Field Effects on Plasma Plumes

    Science.gov (United States)

    Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

    2012-01-01

    Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

  17. Trapped field recovery of bulk superconductor magnets by static field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z., E-mail: zigang@kaiyodai.ac.jp [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan); Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M. [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan)

    2011-11-15

    A series of initial trapped fields after ZFC or FC magnetization are used to simulate the attenuated trapped field. It is possible and easy to recover the lost trapped field and regain the best trapped field performance as before. In the re-magnetization process, the initial magnetic flux inside the bulk magnets will help to recover the trapped field. The optimum recovery field is recommended to be 2.5 times the saturation field of the bulk at LN2 temperature. Thanks to the trapped field of bulk high-temperature superconductors, they can be used as field-pole magnets in the high temperature superconducting (HTS) rotating machines. For example, an output power of 10 kW at 720 rpm was realized by an average trapped field of 0.56 T of eight melt-textured GdBa{sub 2}Cu{sub 3}O{sub y} (Gd-123) bulks at liquid nitrogen temperature in TUMSAT in 2004. Similarly to the HTS machines involving 1G or 2G wires, the trapped field of the bulk is possibly sensitive and even can be attenuated by the AC component field during the operation. Hence, it is necessary to recover the trapped field once being decreased to some extent in the practical application. From this point, we have investigated the trapped field recovery of HTS bulk magnets by static field magnetization in the paper. A series of different initial trapped fields after zero-field-cooling or field-cooling magnetization are used to simulate the attenuated trapped field. By comparing the trapped field peak and its distribution, the trapped field was found to be able to recover by the static field magnetization method with a stronger excitation field and the initial trapped flux inside the bulk also has an influence on the recovery process. The optimum recovery field was found to be about 2.5 times the saturated trapped field of the bulk at liquid nitrogen temperature, by which the bulk can regain the former best trapped field performance.

  18. High magnetic field magnetization of a new triangular lattice antiferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, H. D. [Univ. of Tennessee, Knoxville, TN (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States). National High Magnetic Field Lab. (MagLab); Stritzinger, Laurel Elaine Winter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harrison, Neil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-23

    In CsV(MoO4)2, the magnetic V3+ ions with octahedral oxygen-coordination form a geometrically frustrated triangular lattice. So fare, there is no magnetic properties reported on it. Recently, we successfully grew single crystals of CsV(MoO4)2 by using flux method. The susceptibility shows a sharp drop around 24 K, representing a long range magnetic ordering. To understand the physical properties of this new triangular lattice antiferromagnet (TLAF), we pursued high field magnetization measurements to answer two questions: (i) what is the saturation field, which will be very useful to calculate the exchange interaction of the system? (ii) Will it exhibit spin state transition, such as the up up down phase with 1/3-saturation moment as other TLAFs? Recently, we performed VSM measurements in Cell 8, Tallahassee, NHMFL, the results show that the magnetization reaches 0.38 MuB at 34 T, which is just 19% of the full moment of 2 MuB for V3+ (3d2) ions. Apparently we need higher field to reach 1/3 value or full moment.

  19. Plasma flow measurement using directional Langmuir probe under weakly ion-magnetized conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Kenichi; Okamoto, Atsushi [Graduate School of Science, Nagoya Univ., Nagoya (Japan); Yoshimura, Shinji; Tanaka, Masayoshi Y. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2000-07-01

    It is both experimentally and theoretically demonstrated that ion flow velocity at an arbitrary angle with respect to the magnetic field can be measured with a directional Langmuir probe. Based on the symmetry argument, we show that the effect of magnetic field on directional probe current is exactly canceled in determining the ion flow velocity, and obtain the generalized relation between flow velocity and directional probe currents valid for any flowing direction. The absolute value of the flow velocity is determined by an in situ calibration method of the probe. The applicability limit of the present method to a strongly ion-magnetized plasma is experimentally examined. (author)

  20. Superparamagnetic microbead transport induced by a magnetic field on large-area magnetic antidot arrays

    Science.gov (United States)

    Ouk, Minae; Beach, Geoffrey S. D.

    2017-12-01

    A method is presented for directed transport of superparamagnetic microbeads (SPBs) on magnetic antidot patterned substrates by applying a rotating elliptical magnetic field. We find a critical frequency for transport, beyond which the bead dynamics transitions from stepwise locomotion to local oscillation. We also find that the out-of-plane (HOOP) and in-plane (HIP) field magnitudes play crucial roles in triggering bead motion. Namely, we find threshold values in HOOP and HIP that depend on bead size, which can be used to independently and remotely address specific bead populations in a multi-bead mixture. These behaviors are explained in terms of the dynamic potential energy lansdscapes computed from micromagnetic simulations of the substrate magnetization configuration. Finally, we show that large-area magnetic patterns suitable for particle transport and sorting can be fabricated through a self-assembly lithography technique, which provides a simple, cost-effective means to integrate magnetic actuation into microfluidic systems.

  1. Full particle orbit effects in regular and stochastic magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Shun, E-mail: shun.ogawa@cpt.univ-mrs.fr [Aix Marseille Univ., Univ. Toulon, CNRS, CPT, Marseille (France); CEA, IRFM, F-13108 St. Paul-lez-Durance Cedex (France); Cambon, Benjamin; Leoncini, Xavier; Vittot, Michel [Aix Marseille Univ., Univ. Toulon, CNRS, CPT, Marseille (France); Castillo-Negrete, Diego del [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6169 (United States); Dif-Pradalier, Guilhem; Garbet, Xavier [CEA, IRFM, F-13108 St. Paul-lez-Durance Cedex (France)

    2016-07-15

    We present a numerical study of charged particle motion in a time-independent magnetic field in cylindrical geometry. The magnetic field model consists of an unperturbed reversed-shear (non-monotonic q-profile) helical part and a perturbation consisting of a superposition of modes. Contrary to most of the previous studies, the particle trajectories are computed by directly solving the full Lorentz force equations of motion in a six-dimensional phase space using a sixth-order, implicit, symplectic Gauss-Legendre method. The level of stochasticity in the particle orbits is diagnosed using averaged, effective Poincare sections. It is shown that when only one mode is present, the particle orbits can be stochastic even though the magnetic field line orbits are not stochastic (i.e., fully integrable). The lack of integrability of the particle orbits in this case is related to separatrix crossing and the breakdown of the global conservation of the magnetic moment. Some perturbation consisting of two modes creates resonance overlapping, leading to Hamiltonian chaos in magnetic field lines. Then, the particle orbits exhibit a nontrivial dynamics depending on their energy and pitch angle. It is shown that the regions where the particle motion is stochastic decrease as the energy increases. The non-monotonicity of the q-profile implies the existence of magnetic ITBs (internal transport barriers) which correspond to shearless flux surfaces located in the vicinity of the q-profile minimum. It is shown that depending on the energy, these magnetic ITBs might or might not confine particles. That is, magnetic ITBs act as an energy-dependent particle confinement filter. Magnetic field lines in reversed-shear configurations exhibit topological bifurcations (from homoclinic to heteroclinic) due to separatrix reconnection. We show that a similar but more complex scenario appears in the case of particle orbits that depend in a non-trivial way on the energy and pitch angle of the

  2. Diffusive processes in a stochastic magnetic field

    International Nuclear Information System (INIS)

    Wang, H.; Vlad, M.; Vanden Eijnden, E.; Spineanu, F.; Misguich, J.H.; Balescu, R.

    1995-01-01

    The statistical representation of a fluctuating (stochastic) magnetic field configuration is studied in detail. The Eulerian correlation functions of the magnetic field are determined, taking into account all geometrical constraints: these objects form a nondiagonal matrix. The Lagrangian correlations, within the reasonable Corrsin approximation, are reduced to a single scalar function, determined by an integral equation. The mean square perpendicular deviation of a geometrical point moving along a perturbed field line is determined by a nonlinear second-order differential equation. The separation of neighboring field lines in a stochastic magnetic field is studied. We find exponentiation lengths of both signs describing, in particular, a decay (on the average) of any initial anisotropy. The vanishing sum of these exponentiation lengths ensures the existence of an invariant which was overlooked in previous works. Next, the separation of a particle's trajectory from the magnetic field line to which it was initially attached is studied by a similar method. Here too an initial phase of exponential separation appears. Assuming the existence of a final diffusive phase, anomalous diffusion coefficients are found for both weakly and strongly collisional limits. The latter is identical to the well known Rechester-Rosenbluth coefficient, which is obtained here by a more quantitative (though not entirely deductive) treatment than in earlier works

  3. Anisotropic temperature relaxation of plasmas in an external magnetic field

    International Nuclear Information System (INIS)

    Hassan, M.H.A.

    1977-01-01

    The magnetized kinetic equation derived in an earlier paper (Hassan and Watson, 1977) is used to study the problem of relaxation of anisotropic electron and ion temperatures in a magnetized plasma. In the case of anisotropic electron temperature relaxation, it is shown that for small anisotropies the exchange of energy within the electrons between the components parallel and perpendicular to the magnetic field direction determine the relaxation rate. For anisotropic ion temperature relaxation it is shown that the essential mechanism for relaxation is provided by energy transfer between ions and electrons, and that the expression for the relaxation rate perpendicular to the magnetic field contains a significant term proportional to ln eta 0 ln (msub(e)/msub(i)) (where eta 0 = Ωsub(e)/ksub(D)Vsub(e perpendicular to)), in addition to the term proportional to the Coulomb logarithm. (author)

  4. Consistency relation for cosmic magnetic fields

    DEFF Research Database (Denmark)

    Jain, R. K.; Sloth, M. S.

    2012-01-01

    If cosmic magnetic fields are indeed produced during inflation, they are likely to be correlated with the scalar metric perturbations that are responsible for the cosmic microwave background anisotropies and large scale structure. Within an archetypical model of inflationary magnetogenesis, we show...... that there exists a new simple consistency relation for the non-Gaussian cross correlation function of the scalar metric perturbation with two powers of the magnetic field in the squeezed limit where the momentum of the metric perturbation vanishes. We emphasize that such a consistency relation turns out...... to be extremely useful to test some recent calculations in the literature. Apart from primordial non-Gaussianity induced by the curvature perturbations, such a cross correlation might provide a new observational probe of inflation and can in principle reveal the primordial nature of cosmic magnetic fields. DOI...

  5. Generation of intense transient magnetic fields

    International Nuclear Information System (INIS)

    Benjamin, R.F.

    1983-01-01

    In a laser system, the return current of a laser generated plasma is conducted near a target to subject that target to a magnetic field. The target may be either a small non-fusion object for testing under the magnetic field or a laser-fusion pellet. In the laser-fusion embodiment, the laser-fusion pellet is irradiated during the return current flow and the intense transient magnetic field is used to control the hot electrons thereof to hinder them from striking and heating the core of the irradiated laser-fusion pellet. An emitter, e.g. a microballoon of glass, metal or plastics, is subjected to a laser pulse to generate the plasma from which the return current flows into a wire cage or a coil and then to earth. (author)

  6. Chiral battery, scaling laws and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Sampurn; Bhatt, Jitesh R.; Pandey, Arun Kumar, E-mail: sampurn@prl.res.in, E-mail: jeet@prl.res.in, E-mail: arunp@prl.res.in [Physical Research Laboratory, Ahmedabad, 380009 (India)

    2017-07-01

    We study the generation and evolution of magnetic field in the presence of chiral imbalance and gravitational anomaly which gives an additional contribution to the vortical current. The contribution due to gravitational anomaly is proportional to T {sup 2} which can generate seed magnetic field irrespective of plasma being chirally charged or neutral. We estimate the order of magnitude of the magnetic field to be 10{sup 30} G at T ∼ 10{sup 9} GeV, with a typical length scale of the order of 10{sup −18} cm, which is much smaller than the Hubble radius at that temperature (10{sup −8} cm). Moreover, such a system possess scaling symmetry. We show that the T {sup 2} term in the vorticity current along with scaling symmetry leads to more power transfer from lower to higher length scale as compared to only chiral anomaly without scaling symmetry.

  7. Field flattening in superconducting beam transport magnets

    International Nuclear Information System (INIS)

    Morgan, G.H.

    1994-01-01

    Dipoles in which the beam traverses the midplane well away from tie magnet axis may benefit from flattening of the vertical field on the midplane. A procedure is described for doing so, making use of Chebyshev polynomials. In the case of the large aperture ''DX'' magnets located immediately on each side of the six intersection regions of the Relativistic Heavy Ion Powder (RHIC), a comparison is made of the field of coils optimized in this way and of coils optimized in the more common way by minimizing the leading coefficients of the Fourier expansion about the magnet axis. The comparison is of the integrated Fourier coefficients of the field expanded locally along the beam trajectory

  8. Measurement and reconstruction of the BEBC magnetic field map

    CERN Document Server

    Häbel, E; Wittgenstein, F

    1973-01-01

    The superconducting magnet of the Big European Bubble Chamber (BEBC) has been excited with currents up to 5035 A corresponding to a magnetic induction of 3.1 Tesla at the center of the chamber. Since one expected that during the charging of the magnet coils long time constant eddy currents would be induced by the varying radial field components, a system of 181 Hall-probes was installed on the boundary of the chamber body allowing to survey the magnetic field map. This Hall-probe system together with an NMR-probe (nuclear magnetic resonance) enabled us to measure and reconstruct to an accuracy of better than 0.1% the field map of BEBC, which in itself is uniform to within 3% inside the visible fiducial volume of the Chamber. Direct evidence was also given for field map distortions due to the eddy current field which amounted to about 0.7% of the maximum recorded field values at the chamber center. (7 refs).

  9. Measurement and reconstruction of the BEBC magnetic field map

    CERN Document Server

    Häbel, E; Wittgenstein, F

    1973-01-01

    The superconducting magnet of the Big European Bubble Chamber (BEBC) has been excited with currents up to 5035 A corresponding to a magnetic induction of 3.1 Tesla at the center of the chamber. Since one expected that during the charging of the magnet coils long time constant eddy currents would be induced by the varying radial field components, a system of 181 Hall-probes was installed on the boundary of the chamber body allowing to survey the magnetic field map. This Hall-probe system together with an NMR-probe (nuclear magnetic resonance) enabled us to measure and reconstruct to an accuracy of better than 0.1the field map of BEBC, which in itself is uniform to within 3 191332nside the visible fiducial volume of the Chamber. Direct evidence was also given for field map distortions due to the eddy current field which amounted to about 0.723420f the maximum recorded field values at the chamber center. (7 refs).

  10. Electric and magnetic fields at extremely low frequencies

    International Nuclear Information System (INIS)

    Anderson, L.E.; Kaune, W.T.

    1989-01-01

    Whole-body exposure to extremely low frequency (ELF, 30-300 Hz) electric fields may involve effects related to stimulation of the sensory apparatus at the body surface (hair vibration, possible direct neural stimulation) and effects within the body caused by the flow of current. Magnetic fields may interact predominantly by the induction of internal current flow. Biological effects observed in a living organism may depend on the electric fields induced inside the body, possibly on the magnetic fields penetrating into the body, and on the fields acting at the surface of the body. Areas in which effects have been observed often appear to be associated with the nervous system, including altered neuronal excitability and neurochemical changes, altered hormone levels, changes in behavioural responses, and changes in biological rhythms. No studies unequivocably demonstrate deleterious effects of ELF electric or magnetic field exposure on mammalian reproduction and development, but several suggest such effects. Exposure to ELF electric and magnetic fields does produce biological effects. However, except for fields strong enough to induce current densities above the threshold for the stimulation of nerve tissues, there is no consensus as to whether these effects constitute a hazard to human health. Human data from epidemiological studies, including reported effects on cancer promotion, congenital malformations, reproductive performance and general health, though somewhat suggestive of adverse health effects, are not conclusive. 274 refs, 13 figs, 6 tabs

  11. Vertical gradients of sunspot magnetic fields

    Science.gov (United States)

    Hagyard, M. J.; Teuber, D.; West, E. A.; Tandberg-Hanssen, E.; Henze, W., Jr.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; Woodgate, B. E.

    1983-01-01

    The results of a Solar Maximum Mission (SMM) guest investigation to determine the vertical gradients of sunspot magnetic fields for the first time from coordinated observations of photospheric and transition-region fields are described. Descriptions are given of both the photospheric vector field of a sunspot, derived from observations using the NASA Marshall Space Flight Center vector magnetograph, and of the line-of-sight component in the transition region, obtained from the SMM Ultraviolet Spectrometer and Polarimeter instrument. On the basis of these data, vertical gradients of the line-of-sight magnetic field component are calculated using three methods. It is found that the vertical gradient of Bz is lower than values from previous studies and that the transition-region field occurs at a height of approximately 4000-6000 km above the photosphere.

  12. Superconductor shields test chamber from ambient magnetic fields

    Science.gov (United States)

    Hildebrandt, A. F.

    1965-01-01

    Shielding a test chamber for magnetic components enables it to maintain a constant, low magnetic field. The chamber is shielded from ambient magnetic fields by a lead foil cylinder maintained in a superconducting state by liquid helium.

  13. Method and means for measuring the anisotropy of a plasma in a magnetic field

    Science.gov (United States)

    Shohet, J.L.; Greene, D.G.S.

    1973-10-23

    Anisotropy is measured of a free-free-bremsstrahlungradiation-generating plasma in a magnetic field by collimating the free-free bremsstrahlung radiation in a direction normal to the magnetic field and scattering the collimated free- free bremsstrahlung radiation to resolve the radiation into its vector components in a plane parallel to the electric field of the bremsstrahlung radiation. The scattered vector components are counted at particular energy levels in a direction parallel to the magnetic field and also normal to the magnetic field of the plasma to provide a measure of anisotropy of the plasma. (Official Gazette)

  14. Chaotic magnetic field line in toroidal plasmas

    International Nuclear Information System (INIS)

    Hatori, Tadatsugu; Abe, Yoshihiko; Urata, Kazuhiro; Irie, Haruyuki.

    1989-05-01

    This is an introductory review of chaotic magnetic field line in plasmas, together with some new results, with emphasis on the long-time tail and the fractional Brownian motion of the magnetic field line. The chaotic magnetic field line in toroidal plasmas is a typical chaotic phenomena in the Hamiltonian dynamical systems. The onset of stochasticity induced by a major magnetic perturbation is thought to cause a macroscopic rapid phenomena called the current disruption in the tokamak discharges. Numerical simulations on the basis of magnetohydrodynamics reveal in fact the disruptive phenomena. Some dynamical models which include the area-preserving mapping such as the standard mapping, and the two-wave Hamiltonian system can model the stochastic magnetic field. Theoretical results with use of the functional integral representation are given regarding the long-time tail on the basis of the radial twist mapping. It is shown that application of renormalization group technique to chaotic orbit in the two-wave Hamiltonian system proves decay of the velocity autocorrelation function with the power law. Some new numerical results are presented which supports these theoretical results. (author)

  15. Doped spin ladders under magnetic field

    International Nuclear Information System (INIS)

    Roux, G.

    2007-07-01

    This thesis deals with the physics of doped two-leg ladders which are a quasi one-dimensional and unconventional superconductor. We particularly focus on the properties under magnetic field. Models for strongly correlated electrons on ladders are studied using exact diagonalization and density-matrix renormalization group (DMRG). Results are also enlightened by using the bosonization technique. Taking into account a ring exchange it highlights the relation between the pairing of holes and the spin gap. Its influence on the dynamics of the magnetic fluctuations is also tackled. Afterwards, these excitations are probed by the magnetic field by coupling it to the spin degree of freedom of the electrons through Zeeman effect. We show the existence of doping-dependent magnetization plateaus and also the presence of an inhomogeneous superconducting phase (FFLO phase) associated with an exceeding of the Pauli limit. When a flux passes through the ladder, the magnetic field couples to the charge degree of freedom of the electrons via orbital effect. The diamagnetic response of the doped ladder probes the commensurate phases of the t-J model at low J/t. Algebraic transverse current fluctuations are also found once the field is turned on. Lastly, we report numerical evidences of a molecular superfluid phase in the 3/2-spin attractive Hubbard model: at a density low enough, bound states of four fermions, called quartets, acquire dominant superfluid fluctuations. The observed competition between the superfluid and density fluctuations is connected to the physics of doped ladders. (author)

  16. Field measuring probe for SSC magnets

    International Nuclear Information System (INIS)

    Ganetis, G.; Herrera, J.; Hogue, R.; Skaritka, J.; Wanderer, P.; Willen, E.

    1987-01-01

    The field probe developed for measuring the field in SSC dipole magnets is an adaptation of the rotating tangential coil system in use at Brookhaven for several years. Also known as the MOLE, it is a self-contained room-temperature mechanism that is pulled through the aperture of the magnet with regular stops to measure the local field. Several minutes are required to measure the field at each point. The probe measures the multipole components of the field as well as the field angle relative to gravity. The sensitivity of the coil and electronics is such that the field up to the full 6.6 T excitation of the magnet as well as the field when warm with only 0.01 T excitation can be measured. Tethers are attached to both ends of the probe to carry electrical connections and to supply dry nitrogen to the air motors that rotate the tangential windings as well as the gravity sensor. A small computer is attached to the probe for control and for data collection, analysis and storage

  17. The relationship between anatomically correct electric and magnetic field dosimetry and published electric and magnetic field exposure limits

    International Nuclear Information System (INIS)

    Kavet, R.; Dovan, T.; Patrick Reilly, J.

    2012-01-01

    Electric and magnetic field exposure limits published by International Commission for Non-Ionizing Radiation Protection and Inst. of Electrical and Electronics Engineers are aimed at protection against adverse electro-stimulation, which may occur by direct coupling to excitable tissue and, in the case of electric fields, through indirect means associated with surface charge effects (e.g. hair vibration, skin sensations), spark discharge and contact current. For direct coupling, the basic restriction (BR) specifies the not-to-be-exceeded induced electric field. The key results of anatomically based electric and magnetic field dosimetry studies and the relevant characteristics of excitable tissue were first identified. This permitted us to assess the electric and magnetic field exposure levels that induce dose in tissue equal to the basic restrictions, and the relationships of those exposure levels to the limits now in effect. We identify scenarios in which direct coupling of electric fields to peripheral nerve could be a determining factor for electric field limits. (authors)

  18. Magnetic field processing of inorganic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, D.C.; Peterson, E.S. [Idaho National Engineering Laboratory, Idaho Falls, ID (United States)

    1995-05-01

    The purpose of this project is to investigate, understand, and demonstrate the use of magnetic field processing (MFP) to modify the properties of inorganic-based polymers and to develop the basic technical knowledge required for industrial implementation. Polyphosphazene membranes for chemical separation applications are being emphasized by this project. Previous work demonstrated that magnetic fields, appropriately applied during processing, can be used to beneficially modify membrane morphology. MFP membranes have significantly increased flux capabilities while maintaining the same chemical selectivity as the unprocessed membranes.

  19. Iron chalcogenide superconductors at high magnetic fields

    Science.gov (United States)

    Lei, Hechang; Wang, Kefeng; Hu, Rongwei; Ryu, Hyejin; Abeykoon, Milinda; Bozin, Emil S; Petrovic, Cedomir

    2012-01-01

    Iron chalcogenide superconductors have become one of the most investigated superconducting materials in recent years due to high upper critical fields, competing interactions and complex electronic and magnetic phase diagrams. The structural complexity, defects and atomic site occupancies significantly affect the normal and superconducting states in these compounds. In this work we review the vortex behavior, critical current density and high magnetic field pair-breaking mechanism in iron chalcogenide superconductors. We also point to relevant structural features and normal-state properties. PMID:27877518

  20. Frictional Coulomb drag in strong magnetic fields

    DEFF Research Database (Denmark)

    Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang

    1997-01-01

    A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21...

  1. Superconductive magnetic-field-trapping device

    Science.gov (United States)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1965-01-01

    An apparatus which enables the establishment of a magnetic field in air that has the same intensity as the ones in ferromagnetic materials is described. The apparatus is comprised of a core of ferromagnetic material and is surrounded by a cylinder made of a material that has superconducting properties when cooled below a critical temperature. A method is provided for producing a magnetic field through the ferromagnetic core. The core can also be split and pulled apart when it is required that the center of the cavity be left empty.

  2. Magnetic field reconnection at the dayside magnetopause

    International Nuclear Information System (INIS)

    Rijnbeek, R.P.

    1992-01-01

    Magnetic field reconnection is a fundamental energy conversion process, and the energy liberated during this process gives rise to phenomena which can be observed in space and laboratory plasmas. At the dayside magnetopause reconnection results in a coupling between the solar wind and the magnetosphere. Manifestations of this include large disturbances in the magnetic field known as flux transfer events, and accelerated plasma flows along the magnetopause. Progress has been made in the development of a physical model incorporating such phenomena, aided by experimental data from various spacecraft missions

  3. Reduction of a Ship's Magnetic Field Signatures

    CERN Document Server

    Holmes, John

    2008-01-01

    Decreasing the magnetic field signature of a naval vessel will reduce its susceptibility to detonating naval influence mines and the probability of a submarine being detected by underwater barriers and maritime patrol aircraft. Both passive and active techniques for reducing the magnetic signatures produced by a vessel's ferromagnetism, roll-induced eddy currents, corrosion-related sources, and stray fields are presented. Mathematical models of simple hull shapes are used to predict the levels of signature reduction that might be achieved through the use of alternate construction materials. Al

  4. The Magnetic Field of Planet Earth

    DEFF Research Database (Denmark)

    Hulot, G.; Finlay, Chris; Constable, C. G.

    2010-01-01

    The magnetic field of the Earth is by far the best documented magnetic field of all known planets. Considerable progress has been made in our understanding of its characteristics and properties, thanks to the convergence of many different approaches and to the remarkable fact that surface rocks...... yr) to the longest (virtually the age of the Earth) time scales are finally reviewed, underlining the respective roles of the magnetohydodynamics at work in the core, and of the slow dynamic evolution of the planet as a whole....

  5. Magnetic fields driven by tidal mixing in radiative stars

    Science.gov (United States)

    Vidal, Jérémie; Cébron, David; Schaeffer, Nathanaël; Hollerbach, Rainer

    2018-04-01

    Stellar magnetism plays an important role in stellar evolution theory. Approximatively 10 per cent of observed main sequence (MS) and pre-main-sequence (PMS) radiative stars exhibit surface magnetic fields above the detection limit, raising the question of their origin. These stars host outer radiative envelopes, which are stably stratified. Therefore, they are assumed to be motionless in standard models of stellar structure and evolution. We focus on rapidly rotating, radiative stars which may be prone to the tidal instability, due to an orbital companion. Using direct numerical simulations in a sphere, we study the interplay between a stable stratification and the tidal instability, and assess its dynamo capability. We show that the tidal instability is triggered regardless of the strength of the stratification (Brunt-Väisälä frequency). Furthermore, the tidal instability can lead to both mixing and self-induced magnetic fields in stably stratified layers (provided that the Brunt-Väisälä frequency does not exceed the stellar spin rate in the simulations too much). The application to stars suggests that the resulting magnetic fields could be observable at the stellar surfaces. Indeed, we expect magnetic field strengths up to several Gauss. Consequently, tidally driven dynamos should be considered as a (complementary) dynamo mechanism, possibly operating in radiative MS and PMS stars hosting orbital companions. In particular, tidally driven dynamos may explain the observed magnetism of tidally deformed and rapidly rotating Vega-like stars.

  6. Constraining brane inflationary magnetic field from cosmoparticle physics after Planck

    International Nuclear Information System (INIS)

    Choudhury, Sayantan

    2015-01-01

    In this article, I have studied the cosmological and particle physics constraints on a generic class of large field (|Δϕ|>M_p) and small field (|Δϕ|< M_p) models of brane inflationary magnetic field from: (1) tensor-to-scalar ratio (r), (2) reheating, (3) leptogenesis and (4) baryogenesis in case of Randall-Sundrum single braneworld gravity (RSII) framework. I also establish a direct connection between the magnetic field at the present epoch (B_0) and primordial gravity waves (r), which give a precise estimate of non-vanishing CP asymmetry (ϵ_C_P) in leptogenesis and baryon asymmetry (η_B) in baryogenesis scenario respectively. Further assuming the conformal invariance to be restored after inflation in the framework of RSII, I have explicitly shown that the requirement of the sub-dominant feature of large scale coherent magnetic field after inflation gives two fold non-trivial characteristic constraints- on equation of state parameter (w) and the corresponding energy scale during reheating (ρ_r_h"1"/"4) epoch. Hence giving the proposal for avoiding the contribution of back-reaction from the magnetic field I have established a bound on the generic reheating characteristic parameter (R_r_h) and its rescaled version (R_s_c), to achieve large scale magnetic field within the prescribed setup and further apply the CMB constraints as obtained from recently observed Planck 2015 data and Planck+BICEP2+Keck Array joint constraints. Using all these derived results I have shown that it is possible to put further stringent constraints on various classes of large and small field inflationary models to break the degeneracy between various cosmological parameters within the framework of RSII. Finally, I have studied the consequences from two specific models of brane inflation- monomial and hilltop, after applying the constraints obtained from inflation and primordial magnetic field.

  7. Magnetization, critical current, and injection field harmonics in superconducting accelerator magnets

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Sampson, W.B.; Wanderer, P.

    1985-01-01

    The very large energy ratio of machines such as the SSC dictates rather low injection field (for 6T, 20 TeV it is approximately 0.3T). Since the harmonic content at such low fields is largely determined by magnetization currents in the superconductor, the random errors depend on the uniformity of the superconducting wire. In principle the magnitude of the residual fields can be reduced indefinitely by using finer filaments, but in practice there is a lower limit of a few microns. We have compared the injection field harmonics for a number of accelerator dipoles with magnetization measurements made on samples of the conductor used to wind the coils. In addition both the magnetization and harmonics have been compared with short sample critical current measurements made at 5T. The results indicated that an accurate estimate of the variation in injection field harmonics can only be obtained from direct measurements of the magnetization of the cable. It appears feasible to use such measurements to ''shuffle'' magnets for a large accelerator by predicting the low field properties of a magnet before actually winding the coils. 10 refs., 4 figs., 2 tabs

  8. SQUID-detected magnetic resonance imaging in microtesla magnetic fields

    International Nuclear Information System (INIS)

    McDermott, Robert; Kelso, Nathan; Lee, SeungKyun; Moessle, Michael; Mueck, Michael; Myers, Whittier; Haken, Bernard ten; Seton, H.C.; Trabesinger, Andreas H.; Pines, Alex; Clarke, John

    2003-01-01

    We describe studies of nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) of liquid samples at room temperature in microtesla magnetic fields. The nuclear spins are prepolarized in a strong transient field. The magnetic signals generated by the precessing spins, which range in frequency from tens of Hz to several kHz, are detected by a low-transition temperature dc SQUID (Superconducting QUantum Interference Device) coupled to an untuned, superconducting flux transformer configured as an axial gradiometer. The combination of prepolarization and frequency-independent detector sensitivity results in a high signal-to-noise ratio and high spectral resolution (∼1 Hz) even in grossly inhomogeneous magnetic fields. In the NMR experiments, the high spectral resolution enables us to detect the 10-Hz splitting of the spectrum of protons due to their scalar coupling to a 31P nucleus. Furthermore, the broadband detection scheme combined with a non-resonant field-reversal spin echo allows the simultaneous observation of signals from protons and 31P nuclei, even though their NMR resonance frequencies differ by a factor of 2.5. We extend our methodology to MRI in microtesla fields, where the high spectral resolution translates into high spatial resolution. We demonstrate two-dimensional images of a mineral oil phantom and slices of peppers, with a spatial resolution of about 1 mm. We also image an intact pepper using slice selection, again with 1-mm resolution. In further experiments we demonstrate T1-contrast imaging of a water phantom, some parts of which were doped with a paramagnetic salt to reduce the longitudinal relaxation time T1. Possible applications of this MRI technique include screening for tumors and integration with existing multichannel SQUID systems for brain imaging

  9. Impact of a high magnetic field on the orientation of gravitactic unicellular organisms--a critical consideration about the application of magnetic fields to mimic functional weightlessness.

    Science.gov (United States)

    Hemmersbach, Ruth; Simon, Anja; Waßer, Kai; Hauslage, Jens; Christianen, Peter C M; Albers, Peter W; Lebert, Michael; Richter, Peter; Alt, Wolfgang; Anken, Ralf

    2014-03-01

    The gravity-dependent behavior of Paramecium biaurelia and Euglena gracilis have previously been studied on ground and in real microgravity. To validate whether high magnetic field exposure indeed provides a ground-based facility to mimic functional weightlessness, as has been suggested earlier, both cell types were observed during exposure in a strong homogeneous magnetic field (up to 30 T) and a strong magnetic field gradient. While swimming, Paramecium cells were aligned along the magnetic field lines; orientation of Euglena was perpendicular, demonstrating that the magnetic field determines the orientation and thus prevents the organisms from the random swimming known to occur in real microgravity. Exposing Astasia longa, a flagellate that is closely related to Euglena but lacks chloroplasts and the photoreceptor, as well as the chloroplast-free mutant E. gracilis 1F, to a high magnetic field revealed no reorientation to the perpendicular direction as in the case of wild-type E. gracilis, indicating the existence of an anisotropic structure (chloroplasts) that determines the direction of passive orientation. Immobilized Euglena and Paramecium cells could not be levitated even in the highest available magnetic field gradient as sedimentation persisted with little impact of the field on the sedimentation velocities. We conclude that magnetic fields are not suited as a microgravity simulation for gravitactic unicellular organisms due to the strong effect of the magnetic field itself, which masks the effects known from experiments in real microgravity.

  10. Magnetic field generations in planetary interiors

    International Nuclear Information System (INIS)

    Singh, R.N.

    1981-01-01

    One of the most fundamental properties of some better known planets is their internally generated magnetic field. A successful explanation of such magnetic fields in 'large hot planetary interiors' remains elusive. Starting from Sir Joseph Larmor's discussions of 'How could a rotating body such as Sun become a magnet' (1979) to present day general consensus that 'the existence of the geomagnetic field is a manifestation of a finite amplitude instability of the Earth's core', significant theoretical developments have taken place in this field. The essential ingredients of the successful theories are the presence of a rotating fluid core of large size having sufficiently high electrical conductivity and energy source to drive the convection. These theories use equations of Newton and Maxwell to generate the requisite kind of the magnetic and velocity fields in response to the preferred distribution of the energy sources. Studies before early seventies, were devoted, mainly, to resolve the kinematics of the problem, and have convincingly demonstrated the plausibility of regeneration action of the organised motion. However, the main problem of the dynamo-processes is yet in the early stages of development despite important contributions made by Soward and Busse. A review of some of these developments is presented. (author)

  11. Diffusion of charged particles in a stochastic magnetic field

    International Nuclear Information System (INIS)

    Balescu, R.; Misguich, J.H.; Nakach, R.

    1992-07-01

    The diffusive motion of charged particles in a stochastic magnetic field is investigated systematically in a model in which the statistics of both the collisions and the magnetic field are described by coloured noises characterized, respectively, by a finite correlation time and finite correlation lengths. An analytic solution is obtained for the basic nonlinear differential equation of the model..It describes asymptotically a pure diffusion process, in which the mean square displacement in the perpendicular direction, Γ(t), grows proportionally to time (after a sufficiently long time). The corresponding diffusion coefficient scales like the fourth power of the magnetic fluctuation intensity. The values obtained are in very good agreement with experimental data in reverse-field pinch experiments. The present result contradicts earlier results predicting subdiffusive behaviour: Γ(t) ∼ t 1/2 or Γ(t) ∼ t 1/4 . The relation of these results to ours is discussed in detail

  12. Ultra high field magnetic resonance imaging

    International Nuclear Information System (INIS)

    Lethimonnier, F.; Vedrine, P.

    2007-01-01

    Understanding human brain function, brain development and brain dysfunction is one of the great challenges of the twenty first century. Biomedical imaging has now run up against a number of technical constraints that are exposing limits to its potential. In order to overcome the current limits to high-field magnetic resonance cerebral imaging (MRI) and unleash its fullest potential, the Cea has built NeuroSpin, an ultra-high-field neuroimaging facility at its Saclay centre (in the Essonne). NeuroSpin already boasts three fully operational MRI systems. The first is a 3-tesla high-field system and the second is a very-high-field 7-tesla system, both of which are dedicated to clinical studies and investigations in humans, while the third is an ultra-high-field 17.65-tesla system designed for studies on small animals. In 2011, NeuroSpin will be commissioning an 11.7-tesla ultra-high-field system of unprecedented power that is designed for research on human subjects. The level of the magnetic field and the scale required will make this joint French-German project to build the magnet a breakthrough in the international arena. (authors)

  13. Survey of residential magnetic field sources

    International Nuclear Information System (INIS)

    Zaffanella, L.E.

    1992-09-01

    A nationwide survey of 1000 residences is underway to determine the sources and characteristics of magnetic fields in the home. This report describes the goals, statistical sampling methods, measurement protocols, and experiences in measuring the first 707 residences of the survey. Some preliminary analysis of the data is also included. Investigators designed a sampling method to randomly select the participating utilities as well as the residential customers for the study. As a first step in the project, 18 utility employee residences were chosen to validate a relatively simple measurement protocol against the results of a more complete and intrusive method. Using the less intrusive measurement protocol, researchers worked closely with representatives from EPRI member utilities to enter customer residences and measure the magnetic fields found there. Magnetic field data were collected in different locations inside and around the residences. Twenty-four-hour recorders were left in the homes overnight. Tests showed that the simplified measurement protocol is adequate for achieving the goals of the study. Methods were developed for analyzing the field caused by a residence's ground current, the lateral field profiles of field lines, and the field measured around the periphery of the residences. Methods of residential source detection were developed that allow identification of sources such as ground connections at an electrical subpanel, two-wire multiple-way switches, and underground or overhead net currents exiting the periphery of a residence

  14. Field-angle dependence of magnetic resonance in Pt/NiFe films

    International Nuclear Information System (INIS)

    Inoue, H.Y.; Harii, K.; Saitoh, E.

    2007-01-01

    Ferromagnetic resonance in NiFe/ amorphous Pt bilayer thin films was investigated with changing the external field direction. The spectral width of the ferromagnetic resonance depends critically on the external-magnetic-field direction. We found that the sample dependence of the spectral width is enhanced with deviation of external field direction from the direction along the film plain, implying an important role of spin directions in field-induced spin-decoherence mechanism in Pt

  15. Sensor for detecting changes in magnetic fields

    Science.gov (United States)

    Praeg, Walter F.

    1981-01-01

    A sensor for detecting changes in the magnetic field of the equilibrium-field coil of a Tokamak plasma device comprises a pair of bifilar wires disposed circumferentially, one inside and one outside the equilibrium-field coil. Each is shorted at one end. The difference between the voltages detected at the other ends of the bifilar wires provides a measure of changing flux in the equilibrium-field coil. This difference can be used to detect faults in the coil in time to take action to protect the coil.

  16. On the structure of the tail magnetic field

    International Nuclear Information System (INIS)

    Candidi, M.; Orsini, S.; Stokholm, M.; Elphic, R.C.

    1990-01-01

    The authors present a study comparing the magnetic field configuration in the magnetotail lobes with that in the plasma sheet boundary layer. The results indicate a systematic enhancement of the By component of the plasma sheet boundary layer field over that of the lobe. The value of such enhancement increases with distance from the midnight meridian plane and has the same sense in the northern and southern plasma sheet boundary layer. Such a By enhancement corresponds to a smaller rate of flaring of the magnetic field lines in the lobe with respect to the plasma sheet boundary layer. This observation is interpreted as a signature of field-aligned currents at the boundary. The direction of the field-aligned currents agrees with the nightside region 1 current system, which is the most poleward system in the nightside polar ionosphere at low altitude

  17. The Effect of a Guide Field on the Structures of Magnetic Islands: 2D PIC Simulations

    Science.gov (United States)

    Huang, C.; Lu, Q.; Lu, S.; Wang, P.; Wang, S.

    2014-12-01

    Magnetic island plays an important role in magnetic reconnection. Using a series of 2D PIC simulations, we investigate the magnetic structures of a magnetic island formed during multiple X-line magnetic reconnection, considering the effects of the guide field in symmetric and asymmetric current sheets. In a symmetric current sheet, the current in the direction forms a tripolar structure inside a magnetic island during anti-parallel reconnection, which results in a quadrupole structure of the out-of-plane magnetic field. With the increase of the guide field, the symmetry of both the current system and out-of-plane magnetic field inside the magnetic island is distorted. When the guide field is sufficiently strong, the current forms a ring along the magnetic field lines inside magnetic island. At the same time, the current carried by the energetic electrons accelerated in the vicinity of the X lines forms another ring at the edge of the magnetic island. Such a dual-ring current system enhance the out-of-plane magnetic field inside the magnetic island with a dip in the center of the magnetic island. In an asymmetric current sheet, when there is no guide field, electrons flows toward the X lines along the separatrices from the side with a higher density, and are then directed away from the X lines along the separatrices to the side with a lower density. The formed current results in the enhancement of the out-of-plane magnetic field at one end of the magnetic island, and the attenuation at the other end. With the increase of the guide field, the structures of both the current system and the out-of-plane magnetic field are distorted.

  18. Fringe Field Effects on Bending Magnets, Derived for TRANSPORT/TURTLE

    Energy Technology Data Exchange (ETDEWEB)

    Molloy, Riley [Arizona State Univ., Tempe, AZ (United States); Blitz, Sam [Arizona State Univ., Tempe, AZ (United States)

    2013-08-05

    A realistic magnetic dipole has complex effects on a charged particle near the entrance and exit of the magnet, even with a constant and uniform magnetic field deep within the interior of the magnet. To satisfy Maxwell's equations, the field lines near either end of a realistic magnet are significantly more complicated, yielding non-trivial forces. The effects of this fringe field are calculated to first order, applying both the paraxial and thin lens approximations. We find that, in addition to zeroth order effects, the position of a particle directly impacts the forces in the horizontal and vertical directions.

  19. Conceptual Design of the 45 T Hybrid Magnet at the Nijmegen High Field Magnet Laboratory

    CERN Document Server

    Wiegers, SAJ; Bird, M D; Rook, J; Perenboom, J A A J; Wiegers, S A J; Bonito-Oliva, A; den Ouden, A

    2010-01-01

    A 45 T Hybrid Magnet System is being developed at the Nijmegen High Field Magnet Laboratory as part of the Nijmegen Center for Advanced Spectroscopy. The 45 T Hybrid Magnet System will be used in combination with far-infra-red light produced by a Free Electron Laser under construction directly adjacent to the High Field Magnet Laboratory. The superconducting outsert magnet will consist of three CICC coils wound on a single coil form, using Nb$_{3}$Sn strands. A test program for strand and cable qualification is underway. The CICC will carry 13 kA and the coils will produce 12 T on axis field in a 600 mm warm bore. The nominal operating temperature will be 4.5 K maintained with forced-flow supercritical helium. The insert magnet will produce 33 T at 40 kA in a 32 mm bore consuming 20 MW, and will consist of four coils. The insert magnet will be galvanically and mechanically isolated from the outsert magnet. Complete system availability for users is expected in 2014. In this paper we will report on the conceptu...

  20. Skyrmion robustness in noncentrosymmetric magnets with axial symmetry: The role of anisotropy and tilted magnetic fields

    Science.gov (United States)

    Leonov, A. O.; Kézsmárki, I.

    2017-12-01

    We investigate the stability of Néel skyrmions against tilted magnetic fields in polar magnets with uniaxial anisotropy ranging from easy-plane to easy-axis type. We construct the corresponding phase diagrams and investigate the internal structure of skewed skyrmions with displaced cores. We find that moderate easy-plane anisotropy increases the stability range of Néel skyrmions for fields along the symmetry axis, while moderate easy-axis anisotropy enhances their robustness against tilted magnetic fields. We stress that the direction along which the skyrmion cores are shifted depends on the symmetry of the underlying crystal lattice. The cores of Néel skyrmions, realized in polar magnets with Cn v symmetry, are displaced either along or opposite to the off-axis (in-plane) component of the magnetic field depending on the rotation sense of the magnetization, dictated by the sign of the Dzyaloshinskii constant. The core shift of antiskyrmions, present in noncentrosymmetric magnets with D2 d symmetry, depends on the in-plane orientation of the magnetic field and can be parallel, antiparallel, or perpendicular to it. We argue that the role of anisotropy in magnets with axially symmetric crystal structure is different from that in cubic helimagnets. Our results can be applied to address recent experiments on polar magnets with C3 v symmetry, GaV4S8 and GaV4Se8 , and Mn1.4Pt0.9Pd0.1Sn with D2 d symmetry.