WorldWideScience

Sample records for direct torque control

  1. Asynchronous machines. Direct torque control; Machines asynchrones. Commande par controle direct de couple

    Energy Technology Data Exchange (ETDEWEB)

    Fornel, B. de [Institut National Polytechnique, 31 - Toulouse (France)

    2006-05-15

    The asynchronous machine, with its low cost and robustness, is today the most widely used motor to make speed variators. However, its main drawback is that the same current generates both the magnetic flux and the torque, and thus any torque variation creates a flux variation. Such a coupling gives to the asynchronous machine a nonlinear behaviour which makes its control much more complex. The direct self control (DSC) method has been developed to improve the low efficiency of the scalar control method and for the specific railway drive application. The direct torque control (DTC) method is derived from the DSC method but corresponds to other type of applications. The DSC and DTC algorithms for asynchronous motors are presented in this article: 1 - direct control of the stator flux (DSC): principle, flux control, torque control, switching frequency of the inverter, speed estimation; 2 - direct torque control (DTC): principle, electromagnetic torque derivative, signals shape and switching frequency, some results, DTC speed variator without speed sensor, DTC application to multi-machine multi-converter systems; 3 - conclusion. (J.S.)

  2. Induction machine Direct Torque Control system based on fuzzy adaptive control

    Science.gov (United States)

    Li, Shi-ping; Yu, Yan; Jiao, Zhen-gang; Gu, Shu-sheng

    2009-07-01

    Direct Torque Control technology is a high-performance communication control method, it uses the space voltage vector method, and then to the inverter switch state control, to obtain high torque dynamic performance. But none of the switching states is able to generate the exact voltage vector to produce the desired changes in torque and flux in most of the switching instances. This causes a high ripple in torque. To solve this problem, a fuzzy implementation of Direct Torque Control of Induction machine is presented here. Error of stator flux, error of motor electromagnetic torque and position of angle of flux are taken as fuzzy variables. In order to further solve nonlinear problem of variation parameters in direct torque control system, the paper proposes a fuzzy parameter PID adaptive control method which is suitable for the direct torque control of an asynchronous motor. The generation of its fuzzy control is obtained by analyzing and optimizing PID control step response and combining expert's experience. For this reason, it carries out fuzzy work to PID regulator of motor speed to achieve to regulate PID parameters. Therefore the control system gets swifter response velocity, stronger robustness and higher precision of velocity control. The computer simulated results verify the validity of this novel method.

  3. Application of Space Vector Modulation in Direct Torque Control of PMSM

    Directory of Open Access Journals (Sweden)

    Michal Malek

    2008-01-01

    Full Text Available The paper deals with an improvement of direct torque control method for permanent magnet synchronous motor drives. Electrical torque distortion of the machine under original direct torque control is relatively high and if proper measures are taken it can be substantially decreased. The proposed solution here is to combine direct torque control with the space vector modulation technique. Such approach can eliminate torque distortion while preserving the simplicity of the original method.

  4. Direct Torque Control of Matrix Converter Fed Induction Motor Drive

    Directory of Open Access Journals (Sweden)

    JAGADEESAN Karpagam

    2011-10-01

    Full Text Available This paper presents the Direct TorqueControl (DTC of induction motor drive using matrixconverters. DTC is a high performance motor controlscheme with fast torque and flux responses. However,the main disadvantage of conventional DTC iselectromagnetic torque ripple. In this paper, directtorque control for Induction Motors using MatrixConverters is analysed and points out the problem ofthe electromagnetic torque ripple which is one of themost important drawbacks of the Direct TorqueControl. Besides, the matrix converter is a single-stageac-ac power conversion device without dc-link energystorage elements. Matrix converter (MC may becomea good alternative to voltage-source inverter (VSI.This work combines the advantages of the matrixconverter with those of the DTC technique, generatingthe required voltage vectors under unity input powerfactor operation. Simulation results demonstrates theeffectiveness of the torque control.

  5. The efficiency of direct torque control for electric vehicle behavior improvement

    Directory of Open Access Journals (Sweden)

    Gasbaoui Brahim

    2011-01-01

    Full Text Available Nowadays the electric vehicle motorization control takes a great interest of industrials for commercialized electric vehicles. This paper is one example of the proposed control methods that ensure both safety and stability the electric vehicle by the means of Direct Torque Control (DTC. For motion of the vehicle the electric drive consists of four wheels: two front ones for steering and two rear ones for propulsion equipped with two induction motors, due to their lightweight simplicity and high performance. Acceleration and steering are ensured by the electronic differential, permitting safe and reliable steering at any curve. The direct torque control ensures efficiently controlled vehicle. Electric vehicle direct torque control is simulated in MATLAB SIMULINK environment. Electric vehicle (EV demonstrated satisfactory results in all type of roads constraints: straight, ramp, downhill and bends.

  6. Direct torque control with feedback linearization for induction motor drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Jafarzadeh, Saeed; Fadali, Sami M.

    2015-01-01

    This paper describes a Direct Torque Controlled (DTC) Induction Machine (IM) drive that employs feedback linearization and sliding-mode control. A feedback linearization approach is investigated, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude....... This intuitive linear model is used to implement a DTC type controller that preserves all DTC advantages and eliminates its main drawback, the flux and torque ripple. Robust, fast, and ripple-free control is achieved by using Variable Structure Control (VSC) with proportional control in the vicinity...... robust stability analysis are presented. The sliding controller is compared with a linear DTC scheme, and experimental results for a sensorless IM drive validate the proposed solution....

  7. Direct Torque Control of a Small Wind Turbine with a Sliding-Mode Speed Controller

    Science.gov (United States)

    Sri Lal Senanayaka, Jagath; Karimi, Hamid Reza; Robbersmyr, Kjell G.

    2016-09-01

    In this paper. the method of direct torque control in the presence of a sliding-mode speed controller is proposed for a small wind turbine being used in water heating applications. This concept and control system design can be expanded to grid connected or off-grid applications. Direct torque control of electrical machines has shown several advantages including very fast dynamics torque control over field-oriented control. Moreover. the torque and flux controllers in the direct torque control algorithms are based on hvsteretic controllers which are nonlinear. In the presence of a sliding-mode speed control. a nonlinear control system can be constructed which is matched for AC/DC conversion of the converter that gives fast responses with low overshoots. The main control objectives of the proposed small wind turbine can be maximum power point tracking and soft-stall power control. This small wind turbine consists of permanent magnet synchronous generator and external wind speed. and rotor speed measurements are not required for the system. However. a sensor is needed to detect the rated wind speed overpass events to activate proper speed references for the wind turbine. Based on the low-cost design requirement of small wind turbines. an available wind speed sensor can be modified. or a new sensor can be designed to get the required measurement. The simulation results will be provided to illustrate the excellent performance of the closed-loop control system in entire wind speed range (4-25 m/s).

  8. Direct Torque Control With Feedback Linearization for Induction Motor Drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Jafarzadeh, Saeed; Fadali, Sami M.

    2017-01-01

    This paper describes a direct-torque-controlled (DTC) induction motor (IM) drive that employs feedback linearization and sliding-mode control (SMC). A new feedback linearization approach is proposed, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude....... This intuitive linear model is used to implement a DTC-type controller that preserves all DTC advantages and eliminates its main drawback, the flux and torque ripple. Robust, fast, and ripple-free control is achieved by using SMC with proportional control in the vicinity of the sliding surface. SMC assures...... in simulations. The sliding controller is compared with a linear DTC scheme with and without feedback linearization. Extensive experimental results for a sensorless IM drive validate the proposed solution....

  9. Steady flow torques in a servo motor operated rotary directional control valve

    International Nuclear Information System (INIS)

    Wang, He; Gong, Guofang; Zhou, Hongbin; Wang, Wei

    2016-01-01

    Highlights: • A novel servo motor operated rotary directional control valve is proposed. • Steady flow torque is a crucial issue that affects rotary valve performance. • Steady flow torque is analyzed on the aspects of theory, simulation and experiment. • Change law of the steady flow torque with spool rotation angle is explored. • Effect of pressure drop and flow rate on the steady flow torque is studied. - Abstract: In this paper, a servo motor operated rotary directional control valve is proposed, and a systematic analysis of steady flow torques in this valve is provided by theoretical calculation, CFD simulation and experimental test. In the analysis, spool rotation angle corresponding to the maximum orifice opening is tagged as 0°. Over a complete change cycle of the orifice, the range of spool rotation angle is symmetric about 0°. The results show that the direction of steady flow torques in this valve is always the direction of orifice closing. The steady flow torques serve as resistances to the spool rotation when the orifice opening increases, while impetuses to the spool rotation when the orifice opening decreases. At a certain pressure drop or flow rate, steady flow torques are approximately equal and opposite when at spool rotation angles which are symmetric about 0°. When the spool rotates from 0°, at a certain pressure drop, their values increase first then decrease with the spool rotation and reach their maximum values at an angle corresponding to about 1/2 of the maximum orifice opening, and at a certain flow rate, their values increase with the spool rotation. The steady flow torques in this valve are the sums of those in the meter-in and meter-out valve chambers. At a certain spool rotation angle, steady flow torques in the meter-in and meter-out valve chambers are approximately proportional to the pressure drop and the second power of the flow rate through the orifice. Theoretical calculation and CFD simulation can be validated by

  10. Modified Direct Torque Control of Three-Phase Induction Motor Drives with Low Ripple in Flux and Torque

    Directory of Open Access Journals (Sweden)

    Vinay KUMAR

    2011-06-01

    Full Text Available This paper proposes an algorithm for direct flux and torque controlled three phase induction motor drive systems. This method is based on control of slip speed and decoupled between amplitude and angle of reference stator flux for determining required stator voltage vector. In this proposes model, integrator unit is not required to generate the reference stator flux angle for calculating required stator voltage vector, hence it eliminates the initial values problems in real time. Within the given sampling time, flux as well as torque errors are controlled by stator voltage vector which is evaluated from reference stator flux. The direct torque control is achieved by reference stator flux angle which is generates from instantaneous slip speed angular frequency and stator flux angular frequency. The amplitude of the reference stator flux is kept constant at rated value. This technique gives better performance in three-phase induction motor than conventional technique. Simulation results for 3hp induction motor drive, for both proposed and conventional techniques, are presented and compared. From the results it is found that the stator current, flux linkage and torque ripples are decreased with proposed technique.

  11. Frequency Properties Research of Elevator Drive System with Direct Torque Control-Pulse with Modulation

    Directory of Open Access Journals (Sweden)

    A. S. Koval

    2008-01-01

    Full Text Available In the article problems of frequency properties research for electric drive system with direct torque control and pulse width modulator are described. The mathematical description of elevator is present. Simplified mathematical description of direct torque control - pulse width modulator electric drive system is shown. Transfer functions for torque and speed loops are determined. Logarithmic frequency characteristics are computed. Damping properties of elevator drive system are estimated.

  12. Improving the performance of hysteresis direct torque control of ...

    Indian Academy of Sciences (India)

    Hysteresis direct torque control (HDTC) of an interior permanent magnet synchronous motor ... response, and improved the quality of the current waveforms. Luukko ..... LF , however, the cost and size of the AF increases, and therefore suitable ...

  13. IPMSM Motion-Sensorless Direct Torque and Flux Control

    DEFF Research Database (Denmark)

    Pitict, Christian Ilie; Andreescu, Gheorghe-Daniel; Blaabjerg, Frede

    2005-01-01

    The paper presents a rather comprehensive implementation of a wide speed motion-sensorless control of IPMSM drives via direct torque and flux control (DTFC) with space vector modulation (SVM). Signal injection with only one D-module vector filter and phase-locked loop (PLL) observer is used at low...... provides for a smooth current waveform even at 1 rpm. The paper demonstrates through ample experiments a 1750 rpm 1 1 rpm speed range full-loaded with sensorless DTFC-SVM....

  14. Speed sensorless direct torque control of IMs with rotor resistance estimation

    International Nuclear Information System (INIS)

    Barut, Murat; Bogosyan, Seta; Gokasan, Metin

    2005-01-01

    Direct torque control (DTC) of induction motors (IMs) requires an accurate knowledge on the amplitude and angular position of the controlled flux in addition to the information related to angular velocity for velocity control applications. However, unknown load torque and uncertainties related to stator/rotor resistances due to operating conditions constitute major challenges for the performance of such systems. The determination of stator resistance can be performed by measurements, but methods must be developed for estimation and identification of rotor resistance and load torque. In this study, an EKF based solution is sought for determination of the rotor resistance and load torque as well as the above mentioned states required for DTC. The EKF algorithm used in conjunction with the speed sensorless DTC is tested under eleven scenarios comprised of various changes made in the velocity reference beside the load torque and rotor resistance values assigned in the model. With no a priori information in the estimated states and parameters, it has been demonstrated that the EKF estimation and sensorless DTC perform quite well in spite of the uncertainties and variations imposed on the system

  15. Design and Comparison Direct Torque Control Techniques for Induction Motors

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Kazmierkowski, Marian P.; Zelechowski, Marcin

    2005-01-01

    In this paper a comparison of two significant control methods of induction motor are presented. The first one is a classical Direct Torque and Flux Control (DTC) and is compared with a scheme, which uses Space Vector Modulator (DTC-SVM). A comparison in respect to dynamic and steady state...

  16. Load Torque Compensator for Model Predictive Direct Current Control in High Power PMSM Drive Systems

    DEFF Research Database (Denmark)

    Preindl, Matthias; Schaltz, Erik

    2011-01-01

    The widely used cascade speed and torque controllers have a limited control performance in most high power applications due to the low switching frequency of power electronic converters and the convenience to avoid speed overshoots and oscillations for lifetime considerations. Model Predictive...... Direct Current Control (MPDCC) leads to an increase of torque control performance taking into account the discrete nature of inverters but temporary offsets and poor responses to load torque variations are still issues in speed control. A load torque estimator is proposed in this paper in order...

  17. Direct torque control design and experimental evaluation for the brushless doubly fed machine

    International Nuclear Information System (INIS)

    Sarasola, Izaskun; Poza, Javier; Rodriguez, Miguel A.; Abad, Gonzalo

    2011-01-01

    In this paper, a direct torque control (DTC) strategy for the brushless doubly fed machine (BDFM) is presented. After analyzing the mathematical model of this machine, the voltage vectors look-up table of classical DTC techniques is derived. Then, the behavior of the machine is studied when it is controlled by the developed DTC technique, concluding that under some specific operation conditions, a BDFM could present a time interval where the torque and the flux can not be controlled simultaneously. In these cases, two different control solutions have been defined: 'flux priority' and 'torque priority'. Finally, simulation and experimental results validate the effectiveness of the proposed control algorithms.

  18. Electric Vehicle Longitudinal Stability Control Based on a New Multimachine Nonlinear Model Predictive Direct Torque Control

    Directory of Open Access Journals (Sweden)

    M’hamed Sekour

    2017-01-01

    Full Text Available In order to improve the driving performance and the stability of electric vehicles (EVs, a new multimachine robust control, which realizes the acceleration slip regulation (ASR and antilock braking system (ABS functions, based on nonlinear model predictive (NMP direct torque control (DTC, is proposed for four permanent magnet synchronous in-wheel motors. The in-wheel motor provides more possibilities of wheel control. One of its advantages is that it has low response time and almost instantaneous torque generation. Moreover, it can be independently controlled, enhancing the limits of vehicular control. For an EV equipped with four in-wheel electric motors, an advanced control may be envisaged. Taking advantage of the fast and accurate torque of in-wheel electric motors which is directly transmitted to the wheels, a new approach for longitudinal control realized by ASR and ABS is presented in this paper. In order to achieve a high-performance torque control for EVs, the NMP-DTC strategy is proposed. It uses the fuzzy logic control technique that determines online the accurate values of the weighting factors and generates the optimal switching states that optimize the EV drives’ decision. The simulation results built in Matlab/Simulink indicate that the EV can achieve high-performance vehicle longitudinal stability control.

  19. New concept of direct torque neuro-fuzzy control for induction motor drives. Simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, P.Z. [Institute of Control and Industrial Electronics, Warsaw University of Technology, Warsaw (Poland)

    1997-12-31

    This paper presents a new control strategy in the discrete Direct Torque Control (DTC) based on neuro-fuzzy structure. Two schemes are proposed: neuro-fuzzy switching times calculator and neuro-fuzzy incremental controller with space vector modulator. These control strategies guarantee very good dynamic and steady-states characteristics, with very low sampling time and constant switching frequency. The proposed techniques are verified by simulation study of the whole drive system and results are compared with conventional discrete Direct Torque Control method. (orig.) 18 refs.

  20. Direct Torque Control System for Permanent Magnet Synchronous Machine with Fuzzy Speed Pi Regulator

    Science.gov (United States)

    Nabti, K.; Abed, K.; Benalla, H.

    2008-06-01

    The Permanent Magnet Synchronous Machine (PMSM) speed regulation with a conventional PI regulator reduces the speed control precision, increase the torque fluctuation, and consequentially low performances of the whole system. With utilisation of fuzzy logic method, this paper presents the self adaptation of conventional PI regulator parameters Kp and Ki (proportional and integral coefficients respectively), using to regulate the speed in Direct Torque Control strategy (DTC). The ripples of both torque and flux are reduced remarkable, small overshooting and good dynamic of the speed and torque. Simulation results verify the proposed method validity.

  1. DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)

    DEFF Research Database (Denmark)

    Swierczynski, Dariusz; Kazmierkowski, Marian P.; Blaabjerg, Frede

    2002-01-01

    DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)......DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)...

  2. Combined Discrete Space Voltage Vector with Direct Torque Control for Bearingless Brushless DC Motor and Closed-Loop Suspended Force Control

    Directory of Open Access Journals (Sweden)

    Weiran Wang

    2013-06-01

    Full Text Available In order to improve the performance of bearingless brushless DC motor, a closed-loop suspended force controller combining the discrete space voltage vector modulation is applied and the direct torque control is presented in this paper. Firstly, we increase the number of the control vector to reduce the torque ripple. Then, the suspending equation is constructed which is spired by the direct torque control algorithm. As a result, the closed-loop suspended force controller is built. The simulated and experimental results evaluate the performance of the proposed method. The more advantage is that the proposed algorithm can achieve the fast torque response, reduce the torque ripple, and follow ideal stator flux track. Furthermore, the motor which implants the closed-loop suspended force controller cannot onlyobtain the dynamic response rapidly and displacement control accurately, but also has the characteristics of bearingless brushless DC motor (such as simple structure, high energy efficiency, small volume and low failure rate.

  3. Analysis and control of excitation, field weakening and stability in direct torque controlled electrically excited synchronous motor drives

    Energy Technology Data Exchange (ETDEWEB)

    Pyrhoenen, O

    1999-12-31

    Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor`s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque

  4. Analysis and control of excitation, field weakening and stability in direct torque controlled electrically excited synchronous motor drives

    Energy Technology Data Exchange (ETDEWEB)

    Pyrhoenen, O.

    1998-12-31

    Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor`s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque

  5. Controller Design for Direct Torque Controlled Space Vector Modulated (DTC-SVM) Induction Motor Drives

    DEFF Research Database (Denmark)

    Zelechowski, M.; Kazmierkowski, M.P.; Blaabjerg, Frede

    2005-01-01

    In this paper two different methods of PI controllers for direct torque controlled-space vector modulated induction motor drives have been studied. The first one is simple method based only on symmetric optimum criterion. The second approach takes into account the full model of induction motor in...

  6. Decoupled Speed and Torque Control of IPMSM Drives Using a Novel Load Torque Estimator

    Directory of Open Access Journals (Sweden)

    ZAKY, M.

    2017-08-01

    Full Text Available This paper proposes decoupled speed and torque control of interior permanent magnet synchronous motor (IPMSM drives using a novel load torque estimator (LTE. The proposed LTE is applied for computing a load torque and yielding a feed-forward value in the speed controller to separate the torque control from the speed control. Indirect flux weakening using direct current component is obtained for high speed operation of the IPMSM drive, and its value for maximum torque per ampere (MTPA control in constant torque region is also used. LTE uses values of direct and quadrature currents to improve the behavior of the speed controller under the reference tracking and torque disturbances. The complete IPMSM drive by Matlab/Simulink is built. The effectiveness of the proposed control scheme using an experimental setup of the complete drive system implemented on a DSP-DS1102 control board is confirmed. Extensive results over a wide speed range are verified. The efficacy of the proposed method is confirmed in comparison to a conventional PI controller under both the reference speed tracking and load torque disturbance.

  7. Experimental investigation of the direct torque neuro-fuzzy controller for induction motor drive

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, P.Z.; Kazmierkowski, M.P. [Warsaw Univ. of Technology (Poland)

    2000-08-01

    In this paper, the concept and implementation of a new simple Direct Torque Neuro-Fuzzy Control (DTNFC) scheme for PWM inverter-fed induction motor drive are presented. An Adaptive Neuro-Fuzzy Inference System (ANFIS) is applied to achieve high performance decoupled flux and torque control. The theoretical principle and tuning procedure of this method are discussed. A 3 kW induction motor experimental system with digital signal processor (DSP type) TMS 320C31 based controller has been built to verify this approach. The simulation and laboratory experimental results, which illustrate the performance of the proposed scheme, are presented. Also, nomograms for controller design are given. It has been shown that the simple DTNFC is characterised by very fast torque and flux response, very low speed operation and simple tuning capability. (orig.)

  8. Direct torque control via feedback linearization for permanent magnet synchronous motor drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Boldea, Ion; Blaabjerg, Frede

    2012-01-01

    The paper describes a direct torque controlled (DTC) permanent magnet synchronous motor (PMSM) drive that employs feedback linearization and uses sliding-mode and linear controllers. We introduce a new feedback linearization approach that yields a decoupled linear PMSM model with two state...

  9. An Enhanced Three-Level Voltage Switching State Scheme for Direct Torque Controlled Open End Winding Induction Motor

    Science.gov (United States)

    Kunisetti, V. Praveen Kumar; Thippiripati, Vinay Kumar

    2018-01-01

    Open End Winding Induction Motors (OEWIM) are popular for electric vehicles, ship propulsion applications due to less DC link voltage. Electric vehicles, ship propulsions require ripple free torque. In this article, an enhanced three-level voltage switching state scheme for direct torque controlled OEWIM drive is implemented to reduce torque and flux ripples. The limitations of conventional Direct Torque Control (DTC) are: possible problems during low speeds and starting, it operates with variable switching frequency due to hysteresis controllers and produces higher torque and flux ripple. The proposed DTC scheme can abate the problems of conventional DTC with an enhanced voltage switching state scheme. The three-level inversion was obtained by operating inverters with equal DC-link voltages and it produces 18 voltage space vectors. These 18 vectors are divided into low and high frequencies of operation based on rotor speed. The hardware results prove the validity of proposed DTC scheme during steady-state and transients. From simulation and experimental results, proposed DTC scheme gives less torque and flux ripples on comparison to two-level DTC. The proposed DTC is implemented using dSPACE DS-1104 control board interface with MATLAB/SIMULINK-RTI model.

  10. Predictive Direct Torque Control Application-Specific Integrated Circuit of an Induction Motor Drive with a Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Guo-Ming Sung

    2017-06-01

    Full Text Available This paper proposes a modified predictive direct torque control (PDTC application-specific integrated circuit (ASIC of a motor drive with a fuzzy controller for eliminating sampling and calculating delay times in hysteresis controllers. These delay times degrade the control quality and increase both torque and flux ripples in a motor drive. The proposed fuzzy PDTC ASIC calculates the stator’s magnetic flux and torque by detecting the three-phase current, three-phase voltage, and rotor speed, and eliminates the ripples in the torque and flux by using a fuzzy controller and predictive scheme. The Verilog hardware description language was used to implement the hardware architecture, and the ASIC was fabricated by the Taiwan Semiconductor Manufacturing Company through a 0.18-μm 1P6M CMOS process that involved a cell-based design method. The measurements revealed that the proposed fuzzy PDTC ASIC of the three-phase induction motor yielded a test coverage of 96.03%, fault coverage of 95.06%, chip area of 1.81 × 1.81 mm2, and power consumption of 296 mW, at an operating frequency of 50 MHz and a supply voltage of 1.8 V.

  11. FUZZY LOGIC BASED ADAPTATION MECHANISM FOR ADAPTIVE LUENBERGER OBSERVER SENSORLESS DIRECT TORQUE CONTROL OF INDUCTION MOTOR

    Directory of Open Access Journals (Sweden)

    A. BENNASSAR

    2016-01-01

    Full Text Available Many industrial applications require high performance speed sensorless operation and demand new control methods in order to obtain fast dynamic response and insensitive to external disturbances. The current research aims to present the performance of the sensorless direct torque control (DTC of an induction motor (IM using adaptive Luenberger observer (ALO with fuzzy logic controller (FLC for adaptation mechanism. The rotor speed is regulated by proportional integral (PI anti-windup controller. The proposed strategy is directed to reduce the ripple on the torque and the flux. Numerical simulation results show the good performance and effectiveness of the proposed sensorless control for different references of the speed even both low and high speeds.

  12. Robust Non-Linear Direct Torque and Flux Control of Adjustable Speed Sensorless PMSM Drive Based on SVM Using a PI Predictive Controller

    Directory of Open Access Journals (Sweden)

    F. Naceri

    2010-01-01

    Full Text Available This paper presents a new sensorless direct torque control method for voltage inverter – fed PMSM. The control methodis used a modified Direct Torque Control scheme with constant inverter switching frequency using Space Vector Modulation(DTC-SVM. The variation of stator and rotor resistance due to changes in temperature or frequency deteriorates theperformance of DTC-SVM controller by introducing errors in the estimated flux linkage and the electromagnetic torque.As a result, this approach will not be suitable for high power drives such as those used in tractions, as they require goodtorque control performance at considerably lower frequency. A novel stator resistance estimator is proposed. The estimationmethod is implemented using the Extended Kalman Filter. Finally extensive simulation results are presented to validate theproposed technique. The system is tested at different speeds and a very satisfactory performance has been achieved.

  13. Open loop thanks to direct torque control (DTC). Motor control without feedback loop; Open loop dank direkter Drehmomentregelung (DTC). Hochwertige Motorregelung ohne Rueckfuehrung

    Energy Technology Data Exchange (ETDEWEB)

    Link, Michael [ABB Automation Products GmbH, Ladenburg (Germany)

    2009-07-01

    Servo drives are used in various applications. The range of applications is huge and thus also requirements to the drive system. Mainly, a fast torque and speed control is required. This is the domaine of direct torque control (DTC). In many applications DTC can meet this challenge to control the motor with full torque at zero speed. The servo converter based on DTC technology provides a control concept for synchronous and asynchronous motors for both closed loop and open loop control. DTC controlled drives support the whole range from open loop up to high performance motion control applications. (orig.)

  14. Improved direct torque control of an induction generator used in a wind conversion system connected to the grid.

    Science.gov (United States)

    Abdelli, Radia; Rekioua, Djamila; Rekioua, Toufik; Tounzi, Abdelmounaïm

    2013-07-01

    This paper presents a modulated hysteresis direct torque control (MHDTC) applied to an induction generator (IG) used in wind energy conversion systems (WECs) connected to the electrical grid through a back-to-back converter. The principle of this strategy consists in superposing to the torque reference a triangular signal, as in the PWM strategy, with the desired switching frequency. This new modulated reference is compared to the estimated torque by using a hysteresis controller as in the classical direct torque control (DTC). The aim of this new approach is to lead to a constant frequency and low THD in grid current with a unit power factor and a minimum voltage variation despite the wind variation. To highlight the effectiveness of the proposed method, a comparison was made with classical DTC and field oriented control method (FOC). The obtained simulation results, with a variable wind profile, show an adequate dynamic of the conversion system using the proposed method compared to the classical approaches. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  15. The Stability Analysis and New Torque Control Strategy of Direct-Driven PMSG Wind Turbines

    OpenAIRE

    Jun Liu; Feihang Zhou; Gungyi Wang

    2016-01-01

    This paper expounds on the direct-driven PMSG wind power system control strategy, and analyses the stability conditions of the system. The direct-driven PMSG wind power system may generate the intense mechanical vibration, when wind speed changes dramatically. This paper proposes a new type of torque control strategy, which increases the system damping effectively, mitigates mechanical vibration of the system, and enhances the stability conditions of the system. The simulation results verify ...

  16. Predictive torque and flux control of an induction machine drive ...

    Indian Academy of Sciences (India)

    Finite-state model predictive control; fuzzy decision making; multi-objective optimization; predictive torque control. Abstract. Among the numerous direct torque control techniques, the finite-state predictive torque control (FS-PTC) has emerged as a powerful alternative as it offers the fast dynamic response and the flexibility to ...

  17. Real time implementation of viable torque and flux controllers and torque ripple minimization algorithm for induction motor drive

    International Nuclear Information System (INIS)

    Vasudevan, M.; Arumugam, R.; Paramasivam, S.

    2006-01-01

    Field oriented control (FOC) and direct torque control (DTC) are becoming the industrial standards for induction motors torque and flux control. This paper aims to give a contribution for a detailed comparison between these two control techniques, emphasizing their advantages and disadvantages. The performance of these two control schemes is evaluated in terms of torque and flux ripple and their transient response to step variations of the torque command. Moreover, a new torque and flux ripple minimization technique is also proposed to improve the performance of the DTC drive. Based on the experimental results, the analysis has been presented

  18. Very low speed performance of active flux based sensorless control: interior permanent magnet synchronous motor vector control versus direct torque and flux control

    DEFF Research Database (Denmark)

    Paicu, M. C.; Boldea, I.; Andreescu, G. D.

    2009-01-01

    This study is focused on very low speed performance comparison between two sensorless control systems based on the novel ‘active flux' concept, that is, the current/voltage vector control versus direct torque and flux control (DTFC) for interior permanent magnet synchronous motor (IPMSM) drives...... with space vector modulation (SVM), without signal injection. The active flux, defined as the flux that multiplies iq current in the dq-model torque expression of all ac machines, is easily obtained from the stator-flux vector and has the rotor position orientation. Therefore notable simplification...

  19. Aspects Concerning the Torque Ripple Control of the Brushless DC Motor

    Directory of Open Access Journals (Sweden)

    BALUTA, G.

    2013-05-01

    Full Text Available This paper deals with two advanced numerical structures to control the electromagnetic torque ripple of Brushless Direct Current Motors (BLDCM, indirectly achieved by phase currents control and directly by the Direct Torque Control (DTC technique. In DTC there was implemented an observer to increase the rudimentary transducer resolution, containing three Hall Effect sensors. The experimental results describe the evolution of torque in both situations of control and are obtained by applying a control strategy for an electric drive system with BLDCM with trapezoidal Back-EMF in Two-Phase Mode.

  20. Digital signal processing control of induction machine`s torque and stator flux utilizing the direct stator flux field orientation method

    Energy Technology Data Exchange (ETDEWEB)

    Seiz, Julie Burger [Union College, Schenectady, NY (United States)

    1997-04-01

    This paper presents a review of the Direct Stator Flux Field Orientation control method. This method can be used to control an induction motor`s torque and flux directly and is the application of interest for this thesis. This control method is implemented without the traditional feedback loops and associated hardware. Predictions are made, by mathematical calculations, of the stator voltage vector. The voltage vector is determined twice a switching period. The switching period is fixed throughout the analysis. The three phase inverter duty cycle necessary to control the torque and flux of the induction machine is determined by the voltage space vector Pulse Width Modulation (PWM) technique. Transient performance of either the flux or torque requires an alternate modulation scheme which is also addressed in this thesis. A block diagram of this closed loop system is provided. 22 figs., 7 tabs.

  1. Current control of PMSM based on maximum torque control reference frame

    Science.gov (United States)

    Ohnuma, Takumi

    2017-07-01

    This study presents a new method of current controls of PMSMs (Permanent Magnet Synchronous Motors) based on a maximum torque control reference frame, which is suitable for high-performance controls of the PMSMs. As the issues of environment and energy increase seriously, PMSMs, one of the AC motors, are becoming popular because of their high-efficiency and high-torque density in various applications, such as electric vehicles, trains, industrial machines, and home appliances. To use the PMSMs efficiently, a proper current control of the PMSMs is necessary. In general, a rotational coordinate system synchronizing with the rotor is used for the current control of PMSMs. In the rotating reference frame, the current control is easier because the currents on the rotating reference frame can be expressed as a direct current in the controller. On the other hand, the torque characteristics of PMSMs are non-linear and complex; the PMSMs are efficient and high-density though. Therefore, a complicated control system is required to involve the relation between the torque and the current, even though the rotating reference frame is adopted. The maximum torque control reference frame provides a simpler way to control efficiently the currents taking the torque characteristics of the PMSMs into consideration.

  2. Accurate torque control of a bi-directional magneto-rheological actuator considering hysteresis and friction effects

    International Nuclear Information System (INIS)

    Nguyen, Phuong-Bac; Choi, Seung-Bok

    2013-01-01

    This paper presents a novel type of magneto-rheological (MR) actuator called a bi-directional magneto-rheological (BMR) actuator and accurate torque control results considering both hysteresis and friction compensation. The induced torque of this actuator varies from negative to positive values. As a result, it can work as either a brake or a clutch depending on the scheme of current input. In our work, the configuration of the actuator as well as its driving system is presented first. Subsequently, a congruency hysteresis based (CBH) model to take account of the effect of the hysteresis is proposed. After that, a compensator based on this model is developed. In addition, the effect of dry friction, which exists inherently with MR actuators in general, is also considered. In order to assess the effectiveness of the hysteresis compensator, several experiments on modeling and control of the actuator with different waveforms are carried out. (paper)

  3. Accurate torque control of a bi-directional magneto-rheological actuator considering hysteresis and friction effects

    Science.gov (United States)

    Nguyen, Phuong-Bac; Choi, Seung-Bok

    2013-05-01

    This paper presents a novel type of magneto-rheological (MR) actuator called a bi-directional magneto-rheological (BMR) actuator and accurate torque control results considering both hysteresis and friction compensation. The induced torque of this actuator varies from negative to positive values. As a result, it can work as either a brake or a clutch depending on the scheme of current input. In our work, the configuration of the actuator as well as its driving system is presented first. Subsequently, a congruency hysteresis based (CBH) model to take account of the effect of the hysteresis is proposed. After that, a compensator based on this model is developed. In addition, the effect of dry friction, which exists inherently with MR actuators in general, is also considered. In order to assess the effectiveness of the hysteresis compensator, several experiments on modeling and control of the actuator with different waveforms are carried out.

  4. Load Torque Compensator for Model Predictive Direct Current Control in High Power PMSM Drive Systems

    DEFF Research Database (Denmark)

    Preindl, Matthias; Schaltz, Erik

    2010-01-01

    In drive systems the most used control structure is the cascade control with an inner torque, i.e. current and an outer speed control loop. The fairly small converter switching frequency in high power applications, e.g. wind turbines lead to modest speed control performance. An improvement bring...... the use of a current controller which takes into account the discrete states of the inverter, e.g. DTC or a more modern approach: Model Predictive Direct Current Control (MPDCC). Moreover overshoots and oscillations in the speed are not desired in many applications, since they lead to mechanical stress...

  5. Proposed torque optimized behavior for digital speed control of induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, H.M.B.; El-Shewy, H.M.; El-Kholy, M.M. [Zagazig Univ., Dept. of Electrical Engineering, Zagazig (Egypt); Abdel-Kader, F.E. [Menoufyia Univ., Dept. of Electrical Engineering, Menoufyia (Egypt)

    2002-09-01

    In this paper, a control strategy for speed control of induction motors with field orientation is proposed. The proposed method adjusts the output voltage and frequency of the converter to operate the motor at the desired speed with maximum torque per ampere at all load torques keeping the torque angle equal to 90 deg. A comparison between the performance characteristics of a 2 hp induction motor using three methods of speed control is presented. These methods are the proposed method, the direct torque control method and the constant V/f method. The comparison showed that better performance characteristics are obtained using the proposed speed control strategy. A computer program, based on this method, is developed. Starting from the motor parameters, the program calculates a data set for the stator voltage and frequency required to obtain maximum torque per ampere at any motor speed and load torque. This data set can be used by the digital speed control system of induction motors. (Author)

  6. Direct torque control method applied to the WECS based on the PMSG and controlled with backstepping approach

    Science.gov (United States)

    Errami, Youssef; Obbadi, Abdellatif; Sahnoun, Smail; Ouassaid, Mohammed; Maaroufi, Mohamed

    2018-05-01

    This paper proposes a Direct Torque Control (DTC) method for Wind Power System (WPS) based Permanent Magnet Synchronous Generator (PMSG) and Backstepping approach. In this work, generator side and grid-side converter with filter are used as the interface between the wind turbine and grid. Backstepping approach demonstrates great performance in complicated nonlinear systems control such as WPS. So, the control method combines the DTC to achieve Maximum Power Point Tracking (MPPT) and Backstepping approach to sustain the DC-bus voltage and to regulate the grid-side power factor. In addition, control strategy is developed in the sense of Lyapunov stability theorem for the WPS. Simulation results using MATLAB/Simulink validate the effectiveness of the proposed controllers.

  7. Universal adaptive torque control for PM motors for field-weakening region operation

    Science.gov (United States)

    Royak, Semyon [Beachwood, OH; Harbaugh, Mark M [Richfield, OH; Breitzmann, Robert J [South Russel, OH; Nondahl, Thomas A [Wauwatosa, WI; Schmidt, Peter B [Franklin, WI; Liu, Jingbo [Milwaukee, WI

    2011-03-29

    The invention includes a motor controller and method for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by, among other things, receiving a torque command, determining a normalized torque command by normalizing the torque command to a characteristic current of the motor, determining a normalized maximum available voltage, determining an inductance ratio of the motor, and determining a direct-axis current based upon the normalized torque command, the normalized maximum available voltage, and the inductance ratio of the motor.

  8. Sensorless sliding mode torque control of an IPMSM drive based on active flux concept

    Directory of Open Access Journals (Sweden)

    A.A. Hassan

    2012-03-01

    Full Text Available This paper investigates a novel direct torque control of a sensorless interior permanent magnet synchronous motor based on a sliding mode technique. The speed and position of the interior permanent magnet synchronous motor are estimated online based on active flux concept. To overcome the large ripple content associated with the direct torque, a torque/flux sliding mode controller has been employed. Two integral surface functions are used to construct the sliding mode controller. The command voltage is estimated from the torque and flux errors based on the two switching functions. The idea of the total sliding mode is used to eliminate the problem of reaching phase stability. The space vector modulation is combined with the sliding mode controller to ensure minimum torque and flux ripples and provides high resolution voltage control. The proposed scheme has the advantages of simple implementation, and does not require an external signal injection. In addition, it combines the merits of the direct torque control, sliding mode controller, and space vector modulation besides to the sensorless control. Simulation works are carried out to demonstrate the ability of the proposed scheme at different operating conditions. The results confirm the high performance of the proposed scheme at standstill, low and high speeds including load disturbance and parameters variation.

  9. SIMULTANEOUS SPACE VECTOR MODULATION DIRECT TORQUE CONTROL OF TWO INDUCTION MOTORS USED IN ELECTRIC VEHICLES BY A NINE-SWITCH INVERTER

    Directory of Open Access Journals (Sweden)

    A. R. SHAMLOU

    2017-12-01

    Full Text Available In this paper, a novel two output nine switch-inverter is proposed in order to increase the synchronization speed of induction motors used in electric vehicles (EVs while improving the efficiency and controllability of the system. The number of switches in the proposed inverter is reduced by 25% compared to double six-switch inverters which conventionally used in EVs. The main characteristics of the considered inverter can be noted as follows: sinusoidal input and outputs, unity output power factor, and specifically, low construction cost due to active switch number reduction. The classical direct torque control method causes torque ripple and speed fluctuations. Therefore, in order to increase accuracy and dynamics of drive system, the SVM-DTC method is proposed, leading to less torque ripple and constant switching frequency. The obtained torque ripple is 2% which is less than the existing structures In order to illustrate advantages of the proposed approach, performance of the EVs in the standard cycles is evaluated.

  10. Super-twisting sliding mode direct torque contol of induction machine drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Blaabjerg, Frede

    2014-01-01

    This paper presents a new super-twisting sliding modes direct torque and flux controller (STSM-DTC) for induction motor (IM) drives. The STSM is a second-order (type two) variable-structure control which operates without high-frequency chattering. The proposed STSM scheme is a torque and stator...... flux magnitude controller implemented in the stator flux reference frame, and it does not employ current controllers as in conventional vector control. This controller contains a design parameter that allows the designer to balance its operation between a linear PI-like behavior and a constant......-DTC control, design and implementation details, and relevant experimental results for a sensorless IM drive. The scheme is compared to a second-order sliding mode controller and a linear PI controller. A robustness assessment against the PI controller is also included....

  11. Torque Modeling and Control of a Variable Compression Engine

    OpenAIRE

    Bergström, Andreas

    2003-01-01

    The SAAB variable compression engine is a new engine concept that enables the fuel consumption to be radically cut by varying the compression ratio. A challenge with this new engine concept is that the compression ratio has a direct influence on the output torque, which means that a change in compression ratio also leads to a change in the torque. A torque change may be felt as a jerk in the movement of the car, and this is an undesirable effect since the driver has no control over the compre...

  12. Inertial torque during reaching directly impacts grip-force adaptation to weightless objects.

    Science.gov (United States)

    Giard, T; Crevecoeur, F; McIntyre, J; Thonnard, J-L; Lefèvre, P

    2015-11-01

    A hallmark of movement control expressed by healthy humans is the ability to gradually improve motor performance through learning. In the context of object manipulation, previous work has shown that the presence of a torque load has a direct impact on grip-force control, characterized by a significantly slower grip-force adjustment across lifting movements. The origin of this slower adaptation rate remains unclear. On the one hand, information about tangential constraints during stationary holding may be difficult to extract in the presence of a torque. On the other hand, inertial torque experienced during movement may also potentially disrupt the grip-force adjustments, as the dynamical constraints clearly differ from the situation when no torque load is present. To address the influence of inertial torque loads, we instructed healthy adults to perform visually guided reaching movements in weightlessness while holding an unbalanced object relative to the grip axis. Weightlessness offered the possibility to remove gravitational constraints and isolate the effect of movement-related feedback on grip force adjustments. Grip-force adaptation rates were compared with a control group who manipulated a balanced object without any torque load and also in weightlessness. Our results clearly show that grip-force adaptation in the presence of a torque load is significantly slower, which suggests that the presence of torque loads experienced during movement may alter our internal estimates of how much force is required to hold an unbalanced object stable. This observation may explain why grasping objects around the expected location of the center of mass is such an important component of planning and control of manipulation tasks.

  13. Controlling torque and cutting costs: steerable drill bits deliver in Latin America

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Steve; Garcia, Alexis; Amorim, Dalmo [ReedHycalog, Stonehouse (United Kingdom); Iramina, Wilson [University of Sao Paulo (USP), SP (Brazil); Herrera, Gabriel

    2008-07-01

    Tool face Control is widely regarded as one of the greatest directional drilling challenges with a Fixed Cutter (FC) drill bit on a Steerable Motor assembly. Tool face offset is proportional to the torque generated by the bit, and by nature, FC bits are capable of generating high levels of torque. If large changes in downhole torque are produced while drilling, this will cause rotation of the drill string, and loss of tool face orientation. This results in inefficient drilling and increases risk of bit and downhole tool damage. This paper examines the effect of various FC drill bit components to determine the key design requirements to deliver a smooth torque response and an improved directional performance. Included is a review of the results from comprehensive laboratory testing to determine the effectiveness of a number of different configurations of removable Torque Controlling Components (TCC). These, in combination with specific cutting structure layouts, combine to provide predictable torque response while optimized for high rates of penetration. In addition, unique gauge geometry is disclosed that was engineered to reduce drag and deliver improved borehole quality. This gauge design produces less torque when sliding and beneficial gauge pad interaction with the borehole when in rotating mode. Field performance studies from within Latin America clearly demonstrate that matching TCC, an optimized cutting structure, and gauge geometry to a steerable assembly delivers smooth torque response and improved directional control. Benefits with regard to improved stability are also discussed. Successful application has resulted in significant time and cost savings for the operator, demonstrating that Stability and Steerability improvements can be achieved with an increase in penetration rate. (author)

  14. An Improved Adaptive-Torque-Gain MPPT Control for Direct-Driven PMSG Wind Turbines Considering Wind Farm Turbulences

    Directory of Open Access Journals (Sweden)

    Xiaolian Zhang

    2016-11-01

    Full Text Available Maximum power point tracking (MPPT plays an important role in increasing the efficiency of a wind energy conversion system (WECS. In this paper, three conventional MPPT methods are reviewed: power signal feedback (PSF control, decreased torque gain (DTG control, and adaptive torque gain (ATG control, and their potential challenges are investigated. It is found out that the conventional MPPT method ignores the effect of wind turbine inertia and wind speed fluctuations, which lowers WECS efficiency. Accordingly, an improved adaptive torque gain (IATG method is proposed, which customizes adaptive torque gains and enhances MPPT performances. Specifically, the IATG control considers wind farm turbulences and works out the relationship between the optimal torque gains and the wind speed characteristics, which has not been reported in the literature. The IATG control is promising, especially under the ongoing trend of building wind farms with large-scale wind turbines and at low and medium wind speed sites.

  15. Elimination of torque pulsations in a direct drive EV wheel motor

    Energy Technology Data Exchange (ETDEWEB)

    Hredzak, B.; Gair, S. [Napier Univ., Edinburgh (United Kingdom); Eastham, J.F. [Univ. of Bath (United Kingdom)

    1996-09-01

    Double sided axial field machines are attractive for direct wheel drives in electric vehicles. This is due to the fact that stator/rotor misalignments can be accommodated. In this case the stator of the machine is envisaged mounted on the chassis of the car while the rotor directly drives the road wheel. Since the wheel is perturbed by the road surface the rotor will move vertically between the outside stator assemblies and thus give rise to torque pulsations. A vector control scheme has been implemented whereby the torque pulsations are eliminated by (i) calculation of the flux variation due to the rotor perturbation and (ii) using this signal for the modulation of the motor input current.

  16. Heat Control via Torque Control in Friction Stir Welding

    Science.gov (United States)

    Venable, Richard; Colligan, Kevin; Knapp, Alan

    2004-01-01

    In a proposed advance in friction stir welding, the torque exerted on the workpiece by the friction stir pin would be measured and controlled in an effort to measure and control the total heat input to the workpiece. The total heat input to the workpiece is an important parameter of any welding process (fusion or friction stir welding). In fusion welding, measurement and control of heat input is a difficult problem. However, in friction stir welding, the basic principle of operation affords the potential of a straightforward solution: Neglecting thermal losses through the pin and the spindle that supports it, the rate of heat input to the workpiece is the product of the torque and the speed of rotation of the friction stir weld pin and, hence, of the spindle. Therefore, if one acquires and suitably processes data on torque and rotation and controls the torque, the rotation, or both, one should be able to control the heat input into the workpiece. In conventional practice in friction stir welding, one uses feedback control of the spindle motor to maintain a constant speed of rotation. According to the proposal, one would not maintain a constant speed of rotation: Instead, one would use feedback control to maintain a constant torque and would measure the speed of rotation while allowing it to vary. The torque exerted on the workpiece would be estimated as the product of (1) the torque-multiplication ratio of the spindle belt and/or gear drive, (2) the force measured by a load cell mechanically coupled to the spindle motor, and (3) the moment arm of the load cell. Hence, the output of the load cell would be used as a feedback signal for controlling the torque (see figure).

  17. A simple overlap angle control strategy for reducing commutation torque ripple in a brushless DC motor drive

    Directory of Open Access Journals (Sweden)

    Chetan K. Lad

    2017-08-01

    Full Text Available A commutation torque ripple is generated in a brushless DC motor due to a finite time taken for current transfer between outgoing phase and incoming phase due to the phase inductance. The effect of commutation ripple will be more severe for low voltage high current BLDC drives used for automotive applications. Direct Torque Control (DTC techniques are used to reduce the torque ripple. Two phase conduction with six voltage space vectors and three phase conduction with twelve voltage space vectors with DTC are used to reduce the torque ripple. Twelve Step DTC (TSDTC is capable of reducing torque ripple considerably but at the cost of increased inverter and winding losses. In Six Step DTC (SSDTC the torque ripple is higher than that of TSDTC but with reduced winding and inverter losses. In this paper an attempt has been made to strike a balance between torque ripple and losses. A novel Direct Torque Control with twelve voltage space vector with overlap angle control has been proposed. The proposed method is validated through simulation and experimental results.

  18. Direct shaft torque measurements in a transient turbine facility

    International Nuclear Information System (INIS)

    Beard, Paul F; Povey, Thomas

    2011-01-01

    This paper describes the development and implementation of a shaft torque measurement system for the Oxford Turbine Research Facility (formerly the Turbine Test Facility (TTF) at QinetiQ, Farnborough), or OTRF. As part of the recent EU TATEF II programme, the facility was upgraded to allow turbine efficiency measurements to be performed. A shaft torque measurement system was developed as part of this upgrade. The system is unique in that, to the authors' knowledge, it provided the first direct measurement of shaft torque in a transient turbine facility although the system has wider applicability to rotating test facilities in which power measurement is a requirement. The adopted approach removes the requirement to quantify bearing friction, which can be difficult to accurately calibrate under representative operating conditions. The OTRF is a short duration (approximately 0.4 s run time) isentropic light-piston facility capable of matching all of the non-dimensional parameters important for aerodynamic and heat studies, namely Mach number, Reynolds number, non-dimensional speed, stage pressure ratio and gas-to-wall temperature ratio. The single-stage MT1 turbine used for this study is a highly loaded unshrouded design, and as such is relevant to modern military, or future civil aero-engine design. Shaft torque was measured directly using a custom-built strain gauge-based torque measurement system in the rotating frame of reference. This paper describes the development of this measurement system. The system was calibrated, including the effects of temperature, to a traceable primary standard using a purpose-built facility. The bias and precision uncertainties of the measured torque were ±0.117% and ±0.183%, respectively. To accurately determine the shaft torque developed by a turbine in the OTRF, small corrections due to inertial torque (associated with changes in the rotational speed) and aerodynamic drag (windage) are required. The methods for performing these

  19. Design and analysis of a direct-drive wind power generator with ultra-high torque density

    Science.gov (United States)

    Jian, Linni; Shi, Yujun; Wei, Jin; Zheng, Yanchong

    2015-05-01

    In order to get rid of the nuisances caused by mechanical gearboxes, generators with low rated speed, which can be directly connected to wind turbines, are attracting increasing attention. The purpose of this paper is to propose a new direct-drive wind power generator (DWPG), which can offer ultra-high torque density. First, magnetic gear (MG) is integrated to achieve non-contact torque transmission and speed variation. Second, armature windings are engaged to achieve electromechanical energy conversion. Interior permanent magnet (PM) design on the inner rotor is adopted to boost the torque transmission capability of the integrated MG. Nevertheless, due to lack of back iron on the stator, the proposed generator does not exhibit prominent salient feature, which usually exists in traditional interior PM (IPM) machines. This makes it with good controllability and high power factor as the surface-mounted permanent magnet machines. The performance is analyzed using finite element method. Investigation on the magnetic field harmonics demonstrates that the permanent-magnetic torque offered by the MG can work together with the electromagnetic torque offered by the armature windings to balance the driving torque captured by the wind turbine. This allows the proposed generator having the potential to offer even higher torque density than its integrated MG.

  20. Controlling the spin-torque efficiency with ferroelectric barriers

    KAUST Repository

    Useinov, A.; Chshiev, M.; Manchon, Aurelien

    2015-01-01

    Nonequilibrium spin-dependent transport in magnetic tunnel junctions comprising a ferroelectric barrier is theoretically investigated. The exact solutions of the free electron Schrödinger equation for electron tunneling in the presence of interfacial screening are obtained by combining Bessel and Airy functions. We demonstrate that the spin transfer torque efficiency, and more generally the bias dependence of tunneling magneto- and electroresistance, can be controlled by switching the ferroelectric polarization of the barrier. In particular, the critical voltage at which the in-plane torque changes sign can be strongly enhanced or reduced depending on the direction of the ferroelectric polarization of the barrier. This effect provides a supplementary way to electrically control the current-driven dynamic states of the magnetization and related magnetic noise in spin transfer devices.

  1. Controlling the spin-torque efficiency with ferroelectric barriers

    KAUST Repository

    Useinov, A.

    2015-02-11

    Nonequilibrium spin-dependent transport in magnetic tunnel junctions comprising a ferroelectric barrier is theoretically investigated. The exact solutions of the free electron Schrödinger equation for electron tunneling in the presence of interfacial screening are obtained by combining Bessel and Airy functions. We demonstrate that the spin transfer torque efficiency, and more generally the bias dependence of tunneling magneto- and electroresistance, can be controlled by switching the ferroelectric polarization of the barrier. In particular, the critical voltage at which the in-plane torque changes sign can be strongly enhanced or reduced depending on the direction of the ferroelectric polarization of the barrier. This effect provides a supplementary way to electrically control the current-driven dynamic states of the magnetization and related magnetic noise in spin transfer devices.

  2. Design of driving control strategy of torque distribution for two - wheel independent drive electric vehicle

    Science.gov (United States)

    Zhang, Chuanwei; Zhang, Dongsheng; Wen, Jianping

    2018-02-01

    In order to coordinately control the torque distribution of existing two-wheel independent drive electric vehicle, and improve the energy efficiency and control stability of the whole vehicle, the control strategies based on fuzzy control were designed which adopt the direct yaw moment control as the main line. For realizing the torque coordination simulation of the two-wheel independent drive vehicle, the vehicle model, motor model and tire model were built, including the vehicle 7 - DOF dynamics model, motion equation, torque equation. Finally, in the Carsim - Simulink joint simulation platform, the feasibility of the drive control strategy was verified.

  3. A Biomechanical Comparison of Proportional Electromyography Control to Biological Torque Control Using a Powered Hip Exoskeleton

    Directory of Open Access Journals (Sweden)

    Aaron J. Young

    2017-06-01

    Full Text Available BackgroundDespite a large increase in robotic exoskeleton research, there are few studies that have examined human performance with different control strategies on the same exoskeleton device. Direct comparison studies are needed to determine how users respond to different types of control. The purpose of this study was to compare user performance using a robotic hip exoskeleton with two different controllers: a controller that targeted a biological hip torque profile and a proportional myoelectric controller.MethodsWe tested both control approaches on 10 able-bodied subjects using a pneumatically powered hip exoskeleton. The state machine controller targeted a biological hip torque profile. The myoelectric controller used electromyography (EMG of lower limb muscles to produce a proportional control signal for the hip exoskeleton. Each subject performed two 30-min exoskeleton walking trials (1.0 m/s using each controller and a 10-min trial with the exoskeleton unpowered. During each trial, we measured subjects’ metabolic cost of walking, lower limb EMG profiles, and joint kinematics and kinetics (torques and powers using a force treadmill and motion capture.ResultsCompared to unassisted walking in the exoskeleton, myoelectric control significantly reduced metabolic cost by 13% (p = 0.005 and biological hip torque control reduced metabolic cost by 7% (p = 0.261. Subjects reduced muscle activity relative to the unpowered condition for a greater number of lower limb muscles using myoelectric control compared to the biological hip torque control. More subjects subjectively preferred the myoelectric controller to the biological hip torque control.ConclusionMyoelectric control had more advantages (metabolic cost and muscle activity reduction compared to a controller that targeted a biological torque profile for walking with a robotic hip exoskeleton. However, these results were obtained with a single exoskeleton device with specific

  4. A Biomechanical Comparison of Proportional Electromyography Control to Biological Torque Control Using a Powered Hip Exoskeleton.

    Science.gov (United States)

    Young, Aaron J; Gannon, Hannah; Ferris, Daniel P

    2017-01-01

    Despite a large increase in robotic exoskeleton research, there are few studies that have examined human performance with different control strategies on the same exoskeleton device. Direct comparison studies are needed to determine how users respond to different types of control. The purpose of this study was to compare user performance using a robotic hip exoskeleton with two different controllers: a controller that targeted a biological hip torque profile and a proportional myoelectric controller. We tested both control approaches on 10 able-bodied subjects using a pneumatically powered hip exoskeleton. The state machine controller targeted a biological hip torque profile. The myoelectric controller used electromyography (EMG) of lower limb muscles to produce a proportional control signal for the hip exoskeleton. Each subject performed two 30-min exoskeleton walking trials (1.0 m/s) using each controller and a 10-min trial with the exoskeleton unpowered. During each trial, we measured subjects' metabolic cost of walking, lower limb EMG profiles, and joint kinematics and kinetics (torques and powers) using a force treadmill and motion capture. Compared to unassisted walking in the exoskeleton, myoelectric control significantly reduced metabolic cost by 13% ( p  = 0.005) and biological hip torque control reduced metabolic cost by 7% ( p  = 0.261). Subjects reduced muscle activity relative to the unpowered condition for a greater number of lower limb muscles using myoelectric control compared to the biological hip torque control. More subjects subjectively preferred the myoelectric controller to the biological hip torque control. Myoelectric control had more advantages (metabolic cost and muscle activity reduction) compared to a controller that targeted a biological torque profile for walking with a robotic hip exoskeleton. However, these results were obtained with a single exoskeleton device with specific control configurations while level walking at a

  5. Combined Flux Observer With Signal Injection Enhancement for Wide Speed Range Sensorless Direct Torque Control of IPMSM Drives

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Andreescu, G.-D.; Pitic, C.I.

    2008-01-01

    voltage-current model with PI compensator for low-speed operations. As speed increases, the observer switches gradually to a PI compensated closed-loop voltage model, which is solely used at high speeds. High-frequency rotating-voltage injection with a single D-module bandpass vector filter and a phase......This paper proposes a motion-sensorless control system using direct torque control with space vector modulation for interior permanent magnet synchronous motor (IPMSM) drives, for wide speed range operation, including standstill. A novel stator flux observer with variable structure uses a combined...

  6. Computerized Torque Control for Large dc Motors

    Science.gov (United States)

    Willett, Richard M.; Carroll, Michael J.; Geiger, Ronald V.

    1987-01-01

    Speed and torque ranges in generator mode extended. System of shunt resistors, electronic switches, and pulse-width modulation controls torque exerted by large, three-phase, electronically commutated dc motor. Particularly useful for motor operating in generator mode because it extends operating range to low torque and high speed.

  7. Torque control for electric motors

    Science.gov (United States)

    Bernard, C. A.

    1980-01-01

    Method for adjusting electric-motor torque output to accomodate various loads utilizes phase-lock loop to control relay connected to starting circuit. As load is imposed, motor slows down, and phase lock is lost. Phase-lock signal triggers relay to power starting coil and generate additional torque. Once phase lock is recoverd, relay restores starting circuit to its normal operating mode.

  8. High Torque, Direct Drive Electric Motor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Bear Engineering proposes to develop an innovative high torque, low speed, direct drive motor in order to meet NASA's requirements for such devices. Fundamentally,...

  9. High Torque, Direct Drive Electric Motor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Bear Engineering proposes to advance the development of an innovative high torque, low speed, direct drive motor in order to meet NASA's requirements for such...

  10. Torque control of underactuated tendon-driven fingers

    Directory of Open Access Journals (Sweden)

    M. E. Abdallah

    2011-02-01

    Full Text Available Given an underactuated tendon-driven finger, the finger posture is underdetermined and can move freely ("flop" in a region of slack tendons. This work shows that such an underactuated finger can be operated in tendon force control (rather than position control with effective performance. The force control eliminates the indeterminate slack while commanding a parameterized space of desired torques. The torque will either push the finger to the joint limits or wrap around an external object with variable torque – behavior that is sufficient for primarily gripping fingers. In addition, introducing asymmetric joint radii to the design allows the finger to command an expanded range of joint torques and to scan an expanded set of external surfaces. This study is motivated by the design and control of the secondary fingers of the NASA-GM R2 humanoid hand.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  11. Dynamic Friction Parameter Identification Method with LuGre Model for Direct-Drive Rotary Torque Motor

    Directory of Open Access Journals (Sweden)

    Xingjian Wang

    2016-01-01

    Full Text Available Attainment of high-performance motion/velocity control objectives for the Direct-Drive Rotary (DDR torque motor should fully consider practical nonlinearities in controller design, such as dynamic friction. The LuGre model has been widely utilized to describe nonlinear friction behavior; however, parameter identification for the LuGre model remains a challenge. A new dynamic friction parameter identification method for LuGre model is proposed in this study. Static parameters are identified through a series of constant velocity experiments, while dynamic parameters are obtained through a presliding process. Novel evolutionary algorithm (NEA is utilized to increase identification accuracy. Experimental results gathered from the identification experiments conducted in the study for a practical DDR torque motor control system validate the effectiveness of the proposed method.

  12. [Influence of slot size on torque control].

    Science.gov (United States)

    Tian, Jun; Liu, Zhong-Hao; Zhang, Ding; Wu, Chuan-Jun

    2009-12-01

    To study the influence of two slot size brackets on torque control when teeth interacted in the same arch. After the upper arch was aligned and leveled in Typodont study, the inclinations of upper teeth 5 +/- 5 were measured when 0.457 2 mm x 0.635 0 mm OPA-K brackets and 0.558 8 mmx0.711 2 mm OPA-K brackets were filled with 0.431 8 mm x 0.635 0 mm stainless steel wire. This experiment was duplicated 10 times. The inclin of each tooth were transformed to the absolute values of the torque play angle psi by computing program, and paired-t test was used. The two kinds of slot size brackets were different with statistical significance on torque control. When the brackets were filled with 0.431 8 mm x 0.635 0 mm stainless steel wire, the absolute values of the angle psi in 0.558 8 mm x 0.711 2 mm and 0.457 2 mm x 0.635 0 mm slot size brackets were 6.140 degrees +/- 3.758 degrees and 2.608 degrees +/- 1.479 degrees respectively, and the average difference of that between the two slot size brackets was 3.532 degrees. The absolute values of the angle psi in the upper left and right canine brackets were 2.560 degrees +/- 2.605 degrees, 4.230 degrees +/- 2.817 degrees, 1.260 degrees +/- 0.747 degrees and 2.070 degrees +/- 0.663 degrees respectively, and average differences between them were smaller than that in the other teeth. There was difference between the two kinds of slot size brackets on torque control, and 0.457 2 mm x 0.635 0 mm slot size bracket controls torque better when filled with the same size wire. In this study, the teeth interaction in the same arch probably caused the result that the difference of two slot size brackets on torque control was less than the study results of the theory calculations and material studys before.

  13. Directed transport of confined Brownian particles with torque

    Science.gov (United States)

    Radtke, Paul K.; Schimansky-Geier, Lutz

    2012-05-01

    We investigate the influence of an additional torque on the motion of Brownian particles confined in a channel geometry with varying width. The particles are driven by random fluctuations modeled by an Ornstein-Uhlenbeck process with given correlation time τc. The latter causes persistent motion and is implemented as (i) thermal noise in equilibrium and (ii) noisy propulsion in nonequilibrium. In the nonthermal process a directed transport emerges; its properties are studied in detail with respect to the correlation time, the torque, and the channel geometry. Eventually, the transport mechanism is traced back to a persistent sliding of particles along the even boundaries in contrast to scattered motion at uneven or rough ones.

  14. Dynamics and Control of Lateral Tower Vibrations in Offshore Wind Turbines by Means of Active Generator Torque

    Directory of Open Access Journals (Sweden)

    Zili Zhang

    2014-11-01

    Full Text Available Lateral tower vibrations of offshore wind turbines are normally lightly damped, and large amplitude vibrations induced by wind and wave loads in this direction may significantly shorten the fatigue life of the tower. This paper proposes the modeling and control of lateral tower vibrations in offshore wind turbines using active generator torque. To implement the active control algorithm, both the mechanical and power electronic aspects have been taken into consideration. A 13-degrees-of-freedom aeroelastic wind turbine model with generator and pitch controllers is derived using the Euler–Lagrangian approach. The model displays important features of wind turbines, such as mixed moving frame and fixed frame-defined degrees-of-freedom, couplings of the tower-blade-drivetrain vibrations, as well as aerodynamic damping present in different modes of motions. The load transfer mechanisms from the drivetrain and the generator to the nacelle are derived, and the interaction between the generator torque and the lateral tower vibration are presented in a generalized manner. A three-dimensional rotational sampled turbulence field is generated and applied to the rotor, and the tower is excited by a first order wave load in the lateral direction. Next, a simple active control algorithm is proposed based on active generator torques with feedback from the measured lateral tower vibrations. A full-scale power converter configuration with a cascaded loop control structure is also introduced to produce the feedback control torque in real time. Numerical simulations have been carried out using data calibrated to the referential 5-MW NREL (National Renewable Energy Laboratory offshore wind turbine. Cases of drivetrains with a gearbox and direct drive to the generator are considered using the same time series for the wave and turbulence loadings. Results show that by using active generator torque control, lateral tower vibrations can be significantly mitigated for

  15. Improved direct torque control of induction motor with dither injection

    Indian Academy of Sciences (India)

    Department of Electrical Engineering, Indian Institute of Technology,. Kanpur 208 016 e-mail: ... voltage vectors, which keep the motor torque in the defined hysteresis tolerance band. At every sampling ... For reverse rotation, in the same way ...

  16. Super-twisting sliding mode control of torque and flux in permanent magnet synchronous machine drives

    DEFF Research Database (Denmark)

    Lascu, Christian; Boldea, Ion; Blaabjerg, Frede

    2013-01-01

    This paper investigates a permanent magnet synchronous motor drive controlled by a second-order variable structure control technique, known as the super-twisting sliding modes (STSM) control. The STSM controller is designed as a direct torque and flux controller and it works in the stator flux...

  17. Direct Torque Control with Full Order Stator Flux Observer for Dual-Three Phase Induction Motor Drives

    Science.gov (United States)

    Farina, Francesco; Bojoi, Radu; Tenconi, Alberto; Profumo, Francesco

    A Direct Torque Control (DTC) strategy for dual-three phase induction motor drives is discussed in this paper. The induction machine has two sets of stator three-phase windings spatially shifted by 30 electrical degrees with isolated neutral points. The proposed control strategy is based on Proportional Integral (PI) regulators implemented in the stator flux synchronous reference frame. To improve the flux estimation, an Adaptive Stator Flux Observer (ASFO) has been used. Doing so, besides a better flux estimation in contrast to open-loop flux estimators, it is possible to use the observed currents to compensate the inverter non-linear behavior (such as dead-time effects), improving the drive performance at low speed. This is particularly important for low voltage/high current applications, as the drive considered in this paper. The advantages of the discussed control strategy are: constant inverter switching frequency, good transient and steady-state performance and less distorted machine currents in contrast to DTC schemes with variable switching frequency. Experimental results are presented for a 10kW dual three-phase induction motor drive prototype.

  18. Soft controller switching technique to minimize the torque and current pulsations of a SCIM during its reswitching

    International Nuclear Information System (INIS)

    Larik, A.S.

    2010-01-01

    The direct-on-line starting of induction motor draws heavy current and to limit this Inrush current to a safe level normally a star-delta switch is used. However, the switching over from star to delta causes over current transients and this leads to torque pulsations. Therefore, in this paper the current and torque pulsations developed during the switching process are focused and a soft-switched controller is devised to minimize the re-closure transient currents and torque pulsations during star-delta switching of induction motor. The designed system can readily handles the sensing of favorable conditions of re closure of a switched-off running induction motor and it minimizes the inrush current and hence the pulsations of torque of all types of induction motors, whether, single-phase or three phase. An investigation is made into the transient currents and pulsation torques generated due to opening the circuit of a running induction motor and the switching pattern of star-delta switching. The re-switching control scheme for the induction motor is practically tested in the laboratory with and without soft controller. (author)

  19. Torque Control of Underactuated Tendon-driven Robotic Fingers

    Science.gov (United States)

    Abdallah, Muhammad E. (Inventor); Ihrke, Chris A. (Inventor); Reiland, Matthew J. (Inventor); Wampler, Charles W. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Bridgwater, Lyndon (Inventor)

    2013-01-01

    A robotic system includes a robot having a total number of degrees of freedom (DOF) equal to at least n, an underactuated tendon-driven finger driven by n tendons and n DOF, the finger having at least two joints, being characterized by an asymmetrical joint radius in one embodiment. A controller is in communication with the robot, and controls actuation of the tendon-driven finger using force control. Operating the finger with force control on the tendons, rather than position control, eliminates the unconstrained slack-space that would have otherwise existed. The controller may utilize the asymmetrical joint radii to independently command joint torques. A method of controlling the finger includes commanding either independent or parameterized joint torques to the controller to actuate the fingers via force control on the tendons.

  20. Reduction of Cogging Torque in Dual Rotor Permanent Magnet Generator for Direct Coupled Wind Energy Systems

    Science.gov (United States)

    Paulsamy, Sivachandran

    2014-01-01

    In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions. PMID:25202746

  1. Reduction of cogging torque in dual rotor permanent magnet generator for direct coupled wind energy systems.

    Science.gov (United States)

    Paulsamy, Sivachandran

    2014-01-01

    In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions.

  2. Engine Torque Control of Spark Ignition Engine using Fuzzy Gain Scheduling

    OpenAIRE

    Aris Triwiyatno

    2012-01-01

    In the spark ignition engine system, driver convenience is very dependent on satisfying engine torque appropriate with the throttle position given by the driver. Unfortunately, sometimes the fulfillment of engine torque is not in line with fuel saving efforts. This requires the development of high performance and robust power train controllers. One way to potentially meet these performance requirements is to introduce a method of controlling engine torque using fuzzy gain scheduling. By using...

  3. Torque- and Speed Control of a Pitch Regulated Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rasila, Mika

    2003-07-01

    Variable speed operated wind turbines has the potential to reduce fatigue loads, compared to fixed speed wind turbines. With pitch controllable rotor blades limitation of the power at high wind speeds is obtained. The thesis describes different controlling aspects concerning wind turbines and how these together can be used to optimize the system's performance. Torque control is used in order to achieve reduction on the mechanical loads on the drive-train for low wind speeds and limitation of power output for high wind speeds. In the high wind speed interval torque control is effective in order to limit the output power if a sufficiently fast pitch actuator is used. In the middle wind speed interval filter utilization can be used to give a reference signal to the controller in order to reduce speed and torque variations.

  4. Manipulating the voltage dependence of tunneling spin torques

    KAUST Repository

    Manchon, Aurelien

    2012-10-01

    Voltage-driven spin transfer torques in magnetic tunnel junctions provide an outstanding tool to design advanced spin-based devices for memory and reprogrammable logic applications. The non-linear voltage dependence of the torque has a direct impact on current-driven magnetization dynamics and on devices performances. After a brief overview of the progress made to date in the theoretical description of the spin torque in tunnel junctions, I present different ways to alter and control the bias dependence of both components of the spin torque. Engineering the junction (barrier and electrodes) structural asymmetries or controlling the spin accumulation profile in the free layer offer promising tools to design effcient spin devices.

  5. Torque Control of Friction Stir Welding, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Longhurst Engineering, PLC and Vanderbilt University propose the innovation of torque control of friction stir welding (FSW) as a replacement to force control of...

  6. Torque Control of a Rehabilitation Teaching Robot Using Magneto-Rheological Fluid Clutches

    Science.gov (United States)

    Hakogi, Hokuto; Ohaba, Motoyoshi; Kuramochi, Naimu; Yano, Hidenori

    A new robot that makes use of MR-fluid clutches for simulating torque is proposed to provide an appropriate device for training physical therapy students in knee-joint rehabilitation. The feeling of torque provided by the robot is expected to correspond to the torque performance obtained by physical therapy experts in a clinical setting. The torque required for knee-joint rehabilitation, which is a function of the rotational angle and the rotational angular velocity of a knee movement, is modeled using a mechanical system composed of typical spring-mass-damper elements. The robot consists of two MR-fluid clutches, two induction motors, and a feedback control system. In the torque experiments, output torque is controlled using the spring and damper coefficients separately. The values of these coefficients are determined experimentally. The experimental results show that the robot would be suitable for training physical therapy students to experience similar torque feelings as needed in a clinical situation.

  7. Direction-Specific Impairments in Cervical Range of Motion in Women with Chronic Neck Pain: Influence of Head Posture and Gravitationally Induced Torque.

    Science.gov (United States)

    Rudolfsson, Thomas; Björklund, Martin; Svedmark, Åsa; Srinivasan, Divya; Djupsjöbacka, Mats

    2017-01-01

    Cervical range of motion (ROM) is commonly assessed in clinical practice and research. In a previous study we decomposed active cervical sagittal ROM into contributions from lower and upper levels of the cervical spine and found level- and direction-specific impairments in women with chronic non-specific neck pain. The present study aimed to validate these results and investigate if the specific impairments can be explained by the neutral posture (defining zero flexion/extension) or a movement strategy to avoid large gravitationally induced torques on the cervical spine. Kinematics of the head and thorax was assessed in sitting during maximal sagittal cervical flexion/extension (high torque condition) and maximal protraction (low torque condition) in 120 women with chronic non-specific neck pain and 40 controls. We derived the lower and upper cervical angles, and the head centre of mass (HCM), from a 3-segment kinematic model. Neutral head posture was assessed using a standardized procedure. Previous findings of level- and direction-specific impairments in neck pain were confirmed. Neutral head posture was equal between groups and did not explain the direction-specific impairments. The relative magnitude of group difference in HCM migration did not differ between high and low torques conditions, lending no support for our hypothesis that impairments in sagittal ROM are due to torque avoidance behaviour. The direction- and level-specific impairments in cervical sagittal ROM can be generalised to the population of women with non-specific neck pain. Further research is necessary to clarify if torque avoidance behaviour can explain the impairments.

  8. Direction-Specific Impairments in Cervical Range of Motion in Women with Chronic Neck Pain: Influence of Head Posture and Gravitationally Induced Torque.

    Directory of Open Access Journals (Sweden)

    Thomas Rudolfsson

    Full Text Available Cervical range of motion (ROM is commonly assessed in clinical practice and research. In a previous study we decomposed active cervical sagittal ROM into contributions from lower and upper levels of the cervical spine and found level- and direction-specific impairments in women with chronic non-specific neck pain. The present study aimed to validate these results and investigate if the specific impairments can be explained by the neutral posture (defining zero flexion/extension or a movement strategy to avoid large gravitationally induced torques on the cervical spine.Kinematics of the head and thorax was assessed in sitting during maximal sagittal cervical flexion/extension (high torque condition and maximal protraction (low torque condition in 120 women with chronic non-specific neck pain and 40 controls. We derived the lower and upper cervical angles, and the head centre of mass (HCM, from a 3-segment kinematic model. Neutral head posture was assessed using a standardized procedure.Previous findings of level- and direction-specific impairments in neck pain were confirmed. Neutral head posture was equal between groups and did not explain the direction-specific impairments. The relative magnitude of group difference in HCM migration did not differ between high and low torques conditions, lending no support for our hypothesis that impairments in sagittal ROM are due to torque avoidance behaviour.The direction- and level-specific impairments in cervical sagittal ROM can be generalised to the population of women with non-specific neck pain. Further research is necessary to clarify if torque avoidance behaviour can explain the impairments.

  9. Integrated High-Speed Torque Control System for a Robotic Joint

    Science.gov (United States)

    Davis, Donald R. (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Valvo, Michael C. (Inventor); Askew, R. Scott (Inventor)

    2013-01-01

    A control system for achieving high-speed torque for a joint of a robot includes a printed circuit board assembly (PCBA) having a collocated joint processor and high-speed communication bus. The PCBA may also include a power inverter module (PIM) and local sensor conditioning electronics (SCE) for processing sensor data from one or more motor position sensors. Torque control of a motor of the joint is provided via the PCBA as a high-speed torque loop. Each joint processor may be embedded within or collocated with the robotic joint being controlled. Collocation of the joint processor, PIM, and high-speed bus may increase noise immunity of the control system, and the localized processing of sensor data from the joint motor at the joint level may minimize bus cabling to and from each control node. The joint processor may include a field programmable gate array (FPGA).

  10. Mechatronic Model Based Computed Torque Control of a Parallel Manipulator

    Directory of Open Access Journals (Sweden)

    Zhiyong Yang

    2008-11-01

    Full Text Available With high speed and accuracy the parallel manipulators have wide application in the industry, but there still exist many difficulties in the actual control process because of the time-varying and coupling. Unfortunately, the present-day commercial controlles cannot provide satisfying performance for its single axis linear control only. Therefore, aimed at a novel 2-DOF (Degree of Freedom parallel manipulator called Diamond 600, a motor-mechanism coupling dynamic model based control scheme employing the computed torque control algorithm are presented in this paper. First, the integrated dynamic coupling model is deduced, according to equivalent torques between the mechanical structure and the PM (Permanent Magnetism servomotor. Second, computed torque controller is described in detail for the above proposed model. At last, a series of numerical simulations and experiments are carried out to test the effectiveness of the system, and the results verify the favourable tracking ability and robustness.

  11. Mechatronic Model Based Computed Torque Control of a Parallel Manipulator

    Directory of Open Access Journals (Sweden)

    Zhiyong Yang

    2008-03-01

    Full Text Available With high speed and accuracy the parallel manipulators have wide application in the industry, but there still exist many difficulties in the actual control process because of the time-varying and coupling. Unfortunately, the present-day commercial controlles cannot provide satisfying performance for its single axis linear control only. Therefore, aimed at a novel 2-DOF (Degree of Freedom parallel manipulator called Diamond 600, a motor-mechanism coupling dynamic model based control scheme employing the computed torque control algorithm are presented in this paper. First, the integrated dynamic coupling model is deduced, according to equivalent torques between the mechanical structure and the PM (Permanent Magnetism servomotor. Second, computed torque controller is described in detail for the above proposed model. At last, a series of numerical simulations and experiments are carried out to test the effectiveness of the system, and the results verify the favourable tracking ability and robustness.

  12. Influence of Joint Angle on EMG-Torque Model During Constant-Posture, Torque-Varying Contractions.

    Science.gov (United States)

    Liu, Pu; Liu, Lukai; Clancy, Edward A

    2015-11-01

    Relating the electromyogram (EMG) to joint torque is useful in various application areas, including prosthesis control, ergonomics and clinical biomechanics. Limited study has related EMG to torque across varied joint angles, particularly when subjects performed force-varying contractions or when optimized modeling methods were utilized. We related the biceps-triceps surface EMG of 22 subjects to elbow torque at six joint angles (spanning 60° to 135°) during constant-posture, torque-varying contractions. Three nonlinear EMG σ -torque models, advanced EMG amplitude (EMG σ ) estimation processors (i.e., whitened, multiple-channel) and the duration of data used to train models were investigated. When EMG-torque models were formed separately for each of the six distinct joint angles, a minimum "gold standard" error of 4.01±1.2% MVC(F90) resulted (i.e., error relative to maximum voluntary contraction at 90° flexion). This model structure, however, did not directly facilitate interpolation across angles. The best model which did so achieved a statistically equivalent error of 4.06±1.2% MVC(F90). Results demonstrated that advanced EMG σ processors lead to improved joint torque estimation as do longer model training durations.

  13. Using torque switch settings and spring pack characteristics to determine actuator output torques

    International Nuclear Information System (INIS)

    Black, B.R.

    1992-01-01

    Actuator output torque of motor operated valves is often a performance parameter of interest. It is not always possible to directly measure this torque. Torque spring pack deflection directly reflects actuator output torque and can be directly measured on most actuators. The torque spring pack may be removed from the actuator and tested to determine its unique force-deflection relationship. Or, a representative force-deflection relationship for the particular spring pack model may be available. With either relationship, measurements of torque spring pack deflection may then be correlated to corresponding forces. If the effective length of the moment arm within the actuator is known, actuator output torque can then be determined. The output torque is simply the product of the effective moment arm length and the spring pack force. This paper presents the reliability of this technique as indicated by testing. TU Electric is evaluating this technique for potential use in the future. Results presented in this paper should be considered preliminary. Applicability of these results may be limited to actuators and their components in a condition similar to those for which test data have been examined

  14. A flight simulator control system using electric torque motors

    Science.gov (United States)

    Musick, R. O.; Wagner, C. A.

    1975-01-01

    Control systems are required in flight simulators to provide representative stick and rudder pedal characteristics. A system has been developed that uses electric dc torque motors instead of the more common hydraulic actuators. The torque motor system overcomes certain disadvantages of hydraulic systems, such as high cost, high power consumption, noise, oil leaks, and safety problems. A description of the torque motor system is presented, including both electrical and mechanical design as well as performance characteristics. The system develops forces sufficiently high for most simulations, and is physically small and light enough to be used in most motion-base cockpits.

  15. Advanced single tooth torquing plier with high precision: A clinical innovation

    Directory of Open Access Journals (Sweden)

    Jitendra Raghuwanshi

    2017-01-01

    Full Text Available Torque is the force which gives the operator control over the movements of roots of teeth in bilateral direction. There are various pliers available to apply torque in individual tooth, but none of the pliers are capable of measuring accurately the degrees of torque incorporated, so we have attempted to make a modified torquing plier to incorporate and measure the degrees of incorporated torque precisely.

  16. Sensorless Speed/Torque Control of DC Machine Using Artificial Neural Network Technique

    Directory of Open Access Journals (Sweden)

    Rakan Kh. Antar

    2017-12-01

    Full Text Available In this paper, Artificial Neural Network (ANN technique is implemented to improve speed and torque control of a separately excited DC machine drive. The speed and torque sensorless scheme based on ANN is estimated adaptively. The proposed controller is designed to estimate rotor speed and mechanical load torque as a Model Reference Adaptive System (MRAS method for DC machine. The DC drive system consists of four quadrant DC/DC chopper with MOSFET transistors, ANN, logic gates and routing circuits. The DC drive circuit is designed, evaluated and modeled by Matlab/Simulink in the forward and reverse operation modes as a motor and generator, respectively. The DC drive system is simulated at different speed values (±1200 rpm and mechanical torque (±7 N.m in steady state and dynamic conditions. The simulation results illustratethe effectiveness of the proposed controller without speed or torque sensors.

  17. Leveraging Disturbance Observer Based Torque Control for Improved Impedance Rendering with Series Elastic Actuators

    Science.gov (United States)

    Mehling, Joshua S.; Holley, James; O'Malley, Marcia K.

    2015-01-01

    The fidelity with which series elastic actuators (SEAs) render desired impedances is important. Numerous approaches to SEA impedance control have been developed under the premise that high-precision actuator torque control is a prerequisite. Indeed, the design of an inner torque compensator has a significant impact on actuator impedance rendering. The disturbance observer (DOB) based torque control implemented in NASA's Valkyrie robot is considered here and a mathematical model of this torque control, cascaded with an outer impedance compensator, is constructed. While previous work has examined the impact a disturbance observer has on torque control performance, little has been done regarding DOBs and impedance rendering accuracy. Both simulation and a series of experiments are used to demonstrate the significant improvements possible in an SEA's ability to render desired dynamic behaviors when utilizing a DOB. Actuator transparency at low impedances is improved, closed loop hysteresis is reduced, and the actuator's dynamic response to both commands and interaction torques more faithfully matches that of the desired model. All of this is achieved by leveraging DOB based control rather than increasing compensator gains, thus making improved SEA impedance control easier to achieve in practice.

  18. Torque Measurement of 3-DOF Haptic Master Operated by Controllable Electrorheological Fluid

    Directory of Open Access Journals (Sweden)

    Oh Jong-Seok

    2015-02-01

    Full Text Available This work presents a torque measurement method of 3-degree-of-freedom (3-DOF haptic master featuring controllable electrorheological (ER fluid. In order to reflect the sense of an organ for a surgeon, the ER haptic master which can generate the repulsive torque of an organ is utilized as a remote controller for a surgery robot. Since accurate representation of organ feeling is essential for the success of the robot-assisted surgery, it is indispensable to develop a proper torque measurement method of 3-DOF ER haptic master. After describing the structural configuration of the haptic master, the torque models of ER spherical joint are mathematically derived based on the Bingham model of ER fluid. A new type of haptic device which has pitching, rolling, and yawing motions is then designed and manufactured using a spherical joint mechanism. Subsequently, the field-dependent parameters of the Bingham model are identified and generating repulsive torque according to applied electric field is measured. In addition, in order to verify the effectiveness of the proposed torque model, a comparative work between simulated and measured torques is undertaken.

  19. A Robust Sensorless Direct Torque Control of Induction Motor Based on MRAS and Extended Kalman Filter

    Directory of Open Access Journals (Sweden)

    Mustapha MESSAOUDI

    2008-06-01

    Full Text Available In this paper, the classical Direct Torque Control (DTC of Induction Motor (IM using an open loop pure integration suffers from the well-known problems of integration especially in the low speed operation range is detailed. To tackle this problem, the IM variables and parameters estimation is performed using a recursive non-linear observer known as EKF. This observer is used to estimate the stator currents, the rotor flux linkages, the rotor speed and the stator resistance. The main drawback of the EKF in this case is that the load dynamics has to be known which is not usually possible. Therefore, a new method based on the Model Reference Adaptive System (MRAS is used to estimate the rotor speed. The two different nonlinear observers applied to sensorless DTC of IM, are discussed and compared to each other. The rotor speed estimation in DTC technique is affected by parameter variations especially the stator resistance due to temperature particularly at low speeds. Therefore, it is necessary to compensate this parameter variation in sensorless induction motor drives using an online adaptation of the control algorithm by the estimated stator resistance. A simulation work leads to the selected results to support the study findings.

  20. EMG Versus Torque Control of Human-Machine Systems: Equalizing Control Signal Variability Does not Equalize Error or Uncertainty.

    Science.gov (United States)

    Johnson, Reva E; Kording, Konrad P; Hargrove, Levi J; Sensinger, Jonathon W

    2017-06-01

    In this paper we asked the question: if we artificially raise the variability of torque control signals to match that of EMG, do subjects make similar errors and have similar uncertainty about their movements? We answered this question using two experiments in which subjects used three different control signals: torque, torque+noise, and EMG. First, we measured error on a simple target-hitting task in which subjects received visual feedback only at the end of their movements. We found that even when the signal-to-noise ratio was equal across EMG and torque+noise control signals, EMG resulted in larger errors. Second, we quantified uncertainty by measuring the just-noticeable difference of a visual perturbation. We found that for equal errors, EMG resulted in higher movement uncertainty than both torque and torque+noise. The differences suggest that performance and confidence are influenced by more than just the noisiness of the control signal, and suggest that other factors, such as the user's ability to incorporate feedback and develop accurate internal models, also have significant impacts on the performance and confidence of a person's actions. We theorize that users have difficulty distinguishing between random and systematic errors for EMG control, and future work should examine in more detail the types of errors made with EMG control.

  1. Resistance Torque Based Variable Duty-Cycle Control Method for a Stage II Compressor

    Science.gov (United States)

    Zhong, Meipeng; Zheng, Shuiying

    2017-07-01

    The resistance torque of a piston stage II compressor generates strenuous fluctuations in a rotational period, and this can lead to negative influences on the working performance of the compressor. To restrain the strenuous fluctuations in the piston stage II compressor, a variable duty-cycle control method based on the resistance torque is proposed. A dynamic model of a stage II compressor is set up, and the resistance torque and other characteristic parameters are acquired as the control targets. Then, a variable duty-cycle control method is applied to track the resistance torque, thereby improving the working performance of the compressor. Simulated results show that the compressor, driven by the proposed method, requires lower current, while the rotating speed and the output torque remain comparable to the traditional variable-frequency control methods. A variable duty-cycle control system is developed, and the experimental results prove that the proposed method can help reduce the specific power, input power, and working noise of the compressor to 0.97 kW·m-3·min-1, 0.09 kW and 3.10 dB, respectively, under the same conditions of discharge pressure of 2.00 MPa and a discharge volume of 0.095 m3/min. The proposed variable duty-cycle control method tracks the resistance torque dynamically, and improves the working performance of a Stage II Compressor. The proposed variable duty-cycle control method can be applied to other compressors, and can provide theoretical guidance for the compressor.

  2. Analysis of the Torque Ripples in Designing a Disk Type Brushless Direct Current Motor

    Directory of Open Access Journals (Sweden)

    A. V. Stepanov

    2015-01-01

    Full Text Available This paper investigates the torque ripples of disk-type low-power brushless direct current motor (BDCM with permanent magnets. In spite of numerous studies on designing of valve engines this issue is understudied as yet. The torque ripples cause noise and vibration and can significantly limit accuracy when used in instrumentation, computer technology.We consider a motor that includes a power unit consisting of a rotor and a stator. There are ferrite elements of sensor on the rotor, and the nonmagnetic disk, bonded to it, contains permanent magnets. The rotor is mounted on a rotating shaft. The stator consists of a steel casing and bonded to it non-magnetic, non-conductive disk with holes. In the disk holes from both sides are mounted armature coils. The armature winding consists of two sections each of which has 6 coils. Each adjacent coil in section has an opposite direction of winding. The coils are arranged circumferentially and are shifted relative to each other; the displacement angle between the coils of one section is equal to 2π/6 (rad. Sections are also shifted relative to each other; the angular shift is π/6 (rad. Sections are connected to the output terminals of the electronic switch. Sections of motor windings have the reverse full-wave power.The paper has investigated the steady operation at four-stroke switching and under constant load (torque. In this case, the electromagnetic torque and rotor speed are periodical functions of the rotor rotation angle. The dependencies of the averaged torque on the rotation speed have been obtained. The spectral distribution of the torque ripples at various rotor speeds of rotation has been calculated. The dependencies of the torque on the speed were studied both at constant speed and taking into account the uneven speed. Based on the research findings of disk type BDCM was computed a level of ripples amounted to 0.8 - 5%, which is quite acceptable for use in a drive. The results are useful for

  3. Low torque hydrodynamic lip geometry for bi-directional rotation seals

    Science.gov (United States)

    Dietle, Lannie L [Houston, TX; Schroeder, John E [Richmond, TX

    2009-07-21

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  4. Wheels Optimization and Vision Control of Omni-directional Mobile Microrobot

    Directory of Open Access Journals (Sweden)

    Jianghao Li

    2008-11-01

    Full Text Available This paper presents a millimeters scale omni-directional mobile microrobot with special dual-wheel structure. The microrobot was actuated by three electromagnetic micromotors of 2mm diameter. Dynamic analysis of translational and steering movements presented the relationship between the sizes of the dual-wheel structure and the output torque of the micromotor. Genetic algorithm (GA was employed to optimize the dualwheel's sizes for reducing the unnecessary torque consumption and improving the driving ability of the microrobot. A computer vision system contained two sets of feedback control is devised for the microrobot. Torque self-balance and current-limiting control approach are presented to ensure the accuracy of step movement. Experiment results demonstrate the feasibility of these concepts.

  5. A New Torque Control System of Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Evstratov Andrey

    2017-01-01

    Full Text Available The article describes a new approach to control of permanent magnet synchronous motor drive based on the analysis of the electromechanical transformation. The proposed control system provides quick response and low ripple of the motor torque and flux. To synthesis this control system, the authors put the electromagnetic torque and the modulus of stator flux vector as controlled values and use the Lyapunov’s second method. In addition, the stator voltage constriction and ability of low-pass filtration are taken into account. The investigation of the proposed control system has carried out with the simulation and the experimental research which have confirmed that the proposed control system correspond to all above-mentioned control tasks and the permanent magnet synchronous motor controlled under this system may be recommended to use in robotics.

  6. Tracking control of time-varying knee exoskeleton disturbed by interaction torque.

    Science.gov (United States)

    Li, Zhan; Ma, Wenhao; Yin, Ziguang; Guo, Hongliang

    2017-11-01

    Knee exoskeletons have been increasingly applied as assistive devices to help lower-extremity impaired people to make their knee joints move through providing external movement compensation. Tracking control of knee exoskeletons guided by human intentions often encounters time-varying (time-dependent) issues and the disturbance interaction torque, which may dramatically put an influence up on their dynamic behaviors. Inertial and viscous parameters of knee exoskeletons can be estimated to be time-varying due to unexpected mechanical vibrations and contact interactions. Moreover, the interaction torque produced from knee joint of wearers has an evident disturbance effect on regular motions of knee exoskeleton. All of these points can increase difficultly of accurate control of knee exoskeletons to follow desired joint angle trajectories. This paper proposes a novel control strategy for controlling knee exoskeleton with time-varying inertial and viscous coefficients disturbed by interaction torque. Such designed controller is able to make the tracking error of joint angle of knee exoskeletons exponentially converge to zero. Meanwhile, the proposed approach is robust to guarantee the tracking error bounded when the interaction torque exists. Illustrative simulation and experiment results are presented to show efficiency of the proposed controller. Additionally, comparisons with gradient dynamic (GD) approach and other methods are also presented to demonstrate efficiency and superiority of the proposed control strategy for tracking joint angle of knee exoskeleton. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Torque resistance of impression copings after direct implant impression: An in vitro evaluation of impression materials with and without adhesive.

    Science.gov (United States)

    Auroy, Pascal; Nicolas, Emanuel; Bedouin, Yvan

    2017-01-01

    No data are available on the ability of an impression coping to resist the manual placement of an abutment replica (implant analog) during prosthodontic laboratory procedures after a direct (pick-up) impression. The purpose of this in vitro study was to evaluate the torque resistance of impression copings after a direct impression, that is, the amount of rotational torque sufficient to induce irreversible displacement of impression copings in the impression material bulk once the impression has been made. A reference model with 5 abutment replicas was constructed. Five impression copings were screwed onto the abutment replicas, and standardized impressions were made. A controlled twisting force was applied to each impression coping. A torque tester recorded the torque variation. Three elastomeric impression materials were tested. ANOVA and the Tukey test (α=.05) were performed using an average of 30 measurements per impression material, with and without adhesive. ANOVA and the Tukey test results showed that the adhesive, cohesive, and mechanical bonds between the impression coping and the impression material depended greatly on the type of material and that the average rupture threshold of these bonds was statistically significantly different in pairwise comparisons (Ptorque. The polyether impression material is the direct impression material that showed the highest breakdown threshold for adhesive bonding when used without an adhesive. The use of an adhesive on impression copings leads to irreversible deformation of the interface at torque stresses well below the adhesive bond threshold of the same materials used without an adhesive. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Torque Coordination Control during Braking Mode Switch for a Plug-in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2017-10-01

    Full Text Available Hybrid vehicles usually have several braking systems, and braking mode switches are significant events during braking. It is difficult to coordinate torque fluctuations caused by mode switches because the dynamic characteristics of braking systems are different. In this study, a new type of plug-in hybrid vehicle is taken as the research object, and braking mode switches are divided into two types. The control strategy of type one is achieved by controlling the change rates of clutch hold-down and motor braking forces. The control strategy of type two is achieved by simultaneously changing the target braking torque during different mode switch stages and controlling the motor to participate in active coordination control. Finally, the torque coordination control strategy is modeled in MATLAB/Simulink, and the results show that the proposed control strategy has a good effect in reducing the braking torque fluctuation and vehicle shocks during braking mode switches.

  9. Wheels Optimization and Vision Control of Omni-directional Mobile Microrobot

    Directory of Open Access Journals (Sweden)

    Jianghao Li

    2008-06-01

    Full Text Available This paper presents a millimeters scale omni-directional mobile microrobot with special dual-wheel structure. The microrobot was actuated by three electromagnetic micromotors of 2mm diameter. Dynamic analysis of translational and steering movements presented the relationship between the sizes of the dual-wheel structure and the output torque of the micromotor. Genetic algorithm (GA was employed to optimize the dual-wheel's sizes for reducing the unnecessary torque consumption and improving the driving ability of the microrobot. A computer vision system contained two sets of feedback control is devised for the microrobot. Torque self-balance and current-limiting control approach are presented to ensure the accuracy of step movement. Experiment results demonstrate the feasibility of these concepts.

  10. Torque sensor

    Science.gov (United States)

    Fgeppert, E.

    1984-09-01

    Mechanical means for sensing turning torque generated by the load forces in a rotary drive system is described. The sensing means is designed to operate with minimal effect on normal operation of the drive system. The invention can be employed in various drive systems, e.g., automotive engine-transmission power plants, electric motor-operated tools, and metal cutting machines. In such drive systems, the torque-sensing feature may be useful for actuation of various control devices, such as electric switches, mechanical clutches, brake actuators, fluid control valves, or audible alarms. The torque-sensing function can be used for safety overload relief, motor de-energization, engine fuel control transmission clutch actuation, remote alarm signal, tool breakage signal, etc.

  11. Fault tolerant control with torque limitation based on fault mode for ten-phase permanent magnet synchronous motor

    Directory of Open Access Journals (Sweden)

    Guo Hong

    2015-10-01

    Full Text Available This paper proposes a novel fault tolerant control with torque limitation based on the fault mode for the ten-phase permanent magnet synchronous motor (PMSM under various open-circuit and short-circuit fault conditions, which includes the optimal torque control and the torque limitation control based on the fault mode. The optimal torque control is adopted to guarantee the ripple-free electromagnetic torque operation for the ten-phase motor system under the post-fault condition. Furthermore, we systematically analyze the load capacity of the ten-phase motor system under different fault modes. And a torque limitation control approach based on the fault mode is proposed, which was not available earlier. This approach is able to ensure the safety operation of the faulted motor system in long operating time without causing the overheat fault. The simulation result confirms that the proposed fault tolerant control for the ten-phase motor system is able to guarantee the ripple-free electromagnetic torque and the safety operation in long operating time under the normal and fault conditions.

  12. Direct torque and flux regulation of synchronous reluctance motor drives based on input-output feedback linearization

    International Nuclear Information System (INIS)

    Abootorabi Zarchi, H.; Arab Markadeh, Gh.R.; Soltani, J.

    2010-01-01

    In this paper, a nonlinear speed tracking controller is introduced for three-phase synchronous reluctance motor (SynRM) on the basis of input-output feedback linearization (IOFL), considering the different control strategies (maximum torque per Ampere, high efficiency and minimum KVA rating for the inverter) related to this motor. The proposed control approach is capable of decoupling control of stator flux and motor generated torque. The validity and effectiveness of the method is verified by simulation and experimental results.

  13. Limited Angle Torque Motors Having High Torque Density, Used in Accurate Drive Systems

    Directory of Open Access Journals (Sweden)

    R. Obreja

    2011-01-01

    Full Text Available A torque motor is a special electric motor that is able to develop the highest possible torque in a certain volume. A torque motor usually has a pancake configuration, and is directly jointed to a drive system (without a gear box. A limited angle torque motor is a torque motor that has no rotary electromagnetic field — in certain papers it is referred to as a linear electromagnet. The main intention of the authors for this paper is to present a means for analyzing and designing a limited angle torque motor only through the finite element method. Users nowadays require very high-performance limited angle torque motors with high density torque. It is therefore necessary to develop the highest possible torque in a relatively small volume. A way to design such motors is by using numerical methods based on the finite element method.

  14. Coordinated Pitch & Torque Control of Large-Scale Wind Turbine Based on Pareto Eciency Analysis

    DEFF Research Database (Denmark)

    Lin, Zhongwei; Chen, Zhenyu; Wu, Qiuwei

    2018-01-01

    For the existing pitch and torque control of the wind turbine generator system (WTGS), further development on coordinated control is necessary to improve effectiveness for practical applications. In this paper, the WTGS is modeled as a coupling combination of two subsystems: the generator torque...... control subsystem and blade pitch control subsystem. Then, the pole positions in each control subsystem are adjusted coordinately to evaluate the controller participation and used as the objective of optimization. A two-level parameters-controllers coordinated optimization scheme is proposed and applied...... to optimize the controller coordination based on the Pareto optimization theory. Three solutions are obtained through optimization, which includes the optimal torque solution, optimal power solution, and satisfactory solution. Detailed comparisons evaluate the performance of the three selected solutions...

  15. THE FUZZY LOGIC BASED POWER INJECTION INTO ROTOR CIRCUIT FOR INSTANTANEOUS HIGH TORQUE AND SPEED CONTROL IN INDUCTION MACHINES

    Directory of Open Access Journals (Sweden)

    Selami KESLER

    2009-01-01

    Full Text Available The power flow of the rotor circuit is controlled by different methods in induction machines used for producing high torque in applications involved great power and constant output power with constant frequency in wind turbines. The voltage with slip frequency can be applied on rotor windings to produce controlled high torque and obtain optimal power factor and speed control. In this study, firstly, the dynamic effects of the voltage applying on rotor windings through the rings in slip-ring induction machines are researched and undesirable aspects of the method are exposed with simulations supported by experiments. Afterwards, a fuzzy logic based inverter model on rotor side is proposed with a view to improving the dynamic effects, controlling high torque producing and adjusting machine speed in instantaneous forced conditions. For the simulation model of the system in which the stator side is directly connected to the grid in steady state operation, a C/C++ algorithm is developed and the results obtained for different load conditions are discussed.

  16. Spin Orbit Torque in Ferromagnetic Semiconductors

    KAUST Repository

    Li, Hang

    2016-06-21

    Electrons not only have charges but also have spin. By utilizing the electron spin, the energy consumption of electronic devices can be reduced, their size can be scaled down and the efficiency of `read\\' and `write\\' in memory devices can be significantly improved. Hence, the manipulation of electron spin in electronic devices becomes more and more appealing for the advancement of microelectronics. In spin-based devices, the manipulation of ferromagnetic order parameter using electrical currents is a very useful means for current-driven operation. Nowadays, most of magnetic memory devices are based on the so-called spin transfer torque, which stems from the spin angular momentum transfer between a spin-polarized current and the magnetic order parameter. Recently, a novel spin torque effect, exploiting spin-orbit coupling in non-centrosymmetric magnets, has attracted a massive amount of attention. This thesis addresses the nature of spin-orbit coupled transport and torques in non-centrosymmetric magnetic semiconductors. We start with the theoretical study of spin orbit torque in three dimensional ferromagnetic GaMnAs. Using the Kubo formula, we calculate both the current-driven field-like torque and anti-damping-like torque. We compare the numerical results with the analytical expressions in the model case of a magnetic Rashba two-dimensional electron gas. Parametric dependencies of the different torque components and similarities to the analytical results of the Rashba two-dimensional electron gas in the weak disorder limit are described. Subsequently we study spin-orbit torques in two dimensional hexagonal crystals such as graphene, silicene, germanene and stanene. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. This thesis then addresses the influence of the quantum spin Hall

  17. Torque decomposition and control in an iron core linear permanent magnet motor.

    NARCIS (Netherlands)

    Overboom, T.T.; Smeets, J.P.C.; Stassen, J.M.; Jansen, J.W.; Lomonova, E.

    2012-01-01

    Abstract—This paper concerns the decomposition and control of the torque produced by an iron core linear permanent magnet motor. The proposed method is based on the dq0-decomposition of the three-phase currents using Park’s transformation. The torque is decomposed into a reluctance component and two

  18. Harmonic Analysis on Torque Ripple of Brushless DC Motor Based on Advanced Commutation Control

    Directory of Open Access Journals (Sweden)

    Yanpeng Ji

    2018-01-01

    Full Text Available This paper investigates the relationship between current, back electromotive force (back-EMF, and torque for permanent-magnet brushless DC (PM BLDC motors under advanced commutation control from the perspective of harmonics. Considering that the phase current is the influencing factor of both torque and torque ripple, this paper firstly analyzes the effects of advanced commutation on phase current and current harmonics. And then, based on the harmonics of the phase current and back-EMF, the torque harmonic expressions are deduced. The expressions reveal the relationship of harmonic order between the torque, phase current, and back-EMF and highlight the different contribution of individual torque harmonic to the total torque ripple. Finally, the proposed harmonic analysis method is verified by the experiments with different speed and load conditions.

  19. High-Speed Computation using FPGA for Excellent Performance of Direct Torque Control of Induction Machines

    Directory of Open Access Journals (Sweden)

    Tole Sutikno

    2016-03-01

    Full Text Available The major problems in hysteresis-based DTC are high torque ripple and variable switching frequency. In order to minimize the torque ripple, high sampling time and fast digital realization should be applied. The high sampling and fast digital realization time can be achieved by utilizing high-speed processor where the operation of the discrete hysteresis regulator is becoming similar to the operation of analog-based comparator. This can be achieved by utilizing field programmable gate array (FPGA which can perform a sampling at a very high speed, compared to the fact that developing an ASIC chip is expensive and laborious.

  20. Controlled torque on superparamagnetic beads for functional biosensors

    NARCIS (Netherlands)

    Janssen, X.J.A.; Schellekens, A.J.; van Ommering, K.; IJzendoorn, van L.J.; Prins, M.W.J.

    2009-01-01

    We demonstrate that a rotating magnetic field can be used to apply a controlled torque on superparamagnetic beads which leads to a tunable bead rotation frequency in fluid. Smooth rotation is obtained for field rotation frequencies many orders of magnitude higher than the bead rotation frequency. A

  1. A Study of Torque Vectoring and Traction Control for an All-Wheel Drive Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Maharun Mui’nuddin

    2014-07-01

    Full Text Available Common vehicle always experience energy loss during cornering manoeuver. Thus, to ensure it did not happened especially at high speed, a study of torque vectoring and traction control need to be made since it can increase the traction control of tyres during cornering at high speed. The study of torque vectoring and traction control for an all-wheel drive electric vehicle was conducted by modelling an all-wheel drive electric vehicle (EV in ADAMS/Car software. In addition, an optimal control algorithm will be developed for best performance to minimize energy losses using MATLAB/Simulink software. Furthermore, to prove the effectiveness of the all-wheel drive electric, the torque and traction control simulation of the all-wheel drive electric vehicle will be compared with uncontrolled electric vehicle model. According to the result, torque vectoring and traction control of in-wheel motor in all wheel drive EV can help to increase the performance of the electric vehicle during cornering manoeuver. In conclusion, this study of torque vectoring and traction control for an all-wheel drive electric vehicle will help researchers to improve the design of the future electric vehicle in term of the vehicle performance during cornering manoeuvre.

  2. Sensorless load torque estimation and passivity based control of buck converter fed DC motor.

    Science.gov (United States)

    Kumar, S Ganesh; Thilagar, S Hosimin

    2015-01-01

    Passivity based control of DC motor in sensorless configuration is proposed in this paper. Exact tracking error dynamics passive output feedback control is used for stabilizing the speed of Buck converter fed DC motor under various load torques such as constant type, fan type, propeller type, and unknown load torques. Under load conditions, sensorless online algebraic approach is proposed, and it is compared with sensorless reduced order observer approach. The former produces better response in estimating the load torque. Sensitivity analysis is also performed to select the appropriate control variables. Simulation and experimental results fully confirm the superiority of the proposed approach suggested in this paper.

  3. A magneto-rheological fluid-based torque sensor for smart torque wrench application

    Science.gov (United States)

    Ahmadkhanlou, Farzad; Washington, Gregory N.

    2013-04-01

    In this paper, the authors have developed a new application where MR fluid is being used as a sensor. An MR-fluid based torque wrench has been developed with a rotary MR fluid-based damper. The desired set torque ranges from 1 to 6 N.m. Having continuously controllable yield strength, the MR fluid-based torque wrench presents a great advantage over the regular available torque wrenches in the market. This design is capable of providing continuous set toque from the lower limit to the upper limit while regular torque wrenches provide discrete set torques only at some limited points. This feature will be especially important in high fidelity systems where tightening torque is very critical and the tolerances are low.

  4. Speed and Torque Control Strategies for Loss Reduction of Vertical Axis Wind Turbines

    Science.gov (United States)

    Argent, Michael; McDonald, Alasdair; Leithead, Bill; Giles, Alexander

    2016-09-01

    This paper builds on the work into modelling the generator losses for Vertical Axis Wind Turbines from their intrinsic torque cycling to investigate the effects of aerodynamic inefficiencies caused by the varying rotational speed resulting from different torque control strategies to the cyclic torque. This is achieved by modelling the wake that builds up from the rotation of the VAWT rotor to investigate how the wake responds to a changing rotor speed and how this in turn affects the torque produced by the blades as well as the corresponding change in generator losses and any changes to the energy extracted by the wind turbine rotor.

  5. EMG-Torque Dynamics Change With Contraction Bandwidth.

    Science.gov (United States)

    Golkar, Mahsa A; Jalaleddini, Kian; Kearney, Robert E

    2018-04-01

    An accurate model for ElectroMyoGram (EMG)-torque dynamics has many uses. One of its applications which has gained high attention among researchers is its use, in estimating the muscle contraction level for the efficient control of prosthesis. In this paper, the dynamic relationship between the surface EMG and torque during isometric contractions at the human ankle was studied using system identification techniques. Subjects voluntarily modulated their ankle torque in dorsiflexion direction, by activating their tibialis anterior muscle, while tracking a pseudo-random binary sequence in a torque matching task. The effects of contraction bandwidth, described by torque spectrum, on EMG-torque dynamics were evaluated by varying the visual command switching time. Nonparametric impulse response functions (IRF) were estimated between the processed surface EMG and torque. It was demonstrated that: 1) at low contraction bandwidths, the identified IRFs had unphysiological anticipatory (i.e., non-causal) components, whose amplitude decreased as the contraction bandwidth increased. We hypothesized that this non-causal behavior arose, because the EMG input contained a component due to feedback from the output torque, i.e., it was recorded from within a closed-loop. Vision was not the feedback source since the non-causal behavior persisted when visual feedback was removed. Repeating the identification using a nonparametric closed-loop identification algorithm yielded causal IRFs at all bandwidths, supporting this hypothesis. 2) EMG-torque dynamics became faster and the bandwidth of system increased as contraction modulation rate increased. Thus, accurate prediction of torque from EMG signals must take into account the contraction bandwidth sensitivity of this system.

  6. Development of high torque belt CVT with torque converter; Torque converter tsuki daiyoryogata belt CVT no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, M; Fujikawa, T; Yoshida, K; Kobayahi, M [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    Nissan has successfully developed a new belt CVT (Continuously Variable Transmission) with torque converter and has installed it 2L-class vehicle for the first time in the world. This paper describes about the technology of high torque transmission, the need of torque converter, the importance of electronic control and the introduce of driving mode. As the result the CVT has improved driving performance and fuel economy for current CVT and 4 speed automatic transmission. 13 figs., 2 tabs.

  7. Multi-digit maximum voluntary torque production on a circular object

    Science.gov (United States)

    SHIM, JAE KUN; HUANG, JUNFENG; HOOKE, ALEXANDER W.; LATSH, MARK L.; ZATSIORSKY, VLADIMIR M.

    2010-01-01

    Individual digit-tip forces and moments during torque production on a mechanically fixed circular object were studied. During the experiments, subjects positioned each digit on a 6-dimensional force/moment sensor attached to a circular handle and produced a maximum voluntary torque on the handle. The torque direction and the orientation of the torque axis were varied. From this study, it is concluded that: (1) the maximum torque in the closing (clockwise) direction was larger than in the opening (counter clockwise) direction; (2) the thumb and little finger had the largest and the smallest share of both total normal force and total moment, respectively; (3) the sharing of total moment between individual digits was not affected by the orientation of the torque axis or by the torque direction, while the sharing of total normal force between the individual digit varied with torque direction; (4) the normal force safety margins were largest and smallest in the thumb and little finger, respectively. PMID:17454086

  8. Manipulating femtosecond spin-orbit torques with laser pulse sequences to control magnetic memory states and ringing

    Science.gov (United States)

    Lingos, P. C.; Wang, J.; Perakis, I. E.

    2015-05-01

    Femtosecond (fs) coherent control of collective order parameters is important for nonequilibrium phase dynamics in correlated materials. Here, we propose such control of ferromagnetic order based on using nonadiabatic optical manipulation of electron-hole (e -h ) photoexcitations to create fs carrier-spin pulses with controllable direction and time profile. These spin pulses are generated due to the time-reversal symmetry breaking arising from nonperturbative spin-orbit and magnetic exchange couplings of coherent photocarriers. By tuning the nonthermal populations of exchange-split, spin-orbit-coupled semiconductor band states, we can excite fs spin-orbit torques that control complex magnetization pathways between multiple magnetic memory states. We calculate the laser-induced fs magnetic anisotropy in the time domain by using density matrix equations of motion rather than the quasiequilibrium free energy. By comparing to pump-probe experiments, we identify a "sudden" out-of-plane magnetization canting displaying fs magnetic hysteresis, which agrees with switchings measured by the static Hall magnetoresistivity. This fs transverse spin-canting switches direction with magnetic state and laser frequency, which distinguishes it from the longitudinal nonlinear optical and demagnetization effects. We propose that sequences of clockwise or counterclockwise fs spin-orbit torques, photoexcited by shaping two-color laser-pulse sequences analogous to multidimensional nuclear magnetic resonance (NMR) spectroscopy, can be used to timely suppress or enhance magnetic ringing and switching rotation in magnetic memories.

  9. AN ALGORITHM OF ADAPTIVE TORQUE CONTROL IN INJECTOR INTERNAL COMBUSTION ENGINE

    Directory of Open Access Journals (Sweden)

    D. N. Gerasimov

    2015-07-01

    Full Text Available Subject of Research. Internal combustion engine as a plant is a highly nonlinear complex system that works mostly in dynamic regimes in the presence of noise and disturbances. A number of engine characteristics and parameters is not known or known approximately due to the complex structure and multimode operating of the engine. In this regard the problem of torque control is not trivial and motivates the use of modern techniques of control theory that give the possibility to overcome the mentioned problems. As a consequence, a relatively simple algorithm of adaptive torque control of injector engine is proposed in the paper. Method. Proposed method is based on nonlinear dynamic model with parametric and functional uncertainties (static characteristics which are suppressed by means of adaptive control algorithm with single adjustable parameter. The algorithm is presented by proportional control law with adjustable feedback gain and provides the exponential convergence of the control error to the neighborhood of zero equilibrium. It is shown that the radius of the neighborhood can be arbitrary reduced by the change of controller design parameters. Main Results. A dynamical nonlinear model of the engine has been designed for the purpose of control synthesis and simulation of the closed-loop system. The parameters and static functions of the model are identified with the use of data aquired during Federal Test Procedure (USA of Chevrolet Tahoe vehicle with eight cylinders 5,7L engine. The algorithm of adaptive torque control is designed, and the properties of the closed-loop system are analyzed with the use of Lyapunov functions approach. The closed-loop system operating is verified by means of simulation in the MatLab/Simulink environment. Simulation results show that the controller provides the boundedness of all signals and convergence of the control error to the neighborhood of zero equilibrium despite significant variations of engine speed. The

  10. Efeito da posição da articulação do cotovelo no controle de torque de supinação do antebraço em jovens adultos Effects of elbow joint position on forearm supination torque control among young adults

    Directory of Open Access Journals (Sweden)

    C Krás Borges

    2007-12-01

    Full Text Available INTRODUÇÃO: Inúmeros casos de patologias em antebraço e cotovelo reportados na literatura estão associados com tarefas que envolvem esforço e movimentos repetitivos do braço e mão. A posição do cotovelo é conhecida por afetar a produção de torque máximo de supinação do antebraço, assim como é um fator crítico na determinação de exercícios terapêuticos apropriados. No entanto, baseado no que se conhece, não existem evidências sobre os efeitos da posição do cotovelo em tarefas que requerem controle de níveis submáximos de torque. OBJETIVO: Este estudo investigou o efeito da posição do cotovelo na produção de torque isométrico máximo de supinação do antebraço e no controle constante e contínuo de torque em diferentes níveis submáximos de torque. MÉTODOS: Dezesseis jovens adultos (24,7 ± 2,2 anos de idade foram solicitados a realizar duas tarefas: produção de torque máximo em pinça lateral (polegar e indicador e controle constante de torque em pinça lateral. Ambas as tarefas foram avaliadas em quatro posições do cotovelo (livre, 0º, 45º e 90º de flexão e três níveis submáximos de produção de torque em pinça lateral (20%, 40% e 60%. Torque máximo, variabilidade, irregularidade e precisão da resposta motora foram usados como variáveis dependentes. RESULTADOS: Maiores valores de torque foram encontrados quando a articulação do cotovelo não foi restringida. O controle de torque não foi influenciado pela posição da articulação do cotovelo. Maior variabilidade, irregularidade e menor precisão na resposta de torque foram registradas com o aumento progressivo dos níveis submáximos de torque. CONCLUSÃO: Os resultados sugerem que a posição do cotovelo não é um fator determinante para exercícios de reabilitação que incluam torque em supinação do antebraço.BACKGROUND: Large numbers of cases of pathological conditions in the forearm and elbow that have been reported in the

  11. Optical Torque Wrench: Angular Trapping, Rotation, and Torque Detection of Quartz Microparticles

    Science.gov (United States)

    La Porta, Arthur; Wang, Michelle D.

    2004-05-01

    We describe an apparatus that can measure the instantaneous angular displacement and torque applied to a quartz particle which is angularly trapped. Torque is measured by detecting the change in angular momentum of the transmitted trap beam. The rotational Brownian motion of the trapped particle and its power spectral density are used to determine the angular trap stiffness. The apparatus features a feedback control that clamps torque or other rotational quantities. The torque sensitivity demonstrated is ideal for the study of known biological molecular motors.

  12. Adaptive Engine Torque Compensation with Driveline Model

    Directory of Open Access Journals (Sweden)

    Park Jinrak

    2018-01-01

    Full Text Available Engine net torque is the total torque generated by the engine side, and includes the fuel combustion torque, the friction torque, and additionally the starter motor torque in case of hybrid vehicles. The engine net torque is utilized to control powertrain items such as the engine itself, the transmission clutch, also the engine clutch, and it must be accurate for the precise powertrain control. However, this net torque can vary with the engine operating conditions like the engine wear, the changes of the atmospheric pressure and the friction torque. Thus, this paper proposes the adaptive engine net torque compensator using driveline model which can cope with the net torque change according to engine operating conditions. The adaptive compensator was applied on the parallel hybrid vehicle and investigated via MATLAB Simcape Driveline simulation.

  13. Thermomagnetic torque in hydrogen isotopes

    International Nuclear Information System (INIS)

    Cramer, J.A.

    1975-01-01

    The thermomagnetic torque has been measured in parahydrogen and ortho and normal deuterium for pressures from 0.10 to 2.0 torr and temperatures from 100 to 370 K. Since the torque depends on the precession of the molecular rotational magnetic moment around the field direction, coupling of the molecular nuclear spin to the rotational moment can affect the torque. Evidence of spin coupling effects is found for the torque in both deuterium modifications. In para hydrogen the torque at all temperatures and pressures exhibits behavior expected of a gas of zero nuclear spin molecules. Additionally, earlier data for hydrogen deuteride and for normal hydrogen from 105 to 374 K are evaluated and discussed. The high pressure limiting values of torque peak heights and positions for all these gases are compared with theory

  14. Role of external torque in the formation of ion thermal internal transport barriers

    Science.gov (United States)

    Jhang, Hogun; Kim, S. S.; Diamond, P. H.

    2012-04-01

    We present an analytic study of the impact of external torque on the formation of ion internal transport barriers (ITBs). A simple analytic relation representing the effect of low external torque on transport bifurcations is derived based on a two field transport model of pressure and toroidal momentum density. It is found that the application of an external torque can either facilitate or hamper bifurcation in heat flux driven plasmas depending on its sign relative to the direction of intrinsic torque. The ratio between radially integrated momentum (i.e., external torque) density to power input is shown to be a key macroscopic control parameter governing the characteristics of bifurcation.

  15. Maximum torque per ampere control of sensorless induction motor drives with dc offset and parameter compensation

    International Nuclear Information System (INIS)

    Markadeh, Gholamreza Arab; Hajian, Masood; Soltani, Jafar; Hosseinia, Saeed

    2010-01-01

    Field orientation control of induction machine (IM) drives is a well-known strategy which has a fast dynamic response. In this paper, the direct rotor flux field orientation control of speed sensorless IM drive is presented. A two level space vector modulation inverter is employed to generate the command stator voltage. In proposed control scheme, a maximum torque per ampere strategy is achieved using a so-called fast flux search method. Based on this method, for a given load torque and rotor speed, the magnitude of rotor reference flux is adjusted step by step until the effective value of stator current becomes minimized finally. In addition, using the IM fifth order model in the stationary reference frame, a nonlinear rotor flux observer is developed which is also capable of motor resistances and rotor speed simultaneously estimation. Moreover, a useful method is introduced for dc offset compensation which is a major problem of ac drives especially at low speeds. The proposed control idea is experimentally implemented in real time using a CPLD board synchronized with a personal computer. Simulation and experimental results are finally presented to confirm the validity and effectiveness of the proposed method.

  16. Control of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayers

    Science.gov (United States)

    MacNeill, D.; Stiehl, G. M.; Guimaraes, M. H. D.; Buhrman, R. A.; Park, J.; Ralph, D. C.

    2017-03-01

    Recent discoveries regarding current-induced spin-orbit torques produced by heavy-metal/ferromagnet and topological-insulator/ferromagnet bilayers provide the potential for dramatically improved efficiency in the manipulation of magnetic devices. However, in experiments performed to date, spin-orbit torques have an important limitation--the component of torque that can compensate magnetic damping is required by symmetry to lie within the device plane. This means that spin-orbit torques can drive the most current-efficient type of magnetic reversal (antidamping switching) only for magnetic devices with in-plane anisotropy, not the devices with perpendicular magnetic anisotropy that are needed for high-density applications. Here we show experimentally that this state of affairs is not fundamental, but rather one can change the allowed symmetries of spin-orbit torques in spin-source/ferromagnet bilayer devices by using a spin-source material with low crystalline symmetry. We use WTe2, a transition-metal dichalcogenide whose surface crystal structure has only one mirror plane and no two-fold rotational invariance. Consistent with these symmetries, we generate an out-of-plane antidamping torque when current is applied along a low-symmetry axis of WTe2/Permalloy bilayers, but not when current is applied along a high-symmetry axis. Controlling spin-orbit torques by crystal symmetries in multilayer samples provides a new strategy for optimizing future magnetic technologies.

  17. The comparison respond of braking torque control between PID and SMC controller for electric powered wheelchair descending on slope condition

    Science.gov (United States)

    Asyraf, S. M.; Heerwan, P. M.; Izhar, I. M.

    2018-04-01

    During descending on a slope, the speed of Electric Powered Wheelchair (EPW) tends to changed rapidly. Normally, most EPW is provided with mechanical braking system which transfers human pulling force of the lever creating friction at the tire. However, the task is difficult for the users are elderly or paralyses. However, even for normal user with good strength, in fear condition they tend to give sudden braking which leads to tire locking up and skidding, eventually EPW unstable. These problems will cause accident and injuries to the users if speed does not properly control. In this paper, the automated braking torque control method was proposed in EPW as alternative to solve this problem and increase the mobility and stability especially during descending on slope in other to help the user of the EPW as their daily transportation. In this research, Proportional-Integral-Derivative and Sliding Mode Control controller are compared to determine the best response for torque braking control. The rapid change of speed can be controlled by the braking torque using proposed controllers based on the desired constant speed set by the control designer. Moreover, the sudden braking that caused tire to lock up and skid can be avoided. Furthermore, result from SMC shows this controller have good time respond to maintain the speed based on desired value when descending at slope condition by controlling the braking torque compared to the PID controller.

  18. Efficacy of kinesio taping on isokinetic quadriceps torque in knee osteoarthritis: a double blinded randomized controlled study.

    Science.gov (United States)

    Anandkumar, Sudarshan; Sudarshan, Shobhalakshmi; Nagpal, Pratima

    2014-08-01

    Double blind pre-test post-test control group design. To compare the isokinetic quadriceps torque, standardized stair-climbing task (SSCT) and pain during SSCT between subjects diagnosed with knee osteoarthritis pre and post kinesio tape (KT) application with and without tension. Strength of the quadriceps and torque producing capability is frequently found to be compromised in knee osteoarthritis. The efficacy of KT in improving isokinetic quadriceps torque in knee osteoarthritis is unknown, forming the basis for this study. Forty subjects were randomly allocated to either the experimental (therapeutic KT with tension) or control group (sham KT without tension) with the allocation being concealed. Pre and post test measurements of isokinetic quadriceps torque, SSCT and pain during SSCT were carried out by a blinded assessor. A large effect size with significant improvements in the peak quadriceps torque (concentric and eccentric at angular velocities of 90° per second and 120° per second), SSCT and pain were obtained in the experimental group when compared to the control group. Application of therapeutic KT is effective in improving isokinetic quadriceps torque, SSCT and reducing pain in knee osteoarthritis.

  19. Torque limit of PM motors for field-weakening region operation

    Science.gov (United States)

    Royak, Semyon [Beachwood, OH; Harbaugh, Mark M [Richfield, OH

    2012-02-14

    The invention includes a motor controller and technique for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by receiving a torque command, determining a physical torque limit based on a stator frequency, determining a theoretical torque limit based on a maximum available voltage and motor inductance ratio, and limiting the torque command to the smaller of the physical torque limit and the theoretical torque limit. Receiving the torque command may include normalizing the torque command to obtain a normalized torque command, determining the physical torque limit may include determining a normalized physical torque limit, determining a theoretical torque limit may include determining a normalized theoretical torque limit, and limiting the torque command may include limiting the normalized torque command to the smaller of the normalized physical torque limit and the normalized theoretical torque limit.

  20. Magnetic Field and Torque Output of Packaged Hydraulic Torque Motor

    Directory of Open Access Journals (Sweden)

    Liang Yan

    2018-01-01

    Full Text Available Hydraulic torque motors are one key component in electro-hydraulic servo valves that convert the electrical signal into mechanical motions. The systematic characteristics analysis of the hydraulic torque motor has not been found in the previous research, including the distribution of the electromagnetic field and torque output, and particularly the relationship between them. In addition, conventional studies of hydraulic torque motors generally assume an evenly distributed magnetic flux field and ignore the influence of special mechanical geometry in the air gaps, which may compromise the accuracy of analyzing the result and the high-precision motion control performance. Therefore, the objective of this study is to conduct a detailed analysis of the distribution of the magnetic field and torque output; the influence of limiting holes in the air gaps is considered to improve the accuracy of both numerical computation and analytical modeling. The structure and working principle of the torque motor are presented first. The magnetic field distribution in the air gaps and the magnetic saturation in the iron blocks are analyzed by using a numerical approach. Subsequently, the torque generation with respect to the current input and assembly errors is analyzed in detail. This shows that the influence of limiting holes on the magnetic field is consistent with that on torque generation. Following this, a novel modified equivalent magnetic circuit is proposed to formulate the torque output of the hydraulic torque motor analytically. The comparison among the modified equivalent magnetic circuit, the conventional modeling approach and the numerical computation is conducted, and it is found that the proposed method helps to improve the modeling accuracy by taking into account the effect of special geometry inside the air gaps.

  1. Momentum Confinement at Low Torque

    International Nuclear Information System (INIS)

    Solomon, W.M.; Burrell, K.H.; deGrassie, J.S.; Budny, R.; Groebner, R.J.; Heidbrink, W.W.; Kinsey, J.E.; Kramer, G.J.; Makowski, M.A.; Mikkelsen, D.; Nazikian, R.; Petty, C.C.; Politzer, P.A.; Scott, S.D.; Van Zeeland, M.A.; Zarnstorff, M.C.

    2007-01-01

    Momentum confinement was investigated on DIII-D as a function of applied neutral beam torque at constant normalized β N , by varying the mix of co (parallel to the plasma current) and counter neutral beams. Under balanced neutral beam injection (i.e. zero total torque to the plasma), the plasma maintains a significant rotation in the co-direction. This 'intrinsic' rotation can be modeled as being due to an offset in the applied torque (i.e. an 'anomalous torque'). This anomalous torque appears to have a magnitude comparable to one co-neutral beam source. The presence of such an anomalous torque source must be taken into account to obtain meaningful quantities describing momentum transport, such as the global momentum confinement time and local diffusivities. Studies of the mechanical angular momentum in ELMing H-mode plasmas with elevated q min show that the momentum confinement time improves as the torque is reduced. In hybrid plasmas, the opposite effect is observed, namely that momentum confinement improves at high torque/rotation. The relative importance of E x B shearing between the two is modeled using GLF23 and may suggest a possible explanation.

  2. Momentum confinement at low torque

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, W M [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Burrell, K H [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); De Grassie, J S [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Budny, R [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Groebner, R J [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Kinsey, J E [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Kramer, G J [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Luce, T C [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Makowski, M A [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Mikkelsen, D [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Nazikian, R [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Petty, C C [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Politzer, P A [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Scott, S D [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Zeeland, M A Van [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Zarnstorff, M C [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States)

    2007-12-15

    Momentum confinement was investigated on DIII-D as a function of applied neutral beam torque at constant normalized beta {beta}{sub N}, by varying the mix of co (parallel to the plasma current) and counter neutral beams. Under balanced neutral beam injection (i.e. zero total torque to the plasma), the plasma maintains a significant rotation in the co-direction. This 'intrinsic' rotation can be modeled as being due to an offset in the applied torque (i.e. an 'anomalous torque'). This anomalous torque appears to have a magnitude comparable to one co neutral beam source. The presence of such an anomalous torque source must be taken into account to obtain meaningful quantities describing momentum transport, such as the global momentum confinement time and local diffusivities. Studies of the mechanical angular momentum in ELMing H-mode plasmas with elevated q{sub min} show that the momentum confinement time improves as the torque is reduced. In hybrid plasmas, the opposite effect is observed, namely that momentum confinement improves at high torque/rotation. GLF23 modeling suggests that the role of E x B shearing is quite different between the two plasmas, which may help to explain the different dependence of the momentum confinement on torque.

  3. Technology on precision measurement of torque and force

    International Nuclear Information System (INIS)

    2005-12-01

    This book gives a descriptions on force standards system about movement of object, direction and structure. Next, it deals with torque standards, torque measuring instrument and torque wrench with how to use, explanations, unit and test. This book written by Korea Association of standards and testing organizations is for exact measurement and test of force and torque.

  4. A predictive control framework for torque-based steering assistance to improve safety in highway driving

    Science.gov (United States)

    Ercan, Ziya; Carvalho, Ashwin; Tseng, H. Eric; Gökaşan, Metin; Borrelli, Francesco

    2018-05-01

    Haptic shared control framework opens up new perspectives on the design and implementation of the driver steering assistance systems which provide torque feedback to the driver in order to improve safety. While designing such a system, it is important to account for the human-machine interactions since the driver feels the feedback torque through the hand wheel. The controller should consider the driver's impact on the steering dynamics to achieve a better performance in terms of driver's acceptance and comfort. In this paper we present a predictive control framework which uses a model of driver-in-the-loop steering dynamics to optimise the torque intervention with respect to the driver's neuromuscular response. We first validate the system in simulations to compare the performance of the controller in nominal and model mismatch cases. Then we implement the controller in a test vehicle and perform experiments with a human driver. The results show the effectiveness of the proposed system in avoiding hazardous situations under different driver behaviours.

  5. Charge-induced spin torque in Weyl semimetals

    Science.gov (United States)

    Kurebayashi, Daichi; Nomura, Kentaro

    In this work, we present phenomenological and microscopic derivations of spin torques in magnetically doped Weyl semimetals. As a result, we obtain the analytical expression of the spin torque generated, without a flowing current, when the chemical potential is modulated. We also find that this spin torque is a direct consequence of the chiral anomaly. Therefore, observing this spin torque in magnetic Weyl semimetals might be an experimental evidence of the chiral anomaly. This spin torque has also a great advantage in application. In contrast to conventional current-induced spin torques such as the spin-transfer torques, this spin torque does not accompany a constant current flow. Thus, devices using this operating principle is free from the Joule heating and possibly have higher efficiency than devices using conventional current-induced spin torques. This work was supported by JSPS KAKENHI Grant Number JP15H05854 and JP26400308.

  6. Torque Distribution Algorithm for an Independently Driven Electric Vehicle Using a Fuzzy Control Method

    Directory of Open Access Journals (Sweden)

    Jinhyun Park

    2015-08-01

    Full Text Available The in-wheel electric vehicle is expected to be a popular next-generation vehicle because an in-wheel system can simplify the powertrain and improve driving performance. In addition, it also has an advantage in that it maximizes driving efficiency through independent torque control considering the motor efficiency. However, there is an instability problem if only the driving torque is controlled in consideration of only the motor efficiency. In this paper, integrated torque distribution strategies are proposed to overcome these problems. The control algorithm consists of various strategies for optimizing driving efficiency, satisfying driver demands, and considering tire slip and vehicle cornering. Fuzzy logic is used to determine the appropriate timing of intervention for each distribution strategy. A performance simulator for in-wheel electric vehicles was developed by using MATLAB/Simulink and CarSim to validate the control strategies. From simulation results under complex driving conditions, the proposed algorithm was verified to improve both the driving stability and fuel economy of the in-wheel vehicle.

  7. Torque control of synchronous and induction generators for variable speed operation of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Ola; Ulen, E. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering

    1996-12-01

    The aim of this paper is to investigate variable speed electrical systems. Synchronous generators with diode rectifiers and line-commutated thyristor converters are compared with induction generators with force commutated transistor converters and scalar control. The system characteristics are examined regarding possible speed of response (bandwidth) of the torque control, including the sensitivity to disturbances for the drive train and also the possibility to get damping of the drive train resonance. Analyses, simulations and laboratory tests with a 40 kW machine set-up have been performed. The investigation shows that the system with synchronous generator is well suited for wind power applications. A rapid standard DC-current regulator is included in the torque control and can be used for damping of the resonance. The torque control has a bandwidth up to about 3 Hz and the DC-voltage controller up to about 1 Hz. The system with induction generator with scalar control (no transformations) is more difficult to control. A linear approach is only possible up to about 1.5 Hz. In this region it turns out that the behaviour can be visualized as an added inertia on the generator side that can be rather big. 4 refs, 9 figs

  8. Reduction of torque ripple in DTC induction motor drive with discrete voltage vectors

    Directory of Open Access Journals (Sweden)

    Rosić Marko

    2014-01-01

    Full Text Available This paper presents а practical implementation of direct torque control (DTC of an induction machine on MSK2812 DSP platform, and the analysis of possibilities for reduction of torque ripple. Basic theoretical background relating the DTC was primarily set and the obtained experimental results have been given. It is shown that the torque ripple can be reduced by adjusting the intensity of voltage vectors and by modification of hysteresis comparator, while the simplicity of the basic DTC algorithm has been maintained. [Projekat Ministarstva nauke Republike Srbije, br. TR33016

  9. Optimal Spacecraft Attitude Control Using Aerodynamic Torques

    Science.gov (United States)

    2007-03-01

    His design resembles a badminton shuttlecock and “uses passive aerodynamic drag torques to stabilize pitch and yaw” and active magnetic torque...Ravindran’s and Hughes’ ‘arrow-like’ design. Psiaki notes that “this arrow concept has been modified to become a badminton shuttlecock-type design...panels were placed to the rear of the center-of-mass, similar to a badminton shuttlecock, to provide passive stability about the pitch and yaw axes

  10. Effect of stiffness and movement speed on selected dynamic torque characteristics of hydraulic-actuation joystick controls for heavy vehicles.

    Science.gov (United States)

    Oliver, Michele; Rogers, Robert; Rickards, Jeremy; Tingley, Maureen; Biden, Edmund

    2006-02-22

    The purpose of this work was to quantify the effects of joystick stiffness and movement speed on the dynamic torque characteristics of hydraulic-actuation joystick controls, as found in off-road vehicles, as one of the initial steps towards the development of a joystick design protocol. Using a previously developed mathematical model in which a hydraulic-actuation joystick is assumed to rotate about two axes where the rotation origin is a universal joint, the dynamic torque characteristics incurred by an operator were predicted. Utilizing a laboratory mock-up of an excavator cab environment, three actuation torque characteristics (peak torque, angular impulse and deceleration at the hard endpoint) were quantified for nine unskilled joystick operators during the use of a commonly used North American hydraulic-actuation joystick. The six different experimental conditions included combinations of three joystick stiffnesses and two movement speeds. The highest instantaneous input torque over the course of the joystick movement (not including the hard endpoint) was evaluated using the peak torque value. Angular impulse provided an indication of the sustained exposure to force. The third indicator, deceleration at the hard endpoint, was included to provide a description of impact loading on the hand as the joystick came to a sudden stop. The most important result of this work is that the dynamic torque characteristics incurred during hydraulic-actuation joystick use are substantial. While the peak torque values were not very different between the fast and slow motion conditions, the high decelerations even for slow movements observed at maximum excursion of the joystick indicate that the dynamics do matter. On the basis of deceleration at the hard endpoint and peak torque, the joystick movements that require the highest values for a combination of torque variables are the side-to-side ones. This suggests that less stiff balance and return springs should be considered for

  11. Fuel Saving Strategy in Spark Ignition Engine Using Fuzzy Logic Engine Torque Control

    OpenAIRE

    Aris Triwiyatno; Sumardi

    2012-01-01

    In the case of injection gasoline engine, or better known as spark ignition engines, an effort to improve engine performance as well as to reduce fuel consumption is a fairly complex problem. Generally, engine performance improvement efforts will lead to increase in fuel consumption. However, this problem can be solved by implementing engine torque control based on intelligent regulation such as the fuzzy logic inference system. In this study, fuzzy logic engine torque regulation is used to c...

  12. State feedback integral control for a rotary direct drive servo valve using a Lyapunov function approach.

    Science.gov (United States)

    Yu, Jue; Zhuang, Jian; Yu, Dehong

    2015-01-01

    This paper concerns a state feedback integral control using a Lyapunov function approach for a rotary direct drive servo valve (RDDV) while considering parameter uncertainties. Modeling of this RDDV servovalve reveals that its mechanical performance is deeply influenced by friction torques and flow torques; however, these torques are uncertain and mutable due to the nature of fluid flow. To eliminate load resistance and to achieve satisfactory position responses, this paper develops a state feedback control that integrates an integral action and a Lyapunov function. The integral action is introduced to address the nonzero steady-state error; in particular, the Lyapunov function is employed to improve control robustness by adjusting the varying parameters within their value ranges. This new controller also has the advantages of simple structure and ease of implementation. Simulation and experimental results demonstrate that the proposed controller can achieve higher control accuracy and stronger robustness. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Active Return-to-Center Control Based on Torque and Angle Sensors for Electric Power Steering Systems.

    Science.gov (United States)

    Du, Pan-Pan; Su, Hao; Tang, Gong-You

    2018-03-14

    This paper presents a complete control strategy of the active return-to-center (RTC) control for electric power steering (EPS) systems. We first establish the mathematical model of the EPS system and analyze the source and influence of the self-aligning torque (SAT). Second, based on the feedback signals of steering column torque and steering wheel angle, we give the trigger conditions of a state switch between the steering assist state and the RTC state. In order to avoid the sudden change of the output torque for the driving motor when the state switches frequently between the steering assist state and the RTC state, we design an undisturbed state switching logic algorithm. This state switching logic algorithm ensures that the output value of the RTC controller is set to an initial value and increases in given steps up to a maximum value after entering the RTC state, and the output value of the RTC controller will reduce in given steps down to zero when exiting the RTC state. This therefore ensures smooth switch control between the two states and improves the driver's steering feeling. Third, we design the RTC controller, which depends upon the feedback signals of the steering wheel angle and the angular velocity. In addition, the controller increases the auxiliary control function of the RTC torque based on vehicle speed. The experimental results show that the active RTC control method does not affect the basic assist characteristics, which effectively reduces the residual angle of the steering wheel at low vehicle speed and improves the RTC performance of the vehicle.

  14. Precessional switching of antiferromagnets by electric field induced Dzyaloshinskii-Moriya torque

    Science.gov (United States)

    Kim, T. H.; Grünberg, P.; Han, S. H.; Cho, B. K.

    2018-05-01

    Antiferromagnetic insulators (AFIs) have attracted much interest from many researchers as promising candidates for use in ultrafast, ultralow-dissipation spintronic devices. As a fast method of reversing magnetization, precessional switching is realized when antiferromagnetic Néel orders l =(s1+s2 )/2 surmount the magnetic anisotropy or potential barrier in a given magnetic system, which is described well by the antiferromagnetic plane pendulum (APP) model. Here, we report that, as an alternative switching scenario, the direct coupling of an electric field with Dzyaloshinskii-Moriya (DM) interaction, which stems from spin-orbit coupling, is exploited for optimal switching. We derive the pendulum equation of motion of antiferromagnets, where DM torque is induced by a pulsed electric field. The temporal DM interaction is found to not only be in the form of magnetic torques (e.g., spin-orbit torque or magnetic field) but also modifies the magnetic potential that limits l 's activity; as a result, appropriate controls (e.g., direction, magnitude, and pulse shape) of the induced DM vector realize deterministic reversal in APP. The results present an approach for the control of a magnetic storage device by means of an electric field.

  15. Improvements in remote equipment torquing and fastening

    International Nuclear Information System (INIS)

    Garin, J.

    1978-01-01

    Remote torquing and fastening is a requirement of generic interest for application in an environment not readily accessible to man. The developments over the last 30 years in torque-controlled equipment above 200 nm (150 ft/lb) have not been emphasized. The development of specialized subassemblies to torque and fasten equipment in a remotely controlled environment is an integral part of the Advanced Fuel Recycle Program at Oak Ridge National Laboratory. Commercially available subassemblies have been adapted into a system that would provide remote torquing and fastening in the range of 200 to 750 nm (150 to 550 ft/lb). 9 figures

  16. Disturbance torque rejection properties of the NASA/JPL 70-meter antenna axis servos

    Science.gov (United States)

    Hill, R. E.

    1989-01-01

    Analytic methods for evaluating pointing errors caused by external disturbance torques are developed and applied to determine the effects of representative values of wind and friction torque. The expressions relating pointing errors to disturbance torques are shown to be strongly dependent upon the state estimator parameters, as well as upon the state feedback gain and the flow versus pressure characteristics of the hydraulic system. Under certain conditions, when control is derived from an uncorrected estimate of integral position error, the desired type 2 servo properties are not realized and finite steady-state position errors result. Methods for reducing these errors to negligible proportions through the proper selection of control gain and estimator correction parameters are demonstrated. The steady-state error produced by a disturbance torque is found to be directly proportional to the hydraulic internal leakage. This property can be exploited to provide a convenient method of determining system leakage from field measurements of estimator error, axis rate, and hydraulic differential pressure.

  17. Models and control for force/torque sensors in robotics

    International Nuclear Information System (INIS)

    Johansson, Gert.

    1992-01-01

    One of the important problems in automatic assembly is the relative positioning accuracy between the parts in the assembly process. Inaccurate positions cause large insertion forces, wear and might damage the parts. They can also completely disable the assembly process. A solution to this problem is to detect the positioning error and to make a relevant adjustment of the position or path. This thesis presents a solution based on active feedback of force/torque data from a wrist mounted sensor. A task independent control algorithm has been realized through a sensor model concept. The sensor model includes an algorithm that transforms force/torque input to relevant motion of the end effector. The transformation is specified by a set of parameters e.g. desired forces, compliance and stopping criteria. The problem with gravity forces for varying end effector orientation is compensated by an algorithm, divided into three complexity levels. The compensation method includes a calibration sequence to ensure valid end effector properties to be used in the algorithm. A problem with available robot technology is bad integration possibilities for external sensors. To allow necessary modifications and expansions, an open and general control system architecture is proposed. The architecture is based in a computer workstation and transputers in pipeline for the robot specific operations. (au)

  18. Spinal circuits can accommodate interaction torques during multijoint limb movements.

    Science.gov (United States)

    Buhrmann, Thomas; Di Paolo, Ezequiel A

    2014-01-01

    The dynamic interaction of limb segments during movements that involve multiple joints creates torques in one joint due to motion about another. Evidence shows that such interaction torques are taken into account during the planning or control of movement in humans. Two alternative hypotheses could explain the compensation of these dynamic torques. One involves the use of internal models to centrally compute predicted interaction torques and their explicit compensation through anticipatory adjustment of descending motor commands. The alternative, based on the equilibrium-point hypothesis, claims that descending signals can be simple and related to the desired movement kinematics only, while spinal feedback mechanisms are responsible for the appropriate creation and coordination of dynamic muscle forces. Partial supporting evidence exists in each case. However, until now no model has explicitly shown, in the case of the second hypothesis, whether peripheral feedback is really sufficient on its own for coordinating the motion of several joints while at the same time accommodating intersegmental interaction torques. Here we propose a minimal computational model to examine this question. Using a biomechanics simulation of a two-joint arm controlled by spinal neural circuitry, we show for the first time that it is indeed possible for the neuromusculoskeletal system to transform simple descending control signals into muscle activation patterns that accommodate interaction forces depending on their direction and magnitude. This is achieved without the aid of any central predictive signal. Even though the model makes various simplifications and abstractions compared to the complexities involved in the control of human arm movements, the finding lends plausibility to the hypothesis that some multijoint movements can in principle be controlled even in the absence of internal models of intersegmental dynamics or learned compensatory motor signals.

  19. Spinal circuits can accommodate interaction torques during multijoint limb movements

    Directory of Open Access Journals (Sweden)

    Thomas eBuhrmann

    2014-11-01

    Full Text Available The dynamic interaction of limb segments during movements that involve multiple joints creates torques in one joint due to motion about another. Evidence shows that such interaction torques are taken into account during the planning or control of movement in humans. Two alternative hypotheses could explain the compensation of these dynamic torques. One involves the use of internal models to centrally compute predicted interaction torques and their explicit compensation through anticipatory adjustment of descending motor commands. The alternative, based on the equilibrium-point hypothesis, claims that descending signals can be simple and related to the desired movement kinematics only, while spinal feedback mechanisms are responsible for the appropriate creation and coordination of dynamic muscle forces. Partial supporting evidence exists in each case. However, until now no model has explicitly shown, in the case of the second hypothesis, whether peripheral feedback is really sufficient on its own for coordinating the motion of several joints while at the same time accommodating intersegmental interaction torques. Here we propose a minimal computational model to examine this question. Using a biomechanics simulation of a two-joint arm controlled by spinal neural circuitry, we show for the first time that it is indeed possible for the neuromusculoskeletal system to transform simple descending control signals into muscle activation patterns that accommodate interaction forces depending on their direction and magnitude. This is achieved without the aid of any central predictive signal. Even though the model makes various simplifications and abstractions compared to the complexities involved in the control of human arm movements, the finding lends plausibility to the hypothesis that some multijoint movements can in principle be controlled even in the absence of internal models of intersegmental dynamics or learned compensatory motor signals.

  20. Active Return-to-Center Control Based on Torque and Angle Sensors for Electric Power Steering Systems

    Directory of Open Access Journals (Sweden)

    Pan-Pan Du

    2018-03-01

    Full Text Available This paper presents a complete control strategy of the active return-to-center (RTC control for electric power steering (EPS systems. We first establish the mathematical model of the EPS system and analyze the source and influence of the self-aligning torque (SAT. Second, based on the feedback signals of steering column torque and steering wheel angle, we give the trigger conditions of a state switch between the steering assist state and the RTC state. In order to avoid the sudden change of the output torque for the driving motor when the state switches frequently between the steering assist state and the RTC state, we design an undisturbed state switching logic algorithm. This state switching logic algorithm ensures that the output value of the RTC controller is set to an initial value and increases in given steps up to a maximum value after entering the RTC state, and the output value of the RTC controller will reduce in given steps down to zero when exiting the RTC state. This therefore ensures smooth switch control between the two states and improves the driver’s steering feeling. Third, we design the RTC controller, which depends upon the feedback signals of the steering wheel angle and the angular velocity. In addition, the controller increases the auxiliary control function of the RTC torque based on vehicle speed. The experimental results show that the active RTC control method does not affect the basic assist characteristics, which effectively reduces the residual angle of the steering wheel at low vehicle speed and improves the RTC performance of the vehicle.

  1. Manipulating the voltage dependence of tunneling spin torques

    KAUST Repository

    Manchon, Aurelien

    2012-01-01

    Voltage-driven spin transfer torques in magnetic tunnel junctions provide an outstanding tool to design advanced spin-based devices for memory and reprogrammable logic applications. The non-linear voltage dependence of the torque has a direct impact

  2. Investigation of torque control using a variable slip induction generator

    Energy Technology Data Exchange (ETDEWEB)

    Bossanyi, E A; Gamble, C R

    1991-07-01

    An investigation of the possibilities of using a variable slip induction generator to control wind turbine transmission torque has been carried out. Such a generator consists of a wound rotor induction generator with its rotor winding connected to an external variable resistance circuit. By controlling the external resistance, the torque-slip characteristic of the generator can be modified, allowing efficient, low-slip operation below rated wind speed and compliant, high-slip operation above rated, where the additional losses are of no consequence but the resulting compliance allows a much reduced duty to be specified for the transmission and gearbox. A number of hardware options have been investigated for the variable resistance rotor circuit, the main options being either a rectifier and DC chopper or an AC regulator. Both of these options use semiconductor switching devices, for which the relative merits of thyristors, MOSFETs, GTOs and transistors have been investigated. A favoured scheme consisting of an AC regulator using GTOs has been provisionally selected. This choice uses some non-standard equipment but is expected to give negligible problems with harmonics. A comprehensive simulation model has been set up and used to investigate the behaviour of the whole system. (author).

  3. Speed control with torque ripple reduction of switched reluctance motor by Hybrid Many Optimizing Liaison Gravitational Search technique

    Directory of Open Access Journals (Sweden)

    Nutan Saha

    2017-06-01

    Full Text Available This paper presents a control scheme for simultaneous control of the speed of Switched Reluctance Motor (SRM and minimizing the torque ripple employing Hybrid Many Optimizing Liaison Gravitational Search Algorithm (Hybrid MOLGSA technique. The control mechanism includes two controlling loops, the outer loop is governed for speed control and a current controller for the inner loop, intelligent selection of turn on and turn off angle for a 60 KW, 3-phase 6/8 SRM. It is noticed that the torque ripple coefficient, ISE of speed & current are reduced by 12.81%, 38.60%, 16.74% respectively by Hybrid MOLGSA algorithm compared to Gravitational Search Algorithm (GSA algorithm. It is also observed that the settling times for the controller using the parameter values for obtaining best values of torque ripple, Integral square error of speed and current are reduced by 51.25%, 58.04% and 59.375% by proposed Hybrid MOLGSA algorithm compared to the GSA algorithm.

  4. Magnon-mediated Dzyaloshinskii-Moriya torque in homogeneous ferromagnets

    KAUST Repository

    Manchon, Aurelien; Ndiaye, Papa Birame; Moon, Jung-Hwan; Lee, Hyun-Woo; Lee, Kyung-Jin

    2014-01-01

    the time-averaged magnetization direction and display a number of similarities with the torques arising from the electron flow in a magnetic two-dimensional electron gas with Rashba spin-orbit coupling. This magnon-mediated spin-orbit torque can

  5. Accurate torque-sensorless control approach for interior permanent-magnet synchronous machine based on cascaded sliding mode observer

    Directory of Open Access Journals (Sweden)

    Kai-Hui Zhao

    2017-06-01

    Full Text Available To improve the accuracy of torque control for vector control of interior permanent-magnet synchronous machine (IPMSM, this study proposes a torque-sensorless control method based on cascaded sliding mode observer (SMO. First, the active flux model is discussed, which converts the model of IPMSM into the equivalent model of surface-mounted permanent-magnet synchronous machine. Second, to reduce chattering caused by system parameters variations and external disturbances, the cascaded observer is designed, which is composed of a variable gain adaptive SMO and an active flux SMO. The variable gain adaptive SMO is designed to estimate the speed, rotor position and stator resistance in the d–q reference frame. The active flux SMO is designed to estimate the active flux and torque in the α–β reference frame. Global asymptotic stability of the observers is guaranteed by the Lyapunov stability analysis. Finally, simulations and experiments are carried out to verify the effectiveness of the proposed control scheme.

  6. Fuzzy Determination of Target Shifting Time and Torque Control of Shifting Phase for Dry Dual Clutch Transmission

    Directory of Open Access Journals (Sweden)

    Zhiguo Zhao

    2014-01-01

    Full Text Available Based on the independently developed five-speed dry dual clutch transmission (DDCT, the paper proposes the torque coordinating control strategy between engine and two clutches, which obtains engine speed and clutch transferred torque in the shifting process, adequately reflecting the driver intention and improving the shifting quality. Five-degree-of-freedom (DOF shifting dynamics model of DDCT with single intermediate shaft is firstly established according to its physical characteristics. Then the quantitative control objectives of the shifting process are presented. The fuzzy decision of shifting time and the model-based torque coordinating control strategy are proposed and also verified by simulating under different driving intentions in up-/downshifting processes with the DCT model established on the MATLAB/Simulink. Simulation results validate that the shifting control algorithm proposed in this paper can not only meet the shifting quality requirements, but also adapt to the various shifting intentions, having a strong robustness.

  7. Analysis and Design of a Maglev Permanent Magnet Synchronous Linear Motor to Reduce Additional Torque in dq Current Control

    Directory of Open Access Journals (Sweden)

    Feng Xing

    2018-03-01

    Full Text Available The maglev linear motor has three degrees of motion freedom, which are respectively realized by the thrust force in the x-axis, the levitation force in the z-axis and the torque around the y-axis. Both the thrust force and levitation force can be seen as the sum of the forces on the three windings. The resultant thrust force and resultant levitation force are independently controlled by d-axis current and q-axis current respectively. Thus, the commonly used dq transformation control strategy is suitable for realizing the control of the resultant force, either thrust force and levitation force. However, the forces on the three windings also generate additional torque because they do not pass the mover mass center. To realize the maglev system high-precision control, a maglev linear motor with a new structure is proposed in this paper to decrease this torque. First, the electromagnetic model of the motor can be deduced through the Lorenz force formula. Second, the analytic method and finite element method are used to explore the reason of this additional torque and what factors affect its change trend. Furthermore, a maglev linear motor with a new structure is proposed, with two sets of 90 degrees shifted winding designed on the mover. Under such a structure, the mover position dependent periodic part of the additional torque can be offset. Finally, the theoretical analysis is validated by the simulation result that the additionally generated rotating torque can be offset with little fluctuation in the proposed new-structure maglev linear motor. Moreover, the control system is built in MATLAB/Simulink, which shows that it has small thrust ripple and high-precision performance.

  8. The relationship between the applied torque and stresses in post-tension structures

    International Nuclear Information System (INIS)

    Liew, F.K.; Hamdan, S.; Osman, M.S.

    2008-01-01

    This paper presents the nondestructive testing (NDT) method to determine the resultant stresses in mild steel bar usually employed in structures. The technique utilized ultrasonic pulse-echo that determined the wave velocity change due to torque applied between bolt and nut. Mild steel bar with nominal diameter of 19 and 25mm were used. The specimen was loaded by means of a torque wrench that gave the required amount of moment (∼300Nm). This was carefully achieved manually. In order to measure the strain, strain gauges were employed. The direct strain gauge method gives the strain values. This strain is used to calculate the stress due to the applied load. The experiment had been carried out in a control environment with constant temperature. The relationship between torque-velocity, torque-strain and stress-strain is obtained and compared. The test results indicate that ultrasonic wave velocity decrease with the applied torque. This is due to degradation or loss of strength of the material. The potential of this NDT method to obtain structure quality and strength determination is discussed. (author)

  9. The relationship between the applied torque and stresses in post-tension structures

    Energy Technology Data Exchange (ETDEWEB)

    Liew, F.K.; Hamdan, S.; Osman, M.S. [Univ. Malaysia Sarawak, Faculty of Engineering, Kota Samarahan, Sarawak (Malaysia)

    2008-09-15

    This paper presents the nondestructive testing (NDT) method to determine the resultant stresses in mild steel bar usually employed in structures. The technique utilized ultrasonic pulse-echo that determined the wave velocity change due to torque applied between bolt and nut. Mild steel bar with nominal diameter of 19 and 25mm were used. The specimen was loaded by means of a torque wrench that gave the required amount of moment (∼300Nm). This was carefully achieved manually. In order to measure the strain, strain gauges were employed. The direct strain gauge method gives the strain values. This strain is used to calculate the stress due to the applied load. The experiment had been carried out in a control environment with constant temperature. The relationship between torque-velocity, torque-strain and stress-strain is obtained and compared. The test results indicate that ultrasonic wave velocity decrease with the applied torque. This is due to degradation or loss of strength of the material. The potential of this NDT method to obtain structure quality and strength determination is discussed. (author)

  10. Interaction torque contributes to planar reaching at slow speed

    Directory of Open Access Journals (Sweden)

    Hoshi Fumihiko

    2008-10-01

    Full Text Available Abstract Background How the central nervous system (CNS organizes the joint dynamics for multi-joint movement is a complex problem, because of the passive interaction among segmental movements. Previous studies have demonstrated that the CNS predictively compensates for interaction torque (INT which is arising from the movement of the adjacent joints. However, most of these studies have mainly examined quick movements, presumably because the current belief is that the effects of INT are not significant at slow speeds. The functional contribution of INT for multijoint movements performed in various speeds is still unclear. The purpose of this study was to examine the contribution of INT to a planer reaching in a wide range of motion speeds for healthy subjects. Methods Subjects performed reaching movements toward five targets under three different speed conditions. Joint position data were recorded using a 3-D motion analysis device (50 Hz. Torque components, muscle torque (MUS, interaction torque (INT, gravity torque (G, and net torque (NET were calculated by solving the dynamic equations for the shoulder and elbow. NET at a joint which produces the joint kinematics will be an algebraic sum of torque components; NET = MUS - G - INT. Dynamic muscle torque (DMUS = MUS-G was also calculated. Contributions of INT impulse and DMUS impulse to NET impulse were examined. Results The relative contribution of INT to NET was not dependent on speed for both joints at every target. INT was additive (same direction to DMUS at the shoulder joint, while in the elbow DMUS counteracted (opposed to INT. The trajectory of reach was linear and two-joint movements were coordinated with a specific combination at each target, regardless of motion speed. However, DMUS at the elbow was opposed to the direction of elbow movement, and its magnitude varied from trial to trial in order to compensate for the variability of INT. Conclusion Interaction torque was important at

  11. Continuous Steering Stability Control Based on an Energy-Saving Torque Distribution Algorithm for a Four in-Wheel-Motor Independent-Drive Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Li Zhai

    2018-02-01

    Full Text Available In this paper, a continuous steering stability controller based on an energy-saving torque distribution algorithm is proposed for a four in-wheel-motor independent-drive electric vehicle (4MIDEV to improve the energy consumption efficiency while maintaining the stability in steering maneuvers. The controller is designed as a hierarchical structure, including the reference model level, the upper-level controller, and the lower-level controller. The upper-level controller adopts the direct yaw moment control (DYC, which is designed to work continuously during the steering maneuver to better ensure steering stability in extreme situations, rather than working only after the vehicle is judged to be unstable. An adaptive two-hierarchy energy-saving torque distribution algorithm is developed in the lower-level controller with the friction ellipse constraint as a basis for judging whether the algorithm needs to be switched, so as to achieve a more stable and energy-efficient steering operation. The proposed stability controller was validated in a co-simulation of CarSim and Matlab/Simulink. The simulation results under different steering maneuvers indicate that the proposed controller, compared with the conventional servo controller and the ordinary continuous controller, can reduce energy consumption up to 23.68% and improve the vehicle steering stability.

  12. Torque Control During Intrusion on Upper Central Incisor in Labial and Lingual bracket System - A 3D Finite Element Study.

    Science.gov (United States)

    Pol, Tejas R; Vandekar, Meghna; Patil, Anuradha; Desai, Sanjana; Shetty, Vikram; Hazarika, Saptarshi

    2018-01-01

    The aim of present study was to investigate the difference of torque control during intrusive force on upper central incisors with normal, under and high torque in lingual and labial orthodontic systems through 3D finite element analysis. Six 3D models of an upper right central incisor with different torque were designed in Solid Works 2006. Software ANSYS Version 16.0 was used to evaluate intrusive force on upper central incisor model . An intrusive force of 0.15 N was applied to the bracket slot in different torque models and the displacements along a path of nodes in the upper central incisor was assessed. On application of Intrusive force on under torqued upper central incisor in Labial system produce labial crown movement but in Lingual system caused lingual movement in the apical and incisal parts. The same intrusive force in normal-torqued central incisor led to a palatal movement in apical and labial displacement of incisal edge in Lingual system and a palatal displacement in apical area and a labial movement in the incisal edge in Labial systemin. In overtorqued upper central incisor, the labial crown displacement in Labial system is more than Lingual system. In labial and lingual system on application of the same forces in upper central incisor with different inclinations showed different responses. The magnitudes of torque Loss during intrusive loads in incisors with normal, under and over-torque were higher in Labial system than Lingual orthodontic appliances. Key words: FEM, lingual orthodontics, intrusion, torque control, labial bracket systems.

  13. Spin-transfer torque generated by a topological insulator

    KAUST Repository

    Mellnik, A. R.; Lee, Joonsue; Richardella, Anthony R.; Grab, J. L.; Mintun, P. J.; Fischer, Mark H.; Vaezi, Abolhassan; Manchon, Aurelien; Kim, Eunah; Samarth, Nitin S.; Ralph, Daniel C.

    2014-01-01

    permalloy (Ni81Fe19) thin film, with a direction consistent with that expected from the topological surface state. We find that the strength of the torque per unit charge current density in Bi 2Se3 is greater than for any source of spin-transfer torque

  14. Hydrodynamic Torques and Rotations of Superparamagnetic Bead Dimers

    Science.gov (United States)

    Pease, Christopher; Etheridge, J.; Wijesinghe, H. S.; Pierce, C. J.; Prikockis, M. V.; Sooryakumar, R.

    Chains of micro-magnetic particles are often rotated with external magnetic fields for many lab-on-a-chip technologies such as transporting beads or mixing fluids. These applications benefit from faster responses of the actuated particles. In a rotating magnetic field, the magnetization of superparamagnetic beads, created from embedded magnetic nano-particles within a polymer matrix, is largely characterized by induced dipoles mip along the direction of the field. In addition there is often a weak dipole mop that orients out-of-phase with the external rotating field. On a two-bead dimer, the simplest chain of beads, mop contributes a torque Γm in addition to the torque from mip. For dimers with beads unbound to each other, mop rotates individual beads which generate an additional hydrodynamic torque on the dimer. Whereas, mop directly torques bound dimers. Our results show that Γm significantly alters the average frequency-dependent dimer rotation rate for both bound and unbound monomers and, when mop exceeds a critical value, increases the maximum dimer rotation frequency. Models that include magnetic and hydrodynamics torques provide good agreement with the experimental findings over a range of field frequencies.

  15. Robust spin transfer torque in antiferromagnetic tunnel junctions

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2017-04-18

    We theoretically study the current-induced spin torque in antiferromagnetic tunnel junctions, composed of two semi-infinite antiferromagnetic layers separated by a tunnel barrier, in both clean and disordered regimes. We find that the torque enabling electrical manipulation of the Néel antiferromagnetic order parameter is out of plane, ∼n×p, while the torque competing with the antiferromagnetic exchange is in plane, ∼n×(p×n). Here, p and n are the Néel order parameter direction of the reference and free layers, respectively. Their bias dependence shows behavior similar to that in ferromagnetic tunnel junctions, the in-plane torque being mostly linear in bias, while the out-of-plane torque is quadratic. Most importantly, we find that the spin transfer torque in antiferromagnetic tunnel junctions is much more robust against disorder than that in antiferromagnetic metallic spin valves due to the tunneling nature of spin transport.

  16. Torquing an upper central incisor with aligners--acting forces and biomechanical principles.

    Science.gov (United States)

    Hahn, Wolfram; Zapf, Antonia; Dathe, Henning; Fialka-Fricke, Julia; Fricke-Zech, Susanne; Gruber, Rudolf; Kubein-Meesenburg, Dietmar; Sadat-Khonsari, Reza

    2010-12-01

    The forces delivered by aligners during torquing have still not been investigated. The purpose of this study was to measure the forces delivered to an upper central incisor during torquing with three different materials of the same thickness, and to describe the biomechanical principles of torquing with aligners. Five identical appliances were manufactured from each of three materials, all with a thickness of 1.0 mm (Ideal Clear®, Erkodur®, and Biolon®). An upper central incisor, as part of the measuring device, was torqued in defined steps in the vestibular and palatal directions with the respective appliance in place. For statistical analysis, the resulting forces, Fx (forces acting in the palatal and facial directions) and Fz (intrusive force as a side-effect) at a displacement of ±0.15 and ±0.8 mm from the tooth at the gingival margin were calculated. The mean Fx forces for ±0.15 mm displacement ranged from -1.89 N [standard deviation (SD) 0.48] to 0.11 N (SD 0.1). The mean Fz forces were between -0.97 N (SD 0.57) and -0.07 N (SD 0.22). The highest intrusive forces were measured during palatal displacement of the measuring tooth. An influence of direction of displacement on the levels of force was observed, especially for Fz at the greater displacement of ±0.8 mm. In relation to the intended amount of root movement during torquing, aligners tend to 'lift up' and therefore no effective force couple can be established for further root control. The force delivery properties are also influenced by the material used and the shape of the tooth.

  17. Study on Differential Regenerative Braking Torque Control to Increase the Stability of the Small Electric Vehicle with Four In-Wheel Motors

    Directory of Open Access Journals (Sweden)

    Ali N. M.

    2017-01-01

    Full Text Available Based on the advantages of the electric motor such as fast and precise torque response, the performance of the electric vehicle (EV can be improved. During braking or driving on the cornering, the vehicle will over steer or under steer if a car turns by more or less than the amount commanded by the driver. To improve the stability of the small EV with four in-wheel motors, the differential regenerative braking torque control is proposed. In this system, the regenerative braking torque at each wheel will be controlled individually based on the value of slip ratio. If the slip ratio is greater than the optimum value, the regenerative brake will turn off. In this situation, the electric motor will not produce the regenerative braking torque. Conversely, if the slip ratio lower than the optimum value, the regenerative brake will turn on and the electric motor will generate the regenerative braking torque. In the numerical analysis, to investigate the effectiveness of the proposed model, the road condition is set to an icy road on the left tire and dry asphalt on the right tire. From the simulation results, the differential regenerative braking torque control can prevent the tire from lock-up and avoid the vehicle from skidding.

  18. Chained Iron Microparticles for Directionally Controlled Actuation of Soft Robots.

    Science.gov (United States)

    Schmauch, Marissa M; Mishra, Sumeet R; Evans, Benjamin A; Velev, Orlin D; Tracy, Joseph B

    2017-04-05

    Magnetic field-directed self-assembly of magnetic particles in chains is useful for developing directionally responsive materials for applications in soft robotics. Using materials with greater complexity allows advanced functions, while still using simple device architectures. Elastomer films containing chained magnetic microparticles were prepared through solvent casting and formed into magnetically actuated lifters, accordions, valves, and pumps. Chaining both enhances actuation and imparts a directional response. Cantilevers used as lifters were able to lift up to 50 times the mass of the polymer film. We introduce the "specific torque", the torque per field per mass of magnetic particles, as a figure of merit for assessing and comparing the performance of lifters and related devices. Devices in this work generated specific torques of 68 Nm/kgT, which is significantly higher than in previously reported actuators. Applying magnetic fields to folded accordion structures caused extension and compression, depending on the accordion's orientation. In peristaltic pumps comprised of composite tubes containing embedded chains, magnetic fields caused a section of the tube to pinch closed where the field was applied. These results will facilitate both the further development of soft robots based on chained magnetic particles and efforts to engineer materials with higher specific torque.

  19. Current-induced torques and interfacial spin-orbit coupling

    KAUST Repository

    Haney, Paul M.; Lee, Hyun-Woo; Lee, Kyung-Jin; Manchon, Aurelien; Stiles, M. D.

    2013-01-01

    In bilayer systems consisting of an ultrathin ferromagnetic layer adjacent to a metal with strong spin-orbit coupling, an applied in-plane current induces torques on the magnetization. The torques that arise from spin-orbit coupling are of particular interest. Here we use first-principles methods to calculate the current-induced torque in a Pt-Co bilayer to help determine the underlying mechanism. We focus exclusively on the analog to the Rashba torque, and do not consider the spin Hall effect. The details of the torque depend strongly on the layer thicknesses and the interface structure, providing an explanation for the wide variation in results found by different groups. The torque depends on the magnetization direction in a way similar to that found for a simple Rashba model. Artificially turning off the exchange spin splitting and separately the spin-orbit coupling potential in the Pt shows that the primary source of the “fieldlike” torque is a proximate spin-orbit effect on the Co layer induced by the strong spin-orbit coupling in the Pt.

  20. Detecting Casimir torque with an optically levitated nanorod

    Science.gov (United States)

    Xu, Zhujing; Li, Tongcang

    2017-09-01

    The linear momentum and angular momentum of virtual photons of quantum vacuum fluctuations can induce the Casimir force and the Casimir torque, respectively. While the Casimir force has been measured extensively, the Casimir torque has not been observed experimentally though it was predicted over 40 years ago. Here we propose to detect the Casimir torque with an optically levitated nanorod near a birefringent plate in vacuum. The axis of the nanorod tends to align with the polarization direction of the linearly polarized optical tweezer. When its axis is not parallel or perpendicular to the optical axis of the birefringent crystal, it will experience a Casimir torque that shifts its orientation slightly. We calculate the Casimir torque and Casimir force acting on a levitated nanorod near a birefringent crystal. We also investigate the effects of thermal noise and photon recoils on the torque and force detection. We prove that a levitated nanorod in vacuum will be capable of detecting the Casimir torque under realistic conditions, and will be an important tool in precision measurements.

  1. Current-induced torques and interfacial spin-orbit coupling

    KAUST Repository

    Haney, Paul M.

    2013-12-19

    In bilayer systems consisting of an ultrathin ferromagnetic layer adjacent to a metal with strong spin-orbit coupling, an applied in-plane current induces torques on the magnetization. The torques that arise from spin-orbit coupling are of particular interest. Here we use first-principles methods to calculate the current-induced torque in a Pt-Co bilayer to help determine the underlying mechanism. We focus exclusively on the analog to the Rashba torque, and do not consider the spin Hall effect. The details of the torque depend strongly on the layer thicknesses and the interface structure, providing an explanation for the wide variation in results found by different groups. The torque depends on the magnetization direction in a way similar to that found for a simple Rashba model. Artificially turning off the exchange spin splitting and separately the spin-orbit coupling potential in the Pt shows that the primary source of the “fieldlike” torque is a proximate spin-orbit effect on the Co layer induced by the strong spin-orbit coupling in the Pt.

  2. Bevel gear driver and method having torque limit selection

    Science.gov (United States)

    Cook, Joseph S., Jr.

    1994-08-01

    This invention comprises a torque drive mechanism utilizing axially translatable, mutually engageable transmission members having mating crown gears, driven and driving members with a three-element drive train being biased together by resilient means or by a fluid actuator system, the apparatus being operable to transmit a precisely controlled degree of torque to a driven member. The apparatus is applicable for use in hand tools and as a replacement for impact torque drivers, torque wrenches, motorized screw drivers, or the like, wherein the applied torque must be precisely controlled or limited. The bevel torque drive includes a drive gear which is axially displaceable and rotatable within cylindrical driver housing, a rotatable intermediate gear, and an output gear. Key rotationally secures displaceable gear with respect to input shaft but permits axial movement therebetween. A thrust bearing is preferably connected to the lower end of shaft for support to reduce play and friction between shaft and a transmission joint disc during rotation of the gear train. Coaxially mounted coiled spring is footed against displaceable gear for biasing the displaceable gear toward and into engagement with the intermediate gear for driving intermediate gear and output gear. Torque control is achieved by the use of straight or spiral beveled gears which are of configurations adapted to withdraw from mutual engagement upon the torque exceeding a predetermined limit. The novel, advantageous features of the invention include the configuration of the mating, crown gear sets and the axially translatable, slidable drive gear. The mechanism is capable of transmitting a high degree of torque within a narrow, compact transmission housing. The compact size and narrow, elongated configuration of the housing is particularly applicable for use in hand tools and in multiple torque driver mechanisms in which it is necessary to drive multiple fasteners which are located in close proximity. Prior

  3. A family of nonlinear PID-like regulators for a class of torque-driven robot manipulators equipped with torque-constrained actuators

    Directory of Open Access Journals (Sweden)

    Adriana Salinas

    2016-02-01

    Full Text Available This article addresses the joint position control of torque-driven robot manipulators under actuators subject to torque saturation. Robots having viscous friction, but without gravity vector, are considered. By assuming a static model for the torque actuator (specifically, a model of nonlinear and non-differentiable hard saturation function, a family of nonlinear proportional–integral–derivative-like controllers is proposed. Lyapunov stability theory is used to establish conditions for local asymptotic stability of the closed-loop system. A notable feature of the proposed controller is that stability conditions do not depend on the saturation levels of the actuators. In addition, an experimental study complements the proposed theory.

  4. Torque Measurement at the Single Molecule Level

    Science.gov (United States)

    Forth, Scott; Sheinin, Maxim Y.; Inman, James; Wang, Michelle D.

    2017-01-01

    Methods for exerting and measuring forces on single molecules have revolutionized the study of the physics of biology. However, it is often the case that biological processes involve rotation or torque generation, and these parameters have been more difficult to access experimentally. Recent advances in the single molecule field have led to the development of techniques which add the capability of torque measurement. By combining force, displacement, torque, and rotational data, a more comprehensive description of the mechanics of a biomolecule can be achieved. In this review, we highlight a number of biological processes for which torque plays a key mechanical role. We describe the various techniques that have been developed to directly probe the torque experienced by a single molecule, and detail a variety of measurements made to date using these new technologies. We conclude by discussing a number of open questions and propose systems of study which would be well suited for analysis with torsional measurement techniques. PMID:23541162

  5. Angular dependence of spin-orbit spin-transfer torques

    KAUST Repository

    Lee, Ki-Seung

    2015-04-06

    In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi sea contribution. The angular dependence is consistent with experimental observations and can be important to understand magnetization dynamics induced by spin-orbit spin-transfer torques.

  6. Angular dependence of spin-orbit spin-transfer torques

    KAUST Repository

    Lee, Ki-Seung; Go, Dongwook; Manchon, Aurelien; Haney, Paul M.; Stiles, M. D.; Lee, Hyun-Woo; Lee, Kyung-Jin

    2015-01-01

    In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi sea contribution. The angular dependence is consistent with experimental observations and can be important to understand magnetization dynamics induced by spin-orbit spin-transfer torques.

  7. ESTIMATION OF GRASPING TORQUE USING ROBUST REACTION TORQUE OBSERVER FOR ROBOTIC FORCEPS

    OpenAIRE

    塚本, 祐介

    2015-01-01

    Abstract— In this paper, the estimation of the grasping torque of robotic forceps without the use of a force/torque sensor is discussed. To estimate the grasping torque when the robotic forceps driven by a rotary motor with a reduction gear grasps an object, a novel robust reaction torque observer is proposed. In the case where a conventional reaction force/torque observer is applied, the estimated torque includes not only the grasping torque, namely the reaction torque, but also t...

  8. Comparison Between a Reference Torque Standard Machine and a Deadweight Torque Standard Machine to BE Used in Torque Calibration

    Science.gov (United States)

    Meng, Feng; Zhang, Zhimin; Lin, Jing

    The paper describes the reference torque standard machine with high accuracy and multifunction, developed by our institute, and introduces the structure and working principle of this machine. It has three main functions. The first function is the hydraulic torque wrench calibration function. The second function is torque multiply calibration function. The third function is reference torque standard machine function. We can calibrate the torque multipliers, hydraulic wrenches and transducers by this machine. A comparison experiment has been done between this machine and a deadweight torque standard machine. The consistency between the 30 kNm reference torque machine and the 2000 Nm dead-weight torque standard machine under the claimed uncertainties was verified.

  9. Special-Purpose High-Torque Permanent-Magnet Motors

    Science.gov (United States)

    Doane, George B., III

    1995-01-01

    Permanent-magnet brushless motors that must provide high commanded torques and satisfy unusual heat-removal requirement are developed. Intended for use as thrust-vector-control actuators in large rocket engines. Techniques and concepts used to design improved motors for special terrestrial applications. Conceptual motor design calls for use of rotor containing latest high-energy-product rare-earth permanent magnets so that motor produces required torque while drawing smallest possible currents from power supply. Torque generated by electromagnetic interaction between stator and permanent magnets in rotor when associated electronic circuits applied appropriately temporally and spatially phased currents to stator windings. Phase relationships needed to produce commanded torque computed in response to torque command and to electronically sensed angular position of rotor relative to stator.

  10. Magnon-mediated Dzyaloshinskii-Moriya torque in homogeneous ferromagnets

    KAUST Repository

    Manchon, Aurelien

    2014-12-01

    In thin magnetic layers with structural inversion asymmetry and spin-orbit coupling, the Dzyaloshinskii-Moriya interaction arises at the interface. When a spin-wave current jm flows in a system with a homogeneous magnetization m, this interaction produces an effective fieldlike torque of the form TFLm×(z×jm) as well as a dampinglike torque, TDLm×[(z×jm)×m], the latter only in the presence of spin-wave relaxation (z is normal to the interface). These torques mediated by the magnon flow can reorient the time-averaged magnetization direction and display a number of similarities with the torques arising from the electron flow in a magnetic two-dimensional electron gas with Rashba spin-orbit coupling. This magnon-mediated spin-orbit torque can be efficient in the case of magnons driven by a thermal gradient.

  11. Design of digital load torque observer in hybrid electric vehicle

    Science.gov (United States)

    Sun, Yukun; Zhang, Haoming; Wang, Yinghai

    2008-12-01

    In hybrid electric vehicle, engine begain to work only when motor was in high speed in order to decrease tail gas emission. However, permanent magnet motor was sensitive to its load, adding engine to the system always made its speed drop sharply, which caused engine to work in low efficiency again and produced much more environment pollution. Dynamic load torque model of permanent magnet synchronous motor is established on the basic of motor mechanical equation and permanent magnet synchronous motor vector control theory, Full- digital load torque observer and compensation control system is made based on TMS320F2407A. Experiment results prove load torque observer and compensation control system can detect and compensate torque disturbing effectively, which can solve load torque disturbing and decrease gas pollution of hybrid electric vehicle.

  12. Technical Errors May Affect Accuracy of Torque Limiter in Locking Plate Osteosynthesis.

    Science.gov (United States)

    Savin, David D; Lee, Simon; Bohnenkamp, Frank C; Pastor, Andrew; Garapati, Rajeev; Goldberg, Benjamin A

    2016-01-01

    In locking plate osteosynthesis, proper surgical technique is crucial in reducing potential pitfalls, and use of a torque limiter makes it possible to control insertion torque. We conducted a study of the ways in which different techniques can alter the accuracy of torque limiters. We tested 22 torque limiters (1.5 Nm) for accuracy using hand and power tools under different rotational scenarios: hand power at low and high velocity and drill power at low and high velocity. We recorded the maximum torque reached after each torque-limiting event. Use of torque limiters under hand power at low velocity and high velocity resulted in significantly (P torque and subsequent complications. For torque limiters, the most reliable technique involves hand power at slow velocity or drill power with careful control of insertion speed until 1 torque-limiting event occurs.

  13. Pigeons produce aerodynamic torques through changes in wing trajectory during low speed aerial turns.

    Science.gov (United States)

    Ros, Ivo G; Badger, Marc A; Pierson, Alyssa N; Bassman, Lori C; Biewener, Andrew A

    2015-02-01

    The complexity of low speed maneuvering flight is apparent from the combination of two critical aspects of this behavior: high power and precise control. To understand how such control is achieved, we examined the underlying kinematics and resulting aerodynamic mechanisms of low speed turning flight in the pigeon (Columba livia). Three birds were trained to perform 90 deg level turns in a stereotypical fashion and detailed three-dimensional (3D) kinematics were recorded at high speeds. Applying the angular momentum principle, we used mechanical modeling based on time-varying 3D inertia properties of individual sections of the pigeon's body to separate angular accelerations of the torso based on aerodynamics from those based on inertial effects. Directly measured angular accelerations of the torso were predicted by aerodynamic torques, justifying inferences of aerodynamic torque generation based on inside wing versus outside wing kinematics. Surprisingly, contralateral asymmetries in wing speed did not appear to underlie the 90 deg aerial turns, nor did contralateral differences in wing area, angle of attack, wingbeat amplitude or timing. Instead, torso angular accelerations into the turn were associated with the outside wing sweeping more anteriorly compared with a more laterally directed inside wing. In addition to moving through a relatively more retracted path, the inside wing was also more strongly pronated about its long axis compared with the outside wing, offsetting any difference in aerodynamic angle of attack that might arise from the observed asymmetry in wing trajectories. Therefore, to generate roll and pitch torques into the turn, pigeons simply reorient their wing trajectories toward the desired flight direction. As a result, by acting above the center of mass, the net aerodynamic force produced by the wings is directed inward, generating the necessary torques for turning. © 2015. Published by The Company of Biologists Ltd.

  14. Artificial Intelligence-based control for torque ripple minimization in switched reluctance motor drives - doi: 10.4025/actascitechnol.v36i1.18097

    Directory of Open Access Journals (Sweden)

    Kalaivani Lakshmanan

    2014-01-01

    Full Text Available In this paper, various intelligent controllers such as Fuzzy Logic Controller (FLC and Adaptive Neuro Fuzzy Inference System (ANFIS-based current compensating techniques are employed for minimizing the torque ripples in switched reluctance motor. FLC and ANFIS controllers are tuned using MATLAB Toolbox. For the purpose of comparison, the performance of conventional Proportional-Integral (PI controller is also considered. The statistical parameters like minimum, maximum, mean, standard deviation of total torque, torque ripple coefficient and the settling time of speed response for various controllers are reported. From the simulation results, it is found that both FLC and ANFIS controllers gives better performance than PI controller. Among the intelligent controllers, ANFIS gives outer performance than FLC due to its good learning and generalization capabilities thereby improves the dynamic performance of SRM drives.

  15. Applying torque to the Escherichia coli flagellar motor using magnetic tweezers

    Science.gov (United States)

    van Oene, Maarten M.; Dickinson, Laura E.; Cross, Bronwen; Pedaci, Francesco; Lipfert, Jan; Dekker, Nynke H.

    2017-01-01

    The bacterial flagellar motor of Escherichia coli is a nanoscale rotary engine essential for bacterial propulsion. Studies on the power output of single motors rely on the measurement of motor torque and rotation under external load. Here, we investigate the use of magnetic tweezers, which in principle allow the application and active control of a calibrated load torque, to study single flagellar motors in Escherichia coli. We manipulate the external load on the motor by adjusting the magnetic field experienced by a magnetic bead linked to the motor, and we probe the motor’s response. A simple model describes the average motor speed over the entire range of applied fields. We extract the motor torque at stall and find it to be similar to the motor torque at drag-limited speed. In addition, use of the magnetic tweezers allows us to force motor rotation in both forward and backward directions. We monitor the motor’s performance before and after periods of forced rotation and observe no destructive effects on the motor. Our experiments show how magnetic tweezers can provide active and fast control of the external load while also exposing remaining challenges in calibration. Through their non-invasive character and straightforward parallelization, magnetic tweezers provide an attractive platform to study nanoscale rotary motors at the single-motor level. PMID:28266562

  16. Dynamics of magnetization in ferromagnet with spin-transfer torque

    Science.gov (United States)

    Li, Zai-Dong; He, Peng-Bin; Liu, Wu-Ming

    2014-11-01

    We review our recent works on dynamics of magnetization in ferromagnet with spin-transfer torque. Driven by constant spin-polarized current, the spin-transfer torque counteracts both the precession driven by the effective field and the Gilbert damping term different from the common understanding. When the spin current exceeds the critical value, the conjunctive action of Gilbert damping and spin-transfer torque leads naturally the novel screw-pitch effect characterized by the temporal oscillation of domain wall velocity and width. Driven by space- and time-dependent spin-polarized current and magnetic field, we expatiate the formation of domain wall velocity in ferromagnetic nanowire. We discuss the properties of dynamic magnetic soliton in uniaxial anisotropic ferromagnetic nanowire driven by spin-transfer torque, and analyze the modulation instability and dark soliton on the spin wave background, which shows the characteristic breather behavior of the soliton as it propagates along the ferromagnetic nanowire. With stronger breather character, we get the novel magnetic rogue wave and clarify its formation mechanism. The generation of magnetic rogue wave mainly arises from the accumulation of energy and magnons toward to its central part. We also observe that the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background, and the critical current condition is obtained analytically. At last, we have theoretically investigated the current-excited and frequency-adjusted ferromagnetic resonance in magnetic trilayers. A particular case of the perpendicular analyzer reveals that the ferromagnetic resonance curves, including the resonant location and the resonant linewidth, can be adjusted by changing the pinned magnetization direction and the direct current. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out

  17. A Two-stage Kalman Filter for Sensorless Direct Torque Controlled PM Synchronous Motor Drive

    Directory of Open Access Journals (Sweden)

    Boyu Yi

    2013-01-01

    Full Text Available This paper presents an optimal two-stage extended Kalman filter (OTSEKF for closed-loop flux, torque, and speed estimation of a permanent magnet synchronous motor (PMSM to achieve sensorless DTC-SVPWM operation of drive system. The novel observer is obtained by using the same transformation as in a linear Kalman observer, which is proposed by C.-S. Hsieh and F.-C. Chen in 1999. The OTSEKF is an effective implementation of the extended Kalman filter (EKF and provides a recursive optimum state estimation for PMSMs using terminal signals that may be polluted by noise. Compared to a conventional EKF, the OTSEKF reduces the number of arithmetic operations. Simulation and experimental results verify the effectiveness of the proposed OTSEKF observer for DTC of PMSMs.

  18. Maximum Power Point Tracking in Variable Speed Wind Turbine Based on Permanent Magnet Synchronous Generator Using Maximum Torque Sliding Mode Control Strategy

    Institute of Scientific and Technical Information of China (English)

    Esmaeil Ghaderi; Hossein Tohidi; Behnam Khosrozadeh

    2017-01-01

    The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy.In this strategy,fhst,the rotor speed is set at an optimal point for different wind speeds.As a result of which,the tip speed ratio reaches an optimal point,mechanical power coefficient is maximized,and wind turbine produces its maximum power and mechanical torque.Then,the maximum mechanical torque is tracked using electromechanical torque.In this technique,tracking error integral of maximum mechanical torque,the error,and the derivative of error are used as state variables.During changes in wind speed,sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking (MPPT).In this method,the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal.The result of the second order integral in this model includes control signal integrity,full chattering attenuation,and prevention from large fluctuations in the power generator output.The simulation results,calculated by using MATLAB/m-file software,have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator (PMSG).

  19. Evaluation of steady flow torques and pressure losses in a rotary flow control valve by means of computational fluid dynamics

    International Nuclear Information System (INIS)

    Okhotnikov, Ivan; Noroozi, Siamak; Sewell, Philip; Godfrey, Philip

    2017-01-01

    Highlights: • A novel design of a rotary flow control valve driven by a stepper motor is proposed. • The intended use of the valve in the high flow rate independent metering hydraulic system is suggested. • Pressure drops, steady flow torques of the valve for various flow rates and orifice openings are studied by means of computational fluid dynamics. • The discharge coefficient and flow jet angles dependencies on the orifice opening are obtained. • A design method to decrease the flow forces without reducing the flow rate in single-staged valves is demonstrated. - Abstract: In this paper, a novel design of a rotary hydraulic flow control valve has been presented for high flow rate fluid power systems. High flow rates in these systems account for substantial flow forces acting on the throttling elements of the valves and cause the application of mechanically sophisticated multi-staged servo valves for flow regulation. The suggested design enables utilisation of single-stage valves in power hydraulics operating at high flow rates regimes. A spool driver and auxiliary mechanisms of the proposed valve design were discussed and selection criteria were suggested. Analytical expressions for metering characteristics as well as steady flow torques have been derived. Computational fluid dynamics (CFD) analysis of steady state flow regimes was conducted to evaluate the hydraulic behaviour of the proposed valve. This study represents a special case of an independent metering concept applied to the design of power hydraulic systems with direct proportional valve control operating at flow rates above 150 litres per minute. The result gained using parametric CFD simulations predicted the induced torque and the pressure drops due to a steady flow. Magnitudes of these values prove that by minimising the number of spool's mobile metering surfaces it is possible to reduce the flow-generated forces in the new generation of hydraulic valves proposed in this study

  20. Immediate effects of whole body vibration on patellar tendon properties and knee extension torque.

    Science.gov (United States)

    Rieder, F; Wiesinger, H-P; Kösters, A; Müller, E; Seynnes, O R

    2016-03-01

    Reports about the immediate effects of whole body vibration (WBV) exposure upon torque production capacity are inconsistent. However, the changes in the torque-angle relationship observed by some authors after WBV may hinder the measurement of torque changes at a given angle. Acute changes in tendon mechanical properties do occur after certain types of exercise but this hypothesis has never been tested after a bout of WBV. The purpose of the present study was to investigate whether tendon compliance is altered immediately after WBV, effectively shifting the optimal angle of peak torque towards longer muscle length. Twenty-eight subjects were randomly assigned to either a WBV (n = 14) or a squatting control group (n = 14). Patellar tendon CSA, stiffness and Young's modulus and knee extension torque-angle relationship were measured using ultrasonography and dynamometry 1 day before and directly after the intervention. Tendon CSA was additionally measured 24 h after the intervention to check for possible delayed onset of swelling. The vibration intervention had no effects on patellar tendon CSA, stiffness and Young's modulus or the torque-angle relationship. Peak torque was produced at ~70° knee angle in both groups at pre- and post-test. Additionally, the knee extension torque globally remained unaffected with the exception of a small (-6%) reduction in isometric torque at a joint angle of 60°. The present results indicate that a single bout of vibration exposure does not substantially alter patellar tendon properties or the torque-angle relationship of knee extensors.

  1. The Spin Torque Lego - from spin torque nano-devices to advanced computing architectures

    Science.gov (United States)

    Grollier, Julie

    2013-03-01

    Spin transfer torque (STT), predicted in 1996, and first observed around 2000, brought spintronic devices to the realm of active elements. A whole class of new devices, based on the combined effects of STT for writing and Giant Magneto-Resistance or Tunnel Magneto-Resistance for reading has emerged. The second generation of MRAMs, based on spin torque writing : the STT-RAM, is under industrial development and should be out on the market in three years. But spin torque devices are not limited to binary memories. We will rapidly present how the spin torque effect also allows to implement non-linear nano-oscillators, spin-wave emitters, controlled stochastic devices and microwave nano-detectors. What is extremely interesting is that all these functionalities can be obtained using the same materials, the exact same stack, simply by changing the device geometry and its bias conditions. So these different devices can be seen as Lego bricks, each brick with its own functionality. During this talk, I will show how spin torque can be engineered to build new bricks, such as the Spintronic Memristor, an artificial magnetic nano-synapse. I will then give hints on how to assemble these bricks in order to build novel types of computing architectures, with a special focus on neuromorphic circuits. Financial support by the European Research Council Starting Grant NanoBrain (ERC 2010 Stg 259068) is acknowledged.

  2. Composite bonded magnets with controlled anisotropy directions prepared by viscous deformation technique

    International Nuclear Information System (INIS)

    Yamashita, Fumitoshi; Kawamura, Kiyomi; Okada, Yukihiro; Murakami, Hiroshi; Ogushi, Masaki; Nakano, Masaki; Fukunaga, Hirotoshi

    2007-01-01

    When a radially anisotropic rare earth bonded magnet for a rotor with a high (BH) max value is magnetized multi-polarly, its flux distributes rectangularly and increases a cogging torque. In order to overcome this difficulty, we newly developed highly dense Sm 2 Fe 17 N 3 and Nd 2 Fe 14 B-based composite bonded magnets with continuously controlled anisotropy directions by using a viscous deformation technique

  3. Biomechanical evaluation of macro and micro designed screw-type implants: an insertion torque and removal torque study in rabbits.

    Science.gov (United States)

    Chowdhary, Ramesh; Jimbo, Ryo; Thomsen, Christian; Carlsson, Lennart; Wennerberg, Ann

    2013-03-01

    To investigate the combined effect of macro and pitch shortened threads on primary and secondary stability during healing, but before dynamic loading. Two sets of turned implants with different macro geometry were prepared. The test group possessed pitch shortened threads in between the large threads and the control group did not have thread alterations. The two implant groups were placed in both femur and tibiae of 10 lop-eared rabbits, and at the time of implant insertion, insertion torques were recorded. After 4 weeks, all implants were subjected to removal torque tests. The insertion torque values for the control and test groups for the tibia were 15.7 and 20.6 Ncm, respectively, and for the femur, 11.8, and 12.8 Ncm respectively. The removal torque values for the control and test groups in the tibia were 7.9 and 9.1 Ncm, respectively, and for the femur, 7.9 and 7.7 Ncm respectively. There was no statistically significant difference between the control and test groups. Under limited dynamic load, the addition of pitch shortened threads did not significantly improve either the primary or the secondary stability of the implants in bone. © 2011 John Wiley & Sons A/S.

  4. Six-axis force–torque sensor with a large range for biomechanical applications

    International Nuclear Information System (INIS)

    + Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" data-affiliation=" (MESA+ Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" >Brookhuis, R A; + Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" data-affiliation=" (MESA+ Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" >Droogendijk, H; + Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" data-affiliation=" (MESA+ Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" >De Boer, M J; + Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" data-affiliation=" (MESA+ Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" >Sanders, R G P; + Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" data-affiliation=" (MESA+ Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" >Lammerink, T S J; + Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" data-affiliation=" (MESA+ Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" >Wiegerink, R J; + Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" data-affiliation=" (MESA+ Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" >Krijnen, G J M

    2014-01-01

    A silicon six-axis force–torque sensor is designed and realized to be used for measurement of the power transfer between the human body and the environment. Capacitive read-out is used to detect all axial force components and all torque components simultaneously. Small electrode gaps in combination with mechanical amplification by the sensor structure result in a high sensitivity. The miniature sensor has a wide force range of up to 50 N in normal direction, 10 N in shear direction and 25 N mm of maximum torque around each axis. (paper)

  5. Excitable particles in an optical torque wrench

    Science.gov (United States)

    Pedaci, Francesco; Huang, Zhuangxiong; van Oene, Maarten; Barland, Stephane; Dekker, Nynke H.

    2011-03-01

    The optical torque wrench is a laser trapping technique capable of applying and directly measuring torque on microscopic birefringent particles using spin momentum transfer, and has found application in the measurement of static torsional properties of biological molecules such as single DNAs. Motivated by the potential of the optical torque wrench to access the fast rotational dynamics of biological systems, a result of its all-optical manipulation and detection, we focus on the angular dynamics of the trapped birefringent particle, demonstrating its excitability in the vicinity of a critical point. This links the optical torque wrench to nonlinear dynamical systems such as neuronal and cardiovascular tissues, nonlinear optics and chemical reactions, all of which display an excitable binary (`all-or-none') response to input perturbations. On the basis of this dynamical feature, we devise and implement a conceptually new sensing technique capable of detecting single perturbation events with high signal-to-noise ratio and continuously adjustable sensitivity.

  6. Spin-orbit torque opposing the Oersted torque in ultrathin Co/Pt bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, T. D., E-mail: tds32@cam.ac.uk; Irvine, A. C.; Heiss, D.; Kurebayashi, H.; Ferguson, A. J., E-mail: ajf1006@cam.ac.uk [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Wang, M.; Hindmarch, A. T.; Rushforth, A. W. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2014-02-10

    Current-induced torques in ultrathin Co/Pt bilayers were investigated using an electrically driven ferromagnetic resonance technique. The angle dependence of the resonances, detected by a rectification effect as a voltage, was analysed to determine the symmetries and relative magnitudes of the spin-orbit torques. Both anti-damping (Slonczewski) and field-like torques were observed. As the ferromagnet thickness was reduced from 3 to 1 nm, the sign of the sum of the field-like torque and Oersted torque reversed. This observation is consistent with the emergence of a Rashba spin orbit torque in ultra-thin bilayers.

  7. Nanoscale layer-selective readout of magnetization direction from a magnetic multilayer using a spin-torque oscillator

    International Nuclear Information System (INIS)

    Suto, Hirofumi; Nagasawa, Tazumi; Kudo, Kiwamu; Mizushima, Koichi; Sato, Rie

    2014-01-01

    Technology for detecting the magnetization direction of nanoscale magnetic material is crucial for realizing high-density magnetic recording devices. Conventionally, a magnetoresistive device is used that changes its resistivity in accordance with the direction of the stray field from an objective magnet. However, when several magnets are near such a device, the superposition of stray fields from all the magnets acts on the sensor, preventing selective recognition of their individual magnetization directions. Here we introduce a novel readout method for detecting the magnetization direction of a nanoscale magnet by use of a spin-torque oscillator (STO). The principles behind this method are dynamic dipolar coupling between an STO and a nanoscale magnet, and detection of ferromagnetic resonance (FMR) of this coupled system from the STO signal. Because the STO couples with a specific magnet by tuning the STO oscillation frequency to match its FMR frequency, this readout method can selectively determine the magnetization direction of the magnet. (papers)

  8. Torque Split Strategy for Parallel Hybrid Electric Vehicles with an Integrated Starter Generator

    Directory of Open Access Journals (Sweden)

    Zhumu Fu

    2014-01-01

    Full Text Available This paper presents a torque split strategy for parallel hybrid electric vehicles with an integrated starter generator (ISG-PHEV by using fuzzy logic control. By combining the efficiency map and the optimum torque curve of the internal combustion engine (ICE with the state of charge (SOC of the batteries, the torque split strategy is designed, which manages the ICE within its peak efficiency region. Taking the quantified ICE torque, the quantified SOC of the batteries, and the quantified ICE speed as inputs, and regarding the output torque demanded on the ICE as an output, a fuzzy logic controller (FLC with relevant fuzzy rules has been developed to determine the optimal torque distribution among the ICE, the ISG, and the electric motor/generator (EMG effectively. The simulation results reveal that, compared with the conventional torque control strategy which uses rule-based controller (RBC in different driving cycles, the proposed FLC improves the fuel economy of the ISG-PHEV, increases the efficiency of the ICE, and maintains batteries SOC within its operation range more availably.

  9. Self-oscillation in spin torque oscillator stabilized by field-like torque

    International Nuclear Information System (INIS)

    Taniguchi, Tomohiro; Tsunegi, Sumito; Kubota, Hitoshi; Imamura, Hiroshi

    2014-01-01

    The effect of the field-like torque on the self-oscillation of the magnetization in spin torque oscillator with a perpendicularly magnetized free layer was studied theoretically. A stable self-oscillation at zero field is excited for negative β while the magnetization dynamics stops for β = 0 or β > 0, where β is the ratio between the spin torque and the field-like torque. The reason why only the negative β induces the self-oscillation was explained from the view point of the energy balance between the spin torque and the damping. The oscillation power and frequency for various β were also studied by numerical simulation

  10. Knee extension torque variability after exercise in ACL reconstructed knees.

    Science.gov (United States)

    Goetschius, John; Kuenze, Christopher M; Hart, Joseph M

    2015-08-01

    The purpose of this study was to compare knee extension torque variability in patients with ACL reconstructed knees before and after exercise. Thirty two patients with an ACL reconstructed knee (ACL-R group) and 32 healthy controls (control group) completed measures of maximal isometric knee extension torque (90° flexion) at baseline and following a 30-min exercise protocol (post-exercise). Exercise included 30-min of repeated cycles of inclined treadmill walking and hopping tasks. Dependent variables were the coefficient of variation (CV) and raw-change in CV (ΔCV): CV = (torque standard deviation/torque mean x 100), ΔCV = (post-exercise - baseline). There was a group-by-time interaction (p = 0.03) on CV. The ACL-R group demonstrated greater CV than the control group at baseline (ACL-R = 1.07 ± 0.55, control = 0.79 ± 0.42, p = 0.03) and post-exercise (ACL-R = 1.60 ± 0.91, control = 0.94 ± 0.41, p = 0.001). ΔCV was greater (p = 0.03) in the ACL-R group (0.52 ± 0.82) than control group (0.15 ± 0.46). CV significantly increased from baseline to post-exercise (p = 0.001) in the ACL-R group, while the control group did not (p = 0.06). The ACL-R group demonstrated greater knee extension torque variability than the control group. Exercise increased torque variability more in the ACL-R group than control group. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. Equipment for measuring torque and diagnostic data on control rod drive of nuclear reactor

    International Nuclear Information System (INIS)

    Simka, K.; Sneberger, J.; Tater, V.

    1991-01-01

    The equipment comprises an electric drive, a measuring unit and a device securing the movable parts of the drive. It can be used to measure the torque and diagnostic data of the control facility drive with the desired accuracy without having to dismantle the facility during decoupling or coupling the control component to the drive, during programming the movable parts in the transporting position. (Z.S.). 1 fig

  12. Compensation of an attitude disturbance torque caused by magnetic substances in LEO satellites

    Science.gov (United States)

    Inamori, Takaya; Wang, Jihe; Saisutjarit, Phongsatorn; Ohsaki, Hiroyuki

    This research considers an attitude disturbance torque caused by ferromagnetic substances in a LEO satellite. In most LEO satellite missions, a gravity gradient torque, solar pressure torque, aerodynamic torque, and magnetic dipole moment torque are considered for their attitude control systems, however, the effect of the ferromagnetic substances causing a disturbance torque in the geomagnetic field is not considered in previous satellite missions. The ferromagnetic substances such as iron cores of MTQs and a magnetic hysteresis damper for a passive attitude control system are used in various small satellites. These substances cause a disturbance torque which is almost the same magnitude of the dipole magnetic disturbance and the dominant disturbance in the worst cases. This research proposes a method to estimate and compensate for the effect of the ferromagnetic substances using an extended Kalman filter. From simulation results, the research concludes that the proposed method is useful and attractive for precise attitude control for LEO satellite missions.

  13. Integral torque balance in tokamaks

    International Nuclear Information System (INIS)

    Pustovitov, V.D.

    2011-01-01

    The study is aimed at clarifying the balance between the sinks and sources in the problem of intrinsic plasma rotation in tokamaks reviewed recently by deGrassie (2009 Plasma Phys. Control. Fusion 51 124047). The integral torque on the toroidal plasma is calculated analytically using the most general magnetohydrodynamic (MHD) plasma model taking account of plasma anisotropy and viscosity. The contributions due to several mechanisms are separated and compared. It is shown that some of them, though, possibly, important in establishing the rotation velocity profile in the plasma, may give small input into the integral torque, but an important contribution can come from the magnetic field breaking the axial symmetry of the configuration. In tokamaks, this can be the error field, the toroidal field ripple or the magnetic perturbation created by the correction coils in the dedicated experiments. The estimates for the error-field-induced electromagnetic torque show that the amplitude of this torque is comparable to the typical values of torques introduced into the plasma by neutral beam injection. The obtained relations allow us to quantify the effect that can be produced by the existing correction coils in tokamaks on the plasma rotation, which can be used in experiments to study the origin and physics of intrinsic rotation in tokamaks. Several problems are proposed for theoretical studies and experimental tests.

  14. Accuracy of dental torque wrenches.

    Science.gov (United States)

    Wood, James S; Marlow, Nicole M; Cayouette, Monica J

    2015-01-01

    The aim of this in vitro study was to compare the actual torque of 2 manual wrench systems to their stated (target) torque. New spring- (Nobel Biocare USA, LLC) and friction-style (Zimmer Dental, Inc.) manual dental torque wrenches, as well as spring torque wrenches that had undergone sterilization and clinical use, were tested. A calibrated torque gauge was used to compare actual torque to target torque values of 15 and 35 N/cm. Data were statistically analyzed via mixed-effects regression model with Bonferroni correction. At a target torque of 15 N/cm, the mean torque of new spring wrenches (13.97 N/cm; SE, 0.07 N/cm) was significantly different from that of used spring wrenches (14.94 N/cm; SE, 0.06 N/cm; P torques of new spring and new friction wrenches (14.10 N/cm; SE, 0.07 N/cm; P = 0.21) were not significantly different. For torque measurements calibrated at 35 N/cm, the mean torque of new spring wrenches (35.29 N/cm; SE, 0.10 N/cm) was significantly different (P torque could impact the clinical success of screw-retained dental implants. It is recommended that torque wrenches be checked regularly to ensure that they are performing to target values.

  15. Spin Torque Oscillator for High Performance Magnetic Memory

    Directory of Open Access Journals (Sweden)

    Rachid Sbiaa

    2015-06-01

    Full Text Available A study on spin transfer torque switching in a magnetic tunnel junction with perpendicular magnetic anisotropy is presented. The switching current can be strongly reduced under a spin torque oscillator (STO, and its use in addition to the conventional transport in magnetic tunnel junctions (MTJ should be considered. The reduction of the switching current from the parallel state to the antiparallel state is greater than in  the opposite direction, thus minimizing the asymmetry of the resistance versus current in the hysteresis loop. This reduction of both switching current and asymmetry under a spin torque oscillator occurs only during the writing process and does not affect the thermal stability of the free layer.

  16. Development of magneto-rheologial fluid (MRF) based clutch for output torque control of AC motors

    Science.gov (United States)

    Nguyen, Q. Hung; Do, H. M. Hieu; Nguyen, V. Quoc; Nguyen, N. Diep; Le, D. Thang

    2018-03-01

    In industry, the AC motor is widely used because of low price, power availability, low cost maintenance. The main disadvantages of AC motors compared to DC motors are difficulty in speed and torque control, requiring expensive controllers with complex control algorithms. This is the basic limitations in the widespread adoption of AC motor systems for industrial automation. One feasible solution for AC motor control is using MRF (magneto-rheological fluid) based clutches (shortly called MR clutches) Although there have been many studies on MR clutches, most of these clutches used traditional configuration with coils wound on the middle cylindrical part and a compotator is used to supply power to the coils. Therefore, this type of MR clutches possesses many disadvantages such as high friction and unstable applied current due to commutator, complex structure which causes difficulty in manufacture, assembly, and maintenance. In addition, the bottleneck problem of magnetic field is also a challenging issue. In this research, we will develop a new type of MR clutches that overcomes the abovementioned disadvantages of traditional MR clutches and more suitable for application in controlling of AC motor. Besides, in this study, speed and torque control system for AC motors using developed MR clutches is designed and experimental validated.

  17. Applied Joint-Space Torque and Stiffness Control of Tendon-Driven Fingers

    Science.gov (United States)

    Abdallah, Muhammad E.; Platt, Robert, Jr.; Wampler, Charles W.; Hargrave, Brian

    2010-01-01

    Existing tendon-driven fingers have applied force control through independent tension controllers on each tendon, i.e. in the tendon-space. The coupled kinematics of the tendons, however, cause such controllers to exhibit a transient coupling in their response. This problem can be resolved by alternatively framing the controllers in the joint-space of the manipulator. This work presents a joint-space torque control law that demonstrates both a decoupled and significantly faster response than an equivalent tendon-space formulation. The law also demonstrates greater speed and robustness than comparable PI controllers. In addition, a tension distribution algorithm is presented here to allocate forces from the joints to the tendons. It allocates the tensions so that they satisfy both an upper and lower bound, and it does so without requiring linear programming or open-ended iterations. The control law and tension distribution algorithm are implemented on the robotic hand of Robonaut-2.

  18. Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimes

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed; Manchon, Aurelien; Waintal, Xavier

    2014-01-01

    Current-driven spin torques in metallic spin valves composed of antiferromagnets are theoretically studied using the nonequilibrium Green's function method implemented on a tight-binding model. We focus our attention on G-type and L-type antiferromagnets in both clean and disordered regimes. In such structures, spin torques can either rotate the magnetic order parameter coherently (coherent torque) or compete with the internal antiferromagnetic exchange (exchange torque). We show that, depending on the symmetry of the spin valve, the coherent and exchange torques can either be in the plane, ∝n×(q×n) or out of the plane ∝n×q, where q and n are the directions of the order parameter of the polarizer and the free antiferromagnetic layers, respectively. Although disorder conserves the symmetry of the torques, it strongly reduces the torque magnitude, pointing out the need for momentum conservation to ensure strong spin torque in antiferromagnetic spin valves.

  19. Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimes

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2014-05-28

    Current-driven spin torques in metallic spin valves composed of antiferromagnets are theoretically studied using the nonequilibrium Green\\'s function method implemented on a tight-binding model. We focus our attention on G-type and L-type antiferromagnets in both clean and disordered regimes. In such structures, spin torques can either rotate the magnetic order parameter coherently (coherent torque) or compete with the internal antiferromagnetic exchange (exchange torque). We show that, depending on the symmetry of the spin valve, the coherent and exchange torques can either be in the plane, ∝n×(q×n) or out of the plane ∝n×q, where q and n are the directions of the order parameter of the polarizer and the free antiferromagnetic layers, respectively. Although disorder conserves the symmetry of the torques, it strongly reduces the torque magnitude, pointing out the need for momentum conservation to ensure strong spin torque in antiferromagnetic spin valves.

  20. A Computational Study on Hydrodynamic Torque Coefficients of a Butterfly Valve

    International Nuclear Information System (INIS)

    Lee, Do-Hwan; Park, Sung-Keun; Kang, Shin-Chul; Kim, Dae-Woong; Park, Ju-Yeop

    2007-01-01

    Butterfly valves have been widely used for on-off or control purposes in the process industry, since they provide quick opening and closing operation and good flow control characteristics. For the evaluation of the adequacy of valve operability and the actuator sizing, the required torque estimation is necessary. Since the principal contributing component of the require torque in the mid-stroke position is hydrodynamic torque, it is necessary to predict the torque properly under the actual flow conditions. The research on the prediction of the valve performance was led by EPRI (Electric Power Research Institute) in early 1990s. A performance prediction model was developed based on the experimental results and the free-streamline analysis by Sarpkaya. Recently, Kalsi Engineering carried out extended tests and developed the improved model. Variation of disk geometries and upstream flow conditions were tried to obtain accurate hydrodynamic torque coefficients. However, since the model is only commercially available, a general method to obtain hydrodynamic torque for butterfly valves is called for

  1. Comparison of different passive knee extension torque-angle assessments

    International Nuclear Information System (INIS)

    Freitas, Sandro R; Vaz, João R; Bruno, Paula M; Valamatos, Maria J; Mil-Homens, Pedro

    2013-01-01

    Previous studies have used isokinetic dynamometry to assess joint torques and angles during passive extension of the knee, often without reporting upon methodological errors and reliability outcomes. In addition, the reliability of the techniques used to measure passive knee extension torque-angle and the extent to which reliability may be affected by the position of the subjects is also unclear. Therefore, we conducted an analysis of the intra- and inter-session reliability of two methods of assessing passive knee extension: (A) a 2D kinematic analysis coupled to a custom-made device that enabled the direct measurement of resistance to stretch and (B) an isokinetic dynamometer used in two testing positions (with the non-tested thigh either flexed at 45° or in the neutral position). The intra-class correlation coefficients (ICCs) of torque, the slope of the torque-angle curve, and the parameters of the mathematical model that were fit to the torque-angle data for the above conditions were measured in sixteen healthy male subjects (age: 21.4 ± 2.1 yr; BMI: 22.6 ± 3.3 kg m −2 ; tibial length: 37.4 ± 3.4 cm). The results found were: (1) methods A and B led to distinctly different torque-angle responses; (2) passive torque-angle relationship and stretch tolerance were influenced by the position of the non-tested thigh; and (3) ICCs obtained for torque were higher than for the slope and for the mathematical parameters that were fit to the torque-angle curve. In conclusion, the measurement method that is used and the positioning of subjects can influence the passive knee extension torque-angle outcome. (paper)

  2. Condition monitoring of a motor-operated valve using estimated motor torque

    International Nuclear Information System (INIS)

    Chai, Jangbom; Kang, Shinchul; Park, Sungkeun; Hong, Sungyull; Lim, Chanwoo

    2004-01-01

    This paper is concerned with the development of data analysis methods to be used in on-line monitoring and diagnosis of Motor-Operated Valves (MOVs) effectively and accurately. The technique to be utilized includes the electrical measurements and signal processing to estimate electric torque of induction motors, which are attached to most of MOV systems. The estimated torque of an induction motor is compared with the directly measured torque using a torque cell in various loading conditions including the degraded voltage conditions to validate the estimating scheme. The accuracy of the estimating scheme is presented. The advantages of the estimated torque signatures are reviewed over the currently used ones such as the current signature and the power signature in several respects: accuracy, sensitivity, resolution and so on. Additionally, the estimated torque methods are suggested as a good way to monitor the conditions of MOVs with higher accuracy. (author)

  3. Torque magnetometry by use of capacitance type transducer

    International Nuclear Information System (INIS)

    Braught, M.C.; Pechan, M.J.

    1992-01-01

    Interfacial anisotropy in magnetic multilayered samples comprised of nanometer thick magnetic layers alternating with non-magnetic layers is investigated by torque magnetometry in the temperature regime of 4 to 300K. The design, construction and use of a capacitance type transducer wherein the sample is mounted directly on with the plate of the capacitor, will be described. As a result the sample and transducer spatially coexist at the sample temperature in an applied external field, eliminating mechanical coupling from the cryogenic region to a remote room temperature transducer. The capacitor measuring the torque of the sample is paired with a reference capacitor. The difference between torque influenced capacitance and the reference is then determined by a differential transimpedance amplifier. Since both capacitors are physically identical variables such as temperature, vibration, orientation and external devices are minimized. Torques up to 300 dyne-cm can be measured with a sensitivity of 0.010 dyne-cm

  4. Production Experiences with the Cray-Enabled TORQUE Resource Manager

    Energy Technology Data Exchange (ETDEWEB)

    Ezell, Matthew A [ORNL; Maxwell, Don E [ORNL; Beer, David [Adaptive Computing

    2013-01-01

    High performance computing resources utilize batch systems to manage the user workload. Cray systems are uniquely different from typical clusters due to Cray s Application Level Placement Scheduler (ALPS). ALPS manages binary transfer, job launch and monitoring, and error handling. Batch systems require special support to integrate with ALPS using an XML protocol called BASIL. Previous versions of Adaptive Computing s TORQUE and Moab batch suite integrated with ALPS from within Moab, using PERL scripts to interface with BASIL. This would occasionally lead to problems when all the components would become unsynchronized. Version 4.1 of the TORQUE Resource Manager introduced new features that allow it to directly integrate with ALPS using BASIL. This paper describes production experiences at Oak Ridge National Laboratory using the new TORQUE software versions, as well as ongoing and future work to improve TORQUE.

  5. Interface-Enhanced Spin-Orbit Torques and Current-Induced Magnetization Switching of Pd /Co /AlOx Layers

    Science.gov (United States)

    Ghosh, Abhijit; Garello, Kevin; Avci, Can Onur; Gabureac, Mihai; Gambardella, Pietro

    2017-01-01

    Magnetic heterostructures that combine large spin-orbit torque efficiency, perpendicular magnetic anisotropy, and low resistivity are key to developing electrically controlled memory and logic devices. Here, we report on vector measurements of the current-induced spin-orbit torques and magnetization switching in perpendicularly magnetized Pd /Co /AlOx layers as a function of Pd thickness. We find sizable dampinglike (DL) and fieldlike (FL) torques, on the order of 1 mT per 107 A /cm2 , which have different thicknesses and magnetization angle dependencies. The analysis of the DL torque efficiency per unit current density and the electric field using drift-diffusion theory leads to an effective spin Hall angle and spin-diffusion length of Pd larger than 0.03 and 7 nm, respectively. The FL spin-orbit torque includes a significant interface contribution, is larger than estimated using drift-diffusion parameters, and, furthermore, is strongly enhanced upon rotation of the magnetization from the out-of-plane to the in-plane direction. Finally, taking advantage of the large spin-orbit torques in this system, we demonstrate bipolar magnetization switching of Pd /Co /AlOx layers with a similar current density to that used for Pt /Co layers with a comparable perpendicular magnetic anisotropy.

  6. Torque Coordination Control during Braking Mode Switch for a Plug-in Hybrid Electric Vehicle

    OpenAIRE

    Yang Yang; Chao Wang; Quanrang Zhang; Xiaolong He

    2017-01-01

    Hybrid vehicles usually have several braking systems, and braking mode switches are significant events during braking. It is difficult to coordinate torque fluctuations caused by mode switches because the dynamic characteristics of braking systems are different. In this study, a new type of plug-in hybrid vehicle is taken as the research object, and braking mode switches are divided into two types. The control strategy of type one is achieved by controlling the change rates of clutch hold-dow...

  7. Validity of trunk extensor and flexor torque measurements using isokinetic dynamometry.

    Science.gov (United States)

    Guilhem, Gaël; Giroux, Caroline; Couturier, Antoine; Maffiuletti, Nicola A

    2014-12-01

    This study aimed to evaluate the validity and test-retest reliability of trunk muscle strength testing performed with a latest-generation isokinetic dynamometer. Eccentric, isometric, and concentric peak torque of the trunk flexor and extensor muscles was measured in 15 healthy subjects. Muscle cross sectional area (CSA) and surface electromyographic (EMG) activity were respectively correlated to peak torque and submaximal isometric torque for erector spinae and rectus abdominis muscles. Reliability of peak torque measurements was determined during test and retest sessions. Significant correlations were consistently observed between muscle CSA and peak torque for all contraction types (r=0.74-0.85; Ptorque (r ⩾ 0.99; Ptorque between test and retest ranged from -3.7% to 3.7% with no significant mean directional bias. Overall, our findings establish the validity of torque measurements using the tested trunk module. Also considering the excellent test-retest reliability of peak torque measurements, we conclude that this latest-generation isokinetic dynamometer could be used with confidence to evaluate trunk muscle function for clinical or athletic purposes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Two-Finger Tightness: What Is It? Measuring Torque and Reproducibility in a Simulated Model.

    Science.gov (United States)

    Acker, William B; Tai, Bruce L; Belmont, Barry; Shih, Albert J; Irwin, Todd A; Holmes, James R

    2016-05-01

    Residents in training are often directed to insert screws using "two-finger tightness" to impart adequate torque but minimize the chance of a screw stripping in bone. This study seeks to quantify and describe two-finger tightness and to assess the variability of its application by residents in training. Cortical bone was simulated using a polyurethane foam block (30-pcf density) that was prepared with predrilled holes for tightening 3.5 × 14-mm long cortical screws and mounted to a custom-built apparatus on a load cell to capture torque data. Thirty-three residents in training, ranging from the first through fifth years of residency, along with 8 staff members, were directed to tighten 6 screws to two-finger tightness in the test block, and peak torque values were recorded. The participants were blinded to their torque values. Stripping torque (2.73 ± 0.56 N·m) was determined from 36 trials and served as a threshold for failed screw placement. The average torques varied substantially with regard to absolute torque values, thus poorly defining two-finger tightness. Junior residents less consistently reproduced torque compared with other groups (0.29 and 0.32, respectively). These data quantify absolute values of two-finger tightness but demonstrate considerable variability in absolute torque values, percentage of stripping torque, and ability to consistently reproduce given torque levels. Increased years in training are weakly correlated with reproducibility, but experience does not seem to affect absolute torque levels. These results question the usefulness of two-finger tightness as a teaching tool and highlight the need for improvement in resident motor skill training and development within a teaching curriculum. Torque measuring devices may be a useful simulation tools for this purpose.

  9. DSMC Simulations of Disturbance Torque to ISS During Airlock Depressurization

    Science.gov (United States)

    Lumpkin, F. E., III; Stewart, B. S.

    2015-01-01

    The primary attitude control system on the International Space Station (ISS) is part of the United States On-orbit Segment (USOS) and uses Control Moment Gyroscopes (CMG). The secondary system is part of the Russian On orbit Segment (RSOS) and uses a combination of gyroscopes and thrusters. Historically, events with significant disturbances such as the airlock depressurizations associated with extra-vehicular activity (EVA) have been performed using the RSOS attitude control system. This avoids excessive propulsive "de-saturations" of the CMGs. However, transfer of attitude control is labor intensive and requires significant propellant. Predictions employing NASA's DSMC Analysis Code (DAC) of the disturbance torque to the ISS for depressurization of the Pirs airlock on the RSOS will be presented [1]. These predictions were performed to assess the feasibility of using USOS control during these events. The ISS Pirs airlock is vented using a device known as a "T-vent" as shown in the inset in figure 1. By orienting two equal streams of gas in opposite directions, this device is intended to have no propulsive effect. However, disturbance force and torque to the ISS do occur due to plume impingement. The disturbance torque resulting from the Pirs depressurization during EVAs is estimated by using a loosely coupled CFD/DSMC technique [2]. CFD is used to simulate the flow field in the nozzle and the near field plume. DSMC is used to simulate the remaining flow field using the CFD results to create an in flow boundary to the DSMC simulation. Due to the highly continuum nature of flow field near the T-vent, two loosely coupled DSMC domains are employed. An 88.2 cubic meter inner domain contains the Pirs airlock and the T-vent. Inner domain results are used to create an in flow boundary for an outer domain containing the remaining portions of the ISS. Several orientations of the ISS solar arrays and radiators have been investigated to find cases that result in minimal

  10. Self-tuning Torque Control of Induction Motors for High Performance Applications

    DEFF Research Database (Denmark)

    Rasmussen, Henrik

    -link voltage a non-linear model of the inverter giving the relation between turn-on times and voltages is developed. A dynamic model of the induction motor based on space phasors is described. The model in a reference frame fixed to the rotor magnetizing current is analyzed in detail and extended with a model......: · To analyze and develop strategies for torque control of induction motors well suited for automatic tuning. · To analyze and develop methods for automatic tuning of the applied controllers. · To develop robust methods for adaptive field oriented control. · To test the final concept on different motors...... for magnetic saturating. The parameters in this non-linear model of the motor and inverter are determined by impressing some special designed stator voltage signals and measuring the stator currents. A s something new in this context a robust current controller is determined by relay experiment before starting...

  11. Adaptive critic learning techniques for engine torque and air-fuel ratio control.

    Science.gov (United States)

    Liu, Derong; Javaherian, Hossein; Kovalenko, Olesia; Huang, Ting

    2008-08-01

    A new approach for engine calibration and control is proposed. In this paper, we present our research results on the implementation of adaptive critic designs for self-learning control of automotive engines. A class of adaptive critic designs that can be classified as (model-free) action-dependent heuristic dynamic programming is used in this research project. The goals of the present learning control design for automotive engines include improved performance, reduced emissions, and maintained optimum performance under various operating conditions. Using the data from a test vehicle with a V8 engine, we developed a neural network model of the engine and neural network controllers based on the idea of approximate dynamic programming to achieve optimal control. We have developed and simulated self-learning neural network controllers for both engine torque (TRQ) and exhaust air-fuel ratio (AFR) control. The goal of TRQ control and AFR control is to track the commanded values. For both control problems, excellent neural network controller transient performance has been achieved.

  12. Valley-dependent spin-orbit torques in two-dimensional hexagonal crystals

    KAUST Repository

    Li, Hang; Wang, Xuhui; Manchon, Aurelien

    2016-01-01

    We study spin-orbit torques in two-dimensional hexagonal crystals such as graphene, silicene, germanene, and stanene. The torque possesses two components, a fieldlike term due to inverse spin galvanic effect and an antidamping torque originating from Berry curvature in mixed spin-k space. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. The valley imbalance can be as high as 100% by tuning the bias voltage or magnetization angle. These findings open new venues for the development of current-driven spin-orbit torques by structural design.

  13. Valley-dependent spin-orbit torques in two-dimensional hexagonal crystals

    KAUST Repository

    Li, Hang

    2016-01-11

    We study spin-orbit torques in two-dimensional hexagonal crystals such as graphene, silicene, germanene, and stanene. The torque possesses two components, a fieldlike term due to inverse spin galvanic effect and an antidamping torque originating from Berry curvature in mixed spin-k space. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. The valley imbalance can be as high as 100% by tuning the bias voltage or magnetization angle. These findings open new venues for the development of current-driven spin-orbit torques by structural design.

  14. Analysis and Implementation of Parallel Connected Two-Induction Motor Single-Inverter Drive by Direct Vector Control for Industrial Application

    DEFF Research Database (Denmark)

    Gunabalan, Ramachandiran; Padmanaban, Sanjeevikumar; Blaabjerg, Frede

    2015-01-01

    Sensorless-based direct vector control techniques are widely used for three-phase induction motor drive, whereas in case of multiple-motor control, it becomes intensively complicated and very few research articles in support to industrial applications were found. A straight-forward direct vector...... to estimate the rotor speed, rotor flux, and load torque of both motors. Simulation results along with theoretical background provided in this paper confirm the feasibility of operation of the ac motors and proves reliability for industrial applications....

  15. Evaluation Method for Fieldlike-Torque Efficiency by Modulation of the Resonance Field

    Science.gov (United States)

    Kim, Changsoo; Kim, Dongseuk; Chun, Byong Sun; Moon, Kyoung-Woong; Hwang, Chanyong

    2018-05-01

    The spin Hall effect has attracted a lot of interest in spintronics because it offers the possibility of a faster switching route with an electric current than with a spin-transfer-torque device. Recently, fieldlike spin-orbit torque has been shown to play an important role in the magnetization switching mechanism. However, there is no simple method for observing the fieldlike spin-orbit torque efficiency. We suggest a method for measuring fieldlike spin-orbit torque using a linear change in the resonance field in spectra of direct-current (dc)-tuned spin-torque ferromagnetic resonance. The fieldlike spin-orbit torque efficiency can be obtained in both a macrospin simulation and in experiments by simply subtracting the Oersted field from the shifted amount of resonance field. This method analyzes the effect of fieldlike torque using dc in a normal metal; therefore, only the dc resistivity and the dimensions of each layer are considered in estimating the fieldlike spin-torque efficiency. The evaluation of fieldlike-torque efficiency of a newly emerging material by modulation of the resonance field provides a shortcut in the development of an alternative magnetization switching device.

  16. Thermally induced magnonic spin current, thermomagnonic torques, and domain-wall dynamics in the presence of Dzyaloshinskii-Moriya interaction

    Science.gov (United States)

    Wang, X.-G.; Chotorlishvili, L.; Guo, G.-H.; Sukhov, A.; Dugaev, V.; Barnaś, J.; Berakdar, J.

    2016-09-01

    Thermally activated domain-wall (DW) motion in magnetic insulators has been considered theoretically, with a particular focus on the role of Dzyaloshinskii-Moriya interaction (DMI) and thermomagnonic torques. The thermally assisted DW motion is a consequence of the magnonic spin current due to the applied thermal bias. In addition to the exchange magnonic spin current and the exchange adiabatic and the entropic spin transfer torques, we also consider the DMI-induced magnonic spin current, thermomagnonic DMI fieldlike torque, and the DMI entropic torque. Analytical estimations are supported by numerical calculations. We found that the DMI has a substantial influence on the size and the geometry of DWs, and that the DWs become oriented parallel to the long axis of the nanostrip. Increasing the temperature smoothes the DWs. Moreover, the thermally induced magnonic current generates a torque on the DWs, which is responsible for their motion. From our analysis it follows that for a large enough DMI the influence of DMI-induced fieldlike torque is much stronger than that of the DMI and the exchange entropic torques. By manipulating the strength of the DMI constant, one can control the speed of the DW motion, and the direction of the DW motion can be switched, as well. We also found that DMI not only contributes to the total magnonic current, but also it modifies the exchange magnonic spin current, and this modification depends on the orientation of the steady-state magnetization. The observed phenomenon can be utilized in spin caloritronics devices, for example in the DMI based thermal diodes. By switching the magnetization direction, one can rectify the total magnonic spin current.

  17. Magnification of starting torques of dc motors by maximum power point trackers in photovoltaic systems

    Science.gov (United States)

    Appelbaum, Joseph; Singer, S.

    1989-01-01

    Direct current (dc) motors are used in terrestrial photovoltaic (PV) systems such as in water-pumping systems for irrigation and water supply. Direct current motors may also be used for space applications. Simple and low weight systems including dc motors may be of special interest in space where the motors are directly coupled to the solar cell array (with no storage). The system will operate only during times when sufficient insolation is available. An important performance characteristic of electric motors is the starting to rated torque ratio. Different types of dc motors have different starting torque ratios. These ratios are dictated by the size of solar cell array, and the developed motor torque may not be sufficient to overcome the load starting torque. By including a maximum power point tracker (MPPT) in the PV system, the starting to rated torque ratio will increase, the amount of which depends on the motor type. The starting torque ratio is calculated for the permanent magnet, series and shunt excited dc motors when powered by solar cell arrays for two cases: with and without MPPT's. Defining a motor torque magnification by the ratio of the motor torque with an MPPT to the motor torque without an MPPT, a magnification of 3 was obtained for the permanent magnet motor and a magnification of 7 for both the series and shunt motors. The effect of the variation of solar insolation on the motor starting torque was covered. All motor types are less sensitive to insolation variation in systems including MPPT's as compared to systems with MPPT's. The analysis of this paper will assist the PV system designed to determine whether or not to include an MPPT in the system for a specific motor type.

  18. Spin-Stabilized Spacecrafts: Analytical Attitude Propagation Using Magnetic Torques

    Directory of Open Access Journals (Sweden)

    Roberta Veloso Garcia

    2009-01-01

    Full Text Available An analytical approach for spin-stabilized satellites attitude propagation is presented, considering the influence of the residual magnetic torque and eddy currents torque. It is assumed two approaches to examine the influence of external torques acting during the motion of the satellite, with the Earth's magnetic field described by the quadripole model. In the first approach is included only the residual magnetic torque in the motion equations, with the satellites in circular or elliptical orbit. In the second approach only the eddy currents torque is analyzed, with the satellite in circular orbit. The inclusion of these torques on the dynamic equations of spin stabilized satellites yields the conditions to derive an analytical solution. The solutions show that residual torque does not affect the spin velocity magnitude, contributing only for the precession and the drift of the spacecraft's spin axis and the eddy currents torque causes an exponential decay of the angular velocity magnitude. Numerical simulations performed with data of the Brazilian Satellites (SCD1 and SCD2 show the period that analytical solution can be used to the attitude propagation, within the dispersion range of the attitude determination system performance of Satellite Control Center of Brazil National Research Institute.

  19. Efficient micromagnetic modelling of spin-transfer torque and spin-orbit torque

    Science.gov (United States)

    Abert, Claas; Bruckner, Florian; Vogler, Christoph; Suess, Dieter

    2018-05-01

    While the spin-diffusion model is considered one of the most complete and accurate tools for the description of spin transport and spin torque, its solution in the context of dynamical micromagnetic simulations is numerically expensive. We propose a procedure to retrieve the free parameters of a simple macro-spin like spin-torque model through the spin-diffusion model. In case of spin-transfer torque the simplified model complies with the model of Slonczewski. A similar model can be established for the description of spin-orbit torque. In both cases the spin-diffusion model enables the retrieval of free model parameters from the geometry and the material parameters of the system. Since these parameters usually have to be determined phenomenologically through experiments, the proposed method combines the strength of the diffusion model to resolve material parameters and geometry with the high performance of simple torque models.

  20. Knudsen torque: A rotational mechanism driven by thermal force

    Science.gov (United States)

    Li, Qi; Liang, Tengfei; Ye, Wenjing

    2014-09-01

    Thermally induced mechanical loading has been shown to have significant effects on micro- and nano-objects immersed in a gas with a nonuniform temperature field. While the majority of existing studies and related applications focus on forces, we investigate the torque, and thus the rotational motion, produced by such a mechanism. Our study has found that a torque can be induced if the configuration of the system is asymmetric. In addition, both the magnitude and the direction of the torque depend highly on the system configuration, indicating the possibility of manipulating the rotational motion via geometrical design. Based on this feature, two types of rotational micromotor that are of practical importance, namely pendulum motor and unidirectional motor, are designed. The magnitude of the torque at Kn =0.5 can reach to around 2nN×μm for a rectangular microbeam with a length of 100μm.

  1. A new approach to motion control of torque-constrained manipulators by using time-scaling of reference trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Valenzuela, Javier; Orozco-Manriquez, Ernesto [Digital del IPN, CITEDI-IPN, Tijuana, (Mexico)

    2009-12-15

    We introduce a control scheme based on using a trajectory tracking controller and an algorithm for on-line time scaling of the reference trajectories. The reference trajectories are time-scaled according to the measured tracking errors and the detected torque/acceleration saturation. Experiments are presented to illustrate the advantages of the proposed approach

  2. A new approach to motion control of torque-constrained manipulators by using time-scaling of reference trajectories

    International Nuclear Information System (INIS)

    Moreno-Valenzuela, Javier; Orozco-Manriquez, Ernesto

    2009-01-01

    We introduce a control scheme based on using a trajectory tracking controller and an algorithm for on-line time scaling of the reference trajectories. The reference trajectories are time-scaled according to the measured tracking errors and the detected torque/acceleration saturation. Experiments are presented to illustrate the advantages of the proposed approach

  3. Butterfly valve torque prediction methodology

    International Nuclear Information System (INIS)

    Eldiwany, B.H.; Sharma, V.; Kalsi, M.S.; Wolfe, K.

    1994-01-01

    As part of the Motor-Operated Valve (MOV) Performance Prediction Program, the Electric Power Research Institute has sponsored the development of methodologies for predicting thrust and torque requirements of gate, globe, and butterfly MOVs. This paper presents the methodology that will be used by utilities to calculate the dynamic torque requirements for butterfly valves. The total dynamic torque at any disc position is the sum of the hydrodynamic torque, bearing torque (which is induced by the hydrodynamic force), as well as other small torque components (such as packing torque). The hydrodynamic torque on the valve disc, caused by the fluid flow through the valve, depends on the disc angle, flow velocity, upstream flow disturbances, disc shape, and the disc aspect ratio. The butterfly valve model provides sets of nondimensional flow and torque coefficients that can be used to predict flow rate and hydrodynamic torque throughout the disc stroke and to calculate the required actuation torque and the maximum transmitted torque throughout the opening and closing stroke. The scope of the model includes symmetric and nonsymmetric discs of different shapes and aspects ratios in compressible and incompressible fluid applications under both choked and nonchoked flow conditions. The model features were validated against test data from a comprehensive flowloop and in situ test program. These tests were designed to systematically address the effect of the following parameters on the required torque: valve size, disc shapes and disc aspect ratios, upstream elbow orientation and its proximity, and flow conditions. The applicability of the nondimensional coefficients to valves of different sizes was validated by performing tests on 42-in. valve and a precisely scaled 6-in. model. The butterfly valve model torque predictions were found to bound test data from the flow-loop and in situ testing, as shown in the examples provided in this paper

  4. Spin Hall effect-driven spin torque in magnetic textures

    KAUST Repository

    Manchon, Aurelien; Lee, K.-J.

    2011-01-01

    Current-induced spin torque and magnetization dynamics in the presence of spin Hall effect in magnetic textures is studied theoretically. The local deviation of the charge current gives rise to a current-induced spin torque of the form (1 - ΒM) × [(u 0 + αH u 0 M) ∇] M, where u0 is the direction of the injected current, H is the Hall angle and is the non-adiabaticity parameter due to spin relaxation. Since αH and ×can have a comparable order of magnitude, we show that this torque can significantly modify the current-induced dynamics of both transverse and vortex walls. © 2011 American Institute of Physics.

  5. Spin Hall effect-driven spin torque in magnetic textures

    KAUST Repository

    Manchon, Aurelien

    2011-07-13

    Current-induced spin torque and magnetization dynamics in the presence of spin Hall effect in magnetic textures is studied theoretically. The local deviation of the charge current gives rise to a current-induced spin torque of the form (1 - ΒM) × [(u 0 + αH u 0 M) ∇] M, where u0 is the direction of the injected current, H is the Hall angle and is the non-adiabaticity parameter due to spin relaxation. Since αH and ×can have a comparable order of magnitude, we show that this torque can significantly modify the current-induced dynamics of both transverse and vortex walls. © 2011 American Institute of Physics.

  6. Improvement of the Torque-Speed Performance and Drive Efficiency in an SRM Using an Optimal Torque Sharing Function

    Directory of Open Access Journals (Sweden)

    Wei Ye

    2018-05-01

    Full Text Available In this paper, by evaluating the extreme value of the qth-power current, a torque sharing function (TSF family for reducing the torque ripples in the switched reluctance motor (SRM is proposed. The optimization criteria of the TSF has two secondary objectives, including the maximization of the torque-speed range and the minimization of copper loss. The evaluation indices in terms of the peak phase current, the rms (root mean square phase current, and the torque ripple factor are compared between the proposed TSF family and four conventional TSFs including linear, sinusoidal, exponential, and cubic TSFs. An optimization objective function that combines the maximum absolute value of the rate-of-change of the flux linkage (MAV-RCFL and the qth-power of current is proposed and a weighting factor is used to balance the influence of the two optimization objectives. An optimal TSF can be easily obtained by solving the optimization problem from the TSF family. The proposed TSF is validated by using simulations and experiments with a three-phase 6/4 SRM with 7.5 kW, 3000 rpm, and 270 V DC-link voltage. The dynamic simulation model is implemented in Matlab/Simulink. The results demonstrate the validity and superiority of the proposed control method; the optimal TSF provides better torque-speed performance, and a better reduction in copper loss and torque ripples at high speed, as compared to conventional TSFs.

  7. Peak torque and rate of torque development in elderly with and without fall history.

    Science.gov (United States)

    Bento, Paulo Cesar Barauce; Pereira, Gleber; Ugrinowitsch, Carlos; Rodacki, André Luiz Felix

    2010-06-01

    Falls are one of the greatest concerns among the elderly. A number of studies have described peak torque as one of the best fall-related predictor. No studies have comprehensively focused on the rate of torque development of the lower limb muscles among elderly fallers. Then, the aim of this study was to determine the relationship between muscle peak torque and rate of torque development of the lower limb joints in elderly with and without fall history. It was also aimed to determine whether these parameters of muscle performance (i.e., peak torque and rate of torque development) are related to the number of falls. Thirty-one women volunteered to participate in the study and were assigned in one of the groups according to the number of falls over the 12 months that preceded the present. Then, participants with no fall history (GI; n=13; 67.6[7.5] years-old), one fall (GII; n=8; 66.0[4.9] years-old) and two or more falls (GIII; n=10; 67.8[8.8] years-old) performed a number of lower limb maximal isometric voluntary contractions from which peak torque and rate of torque development were quantified. Primary outcomes indicated no peak torque differences between experimental groups in any lower limb joint. The rate of torque development of the knee flexor muscles observed in the non-fallers (GI) was greater than that observed in the fallers (Pfalls (Pelderly to rapidly reorganise the arrangement of the lower limb may play a significant role in allowing the elderly to recover balance after a trip. Thus, training stimulus aimed to improve the rate of torque development may be more beneficial to prevent falls among the elderly than other training stimulus, which are not specifically designed to improve the ability to rapidly produce large amounts of torque. Copyright (c) 2010. Published by Elsevier Ltd.

  8. Self-consistent perturbed equilibrium with neoclassical toroidal torque in tokamaks

    International Nuclear Information System (INIS)

    Park, Jong-Kyu; Logan, Nikolas C.

    2017-01-01

    Toroidal torque is one of the most important consequences of non-axisymmetric fields in tokamaks. The well-known neoclassical toroidal viscosity (NTV) is due to the second-order toroidal force from anisotropic pressure tensor in the presence of these asymmetries. This work shows that the first-order toroidal force originating from the same anisotropic pressure tensor, despite having no flux surface average, can significantly modify the local perturbed force balance and thus must be included in perturbed equilibrium self-consistent with NTV. The force operator with an anisotropic pressure tensor is not self-adjoint when the NTV torque is finite and thus is solved directly for each component. This approach yields a modified, non-self-adjoint Euler-Lagrange equation that can be solved using a variety of common drift-kinetic models in generalized tokamak geometry. The resulting energy and torque integral provides a unique way to construct a torque response matrix, which contains all the information of self-consistent NTV torque profiles obtainable by applying non-axisymmetric fields to the plasma. This torque response matrix can then be used to systematically optimize non-axisymmetric field distributions for desired NTV profiles. Published by AIP Publishing.

  9. Wind tunnel experiments to prove a hydraulic passive torque control concept for variable speed wind turbines

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin-Laguna, A.

    2014-01-01

    In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near

  10. Directional biases reveal utilization of arm's biomechanical properties for optimization of motor behavior.

    Science.gov (United States)

    Goble, Jacob A; Zhang, Yanxin; Shimansky, Yury; Sharma, Siddharth; Dounskaia, Natalia V

    2007-09-01

    Strategies used by the CNS to optimize arm movements in terms of speed, accuracy, and resistance to fatigue remain largely unknown. A hypothesis is studied that the CNS exploits biomechanical properties of multijoint limbs to increase efficiency of movement control. To test this notion, a novel free-stroke drawing task was used that instructs subjects to make straight strokes in as many different directions as possible in the horizontal plane through rotations of the elbow and shoulder joints. Despite explicit instructions to distribute strokes uniformly, subjects showed biases to move in specific directions. These biases were associated with a tendency to perform movements that included active motion at one joint and largely passive motion at the other joint, revealing a tendency to minimize intervention of muscle torque for regulation of the effect of interaction torque. Other biomechanical factors, such as inertial resistance and kinematic manipulability, were unable to adequately account for these significant biases. Also, minimizations of jerk, muscle torque change, and sum of squared muscle torque were analyzed; however, these cost functions failed to explain the observed directional biases. Collectively, these results suggest that knowledge of biomechanical cost functions regarding interaction torque (IT) regulation is available to the control system. This knowledge may be used to evaluate potential movements and to select movement of "low cost." The preference to reduce active regulation of interaction torque suggests that, in addition to muscle energy, the criterion for movement cost may include neural activity required for movement control.

  11. Spin-transfer torque generated by a topological insulator

    KAUST Repository

    Mellnik, A. R.

    2014-07-23

    Magnetic devices are a leading contender for the implementation of memory and logic technologies that are non-volatile, that can scale to high density and high speed, and that do not wear out. However, widespread application of magnetic memory and logic devices will require the development of efficient mechanisms for reorienting their magnetization using the least possible current and power. There has been considerable recent progress in this effort; in particular, it has been discovered that spin-orbit interactions in heavy-metal/ferromagnet bilayers can produce strong current-driven torques on the magnetic layer, via the spin Hall effect in the heavy metal or the Rashba-Edelstein effect in the ferromagnet. In the search for materials to provide even more efficient spin-orbit-induced torques, some proposals have suggested topological insulators, which possess a surface state in which the effects of spin-orbit coupling are maximal in the sense that an electron\\' s spin orientation is fixed relative to its propagation direction. Here we report experiments showing that charge current flowing in-plane in a thin film of the topological insulator bismuth selenide (Bi2Se3) at room temperature can indeed exert a strong spin-transfer torque on an adjacent ferromagnetic permalloy (Ni81Fe19) thin film, with a direction consistent with that expected from the topological surface state. We find that the strength of the torque per unit charge current density in Bi 2Se3 is greater than for any source of spin-transfer torque measured so far, even for non-ideal topological insulator films in which the surface states coexist with bulk conduction. Our data suggest that topological insulators could enable very efficient electrical manipulation of magnetic materials at room temperature, for memory and logic applications. © 2014 Macmillan Publishers Limited. All rights reserved.

  12. Game programmer's guide to Torque under the hood of the Torque game engine

    CERN Document Server

    Maurina , Edward F

    2006-01-01

    game programmer working with the Torque game engine must have ""The Game Programmer's Guide To Torque"": it teaches everything needed to design your own game, using experiences of game makers and industry veterans well versed in Torque technology. A Torque Game engine demo is included on an accompanying cd while step-by-step examples tell how to use it. Its focus on all the basics makes for an exceptional coverage for all levels of game programmer. -Bookwatch, August 2006

  13. Mechanics of torque generation in the bacterial flagellar motor.

    Science.gov (United States)

    Mandadapu, Kranthi K; Nirody, Jasmine A; Berry, Richard M; Oster, George

    2015-08-11

    The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well established that the passage of ions down a transmembrane gradient through the stator complex provides the energy for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify roles for two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, whereas steric forces comprise the actual "power stroke." Specifically, we propose that ion-induced conformational changes about a proline "hinge" residue in a stator α-helix are directly responsible for generating the power stroke. Our model predictions fit well with recent experiments on a single-stator motor. The proposed model provides a mechanical explanation for several fundamental properties of the flagellar motor, including torque-speed and speed-ion motive force relationships, backstepping, variation in step sizes, and the effects of key mutations in the stator.

  14. Improvement of Torque Production in Single-Phase Induction Motors

    African Journals Online (AJOL)

    OLUWASOGO

    PID controller. Simulation results show the starting torque of the motor increased by 75% under the developed drive scheme. In addition, torque pulsations reduced from 1.4 Nm peak-peak to 0.14 Nm peak-peak at steady state. It was observed that the accelerating time reduced by 30% compared to the accelerating time ...

  15. Microgrid Restraining Strategy Based on Improved DC Grid Connected DFIG Torque Ripple

    Science.gov (United States)

    Fei, Xia; Yang, Zhixiong; Zongze, Xia

    2017-05-01

    Aiming to the voltage of the stator side is generated by the modulation of the SSC in the improved topology, especially under the circumstance with the asymmTeric fault of stator side, DFIG’s electromagnTeic torque, amplifies ripple of grid-connected power for the grid side. The novel control mTehod suitable to stator side converter and rotor side converter based on reduced-order resonant controller (RORC) is proposed in this thesis, DFIG’s torque and output power performance are improved. Under the RORC control conditions the transfer functions of stator current and torque control system are established, the amplitude characteristic and the system stability of RORC control are analysed. The simulation results in Matlab/Simulink verify the correctness and validity of the proposed mTehod.

  16. Low mass planet migration in magnetically torqued dead zones - I. Static migration torque

    Science.gov (United States)

    McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan; Gressel, Oliver; Lyra, Wladimir

    2017-12-01

    Motivated by models suggesting that the inner planet forming regions of protoplanetary discs are predominantly lacking in viscosity-inducing turbulence, and are possibly threaded by Hall-effect generated large-scale horizontal magnetic fields, we examine the dynamics of the corotation region of a low-mass planet in such an environment. The corotation torque in an inviscid, isothermal, dead zone ought to saturate, with the libration region becoming both symmetrical and of a uniform vortensity, leading to fast inward migration driven by the Lindblad torques alone. However, in such a low viscosity situation, the material on librating streamlines essentially preserves its vortensity. If there is relative radial motion between the disc gas and the planet, the librating streamlines will no longer be symmetrical. Hence, if the gas is torqued by a large-scale magnetic field so that it undergoes a net inflow or outflow past the planet, driving evolution of the vortensity and inducing asymmetry of the corotation region, the corotation torque can grow, leading to a positive torque. In this paper, we treat this effect by applying a symmetry argument to the previously studied case of a migrating planet in an inviscid disc. Our results show that the corotation torque due to a laminar Hall-induced magnetic field in a dead zone behaves quite differently from that studied previously for a viscous disc. Furthermore, the magnetic field induced corotation torque and the dynamical corotation torque in a low viscosity disc can be regarded as one unified effect.

  17. Direct current modulation of spin-Hall-induced spin torque ferromagnetic resonance in platinum/permalloy bilayer thin films

    Science.gov (United States)

    Hirayama, Shigeyuki; Mitani, Seiji; Otani, YoshiChika; Kasai, Shinya

    2018-06-01

    We examined the spin-Hall-induced spin torque ferromagnetic resonance (ST-FMR) in platinum/permalloy bilayer thin films under bias direct current (DC). The bias DC modulated the symmetric components of the ST-FMR spectra, while no dominant modulation was found in the antisymmetric components. A detailed analysis in combination with simple model calculations clarified that the major origin of the modulation can be attributed to the DC resistance change under the precessional motion of magnetization. This effect is the second order contribution for the precession angle, even though the contribution can be comparable to the rectification voltage under some specific conditions.

  18. A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors.

    Science.gov (United States)

    Hwang, Beomsoo; Jeon, Doyoung

    2015-04-09

    In exoskeletal robots, the quantification of the user's muscular effort is important to recognize the user's motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users' muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user's limb accurately from the measured torque. The user's limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user's muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions.

  19. A Method to Accurately Estimate the Muscular Torques of Human Wearing Exoskeletons by Torque Sensors

    Directory of Open Access Journals (Sweden)

    Beomsoo Hwang

    2015-04-01

    Full Text Available In exoskeletal robots, the quantification of the user’s muscular effort is important to recognize the user’s motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users’ muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user’s limb accurately from the measured torque. The user’s limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user’s muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions.

  20. The role of vision, speed, and attention in overcoming directional biases during arm movements.

    Science.gov (United States)

    Dounskaia, Natalia; Goble, Jacob A

    2011-03-01

    Previous research has revealed directional biases (preferences to select movements in specific directions) during horizontal arm movements with the use of a free-stroke drawing task. The biases were interpreted as a result of a tendency to generate motion at either the shoulder or elbow (leading joint) and move the other (subordinate) joint predominantly passively to avoid neural effort for control of interaction torque. Here, we examined influence of vision, movement speed, and attention on the directional biases. Participants performed the free-stroke drawing task, producing center-out strokes in randomly selected directions. Movements were performed with and without vision and at comfortable and fast pace. A secondary, cognitive task was used to distract attention. Preferred directions remained the same in all conditions. Bias strength mildly increased without vision, especially during fast movements. Striking increases in bias strength were caused by the secondary task, pointing to additional cognitive load associated with selection of movements in the non-preferred directions. Further analyses demonstrated that the tendency to minimize active interference with interaction torque at the subordinate joint matched directional biases in all conditions. This match supports the explanation of directional biases as a result of a tendency to minimize neural effort for interaction torque control. The cognitive load may enhance this tendency in two ways, directly, by reducing neural capacity for interaction torque control, and indirectly, by decreasing capacity of working memory that stores visited directions. The obtained results suggest strong directional biases during daily activities because natural arm movements usually subserve cognitive tasks.

  1. Angular dependence and symmetry of Rashba spin torque in ferromagnetic heterostructures

    KAUST Repository

    Ortiz Pauyac, Christian

    2013-06-26

    In a ferromagnetic heterostructure, the interplay between Rashba spin-orbit coupling and exchange splitting gives rise to a current-driven spin torque. In a realistic device setup, we investigate the Rashba spin torque in the diffusive regime and report two major findings: (i) a nonvanishing torque exists at the edges of the device even when the magnetization and effective Rashba field are aligned; (ii) anisotropic spin relaxation rates driven by the Rashba spin-orbit coupling assign the spin torque a general expression T = T y (θ) m × (y × m) + T y (θ) y × m + T z (θ) m × (z × m) + T z (θ) z × m, where the coefficients T, y, z depend on the magnetization direction. Our results agree with recent experiments. © 2013 AIP Publishing LLC.

  2. Angular dependence and symmetry of Rashba spin torque in ferromagnetic heterostructures

    KAUST Repository

    Ortiz Pauyac, Christian; Wang, Xuhui; Chshiev, Mairbek; Manchon, Aurelien

    2013-01-01

    In a ferromagnetic heterostructure, the interplay between Rashba spin-orbit coupling and exchange splitting gives rise to a current-driven spin torque. In a realistic device setup, we investigate the Rashba spin torque in the diffusive regime and report two major findings: (i) a nonvanishing torque exists at the edges of the device even when the magnetization and effective Rashba field are aligned; (ii) anisotropic spin relaxation rates driven by the Rashba spin-orbit coupling assign the spin torque a general expression T = T y (θ) m × (y × m) + T y (θ) y × m + T z (θ) m × (z × m) + T z (θ) z × m, where the coefficients T, y, z depend on the magnetization direction. Our results agree with recent experiments. © 2013 AIP Publishing LLC.

  3. Development of a Torque Sensor-Based Test Bed for Attitude Control System Verification and Validation

    Science.gov (United States)

    2017-12-30

    AFRL-RV-PS- AFRL-RV-PS- TR-2018-0008 TR-2018-0008 DEVELOPMENT OF A TORQUE SENSOR- BASED TEST BED FOR ATTITUDE CONTROL SYSTEM VERIFICATION AND...Sensor-Based Test Bed for Attitude Control System Verification & Validation 5a. CONTRACT NUMBER FA9453-15-1-0315 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...NUMBER 62601F 6. AUTHOR(S) Norman Fitz-Coy 5d. PROJECT NUMBER 4846 5e. TASK NUMBER PPM00015968 5f. WORK UNIT NUMBER EF125135 7. PERFORMING

  4. Nonlinear Decoupling of Torque and Field Amplitude in an Induction Motor

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    1997-01-01

    A novel approach to control of induction motors, based on nonlinear state feedback, is presented. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers for the field amplitude and the motor...... torque. The method is tested both by simulation and by experiments on a motor drive....

  5. Analysis of Steady-State Error in Torque Current Component Control of PMSM Drive

    Directory of Open Access Journals (Sweden)

    BRANDSTETTER, P.

    2017-05-01

    Full Text Available The paper presents dynamic properties of a vector controlled permanent magnet synchronous motor drive supplied by a voltage source inverter. The paper deals with a control loop for the torque producing stator current. There is shown fundamental mathematical description for the vector control structure of the permanent magnet synchronous motor drive with respect to the current control for d-axis and q-axis of the rotor rotating coordinate system. The derivations of steady-state deviation for schemes with and without decoupling circuits are described for q-axis. The properties of both schemes are verified by MATLAB-SIMULINK program considering a lower and a higher value of inertia and by experimental measurements in our laboratory. The simulation and experimental results are presented and discussed at the end of the paper.

  6. Design of a new torque standard machine based on a torque generation method using electromagnetic force

    International Nuclear Information System (INIS)

    Nishino, Atsuhiro; Ueda, Kazunaga; Fujii, Kenichi

    2017-01-01

    To allow the application of torque standards in various industries, we have been developing torque standard machines based on a lever deadweight system, i.e. a torque generation method using gravity. However, this method is not suitable for expanding the low end of the torque range, because of the limitations to the sizes of the weights and moment arms. In this study, the working principle of the torque generation method using an electromagnetic force was investigated by referring to watt balance experiments used for the redefinition of the kilogram. Applying this principle to a rotating coordinate system, an electromagnetic force type torque standard machine was designed and prototyped. It was experimentally demonstrated that SI-traceable torque could be generated by converting electrical power to mechanical power. Thus, for the first time, SI-traceable torque was successfully realized using a method other than that based on the force of gravity. (paper)

  7. Electromagnetic torque on the toroidal plasma and the error-field induced torque

    International Nuclear Information System (INIS)

    Pustovitov, V. D.

    2007-01-01

    The electromagnetic torque on the toroidal plasma is calculated assuming a linear plasma response to the applied perturbation, which may be the error field or the field created by the correction coils, or both. The result is compared with recently published expressions for the error field induced torque (Zheng et al 2006 Nucl. Fusion 46 L9, Zheng and Kotschenreuther 2006 Phys. Rev. Lett. 97 165001), and the conclusions of these papers are revised. We resolve the problem of the torque resonance raised there. It is shown that the strong increase in the torque due to the static error field must occur at the resistive wall mode stability limit and not at the no-wall stability limit

  8. Dirac spin-orbit torques and charge pumping at the surface of topological insulators

    KAUST Repository

    Ndiaye, Papa Birame

    2017-07-07

    We address the nature of spin-orbit torques at the magnetic surfaces of topological insulators using the linear-response theory. We find that the so-called Dirac torques in such systems possess a different symmetry compared to their Rashba counterpart, as well as a high anisotropy as a function of the magnetization direction. In particular, the damping torque vanishes when the magnetization lies in the plane of the topological-insulator surface. We also show that the Onsager reciprocal of the spin-orbit torque, the charge pumping, induces an enhanced anisotropic damping. Via a macrospin model, we numerically demonstrate that these features have important consequences in terms of magnetization switching.

  9. Dirac spin-orbit torques and charge pumping at the surface of topological insulators

    Science.gov (United States)

    Ndiaye, Papa B.; Akosa, C. A.; Fischer, M. H.; Vaezi, A.; Kim, E.-A.; Manchon, A.

    2017-07-01

    We address the nature of spin-orbit torques at the magnetic surfaces of topological insulators using the linear-response theory. We find that the so-called Dirac torques in such systems possess a different symmetry compared to their Rashba counterpart, as well as a high anisotropy as a function of the magnetization direction. In particular, the damping torque vanishes when the magnetization lies in the plane of the topological-insulator surface. We also show that the Onsager reciprocal of the spin-orbit torque, the charge pumping, induces an enhanced anisotropic damping. Via a macrospin model, we numerically demonstrate that these features have important consequences in terms of magnetization switching.

  10. Dirac spin-orbit torques and charge pumping at the surface of topological insulators

    KAUST Repository

    Ndiaye, Papa Birame; Akosa, Collins Ashu; Fischer, M. H.; Vaezi, A.; Kim, E.-A.; Manchon, Aurelien

    2017-01-01

    We address the nature of spin-orbit torques at the magnetic surfaces of topological insulators using the linear-response theory. We find that the so-called Dirac torques in such systems possess a different symmetry compared to their Rashba counterpart, as well as a high anisotropy as a function of the magnetization direction. In particular, the damping torque vanishes when the magnetization lies in the plane of the topological-insulator surface. We also show that the Onsager reciprocal of the spin-orbit torque, the charge pumping, induces an enhanced anisotropic damping. Via a macrospin model, we numerically demonstrate that these features have important consequences in terms of magnetization switching.

  11. Design and control of a superconducting permanent magnet synchronous motor

    International Nuclear Information System (INIS)

    Jiang, Y; Pei, R; Hong, Z; Song, J; Fang, F; Coombs, T A

    2007-01-01

    This paper gives a detailed description of the design of a superconducting permanent magnet synchronous motor. The parameters of the motor have been identified, and the torque equation has been stated. A direct torque control algorithm is introduced and applied to a traditional permanent magnet synchronous motor and the superconducting permanent magnet synchronous motor described in this paper. The motor performance shows that the direct torque control algorithm provides excellent control to the superconducting motor, and guarantees that the magnitude of the operational armature currents is smaller than the value of the critical current of the superconducting tape used for stator winding

  12. Design and control of a superconducting permanent magnet synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Pei, R [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Hong, Z [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Song, J [Huazhong University of Science of Technology, Wuhan 430074 (China); Fang, F [Huazhong University of Science of Technology, Wuhan 430074 (China); Coombs, T A [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2007-07-15

    This paper gives a detailed description of the design of a superconducting permanent magnet synchronous motor. The parameters of the motor have been identified, and the torque equation has been stated. A direct torque control algorithm is introduced and applied to a traditional permanent magnet synchronous motor and the superconducting permanent magnet synchronous motor described in this paper. The motor performance shows that the direct torque control algorithm provides excellent control to the superconducting motor, and guarantees that the magnitude of the operational armature currents is smaller than the value of the critical current of the superconducting tape used for stator winding.

  13. Controller for a High-Power, Brushless dc Motor

    Science.gov (United States)

    Fleming, David J.; Makdad, Terence A.

    1987-01-01

    Driving and braking torques controllable. Control circuit operates 7-kW, 45-lb-ft (61-N-m), three-phase, brushless dc motor in both motor and generator modes. In motor modes, energy from power source is pulse-width modulated to motor through modified "H-bridge" circuit, in generator mode, energy from motor is pulse-width modulated into bank of load resistors to provide variable braking torques. Circuit provides high-resolution torque control in both directions over wide range of speeds and torques. Tested successfully at bus voltages up to 200 Vdc and currents up to 45 A.

  14. Effect of Different Torque Settings on Crack Formation in Root Dentin.

    Science.gov (United States)

    Dane, Asım; Capar, Ismail Davut; Arslan, Hakan; Akçay, Merve; Uysal, Banu

    2016-02-01

    The aim of the present study was to observe the incidence of cracks in root canal dentin using the ProTaper Universal system (Dentsply Maillefer, Ballaigues, Switzerland) at low- and high-torque settings. Sixty-nine mandibular premolar teeth that had been extracted for different reasons were selected. The teeth were divided into 3 groups: an unprepared control group, a low-torque settings group (SX = 3, S1 = 2, S2 = 1, F1 = 1.5, F2 = 2, F3 = 2, F4 = 2 N/cm), and a high-torque settings group (SX = 4, S1 = 4, S2 = 1.5, F1 = 2, F2 = 3, F3 = 3, F4 = 3 N/cm). After a root canal procedure, all the teeth were horizontally sectioned at 2, 4, 6, and 8 mm from the apex. Then, under a stereomicroscope, all the slices were examined to determine the presence of cracks. A chi-square test was used for data analysis. The significance level was set at P = .05. There were no cracks in the unprepared control group. Vertical root fractures were not observed in any of the groups. There were significantly fewer cracks (17.4% of the sections) in the low-torque group than in the high-torque group (29.4% of the sections) (P torque than at low-torque settings. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Design and analysis of an MR rotary brake for self-regulating braking torques.

    Science.gov (United States)

    Yun, Dongwon; Koo, Jeong-Hoi

    2017-05-01

    This paper presents a novel Magneto-rheological (MR) brake system that can self-regulate the output braking torques. The proposed MR brake can generate a braking torque at a critical rotation speed without an external power source, sensors, or controllers, making it a simple and cost-effective device. The brake system consists of a rotary disk, permanent magnets, springs, and MR fluid. The permanent magnets are attached to the rotary disk via the springs, and they move outward through grooves with two different gap distances along the radial direction of the stator due to the centrifugal force. Thus, the position of the magnets is dependent on the spin speed, and it can determine the magnetic fields applied to MR fluids. Proper design of the stator geometry gives the system unique torque characteristics. To show the performance of an MR brake system, the electromagnetic characteristics of the system are analyzed, and the torques generated by the brake are calculated using the result of the electromagnetic analysis. Using a baseline model, a parametric study is conducted to investigate how the design parameters (geometric shapes and material selection) affect the performance of the brake system. After the simulation study, a prototype brake system is constructed and its performance is experimentally evaluated. The experimental results show that the prototype produced the maximum torque of 1.2 N m at the rotational speed of 100 rpm. The results demonstrate the feasibility of the proposed MR brake as a speed regulator in rotating systems.

  16. Analyzing the installation angle error of a SAW torque sensor

    International Nuclear Information System (INIS)

    Fan, Yanping; Ji, Xiaojun; Cai, Ping

    2014-01-01

    When a torque is applied to a shaft, normal strain oriented at ±45° direction to the shaft axis is at its maximum, which requires two one-port SAW resonators to be bonded to the shaft at ±45° to the shaft axis. In order to make the SAW torque sensitivity high enough, the installation angle error of two SAW resonators must be confined within ±5° according to our design requirement. However, there are few studies devoted to the installation angle analysis of a SAW torque sensor presently and the angle error was usually obtained by a manual method. Hence, we propose an approximation method to analyze the angle error. First, according to the sensitive mechanism of the SAW device to torque, the SAW torque sensitivity is deduced based on the linear piezoelectric constitutive equation and the perturbation theory. Then, when a torque is applied to the tested shaft, the stress condition of two SAW resonators mounted with an angle deviating from ±45° to the shaft axis, is analyzed. The angle error is obtained by means of the torque sensitivities of two orthogonal SAW resonators. Finally, the torque measurement system is constructed and the loading and unloading experiments are performed twice. The torque sensitivities of two SAW resonators are obtained by applying average and least square method to the experimental results. Based on the derived angle error estimation function, the angle error is estimated about 3.447°, which is close to the actual angle error 2.915°. The difference between the estimated angle and the actual angle is discussed. The validity of the proposed angle error analysis method is testified to by the experimental results. (technical design note)

  17. Assessment of System Frequency Support Effect of PMSG-WTG Using Torque-Limit-Based Inertial Control: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao; Gao, Wenzhong; Wang, Jianhui; Wu, Ziping; Yan, Weihang; Gevorgian, Vahan; Zhang, Yingchen; Muljadi, Eduard; Kang, Moses; Hwang, Min; Kang, Yong Cheol

    2017-05-12

    To release the 'hidden inertia' of variable-speed wind turbines for temporary frequency support, a method of torque-limit-based inertial control is proposed in this paper. This method aims to improve the frequency support capability considering the maximum torque restriction of a permanent magnet synchronous generator. The advantages of the proposed method are improved frequency nadir (FN) in the event of an under-frequency disturbance; and avoidance of over-deceleration and a second frequency dip during the inertial response. The system frequency response is different, with different slope values in the power-speed plane when the inertial response is performed. The proposed method is evaluated in a modified three-machine, nine-bus system. The simulation results show that there is a trade-off between the recovery time and FN, such that a gradual slope tends to improve the FN and restrict the rate of change of frequency aggressively while causing an extension of the recovery time. These results provide insight into how to properly design such kinds of inertial control strategies for practical applications.

  18. Nonlinear decoupling of torque and field amplitude in an induction motor

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, H. [Aalborg University, Aalborg (Denmark); Vadstrup, P.; Boersting, H. [Grundfos A/S, Bjerringbro (Denmark)

    1997-12-31

    A novel approach to control of induction motors, based on nonlinear state feedback, is presented. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers for the field amplitude and the motor torque. The method is tested both by simulation and by experiments on a motor drive. (orig.) 12 refs.

  19. Torque Split Strategy for Parallel Hybrid Electric Vehicles with an Integrated Starter Generator

    OpenAIRE

    Fu, Zhumu; Gao, Aiyun; Wang, Xiaohong; Song, Xiaona

    2014-01-01

    This paper presents a torque split strategy for parallel hybrid electric vehicles with an integrated starter generator (ISG-PHEV) by using fuzzy logic control. By combining the efficiency map and the optimum torque curve of the internal combustion engine (ICE) with the state of charge (SOC) of the batteries, the torque split strategy is designed, which manages the ICE within its peak efficiency region. Taking the quantified ICE torque, the quantified SOC of the batteries, and the quantified I...

  20. Electron spin torque in atoms

    International Nuclear Information System (INIS)

    Hara, Takaaki; Senami, Masato; Tachibana, Akitomo

    2012-01-01

    The spin torque and zeta force, which govern spin dynamics, are studied by using monoatoms in their steady states. We find nonzero local spin torque in transition metal atoms, which is in balance with the counter torque, the zeta force. We show that d-orbital electrons have a crucial effect on these torques. Nonzero local chirality density in transition metal atoms is also found, though the electron mass has the effect to wash out nonzero chirality density. Distribution patterns of the chirality density are the same for Sc–Ni atoms, though the electron density distributions are different. -- Highlights: ► Nonzero local spin torque is found in the steady states of transition metal atoms. ► The spin steady state is realized by the existence of a counter torque, zeta force. ► D-orbital electrons have a crucial effect on the spin torque and zeta force. ► Nonzero local chiral density is found in spite of the washout by the electron mass. ► Chiral density distribution have the same pattern for Sc–Ni atoms.

  1. Torque And Speed in the Actuating of Mechatronic Systems, a Case Study

    Directory of Open Access Journals (Sweden)

    Constantin Paul Roman

    2015-12-01

    Full Text Available The paper presents a mechatronic system programmed and controlled by a PLC and inverter for driving an AC motor. Torque and speed for part of mechatronic systems depends of actuating source for cinematic structure. In our research, mechanical structure consists of an AC motor. A technique for setting and control of speed and torque is presented.

  2. To the Problem of Electromechanical Interaction in Elevators with Controlled Electric Drive and Fuzzy Speed Controller

    Directory of Open Access Journals (Sweden)

    A. S. Koval

    2010-01-01

    Full Text Available The paper considers problems concerning electromechanical interaction in elevators with an adjustable asynchronous electric drive equipped with the vector control systems under direct torque control and direct torque control with pulse-width modulator. A mathematical description of electromechanical elevator system with due account of nonlinearity of the worm gear is given in the paper. The paper presents a simplified circuit design of a control system with a fuzzy speed controller. It has been established that the factor of electromechanical interaction in electromechanical system with the adjustable asynchronous electric drive and an fuzzy speed controller is within the range which corresponds to existence of the essential electromechanical interaction.

  3. 40 CFR 1065.310 - Torque calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Torque calibration. 1065.310 Section... Conditions § 1065.310 Torque calibration. (a) Scope and frequency. Calibrate all torque-measurement systems including dynamometer torque measurement transducers and systems upon initial installation and after major...

  4. Improved Fuzzy Logic based DTC of Induction machine for wide range of speed control using AI based controllers

    Directory of Open Access Journals (Sweden)

    H. Sudheer

    2016-06-01

    Full Text Available This paper presents improvements in Direct Torque control of induction motor using Fuzzy logic switching controller (FDTC. The conventional DTC (CDTC and FDTC drive performance is compared using Conventional PI, Fuzzy controller and Neural Network controllers. The major disadvantages of CDTC are high torque and flux ripples in steady state operation of the drive, inferior performance at low speed operation and variable switching frequency. The presence of hysteresis bands is the major reason for high torque and flux ripples in CDTC. In FDTC the hysteresis band and switching table are replaced by Fuzzy logic switching controller. Using fuzzy logic torque, stator flux space are divided into smaller subsections which results in precise and optimal selection of switching state to meet load torque. In high performance drives accurate tuning of PI speed controller is required. The conventional PI controller cannot adapt to the variation in model parameters. Artificial intelligence based fuzzy controller and neural network controller are compared with PI controller for both CDTC and FDTC of Induction machine. The proposed schemes are developed in Matlab/Simulink environment. Simulation results shows reduction in torque and flux ripples in FDTC and dynamic performance of the drive at low speeds and sudden change in load torque can be improved using Fuzzy logic controller compared to PI and neural network controller.

  5. Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA

    Science.gov (United States)

    Oberstrass, Florian C.; Fernandes, Louis E.; Bryant, Zev

    2012-01-01

    B-DNA becomes unstable under superhelical stress and is able to adopt a wide range of alternative conformations including strand-separated DNA and Z-DNA. Localized sequence-dependent structural transitions are important for the regulation of biological processes such as DNA replication and transcription. To directly probe the effect of sequence on structural transitions driven by torque, we have measured the torsional response of a panel of DNA sequences using single molecule assays that employ nanosphere rotational probes to achieve high torque resolution. The responses of Z-forming d(pGpC)n sequences match our predictions based on a theoretical treatment of cooperative transitions in helical polymers. “Bubble” templates containing 50–100 bp mismatch regions show cooperative structural transitions similar to B-DNA, although less torque is required to disrupt strand–strand interactions. Our mechanical measurements, including direct characterization of the torsional rigidity of strand-separated DNA, establish a framework for quantitative predictions of the complex torsional response of arbitrary sequences in their biological context. PMID:22474350

  6. Spin Transfer Torque in Graphene

    Science.gov (United States)

    Lin, Chia-Ching; Chen, Zhihong

    2014-03-01

    Graphene is an idea channel material for spin transport due to its long spin diffusion length. To develop graphene based spin logic, it is important to demonstrate spin transfer torque in graphene. Here, we report the experimental measurement of spin transfer torque in graphene nonlocal spin valve devices. Assisted by a small external in-plane magnetic field, the magnetization reversal of the receiving magnet is induced by pure spin diffusion currents from the injector magnet. The magnetization switching is reversible between parallel and antiparallel configurations by controlling the polarity of the applied charged currents. Current induced heating and Oersted field from the nonlocal charge flow have also been excluded in this study. Next, we further enhance the spin angular momentum absorption at the interface of the receiving magnet and graphene channel by removing the tunneling barrier in the receiving magnet. The device with a tunneling barrier only at the injector magnet shows a comparable nonlocal spin valve signal but lower electrical noise. Moreover, in the same preset condition, the critical charge current density for spin torque in the single tunneling barrier device shows a substantial reduction if compared to the double tunneling barrier device.

  7. Installation Torque Tables for Noncritical Applications

    Science.gov (United States)

    Rivera-Rosario, Hazel T.; Powell, Joseph S.

    2017-01-01

    The objective of this project is to define torque values for bolts and screws when loading is not a concern. Fasteners require a certain torque to fulfill its function and prevent failure. NASA Glenn Research Center did not have a set of fastener torque tables for non-critical applications without loads, usually referring to hand-tight or wrench-tight torqueing. The project is based on two formulas, torque and pullout load. Torque values are calculated giving way to preliminary data tables. Testing is done to various bolts and metal plates, torqueing them until the point of failure. Around 640 torque tables were developed for UNC, UNF, and M fasteners. Different lengths of thread engagement were analyzed for the 5 most common materials used at GRC. The tables were put together in an Excel spreadsheet and then formatted into a Word document. The plan is to later convert this to an official technical publication or memorandum.

  8. Spin-orbit torques in locally and globally noncentrosymmetric crystals: Antiferromagnets and ferromagnets

    KAUST Repository

    Železný , J.; Gao, H.; Manchon, Aurelien; Freimuth, Frank; Mokrousov, Yuriy; Zemen, J.; Mašek, J.; Sinova, Jairo; Jungwirth, T.

    2017-01-01

    One of the main obstacles that prevents practical applications of antiferromagnets is the difficulty of manipulating the magnetic order parameter. Recently, following the theoretical prediction [J. Železný, Phys. Rev. Lett. 113, 157201 (2014)]PRLTAO0031-900710.1103/PhysRevLett.113.157201, the electrical switching of magnetic moments in an antiferromagnet was demonstrated [P. Wadley, Science 351, 587 (2016)]SCIEAS0036-807510.1126/science.aab1031. The switching is due to the so-called spin-orbit torque, which has been extensively studied in ferromagnets. In this phenomena a nonequilibrium spin-polarization exchange coupled to the ordered local moments is induced by current, hence exerting a torque on the order parameter. Here we give a general systematic analysis of the symmetry of the spin-orbit torque in locally and globally noncentrosymmetric crystals. We study when the symmetry allows for a nonzero torque, when is the torque effective, and its dependence on the applied current direction and orientation of magnetic moments. For comparison, we consider both antiferromagnetic and ferromagnetic orders. In two representative model crystals we perform microscopic calculations of the spin-orbit torque to illustrate its symmetry properties and to highlight conditions under which the spin-orbit torque can be efficient for manipulating antiferromagnetic moments.

  9. Spin-orbit torques in locally and globally noncentrosymmetric crystals: Antiferromagnets and ferromagnets

    KAUST Repository

    Železný, J.

    2017-01-10

    One of the main obstacles that prevents practical applications of antiferromagnets is the difficulty of manipulating the magnetic order parameter. Recently, following the theoretical prediction [J. Železný, Phys. Rev. Lett. 113, 157201 (2014)]PRLTAO0031-900710.1103/PhysRevLett.113.157201, the electrical switching of magnetic moments in an antiferromagnet was demonstrated [P. Wadley, Science 351, 587 (2016)]SCIEAS0036-807510.1126/science.aab1031. The switching is due to the so-called spin-orbit torque, which has been extensively studied in ferromagnets. In this phenomena a nonequilibrium spin-polarization exchange coupled to the ordered local moments is induced by current, hence exerting a torque on the order parameter. Here we give a general systematic analysis of the symmetry of the spin-orbit torque in locally and globally noncentrosymmetric crystals. We study when the symmetry allows for a nonzero torque, when is the torque effective, and its dependence on the applied current direction and orientation of magnetic moments. For comparison, we consider both antiferromagnetic and ferromagnetic orders. In two representative model crystals we perform microscopic calculations of the spin-orbit torque to illustrate its symmetry properties and to highlight conditions under which the spin-orbit torque can be efficient for manipulating antiferromagnetic moments.

  10. Equilibria of a charged artificial satellite subject to gravitational and Lorentz torques

    International Nuclear Information System (INIS)

    Abdel-Aziz, Yehia A.; Shoaib, Muhammad

    2014-01-01

    The attitude dynamics of a rigid artificial satellite subject to a gravity gradient and Lorentz torques in a circular orbit are considered. Lorentz torque is developed on the basis of the electrodynamic effects of the Lorentz force acting on the charged satellite's surface. We assume that the satellite is moving in a Low Earth Orbit in the geomagnetic field, which is considered to be a dipole. Our model of torque due to the Lorentz force is developed for an artificial satellite with a general shape, and the nonlinear differential equations of Euler are used to describe its attitude orientation. All equilibrium positions are determined and conditions for their existence are obtained. The numerical results show that the charge q and radius ρ 0 of the center of charge for the satellite provide a certain type of semi-passive control for the attitude of the satellite. The technique for this kind of control would be to increase or decrease the electrostatic screening on the satellite. The results obtained confirm that the change in charge can affect the magnitude of the Lorentz torque, which can also affect control of the satellite. Moreover, the relationship between magnitude of the Lorentz torque and inclination of the orbit is investigated. (research papers)

  11. Equilibria of a charged artificial satellite subject to gravitational and Lorentz torques

    Science.gov (United States)

    Abdel-Aziz, Yehia A.; Shoaib, Muhammad

    2014-07-01

    The attitude dynamics of a rigid artificial satellite subject to a gravity gradient and Lorentz torques in a circular orbit are considered. Lorentz torque is developed on the basis of the electrodynamic effects of the Lorentz force acting on the charged satellite's surface. We assume that the satellite is moving in a Low Earth Orbit in the geomagnetic field, which is considered to be a dipole. Our model of torque due to the Lorentz force is developed for an artificial satellite with a general shape, and the nonlinear differential equations of Euler are used to describe its attitude orientation. All equilibrium positions are determined and conditions for their existence are obtained. The numerical results show that the charge q and radius ρ0 of the center of charge for the satellite provide a certain type of semi-passive control for the attitude of the satellite. The technique for this kind of control would be to increase or decrease the electrostatic screening on the satellite. The results obtained confirm that the change in charge can affect the magnitude of the Lorentz torque, which can also affect control of the satellite. Moreover, the relationship between magnitude of the Lorentz torque and inclination of the orbit is investigated.

  12. 14 CFR 27.361 - Engine torque.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for maximum...

  13. Torque capability improvement of sensorless FOC induction machine in field weakening for propulsion purposes

    Directory of Open Access Journals (Sweden)

    Nisha G.K.

    2017-05-01

    Full Text Available An electric propulsion system is generally based on torque controlled electric drive and DC series motors are traditionally used for propulsion system. Induction machines, which are reliable, low cost and have less maintenance, satisfy the characteristics of the propulsion and reinstating the DC series motor. Field oriented control (FOC of induction machines can decouple its torque control from field control which allows the induction motor to act like a separately excited DC motor. In this paper, the characteristic control of induction motor is achieved through appropriate design modification of induction motor by varying magnetizing current to produce maximum torque in field weakening (FW region. Thus to improve the torque capability of induction machine in FW region by varying machine parameters. The sensorless operation of the induction motor is carried out by adopting model reference adaptive system (MRAS using sliding mode control (SMC and a FW algorithm based on the voltage and current constraints. The simulation of the induction motor drive models based on the design options have been carried out and analyzed the simulation results.

  14. Flicker Mitigation Strategy for a Doubly Fed Induction Generator by Torque Control

    DEFF Research Database (Denmark)

    Zhang, Yunqian; Hu, Weihao; Chen, Zhe

    2014-01-01

    induction generator is presented to investigate the flicker mitigation. Taking advantage of the large inertia of the wind turbine rotor, a generator torque control (GTC) strategy is proposed, so that the power oscillation is stored as the kinetic energy of the wind turbine rotor, thus the flicker emission...... is an effective means for flicker mitigation of variable speed wind turbines during continuous operation.......Owing to the rotational sampling of turbulence, wind shear and tower shadow effects grid connected variable speed wind turbines could lead to the power fluctuations which may produce flicker during continuous operation. A model of an megawatt (MW)-level variable speed wind turbine with a doubly fed...

  15. The Passive Series Stiffness That Optimizes Torque Tracking for a Lower-Limb Exoskeleton in Human Walking

    Directory of Open Access Journals (Sweden)

    Juanjuan Zhang

    2017-12-01

    Full Text Available This study uses theory and experiments to investigate the relationship between the passive stiffness of series elastic actuators and torque tracking performance in lower-limb exoskeletons during human walking. Through theoretical analysis with our simplified system model, we found that the optimal passive stiffness matches the slope of the desired torque-angle relationship. We also conjectured that a bandwidth limit resulted in a maximum rate of change in torque error that can be commanded through control input, which is fixed across desired and passive stiffness conditions. This led to hypotheses about the interactions among optimal control gains, passive stiffness and desired quasi-stiffness. Walking experiments were conducted with multiple angle-based desired torque curves. The observed lowest torque tracking errors identified for each combination of desired and passive stiffnesses were shown to be linearly proportional to the magnitude of the difference between the two stiffnesses. The proportional gains corresponding to the lowest observed errors were seen inversely proportional to passive stiffness values and to desired stiffness. These findings supported our hypotheses, and provide guidance to application-specific hardware customization as well as controller design for torque-controlled robotic legged locomotion.

  16. Stability analysis of perpendicular magnetic trilayers with a field-like spin torque

    International Nuclear Information System (INIS)

    Wang, Ri-Xing; Zhao, Jing-Li; He, Peng-Bin; Gu, Guan-Nan; Li, Zai-Dong; Pan, An-Lian; Liu, Quan-Hui

    2013-01-01

    We have analytically studied the magnetization dynamics in magnetic trilayers with perpendicular anisotropy for both free and pinned layers. By linear stability analysis, we obtain the phase diagram parameterized by the current, magnetic field and relative strength of the field-like spin torque to Slonczewski torque. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out-of-plane precession, and bistable states can be realized. The precession frequency can be expressed as a function of the current and external magnetic field. In addition, the presence of field-like spin torque can change the switching current and precession frequency. - Highlights: ► The phase diagram is obtained by linear stability analysis. ► The precession frequency can be controlled by the current and magnetic field. ► Field-like spin torque can change instability current and precession frequency.

  17. Coulomb torque - a general theory for electrostatic forces in many-body systems

    International Nuclear Information System (INIS)

    Khachatourian, Armik V M; Wistrom, Anders O

    2003-01-01

    In static experiments that comprise three conducting spheres suspended by torsion wires and held at constant electric potential, a net angular displacement about their centres has been observed. We demonstrate that the observed rotation is consistent with Coulomb's law of electrical forces complemented by Gauss' surface integrals for electrical potential. Analysis demonstrates that electrostatic torque is the result of electrostatic forces acting on an asymmetric distribution of charges residing on the surfaces of the spheres. The asymptotic value for electrostatic torque is proportional to the inverse of the fourth power of separation distance with the rotation direction, up or down taken perpendicular to a plane passing through sphere centres, given explicitly by the equation for torque. The identification of electrostatic torque prompts further analysis of models of matter at all size scales where electrostatic forces are the dominant operative force

  18. Coulomb torque - a general theory for electrostatic forces in many-body systems

    CERN Document Server

    Khachaturian, A V M

    2003-01-01

    In static experiments that comprise three conducting spheres suspended by torsion wires and held at constant electric potential, a net angular displacement about their centres has been observed. We demonstrate that the observed rotation is consistent with Coulomb's law of electrical forces complemented by Gauss' surface integrals for electrical potential. Analysis demonstrates that electrostatic torque is the result of electrostatic forces acting on an asymmetric distribution of charges residing on the surfaces of the spheres. The asymptotic value for electrostatic torque is proportional to the inverse of the fourth power of separation distance with the rotation direction, up or down taken perpendicular to a plane passing through sphere centres, given explicitly by the equation for torque. The identification of electrostatic torque prompts further analysis of models of matter at all size scales where electrostatic forces are the dominant operative force.

  19. Damping Torsional Torques in Turbine-Generator Shaft by Novel PSS Based on Genetic Algorithm and Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Abbas Shoulaie

    2010-07-01

    Full Text Available Torsional torques on turbine-generator shaft which are yields of disturbances in power systems, can reduce the useful lifetime of shaft. In this paper, these oscillations will be damped and controlled by novel Power System Stabilizers (PSSs. Complex PSS which is used in this paper will act on the excitation system in generator set and also on the controller of in High Voltage Direct Current (HVDC system. This PSS uses three terms (generator angle deviation, frequency oscillation and capacitor voltage deviation in HVDC system of the study system which includes two ties AC and DC. This is the reason that this PSS is named novel one against the conventional PSSs. In order to adjust the PSS parameters to damp the oscillations, genetic algorithm is used. To improve the application of this PSS, fuzzy logic control methods are also used which has notable effect on controlling the oscillations in study system. The simulation results show the effectiveness of designed PSS in controlling the torsional torques in turbine-generator shaft.

  20. Measurements of Inertial Torques on Sedimenting Fibers

    Science.gov (United States)

    Hamati, Rami; Roy, Anubhab; Koch, Don; Voth, Greg

    2017-11-01

    Stokes flow solutions predict that ellipsoids sedimenting in quiescent fluid keep their initial orientation. However, preferential alignment in low Reynolds number sedimentation is easily observed. For example, sun dogs form from alignment of sedimenting ice crystals. The cause of this preferential alignment is a torque due to non-zero fluid inertia that aligns particles with a long axis in the horizontal direction. These torques are predicted analytically for slender fibers with low Reynolds number based on the fiber diameter (ReD) by Khayat and Cox (JFM 209:435, 1989). Despite increasingly widespread use of these expressions, we did not find experimental measurements of these inertial torques at parameters where the theory was valid, so we performed a set of sedimentation experiments using fore-aft symmetric cylinders and asymmetric cylinders with their center of mass offset from their center of drag. Measured rotation rates as a function of orientation using carefully prepared glass capillaries in silicon oil show good agreement with the theory. We quantify the effect of finite tank size and compare with other experiments in water where the low ReD condition is not met. Supported by Army Research Office Grant W911NF1510205.

  1. Electromagnetic forces and torques in nanoparticles irradiated by plane waves

    International Nuclear Information System (INIS)

    Garcia de Abajo, F.J.

    2004-01-01

    Optical tweezers and optical lattices are making it possible to control small particles by means of electromagnetic forces and torques. In this context, a method is presented in this work to calculate electromagnetic forces and torques for arbitrarily-shaped objects in the presence of other objects illuminated by a plane wave. The method is based upon an expansion of the electromagnetic field in terms of multipoles around each object, which are in turn used to derive forces and torques analytically. The calculation of multipole coefficients are obtained numerically by means of the boundary element method. Results are presented for both spherical and non-spherical objects

  2. Improvement of Torque Production in Single-Phase Induction Motors

    African Journals Online (AJOL)

    OLUWASOGO

    PID controller. Simulation results show the starting torque of the motor increased by 75% under the developed drive .... The model equations of the capacitor-run single phase induction .... process using the MATLAB pidtool command (Control.

  3. Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation

    Science.gov (United States)

    Hayashibe, Mitsuhiro; Zhang, Qin; Guiraud, David; Fattal, Charles

    2011-10-01

    In patients with complete spinal cord injury, fatigue occurs rapidly and there is no proprioceptive feedback regarding the current muscle condition. Therefore, it is essential to monitor the muscle state and assess the expected muscle response to improve the current FES system toward adaptive force/torque control in the presence of muscle fatigue. Our team implanted neural and epimysial electrodes in a complete paraplegic patient in 1999. We carried out a case study, in the specific case of implanted stimulation, in order to verify the corresponding torque prediction based on stimulus evoked EMG (eEMG) when muscle fatigue is occurring during electrical stimulation. Indeed, in implanted stimulation, the relationship between stimulation parameters and output torques is more stable than external stimulation in which the electrode location strongly affects the quality of the recruitment. Thus, the assumption that changes in the stimulation-torque relationship would be mainly due to muscle fatigue can be made reasonably. The eEMG was proved to be correlated to the generated torque during the continuous stimulation while the frequency of eEMG also decreased during fatigue. The median frequency showed a similar variation trend to the mean absolute value of eEMG. Torque prediction during fatigue-inducing tests was performed based on eEMG in model cross-validation where the model was identified using recruitment test data. The torque prediction, apart from the potentiation period, showed acceptable tracking performances that would enable us to perform adaptive closed-loop control through implanted neural stimulation in the future.

  4. Torque Characteristic Analysis of a Transverse Flux Motor Using a Combined-Type Stator Core

    Directory of Open Access Journals (Sweden)

    Xiaobao Yang

    2016-11-01

    Full Text Available An external rotor transverse flux motor using a combined-type stator core is proposed for a direct drive application in this paper. The stator core is combined by two kinds of components that can both be manufactured conveniently by generic laminated silicon steel used in traditional motors. The motor benefits from the predominance of low manufacturing cost and low iron loss by using a silicon-steel sheet. Firstly, the basic structure and operation principles of the proposed motor are introduced. Secondly, the expressions of the electromagnetic torque and the cogging torque are deduced by theoretical analysis. Thirdly, the basic characteristics such as permanent magnet flux linkage, no-load back electromotive force, cogging torque and electromagnetic torque are analyzed by a three-dimensional finite element method (3D FEM. Then, the influence of structure parameters on the torque density is investigated, which provides a useful foundation for optimum design of the novel motor. Finally, the torque density of the proposed motor is calculated and discussed, and the result shows that the proposed motor in this paper can provide considerable torque density by using few permanent magnets.

  5. A Computational Model of Torque Generation: Neural, Contractile, Metabolic and Musculoskeletal Components

    Science.gov (United States)

    Callahan, Damien M.; Umberger, Brian R.; Kent-Braun, Jane A.

    2013-01-01

    The pathway of voluntary joint torque production includes motor neuron recruitment and rate-coding, sarcolemmal depolarization and calcium release by the sarcoplasmic reticulum, force generation by motor proteins within skeletal muscle, and force transmission by tendon across the joint. The direct source of energetic support for this process is ATP hydrolysis. It is possible to examine portions of this physiologic pathway using various in vivo and in vitro techniques, but an integrated view of the multiple processes that ultimately impact joint torque remains elusive. To address this gap, we present a comprehensive computational model of the combined neuromuscular and musculoskeletal systems that includes novel components related to intracellular bioenergetics function. Components representing excitatory drive, muscle activation, force generation, metabolic perturbations, and torque production during voluntary human ankle dorsiflexion were constructed, using a combination of experimentally-derived data and literature values. Simulation results were validated by comparison with torque and metabolic data obtained in vivo. The model successfully predicted peak and submaximal voluntary and electrically-elicited torque output, and accurately simulated the metabolic perturbations associated with voluntary contractions. This novel, comprehensive model could be used to better understand impact of global effectors such as age and disease on various components of the neuromuscular system, and ultimately, voluntary torque output. PMID:23405245

  6. Speed, not magnitude, of knee extensor torque production is associated with self-reported knee function early after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Hsieh, Chao-Jung; Indelicato, Peter A; Moser, Michael W; Vandenborne, Krista; Chmielewski, Terese L

    2015-11-01

    To examine the magnitude and speed of knee extensor torque production at the initiation of advanced anterior cruciate ligament (ACL) reconstruction rehabilitation and the associations with self-reported knee function. Twenty-eight subjects who were 12 weeks post-ACL reconstruction and 28 age- and sex-matched physically active controls participated in this study. Knee extensor torque was assessed bilaterally with an isokinetic dynamometer at 60°/s. The variables of interest were peak torque, average rate of torque development, time to peak torque and quadriceps symmetry index. Knee function was assessed with the International Knee Documentation Committee Subjective Knee Form (IKDC-SKF). Peak torque and average rate of torque development were lower on the surgical side compared to the non-surgical side and controls. Quadriceps symmetry index was lower in subjects with ACL reconstruction compared to controls. On the surgical side, average rate of torque development was positively correlated with IKDC-SKF score (r = 0.379) while time to peak torque was negatively correlated with IKDC-SKF score (r = -0.407). At the initiation of advanced ACL reconstruction rehabilitation, the surgical side displayed deficits in peak torque and average rate of torque development. A higher rate of torque development and shorter time to peak torque were associated with better self-reported knee function. The results suggest that the rate of torque development should be addressed during advanced ACL reconstruction rehabilitation and faster knee extensor torque generation may lead to better knee function. III.

  7. UNIFIED CONTROL STRUCTURE OF MULTI-TYPE INTERIOR PERMANENT MAGNET MOTOR

    Directory of Open Access Journals (Sweden)

    M. NORHISAM

    2015-03-01

    Full Text Available This paper presents the control strategy structure to extract the speed torque characteristic for the newly designed three phase Multi Type Interior Permanent Magnet Motor. The proposed structure with the driving circuits exhibit the performance of torque characteristics of the stepper motor and brushless motor with independent coil winding per phase especially used as an in-wheel motor in agricultural applications. Brushless Direct Current motors exhibit characteristics of generating high torque at high speed while the Permanent Magnet Stepper motors has characteristic of generating high torque at low speed. The typical characteristics of the above two are integrated in the proposed structure with a complex control structure that handle the switching complexity and speed control in real time. Thus, a specially designed driving system is essential to drive and control this special motor. The evaluation of the motor mechanical characteristics when applying load torque is also presented. The result determines the practical torque range applicable for each motor configuration and as combined machine.

  8. EMG-Torque correction on Human Upper extremity using Evolutionary Computation

    Science.gov (United States)

    JL, Veronica; Parasuraman, S.; Khan, M. K. A. Ahamed; Jeba DSingh, Kingsly

    2016-09-01

    There have been many studies indicating that control system of rehabilitative robot plays an important role in determining the outcome of the therapy process. Existing works have done the prediction of feedback signal in the controller based on the kinematics parameters and EMG readings of upper limb's skeletal system. Kinematics and kinetics based control signal system is developed by reading the output of the sensors such as position sensor, orientation sensor and F/T (Force/Torque) sensor and there readings are to be compared with the preceding measurement to decide on the amount of assistive force. There are also other works that incorporated the kinematics parameters to calculate the kinetics parameters via formulation and pre-defined assumptions. Nevertheless, these types of control signals analyze the movement of the upper limb only based on the movement of the upper joints. They do not anticipate the possibility of muscle plasticity. The focus of the paper is to make use of the kinematics parameters and EMG readings of skeletal system to predict the individual torque of upper extremity's joints. The surface EMG signals are fed into different mathematical models so that these data can be trained through Genetic Algorithm (GA) to find the best correlation between EMG signals and torques acting on the upper limb's joints. The estimated torque attained from the mathematical models is called simulated output. The simulated output will then be compared with the actual individual joint which is calculated based on the real time kinematics parameters of the upper movement of the skeleton when the muscle cells are activated. The findings from this contribution are extended into the development of the active control signal based controller for rehabilitation robot.

  9. Resistive wall tearing mode generated finite net electromagnetic torque in a static plasma

    International Nuclear Information System (INIS)

    Hao, G. Z.; Wang, A. K.; Xu, M.; Qu, H. P.; Peng, X. D.; Wang, Z. H.; Xu, J. Q.; Qiu, X. M.; Liu, Y. Q.

    2014-01-01

    The MARS-F code [Y. Q. Liu et al., Phys. Plasmas 7, 3681 (2000)] is applied to numerically investigate the effect of the plasma pressure on the tearing mode stability as well as the tearing mode-induced electromagnetic torque, in the presence of a resistive wall. The tearing mode with a complex eigenvalue, resulted from the favorable averaged curvature effect [A. H. Glasser et al., Phys. Fluids 18, 875 (1975)], leads to a re-distribution of the electromagnetic torque with multiple peaking in the immediate vicinity of the resistive layer. The multiple peaking is often caused by the sound wave resonances. In the presence of a resistive wall surrounding the plasma, a rotating tearing mode can generate a finite net electromagnetic torque acting on the static plasma column. Meanwhile, an equal but opposite torque is generated in the resistive wall, thus conserving the total momentum of the whole plasma-wall system. The direction of the net torque on the plasma is always opposite to the real frequency of the mode, agreeing with the analytic result by Pustovitov [Nucl. Fusion 47, 1583 (2007)]. When the wall time is close to the oscillating time of the tearing mode, the finite net torque reaches its maximum. Without wall or with an ideal wall, no net torque on the static plasma is generated by the tearing mode. However, re-distribution of the torque density in the resistive layer still occurs

  10. Measuring the uncertainty of tapping torque

    DEFF Research Database (Denmark)

    Belluco, Walter; De Chiffre, Leonardo

    An uncertainty budget is carried out for torque measurements performed at the Institut for Procesteknik for the evaluation of cutting fluids. Thirty test blanks were machined with one tool and one fluid, torque diagrams were recorded and the repeatability of single torque measurements was estimat...

  11. Use of Mixer Torque Rheometer to Clarify the Relationship between the Kneading States of Wet Mass and the Dissolution of Final Product in High Shear Granulation.

    Science.gov (United States)

    Otsuka, Tomoko; Kuroiwa, Yosuke; Sato, Kazunari; Yamashita, Kazunari; Hakomori, Tadashi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-01-01

    The properties of wet mass, which indicate the progress of high shear granulation processes, usually have an effect on final product properties, such as tablet dissolution. The mixer torque rheometer (MTR) is a useful tool for quantitatively measuring the 'kneading state' of wet mass and detecting differences in granules. However, there have been no studies of the relationship between the MTR torque and the final product properties to date. In this study, we measured the MTR torque of wet granules at different kneading states, which were prepared by changing the granulation conditions. We then evaluated the relationship between the MTR torque and the dissolution rate of the final product properties. The amperage of the high shear granulator is usually monitored during granulation, but we could not detect a difference in the kneading state through the amperage. However, using MTR torque we were able to quantify the difference of the wet mass. Moreover, MTR torque showed a high correlation with dissolution, compared with the correlations with other intermediate properties, such as granules particle size and tablet hardness. These other properties are affected by following processes and are not properties that directly relate to the kneading state. Thus, MTR torque is a property of wet mass after granulation, and it can be used to directly evaluate differences of the kneading state, and as a result, dissolution. These results indicate the importance of controlling the kneading state, i.e., the progress of granulation, and the utility of MTR for detecting differences in wet mass.

  12. Effect of axial tibial torque direction on ACL relative strain and strain rate in an in vitro simulated pivot landing.

    Science.gov (United States)

    Oh, Youkeun K; Kreinbrink, Jennifer L; Wojtys, Edward M; Ashton-Miller, James A

    2012-04-01

    Anterior cruciate ligament (ACL) injuries most frequently occur under the large loads associated with a unipedal jump landing involving a cutting or pivoting maneuver. We tested the hypotheses that internal tibial torque would increase the anteromedial (AM) bundle ACL relative strain and strain rate more than would the corresponding external tibial torque under the large impulsive loads associated with such landing maneuvers. Twelve cadaveric female knees [mean (SD) age: 65.0 (10.5) years] were tested. Pretensioned quadriceps, hamstring, and gastrocnemius muscle-tendon unit forces maintained an initial knee flexion angle of 15°. A compound impulsive test load (compression, flexion moment, and internal or external tibial torque) was applied to the distal tibia while recording the 3D knee loads and tibofemoral kinematics. AM-ACL relative strain was measured using a 3 mm DVRT. In this repeated measures experiment, the Wilcoxon signed-rank test was used to test the null hypotheses with p < 0.05 considered significant. The mean (±SD) peak AM-ACL relative strains were 5.4 ± 3.7% and 3.1 ± 2.8% under internal and external tibial torque, respectively. The corresponding mean (± SD) peak AM-ACL strain rates reached 254.4 ± 160.1%/s and 179.4 ± 109.9%/s, respectively. The hypotheses were supported in that the normalized mean peak AM-ACL relative strain and strain rate were 70 and 42% greater under internal than under external tibial torque, respectively (p = 0.023, p = 0.041). We conclude that internal tibial torque is a potent stressor of the ACL because it induces a considerably (70%) larger peak strain in the AM-ACL than does a corresponding external tibial torque. Copyright © 2011 Orthopaedic Research Society.

  13. Torque vectoring for improving stability of small electric vehicles

    Science.gov (United States)

    Grzegożek, W.; Weigel-Milleret, K.

    2016-09-01

    The electric vehicles solutions based on the individually controlled electric motors propel a single wheel allow to improve the dynamic properties of the vehicle by varying the distribution of the driving torque. Most of the literature refer to the vehicles with a track typical for passenger cars. This paper examines whether the narrow vehicle (with a very small track) torque vectoring bring a noticeable change of the understeer characteristics and whether torque vectoring is possible to use in securing a narrow vehicle from roll over (roll mitigation). The paper contains road tests of the steering characteristics (steady state understeer characteristic quasi-static acceleration with a fixed steering wheel (SH = const) and on the constant radius track (R = const)) of the narrow vehicle. The vehicle understeer characteristic as a function of a power distribution is presented.

  14. Analysis of the torque capacity of a completely customized lingual appliance of the next generation

    Science.gov (United States)

    2014-01-01

    Introduction In lingual orthodontic therapy, effective torque control of the incisors is crucial due to the biomechanical particularities associated with the point of force application and the tight link between third order deviations and vertical tooth position. Aim The aim of the present in vitro investigation was to analyze the torque capacity of a completely customized lingual appliance of the next generation (WIN) in combination with different finishing archwire dimensions. Methods Using a typodont of the upper arch carrying the WIN appliance, slot filling and undersized individualized β-titanium archwires were engaged. Horizontal forces ranging from 0 to 100 cN were applied at the central incisor by means of spring gauges. The resulting angular deviations were recorded and the corresponding torque moments were calculated. Results For fullsize archwires (0.018”×0.018” β-titanium and 0.018”×0.025” β-titanium), an initial torque play of 0-2° had to be overcome prior to the development of an effective torque moment. Thereafter, a linear correlation between torque angle and torque moment developed for both archwire dimensions with steeper slopes calculated for the specimens with the larger dimension. A torque moment of 2 Nmm required for effective torque correction was noted after a minimum of 2-3° of twist for the 0.018”×0.018” β-titanium wires as compared to 2-4° for the 0.018”×0.025” β-titanium study sample. When undersized archwires were analyzed (0.0175”×0.0175” β-titanium), the measured torque play ranged from 5-7°. After 8-12° of torque angle, the threshold of 2 Nmm was reached. A linear relationship between twist angle and torque moment in which the steepness of the slopes was generally flatter than the ones calculated for the slot filling archwires was noted. Conclusions Given the high precision of the bracket slot-archwire-combination provided with the WIN appliance, an effective torque control can be clinically

  15. Tremor irregularity, torque steadiness and rate of force development in Parkinson's disease

    DEFF Research Database (Denmark)

    Rose, Martin Høyer; Løkkegaard, Annemette; Sonne-Holm, Stig

    2013-01-01

    with idiopathic PD and 15 neurologically healthy matched controls performed isometric maximal contractions (extension/flexion) as well as steady submaximal and powerful isometric knee extensions. The patients with PD showed decreased isometric tremor irregularity. Torque steadiness was reduced in PD...... that both knee isometric tremor Approximate Entropy and torque steadiness clearly differentiate between patients with PD and healthy controls. Furthermore, severely compromised RFD was found in patients with PD and was associated with decreased agonist muscle activation....

  16. On-Ground Attitude and Torque Reconstruction tor the Gaia Mission

    OpenAIRE

    Samaan, Malak; Theil, Stephan

    2008-01-01

    The work presented in this paper concerns the accurate On-Ground Attitude (OGA) reconstruction for the astrometry spacecraft Gaia in the presence of disturbance and control torques acting on the spacecraft. The reconstruction of the expected environmental torques which influence the spacecraft dynamics will be also investigated. The telemetry data from the spacecraft will include the on-board real time attitude which is of order of several arcsec. This raw attitude is the starting point...

  17. Regularity in an environment produces an internal torque pattern for biped balance control.

    Science.gov (United States)

    Ito, Satoshi; Kawasaki, Haruhisa

    2005-04-01

    In this paper, we present a control method for achieving biped static balance under unknown periodic external forces whose periods are only known. In order to maintain static balance adaptively in an uncertain environment, it is essential to have information on the ground reaction forces. However, when the biped is exposed to a steady environment that provides an external force periodically, uncertain factors on the regularity with respect to a steady environment are gradually clarified using learning process, and finally a torque pattern for balancing motion is acquired. Consequently, static balance is maintained without feedback from ground reaction forces and achieved in a feedforward manner.

  18. Development of a Portable Torque Wrench Tester

    Science.gov (United States)

    Wang, Y.; Zhang, Q.; Gou, C.; Su, D.

    2018-03-01

    A portable torque wrench tester (PTWT) with calibration range from 0.5 Nm to 60 Nm has been developed and evaluated for periodic or on-site calibration of setting type torque wrenches, indicating type torque wrenches and hand torque screwdrivers. The PTWT is easy to carry with weight about 10 kg, simple and efficient operation and energy saving with an automatic loading and calibrating system. The relative expanded uncertainty of torque realized by the PTWT was estimated to be 0.8%, with the coverage factor k=2. A comparison experiment has been done between the PTWT and a reference torque standard at our laboratory. The consistency between these two devices under the claimed uncertainties was verified.

  19. Fuel economy and torque tracking in camless engines through optimization of neural networks

    International Nuclear Information System (INIS)

    Ashhab, Moh'd Sami S.

    2008-01-01

    The feed forward controller of a camless internal combustion engine is modeled by inverting a multi-input multi-output feed forward artificial neural network (ANN) model of the engine. The engine outputs, pumping loss and cylinder air charge, are related to the inputs, intake valve lift and closing timing, by the artificial neural network model, which is trained with historical input-output data. The controller selects the intake valve lift and closing timing that will mimimize the pumping loss and achieve engine torque tracking. Lower pumping loss means better fuel economy, whereas engine torque tracking gurantees the driver's torque demand. The inversion of the ANN is performed with the complex method constrained optimization. How the camless engine inverse controller can be augmented with adaptive techniques to maintain accuracy even when the engine parts degrade is discussed. The simulation results demonstrate the effectiveness of the developed camless engine controller

  20. 14 CFR 23.361 - Engine torque.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 23.361 Section 23.361... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque corresponding to takeoff power and propeller speed acting simultaneously with...

  1. 14 CFR 25.361 - Engine torque.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 25.361 Section 25.361... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Supplementary Conditions § 25.361 Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque...

  2. "Active Flux" DTFC-SVM Sensorless Control of IPMSM

    DEFF Research Database (Denmark)

    Boldea, Ion; Codruta Paicu, Mihaela; Gheorghe-Daniel, Andreescu,

    2009-01-01

    This paper proposes an implementation of a motionsensorless control system in wide speed range based on "active flux" observer, and direct torque and flux control with space vector modulation (DTFC-SVM) for the interior permanent magnet synchronous motor (IPMSM), without signal injection....... The concept of "active flux" (or "torque producing flux") turns all the rotor salient-pole ac machines into fully nonsalient-pole ones. A new function for Lq inductance depending on torque is introduced to model the magnetic saturation. Notable simplification in the rotor position and speed estimation...

  3. A dynamic method for magnetic torque measurement

    Science.gov (United States)

    Lin, C. E.; Jou, H. L.

    1994-01-01

    In a magnetic suspension system, accurate force measurement will result in better control performance in the test section, especially when a wider range of operation is required. Although many useful methods were developed to obtain the desired model, however, significant error is inevitable since the magnetic field distribution of the large-gap magnetic suspension system is extremely nonlinear. This paper proposed an easy approach to measure the magnetic torque of a magnetic suspension system using an angular photo encoder. Through the measurement of the velocity change data, the magnetic torque is converted. The proposed idea is described and implemented to obtain the desired data. It is useful to the calculation of a magnetic force in the magnetic suspension system.

  4. Minimization of cogging torque in permanent magnet motors by teeth pairing and magnet arc design using genetic algorithm

    International Nuclear Information System (INIS)

    Eom, J.-B.; Hwang, S.-M.; Kim, T.-J.; Jeong, W.-B.; Kang, B.-S.

    2001-01-01

    Cogging torque is often a principal source of vibration and acoustic noise in high precision spindle motor applications. In this paper, cogging torque is analytically calculated using energy method with Fourier series expansion. It shows that cogging torque is effectively minimized by controlling airgap permeance function with teeth pairing design, and by controlling flux density function with magnet arc design. For an optimization technique, genetic algorithm is applied to handle trade-off effects of design parameters. Results show that the proposed method can reduce the cogging torque effectively

  5. Experiments of steady state head and torque of centrifugal pumps in two-phase flow

    International Nuclear Information System (INIS)

    Minato, Akihiko; Tominaga, Kenji.

    1988-01-01

    Circulation pump behavior has large effect on coolant discharge flow rate in case of reactor pipe break. Experiment of two-phase pump performance was conducted as a joint study of Japanese BWR user utilities and makers. Two-phase head and torque of three centrifugal pumps in high temperature and high pressure (around 6 MPa) steam/water were measured. Head was decreased from single-phase characteristics when gas was mixed in liquid flow in condition with normal flow and normal rotation directions. When flow rate was large enough, two-phase head was about the same as single-phase one in reversal flow conditions. Two-phase head was smoothly increased as flowing steam volumetic concentration increased when flow rate was small and flow direction was reversal. Changes of torque with gas concentration were correspondent to those of head. This suggested that changes of interaction between flow and impellers due to phase slip effected on torque which caused head differences between single- and two-phase flows. Dependence of dimensionless head and torque of three test pumps on steam concentration were almost the same as each other. (author)

  6. Control Performance of General Electric Fuel and Torque Regulator Operating on T31-3 Turbine-Propeller Engine in Sea-Level Test Stand

    Science.gov (United States)

    Oppenheimer, Frank L.; Lazar, James

    1951-01-01

    A .General Electric fuel and torque regulator was tested in conjunction with a T31-3 turbine-propeller engine in the sea-level static test stand at the NACA Lewis laboratory. The engine and control were operated over the entire speed range: 11,000 rpm, nominal flight idle, to 13,000 rpm, full power. Steady-state and transient data were recorded and are presented with a description of the four control loops being used in the system. Results of this investigation indicated that single-lever control operation was satisfactory under conditions of test. Transient data presented showed that turbine-outlet temperature did overshoot maximum operating value on acceleration but that the time duration of overshoot did not exceed approximately 1 second. This temperature limiting resulted from a control on fuel flow as a function of engine speed. Speed and torque first reached their desired values 0.4 second from the time of change in power-setting lever position. Maximum speed overshoot was 3 percent.

  7. 14 CFR 29.361 - Engine torque.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1) The...

  8. TRAINING-INDUCED CHANGES IN THE TOPOGRAPHY OF MUSCLE TORQUES AND MAXIMAL MUSCLE TORQUES IN BASKETBALL PLAYERS

    Directory of Open Access Journals (Sweden)

    Krzysztof Buśko

    2012-01-01

    Full Text Available The aim of the study was to detect changes in the maximal muscle torques in male basketball players during a two-year training cycle. We verified the hypothesis that different workloads applied during the preparation and competition periods would result in changes in the maximal muscle torques of the athletes (increase during the former and decrease or no change during the latter period accompanied by no alteration of the percent muscle topography of all the muscle groups tested. The examinations were conducted on nine senior male basketball players from the Polish national team. Estimations of the muscle torques in static conditions were performed at the end of the preparation (measurements I and III and competition (measurements II and IV periods of a two-year training cycle. Eleven muscle groups were studied including flexors and extensors of the trunk and flexors and extensors of the shoulder, the elbow, the hip, the knee, and the ankle. Muscle torques of the shoulder and the elbow insignificantly decreased except for the muscle torque of the flexors of the shoulder. Muscle torques of the flexors and extensors of the trunk as well as of the flexors and extensors of the hip, the knee, and the ankle increased between measurements I and III and between measurements I and IV with the only exception being the muscle torque of the flexors of the knee (which significantly decreased by 7.4% In the case of the flexors and extensors of the trunk and the flexors and extensors of the hip, the changes appeared to be significant. The sum of the muscle torques of the upper limbs markedly decreased between the preparation (measurement I and competition (measurement IV periods. The sum of the muscle torques of the trunk and the lower limbs and the sum of the muscle torques of the eleven muscle groups significantly increased between measurements I and IV. Percent muscle topography significantly decreased for the flexors and extensors of the shoulder and the

  9. Functional shoulder ratios with high velocities of shoulder internal rotation are most sensitive to determine shoulder rotation torque imbalance: a cross-sectional study with elite handball players and controls.

    Science.gov (United States)

    Castro, Marcelo Peduzzi de; Fonseca, Pedro; Morais, Sara Tribuzi; Borgonovo-Santos, Márcio; Coelho, Eduardo Filipe Cruz; Ribeiro, Daniel Cury; Vilas-Boas, João Paulo

    2017-12-04

    The aim of the present study was to determine which approach to calculating shoulder ratios is the most sensitive for determining shoulder torque imbalance in handball players. Twenty-six participants (handball athletes, n = 13; healthy controls, n = 13) performed isokinetic concentric and eccentric shoulder internal rotation (IR) and external rotation (ER) assessment at 60, 180 and 300°/s. We used eight approaches to calculating shoulder ratios: four concentric (i.e. concentric ER torque divided by concentric IR torque), and four functional (i.e. eccentric ER torque divided by concentric IR torque) at the velocities of 60, 180 and 300°/s for both IR and ER, and combining 60°/s of ER and 300°/s of IR. A three factorial ANOVA (factors: shoulder ratios, upper limb sides, and groups) along with Tukey's post-hoc analysis, and effect sizes were calculated. The findings suggested the functional shoulder ratio combining 60°/s of ER and 300°/s of IR is the most sensitive to detect differences between upper limbs for handball players, and between players and controls for the dominant side. The functional shoulder ratio combining 60°/s of ER with 300°/s of IR seems to present advantages over the other approaches for identifying upper limb asymmetries and differences in shoulder torque balance related to throwing.

  10. Influence of Control Structures and Load Parameters on Performance of a Pseudo Direct Drive

    Directory of Open Access Journals (Sweden)

    Mohammed Bouheraoua

    2014-07-01

    Full Text Available The paper describes an in-depth and systematic analysis of a pseudo direct drive permanent magnet machine in closed loop control. Due to the torque being transmitted from the high-speed rotor (HSR to the low-speed rotor (LSR, through a relatively low stiffness magnetic gear with non-linear characteristics, speed oscillations appear in the drive output with a conventional proportional integral (PI controller. Therefore two candidate controllers have been proposed as an alternative to the PI control and all controllers have been optimally tuned with a genetic algorithm against a defined criterion. Furthermore, closed loop models are established in the complex frequency domain to determine the system damping and the cause of the oscillations. Consequently, the best controller structure that improves the dynamic behaviour of the system in terms of speed tracking and disturbance rejection could be identified, based on the frequency domain analysis. Experimental results are presented to validate the analysis and the proposed control technique.

  11. Speed Control of Matrix Converter-Fed Five-Phase Permanent Magnet Synchronous Motors under Unbalanced Voltages

    Directory of Open Access Journals (Sweden)

    Borzou Yousefi

    2017-09-01

    Full Text Available Five-phase permanent magnet synchronous motors (PMSM have special applications in which highly accurate speed and torque control of the motor are a strong requirement. Direct Torque Control (DTC is a suitable method for the driver structure of these motors. If in this method, instead of using a common five-phase voltage source inverter, a three-phase to five-phase matrix converter is used, the low-frequency current harmonics and the high torque ripple are limited, and an improved input power factor is obtained. Because the input voltages of such converters are directly supplied by input three-phase supply voltages, an imbalance in the voltages will cause problems such as unbalanced stator currents and electromagnetic torque fluctuations. In this paper, a new method is introduced to remove speed and torque oscillator factors. For this purpose, motor torque equations were developed and the oscillation components created by the unbalanced source voltage, determined. Then, using the active and reactive power reference generator, the controller power reference was adjusted in such a way that the electromagnetic torque of the motor did not change. By this means, a number of features including speed, torque, and flux of the motor were improved in terms of the above-mentioned conditions. Simulations were analyzed using Matlab/Simulink software.

  12. Angular Acceleration without Torque?

    Science.gov (United States)

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  13. Electronic mode of control to obtain increased torque and improved power factor from an asynchronous machine

    NARCIS (Netherlands)

    Wyk, van J.D.

    1970-01-01

    It is indicated that, by changing the electronic switching mode of the rotor current of an induction machine, it is possible to operate the machine at improved (capacitive) power factors and increased torque, or conversely at lower effective current and capacitive power factors at rated torque.

  14. Assisted Writing in Spin Transfer Torque Magnetic Tunnel Junctions

    Science.gov (United States)

    Ganguly, Samiran; Ahmed, Zeeshan; Datta, Supriyo; Marinero, Ernesto E.

    2015-03-01

    Spin transfer torque driven MRAM devices are now in an advanced state of development, and the importance of reducing the current requirement for writing information is well recognized. Different approaches to assist the writing process have been proposed such as spin orbit torque, spin Hall effect, voltage controlled magnetic anisotropy and thermal excitation. In this work,we report on our comparative study using the Spin-Circuit Approach regarding the total energy, the switching speed and energy-delay products for different assisted writing approaches in STT-MTJ devices using PMA magnets.

  15. Muscle response to pneumatic hand tool torque reaction forces.

    Science.gov (United States)

    Radwin, R G; VanBergeijk, E; Armstrong, T J

    1989-06-01

    Surface electromyography was used for studying the effects of torque reaction force acting against the hand, on forearm muscle activity and grip force for five subjects operating right angle, air shut-off nutrunners. Four tools having increasing spindle torque were operated using short and long torque reaction times. Nutrunner spindle torque ranged between 30 Nm and 100 Nm. Short torque reaction time was considered 0.5 s while long torque reaction time was 2 s. Peak horizontal force was the greatest component of the reaction force acting against the hand and accounted for more than 97% of the peak resultant hand force. Peak hand force increased from 89 N for the smallest tool to 202 N for the largest tool. Forearm muscle rms EMG, scaled for grip force, indicated average flexor activity during the Torque-reaction phase was more than four times greater than the Pre-start and Post Shut-off phases, and two times greater than the Run-down phase. Flexor EMG activity during the Torque-reaction phase increased for increasing tool peak spindle torque. Average flexor rms EMG activity, scaled for grip force, during the Torque-reaction phase increased from 372 N for the 30 Nm nutrunner to 449 N for the 100 Nm nutrunner. Flexor rms EMG activity averaged during the Torque-reaction phase and scaled for grip force was 390 N for long torque reaction times and increased to 440 N for short torque reaction times. Flexor rms EMG integrated over the torque reaction phase was 839 Ns for long torque reaction times and decreased to 312 Ns for short torque reaction times. The average latency between tool spindle torque onset and peak initial flexor rms EMG for long torque reaction times was 294 ms which decreased to 161 ms for short torque reaction times. The average latency between peak tool spindle torque, just prior to tool shut-off, and peak final rms EMG for long torque reaction times was 97 ms for flexors and 188 ms for extensors, which decreased for short torque reaction times to 47

  16. Spin-orbit torque in a thin film of the topological insulator Bi2Se3: Crossover from the ballistic to diffusive regime

    Science.gov (United States)

    Ren, Y. J.; Deng, W. Y.; Geng, H.; Shen, R.; Shao, L. B.; Sheng, L.; Xing, D. Y.

    2017-12-01

    The spin-orbit torque provides an efficient method for switching the direction of a magnetization by using an electric field. Owing to the spin-orbit coupling, when an electric field is applied, a nonequilibrium spin density is generated, which exerts a torque on the local magnetization. Here, we investigate the spin-orbit torque in a thin film of topological insulator \\text{Bi}2\\text{Se}3 based upon a Boltzmann equation, with proper boundary conditions, which is applicable from the ballistic regime to the diffusive regime. It is shown that due to the spin-momentum interlocking of the electron surface states, the magnitude of the field-like torque is simply in linear proportion to the longitudinal electrical current. For a fixed electric field, the spin-orbit torque is proportional to the sample length in the ballistic limit, and saturates to a constant in the diffusive limit. The dependence of the torque on the magnetization direction and exchange coupling strength is also studied. Our theory may offer useful guidance for experimental investigations of the spin-orbit torque in finite-size systems.

  17. Evaluation of force-torque displays for use with space station telerobotic activities

    Science.gov (United States)

    Hendrich, Robert C.; Bierschwale, John M.; Manahan, Meera K.; Stuart, Mark A.; Legendre, A. Jay

    1992-01-01

    Recent experiments which addressed Space Station remote manipulation tasks found that tactile force feedback (reflecting forces and torques encountered at the end-effector through the manipulator hand controller) does not improve performance significantly. Subjective response from astronaut and non-astronaut test subjects indicated that force information, provided visually, could be useful. No research exists which specifically investigates methods of presenting force-torque information visually. This experiment was designed to evaluate seven different visual force-torque displays which were found in an informal telephone survey. The displays were prototyped in the HyperCard programming environment. In a within-subjects experiment, 14 subjects nullified forces and torques presented statically, using response buttons located at the bottom of the screen. Dependent measures included questionnaire data, errors, and response time. Subjective data generally demonstrate that subjects rated variations of pseudo-perspective displays consistently better than bar graph and digital displays. Subjects commented that the bar graph and digital displays could be used, but were not compatible with using hand controllers. Quantitative data show similar trends to the subjective data, except that the bar graph and digital displays both provided good performance, perhaps do to the mapping of response buttons to display elements. Results indicate that for this set of displays, the pseudo-perspective displays generally represent a more intuitive format for presenting force-torque information.

  18. Intramuscular Pressure of Tibialis Anterior Reflects Ankle Torque but Does Not Follow Joint Angle-Torque Relationship

    Directory of Open Access Journals (Sweden)

    Filiz Ateş

    2018-01-01

    Full Text Available Intramuscular pressure (IMP is the hydrostatic fluid pressure that is directly related to muscle force production. Electromechanical delay (EMD provides a link between mechanical and electrophysiological quantities and IMP has potential to detect local electromechanical changes. The goal of this study was to assess the relationship of IMP with the mechanical and electrical characteristics of the tibialis anterior muscle (TA activity at different ankle positions. We hypothesized that (1 the TA IMP and the surface EMG (sEMG and fine-wire EMG (fwEMG correlate to ankle joint torque, (2 the isometric force of TA increases at increased muscle lengths, which were imposed by a change in ankle angle and IMP follows the length-tension relationship characteristics, and (3 the electromechanical delay (EMD is greater than the EMD of IMP during isometric contractions. Fourteen healthy adults [7 female; mean (SD age = 26.9 (4.2 years old with 25.9 (5.5 kg/m2 body mass index] performed (i three isometric dorsiflexion (DF maximum voluntary contraction (MVC and (ii three isometric DF ramp contractions from 0 to 80% MVC at rate of 15% MVC/second at DF, Neutral, and plantarflexion (PF positions. Ankle torque, IMP, TA fwEMG, and TA sEMG were measured simultaneously. The IMP, fwEMG, and sEMG were significantly correlated to the ankle torque during ramp contractions at each ankle position tested. This suggests that IMP captures in vivo mechanical properties of active muscles. The ankle torque changed significantly at different ankle positions however, the IMP did not reflect the change. This is explained with the opposing effects of higher compartmental pressure at DF in contrast to the increased force at PF position. Additionally, the onset of IMP activity is found to be significantly earlier than the onset of force which indicates that IMP can be designed to detect muscular changes in the course of neuromuscular diseases impairing electromechanical transmission.

  19. Influence Analysis of Coupling between Tension and Torque in Single Armoured Cables

    OpenAIRE

    Malm, Joacim

    2016-01-01

    When single armoured cables are under tension they will start to twist in direction depending on the lay angle of the armour wires on the cable. The cables start to twist due to the induced torque that appear within the cable and this induced torque can in the worst-case cause loops and kinks on the cable. These negative consequences are the subject to exploration by implementing a known analytical solution developed by Lanteigne (1985), into an external function in OrcaFlex which is a finite...

  20. Maximum Efficiency per Torque Control of Permanent-Magnet Synchronous Machines

    Directory of Open Access Journals (Sweden)

    Qingbo Guo

    2016-12-01

    Full Text Available High-efficiency permanent-magnet synchronous machine (PMSM drive systems need not only optimally designed motors but also efficiency-oriented control strategies. However, the existing control strategies only focus on partial loss optimization. This paper proposes a novel analytic loss model of PMSM in either sine-wave pulse-width modulation (SPWM or space vector pulse width modulation (SVPWM which can take into account both the fundamental loss and harmonic loss. The fundamental loss is divided into fundamental copper loss and fundamental iron loss which is estimated by the average flux density in the stator tooth and yoke. In addition, the harmonic loss is obtained from the Bertotti iron loss formula by the harmonic voltages of the three-phase inverter in either SPWM or SVPWM which are calculated by double Fourier integral analysis. Based on the analytic loss model, this paper proposes a maximum efficiency per torque (MEPT control strategy which can minimize the electromagnetic loss of PMSM in the whole operation range. As the loss model of PMSM is too complicated to obtain the analytical solution of optimal loss, a golden section method is applied to achieve the optimal operation point accurately, which can make PMSM work at maximum efficiency. The optimized results between SPWM and SVPWM show that the MEPT in SVPWM has a better effect on the optimization performance. Both the theory analysis and experiment results show that the MEPT control can significantly improve the efficiency performance of the PMSM in each operation condition with a satisfied dynamic performance.

  1. A non-unity torque sharing function for torque ripple minimization of switched reluctance generators

    DEFF Research Database (Denmark)

    Park, Kiwoo; Liu, Xiao; Chen, Zhe

    2013-01-01

    This paper presents a new torque ripple minimization technique for a Switched Reluctance Generator (SRG). Although the SRG has many advantageous characteristics as a generator, it has not been widely employed in the industry. One of the most notorious disadvantages of the SRG is its high torque...

  2. Knee-Extension Torque Variability and Subjective Knee Function in Patients with a History of Anterior Cruciate Ligament Reconstruction.

    Science.gov (United States)

    Goetschius, John; Hart, Joseph M

    2016-01-01

    When returning to physical activity, patients with a history of anterior cruciate ligament reconstruction (ACL-R) often experience limitations in knee-joint function that may be due to chronic impairments in quadriceps motor control. Assessment of knee-extension torque variability may demonstrate underlying impairments in quadriceps motor control in patients with a history of ACL-R. To identify differences in maximal isometric knee-extension torque variability between knees that have undergone ACL-R and healthy knees and to determine the relationship between knee-extension torque variability and self-reported knee function in patients with a history of ACL-R. Descriptive laboratory study. Laboratory. A total of 53 individuals with primary, unilateral ACL-R (age = 23.4 ± 4.9 years, height = 1.7 ± 0.1 m, mass = 74.6 ± 14.8 kg) and 50 individuals with no history of substantial lower extremity injury or surgery who served as controls (age = 23.3 ± 4.4 years, height = 1.7 ± 0.1 m, mass = 67.4 ± 13.2 kg). Torque variability, strength, and central activation ratio (CAR) were calculated from 3-second maximal knee-extension contraction trials (90° of flexion) with a superimposed electrical stimulus. All participants completed the International Knee Documentation Committee (IKDC) Subjective Knee Evaluation Form, and we determined the number of months after surgery. Group differences were assessed using independent-samples t tests. Correlation coefficients were calculated among torque variability, strength, CAR, months after surgery, and IKDC scores. Torque variability, strength, CAR, and months after surgery were regressed on IKDC scores using stepwise, multiple linear regression. Torque variability was greater and strength, CAR, and IKDC scores were lower in the ACL-R group than in the control group (P Torque variability and strength were correlated with IKDC scores (P Torque variability, strength, and CAR were correlated with each other (P Torque variability alone

  3. Torque ripple reduction of brushless DC motor based on adaptive input-output feedback linearization.

    Science.gov (United States)

    Shirvani Boroujeni, M; Markadeh, G R Arab; Soltani, J

    2017-09-01

    Torque ripple reduction of Brushless DC Motors (BLDCs) is an interesting subject in variable speed AC drives. In this paper at first, a mathematical expression for torque ripple harmonics is obtained. Then for a non-ideal BLDC motor with known harmonic contents of back-EMF, calculation of desired reference current amplitudes, which are required to eliminate some selected harmonics of torque ripple, are reviewed. In order to inject the reference harmonic currents to the motor windings, an Adaptive Input-Output Feedback Linearization (AIOFBL) control is proposed, which generates the reference voltages for three phases voltage source inverter in stationary reference frame. Experimental results are presented to show the capability and validity of the proposed control method and are compared with the vector control in Multi-Reference Frame (MRF) and Pseudo-Vector Control (P-VC) method results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Selective control of vortex polarities by microwave field in two robustly synchronized spin-torque nano-oscillators

    Science.gov (United States)

    Li, Yi; de Milly, Xavier; Klein, Olivier; Cros, Vincent; Grollier, Julie; de Loubens, Grégoire

    2018-01-01

    Manipulating operation states of coupled spin-torque nano-oscillators (STNOs), including their synchronization, is essential for applications such as complex oscillator networks. In this work, we experimentally demonstrate selective control of two coupled vortex STNOs through microwave-assisted switching of their vortex core polarities. First, the two oscillators are shown to synchronize due to the dipolar interaction in a broad frequency range tuned by an external biasing field. Coherent output is demonstrated along with strong linewidth reduction. Then, we show individual vortex polarity control of each oscillator, which leads to synchronization/desynchronization due to accompanied frequency shift. Our methods can be easily extended to multiple-element coupled oscillator networks.

  5. Modulation of spin transfer torque amplitude in double barrier magnetic tunnel junctions

    Science.gov (United States)

    Clément, P.-Y.; Baraduc, C.; Ducruet, C.; Vila, L.; Chshiev, M.; Diény, B.

    2015-09-01

    Magnetization switching induced by spin transfer torque is used to write magnetic memories (Magnetic Random Access Memory, MRAM) but can be detrimental to the reading process. It would be quite convenient therefore to modulate the efficiency of spin transfer torque. A solution is adding an extra degree of freedom by using double barrier magnetic tunnel junctions with two spin-polarizers, with controllable relative magnetic alignment. We demonstrate, for these structures, that the amplitude of in-plane spin transfer torque on the middle free layer can be efficiently tuned via the magnetic configuration of the electrodes. Using the proposed design could thus pave the way towards more reliable read/write schemes for MRAM. Moreover, our results suggest an intriguing effect associated with the out-of-plane (field-like) spin transfer torque, which has to be further investigated.

  6. Modulation of spin transfer torque amplitude in double barrier magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Clément, P.-Y.; Baraduc, C.; Chshiev, M.; Diény, B.; Ducruet, C.; Vila, L.

    2015-01-01

    Magnetization switching induced by spin transfer torque is used to write magnetic memories (Magnetic Random Access Memory, MRAM) but can be detrimental to the reading process. It would be quite convenient therefore to modulate the efficiency of spin transfer torque. A solution is adding an extra degree of freedom by using double barrier magnetic tunnel junctions with two spin-polarizers, with controllable relative magnetic alignment. We demonstrate, for these structures, that the amplitude of in-plane spin transfer torque on the middle free layer can be efficiently tuned via the magnetic configuration of the electrodes. Using the proposed design could thus pave the way towards more reliable read/write schemes for MRAM. Moreover, our results suggest an intriguing effect associated with the out-of-plane (field-like) spin transfer torque, which has to be further investigated

  7. Cloud-based shaft torque estimation for electric vehicle equipped with integrated motor-transmission system

    Science.gov (United States)

    Zhu, Xiaoyuan; Zhang, Hui; Yang, Bo; Zhang, Guichen

    2018-01-01

    In order to improve oscillation damping control performance as well as gear shift quality of electric vehicle equipped with integrated motor-transmission system, a cloud-based shaft torque estimation scheme is proposed in this paper by using measurable motor and wheel speed signals transmitted by wireless network. It can help reduce computational burden of onboard controllers and also relief network bandwidth requirement of individual vehicle. Considering possible delays during signal wireless transmission, delay-dependent full-order observer design is proposed to estimate the shaft torque in cloud server. With these random delays modeled by using homogenous Markov chain, robust H∞ performance is adopted to minimize the effect of wireless network-induced delays, signal measurement noise as well as system modeling uncertainties on shaft torque estimation error. Observer parameters are derived by solving linear matrix inequalities, and simulation results using acceleration test and tip-in, tip-out test demonstrate the effectiveness of proposed shaft torque observer design.

  8. Coulombian Model for 3D Analytical Calculation of the Torque Exerted on Cuboidal Permanent Magnets with Arbitrarly Oriented Polarizations

    OpenAIRE

    Allag , Hicham; Yonnet , Jean-Paul; Latreche , Mohamed E. H.; Bouchekara , Houssem

    2011-01-01

    International audience; The paper proposes improved analytical expressions of the torque on cuboidal permanent magnets. Expressions are valid for any relative magnet position and for any polarization direction. The analytical calculation is made by replacing polarizations by distributions of magnetic charges on the magnet poles (Coulombian approach). The torque exerted on the second magnet is calculated by Lorentz force formulas for any arbitrary position. The three components of the torque a...

  9. Tooth shape optimization of brushless permanent magnet motors for reducing torque ripples

    International Nuclear Information System (INIS)

    Hsu, L.-Y.; Tsai, M.-C.

    2004-01-01

    This paper presents a tooth shape optimization method based on a generic algorithm to reduce the torque ripple of brushless permanent magnet motors under two different magnetization directions. The analysis of this design method mainly focuses on magnetic saturation and cogging torque and the computation of the optimization process is based on an equivalent magnetic network circuit. The simulation results, obtained from the finite element analysis, are used to confirm the accuracy and performance. Finite element analysis results from different tooth shapes are compared to show the effectiveness of the proposed method

  10. Spin-orbit torques for current parallel and perpendicular to a domain wall

    International Nuclear Information System (INIS)

    Schulz, Tomek; Lee, Kyujoon; Karnad, Gurucharan V.; Alejos, Oscar; Martinez, Eduardo; Moretti, Simone; Hals, Kjetil M. D.; Garcia, Karin; Ravelosona, Dafiné; Vila, Laurent; Lo Conte, Roberto; Kläui, Mathias; Ocker, Berthold; Brataas, Arne

    2015-01-01

    We report field- and current-induced domain wall (DW) depinning experiments in Ta\\Co 20 Fe 60 B 20 \\MgO nanowires through a Hall cross geometry. While purely field-induced depinning shows no angular dependence on in-plane fields, the effect of the current depends crucially on the internal DW structure, which we manipulate by an external magnetic in-plane field. We show depinning measurements for a current sent parallel to the DW and compare its depinning efficiency with the conventional case of current flowing perpendicularly to the DW. We find that the maximum efficiency is similar for both current directions within the error bars, which is in line with a dominating damping-like spin-orbit torque (SOT) and indicates that no large additional torques arise for currents perpendicular to the DW. Finally, we find a varying dependence of the maximum depinning efficiency angle for different DWs and pinning levels. This emphasizes the importance of our full angular scans compared with previously used measurements for just two field directions (parallel and perpendicular to the DW) to determine the real torque strength and shows the sensitivity of the SOT to the precise DW structure and pinning sites

  11. Effects of solar radiation pressure torque on the rotational motion of an artificial satellite

    Science.gov (United States)

    Zanardi, Maria Cecilia F. P. S.; Vilhenademoraes, Rodolpho

    1992-01-01

    The motion of an artificial satellite about its center of mass is studied considering torques due to the gravity gradient and direct solar radiation pressure. A model for direct solar radiation torque is derived for a circular cylindrical satellite. An analytical solution is obtained by the method of variation of the parameters. This solution shows that the angular variables have secular variation but that the modulus of the rotational angular momentum, the projection of rotational angular momentum on the z axis of the moment of inertia and inertial axis z, suffer only periodic variations. Considering a hypothetical artificial satellite, a numerical application is demonstrated.

  12. Enhanced precision of ankle torque measure with an open-unit dynamometer mounted with a 3D force-torque sensor.

    Science.gov (United States)

    Toumi, A; Leteneur, S; Gillet, C; Debril, J-F; Decoufour, N; Barbier, F; Jakobi, J M; Simoneau-Buessinger, Emilie

    2015-11-01

    Many studies have focused on maximum torque exerted by ankle joint muscles during plantar flexion. While strength parameters are typically measured with isokinetic or isolated ankle dynamometers, these devices often present substantial limitations for the measurement of torque because they account for force in only 1 dimension (1D), and the device often constrains the body in a position that augments torque through counter movements. The purposes of this study were to determine the contribution of body position to ankle plantar-flexion torque and to assess the use of 1D and 3D torque sensors. A custom designed 'Booted, Open-Unit, Three dimension, Transportable, Ergometer' (B.O.T.T.E.) was used to quantify plantar flexion in two conditions: (1) when the participant was restrained within the unit (locked-unit) and (2) when the participant's position was independent of the ankle dynamometer (open-unit). Ten young males performed maximal voluntary isometric plantar-flexion contractions using the B.O.T.T.E. in open and locked-unit mechanical configurations. The B.O.T.T.E. was reliable with ICC higher than 0.90, and CV lower than 7 %. The plantar-flexion maximal resultant torque was significantly higher in the locked-unit compared with open-unit configuration (P torque sensor significantly underestimated the proper capacity of plantar-flexion torque production (P torque should be performed with an open-unit dynamometer mounted with a 3D sensor that is exclusive of accessory muscles but inclusive of all ankle joint movements.

  13. Spin Orbit Interaction Engineering for beyond Spin Transfer Torque memory

    Science.gov (United States)

    Wang, Kang L.

    Spin transfer torque memory uses electron current to transfer the spin torque of electrons to switch a magnetic free layer. This talk will address an alternative approach to energy efficient non-volatile spintronics through engineering of spin orbit interaction (SOC) and the use of spin orbit torque (SOT) by the use of electric field to improve further the energy efficiency of switching. I will first discuss the engineering of interface SOC, which results in the electric field control of magnetic moment or magneto-electric (ME) effect. Magnetic memory bits based on this ME effect, referred to as magnetoelectric RAM (MeRAM), is shown to have orders of magnitude lower energy dissipation compared with spin transfer torque memory (STTRAM). Likewise, interests in spin Hall as a result of SOC have led to many advances. Recent demonstrations of magnetization switching induced by in-plane current in heavy metal/ferromagnetic heterostructures have been shown to arise from the large SOC. The large SOC is also shown to give rise to the large SOT. Due to the presence of an intrinsic extraordinarily strong SOC and spin-momentum lock, topological insulators (TIs) are expected to be promising candidates for exploring spin-orbit torque (SOT)-related physics. In particular, we will show the magnetization switching in a chromium-doped magnetic TI bilayer heterostructure by charge current. A giant SOT of more than three orders of magnitude larger than those reported in heavy metals is also obtained. This large SOT is shown to come from the spin-momentum locked surface states of TI, which may further lead to innovative low power applications. I will also describe other related physics of SOC at the interface of anti-ferromagnetism/ferromagnetic structure and show the control exchange bias by electric field for high speed memory switching. The work was in part supported by ERFC-SHINES, NSF, ARO, TANMS, and FAME.

  14. Low torque hydrodynamic lip geometry for rotary seals

    Science.gov (United States)

    Dietle, Lannie L.; Schroeder, John E.

    2015-07-21

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  15. Loss of knee extensor torque complexity during fatiguing isometric muscle contractions occurs exclusively above the critical torque.

    Science.gov (United States)

    Pethick, Jamie; Winter, Samantha L; Burnley, Mark

    2016-06-01

    The complexity of knee extensor torque time series decreases during fatiguing isometric muscle contractions. We hypothesized that because of peripheral fatigue, this loss of torque complexity would occur exclusively during contractions above the critical torque (CT). Nine healthy participants performed isometric knee extension exercise (6 s of contraction, 4 s of rest) on six occasions for 30 min or to task failure, whichever occurred sooner. Four trials were performed above CT (trials S1-S4, S1 being the lowest intensity), and two were performed below CT (at 50% and 90% of CT). Global, central, and peripheral fatigue were quantified using maximal voluntary contractions (MVCs) with femoral nerve stimulation. The complexity of torque output was determined using approximate entropy (ApEn) and the detrended fluctuation analysis-α scaling exponent (DFA-α). The MVC torque was reduced in trials below CT [by 19 ± 4% (means ± SE) in 90%CT], but complexity did not decrease [ApEn for 90%CT: from 0.82 ± 0.03 to 0.75 ± 0.06, 95% paired-samples confidence intervals (CIs), 95% CI = -0.23, 0.10; DFA-α from 1.36 ± 0.01 to 1.32 ± 0.03, 95% CI -0.12, 0.04]. Above CT, substantial reductions in MVC torque occurred (of 49 ± 8% in S1), and torque complexity was reduced (ApEn for S1: from 0.67 ± 0.06 to 0.14 ± 0.01, 95% CI = -0.72, -0.33; DFA-α from 1.38 ± 0.03 to 1.58 ± 0.01, 95% CI 0.12, 0.29). Thus, in these experiments, the fatigue-induced loss of torque complexity occurred exclusively during contractions performed above the CT. Copyright © 2016 the American Physiological Society.

  16. Intelligent Torque Vectoring Approach for Electric Vehicles with Per-Wheel Motors

    Directory of Open Access Journals (Sweden)

    Alberto Parra

    2018-01-01

    Full Text Available Transport electrification is currently a priority for authorities, manufacturers, and research centers around the world. The development of electric vehicles and the improvement of their functionalities are key elements in this strategy. As a result, there is a need for further research in emission reduction, efficiency improvement, or dynamic handling approaches. In order to achieve these objectives, the development of suitable Advanced Driver-Assistance Systems (ADAS is required. Although traditional control techniques have been widely used for ADAS implementation, the complexity of electric multimotor powertrains makes intelligent control approaches appropriate for these cases. In this work, a novel intelligent Torque Vectoring (TV system, composed of a neuro-fuzzy vertical tire forces estimator and a fuzzy yaw moment controller, is proposed, which allows enhancing the dynamic behaviour of electric multimotor vehicles. The proposed approach is compared with traditional strategies using the high fidelity vehicle dynamics simulator Dynacar. Results show that the proposed intelligent Torque Vectoring system is able to increase the efficiency of the vehicle by 10%, thanks to the optimal torque distribution and the use of a neuro-fuzzy vertical tire forces estimator which provides 3 times more accurate estimations than analytical approaches.

  17. Hybrid synchronous motor electromagnetic torque research

    Directory of Open Access Journals (Sweden)

    Suvorkova Elena E.

    2014-01-01

    Full Text Available Electromagnetic field distribution models in reluctance and permanent magnet parts were made by means of Elcut. Dependences of electromagnetic torque on torque angle were obtained.

  18. Heat-driven spin torques in antiferromagnets

    Science.gov (United States)

    Białek, Marcin; Bréchet, Sylvain; Ansermet, Jean-Philippe

    2018-04-01

    Heat-driven magnetization damping, which is a linear function of a temperature gradient, is predicted in antiferromagnets by considering the sublattice dynamics subjected to a heat-driven spin torque. This points to the possibility of achieving spin torque oscillator behavior. The model is based on the magnetic Seebeck effect acting on sublattices which are exchange coupled. The heat-driven spin torque is estimated and the feasibility of detecting this effect is discussed.

  19. An improved direct torque controller applied to an electric vehicle

    Directory of Open Access Journals (Sweden)

    Miguel Durán

    2014-01-01

    Full Text Available Este artículo presenta la estructura básica, el modelo y el diseño de un controlador de par para un vehículo eléctrico (EV. El EV propuesto es el resultado de la conversión de un vehículo convencional a un vehículo eléctrico, donde el sistema de tracción original basado en un motor de combustión interna es remplazado por un sistema de tracción eléctrica. El controlador está basado en la técnica de control directo de par (DTC más un término que compensa la caída de voltaje en los devanados del estator del motor de inducción (IM. Con el fin de obtener una frecuencia de conmutación constante se utiliza la técnica de modulación PWM vectorial para generar los pulsos del inversor. Se presentan los resultados de simulación para probar el desempeño de la estrategia de control propuesta, la cual es comparada con el esquema de DTC convencional.

  20. Giant spin torque in hybrids with anisotropic p-d exchange interaction

    Science.gov (United States)

    Korenev, V. L.

    2014-03-01

    Control of magnetic domain wall movement by the spin-polarized current looks promising for creation of a new generation of magnetic memory devices. A necessary condition for this is the domain wall shift by a low-density current. Here, I show that a strongly anisotropic exchange interaction between mobile heavy holes and localized magnetic moments enormously increases the current-induced torque on the domain wall as compared to systems with isotropic exchange. This enables one to control the domain wall motion by current density 104 A/cm2 in ferromagnet/semiconductor hybrids. The experimental observation of the anisotropic torque will facilitate the integration of ferromagnetism into semiconductor electronics.

  1. Giant spin torque in hybrids with anisotropic p-d exchange interaction

    International Nuclear Information System (INIS)

    Korenev, V. L.

    2014-01-01

    Control of magnetic domain wall movement by the spin-polarized current looks promising for creation of a new generation of magnetic memory devices. A necessary condition for this is the domain wall shift by a low-density current. Here, I show that a strongly anisotropic exchange interaction between mobile heavy holes and localized magnetic moments enormously increases the current-induced torque on the domain wall as compared to systems with isotropic exchange. This enables one to control the domain wall motion by current density 10 4  A/cm 2 in ferromagnet/semiconductor hybrids. The experimental observation of the anisotropic torque will facilitate the integration of ferromagnetism into semiconductor electronics

  2. Tailoring spin-orbit torque in diluted magnetic semiconductors

    KAUST Repository

    Li, Hang; Wang, Xuhui; Doǧan, Fatih; Manchon, Aurelien

    2013-01-01

    We study the spin orbit torque arising from an intrinsic linear Dresselhaus spin-orbit coupling in a single layer III-V diluted magnetic semiconductor. We investigate the transport properties and spin torque using the linear response theory, and we report here: (1) a strong correlation exists between the angular dependence of the torque and the anisotropy of the Fermi surface; (2) the spin orbit torque depends nonlinearly on the exchange coupling. Our findings suggest the possibility to tailor the spin orbit torque magnitude and angular dependence by structural design.

  3. Tailoring spin-orbit torque in diluted magnetic semiconductors

    KAUST Repository

    Li, Hang

    2013-05-16

    We study the spin orbit torque arising from an intrinsic linear Dresselhaus spin-orbit coupling in a single layer III-V diluted magnetic semiconductor. We investigate the transport properties and spin torque using the linear response theory, and we report here: (1) a strong correlation exists between the angular dependence of the torque and the anisotropy of the Fermi surface; (2) the spin orbit torque depends nonlinearly on the exchange coupling. Our findings suggest the possibility to tailor the spin orbit torque magnitude and angular dependence by structural design.

  4. A rationale method for evaluating unscrewing torque values of prosthetic screws in dental implants

    Directory of Open Access Journals (Sweden)

    Felipe Miguel Saliba

    2011-02-01

    Full Text Available OBJECTIVES: Previous studies that evaluated the torque needed for removing dental implant screws have not considered the manner of transfer of the occlusal loads in clinical settings. Instead, the torque used for removal was applied directly to the screw, and most of them omitted the possibility that the hexagon could limit the action of the occlusal load in the loosening of the screws. The present study proposes a method for evaluating the screw removal torque in an anti-rotational device independent way, creating an unscrewing load transfer to the entire assembly, not only to the screw. MATERIAL AND METHODS: Twenty hexagonal abutments without the hexagon in their bases were fixed with a screw to 20 dental implants. They were divided into two groups: Group 1 used titanium screws and Group 2 used titanium screws covered with a solid lubricant. A torque of 32 Ncm was applied to the screw and then a custom-made wrench was used for rotating the abutment counterclockwise, to loosen the screw. A digital torque meter recorded the torque required to loosen the abutment. RESULTS: There was a significant difference between the means of Group 1 (38.62±6.43 Ncm and Group 2 (48.47±5.04 Ncm, with p=0.001. CONCLUSION: This methodology was effective in comparing unscrewing torque values of the implant-abutment junction even with a limited sample size. It confirmed a previously shown significant difference between two types of screws.

  5. Vehicle handling and stability control by the cooperative control of 4WS and DYC

    Science.gov (United States)

    Shen, Huan; Tan, Yun-Sheng

    2017-07-01

    This paper proposes an integrated control system that cooperates with the four-wheel steering (4WS) and direct yaw moment control (DYC) to improve the vehicle handling and stability. The design works of the four-wheel steering and DYC control are based on sliding mode control. The integration control system produces the suitable 4WS angle and corrective yaw moment so that the vehicle tracks the desired yaw rate and sideslip angle. Considering the change of the vehicle longitudinal velocity that means the comfort of driving conditions, both the driving torque and braking torque are used to generate the corrective yaw moment. Simulation results show the effectiveness of the proposed control algorithm.

  6. Minimization of the Electromagnetic Torque Ripple Caused by the Coils Inter-Turn Short Circuit Fault in Dual-Redundancy Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Yiguang Chen

    2017-11-01

    Full Text Available With the development of electric vehicles and More-Electric/All-Electric aircraft, high reliability is required in motor servo systems. The redundancy technique is one of the most effective methods to improve the reliability of motor servo systems. In this paper, the structure of dual-redundancy permanent magnet synchronous motor (DRPMSM with weak thermal coupling and no electromagnetic coupling is analyzed and the mathematical model of this motor is established. However, there is little research on how to suppress the torque ripple caused by short-circuited coils in the DRPMSM. The main contribution of this paper is to present the advantages of DRPMSM and to find a way to suppress the torque ripple caused by the short circuit fault in DRPMSM. In order to improve operation quality and enhance the reliability of DRPMSM after a short circuit occurs, the torque ripple caused by the coils inter-turn short circuit fault in DRPMSM is analyzed in detail. Then, a control method for suppressing the electromagnetic torque ripple of a short-circuited coil is proposed for the first time by using an improved adaptive proportional resonant (PR controller and a proportional integral (PI controller in parallel. PR control is a method of controlling alternating components without steady-state error, and it can be used to suppress torque ripple. DRPMSM adopts speed and current double closed-loop control strategies. An improved adaptive PR controller and a PI controller are employed in parallel for the speed loop, while traditional PI control is adopted in current loop. From the simulation and experimental results, the torque ripple is reduced from 45.4 to 5.6% when the torque ripple suppression strategy proposed in this paper is adopted, in the case that the speed is 600 r/min. The torque ripple suppression strategy based on the PR controller can quickly and effectively suppress the torque ripple caused by the short-circuited coils, which makes the motor speed

  7. Influence of Closed Stator Slots on Cogging Torque

    DEFF Research Database (Denmark)

    Ion, Trifu; Leban, Krisztina Monika; Ritchie, Ewen

    2013-01-01

    Cogging torque results due interaction of magnetic field of magnets and stator slots, and have negative effects on permanent magnet machines such as vibrations, noise, torque ripples and problems during turbine start-up and cut-in. In order to reduce cogging torque this paper presents a study...... of influence of closed stator slots on cogging torque using magnetic slot wedges....

  8. A novel high-torque magnetorheological brake with a water cooling method for heat dissipation

    International Nuclear Information System (INIS)

    Wang, D M; Hou, Y F; Tian, Z Z

    2013-01-01

    The extremely severe heating of magnetorheological (MR) brakes restricts their application in high-power situations. This study aims to develop a novel MR brake with a high-torque capacity. To achieve this goal, a water cooling method is adopted to assist in heat dissipation. In the study, a structural model design of the high-torque MR brake is first developed according to the transmission properties of the MR fluid between the rotating plates. Then, the operating principle of the MR brake is illustrated, which is followed by a detailed design of the water channel. Moreover, theoretical analysis, including the transmitted torque, magnetic field and thermal analysis, is performed as well. After this, an experimental prototype of the proposed MR brake is fabricated and assembled. Then the torque transmission and heat dissipation of the prototype are experimentally investigated to evaluate the torque transmission properties and water cooling efficiency. Results indicate that the proposed MR brake is capable of producing a highly controllable brake torque, and the water cooling method can effectively assist in heat dissipation from the MR brake. (paper)

  9. A General and Intuitive Approach to Understand and Compare the Torque Production Capability of AC Machines

    DEFF Research Database (Denmark)

    Wang, Dong; Lu, Kaiyuan; Rasmussen, Peter Omand

    2014-01-01

    Electromagnetic torque analysis is one of the key issues in the analysis of electric machines. It plays an important role in machine design and control. The common method described in most of the textbooks is to calculate the torque in the machine variables and then transform them to the dq......-frame, through complicated mathematical manipulations. This is a more mathematical approach rather than explaining the physics behind torque production, which even brings a lot of difficulties to specialist. This paper introduces a general and intuitive approach to obtain the dq-frame torque equation of various...... AC machines. In this method, torque equation can be obtained based on the intuitive physical understanding of the mechanism behind torque production. It is then approved to be applicable for general case, including rotor saliency and various types of magnetomotive force sources. As an application...

  10. Coordinated path-following and direct yaw-moment control of autonomous electric vehicles with sideslip angle estimation

    Science.gov (United States)

    Guo, Jinghua; Luo, Yugong; Li, Keqiang; Dai, Yifan

    2018-05-01

    This paper presents a novel coordinated path following system (PFS) and direct yaw-moment control (DYC) of autonomous electric vehicles via hierarchical control technique. In the high-level control law design, a new fuzzy factor is introduced based on the magnitude of longitudinal velocity of vehicle, a linear time varying (LTV)-based model predictive controller (MPC) is proposed to acquire the wheel steering angle and external yaw moment. Then, a pseudo inverse (PI) low-level control allocation law is designed to realize the tracking of desired external moment torque and management of the redundant tire actuators. Furthermore, the vehicle sideslip angle is estimated by the data fusion of low-cost GPS and INS, which can be obtained by the integral of modified INS signals with GPS signals as initial value. Finally, the effectiveness of the proposed control system is validated by the simulation and experimental tests.

  11. Role of the DELSEED Loop in Torque Transmission of F1-ATPase

    Science.gov (United States)

    Tanigawara, Mizue; Tabata, Kazuhito V.; Ito, Yuko; Ito, Jotaro; Watanabe, Rikiya; Ueno, Hiroshi; Ikeguchi, Mitsunori; Noji, Hiroyuki

    2012-01-01

    F1-ATPase is an ATP-driven rotary motor that generates torque at the interface between the catalytic β-subunits and the rotor γ-subunit. The β-subunit inwardly rotates the C-terminal domain upon nucleotide binding/dissociation; hence, the region of the C-terminal domain that is in direct contact with γ—termed the DELSEED loop—is thought to play a critical role in torque transmission. We substituted all the DELSEED loop residues with alanine to diminish specific DELSEED loop-γ interactions and with glycine to disrupt the loop structure. All the mutants rotated unidirectionally with kinetic parameters comparable to those of the wild-type F1, suggesting that the specific interactions between DELSEED loop and γ is not involved in cooperative interplays between the catalytic β-subunits. Glycine substitution mutants generated half the torque of the wild-type F1, whereas the alanine mutant generated comparable torque. Fluctuation analyses of the glycine/alanine mutants revealed that the γ-subunit was less tightly held in the α3β3-stator ring of the glycine mutant than in the wild-type F1 and the alanine mutant. Molecular dynamics simulation showed that the DELSEED loop was disordered by the glycine substitution, whereas it formed an α-helix in the alanine mutant. Our results emphasize the importance of loop rigidity for efficient torque transmissions. PMID:23009846

  12. Electrostatic sensor modeling for torque measurements

    Science.gov (United States)

    Mika, Michał; Dannert, Mirjam; Mett, Felix; Weber, Harry; Mathis, Wolfgang; Nackenhorst, Udo

    2017-09-01

    Torque load measurements play an important part in various engineering applications, as for automotive industry, in which the drive torque of a motor has to be determined. A widely used measuring method are strain gauges. A thin flexible foil, which supports a metallic pattern, is glued to the surface of the object the torque is being applied to. In case of a deformation due to the torque load, the change in the electrical resistance is measured. With the combination of constitutive equations the applied torque load is determined by the change of electrical resistance. The creep of the glue and the foil material, together with the temperature and humidity dependence, may become an obstacle for some applications Kapralov and Fesenko (1984). Thus, there have been optical and magnetical, as well as capacitive sensors introduced). This paper discusses the general idea behind an electrostatic capacitive sensor based on a simple draft of an exemplary measurement setup. For better understanding an own electrostatical, geometrical and mechanical model of this setup has been developed.

  13. Electrostatic sensor modeling for torque measurements

    Directory of Open Access Journals (Sweden)

    M. Mika

    2017-09-01

    Full Text Available Torque load measurements play an important part in various engineering applications, as for automotive industry, in which the drive torque of a motor has to be determined. A widely used measuring method are strain gauges. A thin flexible foil, which supports a metallic pattern, is glued to the surface of the object the torque is being applied to. In case of a deformation due to the torque load, the change in the electrical resistance is measured. With the combination of constitutive equations the applied torque load is determined by the change of electrical resistance. The creep of the glue and the foil material, together with the temperature and humidity dependence, may become an obstacle for some applications Kapralov and Fesenko(1984. Thus, there have been optical and magnetical, as well as capacitive sensors introduced . This paper discusses the general idea behind an electrostatic capacitive sensor based on a simple draft of an exemplary measurement setup. For better understanding an own electrostatical, geometrical and mechanical model of this setup has been developed.

  14. Research on Optimized Torque-Distribution Control Method for Front/Rear Axle Electric Wheel Loader

    Directory of Open Access Journals (Sweden)

    Zhiyu Yang

    2017-01-01

    Full Text Available Optimized torque-distribution control method (OTCM is a critical technology for front/rear axle electric wheel loader (FREWL to improve the operation performance and energy efficiency. In the paper, a longitudinal dynamics model of FREWL is created. Based on the model, the objective functions are that the weighted sum of variance and mean of tire workload is minimal and the total motor efficiency is maximal. Four nonlinear constraint optimization algorithms, quasi-newton Lagrangian multiplier method, sequential quadratic programming, adaptive genetic algorithms, and particle swarm optimization with random weighting and natural selection, which have fast convergent rate and quick calculating speed, are used as solving solutions for objective function. The simulation results show that compared to no-control FREWL, controlled FREWL utilizes the adhesion ability better and slips less. It is obvious that controlled FREWL gains better operation performance and higher energy efficiency. The energy efficiency of FREWL in equipment transferring condition is increased by 13–29%. In addition, this paper discussed the applicability of OTCM and analyzed the reason for different simulation results of four algorithms.

  15. Accuracy of mechanical torque-limiting devices for dental implants.

    Science.gov (United States)

    L'Homme-Langlois, Emilie; Yilmaz, Burak; Chien, Hua-Hong; McGlumphy, Edwin

    2015-10-01

    A common complication in implant dentistry is unintentional implant screw loosening. The critical factor in the prevention of screw loosening is the delivery of the appropriate target torque value. Mechanical torque-limiting devices (MTLDs) are the most frequently recommended devices by the implant manufacturers to deliver the target torque value to the screw. Two types of MTLDs are available: friction-style and spring-style. Limited information is available regarding the influence of device type on the accuracy of MTLDs. The purpose of this study was to determine and compare the accuracy of spring-style and friction-style MTLDs. Five MTLDs from 6 different dental implant manufacturers (Astra Tech/Dentsply, Zimmer Dental, Biohorizons, Biomet 3i, Straumann [ITI], and Nobel Biocare) (n=5 per manufacturer) were selected to determine their accuracy in delivering target torque values preset by their manufacturers. All torque-limiting devices were new and there were 3 manufacturers for the friction-style and 3 manufacturers for the spring-style. The procedure of target torque measurement was performed 10 times for each device and a digital torque gauge (Chatillon Model DFS2-R-ND; Ametek) was used to record the measurements. Statistical analysis used nonparametric tests to determine the accuracy of the MTLDs in delivering target torque values and Bonferroni post hoc tests were used to assess pairwise comparisons. Median absolute difference between delivered torque values and target torque values of friction-style and spring-style MTLDs were not significantly different (P>.05). Accuracy of Astra Tech and Zimmer Dental friction-style torque-limiting devices were significantly different than Biohorizons torque-limiting devices (Ptorque value. Astra Tech and Zimmer Dental friction-style torque-limiting devices were significantly more accurate than Biohorizons (C) torque-limiting devices (Ptorque-limiting devices fell within ±10% of the target torque value preset by the

  16. Experimental determination of optimal clamping torque for AB-PEM Fuel cell

    Directory of Open Access Journals (Sweden)

    Noor Ul Hassan

    2016-04-01

    Full Text Available Polymer electrolyte Membrane (PEM fuel cell is an electrochemical device producing electricity by the reaction of hydrogen and oxygen without combustion. PEM fuel cell stack is provided with an appropriate clamping torque to prevent leakage of reactant gases and to minimize the contact resistance between gas diffusion media (GDL and bipolar plates. GDL porous structure and gas permeability is directly affected by the compaction pressure which, consequently, drastically change the fuel cell performance. Various efforts were made to determine the optimal compaction pressure and pressure distributions through simulations and experimentation. Lower compaction pressure results in increase of contact resistance and also chances of leakage. On the other hand, higher compaction pressure decreases the contact resistance but also narrows down the diffusion path for mass transfer from gas channels to the catalyst layers, consequently, lowering cell performance. The optimal cell performance is related to the gasket thickness and compression pressure on GDL. Every stack has a unique assembly pressure due to differences in fuel cell components material and stack design. Therefore, there is still need to determine the optimal torque value for getting the optimal cell performance. This study has been carried out in continuation of deve­lopment of Air breathing PEM fuel cell for small Unmanned Aerial Vehicle (UAV application. Compaction pressure at minimum contact resistance was determined and clamping torque value was calcu­la­ted accordingly. Single cell performance tests were performed at five different clamping torque values i.e 0.5, 1.0, 1.5, 2.0 and 2.5 N m, for achieving optimal cell per­formance. Clamping pressure distribution tests were also performed at these torque values to verify uniform pressure distribution at optimal torque value. Experimental and theoretical results were compared for making inferences about optimal cell perfor­man­ce. A

  17. TORQUE MEASUREMENT IN WORM AGLOMERATION MACHINE

    Directory of Open Access Journals (Sweden)

    Marian DUDZIAK

    2014-03-01

    Full Text Available The paper presents the operating characteristics of the worm agglomeration machine. The paper indicates the need for continuous monitoring of the value of the torque due to the efficiency of the machine. An original structure of torque meter which is built in the standard drive system of briquetting machine was presented. A number of benefits arising from the application of the proposed solution were presented. Exemplary measurement results obtained by means of this torque meter were presented.

  18. Barbell deadlift training increases the rate of torque development and vertical jump performance in novices.

    Science.gov (United States)

    Thompson, Brennan J; Stock, Matt S; Shields, JoCarol E; Luera, Micheal J; Munayer, Ibrahim K; Mota, Jacob A; Carrillo, Elias C; Olinghouse, Kendra D

    2015-01-01

    The primary purpose of this study was to examine the effects of 10 weeks of barbell deadlift training on rapid torque characteristics of the knee extensors and flexors. A secondary aim was to analyze the relationships between training-induced changes in rapid torque and vertical jump performance. Fifty-four subjects (age, mean ± SD = 23 ± 3 years) were randomly assigned to a control (n = 20) or training group (n = 34). Subjects in the training group performed supervised deadlift training twice per week for 10 weeks. All subjects performed isometric strength testing of the knee extensors and flexors and vertical jumps before and after the intervention. Torque-time curves were used to calculate rate of torque development (RTD) values at peak and at 50 and 200 milliseconds from torque onset. Barbell deadlift training induced significant pre- to post-increases of 18.8-49.0% for all rapid torque variables (p torque capacities in both the knee extensors and flexors. Changes in rapid torque were associated with improvements in vertical jump height, suggesting a transfer of adaptations from deadlift training to an explosive, performance-based task. Professionals may use these findings when attempting to design effective, time-efficient resistance training programs to improve explosive strength capacities in novices.

  19. Immediate vs. delayed endosseous integration of maxi implants: a torque removal animal study

    Directory of Open Access Journals (Sweden)

    Hanif Allahbakhshi

    2017-06-01

    Full Text Available Background. Delayed loading is one of the concerns in implant patients. Immediate loading can solve the problem and make patients more satisfied. The present study aimed to compare the removal torque of maxi implants under different loading (immediate and delayed patterns. Methods. This split-mouth experimental study included 2 dogs. Impressions were made and then all the premolars were extracted under general anesthesia. After a three-month healing period, 3 implants were inserted in each quadrant (a total of 12 implants. Anterior and posterior implants (the case group were splinted by an acrylic temporary bridge in order to make the middle implants (the control group off the occlusion. The dogs were sacrificed after 6 weeks and bone blocks were submitted for removal torque test. Data were analyzed with ANOVA (P<0.05. Results. Mean torque values for the cases and control groups were 46.82±25.58 and 59.88±15.19, respectively (P=0.582; not significant. Conclusion. It may be concluded that immediate loading does not reduce the reverse torque values of maxi implants. This supports the advantages of immediate loading for maxi implants.

  20. Temperature dependence of spin-orbit torques in Cu-Au alloys

    KAUST Repository

    Wen, Yan; Wu, Jun; Li, Peng; Zhang, Qiang; Zhao, Yuelei; Manchon, Aurelien; Xiao, John Q.; Zhang, Xixiang

    2017-01-01

    We investigated current driven spin-orbit torques in Cu40Au60/Ni80Fe20/Ti layered structures with in-plane magnetization. We have demonstrated a reliable and convenient method to separate dampinglike torque and fieldlike torque by using the second harmonic technique. It is found that the dampinglike torque and fieldlike torque depend on temperature very differently. Dampinglike torque increases with temperature, while fieldlike torque decreases with temperature, which are different from results obtained previously in other material systems. We observed a nearly linear dependence between the spin Hall angle and longitudinal resistivity, suggesting that skew scattering may be the dominant mechanism of spin-orbit torques.

  1. Temperature dependence of spin-orbit torques in Cu-Au alloys

    KAUST Repository

    Wen, Yan

    2017-03-07

    We investigated current driven spin-orbit torques in Cu40Au60/Ni80Fe20/Ti layered structures with in-plane magnetization. We have demonstrated a reliable and convenient method to separate dampinglike torque and fieldlike torque by using the second harmonic technique. It is found that the dampinglike torque and fieldlike torque depend on temperature very differently. Dampinglike torque increases with temperature, while fieldlike torque decreases with temperature, which are different from results obtained previously in other material systems. We observed a nearly linear dependence between the spin Hall angle and longitudinal resistivity, suggesting that skew scattering may be the dominant mechanism of spin-orbit torques.

  2. Intrinsic torque reversals induced by magnetic shear effects on the turbulence spectrum in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z. X.; Tynan, G. [Center for Energy Research and Department of Mechanical and Aerospace Engineering, University of California at San Diego, San Diego, California 92093 (United States); Center for Momentum Transport and Flow Organization and Center for Astrophysics and Space Science, University of California, San Diego, California 92093 (United States); Wang, W. X.; Ethier, S. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Diamond, P. H. [Center for Momentum Transport and Flow Organization and Center for Astrophysics and Space Science, University of California, San Diego, California 92093 (United States); Gao, C.; Rice, J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-05-15

    Intrinsic torque, which can be generated by turbulent stresses, can induce toroidal rotation in a tokamak plasma at rest without direct momentum injection. Reversals in intrinsic torque have been inferred from the observation of toroidal velocity changes in recent lower hybrid current drive (LHCD) experiments. This work focuses on understanding the cause of LHCD-induced intrinsic torque reversal using gyrokinetic simulations and theoretical analyses. A new mechanism for the intrinsic torque reversal linked to magnetic shear (s{sup ^}) effects on the turbulence spectrum is identified. This reversal is a consequence of the ballooning structure at weak s{sup ^}. Based on realistic profiles from the Alcator C-Mod LHCD experiments, simulations demonstrate that the intrinsic torque reverses for weak s{sup ^} discharges and that the value of s{sup ^}{sub crit} is consistent with the experimental results s{sup ^}{sub crit}{sup exp}≈0.2∼0.3 [Rice et al., Phys. Rev. Lett. 111, 125003 (2013)]. The consideration of this intrinsic torque feature in our work is important for the understanding of rotation profile generation at weak s{sup ^} and its consequent impact on macro-instability stabilization and micro-turbulence reduction, which is crucial for ITER. It is also relevant to internal transport barrier formation at negative or weakly positive s{sup ^}.

  3. Loosening torque of Universal Abutment screws after cyclic loading: influence of tightening technique and screw coating.

    Science.gov (United States)

    Bacchi, Atais; Regalin, Alexandre; Bhering, Claudia Lopes Brilhante; Alessandretti, Rodrigo; Spazzin, Aloisio Oro

    2015-10-01

    The purpose of this study was to evaluate the influence of tightening technique and the screw coating on the loosening torque of screws used for Universal Abutment fixation after cyclic loading. Forty implants (Titamax Ti Cortical, HE, Neodent) (n=10) were submerged in acrylic resin and four tightening techniques for Universal Abutment fixation were evaluated: A - torque with 32 Ncm (control); B - torque with 32 Ncm holding the torque meter for 20 seconds; C - torque with 32 Ncm and retorque after 10 minutes; D - torque (32 Ncm) holding the torque meter for 20 seconds and retorque after 10 minutes as initially. Samples were divided into subgroups according to the screw used: conventional titanium screw or diamond like carbon-coated (DLC) screw. Metallic crowns were fabricated for each abutment. Samples were submitted to cyclic loading at 10(6) cycles and 130 N of force. Data were analyzed by two-way ANOVA and Tukey's test (5%). The tightening technique did not show significant influence on the loosening torque of screws (P=.509). Conventional titanium screws showed significant higher loosening torque values than DLC (P=.000). The use of conventional titanium screw is more important than the tightening techniques employed in this study to provide long-term stability to Universal Abutment screws.

  4. Spin-torque generation in topological insulator based heterostructures

    KAUST Repository

    Fischer, Mark H.

    2016-03-11

    Heterostructures utilizing topological insulators exhibit a remarkable spin-torque efficiency. However, the exact origin of the strong torque, in particular whether it stems from the spin-momentum locking of the topological surface states or rather from spin-Hall physics of the topological-insulator bulk, remains unclear. Here, we explore a mechanism of spin-torque generation purely based on the topological surface states. We consider topological-insulator-based bilayers involving ferromagnetic metal (TI/FM) and magnetically doped topological insulators (TI/mdTI), respectively. By ascribing the key theoretical differences between the two setups to location and number of active surface states, we describe both setups within the same framework of spin diffusion of the nonequilibrium spin density of the topological surface states. For the TI/FM bilayer, we find large spin-torque efficiencies of roughly equal magnitude for both in-plane and out-of-plane spin torques. For the TI/mdTI bilayer, we elucidate the dominance of the spin-transfer-like torque. However, we cannot explain the orders of magnitude enhancement reported. Nevertheless, our model gives an intuitive picture of spin-torque generation in topological-insulator-based bilayers and provides theoretical constraints on spin-torque generation due to topological surface states.

  5. Reducing torque ripples in permanent magnet synchronous motor

    Directory of Open Access Journals (Sweden)

    Rihab Abdelmoula

    2017-09-01

    Full Text Available Permanent magnet synchronous motors (PMSMs are exceptionally promising thanks to their many advantages compared with other types of electrical machines. Indeed, PMSMs are characterized by their important torque density, light weight, high air gap flux density, high acceleration, high efficiency and strong power-to-weight ratio. A surface-mounted PMSM (SPMSM is used in this work. The SPMSM is built using a 2D finite element method (FEM. Cogging torque, torque ripples and back-EMF are examined during the design process in order to obtain sinusoidal back-EMF and to minimise torque ripples which are one of the major problems with PMSMs. Two procedures are used to reduce the cogging torque of SPMSM: the effect of slot opening and the influence of skewing the stator laminations. Cogging torque factor tc and the torque ripples factor tr have been calculated to compare the two configurations (open slots and closed slots. Then, the configuration with closed slots is utilised with skewing the stator laminations for different angle 0°, 10° and 15°.

  6. Reaction Force/Torque Sensing in a Master-Slave Robot System without Mechanical Sensors

    Directory of Open Access Journals (Sweden)

    Kyoko Shibata

    2010-07-01

    Full Text Available In human-robot cooperative control systems, force feedback is often necessary in order to achieve high precision and high stability. Usually, traditional robot assistant systems implement force feedback using force/torque sensors. However, it is difficult to directly mount a mechanical force sensor on some working terminals, such as in applications of minimally invasive robotic surgery, micromanipulation, or in working environments exposed to radiation or high temperature. We propose a novel force sensing mechanism for implementing force feedback in a master-slave robot system with no mechanical sensors. The system consists of two identical electro-motors with the master motor powering the slave motor to interact with the environment. A bimanual coordinated training platform using the new force sensing mechanism was developed and the system was verified in experiments. Results confirm that the proposed mechanism is capable of achieving bilateral force sensing and mirror-image movements of two terminals in two reverse control directions.

  7. Giant spin torque in hybrids with anisotropic p-d exchange interaction

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, V. L., E-mail: korenev@orient.ioffe.ru [A.F. Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia and Experimentelle Physik 2, Technische Universitat Dortmund, D-44227 Dortmund (Germany)

    2014-03-03

    Control of magnetic domain wall movement by the spin-polarized current looks promising for creation of a new generation of magnetic memory devices. A necessary condition for this is the domain wall shift by a low-density current. Here, I show that a strongly anisotropic exchange interaction between mobile heavy holes and localized magnetic moments enormously increases the current-induced torque on the domain wall as compared to systems with isotropic exchange. This enables one to control the domain wall motion by current density 10{sup 4} A/cm{sup 2} in ferromagnet/semiconductor hybrids. The experimental observation of the anisotropic torque will facilitate the integration of ferromagnetism into semiconductor electronics.

  8. Spin-orbit torques for current parallel and perpendicular to a domain wall

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Tomek; Lee, Kyujoon; Karnad, Gurucharan V. [Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55128 Mainz (Germany); Alejos, Oscar [Departamento de Electricidad y Electrónica, Universidad de Valladolid, Paseo de Belen, 7, E-47011 Valladolid (Spain); Martinez, Eduardo; Moretti, Simone [Departamento Fisica Aplicada, Universidad de Salamanca, Plaza de los Caidos s/n, E-38008 Salamanca (Spain); Hals, Kjetil M. D. [Niels Bohr International Academy and the Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Garcia, Karin; Ravelosona, Dafiné [Institut d' Electronique Fondamentale, UMR CNRS 8622, Université Paris Sud, 91405 Orsay Cedex (France); Vila, Laurent [Institut Nanosciences et Cryogénie, Université Grenoble Alpes, F-38000 Grenoble (France); Institut Nanosciences et Cryogénie, CEA, F-38000 Grenoble (France); Lo Conte, Roberto; Kläui, Mathias [Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55128 Mainz (Germany); Graduate School of Excellence “Materials Science in Mainz” (MAINZ), Staudinger Weg 9, 55128 Mainz (Germany); Ocker, Berthold [Singulus Technologies AG, 63796 Kahl am Main (Germany); Brataas, Arne [Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway)

    2015-09-21

    We report field- and current-induced domain wall (DW) depinning experiments in Ta\\Co{sub 20}Fe{sub 60}B{sub 20}\\MgO nanowires through a Hall cross geometry. While purely field-induced depinning shows no angular dependence on in-plane fields, the effect of the current depends crucially on the internal DW structure, which we manipulate by an external magnetic in-plane field. We show depinning measurements for a current sent parallel to the DW and compare its depinning efficiency with the conventional case of current flowing perpendicularly to the DW. We find that the maximum efficiency is similar for both current directions within the error bars, which is in line with a dominating damping-like spin-orbit torque (SOT) and indicates that no large additional torques arise for currents perpendicular to the DW. Finally, we find a varying dependence of the maximum depinning efficiency angle for different DWs and pinning levels. This emphasizes the importance of our full angular scans compared with previously used measurements for just two field directions (parallel and perpendicular to the DW) to determine the real torque strength and shows the sensitivity of the SOT to the precise DW structure and pinning sites.

  9. Spin-orbit torques in magnetic bilayers

    Science.gov (United States)

    Haney, Paul

    2015-03-01

    Spintronics aims to utilize the coupling between charge transport and magnetic dynamics to develop improved and novel memory and logic devices. Future progress in spintronics may be enabled by exploiting the spin-orbit coupling present at the interface between thin film ferromagnets and heavy metals. In these systems, applying an in-plane electrical current can induce magnetic dynamics in single domain ferromagnets, or can induce rapid motion of domain wall magnetic textures. There are multiple effects responsible for these dynamics. They include spin-orbit torques and a chiral exchange interaction (the Dzyaloshinskii-Moriya interaction) in the ferromagnet. Both effects arise from the combination of ferromagnetism and spin-orbit coupling present at the interface. There is additionally a torque from the spin current flux impinging on the ferromagnet, arising from the spin hall effect in the heavy metal. Using a combination of approaches, from drift-diffusion to Boltzmann transport to first principles methods, we explore the relative contributions to the dynamics from these different effects. We additionally propose that the transverse spin current is locally enhanced over its bulk value in the vicinity of an interface which is oriented normal to the charge current direction.

  10. Estimating Torque Imparted on Spacecraft Using Telemetry

    Science.gov (United States)

    Lee, Allan Y.; Wang, Eric K.; Macala, Glenn A.

    2013-01-01

    There have been a number of missions with spacecraft flying by planetary moons with atmospheres; there will be future missions with similar flybys. When a spacecraft such as Cassini flies by a moon with an atmosphere, the spacecraft will experience an atmospheric torque. This torque could be used to determine the density of the atmosphere. This is because the relation between the atmospheric torque vector and the atmosphere density could be established analytically using the mass properties of the spacecraft, known drag coefficient of objects in free-molecular flow, and the spacecraft velocity relative to the moon. The density estimated in this way could be used to check results measured by science instruments. Since the proposed methodology could estimate disturbance torque as small as 0.02 N-m, it could also be used to estimate disturbance torque imparted on the spacecraft during high-altitude flybys.

  11. Torque Ripple Reduction of a Novel Modular Arc-Linear Flux-Switching Permanent-Magnet Motor with Rotor Step Skewing

    Directory of Open Access Journals (Sweden)

    Xiangdong Liu

    2016-05-01

    Full Text Available A novel modular arc-linear flux-switching permanent-magnet motor (MAL-FSPM used for scanning system instead of reduction gearboxes and kinematic mechanisms is proposed and researched in this paper by the finite element method (FEM. The MAL-FSPM combines characteristics of flux-switching permanent-magnet motor and linear motor and can realize the direct driving and limited angular movement. Structure and operation principle of the MAL-FSPM are analyzed. Cogging torque model of the MAL-FSPM is established. The characteristics of cogging torque and torque ripple are investigated for: (1 distance (dend between left end of rotor and left end of stator is more than two rotor tooth pitch (τp; and (2 dend is less than two rotor tooth pitch. Cogging torque is an important component of torque ripple and the period ratio of the cogging torque to the back electromotive force (EMF equals one for the MAL-FSPM before optimization. In order to reduce the torque ripple as much as possible and affect the back EMF as little as possible, influence of period ratio of cogging torque to back EMF on rotor step skewing is investigated. Rotor tooth width and stator slot open width are optimized to increase the period ratio of cogging torque to back EMF. After the optimization, torque ripple is decreased by 79.8% for dend > τp and torque ripple is decreased by 49.7% for dend < τp. Finally, 3D FEM model is established to verify the 2D results.

  12. Torque Removal Evaluation of Screw in One-Piece and Two-Piece Abutments Tightened with a Handheld screwdriver

    Directory of Open Access Journals (Sweden)

    Jalil Ghanbarzadeh

    2013-12-01

    Full Text Available Introduction: Some clinicians use a handheld screw driver instead of a torque wrench to definitively tighten abutment screws. The aim of this study was to compare the removal torque of one-piece and two-piece abutments tightened with a handheld driver and a torque control ratchet. Methods: 40 ITI implants were placed in acrylic blocks and divided into 4 groups. In groups one and two, 10 ITI one-piece abutments (Solid® and in groups three and four, 10 ITI two-piece abutments (Synocta® were placed on the implants. In groups one and three abutments were tightened by 5 experienced males and 5 experienced females using a handheld driver. In groups two and four abutments were tightened using a torque wrench with torque values of 10, 20 and 35 N.cm. Insertion torque and removal torque values of the abutments were measured with a digital torque meter. Results: The insertion torque values (ITVs of males in both abutments were significantly higher than those of females. ITVs in both Solid® and Synocta® abutments tightened with a handheld screwdriver were similar to the torque of 20 N.cm in the torque wrench. Removal torque values (RTVs of solid® abutments were higher than those of synocta® abutments. Conclusion: The one- piece abutments (solid® showed higher RTVs than the two-piece abutments (synocta®. Hand driver does not produce sufficient preload force for the final tightening of the abutment

  13. Insertion torque, resonance frequency, and removal torque analysis of microimplants.

    Science.gov (United States)

    Tseng, Yu-Chuan; Ting, Chun-Chan; Du, Je-Kang; Chen, Chun-Ming; Wu, Ju-Hui; Chen, Hong-Sen

    2016-09-01

    This study aimed to compare the insertion torque (IT), resonance frequency (RF), and removal torque (RT) among three microimplant brands. Thirty microimplants of the three brands were used as follows: Type A (titanium alloy, 1.5-mm × 8-mm), Type B (stainless steel, 1.5-mm × 8-mm), and Type C (titanium alloy, 1.5-mm × 9-mm). A synthetic bone with a 2-mm cortical bone and bone marrow was used. Each microimplant was inserted into the synthetic bone, without predrilling, to a 7 mm depth. The IT, RF, and RT were measured in both vertical and horizontal directions. One-way analysis of variance and Spearman's rank correlation coefficient tests were used for intergroup and intragroup comparisons, respectively. In the vertical test, the ITs of Type C (7.8 Ncm) and Type B (7.5 Ncm) were significantly higher than that of Type A (4.4 Ncm). The RFs of Type C (11.5 kHz) and Type A (10.2 kHz) were significantly higher than that of Type B (7.5 kHz). Type C (7.4 Ncm) and Type B (7.3 Ncm) had significantly higher RTs than did Type A (4.1 Ncm). In the horizontal test, both the ITs and RTs were significantly higher for Type C, compared with Type A. No significant differences were found among the groups, and the study hypothesis was accepted. Type A had the lowest inner/outer diameter ratio and widest apical facing angle, engendering the lowest IT and highest RF values. However, no significant correlations in the IT, RF, and RT were observed among the three groups. Copyright © 2016. Published by Elsevier Taiwan.

  14. A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM

    Directory of Open Access Journals (Sweden)

    Gilberto Herrera-Ruíz

    2013-03-01

    Full Text Available A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component’s harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple.

  15. A new adaptive self-tuning Fourier coefficients algorithm for periodic torque ripple minimization in permanent magnet synchronous motors (PMSM).

    Science.gov (United States)

    Gómez-Espinosa, Alfonso; Hernández-Guzmán, Víctor M; Bandala-Sánchez, Manuel; Jiménez-Hernández, Hugo; Rivas-Araiza, Edgar A; Rodríguez-Reséndiz, Juvenal; Herrera-Ruíz, Gilberto

    2013-03-19

    A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM) Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs) due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component's harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple.

  16. Investigation Effects of Narrowing Rotor Pole Embrace to Efficiency and Cogging Torque at PM BLDC Motor

    Directory of Open Access Journals (Sweden)

    Cemil Ocak

    2016-02-01

    Full Text Available Engineers think that pole embrace size of a PM BLDC motor affects directly the efficiency and the torque. Dealing with theexperimental research, in the studywe have investigated the effects of narrowing rotor pole embrace step by step by changing sizes parametrically. By doing so, high efficiency and low cogging torque would have been obtained for a 20 W PM BLDC motor. In order to do this,pole arc to pole pitch ratio of magnets at the rotor poles has been changed parametrically (0.5 to 1 by genetic algorithm methodfirst. Then the electromagnetic field dispersions, output parameters of the motor, new rotor constructions have been obtained; and new pole embrace has been derived from the variation of pole arc to pole pitch ratio. We have also calculatedthe magnetic flux distribution, output power, torque, cogging torque and efficiency values analytically and the effects of new pole embrace to motor efficiency and torque have been simulated. The developed 18 slots, 6 poles, surface mounted inner runner configuration rotor machine is proposed as to be used insmall dentistry apparatus.

  17. Study and implementation of torque wrench calibrating apparatus

    Science.gov (United States)

    Breut, J.

    1986-02-01

    The calibration of torque wrenches in the ranges less than 5 mN and 1500 to 2500 mN was studied in order to implement a system which follows the French norm NFE 72325. The required accuracy of 1% is obtained using ball bearings, range splitting, and periodic control. Cost factors are discussed.

  18. Spatially and time-resolved magnetization dynamics driven by spin-orbit torques

    Science.gov (United States)

    Baumgartner, Manuel; Garello, Kevin; Mendil, Johannes; Avci, Can Onur; Grimaldi, Eva; Murer, Christoph; Feng, Junxiao; Gabureac, Mihai; Stamm, Christian; Acremann, Yves; Finizio, Simone; Wintz, Sebastian; Raabe, Jörg; Gambardella, Pietro

    2017-10-01

    Current-induced spin-orbit torques are one of the most effective ways to manipulate the magnetization in spintronic devices, and hold promise for fast switching applications in non-volatile memory and logic units. Here, we report the direct observation of spin-orbit-torque-driven magnetization dynamics in Pt/Co/AlOx dots during current pulse injection. Time-resolved X-ray images with 25 nm spatial and 100 ps temporal resolution reveal that switching is achieved within the duration of a subnanosecond current pulse by the fast nucleation of an inverted domain at the edge of the dot and propagation of a tilted domain wall across the dot. The nucleation point is deterministic and alternates between the four dot quadrants depending on the sign of the magnetization, current and external field. Our measurements reveal how the magnetic symmetry is broken by the concerted action of the damping-like and field-like spin-orbit torques and the Dzyaloshinskii-Moriya interaction, and show that reproducible switching events can be obtained for over 1012 reversal cycles.

  19. On Line Stator Resistance Tuning of DTC Control CSI Fed IM Drives

    OpenAIRE

    PANNEER SELVAM

    2012-01-01

    Current source inverter (CSI) fed drives are employed in high power applications. The conventional CSI drives suffer from drawbacks such as harmonic resonance, unstable operation at low speed ranges, and torque pulsation. CSI fed drives with Direct Torque Control (DTC) has drawn the attention of the motor drives designers because its implementation requires no position sensor. Crucial to the success of this scheme is the estimation of electromagnetic torque and stator flux linkages using the ...

  20. A Novel Maximum Power Point Tracking Control for Permanent Magnet Direct Drive Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2012-05-01

    Full Text Available This paper proposes a novel optimal current given (OCG maximum power point tracking (MPPT control strategy based on the theory of power feedback and hill climb searching (HCS for a permanent magnet direct drive wind energy conversion system (WECS. The presented strategy not only has the advantages of not needing the wind speed and wind turbine characteristics of the traditional HCS method, but it also improves the stability and accuracy of MPPT by estimating the exact loss torque. The OCG MPPT control strategy is first carried out by simulation, then an experimental platform based on the dSPACE1103 controller is built and a 5.5 kW permanent magnet synchronous generator (PMSG is tested. Furthermore, the proposed method is compared experimentally with the traditional optimum tip speed ratio (TSR MPPT control. The experiments verify the effectiveness of the proposed OCG MPPT strategy and demonstrate its better performance than the traditional TSR MPPT control.

  1. A New Circuit Model for Spin-Torque Oscillator Including Perpendicular Torque of Magnetic Tunnel Junction

    Directory of Open Access Journals (Sweden)

    Hyein Lim

    2013-01-01

    Full Text Available Spin-torque oscillator (STO is a promising new technology for the future RF oscillators, which is based on the spin-transfer torque (STT effect in magnetic multilayered nanostructure. It is expected to provide a larger tunability, smaller size, lower power consumption, and higher level of integration than the semiconductor-based oscillators. In our previous work, a circuit-level model of the giant magnetoresistance (GMR STO was proposed. In this paper, we present a physics-based circuit-level model of the magnetic tunnel junction (MTJ-based STO. MTJ-STO model includes the effect of perpendicular torque that has been ignored in the GMR-STO model. The variations of three major characteristics, generation frequency, mean oscillation power, and generation linewidth of an MTJ-STO with respect to the amount of perpendicular torque, are investigated, and the results are applied to our model. The operation of the model was verified by HSPICE simulation, and the results show an excellent agreement with the experimental data. The results also prove that a full circuit-level simulation with MJT-STO devices can be made with our proposed model.

  2. Temperature Dependences of Torque Generation and Membrane Voltage in the Bacterial Flagellar Motor

    Science.gov (United States)

    Inoue, Yuichi; Baker, Matthew A.B.; Fukuoka, Hajime; Takahashi, Hiroto; Berry, Richard M.; Ishijima, Akihiko

    2013-01-01

    In their natural habitats bacteria are frequently exposed to sudden changes in temperature that have been shown to affect their swimming. With our believed to be new methods of rapid temperature control for single-molecule microscopy, we measured here the thermal response of the Na+-driven chimeric motor expressed in Escherichia coli cells. Motor torque at low load (0.35 μm bead) increased linearly with temperature, twofold between 15°C and 40°C, and torque at high load (1.0 μm bead) was independent of temperature, as reported for the H+-driven motor. Single cell membrane voltages were measured by fluorescence imaging and these were almost constant (∼120 mV) over the same temperature range. When the motor was heated above 40°C for 1–2 min the torque at high load dropped reversibly, recovering upon cooling below 40°C. This response was repeatable over as many as 10 heating cycles. Both increases and decreases in torque showed stepwise torque changes with unitary size ∼150 pN nm, close to the torque of a single stator at room temperature (∼180 pN nm), indicating that dynamic stator dissociation occurs at high temperature, with rebinding upon cooling. Our results suggest that the temperature-dependent assembly of stators is a general feature of flagellar motors. PMID:24359752

  3. Electron Drift Speed And Current-Induced Drive Torques On A Domain Wall

    Science.gov (United States)

    Berger, Luc

    2009-03-01

    It has become fashionable to describe [1] current-induced torques on a DW in terms of an electron drift speed u = - P*j*muB/e*M where muB is the Bohr magneton and M the saturation magnetization. While appropriate for adiabatic torques, this quantity u is misleading and not the best choice in the case of non-adiabatic torques. For example, it leads [2] to beta not equal to alpha, where beta represents the intensity of the non-adiabatic torque, and alpha is the damping parameter. By writing equations of motion for conduction- electron spins in a moving frame where the electron gas is at rest, we find [3] a direct relation between damping and non- adiabatic torques. The correct electron drift speed turns out to be the speed of the frame, and is v = P*j/(n*q) where n and q are the carrier density and charge. It is related to the ordinary Hall constant R0 by v P*R0*j. After substituting v for u in the expression of the non-adiabatic torque, we find that beta = alpha holds now. Because v is larger than u in Permalloy, it can explain better the large current-induced DW speeds found [4] experimentally. In materials where R0> 0 and the carriers are dominantly hole-like, v and u have opposite signs, leading to different predictions for the sense of DW motion. We discuss examples of such materials. 1. G. Tatara and H. Kohno, Phys. Rev. Lett. 92, 086601 (2004). 2. H. Kohno et al., J. Phys. Soc. Japan, 75, 113706 (2006). 3. L. Berger, Phys. Rev. B 75, 174401 (2007). 4. M. Hayashi et al., Phys. Rev. Lett. 98, 037204 (2007).

  4. 40 CFR 91.306 - Dynamometer torque cell calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Dynamometer torque cell calibration... Provisions § 91.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used to convert a weight or a force through a distance into a torque must be used in a horizontal position for horizontal shaft...

  5. 40 CFR 90.306 - Dynamometer torque cell calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Dynamometer torque cell calibration... Emission Test Equipment Provisions § 90.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used to convert a weight or a force through a distance into a torque must be used in a horizontal position...

  6. Experimental Results for Minimum-Time Trajectory Tracking of a Direct-Drive Three-Link Planar Arm

    Energy Technology Data Exchange (ETDEWEB)

    DRIESSEN,BRIAN; PARKER,GORDON G.

    1999-09-01

    This work is an experimental investigation of the ability of a real three-link direct-drive arm to track model-based minimum-time trajectories that have been found off-line. Sufficiently large velocity gains in the computed torque control law were not achievable with the velocity sensors described herein. This indicates the critical importance of the velocity sensing when attempting to track trajectories that push the envelope of the system's torque capabilities.

  7. Arranque de un motor de inducción usando control difuso

    Directory of Open Access Journals (Sweden)

    Camilo Barriga Turriago

    2011-12-01

    Full Text Available This paper presents the use of fuzzy logic as part of artiÞ cial intelligence in the area of power electronics and motor drivers to improve performance during the startup of an induction motor. To feed the induction motor, two circuit configurations have been chosen to use: a series of thyristors connected in ant parallel and a threephaseinverter. Control strategies such as soft start and Direct Torque Control incorporating fuzzy control have been current proposals to reduce and improve torque. The results of a simulated induction motor squirrel cage of 1.1 KW to these electronic methods show an improvement in performance at boot time, reducing power and increasingthe torque.

  8. A sample speed control technique and pulsating torque elimination method in a brush less D C motor

    International Nuclear Information System (INIS)

    Faiz, J.; Aboulghasemian Azami, M.

    2000-01-01

    This paper presents a theoretical derivation and computer simulation of an optimal speed controller for a barrelhouse dc motor using feedback from a linear model running in parallel with the inverter-fed model. The intent of the feedback from the linear model is to eliminate torque ripples from the inverter drive. A nonlinear model of such a motor, transformed into a linear model by a local dipheomorphism (defined in section 2) and a new model is introduced in order to eliminate the undesirable effects of the inverter harmonics

  9. Analysis of a non-contact magnetoelastic torque transducer

    International Nuclear Information System (INIS)

    Andreescu, R.; Spellman, B.; Furlani, E.P.

    2008-01-01

    Results are presented for the performance of a magnetoelastic torque transducer that converts a torque-induced strain in a non-magnetic shaft into changes in a measurable magnetic field. The magnetic field is generated by a thin magnetostrictive layer that is coated onto the circumference of the shaft. The layer is magnetized and has an initial residual strain. The magnetization within the layer rotates in response to changes in the strain which occur when the shaft is torqued. The magnetic field produced by the layer changes with the magnetization and this can be sensed by a magnetometer to monitor the torque on the shaft. In this paper, a phenomenological theory is developed for predicting the performance of the transducer. The theory can be used to predict the magnetic field distribution of the transducer as a function of the physical properties of the magnetic coating, its residual strain, and the applied torque. It enables rapid parametric analysis of transducer performance, which is useful for the development and optimization of novel non-contact torque sensors

  10. Influence of Drilling Parameters on Torque during Drilling of GFRP Composites Using Response Surface Methodology

    Science.gov (United States)

    Mohan, N. S.; Kulkarni, S. M.

    2018-01-01

    Polymer based composites have marked their valuable presence in the area of aerospace, defense and automotive industry. Components made of composite, are assembled to main structure by fastener, which require accurate, precise high quality holes to be drilled. Drilling the hole in composite with accuracy require control over various processes parameters viz., speed, feed, drill bit size and thickens of specimen. TRIAC VMC machining center is used to drill the hole and to relate the cutting and machining parameters on the torque. MINITAB 14 software is used to analyze the collected data. As a function of cutting and specimen parameters this method could be useful for predicting torque parameters. The purpose of this work is to investigate the effect of drilling parameters to get low torque value. Results show that thickness of specimen and drill bit size are significant parameters influencing the torque and spindle speed and feed rate have least influence and overlaid plot indicates a feasible and low region of torque is observed for medium to large sized drill bits for the range of spindle speed selected. Response surface contour plots indicate the sensitivity of the drill size and specimen thickness to the torque.

  11. Optimal control of motorsport differentials

    Science.gov (United States)

    Tremlett, A. J.; Massaro, M.; Purdy, D. J.; Velenis, E.; Assadian, F.; Moore, A. P.; Halley, M.

    2015-12-01

    Modern motorsport limited slip differentials (LSD) have evolved to become highly adjustable, allowing the torque bias that they generate to be tuned in the corner entry, apex and corner exit phases of typical on-track manoeuvres. The task of finding the optimal torque bias profile under such varied vehicle conditions is complex. This paper presents a nonlinear optimal control method which is used to find the minimum time optimal torque bias profile through a lane change manoeuvre. The results are compared to traditional open and fully locked differential strategies, in addition to considering related vehicle stability and agility metrics. An investigation into how the optimal torque bias profile changes with reduced track-tyre friction is also included in the analysis. The optimal LSD profile was shown to give a performance gain over its locked differential counterpart in key areas of the manoeuvre where a quick direction change is required. The methodology proposed can be used to find both optimal passive LSD characteristics and as the basis of a semi-active LSD control algorithm.

  12. Actuation of a robotic fish caudal fin for low reaction torque

    Science.gov (United States)

    Yun, Dongwon; Kim, Kyung-Soo; Kim, Soohyun; Kyung, Jinho; Lee, Sunghee

    2011-07-01

    In this paper, a novel caudal fin for actuating a robotic fish is presented. The proposed caudal fin waves in a vertical direction with a specific spatial shape, which is determined by a so-called shape factor. For a specific shape factor, a traveling wave with a vertical phase difference is formed on a caudal fin during fin motion. It will be shown by the analysis that the maximum reaction torque at the joint of a caudal fin varies depending on the shape factors. Compared with a conventional plate type caudal fin, the proposed fin with a shape factor of 2π can eliminate the reaction torque perfectly, while keeping the propulsion force unchanged. The benefits of the proposed fin will be demonstrated by experiments.

  13. PREFACE: The Science of Making Torque from Wind 2014 (TORQUE 2014)

    Science.gov (United States)

    Mann, Jakob; Bak, Christian; Bechmann, Andreas; Bingöl, Ferhat; Dellwik, Ebba; Dimitrov, Nikolay; Giebel, Gregor; Hansen, Martin O. L.; Jensen, Dorte Juul; Larsen, Gunner; Aagaard Madsen, Helge; Natarajan, Anand; Rathmann, Ole; Sathe, Ameya; Nørkær Sørensen, Jens; Nørkær Sørensen, Niels

    2014-06-01

    The 186 papers in this volume constitute the proceedings of the fifth Science of Making Torque from Wind conference, which is organized by the European Academy of Wind Energy (EAWE, www.eawe.eu). The conference, also called Torque 2014, is held at the Technical University of Denmark (DTU) 17-20 June 2014. The EAWE conference series started in 2004 in Delft, the Netherlands. In 2007 it was held in Copenhagen, in 2010 in Heraklion, Greece, and then in 2012 in Oldenburg, Germany. The global yearly production of electrical energy by wind turbines has grown approximately by 25% annually over the last couple of decades and covers now 2-3% of the global electrical power consumption. In order to make a significant impact on one of the large challenges of our time, namely global warming, the growth has to continue for a decade or two yet. This in turn requires research and education in wind turbine aerodynamics and wind resources, the two topics which are the main subjects of this conference. Similar to the growth in electrical power production by wind is the growth in scientific papers about wind energy. Over the last decade the number of papers has also grown by about 25% annually, and many research based companies all over the world are founded. Hence, the wind energy research community is rapidly expanding and the Torque conference series offers a good opportunity to meet and exchange ideas. We hope that the Torque 2014 will heighten the quality of the wind energy research, while the participants will enjoy each others company in Copenhagen. Many people have been involved in producing the Torque 2014 proceedings. The work by more than two hundred reviewers ensuring the quality of the papers is greatly appreciated. The timely evaluation and coordination of the reviews would not have been possible without the work of sixteen ''section editors'' all from DTU Wind Energy: Christian Bak, Andreas Bechmann, Ferhat Bingöl, Ebba Dellwik, Nikolay Dimitrov, Gregor Giebel, Martin

  14. Study on Monitoring Rock Burst through Drill Pipe Torque

    Directory of Open Access Journals (Sweden)

    Zhonghua Li

    2015-01-01

    Full Text Available This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method. It is based on the relationship of rock burst with coal stress and coal strength. Through theoretic analysis, the change mechanism of drill pipe torque and the relationship of drill pipe torque with coal stress, coal strength, and drilling speed are investigated. In light of the analysis, a new device for testing drill pipe torque is developed and a series of experiments is performed under different conditions; the results show that drill pipe torque linearly increases with the increase of coal stress and coal strength; the faster the drilling speed, the larger the drill pipe torque, and vice versa. When monitoring rock burst by drill pipe torque method, the index of rock burst is regarded as a function in which coal stress index and coal strength index are principal variables. The results are important for the forecast of rock burst in coal mine.

  15. FRICTION TORQUE IN THE SLIDE BEARINGS

    Directory of Open Access Journals (Sweden)

    BONDARENKO L. N.

    2016-09-01

    Full Text Available Summary. Problem statement. Until now slide bearings are used widely in engineering. But the calculation is made on obsolete method that is based on undetermined parameters such as wear of the bearing shell. It is accepted in the literature that if the shaft and liner material are homogeneous, the workpiece surface are cylindrical as they wear and contact between them occurs at all points contact arc. Research objective. The purpose of this study is determine a friction torque in the slide bearings of power-basis parameters. Conclusions. Since the friction is primarily responsible for wear of cinematic pairs “pin – liner” and “pivot – liner” slide bearings. It is shown that the friction torquesof angles wrap, that are obtained by the formulas and given in literature, are not only qualitatively but also quantitatively, namely, the calculation by literature to the formulas the friction torques are proportional to the angle wrap and the calculation by improved formulas the friction torques are inversely proportional to the angle wrap due to the reduction the normal pressure. Underreporting friction torque at large angle wrap is between 40 and 15 %. The difference in the magnitude of friction torque in the run-in and run-out cinematic pairs with real method of machining is 2...3 %, which it is possible to declare of reducing the finish of contacting surface of slide bearings.

  16. A novel steady state wind turbine simulator using an inverter controlled induction motor

    Energy Technology Data Exchange (ETDEWEB)

    Kojabadi, H.M.; Liuchen Chang

    2005-07-01

    This paper presents a new wind turbine simulator for steady state conditions. In order to provide a test platform for wind turbine drive trains, the authors have developed an experimental system to simulate the static characteristics of real wind turbines. This system consists of a 10 hp induction motor (IM), which drives a synchronous generator and is driven by a 10 kW variable-speed drive inverter, and real time control software. A microcontroller, a PC interfaced to a LAB Windows I/O board, and an IGBT inverter-controlled induction motor are used instead of a real wind turbine to supply shaft torque. A control program written in the C language is developed that obtains wind profiles and, by using turbine characteristics and the rotational speed of the IM, calculates the theoretical shaft torque of a real wind turbine. Based on the comparison of the measured torque with this demand torque, the shaft torque of the IM is regulated accordingly by controlling stator current demand and frequency demand of an inverter. In this way, the relationships between shaft rotating speed, shaft torque of the IM and wind speed are made to conform to the characteristics of a real wind turbine. The drive is controlled using the measured shaft torque directly, instead of estimating it as conventional drives do. (author)

  17. Dynamic wake model with coordinated pitch and torque control of wind farms for power tracking

    Science.gov (United States)

    Shapiro, Carl; Meyers, Johan; Meneveau, Charles; Gayme, Dennice

    2017-11-01

    Control of wind farm power production, where wind turbines within a wind farm coordinate to follow a time-varying power set point, is vital for increasing renewable energy participation in the power grid. Previous work developed a one-dimensional convection-diffusion equation describing the advection of the velocity deficit behind each turbine (wake) as well the turbulent mixing of the wake with the surrounding fluid. Proof-of-concept simulations demonstrated that a receding horizon controller built around this time-dependent model can effectively provide power tracking services by modulating the thrust coefficients of individual wind turbines. In this work, we extend this model-based controller to include pitch angle and generator torque control and the first-order dynamics of the drive train. Including these dynamics allows us to investigate control strategies for providing kinetic energy reserves to the grid, i.e. storing kinetic energy from the wind in the rotating mass of the wind turbine rotor for later use. CS, CM, and DG are supported by NSF (ECCS-1230788, CMMI 1635430, and OISE-1243482, the WINDINSPIRE project). JM is supported by ERC (ActiveWindFarms, 306471). This research was conducted using computational resources at MARCC.

  18. Parameter dependence of resonant spin torque magnetization reversal

    International Nuclear Information System (INIS)

    Fricke, L.; Serrano-Guisan, S.; Schumacher, H.W.

    2012-01-01

    We numerically study ultra fast resonant spin torque (ST) magnetization reversal in magnetic tunneling junctions (MTJ) driven by current pulses having a direct current (DC) and a resonant alternating current (AC) component. The precessional ST dynamics of the single domain MTJ free layer cell are modeled in the macro spin approximation. The energy efficiency, reversal time, and reversal reliability are investigated under variation of pulse parameters like direct and AC current amplitude, AC frequency and AC phase. We find a range of AC and direct current amplitudes where robust resonant ST reversal is obtained with faster switching time and reduced energy consumption per pulse compared to purely direct current ST reversal. However, for a certain range of AC and direct current amplitudes a strong dependence of the reversal properties on AC frequency and phase is found. Such regions of unreliable reversal must be avoided for ST memory applications.

  19. Parameter dependence of resonant spin torque magnetization reversal

    Science.gov (United States)

    Fricke, L.; Serrano-Guisan, S.; Schumacher, H. W.

    2012-04-01

    We numerically study ultra fast resonant spin torque (ST) magnetization reversal in magnetic tunneling junctions (MTJ) driven by current pulses having a direct current (DC) and a resonant alternating current (AC) component. The precessional ST dynamics of the single domain MTJ free layer cell are modeled in the macro spin approximation. The energy efficiency, reversal time, and reversal reliability are investigated under variation of pulse parameters like direct and AC current amplitude, AC frequency and AC phase. We find a range of AC and direct current amplitudes where robust resonant ST reversal is obtained with faster switching time and reduced energy consumption per pulse compared to purely direct current ST reversal. However, for a certain range of AC and direct current amplitudes a strong dependence of the reversal properties on AC frequency and phase is found. Such regions of unreliable reversal must be avoided for ST memory applications.

  20. Interfacial spin-orbit splitting and current-driven spin torque in anisotropic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2011-05-17

    Spin transport in magnetic tunnel junctions comprising a single magnetic layer in the presence of interfacial spin-orbit interaction (SOI) is investigated theoretically. Due to the presence of interfacial SOI, a current-driven spin torque can be generated at the second order in SOI, even in the absence of an external spin polarizer. This torque possesses two components, one in plane and one perpendicular to the plane of rotation, that can induce either current-driven magnetization switching from an in-plane to out-of-plane configuration or magnetization precessions, similar to spin transfer torque in spin valves. Consequently, it appears that it is possible to control the magnetization steady state and dynamics by either varying the bias voltage or electrically modifying the SOI at the interface.

  1. Inverse modelling and pulsating torque minimization of salient pole non-sinusoidal synchronous machines

    Energy Technology Data Exchange (ETDEWEB)

    Ait-gougam, Y.; Ibtiouen, R.; Touhami, O. [Laboratoire de Recherche en Electrotechnique, Ecole Nationale Polytechnique, BP 182, El-Harrach 16200 (Algeria); Louis, J.-P.; Gabsi, M. [Systemes et Applications des Technologies de l' Information et de l' Energie (SATIE), CNRS UMR 8029, Ecole Normale Superieure de Cachan, 61 Avenue du President Wilson, 94235 Cachan Cedex (France)

    2008-01-15

    Sinusoidal motor's mathematical models are usually obtained using classical d-q transformation in the case of salient pole synchronous motors having sinusoidal field distribution. In this paper, a new inverse modelling for synchronous motors is presented. This modelling is derived from the properties of constant torque curves in the Concordia's reference frame. It takes into account the non-sinusoidal field distribution; EMF, self and mutual inductances having non-sinusoidal variations with respect to the angular rotor position. Both copper losses and torque ripples are minimized by adapted currents waveforms calculated from this model. Experimental evaluation was carried out on a DSP-controlled PMSM drive platform. Test results obtained demonstrate the effectiveness of the proposed method in reducing torque ripple. (author)

  2. Distributed adaptive asymptotically consensus tracking control of uncertain Euler-Lagrange systems under directed graph condition.

    Science.gov (United States)

    Wang, Wei; Wen, Changyun; Huang, Jiangshuai; Fan, Huijin

    2017-11-01

    In this paper, a backstepping based distributed adaptive control scheme is proposed for multiple uncertain Euler-Lagrange systems under directed graph condition. The common desired trajectory is allowed totally unknown by part of the subsystems and the linearly parameterized trajectory model assumed in currently available results is no longer needed. To compensate the effects due to unknown trajectory information, a smooth function of consensus errors and certain positive integrable functions are introduced in designing virtual control inputs. Besides, to overcome the difficulty of completely counteracting the coupling terms of distributed consensus errors and parameter estimation errors in the presence of asymmetric Laplacian matrix, extra information transmission of local parameter estimates are introduced among linked subsystem and adaptive gain technique is adopted to generate distributed torque inputs. It is shown that with the proposed distributed adaptive control scheme, global uniform boundedness of all the closed-loop signals and asymptotically output consensus tracking can be achieved. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Definition and implementation of internal model control laws for a direct injection engine; Definition et mise en oeuvre de lois de commande a modele interne pour un moteur thermique a injection directe d'essence

    Energy Technology Data Exchange (ETDEWEB)

    Grousson, F.

    2000-10-03

    This study has been achieved in order to improve the direct injection engine control, by using internal model control strategies. Its aim is to optimise the engine performance and to decrease the polluting emissions through a better dynamic control. The use of internal model controls brings robustness in order to face the engine parameter disparity and allows great improvements in the control calibration thanks to a shorter tuning time. The first part gives the outlines of thermic engine operating and focuses on modeling with the final control in view. The second part tackles the implementation of regulation algorithms. Firstly, the air path control uses the state feedback linearization mixed with the predictive control. Secondly, the torque control of the driver's requests is performed with a static inversion using the Jacobian matrix. Finally, a simplified predictive control makes it possible to solve idle speed regulation problems. The last part is devoted to real time and fast proto-typing tests. The main simulation results have been validated through experimental tests on a direct injection car. (author)

  4. Do peak torque angles of muscles change following anterior cruciate ligament reconstruction using hamstring or patellar tendon graft?

    Science.gov (United States)

    Yosmaoğlu, Hayri Baran; Baltacı, Gül; Sönmezer, Emel; Özer, Hamza; Doğan, Deha

    2017-12-01

    This study aims to compare the effects of anterior cruciate ligament (ACL) reconstruction using autogenous hamstring or patellar tendon graft on the peak torque angle. The study included 132 patients (103 males, 29 females; mean age 29±9 year) who were performed ACL reconstruction with autogenous hamstring or patellar tendon graft. The peak torque angles in the quadriceps and hamstring muscles were recorded using an isokinetic dynamometer. Angle of peak knee flexion torque occurred significantly earlier within the range of motion on the operated side than nonoperated side at 180°/second in the hamstring tendon group. Angle of peak knee extension torque occurred significantly earlier within the range of motion on the operated side than nonoperated side at 180°/second in the patellar tendon group. There were no statistically significant differences in the flexion and extension peak torque angles between the operated and nonoperated knees at 60°/second in both groups. The angle of peak torque at relatively high angular velocities is affected after ACL reconstruction in patients with hamstring or patellar tendon grafts. The graft donor site directly influences this parameter. This finding may be important for clinicians in terms of preventing re-injury.

  5. A Modified Multiband Hysteresis Controlled DTC of Induction Machine with 27-level asymmetrical CHB-MLI with NVC modulation

    Directory of Open Access Journals (Sweden)

    Rohith Balaji Jonnala

    2018-03-01

    Full Text Available The influence of Direct Torque Controlled Induction Motor Drive in the area of industrial application is very high; it presents foremost area of controllability of load at different states of operation. The major snags to the controller are maintaining Constant Switching Frequency and Infeasibility state. This paper concentrates on rectifying these problems with Modified Multiband Hysteresis Controller and Nearest Vector Control Modulated Asymmetrical Cascaded H-Bridge Multilevel Inverter for the better drive operation. In this case proper modification in MHC gives the optimal utilizations of each control vector to avoid the infeasibility states with a Lookup-Table and Multilevel Inverter gives more number of control voltage vectors with constant switching frequency for flexible operation of drive with low disturbances. Direct Torque Control equipped with these two modules achieves better operating conditions with low Torque ripples, low distorted flux and speed with different loads, and all other satisfactory load operating parameters.

  6. Modeling Attitude Dynamics in Simulink: A Study of the Rotational and Translational Motion of a Spacecraft Given Torques and Impulses Generated by RMS Hand Controllers

    Science.gov (United States)

    Mauldin, Rebecca H.

    2010-01-01

    In order to study and control the attitude of a spacecraft, it is necessary to understand the natural motion of a body in orbit. Assuming a spacecraft to be a rigid body, dynamics describes the complete motion of the vehicle by the translational and rotational motion of the body. The Simulink Attitude Analysis Model applies the equations of rigid body motion to the study of a spacecraft?s attitude in orbit. Using a TCP/IP connection, Matlab reads the values of the Remote Manipulator System (RMS) hand controllers and passes them to Simulink as specified torque and impulse profiles. Simulink then uses the governing kinematic and dynamic equations of a rigid body in low earth orbit (LE0) to plot the attitude response of a spacecraft for five seconds given known applied torques and impulses, and constant principal moments of inertia.

  7. Current-induced Rashba spin orbit torque in silicene

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ji, E-mail: muze7777@hdu.edu.cn [Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China); Peng, Yingzi [Department of Physics, School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China); Center for Integrated Spintronic Devices, Hangzhou Dianzi University, Hangzhou 310018 (China); Zhou, Jie [Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2017-06-15

    Highlights: • The spin dynamics of a ferromagnetic layer coupled to a silicene is investigated. • The Rashba spin orbit torque is obtained and the well-known LLG equation is modified. • The explicit forms of spin orbit torques in Domain Wall and vortex is also obtained. - Abstract: We study theoretically the spin torque of a ferromagnetic layer coupled to a silicene in the presence of the intrinsic Rashba spin orbit coupling (RSOC) effect. By using gauge field method, we find that under the applied current, the RSOC can induce an effective field which will result in the spin precession of conduction electron without applying any magnetic field. We also derive the spin torques due to the RSOC, which generalize the Landau-Lifshitz-Gilbert (LLG) equation. The spin torques are related to the applied current, the carrier density and Rashba strength of the system.

  8. Maximum Torque and Momentum Envelopes for Reaction Wheel Arrays

    Science.gov (United States)

    Markley, F. Landis; Reynolds, Reid G.; Liu, Frank X.; Lebsock, Kenneth L.

    2009-01-01

    Spacecraft reaction wheel maneuvers are limited by the maximum torque and/or angular momentum that the wheels can provide. For an n-wheel configuration, the torque or momentum envelope can be obtained by projecting the n-dimensional hypercube, representing the domain boundary of individual wheel torques or momenta, into three dimensional space via the 3xn matrix of wheel axes. In this paper, the properties of the projected hypercube are discussed, and algorithms are proposed for determining this maximal torque or momentum envelope for general wheel configurations. Practical strategies for distributing a prescribed torque or momentum among the n wheels are presented, with special emphasis on configurations of four, five, and six wheels.

  9. A moving control volume method for smooth computation of hydrodynamic forces and torques on immersed bodies

    Science.gov (United States)

    Nangia, Nishant; Patankar, Neelesh A.; Bhalla, Amneet P. S.

    2017-11-01

    Fictitious domain methods for simulating fluid-structure interaction (FSI) have been gaining popularity in the past few decades because of their robustness in handling arbitrarily moving bodies. Often the transient net hydrodynamic forces and torques on the body are desired quantities for these types of simulations. In past studies using immersed boundary (IB) methods, force measurements are contaminated with spurious oscillations due to evaluation of possibly discontinuous spatial velocity of pressure gradients within or on the surface of the body. Based on an application of the Reynolds transport theorem, we present a moving control volume (CV) approach to computing the net forces and torques on a moving body immersed in a fluid. The approach is shown to be accurate for a wide array of FSI problems, including flow past stationary and moving objects, Stokes flow, and high Reynolds number free-swimming. The approach only requires far-field (smooth) velocity and pressure information, thereby suppressing spurious force oscillations and eliminating the need for any filtering. The proposed moving CV method is not limited to a specific IB method and is straightforward to implement within an existing parallel FSI simulation software. This work is supported by NSF (Award Numbers SI2-SSI-1450374, SI2-SSI-1450327, and DGE-1324585), the US Department of Energy, Office of Science, ASCR (Award Number DE-AC02-05CH11231), and NIH (Award Number HL117163).

  10. Analytical description of ballistic spin currents and torques in magnetic tunnel junctions

    KAUST Repository

    Chshiev, M.

    2015-09-21

    In this work we demonstrate explicit analytical expressions for both charge and spin currents which constitute the 2×2 spinor in magnetic tunnel junctions with noncollinear magnetizations under applied voltage. The calculations have been performed within the free electron model in the framework of the Keldysh formalism and WKB approximation. We demonstrate that spin/charge currents and spin transfer torques are all explicitly expressed through only three irreducible quantities, without further approximations. The conditions and mechanisms of deviation from the conventional sine angular dependence of both spin currents and torques are shown and discussed. It is shown in the thick barrier approximation that all tunneling transport quantities can be expressed in an extremely simplified form via Slonczewski spin polarizations and our effective spin averaged interfacial transmission probabilities and effective out-of-plane polarizations at both interfaces. It is proven that the latter plays a key role in the emergence of perpendicular spin torque as well as in the angular dependence character of all spin and charge transport considered. It is demonstrated directly also that for any applied voltage, the parallel component of spin current at the FM/I interface is expressed via collinear longitudinal spin current components. Finally, spin transfer torque behavior is analyzed in a view of transverse characteristic length scales for spin transport.

  11. Analysis of thrust/torque signature of MOV

    International Nuclear Information System (INIS)

    Ryu, Ho Geun; Park, Seong Keun; Kim, Dae Woong

    2001-01-01

    For the evaluation of operability of MOV(Motor Operated Valve), the precision prediction of thrust/torque acting on the valve is important. In this paper, the analytical prediction method of thrust/torque was proposed. The design basis stem thrust calculation typically considers the followings: packing thrust, stem rejection load, design basis differential pressure load. In general, test results show that temperature, pressure, fluid type, and differential pressure, independently and combination, all have an effect on the friction factor. The prediction results of thrust/torque are well agreement with dynamic test results

  12. Corotation torques in the solar nebula - the cutoff function

    International Nuclear Information System (INIS)

    Ward, W.R.

    1989-01-01

    The behavior of high-order corotation resonances in a disk of finite thickness is examined. The torque exerted at an mth-order resonance is determined by employing a vertically averaged disturbing function, and the ratio of this torque to that exerted on a cold, two-dimensional disk is identified as the so-called torque cutoff function. This function is then used to calculate contributions from the corotation torques to eccentricity variations of a perturber's orbit assumed orbiting in the disk. 11 references

  13. Towards Scalable Strain Gauge-Based Joint Torque Sensors

    Science.gov (United States)

    D’Imperio, Mariapaola; Cannella, Ferdinando; Caldwell, Darwin G.; Cuschieri, Alfred

    2017-01-01

    During recent decades, strain gauge-based joint torque sensors have been commonly used to provide high-fidelity torque measurements in robotics. Although measurement of joint torque/force is often required in engineering research and development, the gluing and wiring of strain gauges used as torque sensors pose difficulties during integration within the restricted space available in small joints. The problem is compounded by the need for a scalable geometric design to measure joint torque. In this communication, we describe a novel design of a strain gauge-based mono-axial torque sensor referred to as square-cut torque sensor (SCTS), the significant features of which are high degree of linearity, symmetry, and high scalability in terms of both size and measuring range. Most importantly, SCTS provides easy access for gluing and wiring of the strain gauges on sensor surface despite the limited available space. We demonstrated that the SCTS was better in terms of symmetry (clockwise and counterclockwise rotation) and more linear. These capabilities have been shown through finite element modeling (ANSYS) confirmed by observed data obtained by load testing experiments. The high performance of SCTS was confirmed by studies involving changes in size, material and/or wings width and thickness. Finally, we demonstrated that the SCTS can be successfully implementation inside the hip joints of miniaturized hydraulically actuated quadruped robot-MiniHyQ. This communication is based on work presented at the 18th International Conference on Climbing and Walking Robots (CLAWAR). PMID:28820446

  14. Spin transfer torque generated magnetic droplet solitons (invited)

    International Nuclear Information System (INIS)

    Chung, S.; Mohseni, S. M.; Sani, S. R.; Iacocca, E.; Dumas, R. K.; Pogoryelov, Ye.; Anh Nguyen, T. N.; Muduli, P. K.; Eklund, A.; Hoefer, M.; Åkerman, J.

    2014-01-01

    We present recent experimental and numerical advancements in the understanding of spin transfer torque generated magnetic droplet solitons. The experimental work focuses on nano-contact spin torque oscillators (NC-STOs) based on orthogonal (pseudo) spin valves where the Co fixed layer has an easy-plane anisotropy, and the [Co/Ni] free layer has a strong perpendicular magnetic anisotropy. The NC-STO resistance and microwave signal generation are measured simultaneously as a function of drive current and applied perpendicular magnetic field. Both exhibit dramatic transitions at a certain current dependent critical field value, where the microwave frequency drops 10 GHz, modulation sidebands appear, and the resistance exhibits a jump, while the magnetoresistance changes sign. We interpret these observations as the nucleation of a magnetic droplet soliton with a large fraction of its magnetization processing with an angle greater than 90°, i.e., around a direction opposite that of the applied field. This interpretation is corroborated by numerical simulations. When the field is further increased, we find that the droplet eventually collapses under the pressure from the Zeeman energy

  15. Evaluation of torque loss value of MAD/MAM zirconia abutments with prefabricated titanium abutments

    Directory of Open Access Journals (Sweden)

    Marzieh Alikhasi

    2013-04-01

    Full Text Available Background and Aims: In response to esthetic demand of patients, ceramic abutments have been developed. Despite esthetic of zirconia abutments, machining accuracy of these abutments has always been a question. Any misfit in the abutment-implant interface connection can lead to detorque and screw loosening. The aim of this study was to compare torque loss value of manually aided design/manually aided manufacture (MAD/MAM zirconia abutments with prefabricated titanium abutments. Materials and Methods: Seven titanium abutments (Branemark RP, Easy abutment and seven copy milled abutments which were duplicated from the prefabricated Zirkonzhan (ZirkonZahn, Sand in Taufers, Italy were prepared. After sintering process of zirconia abutment, all abutments were fastened with a torque screw under 35 Ncm. Detorque measurements were performed per group pushing the reverse button of the Torque controller soon after screw tightening with values registered. The mean torque loss were calculated and compared using Student's t test. Results: The mean of torque loss was 12.71 Ncm with standard deviation of 1.70 for prefabricated titanium abutments and 15.50 Ncm with standard deviation of 4.67 for MAD-MAM abutments. The difference between the two groups was not statistically significant (P=0.23. Conclusion: Within the limitation of this study, MAD-MAM ceramic abutments could maintain the applied torque comparing to the prefabricated abutments.

  16. Ankle torque steadiness is related to muscle activation variability and co-activation in children with cerebral palsy

    DEFF Research Database (Denmark)

    Bandholm, Thomas; Rose, Martin; Sløk, Rikke

    2009-01-01

    The aims of this study were to: (1) investigate the significance of muscle activation variability and coactivation for the ability to perform steady submaximal ankle torque (torque steadiness) in healthy children and those with cerebral palsy (CP), and (2) assess ankle function during isometric...... contractions in those children. Fourteen children with CP who walked with equinus foot deformity and 14 healthy (control) children performed maximal and steady submaximal ankle dorsi- and plantarflexions. Dorsiflexion torque steadiness was related to agonist and antagonist muscle activation variability as well...

  17. A Torque Error Compensation Algorithm for Surface Mounted Permanent Magnet Synchronous Machines with Respect to Magnet Temperature Variations

    Directory of Open Access Journals (Sweden)

    Chang-Seok Park

    2017-09-01

    Full Text Available This paper presents a torque error compensation algorithm for a surface mounted permanent magnet synchronous machine (SPMSM through real time permanent magnet (PM flux linkage estimation at various temperature conditions from medium to rated speed. As known, the PM flux linkage in SPMSMs varies with the thermal conditions. Since a maximum torque per ampere look up table, a control method used for copper loss minimization, is developed based on estimated PM flux linkage, variation of PM flux linkage results in undesired torque development of SPMSM drives. In this paper, PM flux linkage is estimated through a stator flux linkage observer and the torque error is compensated in real time using the estimated PM flux linkage. In this paper, the proposed torque error compensation algorithm is verified in simulation and experiment.

  18. Calculation of Cogging Torque in Hybrid Stepping Motors | Agber ...

    African Journals Online (AJOL)

    When the windings of a hybrid stepping motor are unexcited the permanent magnet's flux produces cogging torque. This torque has both desirable and undesirable features depending on the application that the motor is put into. This paper formulates an analytical method for predicting cogging torque using measured ...

  19. Intrinsic and extrinsic spin-orbit torques from first principles

    International Nuclear Information System (INIS)

    Geranton, Guillaume

    2017-01-01

    This thesis attempts to shed light on the microscopic mechanisms underlying the current-induced magnetic torques in ferromagnetic heterostructures. We have developed first principles methods aiming at the accurate and effcient calculation of the so-called spin-orbit torques (SOTs) in magnetic thin films. The emphasis of this work is on the impurity-driven extrinsic SOTs. The main part of this thesis is dedicated to the development of a formalism for the calculation of the SOTs within the Korringa-Kohn-Rostoker (KKR) method. The impurity-induced transitions rates are obtained from first principles and their effect on transport properties is treated within the Boltzmann formalism. The developed formalism provides a mean to compute the SOTs beyond the conventional constant relaxation time approximation. We first apply our formalism to the investigation of FePt/Pt and Co/Cu bilayers in the presence of defects and impurities. Our results hint at a crucial dependence of the torque on the type of disorder present in the films, which we explain by a complex interplay of several competing Fermi surface contributions to the SOT. Astonishingly, specific defect distributions or doping elements lead respectively to an increase or a sign change of the torque, which can not be explained on the basis of simple models. We also compute the intrinsic SOT induced by electrical and thermal currents within the full potential linearized augmented plane-wave method. Motivated by recent experimental works, we then investigate the microscopic origin of the SOT in a Ag_2Bi-terminated Ag film grown on ferromagnetic Fe(110). We find that the torque in that system can not be explained solely by the spin-orbit coupling in the Ag_2Bi alloy, and instead results from the spin-orbit coupling in all regions of the film.Finally, we predict a large SOT in Fe/Ge bilayers and suggest that semiconductor substrates might be a promising alternative to heavy metals for the development of SOT-based magnetic

  20. Intrinsic and extrinsic spin-orbit torques from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Geranton, Guillaume

    2017-09-01

    This thesis attempts to shed light on the microscopic mechanisms underlying the current-induced magnetic torques in ferromagnetic heterostructures. We have developed first principles methods aiming at the accurate and effcient calculation of the so-called spin-orbit torques (SOTs) in magnetic thin films. The emphasis of this work is on the impurity-driven extrinsic SOTs. The main part of this thesis is dedicated to the development of a formalism for the calculation of the SOTs within the Korringa-Kohn-Rostoker (KKR) method. The impurity-induced transitions rates are obtained from first principles and their effect on transport properties is treated within the Boltzmann formalism. The developed formalism provides a mean to compute the SOTs beyond the conventional constant relaxation time approximation. We first apply our formalism to the investigation of FePt/Pt and Co/Cu bilayers in the presence of defects and impurities. Our results hint at a crucial dependence of the torque on the type of disorder present in the films, which we explain by a complex interplay of several competing Fermi surface contributions to the SOT. Astonishingly, specific defect distributions or doping elements lead respectively to an increase or a sign change of the torque, which can not be explained on the basis of simple models. We also compute the intrinsic SOT induced by electrical and thermal currents within the full potential linearized augmented plane-wave method. Motivated by recent experimental works, we then investigate the microscopic origin of the SOT in a Ag{sub 2}Bi-terminated Ag film grown on ferromagnetic Fe(110). We find that the torque in that system can not be explained solely by the spin-orbit coupling in the Ag{sub 2}Bi alloy, and instead results from the spin-orbit coupling in all regions of the film.Finally, we predict a large SOT in Fe/Ge bilayers and suggest that semiconductor substrates might be a promising alternative to heavy metals for the development of SOT

  1. The magnetization dynamics of nano-contact spin-torque vortex oscillators

    Science.gov (United States)

    Keatley, Paul

    The operation of nano-contact (NC) spin-torque vortex oscillators (STVOs) is underpinned by vortex gyration in response to spin-torque delivered by high density current passing through the magnetic layers of a spin valve. Gyration directly beneath the NC yields radio frequency (RF) emission through the giant magnetoresistance (GMR) effect, which can be readily detected electronically. The magnetization dynamics that extend beyond the NC perimeter contribute little to the GMR signal, but are crucial for synchronization of multiple NC-STVOs that share the same spin valve film. In this work time-resolved scanning Kerr microscopy (TRSKM) was used to directly image the extended dynamics of STVOs phase-locked to an injected RF current. In this talk the dynamics of single 250-nm diameter NCs, and a pair of 100-nm diameter NCs, will be presented. In general the Kerr images reveal well-defined localized and far-field dynamics, driven by spin-torque and RF current Oersted fields respectively. The RF frequency, RF Oersted field, direction of an in-plane magnetic field, and equilibrium magnetic state, all influenced the spatial character of the dynamics observed in single NCs. In the pair of NCs, two modes were observed in the RF emission. Kerr images revealed that a vortex was formed beneath each NC and that the mode with enhanced spectral amplitude and line quality appeared to be correlated with two localized regions oscillating with similar amplitude and phase, while a second weaker mode exhibited amplitude and phase differences. This suggests that the RF emission was generated by collective modes of vortex gyration dynamically coupled via magnetization dynamics and dipolar interactions of the shared magnetic layers. Within the constraints of injection locking, this work demonstrates that TRSKM can provide valuable insight into the spatial character and time-evolution of magnetization dynamics generated by NC-STVOs and the conditions that may favor their synchronization

  2. Avoidance of Tearing Mode Locking and Disruption with Electro-Magnetic Torque Introduced by Feedback-based Mode Rotation Control in DIII-D and RFX-mod

    Energy Technology Data Exchange (ETDEWEB)

    Okabayashi, M. [PPPL; Zanca, P. [Euratom-ENEA; Strait, E. J. [General Atomics

    2014-09-01

    Disruptions caused by tearing modes (TMs) are considered to be one of the most critical roadblocks to achieving reliable, steady-state operation of tokamak fusion reactors. Here we have demonstrated a very promising scheme to avoid such disruptions by utilizing the electro-magnetic (EM) torque produced with 3D coils that are available in many tokamaks. In this scheme, the EM torque to the modes is created by a toroidal phase shift between the externally-applied field and the excited TM fields, compensating for the mode momentum loss due to the interaction with the resistive wall and uncorrected error fields. Fine control of torque balance is provided by a feedback scheme. We have explored this approach in two vastly different devices and plasma conditions: DIII-D and RFX-mod operated in tokamak mode. In DIII-D, the plasma target was high βN plasmas in a non-circular divertor tokamak. In RFX-mod, the plasma was ohmically-heated plasma with ultralow safety factor in a circular limiter discharge of active feedback coils outside the thick resistive shell. The DIII-D and RFX-mod experiments showed remarkable consistency with theoretical predictions of torque balance. The application to ignition-oriented devices such as International Thermonuclear Experimental Reactor (ITER) would expand the horizon of its operational regime. The internal 3D coil set currently under consideration for edge localized mode suppression in ITER would be well suited to this purpose.

  3. Remote calibration of torque wrenches in a hostile environment

    Science.gov (United States)

    Griffin, D. M.

    1982-03-01

    A relatively simple device is described which provides the capability for remote comparison of torque wrenches over a limited range. The device, properly used, provides calibration capability for most inch pound and foot pound range torque wrenches. For purposes of this discussion, the device itself was developed specifically for adapting an existing torque measuring system with torque wrenches in hostile environment. A gloved access port is utilized to manipulate the fixture while a viewing window and mirror are used to make visual comparisons. Click type wrenches do not require use of the mirror.

  4. Cryogenic Stepping Piezomotor for Large Torque, Precise Rotary Motion Control in Passive Optics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes novel single crystal piezomotors for large torque, high precision, and cryogenic actuation with capability of position set-hold with...

  5. Torque-onset determination: Unintended consequences of the threshold method.

    Science.gov (United States)

    Dotan, Raffy; Jenkins, Glenn; O'Brien, Thomas D; Hansen, Steve; Falk, Bareket

    2016-12-01

    Compared with visual torque-onset-detection (TOD), threshold-based TOD produces onset bias, which increases with lower torques or rates of torque development (RTD). To compare the effects of differential TOD-bias on common contractile parameters in two torque-disparate groups. Fifteen boys and 12 men performed maximal, explosive, isometric knee-extensions. Torque and EMG were recorded for each contraction. Best contractions were selected by peak torque (MVC) and peak RTD. Visual-TOD-based torque-time traces, electromechanical delays (EMD), and times to peak RTD (tRTD) were compared with corresponding data derived from fixed 4-Nm- and relative 5%MVC-thresholds. The 5%MVC TOD-biases were similar for boys and men, but the corresponding 4-Nm-based biases were markedly different (40.3±14.1 vs. 18.4±7.1ms, respectively; ptorque kinetics tended to be faster than the boys' (NS), but the 4-Nm-based kinetics erroneously depicted the boys as being much faster to any given %MVC (p<0.001). When comparing contractile properties of dissimilar groups, e.g., children vs. adults, threshold-based TOD methods can misrepresent reality and lead to erroneous conclusions. Relative-thresholds (e.g., 5% MVC) still introduce error, but group-comparisons are not confounded. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Investigation of possible causes of the additional torque on the yacht's rudder

    Science.gov (United States)

    Lubomir, Soukup; Jaroslav, Stigler; Abdellah, Kharicha

    2016-03-01

    The present article deals with investigation of possible causes of the additional torque on the yacht's rudder. One of the most important aspect for design of yachts are the symmetric conditions of all parts, which are located under water level and concentricity of the ship's screw, rudder and keel relative to the hull. These symmetric and concentricity conditions have a major impact on the resulting dynamic properties of the ships. They have either substantial impact on the overall efficiency of installed engine and ship's screw. As the result of poorly designed above mentioned parts, there can be an unsolicited additional torque on the yacht's rudder and higher consumption of the fuel. Last but not least of these problems leads to poor controllability and discomfort within steering. This article is focused on the investigation of possible causes of the additional torque on the yacht's rudder.

  7. Effect of magnetic properties of non-oriented electrical steel on torque characteristics of interior-permanent-magnet synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, Hiroshi [Corporate Research and Development Laboratories, Sumitomo Metal Industries, Ltd., 1-8 Fuso-cho, Amagasaki 660-0891 (Japan)], E-mail: fujimura-hrs@sumitomometals.co.jp; Nitomi, Hirokatsu; Yashiki, Hiroyoshi [Corporate Research and Development Laboratories, Sumitomo Metal Industries, Ltd., 1-8 Fuso-cho, Amagasaki 660-0891 (Japan)

    2008-10-15

    The torque characteristics of interior-permanent-magnet synchronous motor (IPMSM), in which core materials were our conventional non-oriented electrical steel 35SX250 and our developed steels 35SXH, 27SXH with high permeability, were measured by a pulse wave modulation (PWM) inverter control. The torque characteristics of the motor with developed steels were superior to that of conventional steel. The advantage of developed steels was remarkable in the high-toque region. Experimental torque separation using current phase control showed that reluctance torque was strongly affected by the magnetic properties of core materials. And we did magnetic field analysis of the motors by finite element method (FEM). The flux density in the teeth of the stator core was higher in the high permeability steels than that in the conventional steel under the same current condition. The developed steels are expected to be suited to the stator material of IPMSM used as drive motors for electric vehicles and compressor motors for air conditioner.

  8. Effect of magnetic properties of non-oriented electrical steel on torque characteristics of interior-permanent-magnet synchronous motor

    International Nuclear Information System (INIS)

    Fujimura, Hiroshi; Nitomi, Hirokatsu; Yashiki, Hiroyoshi

    2008-01-01

    The torque characteristics of interior-permanent-magnet synchronous motor (IPMSM), in which core materials were our conventional non-oriented electrical steel 35SX250 and our developed steels 35SXH, 27SXH with high permeability, were measured by a pulse wave modulation (PWM) inverter control. The torque characteristics of the motor with developed steels were superior to that of conventional steel. The advantage of developed steels was remarkable in the high-toque region. Experimental torque separation using current phase control showed that reluctance torque was strongly affected by the magnetic properties of core materials. And we did magnetic field analysis of the motors by finite element method (FEM). The flux density in the teeth of the stator core was higher in the high permeability steels than that in the conventional steel under the same current condition. The developed steels are expected to be suited to the stator material of IPMSM used as drive motors for electric vehicles and compressor motors for air conditioner

  9. Mode transition coordinated control for a compound power-split hybrid car

    Science.gov (United States)

    Wang, Chen; Zhao, Zhiguo; Zhang, Tong; Li, Mengna

    2017-03-01

    With a compound power-split transmission directly connected to the engine in hybrid cars, dramatic fluctuations in engine output torque result in noticeable jerks when the car is in mode transition from electric drive mode to hybrid drive mode. This study designed a mode transition coordinated control strategy, and verified that strategy's effectiveness with both simulations and experiments. Firstly, the mode transition process was analyzed, and ride comfort issues during the mode transition process were demonstrated. Secondly, engine ripple torque was modeled using the measured cylinder pumping pressure when the engine was not in operation. The complete dynamic plant model of the power-split hybrid car was deduced, and its effectiveness was validated by a comparison of experimental and simulation results. Thirdly, a coordinated control strategy was designed to determine the desired engine torque, motor torque, and the moment of fuel injection. Active damping control with two degrees of freedom, based on reference output shaft speed estimation, was designed to mitigate driveline speed oscillations. Carrier torque estimation based on transmission kinematics and dynamics was used to suppress torque disturbance during engine cranking. The simulation and experimental results indicate that the proposed strategy effectively suppressed vehicle jerks and improved ride comfort during mode transition.

  10. Diffusion of torqued active particles

    Science.gov (United States)

    Sandoval, Mario; Lauga, Eric

    2012-11-01

    Motivated by swimming microorganisms whose trajectories are affected by the presence of an external torque, we calculate the diffusivity of an active particle subject to an external torque and in a fluctuating environment. The analytical results are compared with Brownian dynamics simulations showing excellent agreement between theory and numerical experiments. This work was funded in part by the Consejo Nacional de Ciencia y Tecnologia of Mexico (Conacyt postdoctoral fellowship to M. S.) and the US National Science Foundation (Grant CBET-0746285 to E.L.).

  11. Correlation between Insertion Torque and Implant Stability Quotient in Tapered Implants with Knife-Edge Thread Design

    Directory of Open Access Journals (Sweden)

    Domenico Baldi

    2018-01-01

    Full Text Available Aim. To evaluate the correlation between insertion torque (IT and implant stability quotient (ISQ in tapered implants with knife-edge threads. Methods. Seventy-five identical implants (Anyridge, Megagen were inserted by using a surgical drilling unit with torque control and an integrated resonance frequency analysis module (Implantmed, W&H. IT (N/cm and ISQ were recorded and implants were divided into three groups (n=25 according to the IT: low (50. ISQ difference among groups was assessed by Kruskal-Wallis test, followed by Bonferroni-corrected Mann–Whitney U-test for pairwise comparisons. The strength of the association between IT and ISQ was assessed by Spearman Rho correlation coefficient (α=0.05. Results. At the pairwise comparisons, a significant difference of ISQ values was demonstrated only between low torque and high torque groups. The strength of the association between IT and ISQ value was significant for both the entire sample and the medium torque group, while it was not significant in low and high torque groups. Conclusions. For the investigated implant, ISQ and IT showed a positive correlation up to values around 50 N/cm: higher torques subject the bone-implant system to unnecessary biological and mechanical stress without additional benefits in terms of implant stability. This trial is registered with NCT03222219.

  12. Controller for computer control of brushless dc motors. [automobile engines

    Science.gov (United States)

    Hieda, L. S. (Inventor)

    1981-01-01

    A motor speed and torque controller for brushless d.c. motors provides an unusually smooth torque control arrangement. The controller provides a means for controlling a current waveform in each winding of a brushless dc motor by synchronization of an excitation pulse train from a programmable oscillator. Sensing of torque for synchronization is provided by a light beam chopper mounted on the motor rotor shaft. Speed and duty cycle are independently controlled by controlling the frequency and pulse width output of the programmable oscillator. A means is also provided so that current transitions from one motor winding to another is effected without abrupt changes in output torque.

  13. Intrinsic magnetic torque at low magnetic induction

    International Nuclear Information System (INIS)

    Doria, M.M.; Oliveira, I.G. de.

    1993-01-01

    Using anisotropic London theory the intrinsic magnetic torque for extreme type II uniaxial superconductors for any value of the magnetic induction is obtained. It is considered the vortex lines straight and take into account the contribution of the supercurrents flowing inside the vortex core within the London theory. It is shown that the interline and intra line free energies give opposite torque contributions, the first drives the magnetic induction parallel to the superconductor's axis of symmetry and the second orthogonal to it. At high magnetic induction torque expression obtained generalizes V. Kogan's formula since it has no free parameters other than the anisotropy γ = m 1 /m 3 and the Ginzburg-Landau parameter κ. At low magnetic induction it is proposed a way to observe vortex chains effects in the total torque based on the fact that London theory is linear and the energy to make a single vortex line in space is independent of the magnetic induction. (author)

  14. Low mass planet migration in magnetically torqued dead zones - II. Flow-locked and runaway migration, and a torque prescription

    Science.gov (United States)

    McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan

    2018-04-01

    We examine the migration of low mass planets in laminar protoplanetary discs, threaded by large scale magnetic fields in the dead zone that drive radial gas flows. As shown in Paper I, a dynamical corotation torque arises due to the flow-induced asymmetric distortion of the corotation region and the evolving vortensity contrast between the librating horseshoe material and background disc flow. Using simulations of laminar torqued discs containing migrating planets, we demonstrate the existence of the four distinct migration regimes predicted in Paper I. In two regimes, the migration is approximately locked to the inward or outward radial gas flow, and in the other regimes the planet undergoes outward runaway migration that eventually settles to fast steady migration. In addition, we demonstrate torque and migration reversals induced by midplane magnetic stresses, with a bifurcation dependent on the disc surface density. We develop a model for fast migration, and show why the outward runaway saturates to a steady speed, and examine phenomenologically its termination due to changing local disc conditions. We also develop an analytical model for the corotation torque at late times that includes viscosity, for application to discs that sustain modest turbulence. Finally, we use the simulation results to develop torque prescriptions for inclusion in population synthesis models of planet formation.

  15. Very-low-speed variable-structure control of sensorless induction machine drives without signal injection

    DEFF Research Database (Denmark)

    Lascu, Christian; Boldea, Ion; Blaabjerg, Frede

    2005-01-01

    A sensorless induction machine drive is presented, in which the principles of variable-structure control and direct torque control (DTC) are combined to ensure high-performance operation in the steady state and under transient conditions. The drive employs a new torque and flux controller......, the "linear and variable-structure control", which realizes accurate and robust control in a wide speed range. Conventional DTC transient merits are preserved, while the steady-state behavior is significantly improved. The full-order state observer is a sliding-mode one, which does not require the rotor speed...

  16. Fast Response Shape Memory Effect Titanium Nickel (TiNi) Foam Torque Tubes

    Science.gov (United States)

    Jardine, Peter

    2014-01-01

    Shape Change Technologies has developed a process to manufacture net-shaped TiNi foam torque tubes that demonstrate the shape memory effect. The torque tubes dramatically reduce response time by a factor of 10. This Phase II project matured the actuator technology by rigorously characterizing the process to optimize the quality of the TiNi and developing a set of metrics to provide ISO 9002 quality assurance. A laboratory virtual instrument engineering workbench (LabVIEW'TM')-based, real-time control of the torsional actuators was developed. These actuators were developed with The Boeing Company for aerospace applications.

  17. Emergency Entry with One Control Torque: Non-Axisymmetric Diagonal Inertia Matrix

    Science.gov (United States)

    Llama, Eduardo Garcia

    2011-01-01

    In another work, a method was presented, primarily conceived as an emergency backup system, that addressed the problem of a space capsule that needed to execute a safe atmospheric entry from an arbitrary initial attitude and angular rate in the absence of nominal control capability. The proposed concept permits the arrest of a tumbling motion, orientation to the heat shield forward position and the attainment of a ballistic roll rate of a rigid spacecraft with the use of control in one axis only. To show the feasibility of such concept, the technique of single input single output (SISO) feedback linearization using the Lie derivative method was employed and the problem was solved for different number of jets and for different configurations of the inertia matrix: the axisymmetric inertia matrix (I(sub xx) > I(sub yy) = I(sub zz)), a partially complete inertia matrix with I(sub xx) > I(sub yy) > I(sub zz), I(sub xz) not = 0 and a realistic complete inertia matrix with I(sub xx) > I(sub yy) > I)sub zz), I(sub ij) not= 0. The closed loop stability of the proposed non-linear control on the total angle of attack, Theta, was analyzed through the zero dynamics of the internal dynamics for the case where the inertia matrix is axisymmetric (I(sub xx) > I(sub yy) = I(sub zz)). This note focuses on the problem of the diagonal non-axisymmetric inertia matrix (I(sub xx) > I(sub yy) > I(sub zz)), which is half way between the axisymmetric and the partially complete inertia matrices. In this note, the control law for this type of inertia matrix will be determined and its closed-loop stability will be analyzed using the same methods that were used in the other work. In particular, it will be proven that the control system is stable in closed-loop when the actuators only provide a roll torque.

  18. Spin-transfer torque in spin filter tunnel junctions

    KAUST Repository

    Ortiz Pauyac, Christian

    2014-12-08

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green\\'s function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  19. Eddy Current Sensing of Torque in Rotating Shafts

    Science.gov (United States)

    Varonis, Orestes J.; Ida, Nathan

    2013-12-01

    The noncontact torque sensing in machine shafts is addressed based on the stress induced in a press-fitted magnetoelastic sleeve on the shaft and eddy current sensing of the changes of electrical conductivity and magnetic permeability due to the presence of stress. The eddy current probe uses dual drive, dual sensing coils whose purpose is increased sensitivity to torque and decreased sensitivity to variations in distance between probe and shaft (liftoff). A mechanism of keeping the distance constant is also employed. Both the probe and the magnetoelastic sleeve are evaluated for performance using a standard eddy current instrument. An eddy current instrument is also used to drive the coils and analyze the torque data. The method and sensor described are general and adaptable to a variety of applications. The sensor is suitable for static and rotating shafts, is independent of shaft diameter and operational over a large range of torques. The torque sensor uses a differential eddy current measurement resulting in cancellation of common mode effects including temperature and vibrations.

  20. Spin-transfer torque in spin filter tunnel junctions

    KAUST Repository

    Ortiz Pauyac, Christian; Kalitsov, Alan; Manchon, Aurelien; Chshiev, Mairbek

    2014-01-01

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green's function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  1. Cogging Torque Reduction Techniques for Spoke-type IPMSM

    Science.gov (United States)

    Bahrim, F. S.; Sulaiman, E.; Kumar, R.; Jusoh, L. I.

    2017-08-01

    A spoke-type interior permanent magnet synchronous motor (IPMSM) is extending its tentacles in industrial arena due to good flux-weakening capability and high power density. In many of the application, high strength of permanent magnet causes the undesirable effects of high cogging torque that can aggravate performance of the motor. High cogging torque is significantly produced by IPMSM due to the similar length and the effectiveness of the magnetic air-gap. The address of this study is to analyze and compare the cogging torque effect and performance of four common techniques for cogging torque reduction such as skewing, notching, pole pairing and rotor pole pairing. With the aid of 3-D finite element analysis (FEA) by JMAG software, a 6S-4P Spoke-type IPMSM with various rotor-PM configurations has been designed. As a result, the cogging torque effect reduced up to 69.5% for skewing technique, followed by 31.96%, 29.6%, and 17.53% by pole pairing, axial pole pairing and notching techniques respectively.

  2. Standard practice for torque calibration of testing machines and devices

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice covers procedures and requirements for the calibration of torque for static and quasi-static torque capable testing machines or devices. These may, or may not, have torque indicating systems and include those devices used for the calibration of hand torque tools. Testing machines may be calibrated by one of the three following methods or combination thereof: 1.1.1 Use of standard weights and lever arms. 1.1.2 Use of elastic torque measuring devices. 1.1.3 Use of elastic force measuring devices and lever arms. 1.1.4 Any of the methods require a specific uncertainty of measurement and a traceability derived from national standards of mass and length. 1.2 The procedures of 1.1.1, 1.1.2, and 1.1.3 apply to the calibration of the torque-indicating systems associated with the testing machine, such as a scale, dial, marked or unmarked recorder chart, digital display, etc. In all cases the buyer/owner/user must designate the torque-indicating system(s) to be calibrated and included in the repor...

  3. Review of Bolt Preload and Torque for Assembling Threaded Fasteners in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lee, Yong-Sung; Lee, Jae-Gon; Kang, Yong-Chul; Shin, Ki-Jong

    2007-01-01

    There are numerous threaded fasteners such as bolts, studs, nuts, cap screws and anchor bolts used in nuclear power plants(NPPs). The major applications of threaded fasteners are reactor coolant pressure boundary components, their internals and supports. With the increase of commercial operation period of NPPs, the incidents caused by degradation of threaded fasteners have been occurred. A large number of reported incidents are involved in the pressure boundary and major component supports. The degradation and failure of threaded fasteners is affected by material, preload and torque value at assembly, bolting practice, etc. It is very important to select appropriate bolt preload and decide assembly torque value because torque control using a torque wrench is the most common method in a power plant to assemble a bolted flange connection. Many researches have been studied to define the proper bolt preload and desired torque value with regard to the integrity of bolted connections including pressure boundary joints by EPRI and other plant industry. But in domestic NPPs, considerably few works are done on the bolted joint assembly in spite of increasing events related with threaded faster. Therefore we investigated degradation or failure of the threaded fasteners used in NPPs, also examined the codes, standards and technical trends concerning bolt preload and assembly torque in NPPs. It is the purpose of this study to provide proper technical information for assuring integrity of the threaded fasteners

  4. Giant spin torque in systems with anisotropic exchange interaction

    OpenAIRE

    Korenev, Vladimir L.

    2012-01-01

    Control of magnetic domain wall movement by the spin-polarized current looks promising for creation of a new generation of magnetic memory devices. A necessary condition for this is the domain wall shift by a low-density current. Here I show that a strongly anisotropic exchange interaction between mobile heavy holes and localized magnetic moments enormously increases the current-induced torque on the domain wall as compared to systems with isotropic exchange. This enables one to control the d...

  5. Torque resistance of different stainless steel wires commonly used for fixed retainers in orthodontics.

    Science.gov (United States)

    Arnold, Dario T; Dalstra, Michel; Verna, Carlalberta

    2016-06-01

    Movements of teeth splinted by fixed retention wires after orthodontic treatment have been observed. The aetiological factors for these movements are unknown. The aim of this in vitro study was to compare the resistance to torque of different stainless steel wires commonly used for fixed retainers in orthodontics. Torquing moments acting on a retainer wire were measured in a mechanical force testing system by applying buccal crown torque to an upper lateral incisor in both a 3-teeth and in a 2-teeth setup. Seven stainless steel wires with different shape, type (plain, braided, coaxial, or chain) and dimensions were selected for this study. For a torquing angle of 16.2° in the 3-teeth setup torsion moments can vary between 390 cNmm and 3299 cNmm depending on the retainer wire. For the 2-teeth setup the torsion moments are much smaller. Exposure to the flame of a butane-gas torch for 10 seconds to anneal the wire reduces the stiffness of the retainer wire. Clinicians must select wires for fixed retainers very carefully since the difference in resistance to torque is large. A high level of torque control can be achieved with a plain 0.016 × 0.016-inch or a braided 0.016 × 0.022-inch stainless steel wire. A tooth attached by a retainer wire to only one neighbouring tooth is less resistant to torque than a tooth connected to two neighbouring teeth. Annealing a retainer wire with a flame reduces the stiffness of the wire markedly and can lead to a non-uniform and non-reproducible effect.

  6. Torque and mechanomyogram relationships during electrically-evoked isometric quadriceps contractions in persons with spinal cord injury.

    Science.gov (United States)

    Ibitoye, Morufu Olusola; Hamzaid, Nur Azah; Hasnan, Nazirah; Abdul Wahab, Ahmad Khairi; Islam, Md Anamul; Kean, Victor S P; Davis, Glen M

    2016-08-01

    The interaction between muscle contractions and joint loading produces torques necessary for movements during activities of daily living. However, during neuromuscular electrical stimulation (NMES)-evoked contractions in persons with spinal cord injury (SCI), a simple and reliable proxy of torque at the muscle level has been minimally investigated. Thus, the purpose of this study was to investigate the relationships between muscle mechanomyographic (MMG) characteristics and NMES-evoked isometric quadriceps torques in persons with motor complete SCI. Six SCI participants with lesion levels below C4 [(mean (SD) age, 39.2 (7.9) year; stature, 1.71 (0.05) m; and body mass, 69.3 (12.9) kg)] performed randomly ordered NMES-evoked isometric leg muscle contractions at 30°, 60° and 90° knee flexion angles on an isokinetic dynamometer. MMG signals were detected by an accelerometer-based vibromyographic sensor placed over the belly of rectus femoris muscle. The relationship between MMG root mean square (MMG-RMS) and NMES-evoked torque revealed a very high association (R(2)=0.91 at 30°; R(2)=0.98 at 60°; and R(2)=0.97 at 90° knee angles; Ptorque, between 0.65 and 0.79 for MMG-RMS, and from 0.67 to 0.73 for MMG-PTP. Their standard error of measurements (SEM) ranged between 10.1% and 31.6% (of mean values) for torque, MMG-RMS and MMG-PTP. The MMG peak frequency (MMG-PF) of 30Hz approximated the stimulation frequency, indicating NMES-evoked motor unit firing rate. The results demonstrated knee angle differences in the MMG-RMS versus NMES-isometric torque relationship, but a similar torque related pattern for MMG-PF. These findings suggested that MMG was well associated with torque production, reliably tracking the motor unit recruitment pattern during NMES-evoked muscle contractions. The strong positive relationship between MMG signal and NMES-evoked torque production suggested that the MMG might be deployed as a direct proxy for muscle torque or fatigue measurement during

  7. Dynamics of domain wall driven by spin-transfer torque

    International Nuclear Information System (INIS)

    Chureemart, P.; Evans, R. F. L.; Chantrell, R. W.

    2011-01-01

    Spin-torque switching of magnetic devices offers new technological possibilities for data storage and integrated circuits. We have investigated domain-wall motion in a ferromagnetic thin film driven by a spin-polarized current using an atomistic spin model with a modified Landau-Lifshitz-Gilbert equation including the effect of the spin-transfer torque. The presence of the spin-transfer torque is shown to create an out-of-plane domain wall, in contrast to the external-field-driven case where an in-plane wall is found. We have investigated the effect of the spin torque on domain-wall displacement, domain-wall velocity, and domain-wall width, as well as the equilibration time in the presence of the spin-transfer torque. We have shown that the minimum spin-current density, regarded as the critical value for domain-wall motion, decreases with increasing temperature.

  8. Space base laser torque applied on LEO satellites of various geometries at satellite’s closest approach

    Directory of Open Access Journals (Sweden)

    N.S. Khalifa

    2013-12-01

    Full Text Available In light of using laser power in space applications, the motivation of this paper is to use a space based solar pumped laser to produce a torque on LEO satellites of various shapes. It is assumed that there is a space station that fires laser beam toward the satellite so the beam spreading due to diffraction is considered to be the dominant effect on the laser beam propagation. The laser torque is calculated at the point of closest approach between the space station and some sun synchronous low Earth orbit cubesats. The numerical application shows that space based laser torque has a significant contribution on the LEO cubesats. It has a maximum value in the order of 10−8 Nm which is comparable with the residual magnetic moment. However, it has a minimum value in the order 10−11 Nm which is comparable with the aerodynamic and gravity gradient torque. Consequently, space based laser torque can be used as an active attitude control system.

  9. Drag and Torque on Locked Screw Propeller

    Directory of Open Access Journals (Sweden)

    Tomasz Tabaczek

    2014-09-01

    Full Text Available Few data on drag and torque on locked propeller towed in water are available in literature. Those data refer to propellers of specific geometry (number of blades, blade area, pitch and skew of blades. The estimation of drag and torque of an arbitrary propeller considered in analysis of ship resistance or propulsion is laborious. The authors collected and reviewed test data available in the literature. Based on collected data there were developed the empirical formulae for estimation of hydrodynamic drag and torque acting on locked screw propeller. Supplementary CFD computations were carried out in order to prove the applicability of the formulae to modern moderately skewed screw propellers.

  10. Spin-Orbit Torques in Co/Pd Multilayer Nanowires

    KAUST Repository

    Jamali, Mahdi; Narayanapillai, Kulothungasagaran; Qiu, Xuepeng; Loong, Li Ming; Manchon, Aurelien; Yang, Hyunsoo

    2013-01-01

    Current induced spin-orbit torques have been studied in ferromagnetic nanowires made of 20 nm thick Co/Pd multilayers with perpendicular magnetic anisotropy. Using Hall voltage and lock-in measurements, it is found that upon injection of an electric current both in-plane (Slonczewski-like) and perpendicular (fieldlike) torques build up in the nanowire. The torque efficiencies are found to be as large as 1.17 and 5 kOe at 108  A/cm2 for the in-plane and perpendicular components, respectively, which is surprisingly comparable to previous studies in ultrathin (∼1  nm) magnetic bilayers. We show that this result cannot be explained solely by spin Hall effect induced torque at the outer interfaces, indicating a probable contribution of the bulk of the Co/Pd multilayer.

  11. Spin-Orbit Torques in Co/Pd Multilayer Nanowires

    KAUST Repository

    Jamali, Mahdi

    2013-12-09

    Current induced spin-orbit torques have been studied in ferromagnetic nanowires made of 20 nm thick Co/Pd multilayers with perpendicular magnetic anisotropy. Using Hall voltage and lock-in measurements, it is found that upon injection of an electric current both in-plane (Slonczewski-like) and perpendicular (fieldlike) torques build up in the nanowire. The torque efficiencies are found to be as large as 1.17 and 5 kOe at 108  A/cm2 for the in-plane and perpendicular components, respectively, which is surprisingly comparable to previous studies in ultrathin (∼1  nm) magnetic bilayers. We show that this result cannot be explained solely by spin Hall effect induced torque at the outer interfaces, indicating a probable contribution of the bulk of the Co/Pd multilayer.

  12. Thermophoretic torque in colloidal particles with mass asymmetry

    Science.gov (United States)

    Olarte-Plata, Juan; Rubi, J. Miguel; Bresme, Fernando

    2018-05-01

    We investigate the response of anisotropic colloids suspended in a fluid under a thermal field. Using nonequilibrium molecular dynamics computer simulations and nonequilibrium thermodynamics theory, we show that an anisotropic mass distribution inside the colloid rectifies the rotational Brownian motion and the colloids experience transient torques that orient the colloid along the direction of the thermal field. This physical effect gives rise to distinctive changes in the dependence of the Soret coefficient with colloid mass, which features a maximum, unlike the monotonic increase of the thermophoretic force with mass observed in homogeneous colloids.

  13. Artificial intelligence-based speed control of DTC induction motor drives - A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Gadoue, S.M.; Giaouris, D.; Finch, J.W. [School of Electrical, Electronic and Computer Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2009-01-15

    The design of the speed controller greatly affects the performance of an electric drive. A common strategy to control an induction machine is to use direct torque control combined with a PI speed controller. These schemes require proper and continuous tuning and therefore adaptive controllers are proposed to replace conventional PI controllers to improve the drive's performance. This paper presents a comparison between four different speed controller design strategies based on artificial intelligence techniques; two are based on tuning of conventional PI controllers, the third makes use of a fuzzy logic controller and the last is based on hybrid fuzzy sliding mode control theory. To provide a numerical comparison between different controllers, a performance index based on speed error is assigned. All methods are applied to the direct torque control scheme and each control strategy has been tested for its robustness and disturbance rejection ability. (author)

  14. Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling

    KAUST Repository

    Haney, Paul M.

    2013-05-07

    In bilayer nanowires consisting of a ferromagnetic layer and a nonmagnetic layer with strong spin-orbit coupling, currents create torques on the magnetization beyond those found in simple ferromagnetic nanowires. The resulting magnetic dynamics appear to require torques that can be separated into two terms, dampinglike and fieldlike. The dampinglike torque is typically derived from models describing the bulk spin Hall effect and the spin transfer torque, and the fieldlike torque is typically derived from a Rashba model describing interfacial spin-orbit coupling. We derive a model based on the Boltzmann equation that unifies these approaches. We also consider an approximation to the Boltzmann equation, the drift-diffusion model, that qualitatively reproduces the behavior, but quantitatively differs in some regimes. We show that the Boltzmann equation with physically reasonable parameters can match the torques for any particular sample, but in some cases, it fails to describe the experimentally observed thickness dependencies.

  15. Spin-torque generation in topological insulator based heterostructures

    KAUST Repository

    Fischer, Mark H.; Vaezi, Abolhassan; Manchon, Aurelien; Kim, Eun-Ah

    2016-01-01

    Heterostructures utilizing topological insulators exhibit a remarkable spin-torque efficiency. However, the exact origin of the strong torque, in particular whether it stems from the spin-momentum locking of the topological surface states or rather

  16. Robust spin transfer torque in antiferromagnetic tunnel junctions

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed; Waintal, Xavier; Manchon, Aurelien

    2017-01-01

    We theoretically study the current-induced spin torque in antiferromagnetic tunnel junctions, composed of two semi-infinite antiferromagnetic layers separated by a tunnel barrier, in both clean and disordered regimes. We find that the torque

  17. Analysis of torque transmitting behavior and wheel slip prevention control during regenerative braking for high speed EMU trains

    Science.gov (United States)

    Xu, Kun; Xu, Guo-Qing; Zheng, Chun-Hua

    2016-04-01

    The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability, improving the adhesion utilization, and achieving deep energy recovery. There remain technical challenges mainly because of the nonlinear, uncertain, and varying features of wheel-rail contact conditions. This research analyzes the torque transmitting behavior during regenerative braking, and proposes a novel methodology to detect the wheel-rail adhesion stability. Then, applications to the wheel slip prevention during braking are investigated, and the optimal slip ratio control scheme is proposed, which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control. The proposed methodology achieves the optimal braking performance without the wheel-rail contact information. Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology.

  18. Nonambipolarity, orthogonal conductivity, poloidal flow, and torque

    International Nuclear Information System (INIS)

    Hulbert, G.W.; Perkins, F.W.

    1989-02-01

    Nonambipolar processes, such as neutral injection onto trapped orbits or ripple-diffusion loss of α-particles, act to charge a plasma. A current j/sub r/ across magnetic surfaces must arise in the bulk plasma to maintain charge neutrality. An axisymmetric, neoclassical model of the bulk plasma shows that these currents are carried by the ions and exert a j/sub r/B/sub θ/R/c torque in the toroidal direction. A driven poloidal flow V/sub θ/ = E/sub r/'c/B must also develop. The average current density is related to the radial electric field E/sub r/' = E/sub r/ + v/sub /phi//B/sub θ//c in a frame moving with the plasma via the orthogonal conductivity = σ/sub /perpendicular//E/sub r/', which has the value σ/sub /perpendicular// = (1.65ε/sup 1/2/)(ne 2 ν/sub ii//MΩ/sub θ/ 2 ) in the banana regime. If an ignited plasma loses an appreciable fraction Δ of its thermonuclear α-particles by banana ripple diffusion, then the torque will spin the plasma to sonic rotation in a time /tau//sub s/ ∼ 2/tau//sub E//Δ, /tau//sub E/ being the energy confinement time. 10 refs., 1 fig

  19. How joint torques affect hamstring injury risk in sprinting swing-stance transition.

    Science.gov (United States)

    Sun, Yuliang; Wei, Shutao; Zhong, Yunjian; Fu, Weijie; Li, Li; Liu, Yu

    2015-02-01

    The potential mechanisms of hamstring strain injuries in athletes are not well understood. The study, therefore, was aimed at understanding hamstring mechanics by studying loading conditions during maximum-effort overground sprinting. Three-dimensional kinematics and ground reaction force data were collected from eight elite male sprinters sprinting at their maximum effort. Maximal isometric torques of the hip and knee were also collected. Data from the sprinting gait cycle were analyzed via an intersegmental dynamics approach, and the different joint torque components were calculated. During the initial stance phase, the ground reaction force passed anteriorly to the knee and hip, producing an extension torque at the knee and a flexion torque at the hip joint. Thus, the active muscle torque functioned to produce flexion torque at the knee and extension torque at the hip. The maximal muscle torque at the knee joint was 1.4 times the maximal isometric knee flexion torque. During the late swing phase, the muscle torque counterbalanced the motion-dependent torque and acted to flex the knee joint and extend the hip joint. The loading conditions on the hamstring muscles were similar to those of the initial stance phase. During both the initial stance and late swing phases, the large passive torques at both the knee and hip joints acted to lengthen the hamstring muscles. The active muscle torques generated mainly by the hamstrings functioned to counteract those passive effects. As a result, during sprinting or high-speed locomotion, the hamstring muscles may be more susceptible to high risk of strain injury during these two phases.

  20. Modulation of motor control in saccadic behaviors by TMS over the posterior parietal cortex.

    Science.gov (United States)

    Liang, Wei-Kuang; Juan, Chi-Hung

    2012-08-01

    The right posterior parietal cortex (rPPC) has been found to be critical in shaping visual selection and distractor-induced saccade curvature in the context of predictive as well as nonpredictive visual cues by means of transcranial magnetic stimulation (TMS) interference. However, the dynamic details of how distractor-induced saccade curvatures are affected by rPPC TMS have not yet been investigated. This study aimed to elucidate the key dynamic properties that cause saccades to curve away from distractors with different degrees of curvature in various TMS and target predictability conditions. Stochastic optimal feedback control theory was used to model the dynamics of the TMS saccade data. This allowed estimation of torques, which was used to identify the critical dynamic mechanisms producing saccade curvature. The critical mechanisms of distractor-induced saccade curvatures were found to be the motor commands and torques in the transverse direction. When an unpredictable saccade target occurred with rPPC TMS, there was an initial period of greater distractor-induced torque toward the side opposite the distractor in the transverse direction, immediately followed by a relatively long period of recovery torque that brought the deviated trace back toward the target. The results imply that the mechanisms of distractor-induced saccade curvature may be comprised of two mechanisms: the first causing the initial deviation and the second bringing the deviated trace back toward the target. The pattern of the initial torque in the transverse direction revealed the former mechanism. Conversely, the later mechanism could be well explained as a consequence of the control policy in this model. To summarize, rPPC TMS increased the initial torque away from the distractor as well as the recovery torque toward the target.

  1. A new formulation of the understeer coefficient to relate yaw torque and vehicle handling

    Science.gov (United States)

    Bucchi, F.; Frendo, F.

    2016-06-01

    The handling behaviour of vehicles is an important property for its relation to performance and safety. In 1970s, Pacejka did the groundwork for an objective analysis introducing the handling diagram and the understeer coefficient. In more recent years, the understeer concept is still mentioned but the handling is actively managed by direct yaw control (DYC). In this paper an accurate analysis of the vehicle handling is carried out, considering also the effect of drive forces. This analysis brings to a new formulation of the understeer coefficient, which is almost equivalent to the classical one, but it can be obtained by quasi-steady-state manoeuvres. In addition, it relates the vehicle yaw torque to the understeer coefficient, filling up the gap between the classical handling approach and DYC. A multibody model of a Formula SAE car is then used to perform quasi-steady-state simulations in order to verify the effectiveness of the new formulation. Some vehicle set-ups and wheel drive arrangements are simulated and the results are discussed. In particular, the handling behaviours of the rear wheel drive (RWD) and the front wheel drive (FWD) architectures are compared, finding an apparently surprising result: for the analysed vehicle the FWD is less understeering than for RWD. The relation between the yaw torque and the understeer coefficient allows to understand this behaviour and opens-up the possibility for different yaw control strategies.

  2. Simulation of stress-modulated magnetization precession frequency in Heusler-based spin torque oscillator

    International Nuclear Information System (INIS)

    Huang, Houbing; Zhao, Congpeng; Ma, Xingqiao

    2017-01-01

    We investigated stress-modulated magnetization precession frequency in Heusler-based spin transfer torque oscillator by combining micromagnetic simulations with phase field microelasticity theory, by encapsulating the magnetic tunnel junction into multilayers structures. We proposed a novel method of using an external stress to control the magnetization precession in spin torque oscillator instead of an external magnetic field. The stress-modulated magnetization precession frequency can be linearly modulated by externally applied uniaxial in-plane stress, with a tunable range 4.4–7.0 GHz under the stress of 10 MPa. By comparison, the out-of-plane stress imposes negligible influence on the precession frequency due to the large out-of-plane demagnetization field. The results offer new inspiration to the design of spin torque oscillator devices that simultaneously process high frequency, narrow output band, and tunable over a wide range of frequencies via external stress. - Highlights: • We proposed stress-modulated magnetization precession in spin torque oscillator. • The magnetization precession frequency can be linearly modulated by in-plane stress. • The stress also can widen the magnetization frequency range 4.4–7.0 GHz. • The stress-modulated oscillation frequency can simplify STO devices.

  3. Simulation of stress-modulated magnetization precession frequency in Heusler-based spin torque oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Houbing, E-mail: hbhuang@ustb.edu.cn; Zhao, Congpeng; Ma, Xingqiao, E-mail: xqma@sas.ustb.edu.cn

    2017-03-15

    We investigated stress-modulated magnetization precession frequency in Heusler-based spin transfer torque oscillator by combining micromagnetic simulations with phase field microelasticity theory, by encapsulating the magnetic tunnel junction into multilayers structures. We proposed a novel method of using an external stress to control the magnetization precession in spin torque oscillator instead of an external magnetic field. The stress-modulated magnetization precession frequency can be linearly modulated by externally applied uniaxial in-plane stress, with a tunable range 4.4–7.0 GHz under the stress of 10 MPa. By comparison, the out-of-plane stress imposes negligible influence on the precession frequency due to the large out-of-plane demagnetization field. The results offer new inspiration to the design of spin torque oscillator devices that simultaneously process high frequency, narrow output band, and tunable over a wide range of frequencies via external stress. - Highlights: • We proposed stress-modulated magnetization precession in spin torque oscillator. • The magnetization precession frequency can be linearly modulated by in-plane stress. • The stress also can widen the magnetization frequency range 4.4–7.0 GHz. • The stress-modulated oscillation frequency can simplify STO devices.

  4. Prevailing Torque Locking Feature in Threaded Fasteners Using Anaerobic Adhesive

    Science.gov (United States)

    Hernandez, Alan; Hess, Daniel P.

    2016-01-01

    This paper presents results from tests to assess the use of anaerobic adhesive for providing a prevailing torque locking feature in threaded fasteners. Test procedures are developed and tests are performed on three fastener materials, four anaerobic adhesives, and both unseated assembly conditions. Five to ten samples are tested for each combination. Tests for initial use, reuse without additional adhesive, and reuse with additional adhesive are performed for all samples. A 48-hour cure time was used for all initial use and reuse tests. Test data are presented as removal torque versus removal angle with the specification required prevailing torque range added for performance assessment. Percent specification pass rates for the all combinations of fastener material, adhesive, and assembly condition are tabulated and reveal use of anaerobic adhesive as a prevailing torque locking feature is viable. Although not every possible fastener material and anaerobic adhesive combination provides prevailing torque values within specification, any combination can be assessed using the test procedures presented. Reuse without additional anaerobic adhesive generally provides some prevailing torque, and in some cases within specification. Reuse with additional adhesive often provides comparable removal torque data as in initial use.

  5. Exchange magnetic field torques in YIG/Pt bilayers observed by the spin-Hall magnetoresistance

    NARCIS (Netherlands)

    Vlietstra, N.; Shan, J.; Castel, V.; Ben Youssef, J.; Bauer, G. E. W.; van Wees, B. J.

    2013-01-01

    The effective field torque of an yttrium-iron-garnet (YIG) film on the spin accumulation in an attached platinum (Pt) film is measured by the spin-Hall magnetoresistance (SMR). As a result, the magnetization direction of a ferromagnetic insulating layer can be measured electrically. Experimental

  6. Reconstruction of Twist Torque in Main Parachute Risers

    Science.gov (United States)

    Day, Joshua D.

    2015-01-01

    The reconstruction of twist torque in the Main Parachute Risers of the Capsule Parachute Assembly System (CPAS) has been successfully used to validate CPAS Model Memo conservative twist torque equations. Reconstruction of basic, one degree of freedom drop tests was used to create a functional process for the evaluation of more complex, rigid body simulation. The roll, pitch, and yaw of the body, the fly-out angles of the parachutes, and the relative location of the parachutes to the body are inputs to the torque simulation. The data collected by the Inertial Measurement Unit (IMU) was used to calculate the true torque. The simulation then used photogrammetric and IMU data as inputs into the Model Memo equations. The results were then compared to the true torque results to validate the Model Memo equations. The Model Memo parameters were based off of steel risers and the parameters will need to be re-evaluated for different materials. Photogrammetric data was found to be more accurate than the inertial data in accounting for the relative rotation between payload and cluster. The Model Memo equations were generally a good match and when not matching were generally conservative.

  7. How Joint Torques Affect Hamstring Injury Risk in Sprinting Swing–Stance Transition

    Science.gov (United States)

    SUN, YULIANG; WEI, SHUTAO; ZHONG, YUNJIAN; FU, WEIJIE; LI, LI; LIU, YU

    2015-01-01

    ABSTRACT Purpose The potential mechanisms of hamstring strain injuries in athletes are not well understood. The study, therefore, was aimed at understanding hamstring mechanics by studying loading conditions during maximum-effort overground sprinting. Methods Three-dimensional kinematics and ground reaction force data were collected from eight elite male sprinters sprinting at their maximum effort. Maximal isometric torques of the hip and knee were also collected. Data from the sprinting gait cycle were analyzed via an intersegmental dynamics approach, and the different joint torque components were calculated. Results During the initial stance phase, the ground reaction force passed anteriorly to the knee and hip, producing an extension torque at the knee and a flexion torque at the hip joint. Thus, the active muscle torque functioned to produce flexion torque at the knee and extension torque at the hip. The maximal muscle torque at the knee joint was 1.4 times the maximal isometric knee flexion torque. During the late swing phase, the muscle torque counterbalanced the motion-dependent torque and acted to flex the knee joint and extend the hip joint. The loading conditions on the hamstring muscles were similar to those of the initial stance phase. Conclusions During both the initial stance and late swing phases, the large passive torques at both the knee and hip joints acted to lengthen the hamstring muscles. The active muscle torques generated mainly by the hamstrings functioned to counteract those passive effects. As a result, during sprinting or high-speed locomotion, the hamstring muscles may be more susceptible to high risk of strain injury during these two phases. PMID:24911288

  8. High torque DC motor fabrication and test program

    Science.gov (United States)

    Makus, P.

    1976-01-01

    The testing of a standard iron and standard alnico permanent magnet two-phase, brushless dc spin motor for potential application to the space telescope has been concluded. The purpose of this study was to determine spin motor power losses, magnetic drag, efficiency and torque speed characteristics of a high torque dc motor. The motor was designed and built to fit an existing reaction wheel as a test vehicle and to use existing brass-board commutation and torque command electronics. The results of the tests are included in this report.

  9. Energy-Regenerative Braking Control of Electric Vehicles Using Three-Phase Brushless Direct-Current Motors

    Directory of Open Access Journals (Sweden)

    Bo Long

    2013-12-01

    Full Text Available Regenerative braking provides an effective way of extending the driving range of battery powered electric vehicles (EVs. This paper analyzes the equivalent power circuit and operation principles of an EV using regenerative braking control technology. During the braking period, the switching sequence of the power converter is controlled to inverse the output torque of the three-phase brushless direct-current (DC motor, so that the braking energy can be returned to the battery. Compared with the presented methods, this technology can achieve several goals: energy recovery, electric braking, ultra-quiet braking and extending the driving range. Merits and drawbacks of different braking control strategy are further elaborated. State-space model of the EVs under energy-regenerative braking operation is established, considering that parameter variations are unavoidable due to temperature change, measured error, un-modeled dynamics, external disturbance and time-varying system parameters, a sliding mode robust controller (SMRC is designed and implemented. Phase current and DC-link voltage are selected as the state variables, respectively. The corresponding control law is also provided. The proposed control scheme is compared with a conventional proportional-integral (PI controller. A laboratory EV for experiment is setup to verify the proposed scheme. Experimental results show that the drive range of EVs can be improved about 17% using the proposed controller with energy-regeneration control.

  10. Electrode position markedly affects knee torque in tetanic, stimulated contractions.

    Science.gov (United States)

    Vieira, Taian M; Potenza, Paolo; Gastaldi, Laura; Botter, Alberto

    2016-02-01

    The purpose of this study was to investigate how much the distance between stimulation electrodes affects the knee extension torque in tetanic, electrically elicited contractions. Current pulses of progressively larger amplitude, from 0 mA to maximally tolerated intensities, were delivered at 20 pps to the vastus medialis, rectus femoris and vastus lateralis muscles of ten, healthy male subjects. Four inter-electrode distances were tested: 32.5% (L1), 45.0% (L2), 57.5% (L3) and 70% (L4) of the distance between the patella apex and the anterior superior iliac spine. The maximal knee extension torque and the current leading to the maximal torque were measured and compared between electrode configurations. The maximal current tolerated by each participant ranged from 60 to 100 mA and did not depend on the inter-electrode distance. The maximal knee extension torque elicited did not differ between L3 and L4 (P = 0.15) but, for both conditions, knee torque was significantly greater than for L1 and L2 (P torque elicited for L3 and L4 was two to three times greater than that obtained for L1 and L2. The current leading to maximal torque was not as sensitive to inter-electrode distance. Except for L1 current intensity did not change with electrode configuration (P > 0.16). Key results presented here revealed that for a given stimulation intensity, knee extension torque increased dramatically with the distance between electrodes. The distance between electrodes seems therefore to critically affect knee torque, with potential implication for optimising exercise protocols based on electrical stimulation.

  11. Towards measuring quantum electrodynamic torque with a levitated nanorod

    Science.gov (United States)

    Xu, Zhujing; Bang, Jaehoon; Ahn, Jonghoon; Hoang, Thai M.; Li, Tongcang

    2017-04-01

    According to quantum electrodynamics, quantum fluctuations of electromagnetic fields give rise to a zero-point energy that never vanishes, even in the absence of electromagnetic sources. The interaction energy will not only lead to the well-known Casimir force but will also contribute to the Casimir torque for anisotropic materials. We propose to use an optically levitated nanorod in vacuum and a birefringent substrate to experimentally investigate the QED torque. We have previously observed the libration of an optically levitated non-spherical nanoparticle in vacuum and found it to be an ultrasensitive torque sensor. A nanorod with a long axis of 300nm and a diameter of 60nm levitated in vacuum at 10 (- 8) torr will have a remarkable torque detection sensitivity on the order of 10 (- 28) Nm/ √Hz, which will be sufficient to detect the Casimir torque. This work is partially supported by the National Science Foundation under Grant No.1555035-PHY.

  12. Disentangling the origins of torque enhancement through wall roughness in Taylor-Couette turbulence

    NARCIS (Netherlands)

    Zhu, Xiaojue; Verzicco, Roberto; Lohse, Detlef

    2017-01-01

    Direct numerical simulations (DNS) are performed to analyse the global transport properties of turbulent Taylor-Couette flow with inner rough wall up to Taylor number Ta = 1010. The dimensionless torque Nuω shows an effective scaling of Nuω ∝ Ta0.42±0.01, which is steeper than the ultimate regime

  13. Anomalous magnetic torque in the heavy-fermion superconductor UBe13

    International Nuclear Information System (INIS)

    Schmiedeshoff, G.M.; Fisk, Z.; Smith, J.L.

    1994-01-01

    Measurements of the magnetic torque acting upon a single crystal of the heavy-fermion superconductor UBe 13 have been made at temperatures from 0.5 K to 30.0 K and in magnetic fields to 23 T using a capacitive magnetometer. We find that a large, anomalous contribution to the magnetic torque appears in at low temperatures and in high fields. The anomalous torque coexists with the superconducting state at low temperature. We propose that the anomalous torque reflects the existence of a field-induced magnetic phase transition. (orig.)

  14. The effect of sterilization and number of use on the accuracy of friction-style mechanical torque limiting devices for dental implants

    Directory of Open Access Journals (Sweden)

    Ali Fayaz

    2014-01-01

    Full Text Available Background: Mechanical torque limiting devices (MTLDs are necessary tools to control a peak torque and achieving target values of screw component of dental implants. Due to probable effect of autoclaving and number of use on the accuracy of these devices, this study aimed to evaluate the effect of sterilization and number of use on the accuracy of friction-style mechanical torque limiting devices (F-S MTLDs in achieving their target torque values. Materials and Methods: Peak torque measurements of 15 new F-S MTLDs from three different manufacturers (Astra Tech, BioHorizons, Dr. Idhe were measured ten times before and after 100 steam sterilization using a digital torque gauge. To simulate the clinical situation of aging (number of use target torque application process was repeated 10 times after each sterilization cycle and the peak torque values were registered. Comparison of the mean differences with target torque in each cycle was performed using one sample t test. Considering the type of MTLDs as inter subject comparison, One-way repeated measure ANOVA was used to evaluate the absolute values of differences between devices of each manufacturer in each group (α = 0.05. Results: The results of this study in Dr. Idhe group showed that, mean of difference values significantly differed from the target torque (P = 0.002 until 75 cycles. In Astra Tech group, also mean of difference values with under estimation trend, showed a significant difference with the target torque (P < 0.001. Mean of difference values significantly differed from the target torque with under estimation trend during all the 100 cycles in BioHorizons group (P < 0.05. Conclusion: The torque output of each individual device stayed in 10% difference from target torque values before 100 sterilization cycles, but more than 10% difference from the target torque was seen in varying degrees during these consequent cycles.

  15. Smooth torque speed characteristic of switched reluctance motors

    DEFF Research Database (Denmark)

    Zeng, Hui; Chen, Zhe; Chen, Hao

    2014-01-01

    The torque ripple of switched reluctance motors (SRMs) is the main disadvantage that limits the industrial application of these motors. Although several methods for smooth-toque operation (STO) have been proposed, STO works well only within a certain torque and speed range because...

  16. Spin-transfer torque in tunnel junctions with ferromagnetic layer of finite thickness

    International Nuclear Information System (INIS)

    Wilczynski, M.

    2011-01-01

    Two components of the spin torque exerted on a free ferromagnetic layer of finite thickness and a half-infinite ferromagnetic electrode in single tunnel junctions have been calculated in the spin-polarized free-electron-like one-band model. It has been found that the torque oscillates with the thickness of ferromagnetic layer and can be enhanced in the junction with the special layer thickness. The bias dependence of torque components also significantly changes with layer thickness. It is non-symmetric for the normal torque, in contrast to the symmetric junctions with two identical half-infinite ferromagnetic electrodes. The asymmetry of the bias dependence of the normal component of the torque can be also observed in the junctions with different spin splitting of the electron bands in the ferromagnetic electrodes. - Research highlights: → The torque oscillates with the thickness of ferromagnetic layer. → Bias dependence of the torque changes with the layer thickness. → Bias dependence of the normal torque can be asymmetric.

  17. Four-bar linkage-based automatic tool changer: Dynamic modeling and torque optimization

    International Nuclear Information System (INIS)

    Lee, Sangho; Seo, TaeWon; Kim, Jong-Won; Kim, Jongwon

    2017-01-01

    An Automatic tool changer (ATC) is a device used in a tapping machine to reduce process time. This paper presents the optimization of a Peak torque reduction mechanism (PTRM) for an ATC. It is necessary to reduce the fatigue load and energy consumed, which is related to the peak torque. The PTRM uses a torsion spring to reduce the peak torque and was applied to a novel ATC mechanism, which was modeled using inverse dynamics. Optimization of the PTRM is required to minimize the peak torque. The design parameters are the initial angle and stiffness of the torsion spring, and the objective function is the peak torque of the input link. The torque was simulated, and the peak torque was decreased by 10 %. The energy consumed was reduced by the optimization.

  18. Four-bar linkage-based automatic tool changer: Dynamic modeling and torque optimization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangho; Seo, TaeWon [Yeungnam University, Gyeongsan (Korea, Republic of); Kim, Jong-Won; Kim, Jongwon [Seoul National University, Seoul (Korea, Republic of)

    2017-05-15

    An Automatic tool changer (ATC) is a device used in a tapping machine to reduce process time. This paper presents the optimization of a Peak torque reduction mechanism (PTRM) for an ATC. It is necessary to reduce the fatigue load and energy consumed, which is related to the peak torque. The PTRM uses a torsion spring to reduce the peak torque and was applied to a novel ATC mechanism, which was modeled using inverse dynamics. Optimization of the PTRM is required to minimize the peak torque. The design parameters are the initial angle and stiffness of the torsion spring, and the objective function is the peak torque of the input link. The torque was simulated, and the peak torque was decreased by 10 %. The energy consumed was reduced by the optimization.

  19. Thrust and torque characteristics based on a new cutter-head load model

    Science.gov (United States)

    Liu, Jianqin; Ren, Jiabao; Guo, Wei

    2015-07-01

    Full face rock tunnel boring machine(TBM) has been widely used in hard rock tunnels, however, there are few published theory about cutter-head design, and the design criteria of cutter-head under complex geological is not clear yet. To deal with the complex relationship among geological parameters, cutter parameters, and operating parameters during tunneling processes, a cutter-head load model is established by using CSM(Colorado school of mines) prediction model. Force distribution on cutter-head under a certain geology is calculated with the new established load model, and result shows that inner cutters bear more force than outer cutters, combining with disc cutters abrasion; a general principle of disc cutters' layout design is proposed. Within the model, the relationship among rock uniaxial compressive strength(UCS), penetration and thrust on cutter-head are analyzed, and the results shows that with increasing penetration, cutter thrust increases, but the growth rate slows and higher penetration makes lower special energy(SE). Finally, a fitting mathematical model of ZT(ratio of cutter-head torque and thrust) and penetration is established, and verified by TB880E, which can be used to direct how to set thrust and torque on cutter-head. When penetration is small, the cutter-head thrust is the main limiting factor in tunneling; when the penetration is large, cutter-head torque is the major limiting factor in tunneling. Based on the new cutter-head load model, thrust and torque characteristics of TBM further are researched and a new way for cutter-head layout design and TBM tunneling operations is proposed.

  20. KNEE ISOKINETIC TORQUE IMBALANCE IN FEMALE FUTSAL PLAYERS

    Directory of Open Access Journals (Sweden)

    Ana Carolina de Mello Alves Rodrigues

    Full Text Available ABSTRACT Introduction: The specificity of sports training can lead to muscle specialization with a possible change in the natural hamstring/quadriceps torque ratio (HQ ratio, constituting a risk factor for muscle injury at the joint angles in which muscle imbalance may impair dynamic stability. Objective: The aim was to evaluate the torque distribution of the hamstrings and quadriceps and the HQ ratio throughout the range of motion in order to identify possible muscle imbalances at the knee of female futsal athletes. Methods: Nineteen amateur female futsal athletes had their dominant limb HQ ratio evaluated in a series of five maximum repetitions of flexion/extension of the knee at 180°/second in the total joint range of motion (30° to 80°. The peak flexor and extensor torque and the HQ ratio (% were compared each 5° of knee motion using one-way repeated measures ANOVA and Tukey’s post hoc test (p<0.05 to determine the joint angles that present muscular imbalance. Results: Quadriceps torque was higher than 50° to 60° of knee flexion, while hamstrings torque was higher than 55° to 65°. The HQ ratio presented lower values than 30° to 45° of knee flexion and four athletes presented values lower than 60%, which may represent a risk of injury. However, the HQ ratio calculated by the peak torque showed only one athlete with less than 60%. Conclusion: The HQ ratio analyzed throughout the knee range of motion allowed identifying muscle imbalance at specific joint angles in female futsal players.