WorldWideScience

Sample records for direct thrombin inhibitor

  1. A direct thrombin inhibitor suppresses protein C activation and factor Va degradation in human plasma: Possible mechanisms of paradoxical enhancement of thrombin generation.

    Science.gov (United States)

    Kamisato, Chikako; Furugohri, Taketoshi; Morishima, Yoshiyuki

    2016-05-01

    We have demonstrated that antithrombin (AT)-independent thrombin inhibitors paradoxically increase thrombin generation (TG) in human plasma in a thrombomodulin (TM)- and protein C (PC)-dependent manner. We determined the effects of AT-independent thrombin inhibitors on the negative-feedback system, activation of PC and production and degradation of factor Va (FVa), as possible mechanisms underlying the paradoxical enhancement of TG. TG in human plasma containing 10nM TM was assayed by means of the calibrated automated thrombography. As an index of PC activation, plasma concentration of activated PC-PC inhibitor complex (aPC-PCI) was measured. The amounts of FVa heavy chain and its degradation product (FVa(307-506)) were examined by western blotting. AT-independent thrombin inhibitors, melagatran and dabigatran (both at 25-600nM) and 3-30μg/ml active site-blocked thrombin (IIai), increased peak levels of TG. Melagatran, dabigatran and IIai significantly decreased plasma concentration of aPC-PCI complex at 25nM or more, 75nM or more, and 10 and 30μg/ml, respectively. Melagatran (300nM) significantly increased FVa and decreased FVa(307-506). In contrast, a direct factor Xa inhibitor edoxaban preferentially inhibited thrombin generation (≥25nM), and higher concentrations were required to inhibit PC activation (≥150nM) and FVa degradation (300nM). The present study suggests that the inhibitions of protein C activation and subsequent degradation of FVa and increase in FVa by antithrombin-independent thrombin inhibitors may contribute to the paradoxical TG enhancement, and edoxaban may inhibit PC activation and FVa degradation as a result of TG suppression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. New synthetic thrombin inhibitors: molecular design and experimental verification.

    Science.gov (United States)

    Sinauridze, Elena I; Romanov, Alexey N; Gribkova, Irina V; Kondakova, Olga A; Surov, Stepan S; Gorbatenko, Aleksander S; Butylin, Andrey A; Monakov, Mikhail Yu; Bogolyubov, Alexey A; Kuznetsov, Yuryi V; Sulimov, Vladimir B; Ataullakhanov, Fazoyl I

    2011-01-01

    The development of new anticoagulants is an important goal for the improvement of thromboses treatments. The design, synthesis and experimental testing of new safe and effective small molecule direct thrombin inhibitors for intravenous administration. Computer-aided molecular design of new thrombin inhibitors was performed using our original docking program SOL, which is based on the genetic algorithm of global energy minimization in the framework of a Merck Molecular Force Field. This program takes into account the effects of solvent. The designed molecules with the best scoring functions (calculated binding energies) were synthesized and their thrombin inhibitory activity evaluated experimentally in vitro using a chromogenic substrate in a buffer system and using a thrombin generation test in isolated plasma and in vivo using the newly developed model of hemodilution-induced hypercoagulation in rats. The acute toxicities of the most promising new thrombin inhibitors were evaluated in mice, and their stabilities in aqueous solutions were measured. New compounds that are both effective direct thrombin inhibitors (the best K(I) was 50) in the thrombin generation assay of approximately 100 nM) were discovered. These compounds contain one of the following new residues as the basic fragment: isothiuronium, 4-aminopyridinium, or 2-aminothiazolinium. LD(50) values for the best new inhibitors ranged from 166.7 to >1111.1 mg/kg. A plasma-substituting solution supplemented with one of the new inhibitors prevented hypercoagulation in the rat model of hemodilution-induced hypercoagulation. Activities of the best new inhibitors in physiological saline (1 µM solutions) were stable after sterilization by autoclaving, and the inhibitors remained stable at long-term storage over more than 1.5 years at room temperature and at 4°C. The high efficacy, stability and low acute toxicity reveal that the inhibitors that were developed may be promising for potential medical applications.

  3. New synthetic thrombin inhibitors: molecular design and experimental verification.

    Directory of Open Access Journals (Sweden)

    Elena I Sinauridze

    Full Text Available BACKGROUND: The development of new anticoagulants is an important goal for the improvement of thromboses treatments. OBJECTIVES: The design, synthesis and experimental testing of new safe and effective small molecule direct thrombin inhibitors for intravenous administration. METHODS: Computer-aided molecular design of new thrombin inhibitors was performed using our original docking program SOL, which is based on the genetic algorithm of global energy minimization in the framework of a Merck Molecular Force Field. This program takes into account the effects of solvent. The designed molecules with the best scoring functions (calculated binding energies were synthesized and their thrombin inhibitory activity evaluated experimentally in vitro using a chromogenic substrate in a buffer system and using a thrombin generation test in isolated plasma and in vivo using the newly developed model of hemodilution-induced hypercoagulation in rats. The acute toxicities of the most promising new thrombin inhibitors were evaluated in mice, and their stabilities in aqueous solutions were measured. RESULTS: New compounds that are both effective direct thrombin inhibitors (the best K(I was 1111.1 mg/kg. A plasma-substituting solution supplemented with one of the new inhibitors prevented hypercoagulation in the rat model of hemodilution-induced hypercoagulation. Activities of the best new inhibitors in physiological saline (1 µM solutions were stable after sterilization by autoclaving, and the inhibitors remained stable at long-term storage over more than 1.5 years at room temperature and at 4°C. CONCLUSIONS: The high efficacy, stability and low acute toxicity reveal that the inhibitors that were developed may be promising for potential medical applications.

  4. Retro-binding thrombin active site inhibitors: identification of an orally active inhibitor of thrombin catalytic activity.

    Science.gov (United States)

    Iwanowicz, Edwin J; Kimball, S David; Lin, James; Lau, Wan; Han, W-C; Wang, Tammy C; Roberts, Daniel G M; Schumacher, W A; Ogletree, Martin L; Seiler, Steven M

    2002-11-04

    A series of retro-binding inhibitors of human alpha-thrombin was prepared to elucidate structure-activity relationships (SAR) and optimize in vivo performance. Compounds 9 and 11, orally active inhibitors of thrombin catalytic activity, were identified to be efficacious in a thrombin-induced lethality model in mice.

  5. Structure of a retro-binding peptide inhibitor complexed with human alpha-thrombin.

    Science.gov (United States)

    Tabernero, L; Chang, C Y; Ohringer, S L; Lau, W F; Iwanowicz, E J; Han, W C; Wang, T C; Seiler, S M; Roberts, D G; Sack, J S

    1995-02-10

    The crystallographic structure of the ternary complex between human alpha-thrombin, hirugen and the peptidyl inhibitor Phe-alloThr-Phe-O-CH3, which is acylated at its N terminus with 4-guanidino butanoic acid (BMS-183507), has been determined at 2.6 A resolution. The structure reveals a unique "retro-binding" mode for this tripeptide active site inhibitor. The inhibitor binds with its alkyl-guanidine moiety in the primary specificity pocket and its two phenyl rings occupying the hydrophobic proximal and distal pockets of the thrombin active site. In this arrangement the backbone of the tripeptide forms a parallel beta-strand to the thrombin main-chain at the binding site. This is opposite to the orientation of the natural substrate, fibrinogen, and all the small active site-directed thrombin inhibitors whose bound structures have been previously reported. BMS-183507 is the first synthetic inhibitor proved to bind in a retro-binding fashion to thrombin, in a fashion similar to that of the N-terminal residues of the natural inhibitor hirudin. Furthermore, this new potent thrombin inhibitor (Ki = 17.2 nM) is selective for thrombin over other serine proteases tested and may be a template to be considered in designing hirudin-based thrombin inhibitors with interactions at the specificity pocket.

  6. Tyrosine sulfation modulates activity of tick-derived thrombin inhibitors

    Science.gov (United States)

    Thompson, Robert E.; Liu, Xuyu; Ripoll-Rozada, Jorge; Alonso-García, Noelia; Parker, Benjamin L.; Pereira, Pedro José Barbosa; Payne, Richard J.

    2017-09-01

    Madanin-1 and chimadanin are two small cysteine-free thrombin inhibitors that facilitate blood feeding in the tick Haemaphysalis longicornis. Here, we report a post-translational modification—tyrosine sulfation—of these two proteins that is critical for potent anti-thrombotic and anticoagulant activity. Inhibitors produced in baculovirus-infected insect cells displayed heterogeneous sulfation of two tyrosine residues within each of the proteins. One-pot ligation-desulfurization chemistry enabled access to homogeneous samples of all possible sulfated variants of the proteins. Tyrosine sulfation of madanin-1 and chimadanin proved crucial for thrombin inhibitory activity, with the doubly sulfated variants three orders of magnitude more potent than the unmodified inhibitors. The three-dimensional structure of madanin-1 in complex with thrombin revealed a unique mode of inhibition, with the sulfated tyrosine residues binding to the basic exosite II of the protease. The importance of tyrosine sulfation within this family of thrombin inhibitors, together with their unique binding mode, paves the way for the development of anti-thrombotic drug leads based on these privileged scaffolds.

  7. First steps in the direction of synthetic, allosteric, direct inhibitors of thrombin and factor Xa.

    Science.gov (United States)

    Verghese, Jenson; Liang, Aiye; Sidhu, Preet Pal Singh; Hindle, Michael; Zhou, Qibing; Desai, Umesh R

    2009-08-01

    Designing non-saccharide functional mimics of heparin is a major challenge. In this work, a library of small, aromatic molecules based on the sulfated DHP scaffold was synthesized and screened against thrombin and factor Xa. The results reveal that (i) selected monomeric benzofuran derivatives inhibit the two enzymes, albeit weakly; (ii) the two enzymes recognize different structural features in the benzofurans studied suggesting significant selectivity of recognition; and (iii) the mechanism of inhibition is allosteric. The molecules represent the first allosteric small molecule inhibitors of the two enzymes.

  8. First Steps in the Direction of Synthetic, Allosteric, Direct Inhibitors of Thrombin and Factor Xa

    Science.gov (United States)

    Verghese, Jenson; Liang, Aiye; Sidhu, Preet Pal Singh; Hindle, Michael; Zhou, Qibing; Desai, Umesh R.

    2009-01-01

    Designing non-saccharide functional mimics of heparin is a major challenge. In this work, a library of small, aromatic molecules based on the sulfated DHP scaffold was synthesized and screened against thrombin and factor Xa. The results reveal that i) selected monomeric benzofuran derivatives inhibit the two enzymes, albeit weakly; ii) the two enzymes recognize different structural features in the benzofurans studied suggesting significant selectivity of recognition; and iii) the mechanism of inhibition is allosteric. The molecules represent the first allosteric small molecule inhibitors of the two enzymes. PMID:19540113

  9. Molecular modeling studies of novel retro-binding tripeptide active-site inhibitors of thrombin.

    Science.gov (United States)

    Lau, W F; Tabernero, L; Sack, J S; Iwanowicz, E J

    1995-08-01

    A novel series of retro-binding tripeptide thrombin active-site inhibitors was recently developed (Iwanowicz, E. I. et al. J. Med. Chem. 1994, 37, 2111(1)). It was hypothesized that the binding mode for these inhibitors is similar to that of the first three N-terminal residues of hirudin. This binding hypothesis was subsequently verified when the crystal structure of a member of this series, BMS-183,507 (N-[N-[N-[4-(Aminoiminomethyl)amino[-1-oxobutyl]-L- phenylalanyl]-L-allo-threonyl]-L-phenylalanine, methyl ester), was determined (Taberno, L.J. Mol. Biol. 1995, 246, 14). The methodology for developing the binding models of these inhibitors, the structure-activity relationships (SAR) and modeling studies that led to the elucidation of the proposed binding mode is described. The crystal structure of BMS-183,507/human alpha-thrombin is compared with the crystal structure of hirudin/human alpha-thrombin (Rydel, T.J. et al. Science 1990, 249,227; Rydel, T.J. et al. J. Mol Biol. 1991, 221, 583; Grutter, M.G. et al. EMBO J. 1990, 9, 2361) and with the computational binding model of BMS-183,507.

  10. Oral direct thrombin inhibitors or oral factor Xa inhibitors for the treatment of pulmonary embolism.

    Science.gov (United States)

    Robertson, Lindsay; Kesteven, Patrick; McCaslin, James E

    2015-12-04

    Pulmonary embolism is a potentially life-threatening condition in which a clot can travel from the deep veins, most commonly in the leg, up to the lungs. Previously, a pulmonary embolism was treated with the anticoagulants heparin and vitamin K antagonists. Recently, however, two forms of direct oral anticoagulants (DOACs) have been developed: oral direct thrombin inhibitors (DTI) and oral factor Xa inhibitors. The new drugs have characteristics that may be favourable over conventional treatment, including oral administration, a predictable effect, lack of frequent monitoring or re-dosing and few known drug interactions. To date, no Cochrane review has measured the effectiveness and safety of these drugs in the long-term treatment (minimum duration of three months) of pulmonary embolism. To assess the effectiveness of oral DTIs and oral factor Xa inhibitors for the long-term treatment of pulmonary embolism. The Cochrane Vascular Trials Search Co-ordinator searched the Specialised Register (last searched January 2015) and the Cochrane Register of Studies (last searched January 2015). Clinical trials databases were also searched for details of ongoing or unpublished studies. We searched the reference lists of relevant articles retrieved by electronic searches for additional citations. We included randomised controlled trials in which patients with a pulmonary embolism confirmed by standard imaging techniques were allocated to receive an oral DTI or an oral factor Xa inhibitor for the long-term (minimum duration three months) treatment of pulmonary embolism. Two review authors (LR, JM) independently extracted the data and assessed the risk of bias in the trials. Any disagreements were resolved by discussion with the third author (PK). We used meta-analyses when we considered heterogeneity low. The two primary outcomes were recurrent venous thromboembolism and pulmonary embolism. Other outcomes included all-cause mortality and major bleeding. We calculated all outcomes

  11. Effects of the oral, direct thrombin inhibitor dabigatran on five common coagulation assays.

    Science.gov (United States)

    Lindahl, Tomas L; Baghaei, Fariba; Blixter, Inger Fagerberg; Gustafsson, Kerstin M; Stigendal, Lennart; Sten-Linder, Margareta; Strandberg, Karin; Hillarp, Andreas

    2011-02-01

    Dabigatran is an oral, reversible thrombin inhibitor that has shown promising results in large clinical trials. Laboratory monitoring is not needed but the effects on common coagulation assays are incompletely known. Dabigatran was added to plasma from healthy subjects in the concentration range 0-1,000 μg/l and analysed using several reagents for activated thromboplastin time (APTT), prothrombin time (PT), fibrinogen, antithrombin, and activated protein C resistance. Typical trough concentrations are about 50 μg/l, peak concentrations 100-300 μg/l. At 100 μg/l all APTT-results were prolonged. The concentration required to double APTT ranged between 227 and 286 μg/l, the responses for all five reagents were similar. PT-reagents were much less affected with almost no samples above INR 1.2 at 100 μg/l. The effect was sample dilution dependent with PT Quick type more sensitive than PT Owren type methods. If a patient on dabigatran has prolonged APTT, >90 seconds, and Quick PT INR>2 or Owren PT INR>1.5 over-dosing or accumulation of dabigatran should be considered. Two of four fibrinogen reagents underestimated the fibrinogen concentration considerably at expected peak concentration. Methods based on inhibition of thrombin over-estimated the antithrombin concentration, but not Xa-based. The APC-resistance methods over-estimated the APC-ratio, which may lead to miss-classification of factor V Leiden patients as being normal. Different coagulation assays, and even different reagents within an assay group, display variable effects at therapeutic concentrations of dabigatran. Some of these assay variations are of clinical importance, thus knowledge is needed for a correct interpretation of results.

  12. Oral direct thrombin inhibitors or oral factor Xa inhibitors for the treatment of deep vein thrombosis.

    Science.gov (United States)

    Robertson, Lindsay; Kesteven, Patrick; McCaslin, James E

    2015-06-30

    Deep vein thrombosis (DVT) is a condition in which a clot forms in the deep veins, most commonly of the leg. It occurs in approximately 1 in 1,000 people. If left untreated, the clot can travel up to the lungs and cause a potentially life-threatening pulmonary embolism (PE). Previously, a DVT was treated with the anticoagulants heparin and vitamin K antagonists. However, two forms of novel oral anticoagulants (NOACs) have been developed: oral direct thrombin inhibitors (DTI) and oral factor Xa inhibitors. The new drugs have characteristics that may be favourable over conventional treatment, including oral administration, a predictable effect, lack of frequent monitoring or re-dosing and few known drug interactions. To date, no Cochrane review has measured the effectiveness and safety of these drugs in the treatment of DVT. To assess the effectiveness of oral DTIs and oral factor Xa inhibitors for the treatment of DVT. The Cochrane Peripheral Vascular Diseases Group Trials Search Co-ordinator searched the Specialised Register (last searched January 2015) and the Cochrane Register of Studies (last searched January 2015). We searched clinical trials databases for details of ongoing or unpublished studies and the reference lists of relevant articles retrieved by electronic searches for additional citations. We included randomised controlled trials in which people with a DVT confirmed by standard imaging techniques, were allocated to receive an oral DTI or an oral factor Xa inhibitor for the treatment of DVT. Two review authors (LR, JM) independently extracted the data and assessed the risk of bias in the trials. Any disagreements were resolved by discussion with the third review author (PK). We performed meta-analyses when we considered heterogeneity low. The two primary outcomes were recurrent VTE and PE. Other outcomes included all-cause mortality and major bleeding. We calculated all outcomes using an odds ratio (OR) with a 95% confidence interval (CI). We included

  13. Factor XI dependent and independent activation of thrombin activatable fibrinolysis inhibitor (TAFI) in plasma associated with clot formation

    NARCIS (Netherlands)

    Bouma, B. N.; Mosnier, L. O.; Meijers, J. C.; Griffin, J. H.

    1999-01-01

    Thrombin Activatable Fibrinolysis Inhibitor (TAFI) also known as plasma procarboxypeptidase B is activated by relatively high concentrations of thrombin in a reaction stimulated by thrombomodulin. In plasma an intact factor XI-dependent feed back loop via the intrinsic pathway is necessary to

  14. The Phosphatase Inhibitor Calyculin-A Impairs Clot Retraction, Platelet Activation, and Thrombin Generation

    Directory of Open Access Journals (Sweden)

    Renáta Hudák

    2017-01-01

    Full Text Available The aim of this study was to investigate the effect of the serine/threonine protein phosphatase inhibitor, calyculin-A (CLA, on clot formation and on the procoagulant activity of human platelets. Platelet-rich plasma (PRP samples were preincubated with buffer or CLA and subsequently platelets were activated by the protease-activated receptor 1 (PAR-1 activator, thrombin receptor activating peptide (TRAP. Clot retraction was detected by observing clot morphology up to 1 hour, phosphatidylserine- (PS- expression was studied by flow cytometry, and thrombin generation was measured by a fluorimetric assay. For the intracellular Ca2+ assay, platelets were loaded with calcium-indicator dyes and the measurements were carried out using a ratiometric method with real-time confocal microscopy. CLA preincubation inhibited clot retraction, PS-expression, and thrombin formation. TRAP activation elicited Ca2+ response and PS-expression in a subset of platelets. The activated PRP displayed significantly faster and enhanced thrombin generation compared to nonactivated samples. CLA pretreatment abrogated PS-exposure and clot retraction also in TRAP-activated samples. As a consequence of the inhibitory effect on calcium elevation and PS-expression, CLA significantly downregulated thrombin generation in PRP. Our results show that CLA pretreatment may be a useful tool to investigate platelet activation mechanisms that contribute to clot formation and thrombin generation.

  15. Thrombin-activatable fibrinolysis inhibitor is degraded by Salmonella enterica and Yersinia pestis.

    Science.gov (United States)

    Valls Serón, M; Haiko, J; DE Groot, P G; Korhonen, T K; Meijers, J C M

    2010-10-01

     Pathogenic bacteria modulate the host coagulation system to evade immune responses or to facilitate dissemination through extravascular tissues. In particular, the important bacterial pathogens Salmonella enterica and Yersinia pestis intervene with the plasminogen/fibrinolytic system. Thrombin-activatable fibrinolysis inhibitor (TAFI) has anti-fibrinolytic properties as the active enzyme (TAFIa) removes C-terminal lysine residues from fibrin, thereby attenuating accelerated plasmin formation.  Here, we demonstrate inactivation and cleavage of TAFI by homologous surface proteases, the omptins Pla of Y. pestis and PgtE of S. enterica. We show that omptin-expressing bacteria decrease TAFI activatability by thrombin-thrombomodulin and that the anti-fibrinolytic potential of TAFIa was reduced by recombinant Escherichia coli expressing Pla or PgtE. The functional impairment resulted from C-terminal cleavage of TAFI by the omptins.  Our results indicate that TAFI is degraded directly by the omptins PgtE of S. enterica and Pla of Y. pestis. This may contribute to the ability of PgtE and Pla to damage tissue barriers, such as fibrin, and thereby to enhance spread of S. enterica and Y. pestis during infection. © 2010 International Society on Thrombosis and Haemostasis.

  16. Bufadienolides from Kalanchoe daigremontiana as thrombin inhibitors-In vitro and in silico study.

    Science.gov (United States)

    Kolodziejczyk-Czepas, Joanna; Sieradzka, Malgorzata; Moniuszko-Szajwaj, Barbara; Pecio, Łukasz; Ponczek, Michal B; Nowak, Pawel; Stochmal, Anna

    2017-06-01

    Thrombin is an active plasma coagulation factor II, critical for the formation of fibrin clot during blood coagulation. For that reason, this protein is also a crucial target for different anti-thrombotic therapies. The work is based on in vitro evaluation of the inhibitory effect of bufadienolide-rich fraction, isolated from roots of Kalanchoe daigremontiana (1-50μg/ml) on enzymatic properties of a serine proteinase - thrombin. The efficacy of the inhibition of amidolytic activity of thrombin (measured as a hydrolysis of the chromogenic substrate S-2238, Chromogenix) attained about 10 and 66%, respectively. The IC 50 , established for the examined bufadienolide fraction was 2.79μg/ml, while the IC 50 calculated for argatroban (reference compound) was 0.78μg/ml. Linearization conducted using Lineweaver-Burk plot indicated that the K. daigremontiana fraction contains compounds that are uncompetitive inhibitors of thrombin. K. daigremontiana fraction was also able to reduce the proteolytic activity of thrombin towards its physiological substrate, i.e. fibrinogen. Additionally, this study is supported by in silico analysis of interactions of the most common compounds, identified in the examined in Kalanchoe extract to crystal structure of this enzyme. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Molecular design and structure--activity relationships leading to the potent, selective, and orally active thrombin active site inhibitor BMS-189664.

    Science.gov (United States)

    Das, Jagabandhu; Kimball, S David; Hall, Steven E; Han, Wen Ching; Iwanowicz, Edwin; Lin, James; Moquin, Robert V; Reid, Joyce A; Sack, John S; Malley, Mary F; Chang, Chiehying Y; Chong, Saeho; Wang-Iverson, David B; Roberts, Daniel G M; Seiler, Steven M; Schumacher, William A; Ogletree, Martin L

    2002-01-07

    A series of structurally novel small molecule inhibitors of human alpha-thrombin was prepared to elucidate their structure-activity relationships (SARs), selectivity and activity in vivo. BMS-189664 (3) is identified as a potent, selective, and orally active reversible inhibitor of human alpha-thrombin which is efficacious in vivo in a mouse lethality model, and at inhibiting both arterial and venous thrombosis in cynomolgus monkey models.

  18. Dabigatran reduces thrombin-induced platelet aggregation and activation in a dose-dependent manner

    DEFF Research Database (Denmark)

    Vinholt, Pernille Just; Nielsen, Christian; Söderström, Anna Cecilia

    2017-01-01

    Dabigatran is an oral anticoagulant and a reversible inhibitor of thrombin. Further, dabigatran might affect platelet function through a direct effect on platelet thrombin receptors. The aim was to investigate the effect of dabigatran on platelet activation and platelet aggregation. Healthy donor...

  19. Computational study of some benzamidine-based inhibitors of thrombin-like snake venom proteinases

    Science.gov (United States)

    Henriques, Elsa S.; Nascimento, Marco A. C.; Ramos, Maria João

    Pit viper venoms contain a number of serine proteinases that, despite their observed coagulant thrombin-like action in vitro, exhibit a paradoxical benign defibrinogenating (anticoagulant) action in vivo, with clinical applications in preventing thrombi and improved blood circulation. Considering that several benzamidine-based inhibitors, some highly selective to thrombin, also inhibit the enzymatic activity of such venombins, the modeling of their enzyme-inhibitor interactions could provide valuable information on the topological factors that determine the divergences in activity. The first step, and the object of the present study, was to derive the necessary set of parameters, consistent with the CHARMM force field, and to perform molecular dynamics (MD) simulations on a few selected representatives of the inhibitors in question under physiological conditions. Bonding and van der Waals parameters were derived by analogy to similar ones in the existing force field. Net atomic charges were obtained with a restrained fitting to the molecular electrostatic potential generated at B3LYP/6-31G(d) level. The parameters were refined to reproduce the available experimental geometries and crystal data, and the MD simulations of the free inhibitors in aqueous solution at 298 K provided an insightful description of their available conformational space.

  20. Phage display of the serpin alpha-1 proteinase inhibitor randomized at consecutive residues in the reactive centre loop and biopanned with or without thrombin.

    Directory of Open Access Journals (Sweden)

    Benjamin M Scott

    Full Text Available In spite of the power of phage display technology to identify variant proteins with novel properties in large libraries, it has only been previously applied to one member of the serpin superfamily. Here we describe phage display of human alpha-1 proteinase inhibitor (API in a T7 bacteriophage system. API M358R fused to the C-terminus of T7 capsid protein 10B was directly shown to form denaturation-resistant complexes with thrombin by electrophoresis and immunoblotting following exposure of intact phages to thrombin. We therefore developed a biopanning protocol in which thrombin-reactive phages were selected using biotinylated anti-thrombin antibodies and streptavidin-coated magnetic beads. A library consisting of displayed API randomized at residues 357 and 358 (P2-P1 yielded predominantly Pro-Arg at these positions after five rounds of thrombin selection; in contrast the same degree of mock selection yielded only non-functional variants. A more diverse library of API M358R randomized at residues 352-356 (P7-P3 was also probed, yielding numerous variants fitting a loose consensus of DLTVS as judged by sequencing of the inserts of plaque-purified phages. The thrombin-selected sequences were transferred en masse into bacterial expression plasmids, and lysates from individual colonies were screening for API-thrombin complexing. The most active candidates from this sixth round of screening contained DITMA and AAFVS at P7-P3 and inhibited thrombin 2.1-fold more rapidly than API M358R with no change in reaction stoichiometry. Deep sequencing using the Ion Torrent platform confirmed that over 800 sequences were significantly enriched in the thrombin-panned versus naïve phage display library, including some detected using the combined phage display/bacterial lysate screening approach. Our results show that API joins Plasminogen Activator Inhibitor-1 (PAI-1 as a serpin amenable to phage display and suggest the utility of this approach for the selection

  1. Design and characterization of hirulogs: A novel class of bivalent peptide inhibitors of thrombin

    Energy Technology Data Exchange (ETDEWEB)

    Maraganore, J.M.; Bourdon, P.; Jablonski, J.; Ramachandran, K.L. (Biogen, Inc., Cambridge, MA (USA)); Fenton, J.W. II (New York State Department of Health, Albany (USA))

    1990-07-31

    A novel class of synthetic peptides has been designed that inhibit the thrombin catalytic site and exhibit specificity for the anion-binding exosite (ABE) of {alpha}-thrombin. These peptides, called hirulogs, consist of (i) an active-site specificity sequence with a restricted Arg-Pro scissile bond, (ii) a polymeric linker of glycyl residues from 6 to 18 {angstrom} in length, and (iii) an ABE recognition sequence such as that in the hirudin C-terminus. Hirulog-1 ((D-Phe)-Pro-Arg-Pro-(Gly){sub 4}-Asn-Gly-Asp-Phe-Glu-Glu-Ile-Pro-Glu-Tyr-Leu) inhibits the thrombin-catalyzed hydrolysis of a tripeptide p-nitroanilide substrate with K{sub i} = 2.3 nM. In contrast, the synthetic C-terminal hirudin peptide S-Hir{sub 53-64}, which binds to the thrombin ABE, blocked the fibrinogen clotting activity of the enzyme with K{sub i} = 144 nM but failed to inhibit the hydrolysis of p-nitroanilide substrates at concentrations as high as 1 mM. Hirulog-1, but not S-Hir{sub 53-64}, was found to inhibit the incorporation of ({sup 14}C)diisopropyl fluorophosphate in thrombin. Hirulog-1 appears specific for thrombin as it lacks inhibitory activities toward human factor Xa, human plasmin, and bovine trypsin at inhibitor:enzyme concentrations 3 orders of magnitude higher than those required to inhibit thrombin. The optimal inhibitory activity of hirulog-1 depends upon all three components of its structure. Comparison of anticoagulant activities of hirulog-1, hirudin, and S-Hir{sub 53-64} showed that the synthetic hirulog-1 is 2-fold more potent than hirudin and 100-fold more active than S-Hir{sub 53-64} in increasing the activated partial thromboplastin time of normal human plasma.

  2. Marine Diterpenes: Molecular Modeling of Thrombin Inhibitors with Potential Biotechnological Application as an Antithrombotic

    Directory of Open Access Journals (Sweden)

    Rebeca Cristina Costa Pereira

    2017-03-01

    Full Text Available Thrombosis related diseases are among the main causes of death and incapacity in the world. Despite the existence of antithrombotic agents available for therapy, they still present adverse effects like hemorrhagic risks which justify the search for new options. Recently, pachydictyol A, isopachydictyol A, and dichotomanol, three diterpenes isolated from Brazilian marine brown alga Dictyota menstrualis were identified as potent antithrombotic molecules through inhibition of thrombin, a key enzyme of coagulation cascade and a platelet agonist. Due to the biotechnological potential of these marine metabolites, in this work we evaluated their binding mode to thrombin in silico and identified structural features related to the activity in order to characterize their molecular mechanism. According to our theoretical studies including structure-activity relationship and molecular docking analysis, the highest dipole moment, polar surface area, and lowest electronic density of dichotomanol are probably involved in its higher inhibition percentage towards thrombin catalytic activity compared to pachydictyol A and isopachydictyol A. Interestingly, the molecular docking studies also revealed a good shape complementarity of pachydictyol A and isopachydictyol A and interactions with important residues and regions (e.g., H57, S195, W215, G216, and loop-60, which probably justify their thrombin inhibitor effects demonstrated in vitro. Finally, this study explored the structural features and binding mode of these three diterpenes in thrombin which reinforced their potential to be further explored and may help in the design of new antithrombotic agents.

  3. Synergistic action between inhibition of P2Y12/P2Y1 and P2Y12/thrombin in ADP- and thrombin-induced human platelet activation

    Science.gov (United States)

    Nylander, Sven; Mattsson, Christer; Ramström, Sofia; Lindahl, Tomas L

    2004-01-01

    The objective of this study was to investigate if there is a synergistic effect of a combination of P2Y12 and P2Y1 inhibition and P2Y12 and thrombin inhibition, on ADP- and thrombin-induced platelet activation, respectively. The rationale being that these combinations will cause a concurrent inhibition of both Gαq and Gαi signalling.Blood from healthy volunteers was preincubated with AR-C69931MX, a reversible P2Y12 antagonist; MRS2179, a reversible P2Y1 antagonist; or melagatran, a direct reversible thrombin inhibitor; alone or in various combinations prior to activation with ADP or thrombin. Platelet function in whole blood was assessed by flow cytometry using the antibody PAC-1 to estimate the expression of active αIIbβ3 (the fibrinogen receptor GPIIb/IIIa). A synergistic effect was evaluated by comparing the concentrations in the different combinations with those of corresponding equipotent concentrations of each single inhibitor alone. The equipotent single concentrations were experimentally obtained from concentration response curves performed in parallel.A synergistic effect regarding inhibition of ADP-induced platelet activation (10 μM) was obtained with different combinations of AR-C69931MX and MRS2179.Inhibition of thrombin-induced platelet activation (2 nM) with combinations of AR-C69931MX and the thrombin inhibitor melagatran did also result in a strong synergistic effect.To our knowledge, this is the first time that data supporting a synergistic effect has been published for the inhibitor combinations described.Whether this synergistic effect in vitro also results in an improved antithrombotic effect in vivo with or without an increased risk of bleeding remains to be studied in well-conducted clinical studies. PMID:15265806

  4. First Steps in the Direction of Synthetic, Allosteric, Direct Inhibitors of Thrombin and Factor Xa

    OpenAIRE

    Verghese, Jenson; Liang, Aiye; Sidhu, Preet Pal Singh; Hindle, Michael; Zhou, Qibing; Desai, Umesh R.

    2009-01-01

    Designing non-saccharide functional mimics of heparin is a major challenge. In this work, a library of small, aromatic molecules based on the sulfated DHP scaffold was synthesized and screened against thrombin and factor Xa. The results reveal that i) selected monomeric benzofuran derivatives inhibit the two enzymes, albeit weakly; ii) the two enzymes recognize different structural features in the benzofurans studied suggesting significant selectivity of recognition; and iii) the mechanism of...

  5. Binding characteristics of thrombin-activatable fibrinolysis inhibitor to streptococcal surface collagen-like proteins A and B

    NARCIS (Netherlands)

    Seron, Mercedes Valls; Plug, Tom; Marquart, J. Arnoud; Marx, Pauline F.; Herwald, Heiko; de Groot, Philip G.; Meijers, Joost C. M.

    2011-01-01

    Streptococcus pyogenes is the causative agent in a wide range of diseases in humans. Thrombin-activatable fibrinolysis inhibitor (TAFI) binds to collagen-like proteins ScIA and ScIB at the surface of S. pyogenes. Activation of TAFI at this surface redirects inflammation from a transient to chronic

  6. Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets

    Science.gov (United States)

    Corona de la Peña, Norma; Gutiérrez-Aguilar, Manuel; Hernández-Reséndiz, Ileana; Marín-Hernández, Álvaro

    2017-01-01

    Thrombin-induced platelet activation requires substantial amounts of ATP. However, the specific contribution of each ATP-generating pathway i.e., oxidative phosphorylation (OxPhos) versus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of energy metabolism remain unclear. Here we report an integral analysis on the role of both energy pathways in human platelets activated by several agonists, and the signal transducing mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3–38 times vs. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mitochondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002 (PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol, ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the thrombin-induced platelet activation. These results suggest that thrombin activates OxPhos and glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobilization and protein phosphorylation. PMID:28817667

  7. A functional single nucleotide polymorphism in the thrombin-activatable fibrinolysis inhibitor (TAFI) gene associates with outcome of meningococcal disease

    NARCIS (Netherlands)

    Kremer Hovinga, J. A.; Franco, R. F.; Zago, M. A.; ten Cate, Hugo; Westendorp, R. G. J.; Reitsma, P. H.

    2004-01-01

    In meningococcal sepsis, disseminated intravascular coagulation with deposition of fibrin and formation of microthrombi occurs in various organs and enhanced inhibition of fibrinolysis is associated with adverse outcome. Recently, TAFI (thrombin-activatable fibrinolysis inhibitor) was identified as

  8. Thrombin-inhibiting nanoparticles rapidly constitute versatile and detectable anticlotting surfaces

    Science.gov (United States)

    Wheatley Myerson, Jacob; He, Li; Allen, John Stacy; Williams, Todd; Lanza, Gregory; Tollefsen, Douglas; Caruthers, Shelton; Wickline, Samuel

    2014-09-01

    Restoring an antithrombotic surface to suppress ongoing thrombosis is an appealing strategy for treatment of acute cardiovascular disorders such as erosion of atherosclerotic plaque. An antithrombotic surface would present an alternative to systemic anticoagulation with attendant risks of bleeding. We have designed thrombin-targeted nanoparticles (NPs) that bind to sites of active clotting to extinguish local thrombin activity and inhibit platelet deposition while exhibiting only transient systemic anticoagulant effects. Perfluorocarbon nanoparticles (PFC NP) were functionalized with thrombin inhibitors (either D-phenylalanyl-L-prolyl-L-arginyl-chloromethyl ketone or bivalirudin) by covalent attachment of more than 15 000 inhibitors to each PFC NP. Fibrinopeptide A (FPA) ELISA demonstrated that thrombin-inhibiting NPs prevented cleavage of fibrinogen by both free and clot-bound thrombin. Magnetic resonance imaging (MRI) confirmed that a layer of thrombin-inhibiting NPs prevented growth of clots in vitro. Thrombin-inhibiting NPs were administered in vivo to C57BL6 mice subjected to laser injury of the carotid artery. NPs significantly delayed thrombotic occlusion of the artery, whereas an equivalent bolus of free inhibitor was ineffective. For thrombin-inhibiting NPs, only a short-lived (˜10 min) systemic effect on bleeding time was observed, despite prolonged clot inhibition. Imaging and quantification of in vivo antithrombotic NP layers was demonstrated by MRI of the PFC NP. 19F MRI confirmed colocalization of particles with arterial thrombi, and quantitative 19F spectroscopy demonstrated specific binding and retention of thrombin-inhibiting NPs in injured arteries. The ability to rapidly form and image a new antithrombotic surface in acute vascular syndromes while minimizing risks of bleeding would permit a safer method of passivating active lesions than current systemic anticoagulant regimes.

  9. Thrombin-inhibiting nanoparticles rapidly constitute versatile and detectable anticlotting surfaces

    International Nuclear Information System (INIS)

    Myerson, Jacob Wheatley; Lanza, Gregory; Caruthers, Shelton; Wickline, Samuel; He, Li; Allen, John Stacy; Williams, Todd; Tollefsen, Douglas

    2014-01-01

    Restoring an antithrombotic surface to suppress ongoing thrombosis is an appealing strategy for treatment of acute cardiovascular disorders such as erosion of atherosclerotic plaque. An antithrombotic surface would present an alternative to systemic anticoagulation with attendant risks of bleeding. We have designed thrombin-targeted nanoparticles (NPs) that bind to sites of active clotting to extinguish local thrombin activity and inhibit platelet deposition while exhibiting only transient systemic anticoagulant effects. Perfluorocarbon nanoparticles (PFC NP) were functionalized with thrombin inhibitors (either D-phenylalanyl-L-prolyl-L-arginyl-chloromethyl ketone or bivalirudin) by covalent attachment of more than 15 000 inhibitors to each PFC NP. Fibrinopeptide A (FPA) ELISA demonstrated that thrombin-inhibiting NPs prevented cleavage of fibrinogen by both free and clot-bound thrombin. Magnetic resonance imaging (MRI) confirmed that a layer of thrombin-inhibiting NPs prevented growth of clots in vitro. Thrombin-inhibiting NPs were administered in vivo to C57BL6 mice subjected to laser injury of the carotid artery. NPs significantly delayed thrombotic occlusion of the artery, whereas an equivalent bolus of free inhibitor was ineffective. For thrombin-inhibiting NPs, only a short-lived (∼10 min) systemic effect on bleeding time was observed, despite prolonged clot inhibition. Imaging and quantification of in vivo antithrombotic NP layers was demonstrated by MRI of the PFC NP. 19 F MRI confirmed colocalization of particles with arterial thrombi, and quantitative 19 F spectroscopy demonstrated specific binding and retention of thrombin-inhibiting NPs in injured arteries. The ability to rapidly form and image a new antithrombotic surface in acute vascular syndromes while minimizing risks of bleeding would permit a safer method of passivating active lesions than current systemic anticoagulant regimes. (paper)

  10. Inhibition of thrombin by functionalized C60 nanoparticles revealed via in vitro assays and in silico studies.

    Science.gov (United States)

    Liu, Yanyan; Fu, Jianjie; Pan, Wenxiao; Xue, Qiao; Liu, Xian; Zhang, Aiqian

    2018-01-01

    The studies on the human toxicity of nanoparticles (NPs) are far behind the rapid development of engineered functionalized NPs. Fullerene has been widely used as drug carrier skeleton due to its reported low risk. However, different from other kinds of NPs, fullerene-based NPs (C 60 NPs) have been found to have an anticoagulation effect, although the potential target is still unknown. In the study, both experimental and computational methods were adopted to gain mechanistic insight into the modulation of thrombin activity by nine kinds of C 60 NPs with diverse surface chemistry properties. In vitro enzyme activity assays showed that all tested surface-modified C 60 NPs exhibited thrombin inhibition ability. Kinetic studies coupled with competitive testing using 3 known inhibitors indicated that six of the C 60 NPs, of greater hydrophobicity and hydrogen bond (HB) donor acidity or acceptor basicity, acted as competitive inhibitors of thrombin by directly interacting with the active site of thrombin. A simple quantitative nanostructure-activity relationship model relating the surface substituent properties to the inhibition potential was then established for the six competitive inhibitors. Molecular docking analysis revealed that the intermolecular HB interactions were important for the specific binding of C 60 NPs to the active site canyon, while the additional stability provided by the surface groups through van der Waals interaction also play a key role in the thrombin binding affinity of the NPs. Our results suggest that thrombin is a possible target of the surface-functionalized C 60 NPs relevant to their anticoagulation effect. Copyright © 2017. Published by Elsevier B.V.

  11. Thrombin-activatable fibrinolysis inhibitor activity in healthy and diseased dogs

    DEFF Research Database (Denmark)

    Jessen, Lisbeth Rem; Wiinberg, Bo; Kjelgaard-Hansen, Mads

    2010-01-01

    Background: In people, increased thrombin-activatable fibrinolysis inhibitor (TAFI) antigen has been associated with increased risk of thrombosis, and decreased TAFI may contribute to bleeding diathesis. TAFI activity in dogs has been described in experimental models, but not in dogs...... with spontaneous disease. Objective: The aim of this study was to compare TAFI activity in healthy dogs with TAFI activity in dogs with spontaneous disease. Methods: Plasma samples from 20 clinically healthy Beagles and from 35 dogs with various diseases were analyzed using a commercial chromogenic assay...... that measured TAFI activity relative to activity in standardized pooled human plasma. Results: Median TAFI activity for the 20 Beagles was 46.1% (range 32.2-70.8%) compared with 62.6% (29.1-250%) for the 35 diseased dogs, and 14/35 (40%) had TAFI activities >the upper limit for controls. The highest individual...

  12. Discovery of thrombin activatable fibrinolysis inhibitor (TAFI)

    NARCIS (Netherlands)

    Bertina, R.M.; Tilburg, N.H. van; Haverkate, F.; Bouma, B.N.; Borne, P.A.K. von dem; Meijers, J.C.M.; Campbell, W.; Eaton, D.; Hendriks, D.F.; Willemse, J.L.

    2006-01-01

    CAS: blood clotting factor 11, 9013-55-2; thrombin, 9002-04-4; tissue plasminogen activator, 105913-11-9; protein C, 60202-16-6; Carboxypeptidase U, 3.4.17.20; Protein C; Tissue Plasminogen Activator, 3.4.21.68

  13. Thrombin regulates components of the fibrinolytic system in human mesangial cells

    International Nuclear Information System (INIS)

    Villamediana, L.M.; Rondeau, E.; He, C.J.; Medcalf, R.L.; Peraldi, M.N.; Lacave, R.; Delarue, F.; Sraer, J.D.

    1990-01-01

    Besides its procoagulant activity, thrombin has been shown to stimulate cell proliferation and to regulate the fibrinolytic pathway. We report here the effect of purified human alpha thrombin on the synthesis of tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor 1 (PAI-1) by cultured human mesangial cells. Thrombin (0 to 2.5 U/ml) increased in a time- and dose-dependent manner the production of t-PA and PAI-1 (2- to 3-fold increase of secreted t-PA and PAI-1 release during a 24 hour incubation). This effect was associated with a twofold increase in DNA synthesis measured by 3H-thymidine incorporation. Zymographic analysis and reverse fibrin autography showed that thrombin also increased the level of the 110 Kd t-PA-PAI-1 complex, whereas PAI-1 was present as a free 50 Kd form in the culture medium conditioned by unstimulated and thrombin-stimulated cells. Free t-PA was never observed. Both membrane binding and catalytic activity of thrombin were required since the effects of 1 U/ml thrombin were inhibited by addition 2 U/ml hirudin, which inhibits the membrane binding and catalytic activity of thrombin, and since DFP-inactivated thrombin, which has the ability to bind but which has no enzymatic activity, did not induce t-PA or PAI-1. Gamma thrombin, which does not bind to thrombin receptor, did not increase t-PA and PAI-1 releases. The effects of thrombin were probably mediated by protein kinase C activation since H7, an inhibitor of protein kinases, inhibited significantly thrombin effects on t-PA and PAI-1 production, and since addition of an activator of protein kinase A, 8-bromocyclic AMP (100 microM), induced a significant inhibition of the thrombin effect. The effects of thrombin were also suppressed by 1.25 micrograms/ml alpha amanitin, suggesting a requirement of de novo RNA synthesis

  14. Activated thrombin-activatable fibrinolysis inhibitor (TAFIa) attenuates breast cancer cell metastatic behaviors through inhibition of plasminogen activation and extracellular proteolysis

    International Nuclear Information System (INIS)

    Bazzi, Zainab A.; Lanoue, Danielle; El-Youssef, Mouhanned; Romagnuolo, Rocco; Tubman, Janice; Cavallo-Medved, Dora; Porter, Lisa A.; Boffa, Michael B.

    2016-01-01

    Thrombin activatable fibrinolysis inhibitor (TAFI) is a plasma zymogen, which can be converted to activated TAFI (TAFIa) through proteolytic cleavage by thrombin, plasmin, and most effectively thrombin in complex with the endothelial cofactor thrombomodulin (TM). TAFIa is a carboxypeptidase that cleaves carboxyl terminal lysine and arginine residues from protein and peptide substrates, including plasminogen-binding sites on cell surface receptors. Carboxyl terminal lysine residues play a pivotal role in enhancing cell surface plasminogen activation to plasmin. Plasmin has many critical functions including cleaving components of the extracellular matrix (ECM), which enhances invasion and migration of cancer cells. We therefore hypothesized that TAFIa could act to attenuate metastasis. To assess the role of TAFIa in breast cancer metastasis, in vitro migration and invasion assays, live cell proteolysis and cell proliferation using MDA-MB-231 and SUM149 cells were carried out in the presence of a TAFIa inhibitor, recombinant TAFI variants, or soluble TM. Inhibition of TAFIa with potato tuber carboxypeptidase inhibitor increased cell invasion, migration and proteolysis of both cell lines, whereas addition of TM resulted in a decrease in all these parameters. A stable variant of TAFIa, TAFIa-CIIYQ, showed enhanced inhibitory effects on cell invasion, migration and proteolysis. Furthermore, pericellular plasminogen activation was significantly decreased on the surface of MDA-MB-231 and SUM149 cells following treatment with various concentrations of TAFIa. Taken together, these results indicate a vital role for TAFIa in regulating pericellular plasminogen activation and ultimately ECM proteolysis in the breast cancer microenvironment. Enhancement of TAFI activation in this microenvironment may be a therapeutic strategy to inhibit invasion and prevent metastasis of breast cancer cells

  15. Combination of FVIII and by-passing agent potentiates in vitro thrombin production in haemophilia A inhibitor plasma.

    Science.gov (United States)

    Klintman, Jenny; Astermark, Jan; Berntorp, Erik

    2010-11-01

    The by-passing agents, recombinant activated factor VII (rFVIIa) and activated prothrombin complex concentrate (APCC), are important tools in the treatment of patients with haemophilia A and high-responding inhibitory antibodies. It has been observed clinically that in some patients undergoing immune tolerance induction the bleeding frequency decreases, hypothetically caused by a transient haemostatic effect of infused FVIII not measurable ex vivo. We evaluated how by-passing agents and factor VIII (FVIII) affect thrombin generation (TG) in vitro using plasma from 11 patients with severe haemophilia A and high titre inhibitors. Samples were spiked with combinations of APCC, rFVIIa and five different FVIII products. Combination of APCC and FVIII showed a synergistic effect in eliciting TG (Pproducts. When rFVIIa and FVIII were combined the interaction between the preparations was found to be additive. APCC and rFVIIa were then combined without FVIII, resulting in an additive effect on thrombin production. Each product separately increased TG above baseline. In conclusion, the amount of thrombin formed in vitro by adding a by-passing agent, was higher in the presence of FVIII. Our findings support the use of FVIII in by-passing therapy to optimize the haemostatic effect. © 2010 Blackwell Publishing Ltd.

  16. Thrombin activatable fibrinolysis inhibitor (TAFI in cord blood.

    Directory of Open Access Journals (Sweden)

    Krzysztof Góralczyk

    2007-03-01

    Full Text Available Thrombin activatable fibrinolysis inhibitor (TAFI is a plasma zymogene (procarboxypeptidase B which can decrease fibrinolysis and thus act as a haemostatic factor. TAFI is now extensively studied in many complications as well as in physiological and complicated pregnancy. The question we posed in the present study was whether TAFI antigen is present in cord blood plasma. The study group consisted of 38 parturient women, 26 primiparous and 12 multiparous with normal course of pregnancy and delivery. The cord blood was sampled from the cord vein, and the mother's blood from the antecubital vein. 3.2% sodium citrate was used as an anticoagulant. TAFIa/ai antigen was measured by ELISA method. TAFIa/ai antigen was identified in all samples of cord blood plasma. Its level was 91.50 ng/ml (range: 71.76 - 160.77 ng/ml vs. 55.46 ng/ml (range: 39.77 - 68.54 ng/ml in the mother's blood, which means that the level of TAFIa/ai antigen was significantly higher in fetal blood than in maternal blood (p<0.00001. TAFIa/ai antigen is an integral component of cord blood plasma. The concentration of TAFIa/ai antigen is about two times higher in fetal blood than in maternal blood.

  17. Binding of α2-macroglobulin-thrombin complexes and methylamine-treated α2-macroglobulin to human blood monocytes

    International Nuclear Information System (INIS)

    Straight, D.L.; Jakoi, L.; McKee, P.A.; Snyderman, R.

    1988-01-01

    The binding of α 2 -macroglobulin (α 2 M) to human peripheral blood monocytes was investigated. Monocytes, the precursors of tissue macrophages, were isolated from fresh blood by centrifugal elutriation or density gradient centrifugation. Binding studies were performed using 125 I-labeled α 2 M. Cells and bound ligand were separated from free ligand by rapid vacuum filtration. Nonlinear least-squares analysis of data obtained in direct binding studies at 0 0 C showed that monocytes bound the α 2 M-thrombin complex with a K/sub d/ 3.0 +- .09 nM and the monocyte had 1545 +- 153 sitescell. Thrombin alone did not compete for the site. Binding was divalent cation dependent. Direct binding studies also demonstrated that monocytes bound methylamine-treated α 2 M in a manner similar to α 2 M-thrombin. Competitive binding studies showed that α 2 M-thrombin and methylamine-treated α 2 M bound to the same sites on the monocyte. In contrast, native α 2 M did not compete with α 2 M-thrombin for the site. Studies done at 37 0 C suggested that after binding, the monocyte internalized and degraded α 2 M-thrombin and excreted the degradation products. Receptor turnover and degradation of α 2 M-thrombin complexes were blocked in monocytes treated with chloroquine, an inhibitor of lysosomal function. The results indicate that human monocytes have a divalent cation dependent, high-affinity binding site for α 2 M-thrombin and methylamine-treated α 2 M which may function to clear α 2 M-proteinase complexes from the circulation

  18. Rapid Detection of Thrombin and Other Protease Activity Directly in Whole Blood

    Science.gov (United States)

    Yu, Johnson Chung Sing

    Thrombin is a serine protease that plays a key role in the clotting cascade to promote hemostasis following injury to the endothelium. From a clinical diagnostic perspective, in-vivo thrombin activity is linked to various blood clotting disorders, as well as cardiovascular disease (DVT, arteriosclerosis, etc). Thus, the ability to rapidly measure protease activity directly in whole blood will provide important new diagnostics, and clinical researchers with a powerful tool to further elucidate the relationship between circulating protease levels and disease. The ultimate goal is to design novel point of care (POC) diagnostic devices that are capable of monitoring protease activities directly in whole blood and biological sample. A charge-changing substrate specific to the thrombin enzyme was engineered and its functionality was confirmed by a series of experiments. This led to the preliminary design, construction, and testing of two device platforms deemed fully functional for the electrophoretic separation and focusing of charged peptide fragments. The concept of using the existing charge-changing substrate platform for bacterial protease detection was also investigated. Certain strains of E coli are associated with severe symptoms such as abdominal cramps, bloody diarrhea, and vomiting. The OmpT protease is expressed on the outer membrane of E coli and plays a role in the cleavage of antimicrobial peptides, the degradation of recombinant heterologous proteins, and the activation of plasminogen in the host. Thus, a synthetic peptide substrate specific to the OmpT protease was designed and modeled for the purpose of detecting E coli in biological sample.

  19. Investigation of Interactions between Thrombin and Ten Phenolic Compounds by Affinity Capillary Electrophoresis and Molecular Docking

    Directory of Open Access Journals (Sweden)

    Qiao-Qiao Li

    2018-01-01

    Full Text Available Thrombin plays a vital role in blood coagulation, which is a key process involved in thrombosis by promoting platelet aggregation and converting fibrinogen to form the fibrin clot. In the receptor concept, drugs produce their therapeutic effects via interactions with the targets. Therefore, investigation of interaction between thrombin and small molecules is important to find out the potential thrombin inhibitor. In this study, affinity capillary electrophoresis (ACE and in silico molecular docking methods were developed to study the interaction between thrombin and ten phenolic compounds (p-hydroxybenzoic acid, protocatechuic acid, vanillic acid, gallic acid, catechin, epicatechin, dihydroquercetin, naringenin, apigenin, and baicalein. The ACE results showed that gallic acids and six flavonoid compounds had relative strong interactions with thrombin. In addition, the docking results indicated that all of optimal conformations of the six flavonoid compounds were positioned into the thrombin activity centre and had interaction with the HIS57 or SER195 which was the key residue to bind thrombin inhibitors such as argatroban. Herein, these six flavonoid compounds might have the potential of thrombin inhibition activity. In addition, the developed method in this study can be further applied to study the interactions of other molecules with thrombin.

  20. THROMBIN GENERATION AND BLEEDING IN HEMOPHILIA A

    Science.gov (United States)

    Brummel-Ziedins, Kathleen E.; Whelihan, Matthew F.; Gissel, Matthew; Mann, Kenneth G.; Rivard, Georges E.

    2012-01-01

    Introduction Hemophilia A displays phenotypic heterogeneity with respect to clinical severity. Aim To determine if tissue factor (TF)-initiated thrombin generation profiles in whole blood in the presence of corn trypsin inhibitor (CTI) are predictive of bleeding risk in hemophilia A. Methods We studied factor(F) VIII deficient individuals (11 mild, 4 moderate and 12 severe) with a well-characterized five-year bleeding history that included hemarthrosis, soft tissue hematoma and annual FVIII concentrate usage. This clinical information was used to generate a bleeding score. The bleeding scores (range 0–32) were separated into three groups (bleeding score groupings: 0, 0 and ≤9.6, >9.6), with the higher bleeding tendency having a higher score. Whole blood collected by phlebotomy and contact pathway suppressed by 100μg/mL CTI was stimulated to react by the addition of 5pM TF. Reactions were quenched at 20min by inhibitors. Thrombin generation, determined by ELISA for thrombin – antithrombin was evaluated in terms of clot time (CT), maximum level (MaxL) and maximum rate (MaxR) and compared to the bleeding score. Results Data are shown as the mean±SD. MaxL was significantly different (phemophilia A. PMID:19563500

  1. Characterization of Ixophilin, a thrombin inhibitor from the gut of Ixodes scapularis.

    Directory of Open Access Journals (Sweden)

    Sukanya Narasimhan

    Full Text Available Ixodes scapularis, the black-legged tick, vectors several human pathogens including Borrelia burgdorferi, the agent of Lyme disease in North America. Pathogen transmission to the vertebrate host occurs when infected ticks feed on the mammalian host to obtain a blood meal. Efforts to understand how the tick confronts host hemostatic mechanisms and imbibes a fluid blood meal have largely focused on the anticoagulation strategies of tick saliva. The blood meal that enters the tick gut remains in a fluid state for several days during the process of feeding, and the role of the tick gut in maintaining the blood-meal fluid is not understood. We now demonstrate that the tick gut produces a potent inhibitor of thrombin, a key enzyme in the mammalian coagulation cascade. Chromatographic fractionation of engorged tick gut proteins identified one predominant thrombin inhibitory activity associated with an approximately 18 kDa protein, henceforth referred to as Ixophilin. The ixophilin gene was preferentially transcribed in the guts of feeding nymphs. Expression began after 24 hours of feeding, coincident with the flow of host blood into the tick gut. Immunity against Ixophilin delayed tick feeding, and decreased feeding efficiency significantly. Surprisingly, immunity against Ixophilin resulted in increased Borrelia burgdorferi transmission to the host, possibly due to delayed feeding and increased transmission opportunity. These observations illuminate the potential drawbacks of targeting individual tick proteins in a functional suite. They also underscore the need to identify the "anticoagulome" of the tick gut, and to prioritize a critical subset of anticoagulants that could be targeted to efficiently thwart tick feeding, and block pathogen transmission to the vertebrate host.

  2. Thrombin-Activatable Microbubbles as Potential Ultrasound Contrast Agents for the Detection of Acute Thrombosis.

    Science.gov (United States)

    Lux, Jacques; Vezeridis, Alexander M; Hoyt, Kenneth; Adams, Stephen R; Armstrong, Amanda M; Sirsi, Shashank R; Mattrey, Robert F

    2017-11-01

    Acute deep vein thrombosis (DVT) is the formation of a blood clot in the deep veins of the body that can lead to fatal pulmonary embolism. Acute DVT is difficult to distinguish from chronic DVT by ultrasound (US), the imaging modality of choice, and is therefore treated aggressively with anticoagulants, which can lead to internal bleeding. Here we demonstrate that conjugating perfluorobutane-filled (PFB-filled) microbubbles (MBs) with thrombin-sensitive activatable cell-penetrating peptides (ACPPs) could lead to the development of contrast agents that detect acute thrombosis with US imaging. Successful conjugation of ACPP to PFB-filled MBs was confirmed by fluorescence microscopy and flow cytometry. Fluorescein-labeled ACPP was used to evaluate the efficiency of thrombin-triggered cleavage by measuring the mean fluorescence intensity of ACPP-labeled MBs (ACPP-MBs) before and after incubation at 37 °C with thrombin. Lastly, control MBs and ACPP-MBs were infused through a tube containing a clot, and US contrast enhancement was measured with or without the presence of a thrombin inhibitor after washing the clot with saline. With thrombin activity, 91.7 ± 14.2% of the signal was retained after ACPP-MB infusion and washing, whereas only 16.7 ± 4% of the signal was retained when infusing ACPP-MBs in the presence of hirudin, a potent thrombin inhibitor.

  3. Thrombin and factor Xa link the coagulation system with liver fibrosis.

    Science.gov (United States)

    Dhar, Ameet; Sadiq, Fouzia; Anstee, Quentin M; Levene, Adam P; Goldin, Robert D; Thursz, Mark R

    2018-05-08

    Thrombin activates hepatic stellate cells via protease-activated receptor-1. The role of Factor Xa (FXa) in hepatic fibrosis has not been elucidated. We aimed to evaluate the impact of FXa and thrombin in vitro on stellate cells and their respective inhibition in vivo using a rodent model of hepatic fibrosis. HSC-LX2 cells were incubated with FXa and/or thrombin in cell culture, stained for αSMA and relative gene expression and gel contraction calculated. C57BL/6 J mice were administered thioacetamide (TAA) for 8 weeks with Rivaroxaban (n = 15) or Dabigatran (n = 15). Control animals received TAA alone (n = 15). Fibrosis was scored and quantified using digital image analysis and hepatic tissue hydroxyproline estimated. Stellate cells treated with FXa and thrombin demonstrated upregulation of procollagen, TGF-beta, αSMA and significant cell contraction (43.48%+/- 4.12) compared to culturing with FXa or thrombin alone (26.90%+/- 8.90, p = 0.02; 13.1%+/- 9.84, p < 0.001). Mean fibrosis score, percentage area of fibrosis and hepatic hydroxyproline content (2.46 vs 4.08, p = 0.008; 2.02% vs 3.76%, p = 0.012; 276.0 vs 651.3, p = 0.0001) were significantly reduced in mice treated with the FXa inhibitor compared to control mice. FXa inhibition was significantly more effective than thrombin inhibition in reducing percentage area of fibrosis and hepatic hydroxyproline content (2.02% vs 3.70%,p = 0.031; 276.0 vs 413.1,p = 0.001). FXa promotes stellate cell contractility and activation. Early inhibition of coagulation using a FXa inhibitor significantly reduces TAA induced murine liver fibrosis and may be a viable treatment for liver fibrosis in patients.

  4. Thrombin generation assay as a possible tool for assessment of reduced activity of clotting factors induced by antiphospholipid antibodies and in-vitro evaluation of treatment options.

    Science.gov (United States)

    Livnat, Tami; Zivelin, Ariella; Tamarin, Ilia; Guetta, Victor; Salomon, Ophira

    2009-12-01

    Bleeding is a rare manifestation of antiphospholipid syndrome, unless associated with reduced clotting factors or severe thrombocytopenia. Accurate assessment of the autoantibodies in plasma is very important since the autoantibodies can lead to bleeding or thrombosis. The objective of the present study was to define the inhibitors causing reduced clotting activity in a patient with antiphospholipids antibodies and to assess the potential of thrombin generation assay to assist in establishment of optimal treatment in case of major bleeding. Levels of clotting factors as well as inhibitors to factors II, V, VII, VIII, IX, X and XI were defined. For detection of inhibitors to prothrombin crossed immunoelectrophoresis was used. IgG was purified by commercial protein A column. Thrombin generation was measured using a fluorometric assay in platelet-poor and platelet-rich plasma. Inhibitors toward the activity of factors V, VII, VIII, IX, X and XI were defined and also an inhibitor to prothrombin antigen. No thrombin generation was induced in the patient's plasma by recalcification even in the presence of recombinant factor VIIa or factor VIII inhibitor bypassing activity. In contrast, addition of platelets from either donor or patient or synthetic phospholipids normalized the thrombin generation. The thrombin generation model showed that the addition of platelets and no recombinant factor VIIa or factor VIII inhibitor bypassing activity would correct thrombin generation in vitro. On this basis, platelet concentrates were administered to a patient with bleeding caused by lupus anticoagulant and low clotting factors activity.

  5. The pharmacological modulation of thrombin-induced cerebral thromboembolism in the rabbit.

    Science.gov (United States)

    May, G. R.; Paul, W.; Crook, P.; Butler, K. D.; Page, C. P.

    1992-01-01

    1. Intracarotid (i.c.) administration of thrombin induced a marked accumulation of 111indium-labelled platelets and 125I-labelled fibrinogen within the cranial vasculature of anaesthetized rabbits. 2. Thrombin (100 iu kg-1, i.c.) - induced platelet accumulation was completely abolished by pretreatment with desulphatohirudin (CGP 39393; 1 mg kg-1 i.c., 1 min prior to thrombin). Administration of CGP 39393 1 or 20 min after thrombin produced a significant reduction in platelet accumulation. 3. Intravenous (i.v.) administration of the platelet activating factor (PAF) receptor antagonist BN 52021 (10 mg kg-1) 5 min prior to thrombin (100 iu kg-1, i.c.) had no effect on platelet accumulation. 4. An inhibitor of NO biosynthesis, L-NG-nitro arginine methyl ester (L-NAME; 100 mg kg-1, i.c.), had no significant effect on the cranial platelet accumulation response to thrombin (10 iu kg-1, i.c.) when administered 5 min prior to thrombin. 5. Defibrotide (32 or 64 mg kg-1 bolus i.c. followed by 32 or 64 mg kg-1 h-1, i.c., infusion for 45 min) treatment begun 20 min after thrombin (100 iu kg-1, i.c.) did not significantly modify the cranial platelet accumulation response. 6. Cranial platelet accumulation induced by thrombin (100 iu kg-1, i.c.) was significantly reversed by the fibrinolytic drugs urokinase (20 iu kg-1, i.c., infusion for 45 min), anisoylated plasminogen streptokinase activator complex (APSAC) (200 micrograms kg-1, i.v. bolus) or recombinant tissue plasminogen activator (rt-PA; 100 micrograms kg-1, i.c. bolus followed by 20 micrograms kg-1 min-1, i.c., infusion for 45 min) administered 20 min after thrombin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1504722

  6. Improved thrombin binding aptamer by incorporation of a single unlocked nucleic acid monomer

    DEFF Research Database (Denmark)

    Pasternak, Anna; Hernandez, Frank J; Rasmussen, Lars Melholt

    2011-01-01

    A 15-mer DNA aptamer (named TBA) adopts a G-quadruplex structure that strongly inhibits fibrin-clot formation by binding to thrombin. We have performed thermodynamic analysis, binding affinity and biological activity studies of TBA variants modified by unlocked nucleic acid (UNA) monomers. UNA...... that a UNA monomer is allowed in many positions of the aptamer without significantly changing the thrombin-binding properties. The biological effect of a selection of the modified aptamers was tested by a thrombin time assay and showed that most of the UNA-modified TBAs possess anticoagulant properties......, and that the construct with a UNA-U monomer in position 7 is a highly potent inhibitor of fibrin-clot formation....

  7. Systems biology of coagulation initiation: kinetics of thrombin generation in resting and activated human blood.

    Directory of Open Access Journals (Sweden)

    Manash S Chatterjee

    2010-09-01

    Full Text Available Blood function defines bleeding and clotting risks and dictates approaches for clinical intervention. Independent of adding exogenous tissue factor (TF, human blood treated in vitro with corn trypsin inhibitor (CTI, to block Factor XIIa will generate thrombin after an initiation time (T(i of 1 to 2 hours (depending on donor, while activation of platelets with the GPVI-activator convulxin reduces T(i to ∼20 minutes. Since current kinetic models fail to generate thrombin in the absence of added TF, we implemented a Platelet-Plasma ODE model accounting for: the Hockin-Mann protease reaction network, thrombin-dependent display of platelet phosphatidylserine, VIIa function on activated platelets, XIIa and XIa generation and function, competitive thrombin substrates (fluorogenic detector and fibrinogen, and thrombin consumption during fibrin polymerization. The kinetic model consisting of 76 ordinary differential equations (76 species, 57 reactions, 105 kinetic parameters predicted the clotting of resting and convulxin-activated human blood as well as predicted T(i of human blood under 50 different initial conditions that titrated increasing levels of TF, Xa, Va, XIa, IXa, and VIIa. Experiments with combined anti-XI and anti-XII antibodies prevented thrombin production, demonstrating that a leak of XIIa past saturating amounts of CTI (and not "blood-borne TF" alone was responsible for in vitro initiation without added TF. Clotting was not blocked by antibodies used individually against TF, VII/VIIa, P-selectin, GPIb, protein disulfide isomerase, cathepsin G, nor blocked by the ribosome inhibitor puromycin, the Clk1 kinase inhibitor Tg003, or inhibited VIIa (VIIai. This is the first model to predict the observed behavior of CTI-treated human blood, either resting or stimulated with platelet activators. CTI-treated human blood will clot in vitro due to the combined activity of XIIa and XIa, a process enhanced by platelet activators and which proceeds

  8. Investigation of the heparin-thrombin interaction by dynamic force spectroscopy.

    Science.gov (United States)

    Wang, Congzhou; Jin, Yingzi; Desai, Umesh R; Yadavalli, Vamsi K

    2015-06-01

    The interaction between heparin and thrombin is a vital step in the blood (anti)coagulation process. Unraveling the molecular basis of the interactions is therefore extremely important in understanding the mechanisms of this complex biological process. In this study, we use a combination of an efficient thiolation chemistry of heparin, a self-assembled monolayer-based single molecule platform, and a dynamic force spectroscopy to provide new insights into the heparin-thrombin interaction from an energy viewpoint at the molecular scale. Well-separated single molecules of heparin covalently attached to mixed self-assembled monolayers are demonstrated, whereby interaction forces with thrombin can be measured via atomic force microscopy-based spectroscopy. Further these interactions are studied at different loading rates and salt concentrations to directly obtain kinetic parameters. An increase in the loading rate shows a higher interaction force between the heparin and thrombin, which can be directly linked to the kinetic dissociation rate constant (koff). The stability of the heparin/thrombin complex decreased with increasing NaCl concentration such that the off-rate was found to be driven primarily by non-ionic forces. These results contribute to understanding the role of specific and nonspecific forces that drive heparin-thrombin interactions under applied force or flow conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Direct electrochemistry and electrocatalysis of a glucose oxidase-functionalized bioconjugate as a trace label for ultrasensitive detection of thrombin.

    Science.gov (United States)

    Bai, Lijuan; Yuan, Ruo; Chai, Yaqin; Yuan, Yali; Wang, Yan; Xie, Shunbi

    2012-11-18

    For the first time, a glucose oxidase-functionalized bioconjugate was prepared and served as a new trace label through its direct electrochemistry and electrocatalysis in a sandwich-type electrochemical aptasensor for ultrasensitive detection of thrombin.

  10. Kinetic modeling sheds light on the mode of action of recombinant factor VIIa on thrombin generation.

    Science.gov (United States)

    Mitrophanov, Alexander Y; Reifman, Jaques

    2011-10-01

    The therapeutic potential of a hemostatic agent can be assessed by investigating its effects on the quantitative parameters of thrombin generation. For recombinant activated factor VII (rFVIIa)--a promising hemostasis-inducing biologic--experimental studies addressing its effects on thrombin generation yielded disparate results. To elucidate the inherent ability of rFVIIa to modulate thrombin production, it is necessary to identify rFVIIa-induced effects that are compatible with the available biochemical knowledge about thrombin generation mechanisms. The existing body of knowledge about coagulation biochemistry can be rigorously represented by a computational model that incorporates the known reactions and parameter values constituting the biochemical network. We used a thoroughly validated numerical model to generate activated factor VII (FVIIa) titration curves in the cases of normal blood composition, hemophilia A and B blood, blood lacking factor VII, blood lacking tissue factor pathway inhibitor, and diluted blood. We utilized the generated curves to perform systematic fold-change analyses for five quantitative parameters characterizing thrombin accumulation. The largest fold changes induced by increasing FVIIa concentration were observed for clotting time, thrombin peak time, and maximum slope of the thrombin curve. By contrast, thrombin peak height was much less affected by FVIIa titrations, and the area under the thrombin curve stayed practically unchanged. Comparisons with experimental data demonstrated that the computationally derived patterns can be observed in vitro. rFVIIa modulates thrombin generation primarily by accelerating the process, without significantly affecting the total amount of generated thrombin. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Substitution of valine for glycine-558 in the congenital dysthrombin thrombin Quick II alters primary substrate specificity

    Energy Technology Data Exchange (ETDEWEB)

    Henriksen, R.A.; Mann, K.G. (Univ. of Vermont, Burlington (USA))

    1989-03-07

    Thrombin Quick II is one of two dysfunctional forms of thrombin derived from the previously described congenital dysprothrombin prothrombin Quick. Thrombin Quick II does not clot fibrinogen, hydrolyze p-nitroanilide substrates of thrombin, or bind N{sup 2}-(5-(dimethylamino)naphthalene-1-sulfonyl)arginine N,N-(3-ethyl-1,5-pentanediyl)amide, a high-affinity competitive inhibitor of thrombin. To determine the structural alteration in thrombin Quick II, the reduced, carboxymethylated protein was hydrolyzed by a lysyl endopeptidase. A peptide not present in a parallel thrombin hydrolysate was identified by reverse-phase chromatography. This Gly residue, which is highly conserved in the chymotrypsin family of serine proteases, forms part of the substrate binding pocket for bulky aromatic and basic side chains in chymotrypsin and trypsin, respectively. However, in porcine elastase 1, the corresponding residue is threonine. Consistent with the identified structural alteration, thrombin Quick II incorporates ({sup 3}H)diisopropyl fluorophosphate stoichiometrically and hydrolyzes the elastase substrate succinyl-Ala-Ala-Pro-Leu-p-nitroanilide with a relative k{sub cat}/K{sub M} of 0.14 when compared to thrombin. This results from a 3-fold increase in K{sub M} and a 2.5-fold decrease in k{sub cat} for thrombin Quick II when compared to thrombin acting on the same substrate. These results and those of other investigators studying mutant trypsins support the conclusion that the catalytic activity of serine proteases is very sensitive to structural alterations in the primary substrate binding pocket.

  12. Spontaneous pseudoaneurysm of the uterine artery during pregnancy treated by direct thrombin injection: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jung Hee; Kim, See Hyung; Kim, Young Hwan [Dept. Radiology, Keimyung University School of Medicine, Dongsan Medical Center, Daegu (Korea, Republic of)

    2016-04-15

    Pseudoaneurysm of uterine artery during pregnancy is a very rare disease. It is mostly associated with uterine artery injury, usually occurring after proceeding conditions such as history of gynecologic operation and infection. However, the best treatment modality has not been established yet. Herein, we reported a case of spontaneous formation of uterine artery pseudoaneurysm during pregnancy treated by direct thrombin injection without any complication or recurrence.

  13. Spontaneous pseudoaneurysm of the uterine artery during pregnancy treated by direct thrombin injection: A case report

    International Nuclear Information System (INIS)

    Hong, Jung Hee; Kim, See Hyung; Kim, Young Hwan

    2016-01-01

    Pseudoaneurysm of uterine artery during pregnancy is a very rare disease. It is mostly associated with uterine artery injury, usually occurring after proceeding conditions such as history of gynecologic operation and infection. However, the best treatment modality has not been established yet. Herein, we reported a case of spontaneous formation of uterine artery pseudoaneurysm during pregnancy treated by direct thrombin injection without any complication or recurrence

  14. Formation of PI 3-kinase products in platelets by thrombin, but not collagen, is dependent on synergistic autocrine stimulation, particularly through secreted ADP.

    Science.gov (United States)

    Selheim, F; Idsøe, R; Fukami, M H; Holmsen, H; Vassbotn, F S

    1999-10-05

    Platelet activation by thrombin or collagen results in secretion and synthesis of several platelet agonists that enhance the responses to the primary agonists (autocrine stimulation). To disclose the effects of thrombin and collagen on the phosphorylation of 3-phosphoinositides per se we incubated platelets with five inhibitors of platelet autocrine stimulation (IAS) that act extracellularly. We found that IAS almost totally blocked thrombin-induced production of phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P(2)] and phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)]. In contrast, collagen induced massive production of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) in the presence of IAS. When testing the effect of each inhibitor individually we found the strongest inhibition of thrombin-induced PtdIns(3,4)P(2) production with the ADP scavenger system CP/CPK. Furthermore, we found a strong synergistic effect between exogenously added ADP and thrombin on production of PtdIns(3,4)P(2). In contrast to the results from 3-phosphorylated phosphoinositides, CP/CPK had little effect on thrombin-induced protein tyrosine phosphorylation. Our results show the importance of autocrine stimulation in thrombin-induced accumulation of 3-phosphorylated phosphoinositides and raise the question as to whether thrombin by itself is capable of inducing PI 3-K activation. In marked contrast to thrombin, collagen per se appears to be able to trigger increased production of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3). Copyright 1999 Academic Press.

  15. New oral antithrombotics: focus on dabigatran, an oral, reversible direct thrombin inhibitor for the prevention and treatment of venous and arterial thromboembolic disorders

    Directory of Open Access Journals (Sweden)

    Dahl OE

    2012-01-01

    Full Text Available Ola E Dahl1,21Department of Orthopaedics, Innlandet Hospital Trust, Elverum Central Hospital, Elverum, Norway; 2Thrombosis Research Institute, London, UKAbstract: Venous thromboembolism, presenting as deep vein thrombosis or pulmonary embolism, is a major challenge for health care systems. It is the third most common vascular disease after coronary heart disease and stroke, and many hospitalized patients have at least one risk factor. In particular, patients undergoing hip or knee replacement are at risk, with an incidence of asymptomatic deep vein thrombosis of 40%–60% without thromboprophylaxis. Venous thromboembolism is associated with significant mortality and morbidity, with patients being at risk of recurrence, post-thrombotic syndrome, and chronic thromboembolic pulmonary hypertension. Arterial thromboembolism is even more frequent, and atrial fibrillation, the most common embolic source (cardiac arrhythmia, is associated with a five-fold increase in the risk of stroke. Strokes due to atrial fibrillation tend to be more severe and disabling and are more often fatal than strokes due to other causes. Currently, recommended management of both venous and arterial thromboembolism involves the use of anticoagulants such as coumarin and heparin derivatives. These agents are effective, although have characteristics that prevent them from providing optimal anticoagulation and convenience. Hence, new improved oral anticoagulants are being investigated. Dabigatran is a reversible, direct thrombin inhibitor, which is administered as dabigatran etexilate, the oral prodrug. Because it is the first new oral anticoagulant that has been licensed in many countries worldwide for thromboprophylaxis following orthopedic surgery and for stroke prevention in patients with atrial fibrillation, this compound will be the main focus of this review. Dabigatran has been investigated for the treatment of established venous thromboembolism and prevention of

  16. Direct oral anticoagulants and venous thromboembolism

    Directory of Open Access Journals (Sweden)

    Massimo Franchini

    2016-09-01

    Full Text Available Venous thromboembolism (VTE, consisting of deep vein thrombosis and pulmonary embolism, is a major clinical concern associated with significant morbidity and mortality. The cornerstone of management of VTE is anticoagulation, and traditional anticoagulants include parenteral heparins and oral vitamin K antagonists. Recently, new oral anticoagulant drugs have been developed and licensed, including direct factor Xa inhibitors (e.g. rivaroxaban, apixaban and edoxaban and thrombin inhibitors (e.g. dabigatran etexilate. This narrative review focusses on the characteristics of these direct anticoagulants and the main results of published clinical studies on their use in the prevention and treatment of VTE.

  17. Thrombin like activity of Asclepias curassavica L. latex: action of cysteine proteases.

    Science.gov (United States)

    Shivaprasad, H V; Rajesh, R; Nanda, B L; Dharmappa, K K; Vishwanath, B S

    2009-05-04

    To validate the scientific basis of plant latex to stop bleeding on fresh cuts. Cysteine protease(s) from Asclepias curassavica (Asclepiadaceae) plant latex was assessed for pro-coagulant and thrombin like activities. A waxy material from the latex of Asclepias curassavica latex was removed by freezing and thawing. The resulted latex enzyme fraction was assayed for proteolytic activity using denatured casein as substrate. Its coagulant activity and thrombin like activity were determined using citrated plasma and pure fibrinogen, respectively. Inhibition studies were performed using specific protease inhibitors to know the type of protease. The latex enzyme fraction exhibited strong proteolytic activity when compared to trypsin and exerted pro-coagulant action by reducing plasma clotting time from 195 to 58 s whereas trypsin reduced clotting time marginally from 195 to 155 s. The pro-coagulant activity of this enzyme fraction was exerted by selectively hydrolyzing A alpha and B beta subunits of fibrinogen to form fibrin clot when pure fibrinogen was used as substrate as assessed by fibrinogen-agarose plate method and fibrinogen polymerization assay. Trypsin failed to induce any fibrin clot under similar conditions. The electrophoretic pattern of latex enzyme fraction-induced fibrin clot was very much similar to that of thrombin-induced fibrin clot and mimic thrombin like action. The proteolytic activity including thrombin like activity of Asclepias curassavica latex enzyme fraction was completely inhibited by iodoaceticacid (IAA). Cysteine proteases from Asclepias curassavica latex exhibited strong pro-coagulant action and were found to be specific in its action (Thrombin like). This could be the basis for the use of plant latex in pharmacological applications that justify their use as folk medicine.

  18. Stabilization versus inhibition of TAFIa by competitive inhibitors in vitro

    NARCIS (Netherlands)

    Walker, J.B.; Hughes, B.; James, I.; Haddock, P.; Kluft, C.; Bajzar, L.

    2003-01-01

    Two competitive inhibitors of TAFIa (activated thrombin-activable fibrinolysis inhibitor), 2-guanidinoethyl-mercaptosuccinic acid and potato tuber carboxypeptidase inhibitor, variably affect fibrinolysis of clotted human plasma. Depending on their concentration, the inhibitors shortened, prolonged,

  19. Activation of PAR-1/NADPH Oxidase/ROS Signaling Pathways is Crucial for the Thrombin-Induced sFlt-1 Production in Extravillous Trophoblasts: Possible Involvement in the Pathogenesis of Preeclampsia

    Directory of Open Access Journals (Sweden)

    Qi-tao Huang

    2015-03-01

    Full Text Available Backgrounds/Aims: Preeclampsia was characterized by excessive thrombin generation in placentas and previous researches showed that thrombin could enhance soluble Fms-like tyrosine kinase 1 (sFlt-1 expression in first trimester trophoblasts. However, the detailed mechanism for the sFlt-1 over-production induced by thrombin was largely unknown. The purpose of this study was to explore the possible signaling pathway of thrombin-induced sFlt-1 production in extravillous trophoblasts (EVT. Methods: An EVT cell line (HRT-8/SVneo was treated with various concentrations of thrombin. The mRNA expression and protein secretion of sFlt-1 in EVT were detected with real-time polymerase chain reaction and ELISA, respectively. The levels of intracellular reactive oxygen species (ROS production were determined by DCFH-DA. Results: Exposure of EVT to thrombin induced increased intracellular ROS generation and overexpression of sFlt-1 at both mRNA and protein levels in a dose dependent manner. Short interfering RNA (siRNA directed against PAR-1 or apocynin (an inhibitor of NADPH oxidase could decrease the intracellular ROS generation and subsequently suppressed the production of sFlt-1 at mRNA and protein levels. Conclusions: Our results suggested that thrombin increased sFlt-1 production in EVT via the PAR-1 /NADPH oxidase /ROS signaling pathway. This also highlights the PAR-1 / NADPH oxidase / ROS pathway might be a potential therapeutic target for the prevention of preeclampsia in the future.

  20. Activation of PAR-1/NADPH oxidase/ROS signaling pathways is crucial for the thrombin-induced sFlt-1 production in extravillous trophoblasts: possible involvement in the pathogenesis of preeclampsia.

    Science.gov (United States)

    Huang, Qi-Tao; Chen, Jian-Hong; Hang, Li-Lin; Liu, Shi-San; Zhong, Mei

    2015-01-01

    Preeclampsia was characterized by excessive thrombin generation in placentas and previous researches showed that thrombin could enhance soluble Fms-like tyrosine kinase 1 (sFlt-1) expression in first trimester trophoblasts. However, the detailed mechanism for the sFlt-1 over-production induced by thrombin was largely unknown. The purpose of this study was to explore the possible signaling pathway of thrombin-induced sFlt-1 production in extravillous trophoblasts (EVT). An EVT cell line (HRT-8/SVneo) was treated with various concentrations of thrombin. The mRNA expression and protein secretion of sFlt-1 in EVT were detected with real-time polymerase chain reaction and ELISA, respectively. The levels of intracellular reactive oxygen species (ROS) production were determined by DCFH-DA. Exposure of EVT to thrombin induced increased intracellular ROS generation and overexpression of sFlt-1 at both mRNA and protein levels in a dose dependent manner. Short interfering RNA (siRNA) directed against PAR-1 or apocynin (an inhibitor of NADPH oxidase) could decrease the intracellular ROS generation and subsequently suppressed the production of sFlt-1 at mRNA and protein levels. Our results suggested that thrombin increased sFlt-1 production in EVT via the PAR-1 /NADPH oxidase /ROS signaling pathway. This also highlights the PAR-1 / NADPH oxidase / ROS pathway might be a potential therapeutic target for the prevention of preeclampsia in the future. © 2015 S. Karger AG, Basel.

  1. Inherited Anti-Thrombin Deficiency in A Malay-Malaysian Family: A Missense Mutation at Nucleotide g.13267C>A aka anti-thrombin Budapest 5 (p.Pro439Thr) of the SERPINC 1 gene.

    Science.gov (United States)

    Norlelawati, A T; Rusmawati, I; Naznin, M; Nur Nadia, O; Rizqan Aizzani, R; Noraziana, A W

    2014-02-01

    Inherited anti-thrombin deficiency is an autosomal dominant disorder which is associated with increased risk for venous thromboembolism (VTE). This condition is very rare in Malaysia and there has been no documented report. Thus, the aim of the present study is to investigate the type of an inherited anti-thrombin deficiency mutation in a 25-year-old Malay woman who presented with deep vein thrombosis in her first pregnancy. DNA was extracted from the patient's blood sample and buccal mucosal swabs from family members. Polymerase chain reaction(PCR) assays were designed to cover all seven exons of the serpin peptidase inhibitor, clade C (antithrombin), member 1 (SERPINC1) gene; and the products were subjected to DNA sequencing. Sequences were referred to NCBI Reference Sequence: NG_012462.1. A heterozygous substitution mutation at nucleotide position 13267 (CCT->ACT) was identified in the patient and two other family members, giving a possible change of codon 439 (Pro→Thr) also known as anti-thrombin Budapest 5. The genotype was absent in 90 healthy controls. The study revealed a heterozygous antithrombin Budapest 5 mutation in SERPINC 1 giving rise to a possible anti-thrombin deficiency in a Malay-Malaysian family.

  2. Modeling thrombin generation: plasma composition based approach.

    Science.gov (United States)

    Brummel-Ziedins, Kathleen E; Everse, Stephen J; Mann, Kenneth G; Orfeo, Thomas

    2014-01-01

    Thrombin has multiple functions in blood coagulation and its regulation is central to maintaining the balance between hemorrhage and thrombosis. Empirical and computational methods that capture thrombin generation can provide advancements to current clinical screening of the hemostatic balance at the level of the individual. In any individual, procoagulant and anticoagulant factor levels together act to generate a unique coagulation phenotype (net balance) that is reflective of the sum of its developmental, environmental, genetic, nutritional and pharmacological influences. Defining such thrombin phenotypes may provide a means to track disease progression pre-crisis. In this review we briefly describe thrombin function, methods for assessing thrombin dynamics as a phenotypic marker, computationally derived thrombin phenotypes versus determined clinical phenotypes, the boundaries of normal range thrombin generation using plasma composition based approaches and the feasibility of these approaches for predicting risk.

  3. Decreased prothrombin conversion and reduced thrombin inactivation explain rebalanced thrombin generation in liver cirrhosis.

    Directory of Open Access Journals (Sweden)

    Romy M W Kremers

    Full Text Available Impaired coagulation factor synthesis in cirrhosis causes a reduction of most pro- and anticoagulant factors. Cirrhosis patients show no clear bleeding or thrombotic phenotype, although they are at risk for both types of hemostatic event. Thrombin generation (TG is a global coagulation test and its outcome depends on underlying pro- and anticoagulant processes (prothrombin conversion and thrombin inactivation. We quantified the prothrombin conversion and thrombin inactivation during TG in 30 healthy subjects and 52 Child-Pugh (CP- A, 15 CP-B and 6 CP-C cirrhosis patients to test the hypothesis that coagulation is rebalanced in liver cirrhosis patients. Both prothrombin conversion and thrombin inactivation are reduced in cirrhosis patients. The effect on pro- and anticoagulant processes partially cancel each other out and as a result TG is comparable at 5 pM tissue factor between healthy subjects and patients. This supports the hypothesis of rebalanced hemostasis, as TG in cirrhosis patients remains within the normal range, despite large changes in prothrombin conversion and thrombin inactivation. Nevertheless, in silico analysis shows that normalization of either prothrombin conversion or thrombin inactivation to physiological levels, by for example the administration of prothrombin complex concentrates would cause an elevation of TG, whereas the normalization of both simultaneously maintains a balanced TG. Therefore, cirrhosis patients might require adapted hemostatic treatment.

  4. Isolation, cloning and structural characterisation of boophilin, a multifunctional Kunitz-type proteinase inhibitor from the cattle tick.

    Directory of Open Access Journals (Sweden)

    Sandra Macedo-Ribeiro

    Full Text Available Inhibitors of coagulation factors from blood-feeding animals display a wide variety of structural motifs and inhibition mechanisms. We have isolated a novel inhibitor from the cattle tick Boophilus microplus, one of the most widespread parasites of farm animals. The inhibitor, which we have termed boophilin, has been cloned and overexpressed in Escherichia coli. Mature boophilin is composed of two canonical Kunitz-type domains, and inhibits not only the major procoagulant enzyme, thrombin, but in addition, and by contrast to all other previously characterised natural thrombin inhibitors, significantly interferes with the proteolytic activity of other serine proteinases such as trypsin and plasmin. The crystal structure of the bovine alpha-thrombin.boophilin complex, refined at 2.35 A resolution reveals a non-canonical binding mode to the proteinase. The N-terminal region of the mature inhibitor, Q16-R17-N18, binds in a parallel manner across the active site of the proteinase, with the guanidinium group of R17 anchored in the S(1 pocket, while the C-terminal Kunitz domain is negatively charged and docks into the basic exosite I of thrombin. This binding mode resembles the previously characterised thrombin inhibitor, ornithodorin which, unlike boophilin, is composed of two distorted Kunitz modules. Unexpectedly, both boophilin domains adopt markedly different orientations when compared to those of ornithodorin, in its complex with thrombin. The N-terminal boophilin domain rotates 9 degrees and is displaced by 6 A, while the C-terminal domain rotates almost 6 degrees accompanied by a 3 A displacement. The reactive-site loop of the N-terminal Kunitz domain of boophilin with its P(1 residue, K31, is fully solvent exposed and could thus bind a second trypsin-like proteinase without sterical restraints. This finding explains the formation of a ternary thrombin.boophilin.trypsin complex, and suggests a mechanism for prothrombinase inhibition in vivo.

  5. Three different signal amplification strategies for the impedimetric sandwich detection of thrombin

    Energy Technology Data Exchange (ETDEWEB)

    Ocaña, Cristina; Valle, Manel del, E-mail: manel.delvalle@uab.cat

    2016-03-17

    In this work, we report a comparative study on three highly specific amplification strategies for the ultrasensitive detection of thrombin with the use of aptamer sandwich protocol. The protocol consisted on the use of a first thrombin aptamer immobilized on the electrode surface, the recognition of thrombin protein, and the reaction with a second biotinylated thrombin aptamer forming the sandwich. Through the exposed biotin end, three variants have been tested to amplify the electrochemical impedance signal. The strategies included (a) silver enhancement treatment, (b) gold enhancement treatment and (c) insoluble product produced by the combination of the enzyme horseradish peroxidase (HRP) and 3-amino-9-ethylcarbazole (AEC). The properties of the sensing surface were probed by electrochemical impedance measurements in the presence of the ferrocyanide/ferricyanide redox marker. Insoluble product strategy and silver enhancement treatment resulted in the lowest detection limit (0.3 pM), while gold enhancement method resulted in the highest reproducibility, 8.8% RSD at the pM thrombin concentration levels. Results of silver and gold enhancement treatment also permitted direct inspection by scanning electron microscopy (SEM). - Highlights: • Aptasensor to detect thrombin reaching the femtomolar level. • Biosensing protocol employs two thrombin aptamers in a sandwich capture scheme. • Use of second biotinylated aptamer allows many amplification and detection variants. • Precipitation reaction provides the highest signal amplification of ca. 3 times. • Double recognition event improves remarkably selectivity for thrombin detection.

  6. Three different signal amplification strategies for the impedimetric sandwich detection of thrombin

    International Nuclear Information System (INIS)

    Ocaña, Cristina; Valle, Manel del

    2016-01-01

    In this work, we report a comparative study on three highly specific amplification strategies for the ultrasensitive detection of thrombin with the use of aptamer sandwich protocol. The protocol consisted on the use of a first thrombin aptamer immobilized on the electrode surface, the recognition of thrombin protein, and the reaction with a second biotinylated thrombin aptamer forming the sandwich. Through the exposed biotin end, three variants have been tested to amplify the electrochemical impedance signal. The strategies included (a) silver enhancement treatment, (b) gold enhancement treatment and (c) insoluble product produced by the combination of the enzyme horseradish peroxidase (HRP) and 3-amino-9-ethylcarbazole (AEC). The properties of the sensing surface were probed by electrochemical impedance measurements in the presence of the ferrocyanide/ferricyanide redox marker. Insoluble product strategy and silver enhancement treatment resulted in the lowest detection limit (0.3 pM), while gold enhancement method resulted in the highest reproducibility, 8.8% RSD at the pM thrombin concentration levels. Results of silver and gold enhancement treatment also permitted direct inspection by scanning electron microscopy (SEM). - Highlights: • Aptasensor to detect thrombin reaching the femtomolar level. • Biosensing protocol employs two thrombin aptamers in a sandwich capture scheme. • Use of second biotinylated aptamer allows many amplification and detection variants. • Precipitation reaction provides the highest signal amplification of ca. 3 times. • Double recognition event improves remarkably selectivity for thrombin detection.

  7. Implication of Free Fatty Acids in Thrombin Generation and Fibrinolysis in Vascular Inflammation in Zucker Rats and Evolution with Aging

    Directory of Open Access Journals (Sweden)

    Jérémy Lagrange

    2017-11-01

    Full Text Available Background: The metabolic syndrome (MetS and aging are associated with modifications in blood coagulation factors, vascular inflammation, and increased risk of thrombosis.Objectives: Our aim was to determine concomitant changes in thrombin generation in the blood compartment and at the surface of vascular smooth muscle cells (VSMCs and its interplay with adipokines, free fatty acids (FFA, and metalloproteinases (MMPs in obese Zucker rats that share features of the human MetS.Methods: Obese and age-matched lean Zucker rats were compared at 25 and 80 weeks of age. Thrombin generation was assessed by calibrated automated thrombography (CAT.Results: Endogenous thrombin potential (ETP was increased in obese rats independent of platelets and age. Clot half-lysis time was delayed with obesity and age. Interleukin (IL-1β and IL-13 were increased with obesity and age respectively. Addition of exogenous fibrinogen, leptin, linoleic, or palmitic acid increased thrombin generation in plasma whereas adiponectin had an opposite effect. ETP was increased at the surface of VSMCs from obese rats and addition of exogenous palmitic acid further enhanced ETP values. Gelatinase activity was increased in aorta at both ages in obese rats and MMP-2 activity was increased in VSMCs from obese rats.Conclusions: Our study demonstrated in MetS an early prothrombotic phenotype of the blood compartment reinforced by procoagulant properties of dedifferentiated and inflammatory VSMCs. Mechanisms involved (1 increased fibrinogen and impaired fibrinolysis and (2 increased saturated fatty acids responsible for additive procoagulant effects. Whether specifically targeting this hypercoagulability using direct thrombin inhibitors would improve outcome in MetS is worth investigating.

  8. APTAMER-BASED SERRS SENSOR FOR THROMBIN DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Cho, H; Baker, B R; Wachsmann-Hogiu, S; Pagba, C V; Laurence, T A; Lane, S M; Lee, L P; Tok, J B

    2008-07-02

    We describe an aptamer-based Surface Enhanced Resonance Raman Scattering (SERRS) sensor with high sensitivity, specificity, and stability for the detection of a coagulation protein, human a-thrombin. The sensor achieves high sensitivity and a limit of detection of 100 pM by monitoring the SERRS signal change upon the single step of thrombin binding to immobilized thrombin binding aptamer. The selectivity of the sensor is demonstrated by the specific discrimination of thrombin from other protein analytes. The specific recognition and binding of thrombin by the thrombin binding aptamer is essential to the mechanism of the aptamer-based sensor, as shown through measurements using negative control oligonucleotides. In addition, the sensor can detect 1 nM thrombin in the presence of complex biofluids, such as 10% fetal calf serum, demonstrating that the immobilized, 5{prime}-capped, 3{prime}-capped aptamer is sufficiently robust for clinical diagnostic applications. Furthermore, the proposed sensor may be implemented for multiplexed detection using different aptamer-Raman probe complexes.

  9. Partial filling affinity capillary electrophoresis as a useful tool for fragment-based drug discovery: A proof of concept on thrombin.

    Science.gov (United States)

    Farcaş, E; Bouckaert, C; Servais, A-C; Hanson, J; Pochet, L; Fillet, M

    2017-09-01

    With the emergence of more challenging targets, a relatively new approach, fragment-based drug discovery (FBDD), proved its efficacy and gained increasing importance in the pharmaceutical industry. FBDD identifies low molecular-weight (MW) ligands (fragments) that bind to biologically important macromolecules, then a structure-guided fragment growing or merging approach is performed, contributing to the quality of the lead. However, to select the appropriate fragment to be evolved, sensitive analytical screening methods must be used to measure the affinity in the μM or even mM range. In this particular context, we developed a robust and selective partial filling affinity CE (ACE) method for the direct binding screening of a small fragment library in order to identify new thrombin inhibitors. To demonstrate the accuracy of our assay, the complex dissociation constants of three known thrombin inhibitors, namely benzamidine, p-aminobenzamidine and nafamostat were determined and found to be in good concordance with the previously reported values. Finally, the screening of a small library was performed and demonstrated the high discriminatory power of our method towards weak binders compared to classical spectrophotometric activity assay, proving the interest of our method in the context of FBDD. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Selective albumin-binding surfaces modified with a thrombin-inhibiting peptide.

    Science.gov (United States)

    Freitas, Sidónio C; Maia, Sílvia; Figueiredo, Ana C; Gomes, Paula; Pereira, Pedro J B; Barbosa, Mário A; Martins, M Cristina L

    2014-03-01

    Blood-contacting medical devices have been associated with severe clinical complications, such as thrombus formation, triggered by the activation of the coagulation cascade due to the adsorption of certain plasma proteins on the surface of biomaterials. Hence, the coating of such surfaces with antithrombotic agents has been used to increase biomaterial haemocompatibility. Biomaterial-induced clotting may also be decreased by albumin adsorption from blood plasma in a selective and reversible way, since this protein is not involved in the coagulation cascade. In this context, this paper reports that the immobilization of the thrombin inhibitor D-Phe-Pro-D-Arg-D-Thr-CONH2 (fPrt) onto nanostructured surfaces induces selective and reversible adsorption of albumin, delaying the clotting time when compared to peptide-free surfaces. fPrt, synthesized with two glycine residues attached to the N-terminus (GGfPrt), was covalently immobilized onto self-assembled monolayers (SAMs) having different ratios of carboxylate-hexa(ethylene glycol)- and tri(ethylene glycol)-terminated thiols (EG6-COOH/EG3) that were specifically designed to control GGfPrt orientation, exposure and density at the molecular level. In solution, GGfPrt was able to inactivate the enzymatic activity of thrombin and to delay plasma clotting time in a concentration-dependent way. After surface immobilization, and independently of its concentration, GGfPrt lost its selectivity to thrombin and its capacity to inhibit thrombin enzymatic activity against the chromogenic substrate n-p-tosyl-Gly-Pro-Arg-p-nitroanilide. Nevertheless, surfaces with low concentrations of GGfPrt could delay the capacity of adsorbed thrombin to cleave fibrinogen. In contrast, GGfPrt immobilized in high concentrations was found to induce the procoagulant activity of the adsorbed thrombin. However, all surfaces containing GGfPrt have a plasma clotting time similar to the negative control (empty polystyrene wells), showing resistance to

  11. Protein C inhibitor acts as a procoagulant by inhibiting the thrombomodulin-induced activation of protein C in human plasma

    NARCIS (Netherlands)

    Elisen, M. G.; von dem Borne, P. A.; Bouma, B. N.; Meijers, J. C.

    1998-01-01

    Protein C inhibitor (PCI), which was originally identified as an inhibitor of activated protein C, also efficiently inhibits coagulation factors such as factor Xa and thrombin. Recently it was found, using purified proteins, that the anticoagulant thrombin-thrombomodulin complex was also inhibited

  12. Elevated Cytokines, Thrombin and PAI-1 in Severe HCPS Patients Due to Sin Nombre Virus

    Directory of Open Access Journals (Sweden)

    Virginie Bondu

    2015-02-01

    Full Text Available Sin Nombre Hantavirus (SNV, Bunyaviridae Hantavirus is a Category A pathogen that causes Hantavirus Cardiopulmonary Syndrome (HCPS with case fatality ratios generally ranging from 30% to 50%. HCPS is characterized by vascular leakage due to dysregulation of the endothelial barrier function. The loss of vascular integrity results in non-cardiogenic pulmonary edema, shock, multi-organ failure and death. Using Electric Cell-substrate Impedance Sensing (ECIS measurements, we found that plasma samples drawn from University of New Mexico Hospital patients with serologically-confirmed HCPS, induce loss of cell-cell adhesion in confluent epithelial and endothelial cell monolayers grown in ECIS cultureware. We show that the loss of cell-cell adhesion is sensitive to both thrombin and plasmin inhibitors in mild cases, and to thrombin only inhibition in severe cases, suggesting an increasing prothrombotic state with disease severity. A proteomic profile (2D gel electrophoresis and mass spectrometry of HCPS plasma samples in our cohort revealed robust antifibrinolytic activity among terminal case patients. The prothrombotic activity is highlighted by acute ≥30 to >100 fold increases in active plasminogen activator inhibitor (PAI-1 which, preceded death of the subjects within 48 h. Taken together, this suggests that PAI-1 might be a response to the severe pathology as it is expected to reduce plasmin activity and possibly thrombin activity in the terminal patients.

  13. Thrombin induces epithelial-mesenchymal transition and collagen production by retinal pigment epithelial cells via autocrine PDGF-receptor signaling.

    Science.gov (United States)

    Bastiaans, Jeroen; van Meurs, Jan C; van Holten-Neelen, Conny; Nagtzaam, Nicole M A; van Hagen, P Martin; Chambers, Rachel C; Hooijkaas, Herbert; Dik, Willem A

    2013-12-19

    De-differentiation of RPE cells into mesenchymal cells (epithelial-mesenchymal transition; EMT) and associated collagen production contributes to development of proliferative vitreoretinopathy (PVR). In patients with PVR, intraocular coagulation cascade activation occurs and may play an important initiating role. Therefore, we examined the effect of the coagulation proteins factor Xa and thrombin on EMT and collagen production by RPE cells. Retinal pigment epithelial cells were stimulated with factor Xa or thrombin and the effect on zonula occludens (ZO)-1, α-smooth muscle actin (α-SMA), collagen, and platelet-derived growth factor (PDGF)-B were determined by real-time quantitative-polymerase chain reaction (RQ-PCR), immunofluorescence microscopy, and HPLC and ELISA for collagen and PDGF-BB in culture supernatants, respectively. PDGF-receptor activation was determined by phosphorylation analysis and inhibition studies using the PDGF-receptor tyrosine kinase inhibitor AG1296. Thrombin reduced ZO-1 gene expression (P production of α-SMA and collagen increased. In contrast to thrombin, factor Xa hardly stimulated EMT by RPE. Thrombin clearly induced PDGF-BB production and PDGF-Rβ chain phosphorylation in RPE. Moreover, AG1296 significantly blocked the effect of thrombin on EMT and collagen production. Our findings demonstrate that thrombin is a potent inducer of EMT by RPE via autocrine activation of PDGF-receptor signaling. Coagulation cascade-induced EMT of RPE may thus contribute to the formation of fibrotic retinal membranes in PVR and should be considered as treatment target in PVR.

  14. Regulation of Thrombin-Induced Lung Endothelial Cell Barrier Disruption by Protein Kinase C Delta.

    Directory of Open Access Journals (Sweden)

    Lishi Xie

    Full Text Available Protein Kinase C (PKC plays a significant role in thrombin-induced loss of endothelial cell (EC barrier integrity; however, the existence of more than 10 isozymes of PKC and tissue-specific isoform expression has limited our understanding of this important second messenger in vascular homeostasis. In this study, we show that PKCδ isoform promotes thrombin-induced loss of human pulmonary artery EC barrier integrity, findings substantiated by PKCδ inhibitory studies (rottlerin, dominant negative PKCδ construct and PKCδ silencing (siRNA. In addition, we identified PKCδ as a signaling mediator upstream of both thrombin-induced MLC phosphorylation and Rho GTPase activation affecting stress fiber formation, cell contraction and loss of EC barrier integrity. Our inhibitor-based studies indicate that thrombin-induced PKCδ activation exerts a positive feedback on Rho GTPase activation and contributes to Rac1 GTPase inhibition. Moreover, PKD (or PKCμ and CPI-17, two known PKCδ targets, were found to be activated by PKCδ in EC and served as modulators of cytoskeleton rearrangement. These studies clarify the role of PKCδ in EC cytoskeleton regulation, and highlight PKCδ as a therapeutic target in inflammatory lung disorders, characterized by the loss of barrier integrity, such as acute lung injury and sepsis.

  15. Thrombin impairs human endometrial endothelial angiogenesis; implications for progestin-only contraceptive-induced abnormal uterine bleeding.

    Science.gov (United States)

    Shapiro, John P; Guzeloglu-Kayisli, Ozlem; Kayisli, Umit A; Semerci, Nihan; Huang, S Joseph; Arlier, Sefa; Larsen, Kellie; Fadda, Paolo; Schatz, Frederick; Lockwood, Charles J

    2017-06-01

    Progestin-only contraceptives induce abnormal uterine bleeding, accompanied by prothrombin leakage from dilated endometrial microvessels and increased thrombin generation by human endometrial stromal cell (HESC)-expressed tissue factor. Initial studies of the thrombin-treated HESC secretome identified elevated levels of cleaved chondroitin sulfate proteoglycan 4 (CSPG4), impairing pericyte-endothelial interactions. Thus, we investigated direct and CSPG4-mediated effects of thrombin in eliciting abnormal uterine bleeding by disrupting endometrial angiogenesis. Liquid chromatography/tandem mass spectrometry, enzyme-linked immunosorbent assay (ELISA) and quantitative real-time-polymerase chain reaction (PCR) evaluated conditioned medium supernatant and cell lysates from control versus thrombin-treated HESCs. Pre- and post-Depo medroxyprogesterone acetate (DMPA)-administered endometria were immunostained for CSPG4. Proliferation, apoptosis and tube formation were assessed in human endometrial endothelial cells (HEECs) incubated with recombinant human (rh)-CSPG4 or thrombin or both. Thrombin induced CSPG4 protein expression in cultured HESCs as detected by mass spectrometry and ELISA (pabnormal uterine bleeding in DMPA users. Mass spectrometry analysis identified several HESC-secreted proteins regulated by thrombin. Therapeutic agents blocking angiogenic effects of thrombin in HESCs can prevent or minimize progestin-only contraceptive-induced abnormal uterine bleeding. Copyright © 2017. Published by Elsevier Inc.

  16. Direct oral anticoagulants: An update.

    Science.gov (United States)

    Franco Moreno, Ana Isabel; Martín Díaz, Rosa María; García Navarro, María José

    2017-12-30

    Vitamin K antagonists were the only choice for chronic oral anticoagulation for more than half a century. Over the past few years, direct oral anticoagulants have emerged, including one direct thrombin inhibitor (dabigatran etexilate) and three factor Xa inhibitors (apixaban, edoxaban and rivaroxaban). In randomised controlled trials comparing direct oral anticoagulants with traditional vitamin K antagonists, the direct oral anticoagulants all showed a favourable benefit-risk balance in their safety and efficacy profile, in prevention of thromboembolic events in patients with atrial fibrillation and in the prevention and treatment of venous thromboembolism and acute coronary syndrome. In 2008, dabigatran was the first direct oral anticoagulant approved by the European Medicine Agency. Subsequently, rivaroxaban, apixaban and edoxaban were also authorised. This article reviews the evidence related to the use of these drugs. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  17. Aptamer Based Microsphere Biosensor for Thrombin Detection

    Directory of Open Access Journals (Sweden)

    Xudong Fan

    2006-08-01

    Full Text Available We have developed an optical microsphere resonator biosensor using aptamer asreceptor for the measurement of the important biomolecule thrombin. The sphere surface ismodified with anti-thrombin aptamer, which has excellent binding affinity and selectivityfor thrombin. Binding of the thrombin at the sphere surface is monitored by the spectralposition of the microsphere’s whispering gallery mode resonances. A detection limit on theorder of 1 NIH Unit/mL is demonstrated. Control experiments with non-aptameroligonucleotide and BSA are also carried out to confirm the specific binding betweenaptamer and thrombin. We expect that this demonstration will lead to the development ofhighly sensitive biomarker sensors based on aptamer with lower cost and higher throughputthan current technology.

  18. Renal function and plasma dabigatran level measured at trough by diluted thrombin time assay

    Directory of Open Access Journals (Sweden)

    Marta E. Martinuzzo

    2017-02-01

    Full Text Available Dabigatran etexilate (direct thrombin inhibitor is effective in preventing embolic stroke in patients with atrial fibrillation. It does not require laboratory control, but given the high renal elimination, its measurement in plasma is important in renal failure. The objectives of the study were to verify the analytical quality of the diluted thrombin time assay for measurement of dabigatran plasma concentration (cc, correlate cc with classic coagulation assays, prothrombin time (PT and activated partial thromboplastin time (APTT, and evaluate them according to the creatinine clearance (CLCr. Forty plasma samples of patients (34 consecutive and 6 suspected of drug accumulation receiving dabigatran at 150 (n = 19 or 110 (n = 21 mg/12 hours were collected. Blood samples were drawn at 10-14 hours of the last intake. Dabigatran concentration was determined by diluted thrombin time (HemosIl DTI, Instrumentation Laboratory (IL. PT and APTT (IL were performed on two fotooptical coagulometers, ACL TOP 300 and 500 (IL. DTI presented intra-assay coefficient of variation < 5.4% and inter-assay < 6%, linearity range 0-493 ng/ml. Patients' cc: median 83 (4-945 ng/ml. Individuals with CLCr in the lowest tertile (22.6-46.1 ml/min showed significantly higher median cc: 308 (49-945, compared to the average 72 (12-190 and highest tertile, 60 (4-118 ng/ml. Correlation between cc and APTT or PT were moderate, r2 = 0.59 and -0.66, p < 0.0001, respectively. DTI test allowed us to quantify plasma dabigatran levels, both in patients with normal or altered renal function, representing a useful tool in clinical situations such as renal failure, pre surgery or emergencies

  19. A review of three stand-alone topical thrombins for surgical hemostasis.

    Science.gov (United States)

    Cheng, Christine M; Meyer-Massetti, Carla; Kayser, Steven R

    2009-01-01

    Topical thrombins are active hemostatic agents that can be used to minimize blood loss during surgery. Before 2007, the only topical thrombins available were derived from bovine plasma. Antibody formation to bovine thrombin and/or factor V, with subsequent risk of cross-reactivity with human factor V, and hemorrhagic complications associated with human factor-V deficiencies have been described in case reports of surgeries in which bovine thrombins were used. This risk is now included in the boxed warning section of the bovine thrombin prescribing information. In 2007 and 2008, 2 new topical thrombins from nonbovine sources received approval for use from the US Food and Drug Administration. The 3 active topical thrombins that are currently marketed are bovine plasma-derived thrombin, human plasma-derived thrombin, and human recombinant thrombin. The purpose of this review was to evaluate the literature on the efficacy and safety of topical thrombins and discuss the pharmacoeconomic considerations associated with their use. PubMed, EMBASE, and International Pharmaceutical Abstracts were searched for relevant papers published in English through October 10,2008, using the terms thrombin, human recombinant thrombin, bovine thrombin, plasma derived thrombin, and topical thrombin. Manufacturer-provided materials were also reviewed. Abstracts and unpublished data, as well as evaluations of sealants, adhesives, glues, and other hemostats that contain thrombin mixed with fibrinogen and other clotting factors, were excluded. Four randomized, double-blind studies involving the active, stand-alone topical thrombins were found. The bovine thrombin involved in these studies was the predecessor to the currently marketed, highly purified bovine formulation. No studies comparing the human products, studies involving the highly purified bovine preparation, or placebo-controlled studies involving bovine thrombin were found. In a Phase III comparison of human recombinant thrombin and

  20. The use of thrombin in the radiology department.

    LENUS (Irish Health Repository)

    Ward, E

    2009-03-01

    Thrombin is a naturally occurring coagulation protein that converts soluble fibrinogen into insoluble fibrin and plays a vital role in the coagulation cascade and in turn haemostasis. Thrombin also promotes platelet activation. In the last few years, there has been a rapid increase in the use of thrombin by radiologists in a variety of clinical circumstances. It is best known for its use in the treatment of pseudoaneurysms following angiography. However, there are now a variety of cases in the literature describing the treatment of traumatic, inflammatory and infected aneurysms with thrombin in a variety of locations within the human body. There have even been recent reports describing the use of thrombin in conventional aneurysms as well as ruptured aneurysms. Its use has also been described in the treatment of endoleaks (type II) following aneurysm repair. In nearly all of these cases, treatment with thrombin requires imaging guidance. Recently, thrombin has also been used as a topical treatment post-percutaneous intervention to reduce or stop bleeding. Most radiologists have only a limited knowledge of the pharmacodynamics of thrombin, its wide range of utilisation and its limitations. Apart from a few case reports and case series, there is little in the radiological literature encompassing the wide range of applications that thrombin may have in the radiology department. In this review article, we comprehensively describe the role and pathophysiology of thrombin, describing with examples many of its potential uses. Techniques of usage as well as pitfalls and limitations are also described.

  1. The use of thrombin in the radiology department

    Energy Technology Data Exchange (ETDEWEB)

    Ward, E.; Buckley, O.; Browne, R.F. [Adelaide and Meath Hospitals incorporating the National Children' s Hospital (AMNCH), Department of Radiology, Dublin 24 (Ireland); Collins, A. [Royal Victoria Hospital, Department of Radiology, Belfast (United Kingdom); Torreggiani, W.C. [Adelaide and Meath Hospitals incorporating the National Children' s Hospital (AMNCH), Department of Radiology, Dublin 24 (Ireland)]|[Adelaide and Meath Hospital, Department of Radiology, Dublin 24 (Ireland)

    2009-03-15

    Thrombin is a naturally occurring coagulation protein that converts soluble fibrinogen into insoluble fibrin and plays a vital role in the coagulation cascade and in turn haemostasis. Thrombin also promotes platelet activation. In the last few years, there has been a rapid increase in the use of thrombin by radiologists in a variety of clinical circumstances. It is best known for its use in the treatment of pseudoaneurysms following angiography. However, there are now a variety of cases in the literature describing the treatment of traumatic, inflammatory and infected aneurysms with thrombin in a variety of locations within the human body. There have even been recent reports describing the use of thrombin in conventional aneurysms as well as ruptured aneurysms. Its use has also been described in the treatment of endoleaks (type II) following aneurysm repair. In nearly all of these cases, treatment with thrombin requires imaging guidance. Recently, thrombin has also been used as a topical treatment post-percutaneous intervention to reduce or stop bleeding. Most radiologists have only a limited knowledge of the pharmacodynamics of thrombin, its wide range of utilisation and its limitations. Apart from a few case reports and case series, there is little in the radiological literature encompassing the wide range of applications that thrombin may have in the radiology department. In this review article, we comprehensively describe the role and pathophysiology of thrombin, describing with examples many of its potential uses. Techniques of usage as well as pitfalls and limitations are also described. (orig.)

  2. Topical thrombin preparations and their use in cardiac surgery

    Directory of Open Access Journals (Sweden)

    Brianne L Dunn

    2009-10-01

    Full Text Available Brianne L Dunn1, Walter E Uber1, John S Ikonomidis21Department of Pharmacy Services and 2Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, South Carolina, USAAbstract: Coagulopathic bleeding may lead to increased morbidity and mortality after cardiac surgery. Topical bovine thrombin has been used to promote hemostasis after surgical procedures for over 60 years and is used frequently as a topical hemostatic agent in cardiac surgery. Recently, use of bovine thrombin has been reported to be associated with increased risk for anaphylaxis, thrombosis, and immune-mediated coagulopathy thought secondary to the production of antifactor V and antithrombin antibodies. In patients who develop bovine thrombin-induced immune-mediated coagulopathy, clinical manifestations may range from asymptomatic alterations in coagulation tests to severe hemorrhage and death. Patients undergoing cardiac surgical procedures may be at increased risk for development of antibodies to bovine thrombin products and associated complications. This adverse immunologic profile has led to the development of alternative preparations including a human and a recombinant thrombin which have been shown to be equally efficacious to bovine thrombin and have reduced antigenicity. However, the potential benefit associated with reduced antigenicity is not truly known secondary to the lack of long-term experience with these products. Given the potentially higher margin of safety and less stringent storage concerns compared to human thrombin, recombinant thrombin may be the most reasonable approach in cardiac surgery.Keywords: bovine thrombin, human thrombin, recombinant thrombin, immune-mediated coagulopathy, topical hemostatic agents, thrombin 

  3. Thrombin activatable fibrinolysis inhibitor (TAFI) - A possible link between coagulation and complement activation in the antiphospholipid syndrome (APS).

    Science.gov (United States)

    Grosso, Giorgia; Vikerfors, Anna; Woodhams, Barry; Adam, Mariette; Bremme, Katarina; Holmström, Margareta; Ågren, Anna; Eelde, Anna; Bruzelius, Maria; Svenungsson, Elisabet; Antovic, Aleksandra

    2017-10-01

    Thrombosis and complement activation are pathogenic features of antiphospholipid syndrome (APS). Their molecular link is Plasma carboxypeptidase-B, also known as thrombin activatable fibrinolysis inhibitor (TAFIa), which plays a dual role: anti-fibrinolytic, by cleaving carboxyl-terminal lysine residues from partially degraded fibrin, and anti-inflammatory, by downregulating complement anaphylatoxins C3a and C5a. To investigate the levels of TAFI (proenzyme) and TAFIa (active enzyme) in relation to complement activation, fibrin clot permeability and fibrinolytic function in clinical and immunological subsets of 52 APS patients and 15 controls. TAFI (pAPS patients compared to controls. Furthermore, TAFIa was increased (pAPS patients affected by arterial thrombosis compared to other APS-phenotypes. Positive associations were found between TAFI and age, fibrinogen and C5a, and between TAFIa and age, fibrinogen and thrombomodulin. TAFI and TAFIa levels were increased in patients with APS as a potential response to complement activation. Interestingly, TAFI activation was associated with arterial thrombotic APS manifestations. Thus, TAFIa may be considered a novel biomarker for arterial thrombosis in APS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Thrombin-induced increase in albumin permeability across the endothelium

    International Nuclear Information System (INIS)

    Garcia, J.G.; Siflinger-Birnboim, A.; Bizios, R.; Del Vecchio, P.J.; Fenton, J.W. II; Malik, A.B.

    1986-01-01

    We studied the effect of thrombin on albumin permeability across the endothelial monolayer in vitro. Bovine pulmonary artery endothelial cells were grown on micropore membranes. Morphologic analysis confirmed the presence of a confluent monolayer with interendothelial junctions. Albumin permeability was measured by the clearance of 125I-albumin across the endothelial monolayer. The control 125I-albumin clearance was 0.273 +/- 0.02 microliter/min. The native enzyme, alpha-thrombin (10(-6) to 10(-10) M), added to the luminal side of the endothelium produced concentration-dependent increases in albumin clearance (maximum clearance of 0.586 +/- 0.08 microliter/min at 10(-6) M). Gamma (gamma) thrombin (10(-6) M and 10(-8) M), which lacks the fibrinogen recognition site, also produced a concentration-dependent increase in albumin clearance similar to that observed with alpha-thrombin. Moreover, the two proteolytically inactive forms of the native enzyme, i-Pr2 P-alpha-thrombin and D-Phe-Pro-Arg-CH2-alpha-thrombin, increased the 125I-albumin clearance (0.610 +/- 0.09 microliter/min and 0.609 +/- 0.02 microliter/min for i-Pr2 P-alpha-thrombin and D-Phe-Pro-Arg-CH2-alpha-thrombin at 10(-6) M, respectively). Since the modified forms of thrombin lack the fibrinogen recognition and active serine protease sites, the results indicate that neither site is required for increased albumin permeability. The increase in albumin clearance with alpha-thrombin was not secondary to endothelial cell lysis because lactate dehydrogenase concentration in the medium following thrombin was not significantly different from baseline values. There was also no morphological evidence of cell lysis. Moreover, the increase in 125I-albumin clearance induced by alpha-thrombin was reversible by washing thrombin from the endothelium

  5. Hypersensitivity to thrombin of platelets from hypercholesterolemic rats

    International Nuclear Information System (INIS)

    Winocour, P.D.; Rand, M.L.; Kinlough-Rathbone, R.L.; Mustard, J.F.

    1986-01-01

    Hypersensitivity of platelets to thrombin has been associated with hypercholesterolemia. The authors have examined the mechanisms involved in this hypersensitivity. Rats were given diets rich in milk fat and containing added cholesterol and taurocholate to produce hypercholesterolemia (HC) (262 +/- 25 mg%) or added sitosterol as a normocholesterolemic control (NC) (89 +/- 6 mg%). Washed platelets were prelabelled with 14 C-serotonin. In the presence of acetylsalicyclic acid (ASA) (to inhibit thromboxane A 2 (TXA 2 ) formation) and creatine phosphate/creatine phosphokinase (CP/CPK) (to remove released ADP), HC platelets aggregated more (26 +/- 1%) and released more 14 C (9.1 +/- 2.0%) than NC platelets (aggregation: 0%, p 14 C release: 1.5 +/- 0.5%, p 2 formation is involved in the hypersensitivity of HC platelets to thrombin. Total binding of 125 I-thrombin to HC platelets was less than that to NC platelets but HC platelets were smaller and had less protein than NC platelets; the thrombin binding per mg platelet protein was the same for HC and NC platelets, indicating that hypersensitivity to thrombin of HC platelets does not result from increased thrombin binding. Thus, hypersensitivity of HC platelets to thrombin is not due to TXA 2 formation, the action of released ADP or increased thrombin binding

  6. Discovery of a Parenteral Small Molecule Coagulation Factor XIa Inhibitor Clinical Candidate (BMS-962212).

    Science.gov (United States)

    Pinto, Donald J P; Orwat, Michael J; Smith, Leon M; Quan, Mimi L; Lam, Patrick Y S; Rossi, Karen A; Apedo, Atsu; Bozarth, Jeffrey M; Wu, Yiming; Zheng, Joanna J; Xin, Baomin; Toussaint, Nathalie; Stetsko, Paul; Gudmundsson, Olafur; Maxwell, Brad; Crain, Earl J; Wong, Pancras C; Lou, Zhen; Harper, Timothy W; Chacko, Silvi A; Myers, Joseph E; Sheriff, Steven; Zhang, Huiping; Hou, Xiaoping; Mathur, Arvind; Seiffert, Dietmar A; Wexler, Ruth R; Luettgen, Joseph M; Ewing, William R

    2017-12-14

    Factor XIa (FXIa) is a blood coagulation enzyme that is involved in the amplification of thrombin generation. Mounting evidence suggests that direct inhibition of FXIa can block pathologic thrombus formation while preserving normal hemostasis. Preclinical studies using a variety of approaches to reduce FXIa activity, including direct inhibitors of FXIa, have demonstrated good antithrombotic efficacy without increasing bleeding. On the basis of this potential, we targeted our efforts at identifying potent inhibitors of FXIa with a focus on discovering an acute antithrombotic agent for use in a hospital setting. Herein we describe the discovery of a potent FXIa clinical candidate, 55 (FXIa K i = 0.7 nM), with excellent preclinical efficacy in thrombosis models and aqueous solubility suitable for intravenous administration. BMS-962212 is a reversible, direct, and highly selective small molecule inhibitor of FXIa.

  7. Factor Xa generation by computational modeling: an additional discriminator to thrombin generation evaluation.

    Directory of Open Access Journals (Sweden)

    Kathleen E Brummel-Ziedins

    Full Text Available Factor (fXa is a critical enzyme in blood coagulation that is responsible for the initiation and propagation of thrombin generation. Previously we have shown that analysis of computationally generated thrombin profiles is a tool to investigate hemostasis in various populations. In this study, we evaluate the potential of computationally derived time courses of fXa generation as another approach for investigating thrombotic risk. Utilizing the case (n = 473 and control (n = 426 population from the Leiden Thrombophilia Study and each individual's plasma protein factor composition for fII, fV, fVII, fVIII, fIX, fX, antithrombin and tissue factor pathway inhibitor, tissue factor-initiated total active fXa generation was assessed using a mathematical model. FXa generation was evaluated by the area under the curve (AUC, the maximum rate (MaxR and level (MaxL and the time to reach these, TMaxR and TMaxL, respectively. FXa generation was analyzed in the entire populations and in defined subgroups (by sex, age, body mass index, oral contraceptive use. The maximum rates and levels of fXa generation occur over a 10- to 12- fold range in both cases and controls. This variation is larger than that observed with thrombin (3-6 fold in the same population. The greatest risk association was obtained using either MaxR or MaxL of fXa generation; with an ∼2.2 fold increased risk for individuals exceeding the 90(th percentile. This risk was similar to that of thrombin generation(MaxR OR 2.6. Grouping defined by oral contraceptive (OC use in the control population showed the biggest differences in fXa generation; a >60% increase in the MaxR upon OC use. FXa generation can distinguish between a subset of individuals characterized by overlapping thrombin generation profiles. Analysis of fXa generation is a phenotypic characteristic which may prove to be a more sensitive discriminator than thrombin generation among all individuals.

  8. The interaction of thrombin with platelet protease nexin

    International Nuclear Information System (INIS)

    Knupp, C.L.

    1989-01-01

    Thrombin interacts with a platelet protein which is immunologically related to fibroblast protease nexin and has been termed platelet protease nexin I (PNI). Conflicting hypotheses about the relationship of the thrombin-PNI complex formation to platelet activation have been proposed. The studies presented here demonstrate that the platelet-associated and supernatant complexes with added 125I-thrombin are formed only under conditions which produce platelet activation in normal and chymotrypsin-modified platelets. The platelet-associated complex is formed prior to the appearance of complexes in supernatants. Appearance of the supernatant complex coincides with the appearance of thrombospondin in the reaction supernatants. Excess native thrombin, dansylarginine N-(3-ethyl-1,5-pentanediyl) amide or hirudin can prevent radiolabeled platelet-associated complex formation if added before 125I-thrombin. DAPA or hirudin can prevent or dissociate complex formation if added up to one minute after thrombin but not at later time points. The surface associated complex is accessible to trypsin although a portion remains with the cytoskeletal proteins when thrombin-activated platelets are solubilized with Triton X 100. The surface-associated complex formation parallels many aspects of the specific measurable thrombin binding, yet it does not appear to involve other identified surface glycoprotein thrombin receptors or substrates. Although the time course of appearance of the complexes in supernatants is consistent with other data which suggest that PNI may be released from platelet granules during platelet activation, other explanations for the appearance of PNI on the platelet surface and in supernatants during platelet activation are possible

  9. Synergism between thrombin and adrenaline (epinephrine) in human platelets. Marked potentiation of inositol phospholipid metabolism.

    Science.gov (United States)

    Steen, V M; Tysnes, O B; Holmsen, H

    1988-01-01

    We have studied synergism between adrenaline (epinephrine) and low concentrations of thrombin in gel-filtered human platelets prelabelled with [32P]Pi. Suspensions of platelets, which did not contain added fibrinogen, were incubated at 37 degrees C to measure changes in the levels of 32P-labelled phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP) and phosphatidate (PA), aggregation and dense-granule secretion after stimulation. Adrenaline alone (3.5-4.0 microM) did not cause a change in any parameter (phosphoinositide metabolism, aggregation and dense-granule secretion), but markedly enhanced the thrombin-induced responses over a narrow range of thrombin concentrations (0.03-0.08 units/ml). The thrombin-induced hydrolysis of inositol phospholipids by phospholipase C, which was measured as the formation of [32P]PA, was potentiated by adrenaline, as was the increase in the levels of [32P]PIP2 and [32P]PIP. The presence of adrenaline caused a shift to the left for the thrombin-induced changes in the phosphoinositide metabolism, without affecting the maximal levels of 32P-labelled compounds obtained. A similar shift by adrenaline in the dose-response relationship was previously demonstrated for thrombin-induced aggregation and dense-granule secretion. Also, the narrow range of concentrations of thrombin over which adrenaline potentiates thrombin-induced platelet responses is the same for changes in phosphoinositide metabolism and physiological responses (aggregation and dense-granule secretion). Our observations clearly indicate that adrenaline directly or indirectly influences thrombin-induced changes in phosphoinositide metabolism. PMID:2845924

  10. Comparative evaluation of direct thrombin and factor Xa inhibitors with antiplatelet agents under flow and static conditions: an in vitro flow chamber model.

    Directory of Open Access Journals (Sweden)

    Kazuya Hosokawa

    Full Text Available Dabigatran and rivaroxaban are novel oral anticoagulants that specifically inhibit thrombin and factor Xa, respectively. The aim of this study is to elucidate antithrombotic properties of these anticoagulant agents under arterial and venous shear conditions. Whole blood samples treated with dabigatran or rivaroxaban at 250, 500, and 1000 nM, with/without aspirin and AR-C66096, a P2Y12 antagonist, were perfused over a microchip coated with collagen and tissue thromboplastin at shear rates of 240 and 600 s(-1. Fibrin-rich platelet thrombus formation was quantified by monitoring flow pressure changes. Dabigatran at higher concentrations (500 and 1000 nM potently inhibited thrombus formation at both shear rates, whereas 1000 nM of rivaroxaban delayed, but did not completely inhibit, thrombus formation. Dual antiplatelet agents weakly suppressed thrombus formation at both shear rates, but intensified the anticoagulant effects of dabigatran and rivaroxaban. The anticoagulant effects of dabigatran and rivaroxaban were also evaluated under static conditions using thrombin generation (TG assay. In platelet-poor plasma, dabigatran at 250 and 500 nM efficiently prolonged the lag time (LT and moderately reduce peak height (PH of TG, whereas rivaroxaban at 250 nM efficiently prolonged LT and reduced PH of TG. In platelet-rich plasma, however, both anticoagulants efficiently delayed LT and reduced PH of TG. Our results suggest that dabigatran and rivaroxaban may exert distinct antithrombotic effects under flow conditions, particularly in combination with dual antiplatelet therapy.

  11. Rapid Upregulation of Orai1 Abundance in the Plasma Membrane of Platelets Following Activation with Thrombin and Collagen Related Peptide

    Directory of Open Access Journals (Sweden)

    Guilai Liu

    2015-11-01

    Full Text Available Background: Blood platelets accomplish primary hemostasis following vascular injury and contribute to the orchestration of occlusive vascular disease. Platelets are activated by an increase of cytosolic Ca2+-activity ([Ca2+]i, which is accomplished by Ca2+-release from intracellular stores and subsequent store operated Ca2+ entry (SOCE through Ca2+ release activated Ca2+ channel moiety Orai1. Powerful activators of platelets include thrombin and collagen related peptide (CRP, which are in part effective by activation of small G- protein Rac1. The present study explored the influence of thrombin and CRP on Orai1 protein abundance and cytosolic Ca2+-activity ([Ca2+]i in platelets drawn from wild type mice. Methods: Orai1 protein surface abundance was quantified utilizing CF™488A conjugated antibodies, and [Ca2+]i was determined with Fluo3-fluorescence. Results: In resting platelets, Orai1 protein abundance and [Ca2+]i were low. Thrombin (0.02 U/ml and CRP (5ug/ml within 2 min increased [Ca2+]i and Orai1 protein abundance at the platelet surface. [Ca2+]i was further increased by Ca2+ ionophore ionomycin (1 µM and by store depletion with the sarcoendoplasmatic Ca2+ ATPase inhibitor thapsigargin (1 µM. However, Orai1 protein abundance at the platelet surface was not significantly affected by ionomycin and only slightly increased by thapsigargin. The effect of thrombin and CRP on Orai1 abundance and [Ca2+]i was significantly blunted by Rac1 inhibitor NSC23766 (50 µM. Conclusion: The increase of [Ca2+]i following stimulation of platelets with thrombin and collagen related peptide is potentiated by ultrarapid Rac1 sensitive translocation of Orai1 into the cell membrane.

  12. Human Thrombin Injection for the Percutaneous Treatment of Iatrogenic Pseudoaneurysms

    International Nuclear Information System (INIS)

    Elford, Julian; Burrell, Christopher; Freeman, Simon; Roobottom, Carl

    2002-01-01

    Purpose: Thrombin injection is becoming well established for the percutaneous management of iatrogenic pseudoaneurysms. All the published series to date use bovine thrombin,and there have been reports of adverse immunologic effects following its use. Our study aimed to assess the efficacy of human thrombin injection for pseudoaneurysm occlusion. Methods:Fourteen patients with iatrogenic pseudoaneurysms underwent a color Doppler ultrasound examination to assess their suitability for percutaneous human thrombin injection. Human thrombin 1000 IU was then injected into the pseudoaneurysm sac under sterile conditions and with ultrasound guidance. A further color Doppler ultrasound examination was performed 24 hr later to confirm occlusion. Results: All 14 pseudoaneurysms were successfully occluded by human thrombin injection. In two cases a second injection of thrombin was required,but there were no other complications, and all pseudoaneurysms remained occluded at 24 hr. Conclusion: Ultrasound-guided human thrombin injection is simple to perform, effective and safe. We recommend that human thrombin becomes the agent of choice for percutaneous injection into iatrogenic pseudoaneurysms

  13. Reproducibility, stability, and biological variability of thrombin generation using calibrated automated thrombography in healthy dogs.

    Science.gov (United States)

    Cuq, Benoît; Blois, Shauna L; Wood, R Darren; Monteith, Gabrielle; Abrams-Ogg, Anthony C; Bédard, Christian; Wood, Geoffrey A

    2018-06-01

    Thrombin plays a central role in hemostasis and thrombosis. Calibrated automated thrombography (CAT), a thrombin generation assay, may be a useful test for hemostatic disorders in dogs. To describe CAT results in a group of healthy dogs, and assess preanalytical variables and biological variability. Forty healthy dogs were enrolled. Lag time (Lag), time to peak (ttpeak), peak thrombin generation (peak), and endogenous thrombin potential (ETP) were measured. Direct jugular venipuncture and winged-needle catheter-assisted saphenous venipuncture were used to collect samples from each dog, and results were compared between methods. Sample stability at -80°C was assessed over 12 months in a subset of samples. Biological variability of CAT was assessed via nested ANOVA using samples obtained weekly from a subset of 9 dogs for 4 consecutive weeks. Samples for CAT were stable at -80°C over 12 months of storage. Samples collected via winged-needle catheter venipuncture showed poor repeatability compared to direct venipuncture samples; there was also poor agreement between the 2 sampling methods. Intra-individual variability of CAT parameters was below 25%; inter-individual variability ranged from 36.9% to 78.5%. Measurement of thrombin generation using CAT appears to be repeatable in healthy dogs, and samples are stable for at least 12 months when stored at -80°C. Direct venipuncture sampling is recommended for CAT. Low indices of individuality suggest that subject-based reference intervals are more suitable when interpreting CAT results. © 2018 American Society for Veterinary Clinical Pathology.

  14. FVIIa-sTF and Thrombin Inhibitory Activities of Compounds Isolated from Microcystis aeruginosa K-139

    Directory of Open Access Journals (Sweden)

    Andrea Roxanne J. Anas

    2017-08-01

    Full Text Available The rise of bleeding and bleeding complications caused by oral anticoagulant use are serious problems nowadays. Strategies that block the initiation step in blood coagulation involving activated factor VII-tissue factor (fVIIa-TF have been considered. This study explores toxic Microcystis aeruginosa K-139, from Lake Kasumigaura, Ibaraki, Japan, as a promising cyanobacterium for isolation of fVIIa-sTF inhibitors. M. aeruginosa K-139 underwent reversed-phase solid-phase extraction (ODS-SPE from 20% MeOH to MeOH elution with 40%-MeOH increments, which afforded aeruginosin K-139 in the 60% MeOH fraction; micropeptin K-139 and microviridin B in the MeOH fraction. Aeruginosin K-139 displayed an fVIIa-sTF inhibitory activity of ~166 µM, within a 95% confidence interval. Micropeptin K-139 inhibited fVIIa-sTF with EC50 10.62 µM, which was more efficient than thrombin inhibition of EC50 26.94 µM. The thrombin/fVIIa-sTF ratio of 2.54 in micropeptin K-139 is higher than those in 4-amidinophenylmethane sulfonyl fluoride (APMSF and leupeptin, when used as positive controls. This study proves that M. aeruginosa K-139 is a new source of fVIIa-sTF inhibitors. It also opens a new avenue for micropeptin K-139 and related depsipeptides as fVIIa-sTF inhibitors.

  15. Thrombin has biphasic effects on the nitric oxide-cGMP pathway in endothelial cells and contributes to experimental pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Katrin F Nickel

    Full Text Available BACKGROUND: A potential role for coagulation factors in pulmonary arterial hypertension has been recently described, but the mechanism of action is currently not known. Here, we investigated the interactions between thrombin and the nitric oxide-cGMP pathway in pulmonary endothelial cells and experimental pulmonary hypertension. PRINCIPAL FINDINGS: Chronic treatment with the selective thrombin inhibitor melagatran (0.9 mg/kg daily via implanted minipumps reduced right ventricular hypertrophy in the rat monocrotaline model of experimental pulmonary hypertension. In vitro, thrombin was found to have biphasic effects on key regulators of the nitric oxide-cGMP pathway in endothelial cells (HUVECs. Acute thrombin stimulation led to increased expression of the cGMP-elevating factors endothelial nitric oxide synthase (eNOS and soluble guanylate cyclase (sGC subunits, leading to increased cGMP levels. By contrast, prolonged exposition of pulmonary endothelial cells to thrombin revealed a characteristic pattern of differential expression of the key regulators of the nitric oxide-cGMP pathway, in which specifically the factors contributing to cGMP elevation (eNOS and sGC were reduced and the cGMP-hydrolyzing PDE5 was elevated (qPCR and Western blot. In line with the differential expression of key regulators of the nitric oxide-cGMP pathway, a reduction of cGMP by prolonged thrombin stimulation was found. The effects of prolonged thrombin exposure were confirmed in endothelial cells of pulmonary origin (HPAECs and HPMECs. Similar effects could be induced by activation of protease-activated receptor-1 (PAR-1. CONCLUSION: These findings suggest a link between thrombin generation and cGMP depletion in lung endothelial cells through negative regulation of the nitric oxide-cGMP pathway, possibly mediated via PAR-1, which could be of relevance in pulmonary arterial hypertension.

  16. RADIOLOGICAL TIPS Percutaneous thrombin injection for ...

    African Journals Online (AJOL)

    pseudoaneurysm sac has a typical 'yin-yang' sign. The neck is normally seen posteriorly and is usually thin and longitudinal. A large neck diameter (e.g. >10 mm) is a relative contra-indication for thrombin injection because of a slightly higher risk of distal embolisation. There are several thrombin preparations available.

  17. Effects of recombinant human prothrombin on thrombin generation in plasma from patients with hemophilia A and B.

    Science.gov (United States)

    Hansson, K M; Gustafsson, D; Skärby, T; Frison, L; Berntorp, E

    2015-07-01

    The present study was carried out to investigate the impact of FII levels, and their increase, on the hemostatic potential in plasma from hemophilia A and B patients with and without inhibitors. Recombinant human factor (F) II (rhFII) was added ex vivo to plasma from 68 patients with hemophilia A and B, with or without inhibitors. The hemostatic potential as measured by thrombin generation (calibrated automated thrombogram [CAT]) was focused on the endogenous thrombin potential (ETP) as it has been shown to correlate with the clinical phenotype of bleeding in hemophilia patients and has also been used to guide bypassing therapy in hemophilia patients with inhibitors before elective surgery. The factor eight inhibitor bypassing agent (FEIBA(®) ) was used as a reference to the clinical situation. The study shows that rhFII concentration-dependently increased ETP by a similar magnitude in hemophilia A and B, both with and without inhibitors. Compared with FEIBA, rhFII showed a shallower concentration-response curve. In both types of hemophilia 100 mg L(-1) of rhFII roughly doubled the ETP. A corresponding response was obtained by 0.5 U mL(-1) of FEIBA. These data support the theory that FII is one of the major components responsible for the efficacy of FEIBA. The data also indicate that rhFII may be useful, alone or in combination with other coagulation factors, in some of the conditions for which FEIBA is used today, although more data are needed to substantiate this. © 2015 International Society on Thrombosis and Haemostasis.

  18. Topical thrombin-related corneal calcification.

    Science.gov (United States)

    Kiratli, Hayyam; Irkeç, Murat; Alaçal, Sibel; Söylemezoğlu, Figen

    2006-09-01

    To report a highly unusual case of corneal calcification after brief intraoperative use of topical thrombin. A 44-year-old man underwent sclerouvectomy for ciliochoroidal leiomyoma, during which 35 UNIH/mL lyophilized bovine thrombin mixed with 9 mL of diluent containing 1500 mmol/mL calcium chloride was used. From the first postoperative day, corneal and anterior lenticular capsule calcifications developed, and corneal involvement slightly enlarged thereafter. A year later, 2 corneal punch biopsies confirmed calcification mainly in the Bowman layer. Topical treatment with 1.5% ethylenediaminetetraacetic acid significantly restored corneal clarity. Six months later, a standard extracapsular cataract extraction with intraocular lens placement improved visual acuity to 20/60. This case suggests that topical thrombin drops with elevated calcium concentrations may cause acute corneal calcification in Bowman layer and on the anterior lens capsule.

  19. Thermodynamic compensation upon binding to exosite 1 and the active site of thrombin.

    Science.gov (United States)

    Treuheit, Nicholas A; Beach, Muneera A; Komives, Elizabeth A

    2011-05-31

    Several lines of experimental evidence including amide exchange and NMR suggest that ligands binding to thrombin cause reduced backbone dynamics. Binding of the covalent inhibitor dPhe-Pro-Arg chloromethyl ketone to the active site serine, as well as noncovalent binding of a fragment of the regulatory protein, thrombomodulin, to exosite 1 on the back side of the thrombin molecule both cause reduced dynamics. However, the reduced dynamics do not appear to be accompanied by significant conformational changes. In addition, binding of ligands to the active site does not change the affinity of thrombomodulin fragments binding to exosite 1; however, the thermodynamic coupling between exosite 1 and the active site has not been fully explored. We present isothermal titration calorimetry experiments that probe changes in enthalpy and entropy upon formation of binary ligand complexes. The approach relies on stringent thrombin preparation methods and on the use of dansyl-l-arginine-(3-methyl-1,5-pantanediyl)amide and a DNA aptamer as ligands with ideal thermodynamic signatures for binding to the active site and to exosite 1. Using this approach, the binding thermodynamic signatures of each ligand alone as well as the binding signatures of each ligand when the other binding site was occupied were measured. Different exosite 1 ligands with widely varied thermodynamic signatures cause a similar reduction in ΔH and a concomitantly lower entropy cost upon DAPA binding at the active site. The results suggest a general phenomenon of enthalpy-entropy compensation consistent with reduction of dynamics/increased folding of thrombin upon ligand binding to either the active site or exosite 1.

  20. Ex vivo reversal of effects of rivaroxaban evaluated using thromboelastometry and thrombin generation assay

    Science.gov (United States)

    Schenk, B.; Würtinger, P.; Streif, W.; Sturm, W.; Fries, D.; Bachler, M.

    2016-01-01

    Background In major bleeding events, the new direct oral anticoagulants pose a great challenge for physicians. The aim of the study was to test for ex vivo reversal of the direct oral anticoagulant rivaroxaban with various non-specific reversal agents: prothrombin complex concentrate (PCC), activated prothrombin complex concentrate (aPCC), recombinant activated factor VII (rFVIIa), and fibrinogen concentrate (FI). Methods Blood was obtained from healthy volunteers and from patients treated with rivaroxaban. Blood samples from healthy volunteers were spiked with rivaroxaban to test the correlation between rivaroxaban concentration and coagulation tests. Patient blood samples were spiked with various concentrations of the above-mentioned agents and analysed using thromboelastometry and thrombin generation. Results When added in vitro, rivaroxaban was significantly (P<0.05) correlated with ROTEM® thromboelastometry EXTEM (extrinsic coagulation pathway) clotting time (CT), time to maximal velocity (MaxV−t), and with all measured thrombin generation parameters. In vivo, CT, MaxV−t, lag time, and peak thrombin generation (Cmax) were significantly correlated with rivaroxaban concentrations. Regarding reversal of rivaroxaban, all tested agents significantly (P<0.05) reduced EXTEM CT, but to different extents: rFVIIa by 68%, aPCC by 47%, PCC by 17%, and FI by 9%. Only rFVIIa reversed EXTEM CT to baseline values. Both PCC (+102%) and aPCC (+232%) altered overall thrombin generation (area under the curve) and increased Cmax (+461% for PCC, +87.5% for aPCC). Conclusions Thromboelastometry and thrombin generation assays do not favour the same reversal agents for rivaroxaban anticoagulation. Controlled clinical trials are urgently needed to establish doses and clinical efficacy of potential reversal agents. Clinical trial registration EudracCT trial no. 213-00474-30. PMID:27623677

  1. Label-free aptamer biosensor for selective detection of thrombin

    Energy Technology Data Exchange (ETDEWEB)

    Na, Weidan; Liu, Xiaotong; Wang, Lei; Su, Xingguang, E-mail: suxg@jlu.edu.cn

    2015-10-29

    We fabricated a novel fluorescence biosensor for the selective detection of thrombin by using bovine serum albumin-capped CdS quantum dots (BSA-CdS QDs). Two kinds of designed DNA (DNA1 and DNA2) could bind to CdS QDs through the electrostatic interaction between DNA and Cd{sup 2+} on the surface of CdS QDs. The obtained DNA/BSA-CdS QDs kept stable in the solution with the fluorescence intensity obviously enhanced. Hairpin structure of DNA1contained two domains, one is the aptamer sequence of thrombin and the other is the complementary sequence of DNA2. When thrombin was added, it would bind to DNA1 and induce the hairpin structure of DNA1 changed into G-quadplex structure. Meanwhile, DNA2 would transfer from the surface of CdS QDs to DNA1 via hybridization, which resulted in the removal of DNA1 and DNA2 from the surface of CdS QDs, and led to the fluorescence intensity of CdS QDs reduced. Thus, the determination of thrombin could be achieved by monitoring the change of the fluorescence intensity of CdS QDs. The present method is simple and fast, and exhibits good selectivity for thrombin over other proteins. We have successfully detected thrombin in human serum samples with satisfactory results. - Highlights: • A novel strategy for the detection of thrombin was established based on BSA-CdS QDs. • DNA could serve as the co-ligands to stabilize CdS QDs and enhance the fluorescence intensity. • Thrombin could change the structure of DNA1 and quench the fluorescence of CdS QDs. • Thrombin in real sample was detected with satisfactory results.

  2. A host-guest-recognition-based electrochemical aptasensor for thrombin detection.

    Science.gov (United States)

    Fan, Hao; Li, Hui; Wang, Qingjiang; He, Pingang; Fang, Yuzhi

    2012-05-15

    A sensitive electrochemical aptasensor for thrombin detection is presented based on the host-guest recognition technique. In this sensing protocol, a 15 based thrombin aptamer (ab. TBA) was dually labeled with a thiol at its 3' end and a 4-((4-(dimethylamino)phenyl)azo) benzoic acid (dabcyl) at its 5' end, respectively, which was previously immobilized on one Au electrode surface by AuS bond and used as the thrombin probe during the protein sensing procedure. One special electrochemical marker was prepared by modifying CdS nanoparticle with β-cyclodextrins (ab. CdS-CDs), which employed as electrochemical signal provider and would conjunct with the thrombin probe modified electrode through the host-guest recognition of CDs to dabcyl. In the absence of thrombin, the probe adopted linear structure to conjunct with CdS-CDs. In present of thrombin, the TBA bond with thrombin and transformed into its special G-quarter structure, which forced CdS-CDs into the solution. Therefore, the target-TBA binding event can be sensitively transduced via detecting the electrochemical oxidation current signal of Cd of CdS nanoparticles in the solution. Using this method, as low as 4.6 pM thrombin had been detected. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Thrombin immobilization to methacrylic acid grafted poly(3-hydroxybutyrate) and its in vitro application.

    Science.gov (United States)

    Akkaya, Alper; Pazarlioglu, Nurdan

    2013-01-01

    Poly(3-hydroxybutyrate) is nontoxic and biodegradable, with good biocompatibility and potential support for long-term implants. For this reason, it is a good support for enzyme immobilization. Enzyme immobilization could not be done directly because poly(3-hydroxybutyrate) has no functional groups. Therefore, modification should be done for enzyme immobilization. In this study, methacrylic acid was graft polymerized to poly(3-hydroxybutyrate) and thrombin was immobilized to polymethacrylic acid grafted poly(3-hydroxybutyrate). In fact, graft polymerization of methacrylic acid to poly(3-hydroxybutyrate) and thrombin immobilization was a model study. Biomolecule immobilized poly(3-hydroxybutyrate) could be used as an implant. Thrombin was selected as a biomolecule for this model study and it was immobilized to methacrylic acid grafted poly(3-hydroxybutyrate). Then the developed product was used to stop bleeding.

  4. 21 CFR 864.7875 - Thrombin time test.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Thrombin time test. 864.7875 Section 864.7875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7875 Thrombin time test. (a...

  5. Thrombin-receptor antagonist vorapaxar in acute coronary syndromes

    DEFF Research Database (Denmark)

    Tricoci, Pierluigi; Huang, Zhen; Held, Claes

    2012-01-01

    Vorapaxar is a new oral protease-activated-receptor 1 (PAR-1) antagonist that inhibits thrombin-induced platelet activation.......Vorapaxar is a new oral protease-activated-receptor 1 (PAR-1) antagonist that inhibits thrombin-induced platelet activation....

  6. Thrombin induces rapid PAR1-mediated non-classical FGF1 release

    International Nuclear Information System (INIS)

    Duarte, Maria; Kolev, Vihren; Soldi, Raffaella; Kirov, Alexander; Graziani, Irene; Oliveira, Silvia Marta; Kacer, Doreen; Friesel, Robert; Maciag, Thomas; Prudovsky, Igor

    2006-01-01

    Thrombin induces cell proliferation and migration during vascular injury. We report that thrombin rapidly stimulated expression and release of the pro-angiogenic polypeptide fibroblast growth factor 1 (FGF1). Thrombin failed to induce FGF1 release from protease-activated receptor 1 (PAR1) null fibroblasts, indicating that this effect was dependent on PAR1. Similarly to thrombin, FGF1 expression and release were induced by TRAP, a specific oligopeptide agonist of PAR1. These results identify a novel aspect of the crosstalk between FGF and thrombin signaling pathways which both play important roles in tissue repair and angiogenesis

  7. Thrombin binding to human brain and spinal cord

    International Nuclear Information System (INIS)

    McKinney, M.; Snider, R.M.; Richelson, E.

    1983-01-01

    Thrombin, a serine protease that regulates hemostasis, has been shown to stimulate the formation of cGMP in murine neuroblastoma cells. The nervous system in vivo thus may be postulated to respond to this blood-borne factor after it breaches the blood-brain barrier, as in trauma. Human alpha-thrombin was radiolabeled with 125I and shown to bind rapidly, reversibly, and with high affinity to human brain and spinal cord. These findings indicate the presence of specific thrombin-binding sites in nervous tissue and may have important clinical implications

  8. Thrombin activatable fibrinolysis inhibitor and clot lysis time in pregnant patients with antiphospholipid syndrome: relationship with pregnancy outcome and thrombosis.

    Science.gov (United States)

    Martinez-Zamora, Maria Angeles; Tassies, Dolors; Carmona, Francisco; Espinosa, Gerard; Cervera, Ricard; Reverter, Juan Carlos; Balasch, Juan

    2009-12-01

    Antiphospholipid syndrome (APS) pregnancies are associated with thrombotic obstetric complications, despite treatment. This study evaluated Thrombin Activatable Fibrinolysis Inhibitor (TAFI) levels, TAFI gene polymorphisms and Clot Lysis Time (CLT) in pregnant patients with APS in relation to pregnancy outcome and thrombosis. Group 1 consisted of 67 pregnant patients with APS. Group 2 included 66 pregnant patients with uneventful term pregnancies and delivery. Patients were sampled during each trimester and at baseline. TAFI antigen and CLT and two polymorphisms of the TAFI gene, Ala147Thr and +1542C/G, were determined. Significantly prolonged CLT was found at baseline in Group 1. Allele distribution of the TAFI gene polymorphisms was similar in both groups. Basal TAFI and CLT in patients with APS having an adverse or a good obstetrical outcome were similar. Comparison of TAFI and CLT baseline levels in patients with APS with or without previous thrombosis showed no statistical differences. Patients with APS have impairment in fibrinolysis evidenced by prolonged CLT at baseline. TAFI and CLT do not seem to be useful as markers of obstetric outcome or risk of thrombosis in patients with APS.

  9. Percutaneous Thrombin Injection to Complete SMA Pseudoaneurysm Exclusion After Failing of Endograft Placement

    International Nuclear Information System (INIS)

    Szopinski, Piotr; Ciostek, Piotr; Pleban, Eliza; Iwanowski, Jaroslaw; Krol, Malgorzata Serafin-; Marianowska, Agnieszka; Noszczyk, Wojciech

    2005-01-01

    Visceral aneurysms are potentially life-threatening vascular lesions. Superior mesenteric artery (SMA) pseudoaneurysms are a rare but well-recognized complication of chronic pancreatitis. Open surgical repair of such an aneurysm, especially in patients after previous surgical treatment, might be dangerous and risky. Stent graft implantation makes SMA pseudoaneurysm exclusion possible and therefore avoids a major abdominal operation. Percutaneous direct thrombin injection is also one of the methods of treating aneurysms in this area. We report a first case of percutaneous ultrasound-guided thrombin injection to complete SMA pseudoaneurysm exclusion after an unsuccessful endograft placement. Six-month follow-up did not demonstrate any signs of aneurysm recurrence

  10. Pulmonary epithelial clearance of 99mTc-DTPA after thrombin-induced pulmonary microembolism

    International Nuclear Information System (INIS)

    Cooper, J.A.; Feustel, P.J.; Line, B.R.; Malik, A.B.

    1986-01-01

    We investigated the effect of thrombin-induced pulmonary microembolism on the pulmonary clearance rate of aerosolized 99mTc diethylenetriamine pentaacetic acid (99mTc-DTPA) in awake, chronically prepared sheep. Chest activity was recorded after administration of a 0.44 micron aerosol of 99mTc-DTPA. Decay-corrected data were fit to an exponential and expressed as percent decrease per min (%/min). Sheep were given alpha-thrombin intravenously (80 U/kg for 10 min) 60 min after the aerosol administration. The clearance rate prior to alpha-thrombin was 0.35 +/- 0.05 %/min (mean +/- SEM). During alpha-thrombin administration, the clearance rate increased to 5.84 +/- 0.70 %/min (p less than 0.001 from baseline), but returned to 0.41 +/- 0.06 %/min within 30 min after the end of the thrombin infusion. The increased clearance rate during alpha-thrombin administration was not due to increased lung volume since alpha-thrombin did not change functional residual capacity. Moreover, the clearance rate was unchanged during gamma-thrombin administration, which does not induce coagulation, or during alpha-thrombin challenge in defibrinogenated animals. alpha-thrombin administration in neutrophil-depleted sheep caused a transient increase in DTPA clearance similar to that in control sheep, suggesting that the increase occurred independently of neutrophils. The results indicate that alpha-thrombin causes a large, transient increase in 99mTc-DTPA clearance, which may be the result of increased epithelial permeability. This response is dependent on the activation of intravascular coagulation

  11. Percutaneous Ultrasound-Guided Thrombin Injection in Iatrogenic Arterial Pseudoaneurysms: Effectiveness and Complications

    International Nuclear Information System (INIS)

    Koh, Young Hwan; Kim, Hak Soo; Kim, Hyung Sik; Min, Seung Kee

    2005-01-01

    To evaluate and describe the efficacy and side effects of a percutaneous thrombin injection under ultrasonography guidance for the treatment of iatrogenic pseudo aneurysms Eighteen consecutive iatrogenic pseudo aneurysm cases were treated with a thrombin injection. The thrombin was injected into the pseudo aneurysm cavity using a 22-gauge needle under ultrasonographic guidance. The causes of the pseudo aneurysms are as follows: post coronary angiography (9 cases), percutaneous coronary balloon angioplasty (5 cases), cerebral angiography (1 case), transhepatic chemo embolization (1 case), percutaneous trans femoral arterial stent insertion (1 case) and bone marrow aspiration for a marrow transplant (1 case). Only one case required a secondary thrombin injection due to recurrent flow in the pseudo aneurysm lumen, which was detected at the follow up Doppler ultrasound. Other seventeen cases were successfully treated on the first trial. There were no technical failures or complication related to the procedure. The average amount of thrombin injected was 733 IU. Nine out of 18 treated patients (50%) showed mild reactions to the thrombin including mild fever (4 cases), chilling sensation (3 cases), a chilling sensation with mild dyspnea (1 case), mild chest discomfort (1 case) after the thrombin injection. All these side effects were transient and improved several hours later. All the iatrogenic pseudo aneurysms were treated successfully with an ultrasound-guided percutaneous thrombin injection. There was a high rate of hypersensitivity to the bovine thrombin, which precaution should be taken to prevent more serious side effects

  12. Percutaneous Ultrasound-Guided Thrombin Injection in Iatrogenic Arterial Pseudoaneurysms: Effectiveness and Complications

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Young Hwan [Boramae Hospital, Seoul (Korea, Republic of); Kim, Hak Soo; Kim, Hyung Sik; Min, Seung Kee [Gachon Medical School, Incheon (Korea, Republic of)

    2005-09-15

    To evaluate and describe the efficacy and side effects of a percutaneous thrombin injection under ultrasonography guidance for the treatment of iatrogenic pseudo aneurysms Eighteen consecutive iatrogenic pseudo aneurysm cases were treated with a thrombin injection. The thrombin was injected into the pseudo aneurysm cavity using a 22-gauge needle under ultrasonographic guidance. The causes of the pseudo aneurysms are as follows: post coronary angiography (9 cases), percutaneous coronary balloon angioplasty (5 cases), cerebral angiography (1 case), transhepatic chemo embolization (1 case), percutaneous trans femoral arterial stent insertion (1 case) and bone marrow aspiration for a marrow transplant (1 case). Only one case required a secondary thrombin injection due to recurrent flow in the pseudo aneurysm lumen, which was detected at the follow up Doppler ultrasound. Other seventeen cases were successfully treated on the first trial. There were no technical failures or complication related to the procedure. The average amount of thrombin injected was 733 IU. Nine out of 18 treated patients (50%) showed mild reactions to the thrombin including mild fever (4 cases), chilling sensation (3 cases), a chilling sensation with mild dyspnea (1 case), mild chest discomfort (1 case) after the thrombin injection. All these side effects were transient and improved several hours later. All the iatrogenic pseudo aneurysms were treated successfully with an ultrasound-guided percutaneous thrombin injection. There was a high rate of hypersensitivity to the bovine thrombin, which precaution should be taken to prevent more serious side effects

  13. Thrombin Generating Capacity and Phenotypic Association in ABO Blood Groups.

    Science.gov (United States)

    Kremers, Romy M W; Mohamed, Abdulrahman B O; Pelkmans, Leonie; Hindawi, Salwa; Hemker, H Coenraad; de Laat, H Bas; Huskens, Dana; Al Dieri, Raed

    2015-01-01

    Individuals with blood group O have a higher bleeding risk than non-O blood groups. This could be explained by the lower levels of FVIII and von Willebrand Factor (VWF) levels in O individuals. We investigated the relationship between blood groups, thrombin generation (TG), prothrombin activation and thrombin inactivation. Plasma levels of VWF, FVIII, antithrombin, fibrinogen, prothrombin and α2Macroglobulin (α2M) levels were determined. TG was measured in platelet rich (PRP) and platelet poor plasma (PPP) of 217 healthy donors and prothrombin conversion and thrombin inactivation were calculated. VWF and FVIII levels were lower (75% and 78%) and α2M levels were higher (125%) in the O group. TG is 10% lower in the O group in PPP and PRP. Less prothrombin was converted in the O group (86%) and the thrombin decay capacity was lower as well. In the O group, α2M plays a significantly larger role in the inhibition of thrombin (126%). In conclusion, TG is lower in the O group due to lower prothrombin conversion, and a larger contribution of α2M to thrombin inactivation. The former is unrelated to platelet function because it is similar in PRP and PPP, but can be explained by the lower levels of FVIII.

  14. Increased thrombin generation in a mouse model of cancer cachexia is partially interleukin-6 dependent.

    Science.gov (United States)

    Reddel, C J; Allen, J D; Ehteda, A; Taylor, R; Chen, V M Y; Curnow, J L; Kritharides, L; Robertson, G

    2017-03-01

    Essentials Cancer cachexia and cancer-associated thrombosis have not previously been mechanistically linked. We assessed thrombin generation and coagulation parameters in cachectic C26 tumor-bearing mice. C26 mice are hypercoagulable, partially corrected by blocking tumor derived interleukin-6. Coagulability and anti-inflammatory interventions may be clinically important in cancer cachexia. Background Cancer cachexia and cancer-associated thrombosis are potentially fatal outcomes of advanced cancer, which have not previously been mechanistically linked. The colon 26 (C26) carcinoma is a well-established mouse model of complications of advanced cancer cachexia, partially dependent on high levels of interleukin-6 (IL-6) produced by the tumor. Objectives To assess if cancer cachexia altered the coagulation state and if this was attributable to tumor IL-6 production. Methods In male BALB/c*DBA2 (F1 hybrid) mice with a C26 tumor we used modified calibrated automated thrombogram and fibrin generation (based on overall hemostatic potential) assays to assess the functional coagulation state, and also examined fibrinogen, erythrocyte sedimentation rate (ESR), platelet count, tissue factor pathway inhibitor (TFPI) and hepatic expression of coagulation factors by microarray. C26 mice were compared with non-cachectic NC26, pair-fed and sham control mice. IL-6 expression in C26 cells was knocked down by lentiviral shRNA constructs. Results C26 mice with significant weight loss and highly elevated IL-6 had elevated thrombin generation, fibrinogen, ESR, platelets and TFPI compared with all control groups. Fibrin generation was elevated compared with pair-fed and sham controls but not compared with NC26 tumor mice. Hepatic expression of coagulation factors and fibrinolytic inhibitors was increased. Silencing IL-6 in the tumor significantly, but incompletely, attenuated the increased thrombin generation, fibrinogen and TFPI. Conclusions Cachectic C26 tumor-bearing mice are in a

  15. The effect of a polyurethane coating incorporating both a thrombin inhibitor and nitric oxide on hemocompatibility in extracorporeal circulation

    Science.gov (United States)

    Major, Terry C.; Brisbois, Elizabeth J.; Jones, Anna M.; Zanetti, Margaux E.; Annich, Gail M.; Bartlett, Robert H.; Handa, Hitesh

    2014-01-01

    Nitric oxide (NO) releasing (NORel) materials have been extensively investigated to create localized increases in NO concentration by the proton driven diazeniumdiolate-containing polymer coatings and demonstrated to improve extracorporeal circulation (ECC) hemocompatibility. In this work, the NORel polymeric coating composed of a diazeniumdiolated dibutylhexanediamine (DBHD-N2O2)-containing hydrophobic Elast-eon™ (E2As) polyurethane was combined with a direct thrombin inhibitor, argatroban (AG), and evaluated in a 4 h rabbit thrombogenicity model without systemic anticoagulation. In addition, the immobilizing of argatroban to E2As polymer was achieved by either a polyethylene glycol-containing (PEGDI) or hexane methylene (HMDI) diisocyanate linker. The combined polymer film was coated on the inner walls of ECC circuits to yield significantly reduced ECC thrombus formation compared to argatroban alone ECC control after 4 h blood exposure (0.6 ± 0.1 AG/HMDI/NORel vs 1.7 ± 0.2 cm2 AG/HMDI control). Platelet count (2.8 ± 0.3 AG/HMDI/NORel vs 1.9 ± 0.1 × 108/ml AG/HMDI control) and plasma fibrinogen levels were preserved after 4 h blood exposure with both the NORel/argatroban combination and the AG/HMDI control group compared to baseline. Platelet function as measured by aggregometry remained near normal in both the AG/HMDI/NORel (63 ± 5%) and AG/HMDI control (58 ± 7%) groups after 3 h compared to baseline (77 ± 1%). Platelet P-selectin mean fluorescence intensity (MFI) as measured by flow cytometry also remained near baseline levels after 4 h on ECC to ex vivo collagen stimulation (16 ± 3 AG/HMDI/NORel vs 11 ± 2 MFI baseline). These results suggest that the combined AG/HMDI/NORel polymer coating preserves platelets in blood exposure to ECCs to a better degree than AG/PEGDI/NORel, NORel alone or AG alone. These combined antithrombin, NO-mediated antiplatelet effects were shown to improve thromboresistance of the AG/HMDI/NORel polymer-coated ECCs and move

  16. Protamine sulfate down-regulates thrombin generation by inhibiting factor V activation.

    LENUS (Irish Health Repository)

    Ni Ainle, Fionnuala

    2009-08-20

    Protamine sulfate is a positively charged polypeptide widely used to reverse heparin-induced anticoagulation. Paradoxically, prospective randomized trials have shown that protamine administration for heparin neutralization is associated with increased bleeding, particularly after cardiothoracic surgery with cardiopulmonary bypass. The molecular mechanism(s) through which protamine mediates this anticoagulant effect has not been defined. In vivo administration of pharmacologic doses of protamine to BALB\\/c mice significantly reduced plasma thrombin generation and prolonged tail-bleeding time (from 120 to 199 seconds). Similarly, in pooled normal human plasma, protamine caused significant dose-dependent prolongations of both prothrombin time and activated partial thromboplastin time. Protamine also markedly attenuated tissue factor-initiated thrombin generation in human plasma, causing a significant decrease in endogenous thrombin potential (41% +\\/- 7%). As expected, low-dose protamine effectively reversed the anticoagulant activity of unfractionated heparin in plasma. However, elevated protamine concentrations were associated with progressive dose-dependent reduction in thrombin generation. To assess the mechanism by which protamine mediates down-regulation of thrombin generation, the effect of protamine on factor V activation was assessed. Protamine was found to significantly reduce the rate of factor V activation by both thrombin and factor Xa. Protamine mediates its anticoagulant activity in plasma by down-regulation of thrombin generation via a novel mechanism, specifically inhibition of factor V activation.

  17. Effects of Aerobic Capacity on Thrombin-Induced Hydrocephalus and White Matter Injury.

    Science.gov (United States)

    Ni, Wei; Gao, Feng; Zheng, Mingzhe; Koch, Lauren G; Britton, Steven L; Keep, Richard F; Xi, Guohua; Hua, Ya

    2016-01-01

    We have previously shown that intracerebral hemorrhage-induced brain injury is less in rats bred for high aerobic capacity (high capacity runners; HCR) compared with those bred for low aerobic capacity (low capacity runners; LCRs). Thrombin, an essential component in the coagulation cascade, is produced after cerebral hemorrhage. Intraventricular injection of thrombin causes significant hydrocephalus and white matter damage. In the present study, we examined the effect of exercise capacity on thrombin-induced hydrocephalus and white matter damage. Mid-aged (13-month-old) female LCRs (n = 13) and HCRs (n = 12) rats were used in this study. Rats received an intraventricular injection of thrombin (3 U, 50 μl). All rats underwent magnetic resonance imaging (MRI) at 24 h and were then euthanized for brain histology and Western blot. The mortalities were 20 % in LCRs and 33 % in HCRs after thrombin injection (p > 0.05). No rats died after saline injection. Intraventricular thrombin injection resulted in hydrocephalus and periventricular white matter damage as determined on MRI. In LCR rats, thrombin induced significant ventricle enlargement (23.0 ± 2.3 vs12.8 ± 1.9 mm(3) in LCR saline group; p hydrocephalus in rats with low aerobic capacity. A differential effect of thrombin may contribute to differences in the effects of cerebral hemorrhage with aerobic capacity.

  18. The Characteristics of Thrombin in Osteoarthritic Pathogenesis and Treatment

    Directory of Open Access Journals (Sweden)

    Pei-Yu Chou

    2014-01-01

    Full Text Available Osteoarthritis (OA is a mechanical abnormality associated with degradation of joints. It is characterized by chronic, progressive degeneration of articular cartilage, abnormalities of bone, and synovial change. The most common symptom of OA is local inflammation resulting from exogenous stress or endogenous abnormal cytokines. Additionally, OA is associated with local and/or systemic activation of coagulation and anticoagulation pathways. Thrombin plays an important role in the stimulation of fibrin deposition and the proinflammatory processes in OA. Thrombin mediates hemostatic and inflammatory responses and guides the immune response to tissue damage. Thrombin activates intracellular signaling pathways by interacting with transmembrane domain G protein coupled receptors (GPCRs, known as protease-activated receptors (PARs. In pathogenic mechanisms, PARs have been implicated in the development of acute and chronic inflammatory responses in OA. Therefore, discovery of thrombin signaling pathways would help us to understand the mechanism of OA pathogenesis and lead us to develop therapeutic drugs in the future.

  19. Preparation of chondroitin sulfate libraries containing disulfated disaccharide units and inhibition of thrombin by these chondroitin sulfates.

    Science.gov (United States)

    Numakura, Mario; Kusakabe, Noriko; Ishige, Kazuya; Ohtake-Niimi, Shiori; Habuchi, Hiroko; Habuchi, Osami

    2010-07-01

    Chondroitin sulfate (CS) containing GlcA-GalNAc(4,6-SO(4)) (E unit) and CS containing GlcA(2SO(4))-GalNAc(6SO(4)) (D unit) have been implicated in various physiological functions. However, it has been poorly understood how the structure and contents of disulfated disaccharide units in CS contribute to these functions. We prepared CS libraries containing E unit or D unit in various proportions by in vitro enzymatic reactions using recombinant GalNAc 4-sulfate 6-O-sulfotransferase and uronosyl 2-O-sulfotransferase, and examined their inhibitory activity toward thrombin. The in vitro sulfated CSs containing disulfated disaccharide units showed concentration-dependent direct inhibition of thrombin when the proportion of E unit or D unit in the CSs was above 15-17%. The CSs containing both E unit and D unit exhibited higher inhibitory activity toward thrombin than the CSs containing either E unit or D unit alone, if the proportion of the total disulfated disaccharide units of these CSs was comparable. The thrombin-catalyzed degradation of fibrinogen, a physiological substrate for thrombin, was also inhibited by the CS containing both E unit and D unit. These observations indicate that the enzymatically prepared CS libraries containing various amounts of disulfated disaccharide units appear to be useful for elucidating the physiological function of disulfated disaccharide units in CS.

  20. Thermodynamic, Anticoagulant, and Antiproliferative Properties of Thrombin Binding Aptamer Containing Novel UNA Derivative

    DEFF Research Database (Denmark)

    Kotkowiak, Weronika; Lisowiec-Wachnicka, Jolanta; Grynda, Jakub

    2018-01-01

    Thrombin is a serine protease that plays a crucial role in hemostasis, fibrinolysis, cell proliferation, and migration. Thrombin binding aptamer (TBA) is able to inhibit the activity of thrombin molecule via binding to its exosite I. This 15-nt DNA oligonucleotide forms an intramolecular, antipar......Thrombin is a serine protease that plays a crucial role in hemostasis, fibrinolysis, cell proliferation, and migration. Thrombin binding aptamer (TBA) is able to inhibit the activity of thrombin molecule via binding to its exosite I. This 15-nt DNA oligonucleotide forms an intramolecular......, antiparallel G-quadruplex structure with a chair-like conformation. In this paper, we report on our investigations on the influence of certain modified nucleotide residues on thermodynamic stability, folding topology, and biological properties of TBA variants. In particular, the effect of single incorporation......-quadruplex thermodynamic and biological stability, and that the effect is strongly position dependent. Interestingly, TBA variants containing the modified nucleotide residues are characterized by unchanged folding topology. Thrombin time assay revealed that incorporation of certain UNA residues may improve G...

  1. Thrombin-specific inactivation of endothelial cell derived plasminogen activator

    International Nuclear Information System (INIS)

    Highsmith, R.F.; Gallaher, M.J.

    1986-01-01

    Although thrombin (T) has diverse functions in the overall hemostatic mechanism, relatively little is known about its direct effect on components of the fibrinolytic enzyme system. The authors have investigated the interaction of T with plasminogen activators (PA) derived from bovine aortic endothelial cells (EC) in culture (2-5th passage, preconfluent monolayers). Varying concentrations of purified bovine or human thrombin were added to EC-conditioned media (CM). CM + T mixtures were assayed at various times for PA activity using purified plasminogen and a sensitive 125 I-fibrinogenolytic or caseinolytic assay. T (5 nM), but not plasmin or trypsin at equivalent concentrations, resulted in a time-dependent inhibition of the PA activity in CM. T had no effect on the PA activity of urokinase, streptokinase or preformed plasmin. The ability of T to inactivate the EC-derived PA was abolished by prior treatment of T with active site-directed reagents. SDS-PAGE and zymography with copolymerized fibrinogen and plasminogen revealed further specificity in that only one of the multiple-molecular weight forms of PA present in EC-CM was inactivated by T. The authors conclude that in a highly specific fashion, T inactivates the predominant PA present in EC-CM by limited proteolysis. Thus, another potentially important function of T is suggested which may have particular significance in the temporal regulation of coagulation and fibrinolysis at the blood-endothelium interface

  2. A Novel Photoelectrochemical Biosensor for Tyrosinase and Thrombin Detection

    Directory of Open Access Journals (Sweden)

    Jiexia Chen

    2016-01-01

    Full Text Available A novel photoelectrochemical biosensor for step-by-step assay of tyrosinase and thrombin was fabricated based on the specific interactions between the designed peptide and the target enzymes. A peptide chain with a special sequence which contains a positively charged lysine-labeled terminal, tyrosine at the other end and a cleavage site recognized by thrombin between them was designed. The designed peptide can be fixed on surface of the CdTe quantum dots (QDs-modified indium-tin oxide (ITO electrode through electrostatic attraction to construct the photoelectrochemical biosensor. The tyrosinase target can catalyze the oxidization of tyrosine by oxygen into ortho-benzoquinone residues, which results in a decrease in the sensor photocurrent. Subsequently, the cleavage site could be recognized and cut off by another thrombin target, restoring the sensor photocurrent. The decrease or increase of photocurrent in the sensor enables us to assay tyrosinase and thrombin. Thus, the detection of tyrosinase and thrombin can be achieved in the linear range from 2.6 to 32 μg/mL and from 4.5 to 100 μg/mL with detection limits of 1.5 μg/mL and 1.9 μg/mL, respectively. Most importantly, this strategy shall allow us to detect different classes of enzymes simultaneously by designing various enzyme-specific peptide substrates.

  3. A Novel Photoelectrochemical Biosensor for Tyrosinase and Thrombin Detection

    Science.gov (United States)

    Chen, Jiexia; Liu, Yifan; Zhao, Guang-Chao

    2016-01-01

    A novel photoelectrochemical biosensor for step-by-step assay of tyrosinase and thrombin was fabricated based on the specific interactions between the designed peptide and the target enzymes. A peptide chain with a special sequence which contains a positively charged lysine-labeled terminal, tyrosine at the other end and a cleavage site recognized by thrombin between them was designed. The designed peptide can be fixed on surface of the CdTe quantum dots (QDs)-modified indium-tin oxide (ITO) electrode through electrostatic attraction to construct the photoelectrochemical biosensor. The tyrosinase target can catalyze the oxidization of tyrosine by oxygen into ortho-benzoquinone residues, which results in a decrease in the sensor photocurrent. Subsequently, the cleavage site could be recognized and cut off by another thrombin target, restoring the sensor photocurrent. The decrease or increase of photocurrent in the sensor enables us to assay tyrosinase and thrombin. Thus, the detection of tyrosinase and thrombin can be achieved in the linear range from 2.6 to 32 μg/mL and from 4.5 to 100 μg/mL with detection limits of 1.5 μg/mL and 1.9 μg/mL, respectively. Most importantly, this strategy shall allow us to detect different classes of enzymes simultaneously by designing various enzyme-specific peptide substrates. PMID:26805846

  4. Aptamer-crosslinked microbubbles: smart contrast agents for thrombin-activated ultrasound imaging.

    Science.gov (United States)

    Nakatsuka, Matthew A; Mattrey, Robert F; Esener, Sadik C; Cha, Jennifer N; Goodwin, Andrew P

    2012-11-27

    Thrombosis, or malignant blood clotting, is associated with numerous cardiovascular diseases and cancers. A microbubble contrast agent is presented that produces ultrasound harmonic signal only when exposed to elevated thrombin levels. Initially silent microbubbles are activated in the presence of both thrombin-spiked and freshly clotting blood in three minutes with detection limits of 20 nM thrombin and 2 aM microbubbles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Activation of human factor V by factor Xa and thrombin

    International Nuclear Information System (INIS)

    Monkovic, D.D.; Tracy, P.B.

    1990-01-01

    The activation of human factor V by factor Xa and thrombin was studied by functional assessment of cofactor activity and sodium dodecyl sulfate-polycarylamide gel electrophoresis followed by either autoradiography of 125 I-labeled factor V activation products or Western blot analyses of unlabeled factor V activation products. Cofactor activity was measured by the ability of the factor V/Va peptides to support the activation of prothrombin. The factor Xa catalyzed cleavage of factor V was observed to be time, phospholipid, and calcium ion dependent, yielding a cofactor with activity equal to that of thrombin-activated factor V (factor Va). The cleavage pattern differed markedly from the one observed in the bovine system. The factor Xa activated factor V subunits expressing cofactor activity were isolated and found to consist of peptides of M r 220,000 and 105,000. Although thrombin cleaved the M r 220,000 peptide to yield peptides previously shown to be products of thrombin activation, cofactor activity did not increase. N-Terminal sequence analysis confirmed that both factor Xa and thrombin cleave factor V at the same bond to generate the M r 220,000 peptide. The factor Xa dependent functional assessment of 125 I-labeled factor V coupled with densitometric analyses of the cleavage products indicated that the cofactor activity of factor Xa activated factor V closely paralleled the appearance of the M r 220,000 peptide. The data indicate that factor Xa is as efficient an enzyme toward factor V as thrombin

  6. Synergy in thrombin-graphene sponge for improved hemostatic efficacy and facile utilization.

    Science.gov (United States)

    Li, Guofeng; Quan, Kecheng; Xu, CongCong; Deng, Bo; Wang, Xing

    2018-01-01

    Composites are attractive for its potential synergistic effects that can result in high-performance, but the synergy depends on subtle design. In this study, a hemostatic composite, a thrombin/cross-linked graphene sponge (TCGS), was developed through a facile gradient composite strategy. The porous structure of the CGS assures that the thrombin is stably embedded in the TCGS, avoiding a burst release but maintaining its bioactivity. In the synergy between proper thrombin stimulation and the fast absorption of the sponge, TCGS exhibits outstanding hemostatic performance, ultrafast bleeding cessation, within 100s, which is superior to both CGS and equal amounts of native thrombin. Lower or excessive thrombin dosages prolong the bleeding time. The study revealed that the balance between plasma absorption and thrombin stimulation at the interface is critical for improving hemostatic efficacy. TCGS is also highlighted for its biosafety and stability, even after 6 months of storage in environment. This potentially ultra-long shelf life is conducive to its practical applications. Therefore, TCGS not only provides a new strategy for developing a hemostatic composite but also provides a new method and understanding for the design of hemostatic materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Bivalirudin in percutaneous coronary intervention

    Directory of Open Access Journals (Sweden)

    Sam J Lehman

    2006-12-01

    Full Text Available Sam J Lehman, Derek P ChewDepartment of Medicine, Flinders University, South Australia, AustraliaAbstract: Bivalirudin is a member of the direct thrombin inhibitor group of anticoagulants. It has been evaluated as an alternative to unfractionated and low-molecular-weight heparins in the settings of percutaneous coronary intervention (PCI and acute coronary syndrome (ACS. Results of clinical trials to date suggest bivalirudin is a viable alternative to the use of a heparin combined with a glycoprotein (GP IIb/IIIa inhibitor in these settings. Thrombin has a central role in coagulation and platelet activation in ACS and during PCI. Its direct inhibition is an attractive target for therapy in these settings. Bivalirudin is a 20 amino acid polypeptide hirudin analog. It displays bivalent and reversible binding to the thrombin molecule, inhibiting its action. Direct inhibition of thrombin with bivalirudin has theoretical pharmacokinetic and pharmacodynamic advantages over the indirect anticoagulants. A reduction in rates of bleeding without loss of anti-thrombotic efficacy has been a consistent finding across multiple clinical trials. There may be economic benefits to the use of bivalirudin if it permits a lower rate of use of the GP IIb/IIIa inhibitors. This article reviews the pharmacology of bivalirudin and clinical trial evidence to date. There are now data from multiple clinical trials and meta-analyses in the setting of ACS and PCI. Early results from the acute catheterization and urgent intervention strategy (ACUITY trial are discussed. Keywords: bivalirudin, direct thrombin inhibitor, acute coronary syndrome, percutaneous coronary intervention

  8. Multiple active forms of thrombin. IV. Relative activities of meizothrombins

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, M.F.; Mann, K.G. (Univ. of Vermont College of Medicine, Burlington (USA))

    1990-06-25

    The prothrombin activation intermediates meizothrombin and meizothrombin(desF1) (meizothrombin that has been autoproteolyzed to remove fragment 1) have been obtained in a relatively pure, active form with minimal autolysis, making them suitable for enzymatic characterization. When compared at equimolar concentrations, alpha-thrombin, fragment 1.2+ alpha-thrombin, meizothrombin(desF1), and meizothrombin have approximately 100, 100, 10, and 1% activity, respectively, toward the macromolecular substrates factor V, fibrinogen, and platelets. The difference in activity of these four enzymes cannot be attributed to alterations in the catalytic triad, as all four enzymes have nearly identical catalytic efficiency toward the chromogenic substrate S2238. Further, the ability of meizothrombin and meizothrombin(desF1) to activate protein C was 75% of the activity exhibited by alpha-thrombin or fragment 1.2+ alpha-thrombin. All four enzymes bind to thrombomodulin, as judged by the enhanced rate of protein C activation upon preincubation of the enzymes with thrombomodulin. The extent of rate enhancement varied, with meizothrombin/thrombomodulin exhibiting only 50% of the alpha-thrombin/thrombomodulin rate. This difference in rate is not due to a decreased affinity of the meizothrombin for thrombomodulin since the apparent dissociation constants for the alpha-thrombin-thrombomodulin complex and the meizothrombin-thrombomodulin complex are virtually identical. The difference in the observed rate is due in part to the higher Km for protein C exhibited by the meizothrombin-thrombomodulin complex. Incubation of the thrombomodulin-enzyme complex with phospholipid vesicles caused an increase in the protein C activation rates. The kinetic constants for protein C activation in the presence of phospholipid are virtually identical for these enzyme-thrombomodulin complexes.

  9. Multiple active forms of thrombin. IV. Relative activities of meizothrombins

    International Nuclear Information System (INIS)

    Doyle, M.F.; Mann, K.G.

    1990-01-01

    The prothrombin activation intermediates meizothrombin and meizothrombin(desF1) (meizothrombin that has been autoproteolyzed to remove fragment 1) have been obtained in a relatively pure, active form with minimal autolysis, making them suitable for enzymatic characterization. When compared at equimolar concentrations, alpha-thrombin, fragment 1.2+ alpha-thrombin, meizothrombin(desF1), and meizothrombin have approximately 100, 100, 10, and 1% activity, respectively, toward the macromolecular substrates factor V, fibrinogen, and platelets. The difference in activity of these four enzymes cannot be attributed to alterations in the catalytic triad, as all four enzymes have nearly identical catalytic efficiency toward the chromogenic substrate S2238. Further, the ability of meizothrombin and meizothrombin(desF1) to activate protein C was 75% of the activity exhibited by alpha-thrombin or fragment 1.2+ alpha-thrombin. All four enzymes bind to thrombomodulin, as judged by the enhanced rate of protein C activation upon preincubation of the enzymes with thrombomodulin. The extent of rate enhancement varied, with meizothrombin/thrombomodulin exhibiting only 50% of the alpha-thrombin/thrombomodulin rate. This difference in rate is not due to a decreased affinity of the meizothrombin for thrombomodulin since the apparent dissociation constants for the alpha-thrombin-thrombomodulin complex and the meizothrombin-thrombomodulin complex are virtually identical. The difference in the observed rate is due in part to the higher Km for protein C exhibited by the meizothrombin-thrombomodulin complex. Incubation of the thrombomodulin-enzyme complex with phospholipid vesicles caused an increase in the protein C activation rates. The kinetic constants for protein C activation in the presence of phospholipid are virtually identical for these enzyme-thrombomodulin complexes

  10. Thrombin-specific inactivation of endothelial cell derived plasminogen activator

    Energy Technology Data Exchange (ETDEWEB)

    Highsmith, R.F.; Gallaher, M.J.

    1986-03-05

    Although thrombin (T) has diverse functions in the overall hemostatic mechanism, relatively little is known about its direct effect on components of the fibrinolytic enzyme system. The authors have investigated the interaction of T with plasminogen activators (PA) derived from bovine aortic endothelial cells (EC) in culture (2-5th passage, preconfluent monolayers). Varying concentrations of purified bovine or human thrombin were added to EC-conditioned media (CM). CM + T mixtures were assayed at various times for PA activity using purified plasminogen and a sensitive /sup 125/I-fibrinogenolytic or caseinolytic assay. T (5 nM), but not plasmin or trypsin at equivalent concentrations, resulted in a time-dependent inhibition of the PA activity in CM. T had no effect on the PA activity of urokinase, streptokinase or preformed plasmin. The ability of T to inactivate the EC-derived PA was abolished by prior treatment of T with active site-directed reagents. SDS-PAGE and zymography with copolymerized fibrinogen and plasminogen revealed further specificity in that only one of the multiple-molecular weight forms of PA present in EC-CM was inactivated by T. The authors conclude that in a highly specific fashion, T inactivates the predominant PA present in EC-CM by limited proteolysis. Thus, another potentially important function of T is suggested which may have particular significance in the temporal regulation of coagulation and fibrinolysis at the blood-endothelium interface.

  11. Percutaneous treatment of femoral pseudoaneurysms: comparison of fibrin sealant against thrombin

    Directory of Open Access Journals (Sweden)

    Daniel Mendes Pinto

    2013-12-01

    Full Text Available INTRODUCTION: Femoral pseudoaneurysms are a complication that occurs in connection with up to 8% of percutaneous procedures. Of the available treatments, ultrasound guided thrombin injection has a high success rate and is well-tolerated by patients. The combination of thrombin and fibrinogen known as fibrin sealant forms a stable clot and can be used to treat pseudoaneurysms, particularly those with complex anatomy and larger size. OBJECTIVE: To compare the results of treating femoral pseudoaneurysm in two ways: Group T was treated with thrombin alone and Group T+F was treated with fibrin sealant (thrombin+fibrinogen. METHODS: A retrospective analysis was conducted of femoral pseudoaneurysm cases treated between January 2005 and December 2012. RESULTS: Twenty-eight patients were treated, 21 with thrombin alone and seven with fibrin sealant. All patients in group T were treated successfully, but only four patients in group T+F were treated successfully (57.1% success rate in Group T+F, p<0.01. The three cases of failure in group T+F needed surgery and in one of these cases the complication was embolization to the femoral bifurcation. The pseudoaneurysms that were treated with fibrin sealant were larger (25 cm3 in Group T and 57.7 cm3 in Group T+F, p=0.02 and required larger volumes of thrombin (0.5 mL in Group T and 1.0 mL in Group T+F, p<0.01. There was one complication in Group T and two complications in Group T+F (p<0.01. CONCLUSIONS: Irrespective of the small number of cases reviewed, treatment with thrombin alone was superior to treating with fibrin sealant, since it caused few complications and was more effective at correcting pseudoaneurysms.

  12. Critical role of FcR gamma-chain, LAT, PLCgamma2 and thrombin in arteriolar thrombus formation upon mild, laser-induced endothelial injury in vivo.

    Science.gov (United States)

    Kalia, Neena; Auger, Jocelyn M; Atkinson, Ben; Watson, Steve P

    2008-05-01

    The role of collagen receptor complex GPVI-FcR gamma-chain, PLCgamma2 and LAT in laser-induced thrombosis is unclear. Controversy surrounds whether collagen is exposed in this model or whether thrombosis is dependent on thrombin. This study hypothesized that collagen exposure plays a critical role in thrombus formation in this model, which was tested by investigating contributions of FcR gamma-chain, LAT, PLCgamma2 and thrombin. Thrombi were monitored using intravital microscopy in anesthetized wild-type and FcR gamma-chain, LAT and PLCgamma2 knockout mice. Hirudin (thrombin inhibitor) was administered to wild-type and FcR gamma-chain knockout mice. Significantly reduced thrombus formation was observed in FcR gamma-chain and PLCgamma2 knockouts with a greater decrease observed in LAT knockouts. Dramatic reduction was observed in wild-types treated with hirudin, with abolished thrombus formation only observed in FcR gamma-chain knockouts treated with hirudin. GPVI-FcR gamma-chain, LAT and PLCgamma2 are essential for thrombus generation and stability in this laser-induced model of injury. More importantly, a greater role for LAT was identified, which may reflect a role for it downstream of a second matrix protein receptor. However, inhibition of platelet activation by matrix proteins and thrombin generation are both required to maximally prevent thrombus formation.

  13. Increased anticoagulant activity of thrombin-binding DNA aptamers by nanoscale organization on DNA nanostructures

    DEFF Research Database (Denmark)

    Rangnekar, Abhijit; Zhang, Alex M.; Shiyuan Li, Susan

    2012-01-01

    Control over thrombin activity is much desired to regulate blood clotting in surgical and therapeutic situations. Thrombin-binding RNA and DNA aptamers have been used to inhibit thrombin activity and thus the coagulation cascade. Soluble DNA aptamers, as well as two different aptamers tethered by...

  14. The Anopheles gambiae cE5, a tight- and fast-binding thrombin inhibitor with post-transcriptionally regulated salivary-restricted expression

    Czech Academy of Sciences Publication Activity Database

    Ronca, R.; Kotsyfakis, Michalis; Lombardo, F.; Rizzo, C.; Currà, C.; Ponzi, M.; Fiorentino, G.; Ribeiro, J.M.C.; Arcà, B.

    2012-01-01

    Roč. 42, č. 9 (2012), s. 610-620 ISSN 0965-1748 R&D Projects: GA ČR GAP502/12/2409 Institutional research plan: CEZ:AV0Z60220518 Keywords : Anopheles * Salivary protein * Anti-thrombin * Anophelin * Hematophagy * Post-transcriptional regulation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.234, year: 2012

  15. Interaction of fucoidan with proteases and inhibitors of coagulation and fibrinolysis.

    Science.gov (United States)

    Minix, R; Doctor, V M

    1997-09-01

    The interactions of fucoidan with glutamic plasminogen (Glu-Plg), two-chain tissue plasminogen activator (t-PA), LMwt-urokinase, thrombin, and antithrombin III (AT-III) were investigated using fucoidan-sepharose affinity chromatography. The results showed 1) a high degree of affinity between fucoidan-sepharose and Glu-Plg; Lmwt-urokinase and thrombin while t-Pa and AT-III did not bind with fucoidan-sepharose. 2) The double reciprocal plot for the LMwt-urokinase activation of Glu-Plg showed that plasminogen activator inhibitor (PAI-1) inhibited this reaction in a noncompetitive manner and that the presence of fucoidan decreased Km for this interaction by 50% and increased Kcat by 30-fold, 3) The double reciprocal plot for the t-PA activation of Glu-Plg showed that PAI-1 inhibited this reaction in a competitive manner and that fucoidan in conjunction with 6-aminohexanoic acid (6-AH) increased Kcat for this interaction by 5-fold without affecting Km. 4) Fucoidan enhanced the interaction of thrombin with both AT-III and heparin cofactor II (HC-II) and it was more effective than unfractionated heparin of LMwt-heparin in enhancing the interaction of HC-II with thrombin.

  16. Universal, class-specific and drug-specific reversal agents for the new oral anticoagulants.

    Science.gov (United States)

    Ansell, Jack E

    2016-02-01

    Although there is controversy about the absolute need for a reversal agent for the new direct oral anticoagulants (DOACs), the absence of such an agent is a barrier to more widespread use of these agents. For the management of major life-threatening bleeding with the DOACs, most authorities recommend the use of four factor prothrombin complex concentrates, although the evidence to support their use in terms of improving outcomes is meager. At the present time, there are three antidotes in development and poised to enter the market. Idarucizumab is a drug-specific antidote targeted to reverse the direct thrombin inhibitor, dabigatran. Andexanet alfa is a class-specific antidote targeted to reverse the oral direct factor Xa inhibitors as well as the indirect inhibitor, enoxaparin. Ciraparantag is a universal antidote targeted to reverse the direct thrombin and factor Xa inhibitors as well as the indirect inhibitor, enoxaparin.

  17. Macrophage Migration Inhibitory Factor-Induced Autophagy Contributes to Thrombin-Triggered Endothelial Hyperpermeability in Sepsis.

    Science.gov (United States)

    Chao, Chiao-Hsuan; Chen, Hong-Ru; Chuang, Yung-Chun; Yeh, Trai-Ming

    2018-07-01

    Vascular leakage contributes to the high morbidity and mortality associated with sepsis. Exposure of the endothelium to inflammatory mediators, such as thrombin and cytokines, during sepsis leads to hyperpermeability. We recently observed that autophagy, a cellular process for protein turnover, is involved in macrophage migration inhibitory factor (MIF)-induced endothelial hyperpermeability. Even though it is known that thrombin induces endothelial cells to secrete MIF and to increase vascular permeability, the possible role of autophagy in this process is unknown. In this study, we proposed and tested the hypothesis that MIF-induced autophagy plays an important role in thrombin-induced endothelial hyperpermeability. We evaluated the effects of thrombin on endothelial permeability, autophagy induction, and MIF secretion in vitro using the human microvascular endothelial cell line-1 and human umbilical vein endothelial cells. Several mechanisms/read outs of endothelial permeability and autophagy formation were examined. We observed that blocking autophagy attenuated thrombin-induced endothelial hyperpermeability. Furthermore, thrombin-induced MIF secretion was involved in this process because MIF inhibition reduced thrombin-induced autophagy and hyperpermeability. Finally, we showed that blocking MIF or autophagy effectively alleviated vascular leakage and mortality in endotoxemic mice. Thus, MIF-induced autophagy may represent a common mechanism causing vascular leakage in sepsis.

  18. Structural Characterization of a Thrombin-Aptamer Complex by High Resolution Native Top-Down Mass Spectrometry

    Science.gov (United States)

    Zhang, Jiang; Loo, Rachel R. Ogorzalek; Loo, Joseph A.

    2017-09-01

    Native mass spectrometry (MS) with electrospray ionization (ESI) has evolved as an invaluable tool for the characterization of intact native proteins and non-covalently bound protein complexes. Here we report the structural characterization by high resolution native top-down MS of human thrombin and its complex with the Bock thrombin binding aptamer (TBA), a 15-nucleotide DNA with high specificity and affinity for thrombin. Accurate mass measurements revealed that the predominant form of native human α-thrombin contains a glycosylation mass of 2205 Da, corresponding to a sialylated symmetric biantennary oligosaccharide structure without fucosylation. Native MS showed that thrombin and TBA predominantly form a 1:1 complex under near physiological conditions (pH 6.8, 200 mM NH4OAc), but the binding stoichiometry is influenced by the solution ionic strength. In 20 mM ammonium acetate solution, up to two TBAs were bound to thrombin, whereas increasing the solution ionic strength destabilized the thrombin-TBA complex and 1 M NH4OAc nearly completely dissociated the complex. This observation is consistent with the mediation of thrombin-aptamer binding through electrostatic interactions and it is further consistent with the human thrombin structure that contains two anion binding sites on the surface. Electron capture dissociation (ECD) top-down MS of the thrombin-TBA complex performed with a high resolution 15 Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer showed the primary binding site to be at exosite I located near the N-terminal sequence of the heavy chain, consistent with crystallographic data. High resolution native top-down MS is complementary to traditional structural biology methods for structurally characterizing native proteins and protein-DNA complexes. [Figure not available: see fulltext.

  19. Thrombin stimulates albumin transcytosis in lung microvascular endothelial cells via activation of acid sphingomyelinase.

    Science.gov (United States)

    Kuebler, Wolfgang M; Wittenberg, Claudia; Lee, Warren L; Reppien, Eike; Goldenberg, Neil M; Lindner, Karsten; Gao, Yizhuo; Winoto-Morbach, Supandi; Drab, Marek; Mühlfeld, Christian; Dombrowsky, Heike; Ochs, Matthias; Schütze, Stefan; Uhlig, Stefan

    2016-04-15

    Transcellular albumin transport occurs via caveolae that are abundant in lung microvascular endothelial cells. Stimulation of albumin transcytosis by proinflammatory mediators may contribute to alveolar protein leak in lung injury, yet the regulation of albumin transport and its underlying molecular mechanisms are so far incompletely understood. Here we tested the hypothesis that thrombin may stimulate transcellular albumin transport across lung microvascular endothelial cells in an acid-sphingomyelinase dependent manner. Thrombin increased the transport of fluorescently labeled albumin across confluent human lung microvascular endothelial cell (HMVEC-L) monolayers to an extent that markedly exceeds the rate of passive diffusion. Thrombin activated acid sphingomyelinase (ASM) and increased ceramide production in HMVEC-L, but not in bovine pulmonary artery cells, which showed little albumin transport in response to thrombin. Thrombin increased total caveolin-1 (cav-1) content in both whole cell lysates and lipid rafts from HMVEC-L, and this effect was blocked by inhibition of ASM or de novo protein biosynthesis. Thrombin-induced uptake of albumin into lung microvascular endothelial cells was confirmed in isolated-perfused lungs by real-time fluorescence imaging and electron microscopy of gold-labeled albumin. Inhibition of ASM attenuated thrombin-induced albumin transport both in confluent HMVEC-L and in intact lungs, whereas HMVEC-L treatment with exogenous ASM increased albumin transport and enriched lipid rafts in cav-1. Our findings indicate that thrombin stimulates transcellular albumin transport in an acid sphingomyelinase-dependent manner by inducing de novo synthesis of cav-1 and its recruitment to membrane lipid rafts. Copyright © 2016 the American Physiological Society.

  20. Expression of PKA inhibitor (PKI) gene abolishes cAMP-mediated protection to endothelial barrier dysfunction.

    Science.gov (United States)

    Lum, H; Jaffe, H A; Schulz, I T; Masood, A; RayChaudhury, A; Green, R D

    1999-09-01

    We investigated the hypothesis that cAMP-dependent protein kinase (PKA) protects against endothelial barrier dysfunction in response to proinflammatory mediators. An E1-, E3-, replication-deficient adenovirus (Ad) vector was constructed containing the complete sequence of PKA inhibitor (PKI) gene (AdPKI). Infection of human microvascular endothelial cells (HMEC) with AdPKI resulted in overexpression of PKI. Treatment with 0.5 microM thrombin increased transendothelial albumin clearance rate (0.012 +/- 0.003 and 0.035 +/- 0.005 microl/min for control and thrombin, respectively); the increase was prevented with forskolin + 3-isobutyl-1-methylxanthine (F + I) treatment. Overexpression of PKI resulted in abrogation of the F + I-induced inhibition of the permeability increase. However, with HMEC infected with ultraviolet-inactivated AdPKI, the F + I-induced inhibition was present. Also, F + I treatment of HMEC transfected with reporter plasmid containing the cAMP response element-directed transcription of the luciferase gene resulted in an almost threefold increase in luciferase activity. Overexpression of PKI inhibited this induction of luciferase activity. The results show that Ad-mediated overexpression of PKI in endothelial cells abrogated the cAMP-mediated protection against increased endothelial permeability, providing direct evidence that cAMP-dependent protein kinase promotes endothelial barrier function.

  1. Rigidification of the autolysis loop enhances Na+ binding to thrombin

    Science.gov (United States)

    Pozzi, Nicola; Chen, Raymond; Chen, Zhiwei; Bah, Alaji; Di Cera, Enrico

    2011-01-01

    Binding of Na+ to thrombin ensures high activity toward physiological substrates and optimizes the procoagulant and prothrombotic roles of the enzyme in vivo. Under physiological conditions of pH and temperature, the binding affinity of Na+ is weak due to large heat capacity and enthalpy changes associated with binding, and the Kd=80 mM ensures only 64% saturation of the site at the concentration of Na+ in the blood (140 mM). Residues controlling Na+ binding and activation have been identified. Yet, attempts to improve the interaction of Na+ with thrombin and possibly increase catalytic activity under physiological conditions have so far been unsuccessful. Here we report how replacement of the flexible autolysis loop of human thrombin with the homologous rigid domain of the murine enzyme results in a drastic (up to 10-fold) increase in Na+ affinity and a significant improvement in the catalytic activity of the enzyme. Rigidification of the autolysis loop abolishes the heat capacity change associated with Na+ binding observed in the wild-type and also increases the stability of thrombin. These findings have general relevance to protein engineering studies of clotting proteases and trypsin-like enzymes. PMID:21536369

  2. Genetic Determinants of Thrombin Generation and Their Relation to Venous Thrombosis: Results from the GAIT-2 Project

    Science.gov (United States)

    Martin-Fernandez, Laura; Ziyatdinov, Andrey; Carrasco, Marina; Millon, Juan Antonio; Martinez-Perez, Angel; Vilalta, Noelia; Brunel, Helena; Font, Montserrat; Hamsten, Anders; Souto, Juan Carlos; Soria, José Manuel

    2016-01-01

    Background Venous thromboembolism (VTE) is a common disease where known genetic risk factors explain only a small portion of the genetic variance. Then, the analysis of intermediate phenotypes, such as thrombin generation assay, can be used to identify novel genetic risk factors that contribute to VTE. Objectives To investigate the genetic basis of distinct quantitative phenotypes of thrombin generation and its relationship to the risk of VTE. Patients/Methods Lag time, thrombin peak and endogenous thrombin potential (ETP) were measured in the families of the Genetic Analysis of Idiopathic Thrombophilia 2 (GAIT-2) Project. This sample consisted of 935 individuals in 35 extended families selected through a proband with idiopathic thrombophilia. We performed also genome wide association studies (GWAS) with thrombin generation phenotypes. Results The results showed that 67% of the variation in the risk of VTE is attributable to genetic factors. The heritabilities of lag time, thrombin peak and ETP were 49%, 54% and 52%, respectively. More importantly, we demonstrated also the existence of positive genetic correlations between thrombin peak or ETP and the risk of VTE. Moreover, the major genetic determinant of thrombin generation was the F2 gene. However, other suggestive signals were observed. Conclusions The thrombin generation phenotypes are strongly genetically determined. The thrombin peak and ETP are significantly genetically correlated with the risk of VTE. In addition, F2 was identified as a major determinant of thrombin generation. We reported suggestive signals that might increase our knowledge to explain the variability of this important phenotype. Validation and functional studies are required to confirm GWAS results. PMID:26784699

  3. Successful endovascular treatment of a hemodialysis graft pseudoaneurysm by covered stent and direct percutaneous thrombin injection.

    LENUS (Irish Health Repository)

    Keeling, Aoife N

    2011-07-25

    Vascular access for hemodialysis remains a challenge for nephrologists, vascular surgeons, and interventional radiologists alike. Arteriovenous fistula and synthetic grafts remain the access of choice for long-term hemodialysis; however, they are subject to complications from infection and repeated needle cannulation. Pseudoaneurysms are an increasingly recognized adverse event. At present, there are many minimally invasive methods to repair these wall defects. We present a graft pseudoaneurysm, which required a combination of endovascular stent graft placement and percutaneous thrombin injection for successful occlusion.

  4. Heparin binding domain of antithrombin III: Characterization using a synthetic peptide directed polyclonal antibody

    International Nuclear Information System (INIS)

    Smith, J.W.; Dey, B.; Knauer, D.J.

    1990-01-01

    Antithrombin III (ATIII) is a plasma-borne serine protease inhibitor that apparently forms covalent complexes with thrombin. The interaction between ATIII and thrombin is enhanced several thousandfold by the glycosaminoglycan, heparin. The authors have previously proposed that the heparin binding site of ATIII residues within a region extending from amino acid residues 114-156. Computer-assisted analysis of this region revealed the presence of a 22 amino acid domain (residues 124-145), part of which shows a strong potential for the formation of an amphipathic helix: hydrophobic on one face and highly positively charged on the other. In the presence studies, polyclonal antisera were generated against a synthetic peptide corresponding to residues 124-145 in native human ATIII. Affinity-purified IgG from these antisera, as well as monovalent Fab's derived from them, specifically blocked the binding of heparin to ATIII. Additionally, occupancy of the heparin binding site by these same monovalent and bivalent IgG's at least partially substituted for heparin, accelerating linkage formation between ATIII and thrombin. These results provide the first immunological evidence that region 124-145 is directly involved in the binding of heparin to ATIII and that an antibody-induced conformational change within this region can mediate ATIII activation

  5. Cation Coordination Alters the Conformation of a Thrombin-Binding G-Quadruplex DNA Aptamer That Affects Inhibition of Thrombin.

    Science.gov (United States)

    Zavyalova, Elena; Tagiltsev, Grigory; Reshetnikov, Roman; Arutyunyan, Alexander; Kopylov, Alexey

    2016-10-01

    Thrombin-binding aptamers are promising anticoagulants. HD1 is a monomolecular antiparallel G-quadruplex with two G-quartets linked by three loops. Aptamer-thrombin interactions are mediated with two TT-loops that bind thrombin exosite I. Several cations were shown to be coordinated inside the G-quadruplex, including K + , Na + , NH 4 + , Ba 2+ , and Sr 2+ ; on the contrary, Mn 2+ was coordinated in the grooves, outside the G-quadruplex. K + or Na + coordination provides aptamer functional activity. The effect of other cations on aptamer functional activity has not yet been described, because of a lack of relevant tests. Interactions between aptamer HD1 and a series of cations were studied. A previously developed enzymatic method was applied to evaluate aptamer inhibitory activity. The structure-function correlation was studied using the characterization of G-quadruplex conformation by circular dichroism spectroscopy. K + coordination provided the well-known high inhibitory activity of the aptamer, whereas Na + coordination supported low activity. Although NH 4 + coordination yielded a typical antiparallel G-quadruplex, no inhibitory activity was shown; a similar effect was observed for Ba 2+ and Sr 2+ coordination. Mn 2+ coordination destabilized the G-quadruplex that drastically diminished aptamer inhibitory activity. Therefore, G-quadruplex existence per se is insufficient for aptamer inhibitory activity. To elicit the nature of these effects, we thoroughly analyzed nuclear magnetic resonance (NMR) and X-ray data on the structure of the HD1 G-quadruplex with various cations. The most reasonable explanation is that cation coordination changes the conformation of TT-loops, affecting thrombin binding and inhibition. HD1 counterparts, aptamers 31-TBA and NU172, behaved similarly with some distinctions. In 31-TBA, an additional duplex module stabilized antiparallel G-quadruplex conformation at high concentrations of divalent cations; whereas in NU172, a different

  6. Induction of HO-1 by carbon monoxide releasing molecule-2 attenuates thrombin-induced COX-2 expression and hypertrophy in primary human cardiomyocytes

    International Nuclear Information System (INIS)

    Chien, Peter Tzu-Yu; Lin, Chih-Chung; Hsiao, Li-Der; Yang, Chuen-Mao

    2015-01-01

    Carbon monoxide (CO) is one of the cytoprotective byproducts of heme oxygenase (HO)-1 and exerts anti-inflammatory action in various models. However, the detailed mechanisms underlying CO-induced HO-1 expression in primary human cardiomyocytes remain largely unidentified. We used primary left ventricle myocytes as a model and applied CO releasing molecule (CORM)-2 to investigate the relationship of CO and HO-1 expression. We herein used Western blot, real-time PCR, promoter activity and EIA to investigate the role of HO-1 expression protecting against thrombin-mediated responses. We found that thrombin-induced COX-2 expression, PGE 2 release and cardiomyocyte hypertrophy markers (increase in ANF/BNP, α-actin expression and cell surface area) was attenuated by pretreatment with CORM-2 which was partially reversed by hemoglobin (Hb) or ZnPP (an inhibitor of HO-1 activity), suggesting that HO-1/CO system may be of clinical importance to ameliorate heart failure through inhibition of inflammatory responses. CORM-2-induced HO-1 protein expression, mRNA and promoter was attenuated by pretreatment with the inhibitors of Pyk2 (PF431396), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), p38 (SB202530), JNK1/2 (SP600125), FoxO1 (AS1842856) and Sp1 (mithramycin A). The involvement of these signaling components was further confirmed by transfection with respective siRNAs, consistent with those of pharmacological inhibitors. These results suggested that CORM-2-induced HO-1 expression is mediated through a Pyk2/PDGFR/PI3K/Akt/FoxO1/Sp1-dependent manner and exerts a cytoprotective effect in human cardiomyocytes. - Graphical abstract: In summary, CORM-2 treatment induces Pyk2 transactivated PDGFR, which induces PI3K/Akt/MAPK activation, and then recruits Sp1/Foxo1 transcriptional factors to regulate HO-1 gene expression in primary human cardiomyocytes. - Highlights: • CORM-2 induces HO-1 expression. • Pyk2-dependent PDGFR activates PI3K/Akt/MAPK pathway in CORM-2-induced HO-1

  7. Induction of HO-1 by carbon monoxide releasing molecule-2 attenuates thrombin-induced COX-2 expression and hypertrophy in primary human cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Peter Tzu-Yu [Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Lin, Chih-Chung; Hsiao, Li-Der [Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan (China); Yang, Chuen-Mao, E-mail: chuenmao@mail.cgu.edu.tw [Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan (China)

    2015-12-01

    Carbon monoxide (CO) is one of the cytoprotective byproducts of heme oxygenase (HO)-1 and exerts anti-inflammatory action in various models. However, the detailed mechanisms underlying CO-induced HO-1 expression in primary human cardiomyocytes remain largely unidentified. We used primary left ventricle myocytes as a model and applied CO releasing molecule (CORM)-2 to investigate the relationship of CO and HO-1 expression. We herein used Western blot, real-time PCR, promoter activity and EIA to investigate the role of HO-1 expression protecting against thrombin-mediated responses. We found that thrombin-induced COX-2 expression, PGE{sub 2} release and cardiomyocyte hypertrophy markers (increase in ANF/BNP, α-actin expression and cell surface area) was attenuated by pretreatment with CORM-2 which was partially reversed by hemoglobin (Hb) or ZnPP (an inhibitor of HO-1 activity), suggesting that HO-1/CO system may be of clinical importance to ameliorate heart failure through inhibition of inflammatory responses. CORM-2-induced HO-1 protein expression, mRNA and promoter was attenuated by pretreatment with the inhibitors of Pyk2 (PF431396), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), p38 (SB202530), JNK1/2 (SP600125), FoxO1 (AS1842856) and Sp1 (mithramycin A). The involvement of these signaling components was further confirmed by transfection with respective siRNAs, consistent with those of pharmacological inhibitors. These results suggested that CORM-2-induced HO-1 expression is mediated through a Pyk2/PDGFR/PI3K/Akt/FoxO1/Sp1-dependent manner and exerts a cytoprotective effect in human cardiomyocytes. - Graphical abstract: In summary, CORM-2 treatment induces Pyk2 transactivated PDGFR, which induces PI3K/Akt/MAPK activation, and then recruits Sp1/Foxo1 transcriptional factors to regulate HO-1 gene expression in primary human cardiomyocytes. - Highlights: • CORM-2 induces HO-1 expression. • Pyk2-dependent PDGFR activates PI3K/Akt/MAPK pathway in CORM-2-induced HO

  8. Biochemical characterization of bovine plasma thrombin-activatable fibrinolysis inhibitor (TAFI)

    DEFF Research Database (Denmark)

    Valnickova, Zuzana; Thaysen-Andersen, Morten; Højrup, Peter

    2009-01-01

    -activatable fibrinolysis inhibitor (TAFI), and recombinant human TAFI have recently been solved. In light of these recent advances, we have characterized authentic bovine TAFI biochemically and compared it to human TAFI. RESULTS: The four N-linked glycosylation sequons within the activation peptide were all occupied...

  9. Thrombin contributes to protective immunity in pneumonia-derived sepsis via fibrin polymerization and platelet-neutrophil interactions

    NARCIS (Netherlands)

    Claushuis, T. A. M.; de Stoppelaar, S. F.; Stroo, I.; Roelofs, J. J. T. H.; Ottenhoff, R.; van der Poll, T.; van't Veer, C.

    2017-01-01

    Essentials Immunity and coagulation are linked during sepsis but the role of thrombin is not fully elucidated. We investigated the effect of thrombin inhibition on murine Klebsiella pneumosepsis outcome. Thrombin is crucial for survival and limiting bacterial growth in pneumonia derived sepsis.

  10. Rigidification of the autolysis loop enhances Na(+) binding to thrombin.

    Science.gov (United States)

    Pozzi, Nicola; Chen, Raymond; Chen, Zhiwei; Bah, Alaji; Di Cera, Enrico

    2011-11-01

    Binding of Na(+) to thrombin ensures high activity toward physiological substrates and optimizes the procoagulant and prothrombotic roles of the enzyme in vivo. Under physiological conditions of pH and temperature, the binding affinity of Na(+) is weak due to large heat capacity and enthalpy changes associated with binding, and the K(d)=80 mM ensures only 64% saturation of the site at the concentration of Na(+) in the blood (140 mM). Residues controlling Na(+) binding and activation have been identified. Yet, attempts to improve the interaction of Na(+) with thrombin and possibly increase catalytic activity under physiological conditions have so far been unsuccessful. Here we report how replacement of the flexible autolysis loop of human thrombin with the homologous rigid domain of the murine enzyme results in a drastic (up to 10-fold) increase in Na(+) affinity and a significant improvement in the catalytic activity of the enzyme. Rigidification of the autolysis loop abolishes the heat capacity change associated with Na(+) binding observed in the wild-type and also increases the stability of thrombin. These findings have general relevance to protein engineering studies of clotting proteases and trypsin-like enzymes. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Platelet-derived microparticles regulates thrombin generation via phophatidylserine in abdominal sepsis.

    Science.gov (United States)

    Wang, Yongzhi; Zhang, Su; Luo, Lingtao; Norström, Eva; Braun, Oscar Ö; Mörgelin, Matthias; Thorlacius, Henrik

    2018-02-01

    Sepsis is associated with dysfunctional coagulation. Recent data suggest that platelets play a role in sepsis by promoting neutrophil accumulation. Herein, we show that cecal ligation and puncture (CLP) triggered systemic inflammation, which is characterized by formation of IL-6 and CXC chemokines as well as neutrophil accumulation in the lung. Platelet depletion decreased neutrophil accumulation, IL-6, and CXC chemokines formation in septic lungs. Depletion of platelets increased peak thrombin formation and total thrombin generation (TG) in plasma from septic animals. CLP elevated circulating levels of platelet-derived microparticles (PMPs). In vitro generated PMPs were a potent inducer of TG. Interestingly, in vitro wild-type recombinant annexin V abolished PMP-induced thrombin formation whereas a mutant annexin V protein, which does not bind to phosphatidylserine (PS), had no effect. Administration of wild-type, but not mutant annexin V, significantly inhibited thrombin formation in septic animals. Moreover, CLP-induced formation of thrombin-antithrombin complexes were reduced in platelet-depleted mice and in animals pretreated with annexin V. PMP-induced TG attenuated in FXII- and FVII-deficient plasma. These findings suggest that sepsis-induced TG is dependent on platelets. Moreover, PMPs formed in sepsis are a potent inducer of TG via PS exposure, and activation of both the intrinsic and extrinsic pathway of coagulation. In conclusion, these observations suggest that PMPs and PS play an important role in dysfunctional coagulation in abdominal sepsis. © 2017 Wiley Periodicals, Inc.

  12. Thrombin-induced, TNFR-dependent miR-181c downregulation promotes MLL1 and NF-κB target gene expression in human microglia.

    Science.gov (United States)

    Yin, Min; Chen, Zhiying; Ouyang, Yetong; Zhang, Huiyan; Wan, Zhigang; Wang, Han; Wu, Wei; Yin, Xiaoping

    2017-06-29

    Controlling thrombin-driven microglial activation may serve as a therapeutic target for intracerebral hemorrhage (ICH). Here, we investigated microRNA (miRNA)-based regulation of thrombin-driven microglial activation using an in vitro thrombin toxicity model applied to primary human microglia. A miRNA array identified 22 differential miRNA candidates. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) identified miR-181c as the most significantly downregulated miRNA. TargetScan analysis identified mixed lineage leukemia-1 (MLL1) as a putative gene target for miR-181c. qRT-PCR was applied to assess tumor necrosis factor-alpha (TNF-α), miR-181c, and MLL1 levels following thrombin or proteinase-activated receptor-4-specific activating peptide (PAR4AP) exposure. Anti-TNF-α antibodies and tumor necrosis factor receptor (TNFR) silencing were employed to test TNF-α/TNFR dependence. A dual-luciferase reporter system and miR-181c mimic transfection assessed whether mir-181c directly binds to and negatively regulates MLL1. Nuclear factor kappa-B (NF-κB)-dependent luciferase reporter assays and NF-κB target gene expression were assessed in wild-type (MLL1+) and MLL1-silenced cells. Thrombin or PAR4AP-induced miR-181c downregulation (p < 0.05) and MLL1 upregulation (p < 0.05) that were dependent upon TNF-α/TNFR. miR-181c decreased wild-type MLL1 3'-UTR luciferase reporter activity (p < 0.05), and a miR-181c mimic suppressed MLL1 expression (p < 0.05). Thrombin treatment increased, while miR-181c reduced, NF-κB activity and NF-κB target gene expression in both wild-type (MLL1+) and MLL1-silenced cells (p < 0.05). Thrombin-induced, TNF-α/TNFR-dependent miR-181c downregulation promotes MLL1 expression, increases NF-κB activity, and upregulates NF-κB target gene expression. As miR-181c opposes thrombin's stimulation of pro-inflammatory NF-κB activity, miR-181c mimic therapy may show promise in controlling thrombin

  13. Construction of photoelectrochemical thrombin aptasensor via assembling multilayer of graphene-CdS nanocomposites.

    Science.gov (United States)

    Shangguan, Li; Zhu, Wei; Xue, Yanchun; Liu, Songqin

    2015-02-15

    A photoelectrochemical (PEC) aptasensor for highly sensitive and specific detection of thrombin was developed by using graphene–CdS nanocomposites multilayer as photoactive species and electroactive mediator hexaammineruthenium(III) chloride (Ru(NH(3))(6)(3+)) as signal enhancer. Graphene–CdS nanocomposites (G–CdS) were synthesized by one-pot reduction of oxide graphene and CdCl2 with thioacetamide. The photoactive multilayer was prepared by alternative assembly of the negatively charged 3-mercaptopropionic acid modified graphene–CdS nanocomposites (MPA-G–CdS) and the positively charged polyethylenimine (PEI) on ITO electrode. This layer-by-layer assembly method enhanced the stability and homogeneity of the photocurrent readout of G–CdS. Thrombin aptamer was covalently bound to the multilayer by using glutaraldehyde as cross-linking. Electroactive mediator (Ru(NH(3))(6)(3+)) could interact with the DNA phosphate backbone and thus facilitated the electron transfer between G–CdS multilayer and electrode and enhanced the photocurrent. Hybridizing of a long complementary DNA with thrombin aptamer could increase the adsorption amount of (Ru(NH(3))(6)(3+)), which in turn boosted the signal readout. In the presence of target thrombin, the affinity interaction between thrombin and its aptamer resulted in the long complementary DNA releasing from the G–CdS multilayer and decreasing of photocurrent signal. On the basis of G–CdS multilayer as the photoactive species, (Ru (NH(3))(6)(3+)) as an electroactive mediator, and aptamer as a recognition module, a high sensitive PEC aptasensor for thrombin detection was proposed. The thrombin aptasensor displayed a linear range from 2.0 pM to 600.0 pM and a detection limit of 1.0 pM. The present strategy provided a promising ideology for the future development of PEC biosensor. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Secretory products from thrombin-stimulated human platelets exert an inhibitory effect on NK-cytotoxic activity

    DEFF Research Database (Denmark)

    Skov Madsen, P; Hokland, P; Hokland, M

    1987-01-01

    We have investigated the interaction between human platelets and the NK-system, with special emphasis on the action of secretory products from platelets in an NK assay with 51Cr-labelled K562 as target cells. Supernatants from thrombin-stimulated platelets added to the NK assay consistently...... decreased the NK-cytotoxicity by 40% +/- 4.3%, indicating the existence of secreted products from platelets as a source of NK-inhibiting substances. In contrast, no direct cytotoxic effect of these secretory products on the target cells (K562) was seen. Thus, normal human platelets, when stimulated...... with thrombin, are capable of secreting different, yet undefined factors, which significantly inhibit NK activity in vitro. The results also suggest that the role of products from contaminating in vitro activated platelets should be borne in mind when performing conventional NK assays. Udgivelsesdato: 1986-Oct...

  15. Behaviour of homologous 125I fibrinogen after thrombin and ancrod infusion in rabbits

    International Nuclear Information System (INIS)

    Setter, R.

    1977-01-01

    The behaviour of radioactively labelled fibrinogen after infusion of thrombin or ancrod is investigated. Common factors and differences in the behaviour of fibrinogen after infusion of these two enzymes, which act proteolytically on the fibrinogen, are dealt with. Rabbits received an i.v. injection of homologous 125 I-fibrinogen 3 days before ancrod or thrombin infusion. On the day of the experiments, one group of animals received an ancrod infusion (1.5 U/kg body weight for 30 minutes), the other a thrombin infusion (600 U/kg body weight for 60 minutes). Intravenous ancrod and thrombin infusions lowered the fibrinogen level to 30% or 50% of the initial value due to intravascular coagulation. About 50% of the 125 I fibrinogen was transformed after ancrod exposure into a non-coagulating fraction of fibrinogen derivatives which produces no fibrinolytic decomposition products. (orig./AJ) [de

  16. Progestin and thrombin regulate tissue factor expression in human term decidual cells.

    Science.gov (United States)

    Lockwood, C J; Murk, W; Kayisli, U A; Buchwalder, L F; Huang, S-T; Funai, E F; Krikun, G; Schatz, F

    2009-06-01

    Perivascular cell membrane-bound tissue factor (TF) initiates hemostasis via thrombin generation. The identity and potential regulation of TF-expressing cells at the human maternal-fetal interface that confers hemostatic protection during normal and preterm delivery is unclear. The objective of the study were to identify TF-expressing cells at the maternal-fetal interface in term and preterm decidual sections by immunohistochemistry and evaluate progestin, thrombin, TNF-alpha, and IL-1beta effects on TF expression by cultured human term decidual cells (DCs). Serial placental sections were immunostained for TF. Leukocyte-free term DC monolayers were incubated with 10(-8) M estradiol (E2) or E2 plus 10(-7) M medroxyprogestrone acetate (MPA) +/- thrombin or TNF-alpha or IL-1beta. ELISA and Western blotting assessed TF in cell lysates. Quantitative real-time RT-PCR measured TF mRNA levels. Immunolocalized TF in DC membranes in preterm and term placental sections displayed higher Histologic Scores than villous mesenchymal cells (P term placental sections, DC-expressed TF exceeds that of other cell types at the maternal-fetal interface and is localized at the cell membranes in which it can bind to factor VII and meet the hemostatic demands of labor and delivery via thrombin formation. Unlike the general concept that TF is constitutive in cells that highly express it, MPA and thrombin significantly enhanced TF expression in term DC monolayers.

  17. Protein C inhibits endocytosis of thrombin-thrombomodulin complexes in A549 lung cancer cells and human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Maruyama, I.; Majerus, P.W.

    1987-01-01

    We investigated the effect of protein C on the endocytosis of thrombin-thrombomodulin complexes. We previously showed that exposure of umbilical vein endothelial cells to thrombin stimulated the internalization and degradation of thrombin. A similar internalization was stimulated by a monoclonal antithrombomodulin antibody. We have repeated these studies in the presence of protein C and found that endocytosis of 125 I-thrombin-thrombomodulin complexes, but not 125 I-antithrombomodulin-thrombomodulin complexes, is inhibited. Activated protein C did not inhibit endocytosis of thrombin-thrombomodulin complexes. Protein C inhibited both internalization and degradation of 125 I-thrombin and diisopropylphosphoryl (DIP) 125 I-thrombin in human lung cancer cells (A549). These effects were observed at protein C concentrations found in human plasma. Protein S had no effect on the inhibition of endocytosis of thrombin-thrombomodulin complexes by protein C. We propose that protein C may regulate the rate of endocytosis of thrombin-thrombomodulin complexes in vivo and thereby control the capacity for endothelium to activate protein C

  18. Adrenaline potentiates PI 3-kinase in platelets stimulated with thrombin and SFRLLN: role of secreted ADP.

    Science.gov (United States)

    Selheim, F; Frøyset, A K; Strand, I; Vassbotn, F S; Holmsen, H

    2000-11-17

    Adrenaline significantly potentiated late thrombin- and SFRLLN-induced PtdIns(3,4)P(2) production. Furthermore, the potentiating effect of adrenaline on thrombin-induced PtdIns(3, 4)P(2) production was independent on secreted ADP, whereas, the effect of adrenaline on SFRLLN-induced PtdIns(3,4)P(2) production was completely dependent of secreted ADP. However, the ADP-dependent accumulation of PtdIns(3,4)P(2) was not required for irreversible platelet aggregation induced by SFRLLN in the presence of adrenaline. It is concluded that adrenaline can replace secreted ADP to potentiate PtdIns(3,4)P(2) production in thrombin-stimulated but not in SFRLLN-stimulated platelets, thus demonstrating a qualitative difference between platelet stimulation by thrombin and the thrombin receptor activating peptide SFRLLN.

  19. Label-free aptamer biosensor for thrombin detection based on functionalized graphene nanocomposites.

    Science.gov (United States)

    Wang, Qingqing; Zhou, Zhixue; Zhai, Yanling; Zhang, Lingling; Hong, Wei; Zhang, Zhiquan; Dong, Shaojun

    2015-08-15

    A label-free and amplified electrochemical impedimetric aptasensor based on functionalized graphene nanocomposites (rGO-AuNPs) was developed for the detection of thrombin, which played a vital role in thrombosis and hemostasis. The thiolated aptamer and dithiothreitol (TBA15-DTT) were firstly immobilized on the gold electrode to capture the thrombin molecules, and then aptamer functionalized graphene nanocomposites (rGO-TBA29) were used to fabricate a sandwich sensing platform for amplifying the impedimetric signals. As numerous negative charges of TBA29 on the electrode repelled to the [Fe(CN)6](4-/3-) anions, resulting in an obvious amplified charge-transfer resistance (Rct) signal. The Rct increase was linearly proportional to the thrombin concentration from 0.3 to 50nM and a detection limit of 0.01nM thrombin was achieved. In addition, graphene could also be labeled with other probes via electrostatic or π-π stacking interactions to produce signals, therefore different detection methods expanding wide application could be used in this model. Copyright © 2015. Published by Elsevier B.V.

  20. Presence of plasma proteins facilitates the uptake of 125I-thrombin by the rabbit thoracic aorta endothelium in vitro

    International Nuclear Information System (INIS)

    Hatton, M.W.; Moar, S.L.

    1986-01-01

    Various purified proteins, protein derivatives and two polysaccharides were added individually to a physiological medium in order to effect uptake of 125 I-thrombin by the rabbit aorta endothelium. Over a wide range of concentration (0.004-40 mg/ml), the presence of either purified rabbit or bovine albumin during thrombin uptake encouraged an increase (70-110%) in 125 I-thrombin binding by the endothelium and subendothelium compared to uptake by aorta segments in the absence of added protein. Pretreatment of aorta segments with albumin before incubation with 125 I-thrombin in the absence of albumin did not encourage thrombin uptake to the same extent as having 125 I-thrombin and albumin together. Purified human transferrin, rabbit IgG, chicken ovalbumin or denatured bovine casein could replace albumin to produce a similar enhancement of thrombin uptake. Replacing active concentrations of albumin by either reduced-carboxymethylated albumin, defatted albumin, plasmin-treated or thermolysin-treated albumin also caused an increase (50-130%) in thrombin binding, whereas replacement by acid-hydrolysed albumin or with polyglutamic acid was either ineffective or even inhibitory. Lysine-modified or arginine-modified albumins caused a small enhancement (14-32%) and no enhancement of thrombin uptake, respectively. Dextran, at low concentration (0.04-0.4 mg/ml) did not influence thrombin uptake, and at higher concentration (4-40 mg/ml) caused a decrease in uptake by both the endothelium and subendothelial layers. Low concentration of dextran sulphate inhibited thrombin uptake to 20-30% of control values. These data express the importance of accompanying protein in the response of the vascular endothelium during binding of thrombin. The possibility that other protein-cell interactions may be similarly influenced by macromolecular solutes is also discussed

  1. Rigidification of the autolysis loop enhances Na[superscript +] binding to thrombin

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Nicola; Chen, Raymond; Chen, Zhiwei; Bah, Alaji; Di Cera, Enrico (St. Louis-MED)

    2011-09-20

    Binding of Na{sup +} to thrombin ensures high activity toward physiological substrates and optimizes the procoagulant and prothrombotic roles of the enzyme in vivo. Under physiological conditions of pH and temperature, the binding affinity of Na{sup +} is weak due to large heat capacity and enthalpy changes associated with binding, and the K{sub d} = 80 mM ensures only 64% saturation of the site at the concentration of Na{sup +} in the blood (140 mM). Residues controlling Na{sup +} binding and activation have been identified. Yet, attempts to improve the interaction of Na{sup +} with thrombin and possibly increase catalytic activity under physiological conditions have so far been unsuccessful. Here we report how replacement of the flexible autolysis loop of human thrombin with the homologous rigid domain of the murine enzyme results in a drastic (up to 10-fold) increase in Na{sup +} affinity and a significant improvement in the catalytic activity of the enzyme. Rigidification of the autolysis loop abolishes the heat capacity change associated with Na{sup +} binding observed in the wild-type and also increases the stability of thrombin. These findings have general relevance to protein engineering studies of clotting proteases and trypsin-like enzymes.

  2. Salmon and human thrombin differentially regulate radicular pain, glial-induced inflammation and spinal neuronal excitability through protease-activated receptor-1.

    Directory of Open Access Journals (Sweden)

    Jenell R Smith

    Full Text Available Chronic neck pain is a major problem with common causes including disc herniation and spondylosis that compress the spinal nerve roots. Cervical nerve root compression in the rat produces sustained behavioral hypersensitivity, due in part to the early upregulation of pro-inflammatory cytokines, the sustained hyperexcitability of neurons in the spinal cord and degeneration in the injured nerve root. Through its activation of the protease-activated receptor-1 (PAR1, mammalian thrombin can enhance pain and inflammation; yet at lower concentrations it is also capable of transiently attenuating pain which suggests that PAR1 activation rate may affect pain maintenance. Interestingly, salmon-derived fibrin, which contains salmon thrombin, attenuates nerve root-induced pain and inflammation, but the mechanisms of action leading to its analgesia are unknown. This study evaluates the effects of salmon thrombin on nerve root-mediated pain, axonal degeneration in the root, spinal neuronal hyperexcitability and inflammation compared to its human counterpart in the context of their enzymatic capabilities towards coagulation substrates and PAR1. Salmon thrombin significantly reduces behavioral sensitivity, preserves neuronal myelination, reduces macrophage infiltration in the injured nerve root and significantly decreases spinal neuronal hyperexcitability after painful root compression in the rat; whereas human thrombin has no effect. Unlike salmon thrombin, human thrombin upregulates the transcription of IL-1β and TNF-α and the secretion of IL-6 by cortical cultures. Salmon and human thrombins cleave human fibrinogen-derived peptides and form clots with fibrinogen with similar enzymatic activities, but salmon thrombin retains a higher enzymatic activity towards coagulation substrates in the presence of antithrombin III and hirudin compared to human thrombin. Conversely, salmon thrombin activates a PAR1-derived peptide more weakly than human thrombin. These

  3. The effect of hirudin modification of silk fibroin on cell growth and antithrombogenicity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiongyu; Tu, Fangfang; Liu, Yunfei; Zhang, Yujin; Li, Helei; Kang, Zhao [National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren-ai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123 (China); Yin, Yin [Laboratory Animal Research Center, Soochow University, Suzhou, Jiangsu 215123 (China); Wang, Jiannan, E-mail: wangjn@suda.edu.cn [National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren-ai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123 (China)

    2017-06-01

    Thrombus formation remains a particular challenge for small-diameter vascular grafts. In this study, the direct thrombin inhibitor hirudin (Hir) was used to modify silk fibroin films in an attempt to enhance its antithrombogenic properties. Hir was successfully attached to silk fibroin and uniformly distributed in the regenerative material. Hir-modified films showed good cytocompatibility, and supported adhesion and proliferation of fibroblasts (L929), human umbilical vascular endothelial cells (HUVECs) and human aortic smooth muscle cells (HASMCs). Proliferation of HAVSMCs was inhibited by increasing Hir concentration. Activated partial thrombin time (APTT), prothrombin time (PT) and thrombin time (TT) of Hir-modified silk fibroin tubular scaffolds (SFTSs) were all increased markedly compared with fresh rabbit blood, ethanol-treated SFTS and unmodified SFTS, demonstrating the improved antithrombogenicity of SFTSs following modification with Hir. - Highlights: • A direct thrombin inhibitor hirudin was used to modify silk fibroin. • Antithrombogenic property of Hir-modified silk fibroin films was improved. • Hir-modified silk fibroin films supported adhesion and proliferation of HUVECs and HAVSMCs. • Proliferation of HAVSMCs on silk fibroin films was inhibited by increasing Hir concentration.

  4. Endogenous thrombin potential in polycystic ovary syndrome

    DEFF Research Database (Denmark)

    Aziz, Mubeena; Sidelmann, Johannes Jakobsen; Wissing, Marie Louise Muff

    2015-01-01

    OBJECTIVES: The objective of this study is to investigate plasma endogenous thrombin generation in four different phenotypes of polycystic ovary syndrome (PCOS) defined by Body Mass Index (BMI) and insulin resistance (IR). PCOS is diagnosed according to the Rotterdam criteria. DESIGN: Multicenter...

  5. Thermodynamic, Anticoagulant, and Antiproliferative Properties of Thrombin Binding Aptamer Containing Novel UNA Derivative

    Directory of Open Access Journals (Sweden)

    Weronika Kotkowiak

    2018-03-01

    Full Text Available Thrombin is a serine protease that plays a crucial role in hemostasis, fibrinolysis, cell proliferation, and migration. Thrombin binding aptamer (TBA is able to inhibit the activity of thrombin molecule via binding to its exosite I. This 15-nt DNA oligonucleotide forms an intramolecular, antiparallel G-quadruplex structure with a chair-like conformation. In this paper, we report on our investigations on the influence of certain modified nucleotide residues on thermodynamic stability, folding topology, and biological properties of TBA variants. In particular, the effect of single incorporation of a novel 4-thiouracil derivative of unlocked nucleic acid (UNA, as well as single incorporation of 4-thiouridine and all four canonical UNAs, was evaluated. The studies presented herein have shown that 4-thiouridine in RNA and UNA series, as well as all four canonical UNAs, can efficiently modulate G-quadruplex thermodynamic and biological stability, and that the effect is strongly position dependent. Interestingly, TBA variants containing the modified nucleotide residues are characterized by unchanged folding topology. Thrombin time assay revealed that incorporation of certain UNA residues may improve G-quadruplex anticoagulant properties. Noteworthy, some TBA variants, characterized by decreased ability to inhibit thrombin activity, possess significant antiproliferative properties reducing the viability of the HeLa cell line even by 95% at 10 μM concentration.

  6. Longitudinal assessment of thrombin generation potential in response to alteration of antiplatelet therapy after TIA or ischaemic stroke.

    LENUS (Irish Health Repository)

    Tobin, W O

    2013-02-01

    The impact of changing antiplatelet therapy on thrombin generation potential in patients with ischaemic cerebrovascular disease (CVD) is unclear. We assessed patients within 4 weeks of TIA or ischaemic stroke (baseline), and then 14 days (14d) and >90 days (90d) after altering antiplatelet therapy. Thrombin generation was assessed in platelet poor plasma. Ninety-one patients were recruited. Twenty-four were initially assessed on no antiplatelet therapy, and then after 14d (N = 23) and 90d (N = 8) on aspirin monotherapy; 52 were assessed on aspirin monotherapy, and after 14 and 90 days on aspirin and dipyridamole combination therapy; 21 patients were assessed on aspirin and after 14 days (N = 21) and 90 days (N = 19) on clopidogrel. Peak thrombin generation and endogenous thrombin potential were reduced at 14 and 90 days (p ≤ 0.04) in the overall cohort. We assessed the impact of individual antiplatelet regimens on thrombin generation parameters to investigate the cause of this effect. Lag time and time-to-peak thrombin generation were unchanged at 14 days, but reduced 90 days after commencing aspirin (p ≤ 0.009). Lag time, peak thrombin generation and endogenous thrombin potential were reduced at both 14 and 90 days after adding dipyridamole to aspirin (p ≤ 0.01). Lag time was reduced 14 days after changing from aspirin to clopidogrel (p = 0.045), but this effect was not maintained at 90 days (p = 0.2). This pilot study did not show any consistent effects of commencing aspirin, or of changing from aspirin to clopidogrel on thrombin generation potential during follow-up. The addition of dipyridamole to aspirin led to a persistent reduction in peak and total thrombin generation ex vivo, and illustrates the diverse, potentially beneficial, newly recognised \\'anti-coagulant\\' effects of dipyridamole in ischaemic CVD.

  7. Mechanism for release of arachidonic acid during guinea pig platelet aggregation: a role for the diacylglycerol lipase inhibitor RHC 80267

    International Nuclear Information System (INIS)

    Amin, D.

    1986-01-01

    The mechanism of the release of arachidonic acid from phospholipids after the stimulation of guinea pig platelets with collagen, thrombin and platelet activating factor (PAF) was studied. RHC 80267, a diacylglycerol lipase inhibitor, and indomethacin, a cyclooxygenase inhibitor, were used. Various in vitro assays for enzymes involved in arachidonic acid release and metabolism were conducted. Platelet aggregation and simultaneous release of ADP from platelets were monitored using a Chrono-log Lumiaggregometer. Platelets were labeled with ( 14 C)arachidonic acid to facilitate sensitive determination of small changes in platelet phospholipids during platelet aggregation. In the present investigation it is shown that collagen, thrombin and PAF increased phospholipase C activity. It was also discovered that cyclooxygenase products were responsible for further stimulation (a positive feed-back) of phospholipase C activity, while diacylglycerol provided a negative feed-back control over receptor-stimulated phospholipase C activity and inhibited ADP release. The guinea pig platelet is an ideal model to study phospholipase C-diacylglycerol lipase pathway for the release of arachidonic acid from platelet phospholipids because it does not have any phospholipase A 2 activity. It was observed that cyclooxygenase products were responsible for collagen-induced guinea pig platelet aggregation. Indomethacin completely inhibited collagen-induced platelet aggregation, was less effective against thrombin, and had no effect on PAF-induced platelet aggregation. On the other hand, RHC 80267 was a powerful inhibitor of aggregation and ADP release induced by all three of these potent aggregating agents

  8. Thrombin generation correlates with disease duration in multiple sclerosis (MS): Novel insights into the MS-associated prothrombotic state.

    Science.gov (United States)

    Parsons, Martin Em; O'Connell, Karen; Allen, Seamus; Egan, Karl; Szklanna, Paulina B; McGuigan, Christopher; Ní Áinle, Fionnuala; Maguire, Patricia B

    2017-01-01

    Thrombin is well recognised for its role in the coagulation cascade but it also plays a role in inflammation, with enhanced thrombin generation observed in several inflammatory disorders. Although patients with multiple sclerosis (MS) have a higher incidence of thrombotic disease, thrombin generation has not been studied to date. The aim of this study was to characterise calibrated automated thrombography parameters in patients with relapsing-remitting MS (RRMS) and primary progressive MS (PPMS) in comparison to healthy controls (HCs). Calibrated automated thrombography was performed on platelet poor plasma from 15 patients with RRMS, 15 with PPMS and 19 HCs. We found that patients with RRMS generate thrombin at a significantly faster rate than the less inflammatory subtype, PPMS or HCs. In addition, the speed of thrombin generation was significantly correlated with time from clinical diagnosis in both subtypes. However, in RRMS the rate of thrombin generation was increased with increased time from clinical diagnosis, while in PPMS the rate of thrombin generation decreased with increased time from clinical diagnosis. These data likely reflect the differential active proinflammatory states in each MS subtype and provide novel mechanistic insights into the clinically relevant prothrombotic state observed in these patients.

  9. Large-scale preparation of active caspase-3 in E. coli by designing its thrombin-activatable precursors

    Directory of Open Access Journals (Sweden)

    Park Sung

    2008-12-01

    Full Text Available Abstract Background Caspase-3, a principal apoptotic effector that cleaves the majority of cellular substrates, is an important medicinal target for the treatment of cancers and neurodegenerative diseases. Large amounts of the protein are required for drug discovery research. However, previous efforts to express the full-length caspase-3 gene in E. coli have been unsuccessful. Results Overproducers of thrombin-activatable full-length caspase-3 precursors were prepared by engineering the auto-activation sites of caspase-3 precursor into a sequence susceptible to thrombin hydrolysis. The engineered precursors were highly expressed as soluble proteins in E. coli and easily purified by affinity chromatography, to levels of 10–15 mg from 1 L of E. coli culture, and readily activated by thrombin digestion. Kinetic evaluation disclosed that thrombin digestion enhanced catalytic activity (kcat/KM of the precursor proteins by two orders of magnitude. Conclusion A novel method for a large-scale preparation of active caspase-3 was developed by a strategic engineering to lack auto-activation during expression with amino acid sequences susceptible to thrombin, facilitating high-level expression in E. coli. The precursor protein was easily purified and activated through specific cleavage at the engineered sites by thrombin, generating active caspase-3 in high yields.

  10. Changes in thrombin generation in children after cardiac surgery and ex-vivo response to blood products and haemostatic agents

    DEFF Research Database (Denmark)

    Andreasen, Jo B; Ravn, Hanne B; Hvas, Anne-Mette

    2016-01-01

    surgery including cardiopulmonary bypass. Thrombin generation was analysed both in platelet-poor plasma and platelet-rich plasma. Analysis of the thrombin generation showed a significantly prolonged lag time (Pplatelet-poorandplatelet-richplasma ... thrombin generation significantly (all P rich plasma...

  11. A label-free and high sensitive aptamer biosensor based on hyperbranched polyester microspheres for thrombin detection

    International Nuclear Information System (INIS)

    Sun, Chong; Han, Qiaorong; Wang, Daoying; Xu, Weimin; Wang, Weijuan; Zhao, Wenbo; Zhou, Min

    2014-01-01

    Highlights: • A label-free thrombin aptamer biosensor applied in whole blood has been developed. • The aptamer biosensor showed a wide detection range and a low detection limit. • The antibiofouling idea utilized for biosensor is significant for diagnostics. - Abstract: In this paper, we have synthesized hyperbranched polyester microspheres with carboxylic acid functional groups (HBPE-CA) and developed a label-free electrochemical aptamer biosensor using thrombin-binding aptamer (TBA) as receptor for the measurement of thrombin in whole blood. The indium tin oxide (ITO) electrode surface modified with HBPE-CA microspheres was grafted with TBA, which has excellent binding affinity and selectivity for thrombin. Binding of the thrombin at the modified ITO electrode surface greatly restrained access of electrons for a redox probe of [Fe(CN) 6 ] 3−/4− . Moreover, the aptamer biosensor could be used for detection of thrombin in whole blood, a wide detection range (10 fM–100 nM) and a detection limit on the order of 0.90 fM were demonstrated. Control experiments were also carried out by using bull serum albumin (BSA) and lysozyme in the absence of thrombin. The good stability and repeatability of this aptamer biosensor were also proved. We expect that this demonstration will lead to the development of highly sensitive label-free sensors based on aptamer with lower cost than current technology. The integration of the technologies, which include anticoagulant, sensor and nanoscience, will bring significant input to high-performance biosensors relevant to diagnostics and therapy of interest for human health

  12. A label-free and high sensitive aptamer biosensor based on hyperbranched polyester microspheres for thrombin detection

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Chong [Jiangsu Key Laboratory of Biofunctional Materials, Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Han, Qiaorong [Jiangsu Key Laboratory of Biofunctional Materials, Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Wang, Daoying; Xu, Weimin [Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Wang, Weijuan [Jiangsu Key Laboratory of Biofunctional Materials, Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Zhao, Wenbo, E-mail: zhaowenbo@njnu.edu.cn [Jiangsu Key Laboratory of Biofunctional Materials, Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Zhou, Min, E-mail: zhouminnju@126.com [Department of Vascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008 (China)

    2014-11-19

    Highlights: • A label-free thrombin aptamer biosensor applied in whole blood has been developed. • The aptamer biosensor showed a wide detection range and a low detection limit. • The antibiofouling idea utilized for biosensor is significant for diagnostics. - Abstract: In this paper, we have synthesized hyperbranched polyester microspheres with carboxylic acid functional groups (HBPE-CA) and developed a label-free electrochemical aptamer biosensor using thrombin-binding aptamer (TBA) as receptor for the measurement of thrombin in whole blood. The indium tin oxide (ITO) electrode surface modified with HBPE-CA microspheres was grafted with TBA, which has excellent binding affinity and selectivity for thrombin. Binding of the thrombin at the modified ITO electrode surface greatly restrained access of electrons for a redox probe of [Fe(CN){sub 6}]{sup 3−/4−}. Moreover, the aptamer biosensor could be used for detection of thrombin in whole blood, a wide detection range (10 fM–100 nM) and a detection limit on the order of 0.90 fM were demonstrated. Control experiments were also carried out by using bull serum albumin (BSA) and lysozyme in the absence of thrombin. The good stability and repeatability of this aptamer biosensor were also proved. We expect that this demonstration will lead to the development of highly sensitive label-free sensors based on aptamer with lower cost than current technology. The integration of the technologies, which include anticoagulant, sensor and nanoscience, will bring significant input to high-performance biosensors relevant to diagnostics and therapy of interest for human health.

  13. Development of a sandwich ELISA for the thrombin light chain identified by serum proteome analysis

    Directory of Open Access Journals (Sweden)

    Kazuyuki Sogawa

    2017-08-01

    Full Text Available We previously identified novel biomarker candidates in biliary tract cancer (BTC using serum proteome analysis. Among several candidates, we focused on thrombin light chain which is a 4204 Da peptide as the most promising biomarker for BTC. To move thrombin light chain toward potential diagnostic use, we developed an enzyme immunoassay that enables to measure serum thrombin light chain levels.Both one monoclonal antibody specific to the N-termini and one polyclonal antibody were used to develop a sandwich ELISA for thrombin light chain. The assay was evaluated by comparing the results with those obtained by the ClinProt™ system. Serum samples were obtained from 20 patients with BTC, 20 patients with BBTDs and 20 HVs using the ClinProt™ system and ELISA.The results of the established ELISA showed a positive correlation with the findings by ClinProt™ system (slope=0.3386, intercept=34.901, r2=0.9641. The performance of the ELISA was satisfactory in terms of recovery (97.9–102.5% and within-run (1.5–4.8% and between-day (1.9–6.7% reproducibility. Serum thrombin light chain levels were significantly greater in BTC (176.5±47.2 ng/mL than in BBTDs (128.6±17.4 ng/mL and HVs (127.6±16.0 ng/mL (p<0.001.The sandwich ELISA developed in this study will be useful for validation of the diagnostic significance of serum thrombin light chain levels in various cancers. Keywords: Thrombin light chain, Biliary tract cancer, Sandwich ELISA, Serum biomarker

  14. Thrombin Production and Human Neutrophil Elastase Sequestration by Modified Cellulosic Dressings and Their Electrokinetic Analysis

    Directory of Open Access Journals (Sweden)

    Nicolette Prevost

    2011-12-01

    Full Text Available Wound healing is a complex series of biochemical and cellular events. Optimally, functional material design addresses the overlapping acute and inflammatory stages of wound healing based on molecular, cellular, and bio-compatibility issues. In this paper the issues addressed are uncontrolled hemostasis and inflammation which can interfere with the orderly flow of wound healing. In this regard, we review the serine proteases thrombin and elastase relative to dressing functionality that improves wound healing and examine the effects of charge in cotton/cellulosic dressing design on thrombin production and elastase sequestration (uptake by the wound dressing. Thrombin is central to the initiation and propagation of coagulation, and elastase is released from neutrophils that can function detrimentally in a stalled inflammatory phase characteristic of chronic wounds. Electrokinetic fiber surface properties of the biomaterials of this study were determined to correlate material charge and polarity with function relative to thrombin production and elastase sequestration. Human neutrophil elastase sequestration was assessed with an assay representative of chronic wound concentration with cotton gauze cross-linked with three types of polycarboxylic acids and one phosphorylation finish; thrombin production, which was assessed in a plasma-based assay via a fluorogenic peptide substrate, was determined for cotton, cotton-grafted chitosan, chitosan, rayon/polyester, and two kaolin-treated materials including a commercial hemorrhage control dressing (QuickClot Combat Gauze. A correlation in thrombin production to zeta potential was found. Two polycarboxylic acid cross linked and a phosphorylated cotton dressing gave high elastase sequestration.

  15. Binding cooperativity between a ligand carbonyl group and a hydrophobic side chain can be enhanced by additional H-bonds in a distance dependent manner: A case study with thrombin inhibitors.

    Science.gov (United States)

    Said, Ahmed M; Hangauer, David G

    2015-01-01

    One of the underappreciated non-covalent binding factors, which can significantly affect ligand-protein binding affinity, is the cooperativity between ligand functional groups. Using four different series of thrombin inhibitors, we reveal a strong positive cooperativity between an H-bond accepting carbonyl functionality and the adjacent P3 hydrophobic side chain. Adding an H-bond donating amine adjacent to the P3 hydrophobic side chain further increases this positive cooperativity thereby improving the Ki by as much as 546-fold. In contrast, adding an amidine multiple H-bond/salt bridge group in the distal S1 pocket does not affect this cooperativity. An analysis of the crystallographic B-factors of the ligand groups inside the binding site indicates that the strong cooperativity is mainly due to a significant mutual reduction in the residual mobility of the hydrophobic side chain and the H-bonding functionalities that is absent when the separation distance is large. This type of cooperativity is important to encode in binding affinity prediction software, and to consider in SAR studies. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Effects of Mucuna pruriens protease inhibitors on Echis carinatus venom.

    Science.gov (United States)

    Hope-Onyekwere, Nnadozie Stanley; Ogueli, Godwin Ifeanyi; Cortelazzo, Alessio; Cerutti, Helena; Cito, Annarita; Aguiyi, John C; Guerranti, Roberto

    2012-12-01

    The medicinal plant Mucuna pruriens, with reputed anti-snake venom properties has been reported to contain a kunitz-type trypsin inhibitor. This study was undertaken to further evaluate the protease inhibitory potential of gpMuc, a multiform glycoprotein, and other protein fractions from M. pruriens seeds against trypsin, chymotrypsin, Echis carinatus snake venom, ecarin and thrombin. The results showed that gpMuc inhibited both trypsin and chymotrypsin activities and was thermally stable, maintaining its trypsin inhibitory activity at temperatures of up to 50°C. Its structural conformation was also maintained at pH ranges of 4-7. Immunoreactivity study confirms that it contains protease-recognizing epitope on one of its isoforms. The whole protein extract of M. pruriens seeds inhibited prothrombin activation by ecarin and whole E. carinatus venom, and also thrombin-like activity using chromogenic assay. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Protein Z efficiently depletes thrombin generation in disseminated intravascular coagulation with poor prognosis.

    Science.gov (United States)

    Lee, Nuri; Kim, Ji-Eun; Gu, Ja-Yoon; Yoo, Hyun Ju; Kim, Inho; Yoon, Sung-Soo; Park, Seonyang; Han, Kyou-Sup; Kim, Hyun Kyung

    2016-01-01

    Disseminated intravascular coagulation (DIC) is characterized by consumption of coagulation factors and anticoagulants. Thrombin generation assay (TGA) gives useful information about global hemostatic status. We developed a new TGA system that anticoagulant addition can deplete thrombin generation in plasma, which may reflect defective anticoagulant system in DIC. TGAs were measured on the calibrated automated thrombogram with and without thrombomodulin or protein Z in 152 patients who were suspected of having DIC, yielding four parameters including lag time, endogenous thrombin potential, peak thrombin and time-to-peak in each experiment. Nonsurvivors showed significantly prolonged lag time and time-to-peak in TGA-protein Z system, which was performed with added protein Z. In multivariate Cox regression analysis, lag time and time-to-peak in TGA system were significant independent prognostic factors. In TGA-protein Z system, lag time and time-to-peak were revealed as independent prognostic factors of DIC. Protein Z addition could potentiate its anticoagulant effect in DIC with poor prognosis, suggesting the presence of defective protein Z system. The prolonged lag time and time-to-peak in both TGA and TGA-protein Z systems are expected to be used as independent prognostic factors of DIC.

  18. Stabilization of the E* Form Turns Thrombin into an Anticoagulant

    Energy Technology Data Exchange (ETDEWEB)

    Bah, Alaji; Carrell, Christopher J.; Chen, Zhiwei; Gandhi, Prafull S.; Di Cera, Enrico; (WU-MED)

    2009-07-31

    Previous studies have shown that deletion of nine residues in the autolysis loop of thrombin produces a mutant with an anticoagulant propensity of potential clinical relevance, but the molecular origin of the effect has remained unresolved. The x-ray crystal structure of this mutant solved in the free form at 1.55 {angstrom} resolution reveals an inactive conformation that is practically identical (root mean square deviation of 0.154 {angstrom}) to the recently identified E* form. The side chain of Trp215 collapses into the active site by shifting >10 {angstrom} from its position in the active E form, and the oxyanion hole is disrupted by a flip of the Glu192-Gly193 peptide bond. This finding confirms the existence of the inactive form E* in essentially the same incarnation as first identified in the structure of the thrombin mutant D102N. In addition, it demonstrates that the anticoagulant profile often caused by a mutation of the thrombin scaffold finds its likely molecular origin in the stabilization of the inactive E* form that is selectively shifted to the active E form upon thrombomodulin and protein C binding.

  19. Thrombin–aptamer recognition: a revealed ambiguity

    OpenAIRE

    Russo Krauss, Irene; Merlino, Antonello; Giancola, Concetta; Randazzo, Antonio; Mazzarella, Lelio; Sica, Filomena

    2011-01-01

    Aptamers are structured oligonucleotides that recognize molecular targets and can function as direct protein inhibitors. The best-known example is the thrombin-binding aptamer, TBA, a single-stranded 15-mer DNA that inhibits the activity of thrombin, the key enzyme of coagulation cascade. TBA folds as a G-quadruplex structure, as proved by its NMR structure. The X-ray structure of the complex between TBA and human α-thrombin was solved at 2.9-Å resolution, but did not provide details of the a...

  20. A new peptide (Ruviprase) purified from the venom of Daboia russelii russelii shows potent anticoagulant activity via non-enzymatic inhibition of thrombin and factor Xa.

    Science.gov (United States)

    Thakur, Rupamoni; Kumar, Ashok; Bose, Biplab; Panda, Dulal; Saikia, Debashree; Chattopadhyay, Pronobesh; Mukherjee, Ashis K

    2014-10-01

    Compounds showing dual inhibition of thrombin and factor Xa (FXa) are the subject of great interest owing to their broader specificity for effective anticoagulation therapy against cardiovascular disorders. This is the first report on the functional characterization and assessment of therapeutic potential of a 4423.6 Da inhibitory peptide (Ruviprase) purified from Daboia russelii russelii venom. The secondary structure of Ruviprase is composed of α-helices (61.9%) and random coils (38.1%). The partial N-terminal sequence (E(1)-V(2)-X(3)-W(4)-W(5)-W(6)-A(7)-Q(8)-L(9)-S(10)) of Ruviprase demonstrated significant similarity (80.0%) with an internal sequence of apoptosis-stimulating protein reported from the venom of Ophiophagus hannah and Python bivittatus; albeit Ruviprase did not show sequence similarity with existing thrombin/FXa inhibitors, suggesting its uniqueness. Ruviprase demonstrated a potent in vitro anticoagulant property and inhibited both thrombin and FXa following slow binding kinetics. Ruviprase inhibited thrombin by binding to its active site via an uncompetitive mechanism with a Ki value and dissociation constant (KD) of 0.42 μM and 0.46 μM, respectively. Conversely, Ruviprase demonstrated mixed inhibition (Ki = 0.16 μM) of FXa towards its physiological substrate prothrombin. Furthermore, the biological properties of Ruviprase could not be neutralized by commercial polyvalent or monovalent antivenom. Ruviprase at a dose of 2.0 mg/kg was non-toxic and showed potent in vivo anticoagulant activity after 6 h of intraperitoneal treatment in mice. Because of the potent anticoagulant property as well as non-toxic nature of Ruviprase, the possible application of the peptide as an antithrombotic agent for combating thrombosis-associated ailments appears promising. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. In vitro effects of recombinant activated factor VII on thrombin generation and coagulation following inhibition of platelet procoagulant activity by prasugrel.

    Science.gov (United States)

    Mazzeffi, Michael; Szlam, Fania; Jakubowski, Joseph A; Tanaka, Kenichi A; Sugidachi, Atsuhiro; Levy, Jerrold H

    2013-07-01

    Prasugrel is a thienopyridyl P2Y12 antagonist with potent antiplatelet effects. At present, little is known about its effects on thrombin generation or what strategies may emergently reverse its anticoagulant effects. In the current study we evaluated whether recombinant activated factor VII may reverse prasugrel induced effects and increase thrombin generation in an in vitro model. The effect of prasugrel active metabolite, PAM (R-138727), was evaluated on platelet aggregation, thrombin generation, and rotational thromboelastometry parameters using blood from 20 healthy volunteers. Additionally, we evaluated the effects of adenosine diphosphate (ADP) and recombinant activated factor VII on restoring these parameters towards baseline values. PAM reduced maximum platelet aggregation and led to platelet disaggregation. It also decreased peak thrombin, increased lag time, and increased time to peak thrombin. Treatment with recombinant activated factor VII restored all three parameters of thrombin generation towards baseline. ADP decreased lag time and time to peak thrombin, but had no effect on peak thrombin. When recombinant activated factor VII and ADP were combined they had a greater effect on thrombin parameters than either drug alone. PAM also increased thromboelastometric clotting time and clot formation time, but had no effect on maximum clot firmness. Treatment with either recombinant activated factor VII or ADP restored these values towards baseline. Recombinant activated factor VII restores thrombin generation in the presence of PAM. In patients taking prasugrel with life-threatening refractory bleeding it has the potential to be a useful therapeutic approach. Additional clinical studies are needed to validate our findings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Random Forests Are Able to Identify Differences in Clotting Dynamics from Kinetic Models of Thrombin Generation.

    Science.gov (United States)

    Arumugam, Jayavel; Bukkapatnam, Satish T S; Narayanan, Krishna R; Srinivasa, Arun R

    2016-01-01

    Current methods for distinguishing acute coronary syndromes such as heart attack from stable coronary artery disease, based on the kinetics of thrombin formation, have been limited to evaluating sensitivity of well-established chemical species (e.g., thrombin) using simple quantifiers of their concentration profiles (e.g., maximum level of thrombin concentration, area under the thrombin concentration versus time curve). In order to get an improved classifier, we use a 34-protein factor clotting cascade model and convert the simulation data into a high-dimensional representation (about 19000 features) using a piecewise cubic polynomial fit. Then, we systematically find plausible assays to effectively gauge changes in acute coronary syndrome/coronary artery disease populations by introducing a statistical learning technique called Random Forests. We find that differences associated with acute coronary syndromes emerge in combinations of a handful of features. For instance, concentrations of 3 chemical species, namely, active alpha-thrombin, tissue factor-factor VIIa-factor Xa ternary complex, and intrinsic tenase complex with factor X, at specific time windows, could be used to classify acute coronary syndromes to an accuracy of about 87.2%. Such a combination could be used to efficiently assay the coagulation system.

  3. Random Forests Are Able to Identify Differences in Clotting Dynamics from Kinetic Models of Thrombin Generation.

    Directory of Open Access Journals (Sweden)

    Jayavel Arumugam

    Full Text Available Current methods for distinguishing acute coronary syndromes such as heart attack from stable coronary artery disease, based on the kinetics of thrombin formation, have been limited to evaluating sensitivity of well-established chemical species (e.g., thrombin using simple quantifiers of their concentration profiles (e.g., maximum level of thrombin concentration, area under the thrombin concentration versus time curve. In order to get an improved classifier, we use a 34-protein factor clotting cascade model and convert the simulation data into a high-dimensional representation (about 19000 features using a piecewise cubic polynomial fit. Then, we systematically find plausible assays to effectively gauge changes in acute coronary syndrome/coronary artery disease populations by introducing a statistical learning technique called Random Forests. We find that differences associated with acute coronary syndromes emerge in combinations of a handful of features. For instance, concentrations of 3 chemical species, namely, active alpha-thrombin, tissue factor-factor VIIa-factor Xa ternary complex, and intrinsic tenase complex with factor X, at specific time windows, could be used to classify acute coronary syndromes to an accuracy of about 87.2%. Such a combination could be used to efficiently assay the coagulation system.

  4. Detection of Thrombin Based on Fluorescence Energy Transfer between Semiconducting Polymer Dots and BHQ-Labelled Aptamers

    Directory of Open Access Journals (Sweden)

    Yizhang Liu

    2018-02-01

    Full Text Available Carboxyl-functionalized semiconducting polymer dots (Pdots were synthesized as an energy donor by the nanoprecipitation method. A black hole quenching dye (BHQ-labelled thrombin aptamers was used as the energy acceptor, and fluorescence resonance energy transfer between the aptamers and Pdots was used for fluorescence quenching of the Pdots. The addition of thrombin restored the fluorescence intensity. Under the optimized experimental conditions, the fluorescence of the system was restored to the maximum when the concentration of thrombin reached 130 nM, with a linear range of 0–50 nM (R2 = 0.990 and a detection limit of 0.33 nM. This sensor was less disturbed by impurities, showing good specificity and signal response to thrombin, with good application in actual samples. The detection of human serum showed good linearity in the range of 0–30 nM (R2 = 0.997, with a detection limit of 0.56 nM and a recovery rate of 96.2–104.1%, indicating that this fluorescence sensor can be used for the detection of thrombin content in human serum.

  5. A near-infrared fluorescent bioassay for thrombin using aptamer-modified CuInS2 quantum dots

    International Nuclear Information System (INIS)

    Lin, Zihan; Hu, Tianyu; Liu, Ziping; Su, Xingguang; Pan, Dong

    2015-01-01

    We describe a near-infrared (NIR) fluorescent thrombin assay using a thrombin-binding aptamer (TBA) and Zn(II)-activated CuInS 2 quantum dots (Q-dots). The fluorescence of Zn(II)-activated Q-dots is quenched by the TBA via photoinduced electron transfer, but if thrombin is added, it will bind to TBA to form G-quadruplexes and the Q-dots are released. As a result, the fluorescence intensity of the system is restored. This effect was exploited to design an assay for thrombin whose calibration plot, under optimum conditions, is linear in the 0.034 to 102 nmol L −1 concentration range, with a 12 pmol L −1 detection limit. The method is fairly simple, fast, and due to its picomolar detection limits holds great potential in the diagnosis of diseases associated with coagulation abnormalities and certain kinds of cancer. (author)

  6. Turn-on fluorescence sensor based on single-walled-carbon-nanohorn-peptide complex for the detection of thrombin.

    Science.gov (United States)

    Zhu, Shuyun; Liu, Zhongyuan; Hu, Lianzhe; Yuan, Yali; Xu, Guobao

    2012-12-14

    Proteases play a central role in several widespread diseases. Thus, there is a great need for the fast and sensitive detection of various proteolytic enzymes. Herein, we have developed a carbon nanotube (CNT)-based protease biosensing platform that uses peptides as a fluorescence probe for the first time. Single-walled carbon nanohorns (SWCNHs) and thrombin were used to demonstrate this detection strategy. SWCNHs can adsorb a fluorescein-based dye (FAM)-labeled peptide (FAM-pep) and quench the fluorescence of FAM. In contrast, thrombin can cleave FAM-pep on SWCNHs and recover the fluorescence of FAM, which allows the sensitive detection of thrombin. This biosensor has a high sensitivity and selectivity toward thrombin, with a detection limit of 100 pM. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Incidence of thromboembolic events after use of gelatin-thrombin-based hemostatic matrix during intracranial tumor surgery.

    Science.gov (United States)

    Gazzeri, Roberto; Galarza, Marcelo; Conti, Carlo; De Bonis, Costanzo

    2018-01-01

    Association between the use of hemostatic agents made from collagen/gelatin mixed with thrombin and thromboembolic events in patients undergoing tumor resection has been suggested. This study evaluates the relationship between flowable hemostatic matrix and deep vein thrombosis in a large cohort of patients treated for brain tumor removal. The authors conducted a retrospective, multicenter, clinical review of all craniotomies for tumor removal performed between 2013 and 2014. Patients were classified in three groups: group I (flowable gelatin hemostatic matrix with thrombin), group II (gelatin hemostatic without thrombin), and group III (classical hemostatic). A total of 932 patients were selected: tumor pathology included 441 gliomas, 296 meningiomas, and 195 metastases. Thromboembolic events were identified in 4.7% of patients in which gelatin matrix with thrombin was applied, in 8.4% of patients with gelatin matrix without thrombin, and in 3.6% of cases with classical methods of hemostasis. Patients with venous thromboembolism had an increased proportion of high-grade gliomas (7.2%). Patients receiving a greater dose than 10 ml gelatin hemostatic had a higher rate of thromboembolic events. Intracranial hematoma requiring reintervention occurred in 19 cases: 4.5% of cases of group III, while reoperation was performed in 1.3 and 1.6% of patients in which gelatin matrix with or without thrombin was applied. Gelatin matrix hemostat is an efficacious tool for neurosurgeons in cases of difficult intraoperative bleeding during cranial tumor surgery. This study may help to identify those patients at high risk for developing thromboembolism and to treat them accordingly.

  8. Identification and Mechanistic Analysis of a Novel Tick-Derived Inhibitor of Thrombin

    Czech Academy of Sciences Publication Activity Database

    Jablonka, W.; Kotsyfakis, Michalis; Mizurini, D.M.; Monteiro, R.Q.; Lukszo, J.; Drake, S.K.; Ribeiro, J.M.C.; Andersen, J. F.

    2015-01-01

    Roč. 10, č. 8 (2015), e0133991 E-ISSN 1932-6203 R&D Projects: GA ČR GAP502/12/2409 Institutional support: RVO:60077344 Keywords : Haemaphysalis longicornis * binding inhibitor * crystal structure Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.057, year: 2015

  9. Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation.

    Science.gov (United States)

    Mammadova-Bach, Elmina; Ollivier, Véronique; Loyau, Stéphane; Schaff, Mathieu; Dumont, Bénédicte; Favier, Rémi; Freyburger, Geneviève; Latger-Cannard, Véronique; Nieswandt, Bernhard; Gachet, Christian; Mangin, Pierre H; Jandrot-Perrus, Martine

    2015-07-30

    Fibrin, the coagulation end product, consolidates the platelet plug at sites of vascular injury and supports the recruitment of circulating platelets. In addition to integrin αIIbβ3, another as-yet-unidentified receptor is thought to mediate platelet interaction with fibrin. Platelet glycoprotein VI (GPVI) interacts with collagen and several other adhesive macromolecules. We evaluated the hypothesis that GPVI could be a functional platelet receptor for fibrin. Calibrated thrombin assays using platelet-rich plasma (PRP) showed that tissue factor-triggered thrombin generation was impaired in GPVI-deficient patients and reduced by the anti-GPVI Fab 9O12. Assays on reconstituted PRP and PRP from fibrinogen-deficient patients revealed a fibrinogen-dependent enhancement of thrombin generation, which relied on functional GPVI. The effect of GPVI was found to depend on fibrin polymerization. A binding assay showed a specific interaction between GPVI-Fc and fibrin, inhibited by the Fab 9O12. This Fab also reduced platelet adhesion to fibrin at low (300 s(-1)) and high (1500 s(-1)) wall shear rates. Platelets adherent to fibrin displayed shape change, exposure of procoagulant phospholipids, and the formation of small clots. When hirudinated blood was perfused at 1500 s(-1) over preformed fibrin-rich clots, the Fab 9O12 decreased the recruitment of platelets by up to 85%. This study identifies GPVI as a platelet receptor for polymerized fibrin with 2 major functions: (1) amplification of thrombin generation and (2) recruitment of circulating platelets to clots. These so-far-unrecognized properties of GPVI confer on it a key role in thrombus growth and stabilization. © 2015 by The American Society of Hematology.

  10. Pseudomonas aeruginosa elastase cleaves a C-terminal peptide from human thrombin that inhibits host inflammatory responses

    DEFF Research Database (Denmark)

    van der Plas, Mariena J A; Bhongir, Ravi K V; Kjellström, Sven

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen known for its immune evasive abilities amongst others by degradation of a large variety of host proteins. Here we show that digestion of thrombin by P. aeruginosa elastase leads to the release of the C-terminal thrombin-derived peptide FYT21...

  11. Binding of poly(amidoamine), carbosilane, phosphorus and hybrid dendrimers to thrombin-Constants and mechanisms.

    Science.gov (United States)

    Shcharbin, Dzmitry; Pedziwiatr-Werbicka, Elzbieta; Vcherashniaya, Aliaksandra; Janaszewska, Anna; Marcinkowska, Monika; Goska, Piotr; Klajnert-Maculewicz, Barbara; Ionov, Maksim; Abashkin, Viktar; Ihnatsyeu-Kachan, Aliaksei; de la Mata, F Javier; Ortega, Paula; Gomez-Ramirez, Rafael; Majoral, Jean-Pierre; Bryszewska, Maria

    2017-07-01

    Thrombin is an essential part of the blood coagulation system; it is a serine protease that converts soluble fibrinogen into insoluble strands of fibrin, and catalyzes many other coagulation-related reactions. Absorption at its surface of small nanoparticles can completely change the biological properties of thrombin. We have analyzed the influence on thrombin of 3 different kinds of small nanoparticles: dendrimers (phosphorus-based, carbosilane based and polyamidoamine) and 2 hybrid systems containing carbosilane, viologen and phosphorus dendritic scaffolds in one single molecule, bearing different flexibility, size and surface charge. There was significant alteration in the rigidity of the rigid dendrimers in contrast to flexible dendrimers. These differences in their action are important in understanding interactions taking place at a bio-nanointerface. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Aptamer-based turn-on fluorescent four-branched quaternary ammonium pyrazine probe for selective thrombin detection.

    Science.gov (United States)

    Yan, Shengyong; Huang, Rong; Zhou, Yangyang; Zhang, Ming; Deng, Minggang; Wang, Xiaolin; Weng, Xiaocheng; Zhou, Xiang

    2011-01-28

    In this thrombin detection system, the bright fluorescence of TASPI is almost eliminated by the DNA aptamer TBA (turn-off); however, in the presence of thrombin, it specifically binds to TBA by folding unrestricted TBA into an anti-parallel G-quadruplex structure and then releasing TASPI molecules, resulting in vivid and facile fluorescence recovery (turn-on).

  13. Infection-Induced Thrombin Production: A Potential Novel Mechanism for Preterm Premature Rupture of Membranes (PPROM).

    Science.gov (United States)

    Feng, Liping; Allen, Terrence K; Marinello, William P; Murtha, Amy P

    2018-04-13

    Preterm premature rupture of membranes (PPROM) is a leading contributor to maternal and neonatal morbidity and mortality. Epidemiologic and experimental studies have demonstrated that thrombin causes fetal membrane weakening and subsequently PPROM. Although blood is suspected as the likely source of thrombin in fetal membranes and amniotic fluid of patients with PPROM, this has not been proven. Ureaplasma Parvum (U. parvum) is emerging as a pathogen involved in prematurity, including PPROM, but until now, prothrombin production directly induced by bacteria in fetal membranes has not been described. This study was designed to investigate whether U. parvum exposure can induce prothrombin production in fetal membranes cells. Primary fetal membrane cells (amnion epithelial, chorion trophoblast, and decidua stromal) or full-thickness fetal membrane tissue explants from elective, term, uncomplicated cesarean deliveries were harvested. Cells or tissue explants were infected with live U. parvum (1 x 10 5 , 1 x 10 6 , or 1 x 10 7 colony forming units (cfu)/ml) or lipopolysaccharide (Escherichia coli J5, L-5014, Sigma, 100 ng/ml or 1000 ng/ml) for 24 hours. Tissue explants were fixed for immunohistochemistry staining of thrombin/prothrombin. Fetal membrane cells were fixed for confocal immunofluorescent staining of the biomarkers of fetal membrane cell types and thrombin/prothrombin. Protein and mRNA were harvested from the cells and tissue explants for Western blot or qRT-PCR to quantify thrombin/prothrombin protein or mRNA production, respectively. Data are presented as mean values ± standard errors of mean. Data were analyzed using one-way ANOVA with post hoc Dunnett's test. Prothrombin production and localization was confirmed by Western blot and immunostainings in all primary fetal membrane cells and tissue explants. Immunofluorescence observations revealed a perinuclear localization of prothrombin in amnion epithelial cells. Localization of prothrombin in chorion and

  14. iTRAQ quantitative proteomics-based identification of cell adhesion as a dominant phenotypic modulation in thrombin-stimulated human aortic endothelial cells.

    Science.gov (United States)

    Wang, Huang-Joe; Chen, Sung-Fang; Lo, Wan-Yu

    2015-05-01

    The phenotypic changes in thrombin-stimulated endothelial cells include alterations in permeability, cell shape, vasomotor tone, leukocyte trafficking, migration, proliferation, and angiogenesis. Previous studies regarding the pleotropic effects of thrombin on the endothelium used human umbilical vein endothelial cells (HUVECs)-cells derived from fetal tissue that does not exist in adults. Only a few groups have used screening approaches such as microarrays to profile the global effects of thrombin on endothelial cells. Moreover, the proteomic changes of thrombin-stimulated human aortic endothelial cells (HAECs) have not been elucidated. HAECs were stimulated with 2 units/mL thrombin for 5h and their proteome was investigated using isobaric tags for the relative and absolute quantification (iTRAQ) and the MetaCore(TM) software. A total of 627 (experiment A) and 622 proteins (experiment B) were quantified in the duplicated iTRAQ analyses. MetaCore(TM) pathway analysis identified cell adhesion as a dominant phenotype in thrombin-stimulated HAECs. Replicated iTRAQ data revealed that "Cell adhesion_Chemokines and adhesion," "Cell adhesion_Histamine H1 receptor signaling in the interruption of cell barrier integrity," and "Cell adhesion_Integrin-mediated cell adhesion and migration" were among the top 10 statistically significant pathways. The cell adhesion phenotype was verified by increased THP-1 adhesion to thrombin-stimulated HAECs. In addition, the expression of ICAM-1, VCAM-1, and SELE was significantly upregulated in thrombin-stimulated HAECs. Several regulatory pathways are altered in thrombin-stimulated HAECs, with cell adhesion being the dominant altered phenotype. Our findings show the feasibility of the iTRAQ technique for evaluating cellular responses to acute stimulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effects of fibrin, thrombin, and blood on breast capsule formation in a preclinical model.

    Science.gov (United States)

    Marques, Marisa; Brown, Spencer A; Cordeiro, Natália D S; Rodrigues-Pereira, Pedro; Cobrado, M Luís; Morales-Helguera, Aliuska; Lima, Nuno; Luís, André; Mendanha, Mário; Gonçalves-Rodrigues, Acácio; Amarante, José

    2011-03-01

    The root cause of capsular contracture (CC) associated with breast implants is unknown. Recent evidence points to the possible role of fibrin and bacteria in CC formation. The authors sought to determine whether fibrin, thrombin, and blood modulated the histological and microbiological outcomes of breast implant capsule formation in a rabbit model. The authors carried out a case-control study to assess the influence of fibrin, thrombin, and blood on capsule wound healing in a rabbit model. Eighteen New Zealand white rabbits received four tissue expanders. One expander acted as a control, whereas the other expander pockets received one of the following: fibrin glue, rabbit blood, or thrombin sealant. Intracapsular pressure/volume curves were compared among the groups, and histological and microbiological evaluations were performed (capsules, tissue expanders, rabbit skin, and air). The rabbits were euthanized at two or four weeks. At four weeks, the fibrin and thrombin expanders demonstrated significantly decreased intracapsular pressure compared to the control group. In the control and fibrin groups, mixed inflammation correlated with decreased intracapsular pressure, whereas mononuclear inflammation correlated with increased intracapsular pressure. The predominant isolate in the capsules, tissue expanders, and rabbit skin was coagulase-negative staphylococci. For fibrin and thrombin, both cultures that showed an organism other than staphylococci and cultures that were negative were associated with decreased intracapsular pressure, whereas cultures positive for staphylococci were associated with increased intracapsular pressure. Fibrin application during breast implantation may reduce rates of CC, but the presence of staphylococci is associated with increased capsule pressure even in the presence of fibrin, so care should be taken to avoid bacterial contamination.

  16. Increased thrombin generation in women with polycystic ovary syndrome

    DEFF Research Database (Denmark)

    Glintborg, Dorte; Sidelmann, Johannes Jakobsen; Lambaa Altinok, Magda

    2015-01-01

    Objective. Polycystic ovary syndrome (PCOS) is associated with risk factors for cardiovascular disease (CVD) which may be modified by the use of metformin and oral contraceptives (OC). Thrombin generation (TG) measures are risk markers of CVD and address the composite of multiple factors...

  17. Magnetic relaxation switch and colorimetric detection of thrombin using aptamer-functionalized gold-coated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liang Guohai; Cai Shaoyu; Zhang Peng [Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433 (China); Peng Youyuan [Department of Chemistry, Quanzhou Normal University, Quanzhou 362000 (China); Chen Hui; Zhang Song [Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433 (China); Kong Jilie, E-mail: jlkong@fudan.edu.cn [Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433 (China)

    2011-03-18

    We describe a sensitive biosensing system combining magnetic relaxation switch diagnosis and colorimetric detection of human {alpha}-thrombin, based on the aptamer-protein interaction induced aggregation of Fe{sub 3}O{sub 4}-Au nanoparticles. To demonstrate the concept, gold-coated iron oxide nanoparticle was synthesized by iterative reduction of HAuCl{sub 4} onto the dextran-coated Fe{sub 3}O{sub 4} nanoparticles. The resulting core-shell structure had a flowerlike shape with pretty narrow size distribution (referred to as 'nanorose'). The two aptamers corresponding to human {alpha}-thrombin were conjugated separately to two distinct nanorose populations. Once a solution containing human {alpha}-thrombin was introduced, the nanoroses switched from a well dispersed state to an aggregated one, leading to a change in the spin-spin relaxation time (T{sub 2}) as well as the UV-Vis absorption spectra of the solution. Thus the qualitative and quantitative detection method for human {alpha}-thrombin was established. The dual-mode detection is clearly advantageous in obtaining a more reliable result; the detection range is widened as well. By using the dual-mode detection method, a detectable T{sub 2} change is observed with 1.0 nM human {alpha}-thrombin, and the detection range is from 1.6 nM to 30.4 nM.

  18. Fluorescence enhancement upon G-quadruplex folding: synthesis, structure, and biophysical characterization of a dansyl/cyclodextrin-tagged thrombin binding aptamer.

    Science.gov (United States)

    De Tito, Stefano; Morvan, François; Meyer, Albert; Vasseur, Jean-Jacques; Cummaro, Annunziata; Petraccone, Luigi; Pagano, Bruno; Novellino, Ettore; Randazzo, Antonio; Giancola, Concetta; Montesarchio, Daniela

    2013-11-20

    A novel fluorescent thrombin binding aptamer (TBA), conjugated with the environmentally sensitive dansyl probe at the 3'-end and a β-cyclodextrin residue at the 5'-end, has been efficiently synthesized exploiting Cu(I)-catalyzed azide-alkyne cycloaddition procedures. Its conformation and stability in solution have been studied by an integrated approach, combining in-depth NMR, CD, fluorescence, and DSC studies. ITC measurements have allowed us to analyze in detail its interaction with human thrombin. All the collected data show that this bis-conjugated aptamer fully retains its G-quadruplex formation ability and thrombin recognition properties, with the terminal appendages only marginally interfering with the conformational behavior of TBA. Folding of this modified aptamer into the chairlike, antiparallel G-quadruplex structure, promoted by K(+) and/or thrombin binding, typical of TBA, is associated with a net fluorescence enhancement, due to encapsulation of dansyl, attached at the 3'-end, into the apolar cavity of the β-cyclodextrin at the 5'-end. Overall, the structural characterization of this novel, bis-conjugated TBA fully demonstrates its potential as a diagnostic tool for thrombin recognition, also providing a useful basis for the design of suitable aptamer-based devices for theranostic applications, allowing simultaneously both detection and inhibition or modulation of the thrombin activity.

  19. In Vitro Mode of Action and Anti-thrombotic Activity of Boophilin, a Multifunctional Kunitz Protease Inhibitor from the Midgut of a Tick Vector of Babesiosis, Rhipicephalus microplus

    Czech Academy of Sciences Publication Activity Database

    Assumpção, T.C.; Ma, D.; Mizurini, D.M.; Kini, D.M.; Ribeiro, J.M.C.; Kotsyfakis, Michalis; Monteiro, R.Q.; Francischetti, I.M.B.

    2016-01-01

    Roč. 10, č. 1 (2016), č. článku e0004298. ISSN 1935-2735 Institutional support: RVO:60077344 Keywords : thrombin inhibitor * salivary gland * anticolagulant protein Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.834, year: 2016

  20. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4

    Science.gov (United States)

    Semeraro, Fabrizio; Ammollo, Concetta T.; Morrissey, James H.; Dale, George L.; Friese, Paul; Esmon, Naomi L.

    2011-01-01

    The release of histones from dying cells is associated with microvascular thrombosis and, because histones activate platelets, this could represent a possible pathogenic mechanism. In the present study, we assessed the influence of histones on the procoagulant potential of human platelets in platelet-rich plasma (PRP) and in purified systems. Histones dose-dependently enhanced thrombin generation in PRP in the absence of any trigger, as evaluated by calibrated automated thrombinography regardless of whether the contact phase was inhibited. Activation of coagulation required the presence of fully activatable platelets and was not ascribable to platelet tissue factor, whereas targeting polyphosphate with phosphatase reduced thrombin generation even when factor XII (FXII) was blocked or absent. In the presence of histones, purified polyphosphate was able to induce thrombin generation in plasma independently of FXII. In purified systems, histones induced platelet aggregation; P-selectin, phosphatidylserine, and FV/Va expression; and prothrombinase activity. Blocking platelet TLR2 and TLR4 with mAbs reduced the percentage of activated platelets and lowered the amount of thrombin generated in PRP. These data show that histone-activated platelets possess a procoagulant phenotype that drives plasma thrombin generation and suggest that TLR2 and TLR4 mediate the activation process. PMID:21673343

  1. Genetic and pharmacological modifications of thrombin formation in apolipoprotein e-deficient mice determine atherosclerosis severity and atherothrombosis onset in a neutrophil-dependent manner.

    Directory of Open Access Journals (Sweden)

    Julian I Borissoff

    Full Text Available BACKGROUND: Variations in the blood coagulation activity, determined genetically or by medication, may alter atherosclerotic plaque progression, by influencing pleiotropic effects of coagulation proteases. Published experimental studies have yielded contradictory findings on the role of hypercoagulability in atherogenesis. We therefore sought to address this matter by extensively investigating the in vivo significance of genetic alterations and pharmacologic inhibition of thrombin formation for the onset and progression of atherosclerosis, and plaque phenotype determination. METHODOLOGY/PRINCIPAL FINDINGS: We generated transgenic atherosclerosis-prone mice with diminished coagulant or hypercoagulable phenotype and employed two distinct models of atherosclerosis. Gene-targeted 50% reduction in prothrombin (FII(-/WT:ApoE(-/- was remarkably effective in limiting disease compared to control ApoE(-/- mice, associated with significant qualitative benefits, including diminished leukocyte infiltration, altered collagen and vascular smooth muscle cell content. Genetically-imposed hypercoagulability in TM(Pro/Pro:ApoE(-/- mice resulted in severe atherosclerosis, plaque vulnerability and spontaneous atherothrombosis. Hypercoagulability was associated with a pronounced neutrophilia, neutrophil hyper-reactivity, markedly increased oxidative stress, neutrophil intraplaque infiltration and apoptosis. Administration of either the synthetic specific thrombin inhibitor Dabigatran etexilate, or recombinant activated protein C (APC, counteracted the pro-inflammatory and pro-atherogenic phenotype of pro-thrombotic TM(Pro/Pro:ApoE(-/- mice. CONCLUSIONS/SIGNIFICANCE: We provide new evidence highlighting the importance of neutrophils in the coagulation-inflammation interplay during atherogenesis. Our findings reveal that thrombin-mediated proteolysis is an unexpectedly powerful determinant of atherosclerosis in multiple distinct settings. These studies suggest that

  2. Thrombin effectuates therapeutic arteriogenesis in the rabbit hindlimb ischemia model: A quantitative analysis by computerized in vivo imaging

    International Nuclear Information System (INIS)

    Kagadis, George C.; Karnabatidis, Dimitrios; Katsanos, Konstantinos; Diamantopoulos, Athanassios; Samaras, Nikolaos; Maroulis, John; Siablis, Dimitrios; Nikiforidis, George C.

    2006-01-01

    We report on an experimental mammalian controlled study that documents arteriogenic capacity of thrombin and utilizes computerized algorithms to quantify the newly formed vessels. Hindlimb ischemia was surgically invoked in 10 New Zealand white rabbits. After quiescence of endogenous angiogenesis heterologous bovine thrombin was intramuscularly injected (1500 units) in one hindlimb per rabbit (Group T). Contralateral limbs were infused with normal saline (Group C). Digital subtraction angiography (DSA) of both limbs was performed after thrombin infusion by selective cannulation of the abdominal aorta and digital images were post-processed with computerized algorithms in order to enhance newly formed vessels. Total vessel area and total vessel length were quantified. In vivo functional evaluation included measurements of blood flow volume at the level of the external iliac artery by Doppler ultrasonography both at baseline and at 20 days after thrombin infusion. Total vessel area and length (in pixels) were 14,713+/-1023 and 5466+/-1327 in group T versus 12,015+/-2557 and 4598+/-1269 in group C (p=0.0062 and 0.1526, respectively). Blood flow volumes (ml/min) at baseline and at 20 days after thrombin infusion were 25.87+/-11.09 and 38.06+/-11.72 in group T versus 26.57+/-11.19 and 20.35+/-7.20 in group C (p=0.8898 and 0.0007, respectively). Intramuscular thrombin effectuates an arteriogenic response in the rabbit hindlimb ischemia model. Computerized algorithms may enable accurate quantification of the neovascularization outcome

  3. A cluster of aspartic residues in the extracellular loop II of PAR 4 is important for thrombin interaction and activation of platelets.

    Science.gov (United States)

    Sánchez Centellas, Daniel; Gudlur, Sushanth; Vicente-Carrillo, Alejandro; Ramström, Sofia; Lindahl, Tomas L

    2017-06-01

    Thrombin activates platelets via proteolytic cleavage of protease-activated receptors (PARs) 1 and 4. The two PARs have distinct but complementary roles. The mechanisms responsible for PAR1 activation by thrombin have been extensively studied. However, much less is known regarding thrombin activation of PAR4, especially the potential involvement of regions of PAR4 other than the N-terminal, which is bound to the catalytic site of thrombin. We have studied PAR4 in S. cerevisiae strain MMY12, an expression system in which the GPCR receptors are connected to a Lac Z reporter gene resulting in increased β-galactosidase activity. This approach was used to assess PAR4 mutants to evaluate the contribution of different aspartic residues in facilitating PAR4 activation. Furthermore, peptides mimicking parts of the PAR4 N-terminal and the second extracellular loop (ECLII) were tested for their ability to inhibit platelet activation by thrombin. Binding of these peptides to γ-thrombin was studied by monitoring the decrease in tryptophan fluorescence intensity of thrombin. We conclude that not only the N-terminal but also the electronegative aspartic residues D224, D230 and D235 (located in ECLII) are be important for PAR4 binding to thrombin. We further suggest that they play a role for the tethered ligand binding to the receptor, as mutations also affected activation in response to a PAR4-activating peptide mimicking the new N-terminal formed after cleavage. This agrees with previous results on PAR1 and thrombin binding. We suggest that the ECLII of PAR4 could be a potential target for antithrombotic drug development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Placental vascular pathology and increased thrombin generation as mechanisms of disease in obstetrical syndromes

    Directory of Open Access Journals (Sweden)

    Salvatore Andrea Mastrolia

    2014-11-01

    Full Text Available Obstetrical complications including preeclampsia, fetal growth restriction, preterm labor, preterm prelabor rupture of membranes and fetal demise are all the clinical endpoint of several underlying mechanisms (i.e., infection, inflammation, thrombosis, endocrine disorder, immunologic rejection, genetic, and environmental, therefore, they may be regarded as syndromes. Placental vascular pathology and increased thrombin generation were reported in all of these obstetrical syndromes. Moreover, elevated concentrations of thrombin-anti thrombin III complexes and changes in the coagulation as well as anticoagulation factors can be detected in the maternal circulation prior to the clinical development of the disease in some of these syndromes. In this review, we will assess the changes in the hemostatic system during normal and complicated pregnancy in maternal blood, maternal–fetal interface and amniotic fluid, and describe the contribution of thrombosis and vascular pathology to the development of the great obstetrical syndromes.

  5. In vitro study of the role of thrombin in platelet rich plasma (PRP) preparation: utility for gel formation and impact in growth factors release.

    Science.gov (United States)

    Huber, Stephany Cares; Cunha Júnior, José Luiz Rosenberis; Montalvão, Silmara; da Silva, Letícia Queiroz; Paffaro, Aline Urban; da Silva, Francesca Aparecida Ramos; Rodrigues, Bruno Lima; Lana, José Fabio Santos Duarte; Annichino-Bizzacchi, Joyce Maria

    2016-01-01

    The use of PRP has been studied for different fields, with promising results in regenerative medicine. Until now, there is no study in the literature evaluating thrombin levels in serum, used as autologous thrombin preparation. Therefore, in the present study we evaluated the role played by different thrombin concentrations in PRP and the impact in the release of growth factors. Also, different activators for PRP gel formation were evaluated. Thrombin levels were measured in different autologous preparations: serum, L-PRP (PRP rich in leukocytes) and T-PRP (thrombin produced through PRP added calcium gluconate). L-PRP was prepared according to the literature, with platelets and leukocytes being quantified. The effect of autologous thrombin associated or not with calcium in PRP gel was determined by measuring the time of gel formation. The relationship between thrombin concentration and release of growth factors was determined by growth factors (PDGF-AA, VEGF and EGF) multiplex analysis. A similar concentration of thrombin was observed in serum, L-PRP and T-PRP (8.13 nM, 8.63 nM and 7.56 nM, respectively) with a high variation between individuals (CV%: 35.07, 43 and 58.42, respectively). T-PRP and serum with calcium chloride showed similar results in time to promote gel formation. The increase of thrombin concentrations (2.66, 8 and 24 nM) did not promote an increase in growth factor release. The technique of using serum as a thrombin source proved to be the most efficient and reproducible for promoting PRP gel formation, with some advantages when compared to other activation methods, as this technique is easier and quicker with no need of consuming part of PRP. Noteworthy, PRP activation using different thrombin concentrations did not promote a higher release of growth factors, appearing not to be necessary when PRP is used as a suspension.

  6. Reversing the Effect of Oral Anticoagulant Drugs: Established and Newer Options.

    Science.gov (United States)

    Ansell, Jack E

    2016-06-01

    The vitamin K antagonists (VKAs) have been the standard (and only) oral anticoagulants used for the long-term treatment or prevention of venous thromboembolism or stroke in patients with atrial fibrillation. The coagulopathy induced by VKAs can be reversed with vitamin K, and in urgent situations, the vitamin K-dependent coagulation factors can be replaced by transfusion. In the last decade, a new class of oral anticoagulants has been developed, direct oral anticoagulants that bind to a specific coagulation factor and neutralize it. These compounds were shown to be effective and safe compared with the VKAs and were licensed for specific indications, but without a specific reversal agent. The absence of a reversal agent is a barrier to more widespread use of these agents. Currently, for the management of major life-threatening bleeding with the direct oral anticoagulants, most authorities recommend the use of four factor prothrombin complex concentrates. There are now three reversal agents in development and poised to enter the market. Idarucizumab is a specific antidote targeted to reverse the direct thrombin inhibitor, dabigatran, which was recently approved for use in the USA. Andexanet alfa is an antidote targeted to reverse the oral direct factor Xa inhibitors as well as the indirect inhibitor enoxaparin. Ciraparantag is an antidote targeted to reverse the direct thrombin and factor Xa inhibitors as well as the indirect inhibitor enoxaparin.

  7. Fibrinogen and thrombin concentrations are critical for fibrin glue adherence in rat high-risk colon anastomoses

    Directory of Open Access Journals (Sweden)

    Eliseo Portilla-de Buen

    2014-04-01

    Full Text Available OBJECTIVE: Fibrin glues have not been consistently successful in preventing the dehiscence of high-risk colonic anastomoses. Fibrinogen and thrombin concentrations in glues determine their ability to function as sealants, healers, and/or adhesives. The objective of the current study was to compare the effects of different concentrations of fibrinogen and thrombin on bursting pressure, leaks, dehiscence, and morphology of high-risk ischemic colonic anastomoses using fibrin glue in rats. METHODS: Colonic anastomoses in adult female Sprague-Dawley rats (weight, 250-350 g treated with fibrin glue containing different concentrations of fibrinogen and thrombin were evaluated at post-operative day 5. The interventions were low-risk (normal or high-risk (ischemic end-to-end colonic anastomoses using polypropylene sutures and topical application of fibrinogen at high (120 mg/mL or low (40 mg/mL concentrations and thrombin at high (1000 IU/mL or low (500 IU/mL concentrations. RESULTS: Ischemia alone, anastomosis alone, or both together reduced the bursting pressure. Glues containing a low fibrinogen concentration improved this parameter in all cases. High thrombin in combination with low fibrinogen also improved adherence exclusively in low-risk anastomoses. No differences were detected with respect to macroscopic parameters, histopathology, or hydroxyproline content at 5 days post-anastomosis. CONCLUSIONS: Fibrin glue with a low fibrinogen content normalizes the bursting pressure of high-risk ischemic left-colon anastomoses in rats at day 5 after surgery.

  8. Toehold strand displacement-driven assembly of G-quadruplex DNA for enzyme-free and non-label sensitive fluorescent detection of thrombin.

    Science.gov (United States)

    Xu, Yunying; Zhou, Wenjiao; Zhou, Ming; Xiang, Yun; Yuan, Ruo; Chai, Yaqin

    2015-02-15

    Based on a new signal amplification strategy by the toehold strand displacement-driven cyclic assembly of G-quadruplex DNA, the development of an enzyme-free and non-label aptamer sensing approach for sensitive fluorescent detection of thrombin is described. The target thrombin associates with the corresponding aptamer of the partial dsDNA probes and liberates single stranded initiation sequences, which trigger the toehold strand displacement assembly of two G-quadruplex containing hairpin DNAs. This toehold strand displacement reaction leads to the cyclic reuse of the initiation sequences and the production of DNA assemblies with numerous G-quadruplex structures. The fluorescent dye, N-Methyl mesoporphyrin IX, binds to these G-quadruplex structures and generates significantly amplified fluorescent signals to achieve highly sensitive detection of thrombin down to 5 pM. Besides, this method shows high selectivity towards the target thrombin against other control proteins. The developed thrombin sensing method herein avoids the modification of the probes and the involvement of any enzyme or nanomaterial labels for signal amplification. With the successful demonstration for thrombin detection, our approach can be easily adopted to monitor other target molecules in a simple, low-cost, sensitive and selective way by choosing appropriate aptamer/ligand pairs. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. A novel role for inhibitor of apoptosis (IAP) proteins as regulators of endothelial barrier function by mediating RhoA activation.

    Science.gov (United States)

    Hornburger, Michael C; Mayer, Bettina A; Leonhardt, Stefanie; Willer, Elisabeth A; Zahler, Stefan; Beyerle, Andrea; Rajalingam, Krishnaraj; Vollmar, Angelika M; Fürst, Robert

    2014-04-01

    Inhibitor of apoptosis (IAP) proteins, such as XIAP or cIAP1/2, are important regulators of apoptosis in cancer cells, and IAP antagonists are currently evaluated as antitumor agents. Beyond their function in cancer cells, this study demonstrates a novel role of IAPs as regulators of vascular endothelial permeability. Two structurally different IAP antagonists, ABT and Smac085, as well as silencing of IAPs, reduced the thrombin receptor-activating peptide (TRAP)-induced barrier dysfunction in human endothelial cells as assessed by measuring macromolecular permeability or transendothelial electrical resistance. ABT diminished thrombin-evoked stress fiber formation, activation of myosin light chain 2, and disassembly of adherens junctions independent of calcium signaling, protein kinase C, and mitogen-activated protein kinases. Interestingly, ABT and silencing of IAPs, in particular XIAP, reduced the TRAP-evoked RhoA activation, whereas Rac1 was not affected. XIAP and, to a lesser extent, cIAP1 were found to directly interact with RhoA independently of the RhoA activation status. Under cell-free conditions, XIAP did not induce an ubiquitination of RhoA. In summary, our work discloses IAPs as crucial regulators of endothelial permeability and suggests IAP inhibition as interesting approach for the prevention of endothelial barrier dysfunction.

  10. A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: application to label-free thrombin detection.

    Science.gov (United States)

    Chi, Chun-Wei; Lao, Yeh-Hsing; Li, Yi-Shan; Chen, Lin-Chi

    2011-03-15

    A new quantum dot (QD)-aptamer (apt) beacon that acts by folding-induced dissociation of a DNA intercalating dye, BOBO-3(B), is demonstrated with label-free thrombin detection. The beacon, denoted as QD-apt:B, is constructed by (1) coupling of a single-stranded thrombin aptamer to Qdot 565 via EDC/Sulfo-NHS chemistry and (2) staining the duplex regions of the aptamer on QD with excess BOBO-3 before thrombin binding. When mixing a thrombin sample with QD-apt:B, BOBO-3 is competed away from the beacon due to target-induced aptamer folding, which then causes a decrease in QD fluorescence resonance energy transfer (FRET)-mediated BOBO-3 emission and achieves thrombin quantitation. In this work, the effects of Mg(2+), coupling time, and aptamer type on the beacon's performances are investigated and discussed thoroughly with various methods, including transmission electron microscopy (TEM), dynamic light scattering (DLS), and two-color differential gel electrophoresis. Using the best aptamer beacon (HTQ37), we attain highly specific and wide-range detection (from nM to μM) of thrombin in buffer, and the beacon can sense nM-range thrombin in 15% diluted serum. Compared to the reported QD aptamer assays, our method is advantageous from the aspect of using a simple sensory unit design without losing the detection sensitivity. Therefore, we consider the QD-apt:B beacon a potential alternative to immuno-reagents and an effective tool to study nucleic acid folding on QD as well. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. A Pseudoaneurysm of the Deep Palmar Arch After Penetrating Trauma to the Hand: Successful Exclusion by Ultrasound Guided Percutaneous Thrombin Injection

    Directory of Open Access Journals (Sweden)

    A. Bosman

    Full Text Available : Introduction: Pseudoaneurysm of the hand is a rare condition; most are treated surgically. Ultrasound guided thrombin injection has not previously been reported as a treatment option for pseudoaneurysms of the deep palmar arch. Report: A man was referred to the emergency department with a swollen, painful hand after penetrating trauma. On physical examination, a pulsating tumor was found on the dorsum of the hand. Imaging revealed a pseudoaneurysm vascularized by the deep palmar arch. Ultrasound guided percutaneous thrombin injection was successfully performed. Conclusion: Thrombin injection might be a safe alternative option in the treatment of pseudoaneurysm of the deep palmar arch. Keywords: Deep palmar arch, Pseudoaneurysm, Thrombin injection

  12. Modeling the microscopic electrical properties of thrombin binding aptamer (TBA) for label-free biosensors

    Science.gov (United States)

    Alfinito, Eleonora; Reggiani, Lino; Cataldo, Rosella; De Nunzio, Giorgio; Giotta, Livia; Guascito, Maria Rachele

    2017-02-01

    Aptamers are chemically produced oligonucleotides, able to bind a variety of targets such as drugs, proteins and pathogens with high sensitivity and selectivity. Therefore, aptamers are largely employed for producing label-free biosensors (aptasensors), with significant applications in diagnostics and drug delivery. In particular, the anti-thrombin aptamers are biomolecules of high interest for clinical use, because of their ability to recognize and bind the thrombin enzyme. Among them, the DNA 15-mer aptamer (TBA), has been widely explored around the possibility of using it in aptasensors. This paper proposes a microscopic model of the electrical properties of TBA and of the aptamer-thrombin complex, combining information from both structure and function, following the issues addressed in an emerging branch of electronics known as proteotronics. The theoretical results are compared and validated with measurements reported in the literature. Finally, the model suggests resistance measurements as a novel tool for testing aptamer-target affinity.

  13. Alkylation of phosphorothioated thrombin binding aptamers improves the selectivity of inhibition of tumor cell proliferation upon anticoagulation.

    Science.gov (United States)

    Yang, Xiantao; Zhu, Yuejie; Wang, Chao; Guan, Zhu; Zhang, Lihe; Yang, Zhenjun

    2017-07-01

    Recently, aptamers have been extensively researched for therapy and diagnostic applications. Thrombin-binding aptamer is a 15nt deoxyribonucleic acid screened by SELEX, it can specifically bind to thrombin and inhibit blood coagulation. Since it is also endowed with excellent antitumor activity, the intrinsic anticoagulation advantage converted to a main potential side effect for its further application in antiproliferative therapy. Site-specific alkylation was conducted through nucleophilic reaction of phosphorothioated TBAs using bromide reagents. Circular dichroism (CD) spectroscopy and surface plasmon resonance (SPR) measurements were used to evaluate anticoagulation activity, and a CCK-8 assay was used to determine cell proliferation activity. The CD spectra of the modified TBAs were weakened, and their affinity for thrombin was dramatically reduced, as reflected by the K D values. On the other hand, their inhibition of A549 cells was retained. Incorporation of different alkyls apparently disrupted the binding of TBA to thrombin while maintaining the antitumor activity. A new modification strategy was established for the use of TBA as a more selective antitumor agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A electrochemiluminescence aptasensor for detection of thrombin incorporating the capture aptamer labeled with gold nanoparticles immobilized onto the thio-silanized ITO electrode

    International Nuclear Information System (INIS)

    Fang Lanyun; Lue Zhaozi; Wei Hui; Wang Erkang

    2008-01-01

    A novel electrochemiluminescence (ECL) aptasensor was proposed for sensitive and cost-effective detection of the target thrombin adopted an aptamer-based sandwich format. To detect thrombin, capture aptamers labeled with gold nanoparticles (AuNPs) were first immobilized onto the thio-silanized ITO electrode surface through strong Au-S bonds. After catching the target thrombin, signal aptamers tagged with ECL labels were attached to the assembled electrode surface. As a result, an AuNPs-capture-aptamer/thrombin/ECL-tagged-signal-aptamer sandwich type was formed. Treating the resulting electrode surface with tri-n-propylamine (TPA) and applying a swept potential to the electrode, ECL response was generated which realized the detection of target protein. Spectroscopy and electrochemical impedance techniques were used to characterize and confirm the fabrication of the ECL aptasensor. AuNPs amplification and smart sensor fabrication art were implemented for the sensitive and cost-effective detection purpose. Signal-to-dose curve excellently followed a sandwich format equation and could be used to quantify the protein, and the detection limit was estimated to be 10 nM. Other forms of thrombin such as β- and γ-thrombins had negligible response, which indicated a high specificity of α-thrombin detection. The aptasensor opened up new fields of aptamer applications in ECL domain, a highly sensitive technique, and had a promising perspective to be applied in microarray analysis

  15. The effect of cigarette smoke extract on thrombomodulin-thrombin binding: an atomic force microscopy study.

    Science.gov (United States)

    Wei, Yujie; Zhang, Xuejie; Xu, Li; Yi, Shaoqiong; Li, Yi; Fang, Xiaohong; Liu, Huiliang

    2012-10-01

    Cigarette smoking is a well-known risk factor for cardiovascular disease. Smoking can cause vascular endothelial dysfunction and consequently trigger haemostatic activation and thrombosis. However, the mechanism of how smoking promotes thrombosis is not fully understood. Thrombosis is associated with the imbalance of the coagulant system due to endothelial dysfunction. As a vital anticoagulation cofactor, thrombomodulin (TM) located on the endothelial cell surface is able to regulate intravascular coagulation by binding to thrombin, and the binding results in thrombosis inhibition. This work focused on the effects of cigarette smoke extract (CSE) on TM-thrombin binding by atomic force microscopy (AFM) based single-molecule force spectroscopy. The results from both in vitro and live-cell experiments indicated that CSE could notably reduce the binding probability of TM and thrombin. This study provided a new approach and new evidence for studying the mechanism of thrombosis triggered by cigarette smoking.

  16. Factor VIII S373L: mutation at P1' site confers thrombin cleavage resistance, causing mild haemophilia A.

    Science.gov (United States)

    Johnson, D J; Pemberton, S; Acquila, M; Mori, P G; Tuddenham, E G; O'Brien, D P

    1994-04-01

    A novel CRM+ mutation, factor VIII position 373 serine to leucine substitution (FVIII 373-Leu) was identified during a survey of Factor VIII (FVIII) mutations. We have purified the variant protein from the patient's plasma in order to allow further characterisation of the molecule. The CRM+ plasma contained 120% Factor VIII antigen (FVIII:Ag) and 6% Factor VIII coagulant activity (FVIII:C). After purification the mutant FVIII was subjected to thrombin proteolysis, and was thereby activated 5.6-fold compared with 7-fold for wild type molecule. Subsequently, spontaneous inactivation of the mutant was much slower than noted for wild type FVIII. Western blot analysis using monoclonal antibodies demonstrated that thrombin cleavage of FVIII 373-Leu at positions 740 and 1689 were normal but that cleavage at position 372 was completely absent. Crystallographic coordinates of the active site of thrombin complexed to fibrinopeptide A were used to explore possible mechanistic reasons for the failure of thrombin to cleave the mutant FVIII at position 372. Steric hindrance between the mutant side chain and the side chain of the P1 residue was apparent. We conclude that the functional defect of FVIII 373-Leu results from the inability of thrombin to cleave the mutant at position 372-373, and propose that this is due to steric hindrance by the side chain of leucine 373, preventing correct formation of the enzyme substrate complex.

  17. An electrochemical aptasensor based on TiO2/MWCNT and a novel synthesized Schiff base nanocomposite for the ultrasensitive detection of thrombin.

    Science.gov (United States)

    Heydari-Bafrooei, Esmaeil; Amini, Maryam; Ardakani, Mehdi Hatefi

    2016-11-15

    A sensitive aptasensor based on a robust nanocomposite of titanium dioxide nanoparticles, multiwalled carbon nanotubes (MWCNT), chitosan and a novel synthesized Schiff base (SB) (TiO2/MWCNT/CHIT/SB) on the surface of a glassy carbon electrode (GCE) was developed for thrombin detection. The resultant nanocomposite can provide a large surface area, excellent electrocatalytic activity, and high stability, which would improve immobilization sites for biological molecules, allow remarkable amplification of the electrochemical signal and contribute to improved sensitivity. Thrombin aptamers were simply immobilized onto the TiO2-MWCNT/CHIT-SB nanocomposite matrix through simple π - π stacking and electrostatic interactions between CHIT/SB and aptamer strands. The electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to analyze the surface characterization of unmodified GCE and TiO2-MWCNT/CHIT-SB modified GCE, and also the interaction between aptamer and thrombin. In the presence of thrombin, the aptamer on the adsorbent layer captures the target on the electrode interface, which makes a barrier for electrons and inhibits electron transfer, thereby resulting in decreased DPV and increased impedance signals of the TiO2-MWCNT/CHIT-SB modified GCE. Furthermore, the proposed aptasensor has a very low LOD of 1.0fmolL(-1) thrombin within the detection range of 0.00005-10nmolL(-1). The aptasensor also presents high specificity and reproducibility for thrombin, which is unaffected by the coexistence of other proteins. Clinical application was performed with analysis of the thrombin levels in blood and CSF samples obtained from patients with MS, Parkinson, Epilepsy and Polyneuropathy using both the aptasensor and commercial ELISA kit. The results revealed the proposed system to be a promising candidate for clinical analysis of thrombin. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Deletion of the thrombin cleavage domain of osteopontin mediates breast cancer cell adhesion, proteolytic activity, tumorgenicity, and metastasis

    International Nuclear Information System (INIS)

    Beausoleil, Michel S; Schulze, Erika B; Goodale, David; Postenka, Carl O; Allan, Alison L

    2011-01-01

    Osteopontin (OPN) is a secreted phosphoprotein often overexpressed at high levels in the blood and primary tumors of breast cancer patients. OPN contains two integrin-binding sites and a thrombin cleavage domain located in close proximity to each other. To study the role of the thrombin cleavage site of OPN, MDA-MB-468 human breast cancer cells were stably transfected with either wildtype OPN (468-OPN), mutant OPN lacking the thrombin cleavage domain (468-ΔTC) or an empty vector (468-CON) and assessed for in vitro and in vivo functional differences in malignant/metastatic behavior. All three cell lines were found to equivalently express thrombin, tissue factor, CD44, αvβ5 integrin and β1 integrin. Relative to 468-OPN and 468-CON cells, 468-ΔTC cells expressing OPN with a deleted thrombin cleavage domain demonstrated decreased cell adhesion (p < 0.001), decreased mRNA expression of MCAM, maspin and TRAIL (p < 0.01), and increased uPA expression and activity (p < 0.01) in vitro. Furthermore, injection of 468-ΔTC cells into the mammary fat pad of nude mice resulted in decreased primary tumor latency time (p < 0.01) and increased primary tumor growth and lymph node metastatic burden (p < 0.001) compared to 468-OPN and 468-CON cells. The results presented here suggest that expression of thrombin-uncleavable OPN imparts an early tumor formation advantage as well as a metastatic advantage for breast cancer cells, possibly due to increased proteolytic activity and decreased adhesion and apoptosis. Clarification of the mechanisms responsible for these observations and the translation of this knowledge into the clinic could ultimately provide new therapeutic opportunities for combating breast cancer

  19. Sphingosine kinase inhibition alleviates endothelial permeability induced by thrombin and activated neutrophils.

    Science.gov (United States)

    Itagaki, Kiyoshi; Zhang, Qin; Hauser, Carl J

    2010-04-01

    Inflammation and microvascular thrombosis are interrelated causes of acute lung injury in the systemic inflammatory response syndrome. Neutrophils (polymorphonuclear neutrophil [PMN]) and endothelial cells (EC) activated by systemic inflammatory response syndrome interact to increase pulmonary vascular permeability, but the interactions between PMN and EC are difficult to study. Recently, we reported that sphingosine 1-phosphate is a second messenger eliciting store-operated calcium entry (SOCE) in response to inflammatory agonists in both PMN and EC. Store-operated calcium entry is therefore a target mechanism for the therapeutic modulation of inflammatory PMN-EC interactions. Here, we isolated, modeled, and studied the effects of pharmacologic SOCE inhibition using real-time systems to monitor EC permeability after exposure to activated PMN. We created systems to continuously assess permeability of human pulmonary artery endothelial cells and human microvascular endothelial cells from lung. Endothelial cells show increased permeability after challenge by activated PMN. Such permeability increases can be attenuated by exposure of the cocultures to sphingosine kinase (SK) inhibitors (SKI-2, N,N-dimethylsphingosine [DMS]) or Ca2+ entry inhibitors (Gd3+, MRS-1845). Human microvascular endothelial cells from lung pretreated with SKI-2 or DMS showed decreased permeability when later exposed to activated PMN. Likewise, when PMNs were activated with thapsigargin (TG) in the presence of SKI-2, DMS, Gd, or MRS-1845, their ability to cause EC permeability subsequently was reduced. SKI-2 also inhibited the activation of human pulmonary artery ECs by thrombin. These studies will provide a firm mechanistic foundation for understanding how systemic SOCE inhibition may be used to prevent acute lung injury in vivo.

  20. The Discovery of Dabigatran Etexilate

    Directory of Open Access Journals (Sweden)

    Joanne evan Ryn

    2013-02-01

    Full Text Available Thromboembolic disease is a major cause of mortality and morbidity in the developed world and is caused by an excessive stimulation of coagulation. Thrombin is a key serine protease in the coagulation cascade and numerous efforts have been made to develop safe and effective orally active direct thrombin inhibitors (DTIs. Current anticoagulant therapy includes the use of indirect thrombin inhibitors (e.g. heparins, low-molecular-weight-heparins [LMWHs] and vitamin K antagonists (VKA such as warfarin. However there are several caveats in the clinical use of these agents including narrow therapeutic window, parenteral delivery, and food- and drug-drug interactions. Dabigatran is a synthetic, reversible DTI with high affinity and specificity for its target binding both free and clot-bound thrombin, and offers a favorable pharmacokinetic profile. Large randomized clinical trials have demonstrated that dabigatran provides comparable or superior thromboprophylaxis in multiple thromboembolic disease indications compared to standard of care. This minireview will highlight the discovery and development of dabigatran, the first in a class of new oral anticoagulant (NOAC agents to be licensed worldwide for the prevention of thromboembolism in the setting of orthopedic surgery and stroke prevent in atrial fibrillation.

  1. Key role of integrin α(IIb)β (3) signaling to Syk kinase in tissue factor-induced thrombin generation.

    Science.gov (United States)

    van der Meijden, Paola E J; Feijge, Marion A H; Swieringa, Frauke; Gilio, Karen; Nergiz-Unal, Reyhan; Hamulyák, Karly; Heemskerk, Johan W M

    2012-10-01

    The fibrin(ogen) receptor, integrin α(IIb)β(3), has a well-established role in platelet spreading, aggregation and clot retraction. How α(IIb)β(3) contributes to platelet-dependent coagulation is less well resolved. Here, we demonstrate that the potent suppressing effect of clinically used α(IIb)β(3) blockers on tissue factor-induced thrombin generation is linked to diminished platelet Ca(2+) responses and phosphatidylserine (PS) exposure. The same blockers suppress these responses in platelets stimulated with collagen and thrombin receptor agonists, whereas added fibrinogen potentiates these responses. In platelets spreading on fibrinogen, outside-in α(IIb)β(3) signaling similarly enhances thrombin-induced Ca(2+) rises and PS exposure. These responses are reduced in α(IIb)β(3)-deficient platelets from patients with Glanzmann's thrombasthenia. Furthermore, the contribution of α(IIb)β(3) to tissue factor-induced platelet Ca(2+) rises, PS exposure and thrombin generation in plasma are fully dependent on Syk kinase activity. Tyrosine phosphorylation analysis confirms a key role of Syk activation, which is largely but not exclusively dependent on α(IIb)β(3) activation. It is concluded that the majority of tissue factor-induced procoagulant activity of platelets relies on Syk activation and ensuing Ca(2+) signal generation, and furthermore that a considerable part of Syk activation relies on α(IIb)β(3) signaling. These results hence point to a novel role of Syk in integrin-dependent thrombin generation.

  2. Percutaneous thrombin injection for the treatment of a post-pancreatitis pseudoaneurysm

    International Nuclear Information System (INIS)

    Puri, S.; Nicholson, A.A.; Breen, D.J.

    2003-01-01

    Visceral artery pseudoaneurysms are often treated surgically or by transcatheter embolisation. We report a case of a pseudoaneurysm in a patient with chronic pancreatitis, which was successfully occluded by percutaneous injection of thrombin into the pseudoaneurysmal sac as a first-line management. (orig.)

  3. Protein kinase C is differentially regulated by thrombin, insulin, and epidermal growth factor in human mammary tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, M.L.; Tellez-Inon, M.T. (Instituto de Ingenieria Genetica y Biologia Molecular, Buenos Aires (Argentina)); Medrano, E.E.; Cafferatta, E.G.A. (Instituto de Investigaciones Bioquimicas Fundacion Campomar, Buenos Aires (Argentina))

    1988-03-01

    The exposure of serum-deprived mammary tumor cells MCF-7 and T-47D to insulin, thrombin, and epidermal growth factor (EGF) resulted in dramatic modifications in the activity and in the translocation capacity of protein kinase C from cytosol to membrane fractions. Insulin induces a 600% activation of the enzyme after 5 h of exposure to the hormone in MCF-7 cells; thrombin either activates (200% in MCF-7) or down-regulates (in T-47D), and EGF exerts only a moderate effect. Thus, the growth factors studied modulate differentially the protein kinase C activity in human mammary tumor cells. The physiological significance of the results obtained are discussed in terms of the growth response elicited by insulin, thrombin, and EGF.

  4. Investigation of the thrombin-generating capacity, evaluated by thrombogram, and clot formation evaluated by thrombelastography of platelets stored in the blood bank for up to 7 days.

    Science.gov (United States)

    Johansson, P I; Svendsen, M S; Salado, J; Bochsen, L; Kristensen, A T

    2008-02-01

    Transfusion based on the Thrombelastograph (TEG) results reduces transfusion requirements in cardiac surgery and in liver transplantation. Taking the pivotal role of thrombin generation in the coagulation process into consideration, the clinical utility of the TEG may, in part, depend on its reflection of the dynamics of thrombin generation. The kinetics of thrombin generation of platelets stored for 2 and 7 days, respectively, was assessed by calibrated automated thrombogram (CAT) and the lag time (min), time to peak (ttPeak; min), peak (nm thrombin) and endogenous thrombin potential (ETP; nm thrombin*min) were registered. Clot formation was evaluated by TEG and the R time (min), maxial amplitude (MA; mm), time to maximum thrombus generation (TMG; min) and maximum thrombus generation (MTG; dynes cm(-2) s(-1)) and total thrombus generation (TTG; dyne cm(-2)) were registered. Platelets become more procoagulant, evaluated both by TEG and CAT during storage. The reduction in CAT lag time and the ttPeak correlated with a decrease in the TEG R time and TMG (P < 0.0001) as did the CAT peak thrombin generation and the TEG MTG (P = 0.0035). No correlation between ETP and TTG was found (P = 0.65). The kinetics of thrombin generation, as evaluated by CAT, correlates with the thrombus generation, as evaluated by thrombelastography and this may in part explain the clinical utility of the TEG in identifying clinically relevant coagulopathies, secondary to impaired thrombin generation.

  5. Minimally invasive therapy of pseudoaneurysms of the trunk: application of thrombin.

    Science.gov (United States)

    Schellhammer, Frank; Steinhaus, Daniele; Cohnen, Mathias; Hoppe, Jonas; Mödder, Ulrich; Fürst, Günter

    2008-01-01

    Thrombin injection has been proven to be successful in postcatheterization pseudoaneurysms. However, there are only a few reports on the treatment of pseudoaneurysms of the trunk. We report our first experiences using a percutaneous as well as an endovascular access. Eight iatrogenic pseudoaneurysms of the trunk (aorta, n = 4; pulmonary artery, n = 1; gastroduodenal artery, n = 1; left gastric artery, n = 1, renal artery, n = 1) were treated either percutaneously using CT guidance (n = 3) or via an endovascular access (n = 5). Noninvasive control angiograms were performed at day 1 and weeks 1 and 3 by either CT or MR angiography. The total volume of the pseudoaneurysms was 31.2 +/- 23.1 ml on average, with a mean volume of the perfused aneurysmal lumen of 12.9 +/- 7.2 ml. The maximum diameter was 4.1 +/- 1.39 cm on average. In each case, the aneurysmal neck was not wider than 2 mm. One pseudoaneurysm occluded spontaneously following selective catheterization. The remaining pseudoaneurysms were successfully treated by injection of 765 +/- 438.1 IU thrombin. In one individual, a nontarget embolization occurred, as well as an intervention-associated rupture of a pseudoaneurysm. High-grade stenoses of the donor artery were found in a different case. Only once was the endoluminal access converted to a percutaneous one. Thrombin injection might be a future first-line treatment of vascular lesions such as pseudoaneurysms of the trunk. In our experience both percutanous and endoluminal access are technically feasible and safe. However, further experiences are mandatory, especially concerning the question of dosage and long-term results.

  6. Flow cytometry analysis reveals different activation profiles of thrombin- or TRAP-stimulated platelets in db/db mice. The regulatory role of PAR-3.

    Science.gov (United States)

    Kassassir, Hassan; Siewiera, Karolina; Talar, Marcin; Przygodzki, Tomasz; Watala, Cezary

    2017-06-01

    Recent studies have shown that it may be the concentration of thrombin, which is discriminative in determining of the mechanism of platelet activation via protease activated receptors (PARs). Whether the observed phenomenon of differentiated responses of mouse platelets to various thrombin concentrations in non-diabetic db/+ and diabetic db/db mice depends upon the concerted action of various PARs, remains to be established. We found elevated reactivity of platelets, as well as the enhanced PAR-3 expression in response to both the used concentrations of AYPGKF in db/db mice, as compared to db/+ heterozygotes. At low concentration of thrombin platelets from diabetic mice demonstrated hyperreactivity, reflected by higher expression of PAR-3. For higher thrombin concentration, blood platelets from db/db mice appeared hyporeactive, compared to db/+ animals, while no significant differences in PAR-3 expression were observed between diabetic and non-diabetic mice. The novel and previously unreported finding resulting from our study is that the increased expression of PAR-3 in response to either TRAP for PAR-4 or low thrombin (when PAR-4 is not the efficient thrombin receptor) may be one of the key events contributing to higher reactivity of platelets in db/db mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Contribution of thrombin-reactive brain pericytes to blood-brain barrier dysfunction in an in vivo mouse model of obesity-associated diabetes and an in vitro rat model.

    Directory of Open Access Journals (Sweden)

    Takashi Machida

    Full Text Available Diabetic complications are characterized by the dysfunction of pericytes located around microvascular endothelial cells. The blood-brain barrier (BBB exhibits hyperpermeability with progression of diabetes. Therefore, brain pericytes at the BBB may be involved in diabetic complications of the central nervous system (CNS. We hypothesized that brain pericytes respond to increased brain thrombin levels in diabetes, leading to BBB dysfunction and diabetic CNS complications. Mice were fed a high-fat diet (HFD for 2 or 8 weeks to induce obesity. Transport of i.v.-administered sodium fluorescein and 125I-thrombin across the BBB were measured. We evaluated brain endothelial permeability and expression of tight junction proteins in the presence of thrombin-treated brain pericytes using a BBB model of co-cultured rat brain endothelial cells and pericytes. Mice fed a HFD for 8 weeks showed both increased weight gain and impaired glucose tolerance. In parallel, the brain influx rate of sodium fluorescein was significantly greater than that in mice fed a normal diet. HFD feeding inhibited the decline in brain thrombin levels occurring during 6 weeks of feeding. In the HFD fed mice, plasma thrombin levels were significantly increased, by up to 22%. 125I-thrombin was transported across the BBB in normal mice after i.v. injection, with uptake further enhanced by co-injection of unlabeled thrombin. Thrombin-treated brain pericytes increased brain endothelial permeability and caused decreased expression of zona occludens-1 (ZO-1 and occludin and morphological disorganization of ZO-1. Thrombin also increased mRNA expression of interleukin-1β and 6 and tumor necrosis factor-α in brain pericytes. Thrombin can be transported from circulating blood through the BBB, maintaining constant levels in the brain, where it can stimulate pericytes to induce BBB dysfunction. Thus, the brain pericyte-thrombin interaction may play a key role in causing BBB dysfunction in

  8. Differential proteolytic activation of factor VIII-von Willebrand factor complex by thrombin

    International Nuclear Information System (INIS)

    Hill-Eubanks, D.C.; Parker, C.G.; Lollar, P.

    1989-01-01

    Blood coagulation factor VIII (fVIII) is a plasma protein that is decreased or absent in hemophilia A. It is isolated as a mixture of heterodimers that contain a variably sized heavy chain and a common light chain. Thrombin catalyzes the activation of fVIII in a reaction that is associated with cleavages in both types of chain. The authors isolated a serine protease from Bothrops jararacussu snake venom that catalyzes thrombin-like heavy-chain cleavage but not light-chain cleavage in porcine fVIII as judged by NaDodSO 4 /PAGE and N-terminal sequence analysis. Using a plasma-free assay of the ability of activated 125 I-fVIII to function as a cofactor in the activation of factor X by factor IXa, they found that fVIII is activated by the venom enzyme. The venom enzyme-activated fVIII was isolated in stable form by cation-exchange HPLC. von Willebrand factor inhibited venom enzyme-activated fVIII but not thrombin-activated fVIII. These results suggest that the binding of fVIII to von Willebrand factor depends on the presence of an intact light chain and that activated fVIII must dissociate from von Willebrand factor to exert its cofactor effect. Thus, proteolytic activation of fVIII-von Willebrand factor complex appears to be differentially regulated by light-chain cleavage to dissociate the complex and heavy-chain cleavage to activate the cofactor function

  9. Enhanced Effector Function of CD8+ T Cells From Healthy Controls and HIV-Infected Patients Occurs Through Thrombin Activation of Protease-Activated Receptor 1

    Science.gov (United States)

    Hurley, Amanda; Smith, Mindy; Karpova, Tatiana; Hasley, Rebecca B.; Belkina, Natalya; Shaw, Stephen; Balenga, Nariman; Druey, Kirk M.; Nickel, Erin; Packard, Beverly; Imamichi, Hiromi; Hu, Zonghui; Follmann, Dean; McNally, James; Higgins, Jeanette; Sneller, Michael; Lane, H. Clifford; Catalfamo, Marta

    2013-01-01

    Disruption of vascular integrity by trauma and other tissue insults leads to inflammation and activation of the coagulation cascade. The serine protease thrombin links these 2 processes. The proinflammatory function of thrombin is mediated by activation of protease-activated receptor 1 (PAR-1). We found that peripheral blood effector memory CD4+ and CD8+ T lymphocytes expressed PAR-1 and that expression was increased in CD8+ T cells from human immunodeficiency virus (HIV)–infected patients. Thrombin enhanced cytokine secretion in CD8+ T cells from healthy controls and HIV-infected patients. In addition, thrombin induced chemokinesis, but not chemotaxis, of CD8+ T cells, which led to structural changes, including cell polarization and formation of a structure rich in F-actin and phosphorylated ezrin-radexin-moesin proteins. These findings suggest that thrombin mediates cross-talk between the coagulation system and the adaptive immune system at sites of vascular injury through increased T-cell motility and production of proinflammatory cytokines. PMID:23204166

  10. Enhanced effector function of CD8(+) T cells from healthy controls and HIV-infected patients occurs through thrombin activation of protease-activated receptor 1.

    Science.gov (United States)

    Hurley, Amanda; Smith, Mindy; Karpova, Tatiana; Hasley, Rebecca B; Belkina, Natalya; Shaw, Stephen; Balenga, Nariman; Druey, Kirk M; Nickel, Erin; Packard, Beverly; Imamichi, Hiromi; Hu, Zonghui; Follmann, Dean; McNally, James; Higgins, Jeanette; Sneller, Michael; Lane, H Clifford; Catalfamo, Marta

    2013-02-15

    Disruption of vascular integrity by trauma and other tissue insults leads to inflammation and activation of the coagulation cascade. The serine protease thrombin links these 2 processes. The proinflammatory function of thrombin is mediated by activation of protease-activated receptor 1 (PAR-1). We found that peripheral blood effector memory CD4(+) and CD8(+) T lymphocytes expressed PAR-1 and that expression was increased in CD8(+) T cells from human immunodeficiency virus (HIV)-infected patients. Thrombin enhanced cytokine secretion in CD8(+) T cells from healthy controls and HIV-infected patients. In addition, thrombin induced chemokinesis, but not chemotaxis, of CD8(+) T cells, which led to structural changes, including cell polarization and formation of a structure rich in F-actin and phosphorylated ezrin-radexin-moesin proteins. These findings suggest that thrombin mediates cross-talk between the coagulation system and the adaptive immune system at sites of vascular injury through increased T-cell motility and production of proinflammatory cytokines.

  11. Plasmid-Mediated Resistance to Thrombin-Induced Platelet Microbicidal Protein in Staphylococci: Role of the qacA Locus

    OpenAIRE

    Kupferwasser, Leon Iri; Skurray, Ronald A.; Brown, Melissa H.; Firth, Neville; Yeaman, Michael R.; Bayer, Arnold S.

    1999-01-01

    Thrombin-induced platelet microbicidal protein 1 (tPMP-1) is a small, cationic peptide released from rabbit platelets following thrombin stimulation. In vitro resistance to this peptide among strains of Staphylococcus aureus correlates with the survival advantage of such strains at sites of endothelial damage in humans as well as in experimental endovascular infections. The mechanisms involved in the phenotypic resistance of S. aureus to tPMP-1 are not fully delineated. The plasmid-encoded st...

  12. EFFICACY OF THROMBIN FIBRIN GLUE AND SCLE ROSANT IN THE MANAGEMENT OF BLEEDI NG GASTRIC VARICES

    Directory of Open Access Journals (Sweden)

    Sanjay Gupta

    2015-01-01

    Full Text Available Gastric varices are noted in up to 20 % of patents with portal hypertension , and are more common in those with non - cirrhotic etiology 1 . They bleed at lower portal pressures , bleed more severely and are associated with higher rates of rebleed , encephalopathy and mortality 1,2,3 . Variceal obliteration using tissue adhesives such as N - butyl cyanoacrylate leading to plugging and thrombosis of the gastric varices is currently the first line management option for obliteration of the gastric varices 3 . Although various options have been proposed , gold standard for management of gastric variceal bleeds is yet to be defined. We theorized that injection of the gastric varices using thrombin based glue followed by injection of a sclerosant shall be effective in optimum sclerotherapy and eradication of gastric varices. MATERIAL AND METHODS : All patients presenting with gastric variceal bleed were offered sclerotherapy with Thrombin fibrin based glue and sclerosant (TFG/S . During the study period 18 patients were enrolled in the TGF/S group. 21 patients underwent variceal plugging with n - butyl cyanoacrylate (NBC . There was no significant difference in age/ sex , duration of bleed or time interval between onset of bleed and endotherapy. RESULTS: Patients undergoing endotherapy with TGF/S had less episodes of bleed , and greater eradication of varices. CONCLUSION: The results with thrombin / fibrin glue and sclerotherapy are highly encouraging. Well - designed trials need to be performed KEYWORDS:Gastric varices; Thrombin Sclerotherapy

  13. Dabigatran versus warfarin in patients with atrial fibrillation

    NARCIS (Netherlands)

    Connolly, Stuart J.; Ezekowitz, Michael D.; Yusuf, Salim; Eikelboom, John; Oldgren, Jonas; Parekh, Amit; Pogue, Janice; Reilly, Paul A.; Themeles, Ellison; Varrone, Jeanne; Wang, Susan; Alings, Marco; Xavier, Denis; Zhu, Jun; Diaz, Rafael; Lewis, Basil S.; Darius, Harald; Diener, Hans-Christoph; Joyner, Campbell D.; Wallentin, Lars; Connolly, S. J.; Ezekowitz, M. D.; Yusuf, S.; Eikelboom, J.; Oldgren, J.; Parekh, A.; Reilly, P. A.; Themeles, E.; Varrone, J.; Wang, S.; Palmcrantz-Graf, E.; Haehl, M.; Wallentin, L.; Alings, A. M. W.; Amerena, J. V.; Avezum, A.; Baumgartner, I.; Brugada, J.; Budaj, A.; Caicedo, V.; Ceremuzynski, L.; Chen, J. H.; Commerford, P. J.; Dans, A. L.; Darius, H.; Di Pasquale, G.; Diaz, R.; Erol, C.; Ferreira, J.; Flaker, G. C.; Flather, M. D.; Franzosi, M. G.; Gamboa, R.; Golitsyn, S. P.; Gonzalez Hermosillo, J. A.; Halon, D.; Heidbuchel, H.; Hohnloser, S. H.; Hori, M.; Huber, K.; Jansky, P.; Kamensky, G.; Keltai, M.; Kim, S.; Lau, C. P.; Le Heuzey, J. Y. F.; Lewis, B. S.; Liu, L. S.; Nanas, J.; Razali, O.; Pais, P. S.; Parkhomenko, A. N.; Pedersen, K. E.; Piegas, L. S.; Raev, D.; Simmers, T. A.; Smith, P. J.; Talajic, M.; Tan, R. S.; Tanomsup, S.; Toivonen, L.; Vinereanu, D.; Xavier, D.; Zhu, J.; Diener, H. C.; Joyner, C. D.; Diehl, A.; Ford, G.; Robinson, M.; Silva, J.; Sleight, P.; Wyse, D. G.; Collier, J.; de Mets, D.; Hirsh, J.; Lesaffre, E.; Ryden, L.; Sandercock, P.; Anastasiou-Nana, M. I.; Andersen, G.; Annex, B. H.; Atra, M.; Bornstein, N. M.; Boysen, G.; Brouwers, P. J. A. M.; Buerke, M.; Burrell, L. M.; Chan, Y. K.; Chen, W. H.; Cheung, R. T. F.; Divakaramenon, S.; Donnan, G. A.; Duray, G. Z.; Dvorakova, H.; Fiedler, J.; Gardinale, E.; Gates, P. C.; Goshev, E. G.; Goto, S.; Gross, B.; Guimaraes, H. P.; Gulkevych, O.; Haberl, R. L.; Hankey, G.; Hartikainen, J.; Healey, J.; Iliesiu, A. M.; Irkin, O.; Jaxa-Chamiec, T.; Jolly, S.; Kaste, K. A. M.; Kies, B.; Kostov, K. D.; Kristensen, K. S.; Labovitz, A. J.; Lassila, R. P. T.; Lee, K. L. F.; Lutay, Y. M.; Magloire, P.; Mak, K. H.; Meijer, A.; Mihov, L.; Morillo, C. A.; Morillo, L. E.; Nair, G. M.; Norrving, B.; Ntalianis, A.; Ntsekhe, M.; Olah, L.; Pasco, P. M. D.; Peeters, A.; Perovic, V.; Petrov, I.; Pizzolato, G.; Rafti, F.; Rey, N. R.; Ribas, S.; Rokoss, M.; Sarembock, I. J.; Sheth, T.; Shuaib, A.; Sitkei, E.; Sorokin, E.; Srámek, M.; Strozynska, E.; Tanne, D.; Thijs, V. N. S.; Tomek, A.; Turazza, F.; Vanhooren, G.; Vizel, S. A.; Vos, J.; Wahlgren, N.; Weachter, R.; Zaborska, B.; Zaborski, J.; Zimlichman, R.; Cong, J.; Fendt, K.; Muldoon, S.; Bajkor, S.; Grinvalds, A.; Malvaso, M.; Pogue, J.; Simek, K.; Yang, S.; Alzogaray, M. F.; Bono, J. O.; Caccavo, A.; Cartasegna, L.; Casali, W. P.; Cuello, J. L.; Cuneo, C. A.; Elizari, M. V.; Fernandez, A. A.; Ferrari, A. E.; Gabito, A. J.; Goicoechea, R. F.; Gorosito, V. M.; Hirschson, A.; Hominal, M. A.; Hrabar, A. D.; Liberman, A.; Mackinnon, I. J.; Manzano, R. D.; Muratore, C. A.; Nemi, S. A.; Rodriguez, M. A.; Sanchez, A. S.; Secchi, J.; Vogel, D. R.; Colquhoun, D. M.; Crimmins, D. S.; Dart, A. M.; Davis, S. M.; Hand, P. J.; Kubler, P. A.; Lehman, R. G.; McBain, G.; Morrison, H. C.; New, G.; Singh, B. B.; Spence, C. Z.; Waites, J. H.; Auer, J.; Doweik, L.; Freihoff, F.; Gaul, G.; Gazo, F.; Geiger, H.; Giacomini, G.; Huber, G. W.; Jukic, I.; Lamm, G.; Niessner, H.; Podczeck, A.; Schuh, J.; Siostrzonek, P.; Steger, C.; Vogel, B.; Watzak, R.; Weber, H. S.; Weihs, W.; Blankoff, I.; Boland, J. L.; Brike, C.; Carlier, M.; Cools, F.; de Meester, A.; de Raedt, H. J.; de Wolf, L.; Dhooghe, G. M.; Dilling-Boer, D.; Elshot, S. R.; Fasseaux, S.; Goethals, M.; Goethals, P.; Gurne, O.; Hellemans, S.; Ivan, B.; Jottrand, M.; Kersschot, I.; Lecoq, E.; Marcovitch, O.; Melon, D.; Miljoen, H.; Missault, L.; Pierard, L. A.; Provenier, F.; Rousseau, M. F.; Stockman, D.; Tran-Ngoc, E.; van Mieghem, W.; Vandekerckhove, Y.; Vandervoort, P.; Verrostte, J.; Vijgen, J.; Armaganijan, D.; Braga, C.; Braga, J. C. F.; Cipullo, R.; Cunha, C. L. P.; de Paola, A.; Delmonaco, M. I.; Guimaraes, F. V.; Herek, L.; Kerr Saraiva, J. F.; Maia, L. N.; Lorga, A. M.; Lorga-Filho, A. M.; Marino, R. L.; Melo, C. S.; Mouco, O. M.; Pereira, V. C.; Precoma, D. B.; Rabelo, W.; Rassi, S.; Rossi, P. R.; Rossi Neto, J. M.; Silva, F. M.; Vidotti, M. H.; Zimmermann, S. L.; Anev, E. D.; Balabanov, T. A.; Baldjiev, E. S.; Bogusheva, E. S.; Chaneva, M. A.; Filibev, I. G.; Gotcheva, N. N.; Goudev, A. R.; Gruev, I. T.; Guenova, D. T.; Kamenova, Z. A.; Manov, E. I.; Panov, I. A.; Parvanova, Z. I.; Pehlivanova, M. B.; Penchev, P. T.; Penkov, N. Y.; Radoslavov, A. L.; Ramshev, K. N.; Runev, N. M.; Sindzhielieva, M. N.; Spirova, D. A.; Tsanova, V. M.; Tzekova, M. L.; Yaramov, G. K.; Aggarwal, R.; Bakbak, A. I.; Bayly, K.; Berlingieri, J. C.; Blackburn, K.; Bobbie, C.; Booth, A. W.; Borts, D.; Bose, S.; Boucher, P.; Brown, K.; Burstein, J. M.; Butt, J. C.; Carlson, B. D.; Chetty, R.; Chiasson, J. D.; Constance, C.; Costi, P.; Coutu, B.; Deneufbourg, I.; Dion, D.; Dorian, P.; Douketis, J. D.; Farukh, S.; Filipchuk, N. G.; Fox, B. A.; Fox, H. I.; Gailey, C. B.; Gauthier, M.; Glanz, A.; Green, M. S.; Habot, J.; Hink, H.; Kearon, C.; Kouz, S.; Lai, C.; Lai, K.; Lalani, A. V.; Lam, A. S.; Lapointe, L. A.; Leather, R. A.; Ma, P. T. S.; MacKay, E.; Mangat, I.; Mansour, S.; Melton, E.; Mitchell, L. B.; Morris, A. L.; Nisker, W. A.; O'Donnell, M. J.; O'Hara, G.; Omichinski, L. M.; Pandey, A. S.; Parkash, R.; Pesant, Y.; Pilon, C.; Pistawka, K. J.; Powell, C. N.; Price, J. B.; Prieur, S.; Rebane, T. M.; Ricci, A. J.; Roberge, J.; Roy, M.; Sapp, J. L.; Savard, D.; Schulman, S.; Sehl, M. J.; Sestier, F.; Shandera, R.; Shu, D.; Sterns, L. D.; St-Hilaire, R.; Syan, G. S.; Talbot, P.; Teitelbaum, I.; Tytus, R. H.; Winkler, L.; Zadra, R.; Zidel, B. S.; Bai, X. J.; Gao, W.; Gao, X.; Guan, D. M.; He, Z. S.; Hua, Q.; Li, H.; Li, L.; Li, W. M.; Lu, G. P.; Lv, S.; Meng, K.; Niu, H. Y.; Qi, D. G.; Qi, S. Y.; Qian, F.; Sun, N. L.; Wang, H. Y.; Wang, N. F.; Yang, Y. M.; Zeng, H.; Zhang, F.; Zhang, F. R.; Zhang, L.; Bohorquez, R.; Rosas, J. F.; Saent, L.; Vacca, M.; Velasco, V. M.; Belohlavek, J.; Cernohous, M.; Choura, M.; Dedek, V.; Filipensky, B.; Hemzsky, L.; Karel, I.; Kopeckova, I.; Kovarova, K.; Labrova, R.; Madr, T.; Poklopova, Z.; Rucka, D.; Simon, J.; Skalicka, H.; Smidova, M.; Spinar, J.; Dodt, K. K.; Egstrup, K.; Friberg, J.; Haar, D.; Husted, S.; Jensen, G. V.; Joensen, A. M.; Klarlund, K. K.; Lind Rasmussen, S.; Melchior, T. M.; Olsen, M. E.; Poulsen, M. K.; Ralfkiaer, N.; Rasmussen, L. H.; Skagen, K.; Airaksinen, K. E.; Huikuri, H. V.; Hussi, E. J.; Kettunen, P.; Mänttäri, M.; Melin, J. H.; Mikkelsson, J.; Peuhkurinen, K.; Virtanen, V. K.; Ylitalo, A.; Agraou, B.; Boucher, L.; Bouvier, J. M.; Boye, A.; Boye, B.; Decoulx, E. M.; Defaye, P.; Delay, M.; Desrues, H.; Gacem, K.; Igigabel, P.; Jacon, P.; Leparree, S.; Magnani, C.; Martelet, M.; Movallem, J.; Olive, T.; Poulard, J. E.; Tiam, B.; Appel, K. F.; Appel, S.; Bansemir, L.; Borggrefe, M.; Brachmann, J.; Bulut-Streich, N.; Busch, K.; Dempfle, C. E. H.; Desaga, M.; Desaga, V.; Dormann, A.; Fechner, I.; Genth-Zotz, S.; Haberbosch, W. G.; Harenberg, J.; Haverkamp, W. L.; Henzgen, R.; Heuer, H.; Horacek, T.; Huttner, H. B.; Janssens, U.; Jantke, H. J.; Klauss, V.; Koudonas, D.; Kreuzer, J.; Kuckuck, H.; Maselli, A.; Müegge, A.; Munzel, T. F.; Nitsche, K.; Nledegjen, A.; Parwani, A.; Pluemer-Schmidt, M.; Pollock, B. W.; Salbach, B. I.; Salbach, P. B.; Schaufele, T.; Schoels, W.; Schwab, S.; Siegmund, U.; Veltkamp, R.; Von Hodenberg, E.; Weber, R.; Zechmeister, M.; Anastasopoulous, A. A.; Foulidis, V. O.; Kaldara, E.; Karamitsos, K.; Karantzis, J.; Kirpizidis, H.; Kokkinakis, C.; Krommydas, A.; Lappas, C.; Lappas, G. I.; Manolis, A.; Manolis, A. S.; Orfanidis, Z.; Papamichalis, M.; Peltekis, L.; Savvas, S.; Skoumpourdis, E. A.; Stakos, D. A.; Styliadis, I.; Triposkiadis, F.; Tsounis, D.; Tziakas, D. N.; Zafiridis, T.; Zarifis, J. H.; Chan, G. C. P.; Chan, W. K.; Chan, W. S.; Lau, C. L.; Tse, H. F.; Tsui, P. T.; Yu, C. M.; Yue, C. S.; Fugedi, K.; Garai, B.; Jánosi, A.; Kadar, A.; Karpati, P.; Keltai, K.; Kosa, I.; Kovacs, I.; Laszlo, Z.; Mezei, L.; Rapi, J.; Regos, L. I.; Szakal, I.; Szigyarto, I.; Toth, K.; Zsa'ry, A.; Agarwal, D. K.; Aggarwal, R. K.; Arulvenkatesh, R.; Bharani, A.; Bhuvaneswaran, J. S.; Byrapaneni, R. B.; Chandwani, P.; Chopra, S.; Desai, N.; Deshpande, V.; Golla, N. P.; Gupta, J. B.; Haridas, K. K.; Hiremath, J.; Jain, A. S.; Jain, M.; Jhala, D. A.; Joseph, J.; Kaila, M.; Kannaiyan, A.; Kumar, S.; Kuruvila, P.; Mahorkar, V. K.; Metha, A.; Naik, A. M.; Narayanan, S.; Panwar, R. B.; Reddy, C.; Sawhney, J. P. S.; Shah, S. M.; Sharma, S.; Shetty, G. S.; Sinha, N.; Sontakke, N. N.; Srinivas, A.; Trivedi, M. R.; Vadagenalli, P. S.; Vijayakumar, M.; Ben-Aharon, Y.; Benhorin, J.; Bogomolny, N.; Botwin-Shimko, S.; Bova, I.; Brenner, B.; Burstein, M.; Butnaru, A.; Caspi, A.; Danenberg, H. D.; Dayan, M.; Eldar, M.; Elian, D.; Elias, M.; Elis, A.; Esanu, G.; Genin, I.; Goldstein, L. H.; Grossman, E.; Hamoud, S.; Hayek, T.; Ilani, N.; Ilia, R.; Klainman, E. I.; Leibowitz, A.; Leibowitz, D.; Levin, I.; Lishner, M.; Lotan, C.; Mahagney, A.; Marmor, A.; Motro, M.; Peres, D.; Plaev, T.; Reisen, L. H.; Rogowski, O.; Schwammenthal, E.; Schwammenthal, Y.; Shechter, M.; Shochat, M.; Shotan, A.; Strasberg, B.; Sucher, E.; Telman, G.; Turgeman, Y.; Tzoran, I.; Weiss, A. T.; Weitsman, T.; Weller, B.; Wexler, D. H.; Wolff, R.; Yarnitsky, D.; Zeltser, D.; Argiolas, G.; Arteni, F.; Barbiero, M.; Bazzucco, R.; Bernardi, D.; Bianconi, L.; Bicego, D.; Brandini, R.; Bresciani, B.; Busoni, F.; Carbonieri, E.; Carini, M.; Catalano, A.; Cavallini, C.; D'Angelo, G.; de Caterina, R.; Di Niro, M.; Filigheddu, F.; Fraticelli, A.; Marconi, R.; Mennuni, M.; Moretti, L.; Mos, L.; Pancaldi, L. G.; Pirelli, S.; Renda, G.; Santini, M.; Tavarozzi, I.; Terrosu, P.; Uneddu, F.; Viccione, M.; Zanini, R.; Zingarini, G.; Aoyagi, T.; Eguma, H.; Fujii, K.; Fukuchi, M.; Fukunami, M.; Furukawa, Y.; Furuya, J.; Haneda, K.; Hara, S.; Hiroe, M.; Iesaka, Y.; Iijima, T.; Ishibashi, Y.; Iwade, K.; Kajiya, T.; Kakinoki, S.; Kamakura, S.; Katayama, Y.; Kihara, Y.; Kimura, K.; Kobayashi, S.; Kono, K.; Koretsune, Y.; Marui, N.; Matsuyama, T.; Meno, H.; Miyamoto, N.; Morikawa, S.; Myojin, K.; Nakamura, T.; Nishi, Y.; Ogawa, T.; Onaka, H.; Sakakibara, T.; Sakurai, S.; Sasaki, Y.; Sato, H.; Sugii, M.; Sumii, K.; Suzuki, S.; Takagi, M.; Takenaka, T.; Takeuchi, K.; Tanaka, S.; Tanouchi, J.; Ueda, K.; Ueyama, Y.; Ujihira, T.; Usui, M.; Yagi, M.; Yamada, T.; Yamamoto, H.; Yokochi, M.; Zen, E.; Abd Ghaphar, A. K.; Ang, C. K.; Chee, K. H.; Fong, A. F. Y.; Ismail, O.; Jeyaindran, S.; Kaur, S.; Lee, T. C.; Sandhu, R. S.; Shah, R. P.; Suganthi, S.; Zainal Abidin, S.; Alvarado-Ruiz, R.; Carrillo, J.; Delgado, E.; Fernandez Bonetti, P. A.; Leiva, J. L.; Meaney, A.; Olvera, R.; Peralta-Heredia, R.; Rodriguez, I.; Ruiz Rabasa, C. M.; Solache, G.; Villeda Espinosa, E.; Ahmed, S.; Badings, E.; Bartels, G. L.; Beganovic, M.; Bruning, T. A.; Ciampricotti, R.; Cozijnsen, L.; Crijns, H. J.; Daniels, M. C. G.; de Waard, D. E. P.; den Hartog, F. R.; Dirkali, A.; Groenemeijer, B. E.; Heesen, W. F.; Heijmeriks, J. A.; Hoogslag, P. A.; Huizenga, A.; Idzerda, H. H.; Kragten, J. A.; Krasznai, K.; Lenderink, T.; Liem, A. H.; Linssen, G. C.; Lok, D. J.; Meeder, J. G.; Michels, H. R.; Plomp, J.; Pos, L.; Posma, J. L.; Postema, P. G.; Salomonsz, R.; Stoel, I.; Tans, J. G.; Thijssen, H. J.; Timmermans, A. J. M.; Tteleman, R. G.; van Bergen, P. F. M. M.; van de Klippe, H. A.; van der Zwaan, C.; van Eck, J. W. M.; van Es, A. J. J.; van Gelder, I. C.; van Kempen, L. H.; van Kesteren, H. A.; van Rossum, P.; Veldmeyer, S.; Wilde, A. A. M.; Arnesen, H.; Atar, D.; Breder, O.; Istad, H.; Radunovic, Z.; Rykke, D. E.; Sirnes, P. A.; Tveit, A.; Ulimoen, S. R.; Cabrera, W.; Duenas, R.; Heredia, J. M.; Horna, M. E.; Hurtado, Y.; Salazar, P. M.; Abola, M. T. B.; Anonuevo, J. C.; Arellano, R. S.; Dioquino, C.; Morales, D. D.; Reyes, E. B.; Rogelio, G. G.; Roxas, A. A.; Sulit, D. J. V.; Bacior, B.; Dulak, E.; Gniot, J.; Goncikowski, J.; Grodecki, J.; Kalarus, Z. F.; Kawecka-Jaszcz, K.; Miekus, P.; Monies, F.; Piepiorka, M.; Pilichowska, E.; Plizio, E.; Rekosz, J.; Rybicka-Musialik, A.; Streb, W. A.; Styczkiewicz, M.; Szpajer, M.; Trusz-Gluza, M.; Wasilewska-Piepiorka, A.; Adragao, P.; Branco, V.; Canhão, P.; Cunha, L.; Falcão, F.; Lopes, G.; Machado, C.; Martinez-Marcos, J.; Monteiro, P. F.; Parreira, L.; Pinto, A. N.; Providencia, L. A.; Salgado, A. V.; Santos, J. F.; Timoteo, A. T.; Capalneanu, R.; Cinteza, M. A.; Margulesai, A. D.; Turdeanu, D. S.; Vintila, V. D.; Baranov, V. L.; Berngardt, E. R.; Dzhordzhikiya, T. R.; Gordeev, I. G.; Grigoryev, Y. V.; Isaeva, M. U.; Ivleva, A. Y.; Kokorin, V. A.; Komarov, A. L.; Maximenko, O. K.; Maykov, E. B.; Novikova, N.; Novikova, T. N.; Panchenko, E. P.; Poltavskaya, M. G.; Popova, Y. N.; Pronina, S. A.; Revishvili, A. Sh; Shlyakhto, E. V.; Shustov, S. B.; Sidorenko, B. A.; Sinopalnikov, A. I.; Sulimov, V.; Syrkin, A. L.; Titkov, A. Y.; Titkov, Y. S.; Zateyshchikov, D. A.; Zavaritskaya, O. P.; Chia, P. L.; Foo, D.; Sim, K. L.; Bugan, V.; Buganova, I.; Dúbrava, J.; Kaliska, G.; Masarovicova, M.; Mikes, P.; Mikes, Z.; Murin, J.; Pella, D.; Rybar, R.; Sedlák, J.; Skamla, M.; Spurný, P.; Strbova, J.; Uhliar, R.; Disler, L. J.; Engelbrecht, J. M.; Jankelow, D.; King, J.; Klug, E. Q.; Munnick, M.; Okreglicki, A. M.; Routier, R. J.; Snyders, F. A.; Theron, H. D.; Wittmer, H.; Cha, T. J.; Cho, J. G.; Choi, I. S.; Choi, J. I.; Choi, K. J.; Han, K. R.; Heo, J. H.; Jang, S. W.; Kang, T. S.; Kim, H. S.; Kim, K. S.; Kim, S. J.; Kim, S. S.; Kim, Y. H.; Kim, Y. N.; Lee, M. H.; Lee, M. Y.; Nam, G. B.; Oh, D. J.; Park, H. W.; Park, J. S.; Rho, T. H.; Shin, D. G.; Shin, E. K.; Alonso, J. J.; Cano, L.; Castellano, N. P.; Criado-Millan, A. J.; Curcio, A.; Egea, P.; Escudier, J. M.; Grande, A.; Grande, J. M.; Gusi-Tragant, G.; Lozano, I. F.; Martin, A. M.; Martinez-Rubio, A.; Mont, L.; Perez-Villacastin, J.; Sosa, L.; Ali, M.; Andersson, T.; Bandh, S.; Blomstrom Lundqvist, C. M.; Cherfan, P.; Fengsrud, E.; Fluur, C.; Herlitz, J.; Hijazi, Z.; Hoglund, N.; Hojeberg, B.; Jabro, J.; Juhlin, T.; Kjellman, B.; Lonnberg, I.; Maru, F.; Morlid, L.; Nilsson, O. R.; Ronn, F.; Rosenqvist, M.; Walfridsson, H.; Engelter, S. T.; Gallino, A.; Lyrer, P. A.; Moccetti, T.; Petrova, I.; Chang, Y. J.; Chen, C. H.; Chen, M. Y. C.; Cheng, J. J.; Chiang, T. R.; Chung, W. T.; Hsia, C. H.; Hsu, C. Y.; Hu, H. H.; Jeng, J. S.; Lai, W. T.; Lien, L. M.; Lin, K. H.; Liu, C. H.; Lo, H. S.; Peng, G. S.; Po, H. L.; Ryu, S. J.; Tsai, C. D.; Tsai, L. M.; Tseng, C. D.; Wang, J. H.; Wang, S. F.; Yang, S. P.; Kiatchoosakun, S.; Krittayaphong, R.; Kuanprasert, S.; Ngarmukos, T.; Simtharakaew, T.; Sukanandachai, B.; Sukonthasam, A.; Suwanagool, A.; Tatsanavivat, P.; Atmaca, Y.; Baris, N.; Boyaci, B.; Demir, M.; Guneri, S.; Usal, A.; Yalcin, R.; Amosova, K. M.; Beregova, O. P.; Besaga, Y. E. M.; Ikorkin, M. R.; Karapetyan, K.; Karpenko, O. I.; Kononenko, L.; Kuryata, O.; Martynova, L.; Motylevska, T.; Okhryamkina, O.; Pavlyk, S. S.; Perepelytsya, M. V.; Rudenko, L. V.; Skarzhevsky, O. A.; Tkachenko, L. A.; Tseluyko, V.; Usan, N.; Voronkov, L. G.; Yshchenko, K. V.; Zharinov, O. J.; Bryson, V. G.; Butler, R.; Cargill, R. I.; Chahal, N. S.; Cleland, J. G.; Cohen, A. T.; Cruddas, E. M.; Davey, P.; Davies, J.; Ford, S. L.; Griffith, K.; Haynes, R.; Hill, S.; Javed, M.; Kadr, H. H.; Lip, G. H.; Machin, J.; McEneaney, D. J.; McInnes, G. T.; McNeill, A. J.; Moriarty, A. J.; Muir, S.; O'Callaghan, J.; Purvis, J. A.; Pye, M.; Senior, R.; Sutton, D. A.; Thomas, S. H. L.; Wilkinson, P. R.; Wilmott, R.; Wrigley, M. J.; Abadier, R.; Abbud, Z. A.; Adams, K. V.; Adler, S. W.; Agarwal, S.; Ahmed, A. M.; Ahmed, I. S.; Aiuto, M. A.; Albrittun, T. D.; Aliyar, P.; Allan, J. J.; Allen, D. P.; Allen, S. L.; Altschuller, A.; Amin, M.; Anand, I. S.; Antolick, A. B.; Arora, R.; Arouni, A. J.; Arslanian, C. L.; Asinger, R. W.; Aycock, G. R.; Bariciano, R. J.; Baron, S. B.; Barr, M. A.; Bartkowiak, A. J.; Baruch, L.; Basignani, C.; Bass, M. L.; Bean, B.; Bedwell, N. W.; Belber, A. D.; Belew, K.; Bell, Y. C.; Bellinger, R. L.; Bennett, W. T.; Bensimhon, D. R.; Benton, R.; Benton, R. E.; Ben-Yehuda, O.; Bertolet, B. D.; Betkowski, A. S.; Bilazarian, S. D.; Bissette, J. K.; Bobade, M. B.; Bolster, D. E.; Bomba, J.; Book, D. M.; Boscia, J. A.; Bouchard, A.; Bowman, L. M.; Bradley, A. J.; Brandt, H. D.; Bricker, C. R.; Brobyn, T. L.; Brock, R. I.; Broderick, T. M.; Broedlin, K.; Brown, A. M.; Browne, K. F.; Burke, S. W.; Burton, M. E.; Buser, G. A.; Capasso, M. K.; Caplan, W. E.; Cappelli, J.; Cardona, C.; Cardona, F.; Carlson, T.; Carr, K. W.; Casey, T.; Cashion, W. R.; Cass, D. T.; Chandrashekar, Y. S.; Changlani, M.; Chapla, P. G.; Chappell, J. H.; Chen, C.; Chen, Y.; Cho, N. R.; Cieszkowski, J. H.; Clark, D. M.; Clayton, R.; Clogston, C. W.; Cockrell, D. J.; Cohen, A. I.; Cohen, T. J.; Cole, J. F.; Conway, G.; Cook, V. R.; Cornish, A. L.; Cossu, S. F.; Costello, D. L.; Courtade, D. J.; Covelli, H. C.; Crenshaw, B. S.; Crews, L. A.; Crossley, G. H.; Culp, S. C.; Curtis, B. M.; Darrow, K.; de Raad, R. E.; DeGregorio, M.; DelNegro, A. A.; Denny, D. M.; Desai, V. S.; Deumite, N. J.; Dewey, L.; Dharawat, R. N.; Dobbs, B.; Donahue, S. M.; Downey, B.; Downing, J.; Drehobl, M. A.; Drewes, W. A.; Drucker, M. N.; Duff, R.; Duggal, M.; Dunlap, S. H.; Dunning, D. W.; DuThinh, V.; Dykstra, G. T.; East, C.; Eblaghie, M. C.; Edelstein, J.; Edmiston, W. A.; Eisen, H. J.; Eisenberg, S. J.; Ellis, J. R.; Ellison, H. S.; Ellsworth, S.; Elshahawy, M.; Emlein, G.; Entcheva, M.; Essandoh, L. K.; Estrada, A. Q.; Ewing, B.; Faillace, R. T.; Fanelli, A.; Farrell, P. W.; Farris, S. W.; Fattal, P. G.; Feigenblum, D. Y.; Feldman, G. J.; Fialkow, J. A.; Fiddler, K. M.; Fields, R. H.; Finkel, M. S.; Finn, C.; Fischell, T. A.; Fishbach, M.; Fishbein, G. J.; Fisher, M. M.; Fleischhauer, F. J.; Folk, T. G.; Folkerth, S. D.; Fortman, R. R.; Frais, M. A.; Friedman, D. C.; Fuchs, G.; Fuller, F.; Garibian, G.; Gee, F. H.; Gelernt, M. D.; Genovely, H. C.; Gerber, J. R.; Germano, J. J.; Giardina, J. J.; Gilbert, J. M.; Gillespie, E. L.; Gilman, E. M.; Gitler, B.; Givens, D. H.; Glover, R.; Gogia, H. S.; Gohn, D. C.; Goldberg, R. K.; Goldberger, J. J.; Goldscher, D. A.; Goldstein, M.; Goraya, T.; Gordon, D. F.; Gottlieb, D.; Grafner, H. L.; Graham, M.; Graves, M. W.; Graziano, M.; Greco, S. N.; Greenberg, M. L.; Greenspon, A. J.; Greer, G. S.; Griffin, D. D.; Grogan, E. W.; Groo, V. L.; Guarnieri, T.; Gupta, A.; Gupta, J.; Hack, T. C.; Hall, B.; Hallak, O.; Halpern, S. W.; Hamburg, C.; Hamroff, G. S.; Han, J.; Handel, F.; Hankins, S. R.; Hanovich, G. D.; Hanrahan, J. A.; Haque, I. U.; Hargrove, J. L.; Harnick, P. E.; Harris, J. L.; Hartley, P. A.; Haskel, E. J.; Hatch, D.; Haught, W. H.; Hearne, S.; Hearne, S. E.; Hemphill, J. A.; Henderson, D. A.; Henes, C. H.; Hengerer-Yates, T.; Hermany, P. R.; Herzog, W. R.; Hickey, K.; Hilton, T. C.; Hockstad, E. S.; Hodnett, P.; Hoffmeister, R.; Holland, J.; Hollenweger, L.; Honan, M. B.; Hoopes, D. A.; Hordes, A. R.; Hotchkiss, D. A.; Howard, M. A.; Howard, V. N.; Hulyalkar, A. R.; Hurst, P.; Hutchison, L. C.; Ingram, J.; Isakov, T.; Ison, R. K.; Israel, C. N.; Jackson, B. K.; Jackson, K. N.; Jacobson, A. K.; Jain, S.; Jarmukli, N. F.; Joffe, I.; Johnson, L. E.; Johnson, S. A.; Johnson, S. L.; Jones, A. A.; Joyce, D. B.; Judson, P. L.; Juk, S. S.; Kaatz, S.; Kaddaha, R. M.; Kaplan, K. J.; Karunaratne, H. B.; Kennett, J. D.; Kenton, D. M.; Kettunen, J. A.; Khan, M. A.; Khant, R. N.; Kirkwood, M. D.; Knight, B. P.; Knight, P. O.; Knutson, T. J.; Kobayashi, J. F.; Kogan, A.; Kogan, A. D.; Koren, M. J.; Kosinski, E. J.; Kosolcharoen, P.; Kostis, J. B.; Kramer, J. H.; Kramer, S. D.; Kron, J.; Kuchenrither, C. R.; Kulback, S. J.; Kumar, A.; Kushner, D.; Kutscher, A.; Lai, C. K.; Lam, J. B.; Landau, C.; Landzberg, J. S.; Lang, D. T.; Lang, J. M.; Lanzarotti, C. J.; Lascewski, D. L.; Lau, T. K.; Lee, J. K.; Lee, S.; Leimbach, W. N.; LePine, A. M.; Lesser, M. F.; Leuchak, S. H.; Levy, R. M.; Lewis, W. R.; Lincoln, T. L.; Lingerfelt, W. M.; Liston, M.; Liu, Z. G.; Lloret, R. L.; Lohrbauer, L.; Longoria, D. C.; Lott, B. M.; Louder, D. R.; Loukinen, K. L.; Lovell, J.; Lue, S.; Mackall, J. A.; Maletz, L.; Marlow, L.; Martin, R. C.; Matsumura, M.; McCartney, M. J.; McDuffie, D.; McGough, M. F.; McGrew, F. A.; McGuinn, Wm P.; McMillen, M. D.; McNeff, J.; McPherson, C. A.; Meengs, M. E.; Meengs, W. L.; Meholick, A. W.; Meisner, J. S.; Melucci, M. B.; Mercando, A.; Merlino, J. D.; Meymandi, S. K.; Miele, M. B.; Miller, R. H.; Miller, S. H.; Minor, S. T.; Mitchell, M. R.; Modi, M.; Mody, F. V.; Moeller, C. L.; Moloney, J. F.; Moran, J. E.; Morcos, N. C.; Morgan, A.; Mukherjee, S. K.; Mullinax, K.; Murphy, A. L.; Mustin, A. J.; Myers, G. I.; Naccarelli, G. V.; Nadar, V. K.; Nallasivan, M.; Navas, J. P.; Niazi, I. K.; Nsah, E. N.; Nunamaker, J. L.; Ochalek, T. B.; O'dea, D. J.; Ogilvie, P. D.; Olliff, B.; Omalley, A. K.; O'Neill, P. G.; Onufer, J. R.; Orchard, R. C.; Orihuela, L. A.; Ortiz, E. C.; O'Sullivan, M. T.; Padanilam, B. J.; Pandey, P.; Patel, D. V.; Patel, R. J.; Patel, V. B.; Patlola, R. R.; Pennock, G. D.; Perlman, R.; Peters, P. H.; Petrillo, A. V.; Pezzella, S.; Phillips, D.; Pierre-Louis, J. R.; Pilcher, G.; Pillai, C.; Pollock, S. G.; Pond, M. S.; Porterfield, J. K.; Presant, L.; Pressler, J.; Pribble, A. H.; Promisloff, S. D.; Pudi, K. K.; Putnam, D. L.; Quartner, J.; Quinn, J. C.; Quinnell, C. M.; Raad, G. L.; Rasmussen, L. A.; Ray, C.; Reiffel, J. A.; Reynertson, S.; Richardson, J. W.; Riley, C. P.; Rippy, J. S.; Rittelmeyer, J. T.; Roberts, D. M.; Robertson, R.; Robinson, V. J. B.; Rocco, T. A.; Rosenbaum, D.; Roth, E. M.; Rottman, J. N.; Rough, R. R.; Rubenstein, J. J.; Sakkal, A. M.; Saleem, T.; Salerno, D. M.; Samendinger, M. L.; Sandeno, S.; Santilli, T. M.; Santucci, P.; Sattar, P.; Saxman, K. A.; Schaefer, S.; Schmidt, J.; Schneider, R. M.; Schocken, D. D.; Schrader, M. K.; Schramm, B. A.; Schultz, R. W.; Schussheim, A. E.; Schwarz, E. F.; Seamon, M. C.; Sestero, J. D.; Shah, M. P.; Shah, R.; Shalaby, A.; Shanes, J. G.; Sheftel, G. L.; Sheikh, K. H.; Shein, A. B.; Shemonsky, N. K.; Shepler, A.; Sheridan, E.; Shipwash, T. M.; Shopnick, R. I.; Short, W. G.; Shoukfeh, M. F.; Sibia, R. S.; Siler, T. M.; Silva, J. A.; Simons, G. R.; Simpson, A. G.; Simpson, H. R.; Simpson, V. J.; Singh, B. N.; Singh, N.; Singh, V. N.; Sitz, C. J.; Skatrud, L.; Sklar, J.; Slotwiner, D. J.; Smith, P. F.; Smith, P. N.; Smith, R. H.; Smith, J. E.; Sodowick, B. C.; Solomon, A. J.; Soltero, E. A.; Sonel, A. F.; Sperling, R.; Spiller, C.; Spink, B. Z.; Sprinkle, L. W.; Spyropoulos, A. C.; Stamos, T. D.; Steljes, A. D.; Stillabower, M. E.; Stover, T.; Strain, J. E.; Strickland, T. L.; Suresh, D. P.; Takata, T. S.; Taylor, J. S.; Taylor, M.; Teague, S. M.; Teixeia, J. M.; Telfer, E. A.; Terry, P. S.; Terry, R. W.; Thai, H. M.; Thalin, M.; Thomas, V. N.; Thompson, C. A.; Thompson, M. A.; Thornton, J. W.; Tidman, R. E.; Toler, B. S.; Traina, M. I.; Trippi, J. A.; Ujiiye, D. L.; Usedom, J. E.; van de Graaff, E.; van de Wall, L. R.; Vaughn, J. W.; Ver Steeg, D.; Vicari, R. M.; Vijay, N.; Vitale, C. B.; Vlastaris, A. G.; Voda, J.; Vora, K. N.; Voyles, W. F.; Vranian, R. B.; Vrooman, P. S.; Waack, P.; Waldo, A. L.; Walker, J. L.; Wallace, M. A.; Walsh, E. A.; Walsh, R. L.; Walton, A.; Washam, M.; Wehner, P. S.; Wei, J. Y.; Weiner, S.; Weiss, R. J.; Wells, D. M.; Wera-Archakul, W.; Wertheimer, J. H.; West, S. A.; Whitaker, J. H.; White, M. L.; White, R. H.; Whitehill, J. N.; Wiegman, P. J.; Wiesel, J.; Williams, J.; Williams, L. E.; Williams, M. L.; Williamson, V. K.; Wilson, V. E.; Wilson, W. W.; Woodfield, S. L.; Wulff, C. W.; Yates, S. W.; Yousuf, K. A.; Zakhary, B. G.; Zambrano, R.; Zimetbaum, P.; Zoble, R.; Zopo, A. R.; Zwerner, P. L.

    2009-01-01

    BACKGROUND: Warfarin reduces the risk of stroke in patients with atrial fibrillation but increases the risk of hemorrhage and is difficult to use. Dabigatran is a new oral direct thrombin inhibitor. METHODS: In this noninferiority trial, we randomly assigned 18,113 patients who had atrial

  14. Monitoring of dabigatran anticoagulation and its reversal in vitro by thrombelastography

    DEFF Research Database (Denmark)

    Solbeck, Sacha; Meyer, Martin A S; Johansson, Pär I

    2014-01-01

    BACKGROUND: Dabigatran etexilate, a pro-drug of a direct thrombin inhibitor, was approved a few years ago for non-valvular atrial fibrillation and deep venous thrombosis. Rapid monitoring of the dabigatran level is essential in trauma and bleeding patients but the traditional plasma-based assays ...

  15. Minimally Invasive Therapy of Pseudoaneurysms of the Trunk: Application of Thrombin

    International Nuclear Information System (INIS)

    Schellhammer, Frank; Steinhaus, Daniele; Cohnen, Mathias; Hoppe, Jonas; Moedder, Ulrich; Fuerst, Guenter

    2008-01-01

    Thrombin injection has been proven to be successful in postcatheterization pseudoaneurysms. However, there are only a few reports on the treatment of pseudoaneurysms of the trunk. We report our first experiences using a percutaneous as well as an endovascular access. Eight iatrogenic pseudoaneurysms of the trunk (aorta, n = 4; pulmonary artery, n = 1; gastroduodenal artery, n = 1; left gastric artery, n = 1, renal artery, n = 1) were treated either percutaneously using CT guidance (n = 3) or via an endovascular access (n = 5). Noninvasive control angiograms were performed at day 1 and weeks 1 and 3 by either CT or MR angiography. The total volume of the pseudoaneurysms was 31.2 ± 23.1 ml on average, with a mean volume of the perfused aneurysmal lumen of 12.9 ± 7.2 ml. The maximum diameter was 4.1 ± 1.39 cm on average. In each case, the aneurysmal neck was not wider than 2 mm. One pseudoaneurysm occluded spontaneously following selective catheterization. The remaining pseudoaneurysms were successfully treated by injection of 765 ± 438.1 IU thrombin. In one individual, a nontarget embolization occurred, as well as an intervention-associated rupture of a pseudoaneurysm. High-grade stenoses of the donor artery were found in a different case. Only once was the endoluminal access converted to a percutaneous one. Thrombin injection might be a future first-line treatment of vascular lesions such as pseudoaneurysms of the trunk. In our experience both percutanous and endoluminal access are technically feasible and safe. However, further experiences are mandatory, especially concerning the question of dosage and long-term results

  16. Contact system activation and high thrombin generation in hyperthyroidism.

    Science.gov (United States)

    Kim, Namhee; Gu, Ja-Yoon; Yoo, Hyun Ju; Han, Se Eun; Kim, Young Il; Nam-Goong, Il Sung; Kim, Eun Sook; Kim, Hyun Kyung

    2017-05-01

    Hyperthyroidism is associated with increased thrombotic risk. As contact system activation through formation of neutrophil extracellular traps (NET) has emerged as an important trigger of thrombosis, we hypothesized that the contact system is activated along with active NET formation in hyperthyroidism and that their markers correlate with disease severity. In 61 patients with hyperthyroidism and 40 normal controls, the levels of coagulation factors (fibrinogen, and factor VII, VIII, IX, XI and XII), D-dimer, thrombin generation assay (TGA) markers, NET formation markers (histone-DNA complex, double-stranded DNA and neutrophil elastase) and contact system markers (activated factor XII (XIIa), high-molecular-weight kininogen (HMWK), prekallikrein and bradykinin) were measured. Patients with hyperthyroidism showed higher levels of fibrinogen (median (interquartile range), 315 (280-344) vs 262 (223-300), P  = 0.001), D-dimer (103.8 (64.8-151.5) vs 50.7 (37.4-76.0), P  hyperthyroidism's contribution to coagulation and contact system activation. Free T4 was significantly correlated with factors VIII and IX, D-dimer, double-stranded DNA and bradykinin. This study demonstrated that contact system activation and abundant NET formation occurred in the high thrombin generation state in hyperthyroidism and were correlated with free T4 level. © 2017 European Society of Endocrinology.

  17. Structure-activity studies and therapeutic potential of host defense peptides of human thrombin.

    Science.gov (United States)

    Kasetty, Gopinath; Papareddy, Praveen; Kalle, Martina; Rydengård, Victoria; Mörgelin, Matthias; Albiger, Barbara; Malmsten, Martin; Schmidtchen, Artur

    2011-06-01

    Peptides of the C-terminal region of human thrombin are released upon proteolysis and identified in human wounds. In this study, we wanted to investigate minimal determinants, as well as structural features, governing the antimicrobial and immunomodulating activity of this peptide region. Sequential amino acid deletions of the peptide GKYGFYTHVFRLKKWIQKVIDQFGE (GKY25), as well as substitutions at strategic and structurally relevant positions, were followed by analyses of antimicrobial activity against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive bacterium Staphylococcus aureus, and the fungus Candida albicans. Furthermore, peptide effects on lipopolysaccharide (LPS)-, lipoteichoic acid-, or zymosan-induced macrophage activation were studied. The thrombin-derived peptides displayed length- and sequence-dependent antimicrobial as well as immunomodulating effects. A peptide length of at least 20 amino acids was required for effective anti-inflammatory effects in macrophage models, as well as optimal antimicrobial activity as judged by MIC assays. However, shorter (>12 amino acids) variants also displayed significant antimicrobial effects. A central K14 residue was important for optimal antimicrobial activity. Finally, one peptide variant, GKYGFYTHVFRLKKWIQKVI (GKY20) exhibiting improved selectivity, i.e., low toxicity and a preserved antimicrobial as well as anti-inflammatory effect, showed efficiency in mouse models of LPS shock and P. aeruginosa sepsis. The work defines structure-activity relationships of C-terminal host defense peptides of thrombin and delineates a strategy for selecting peptide epitopes of therapeutic interest.

  18. Critical role of non-muscle myosin light chain kinase in thrombin-induced endothelial cell inflammation and lung PMN infiltration.

    Science.gov (United States)

    Fazal, Fabeha; Bijli, Kaiser M; Murrill, Matthew; Leonard, Antony; Minhajuddin, Mohammad; Anwar, Khandaker N; Finkelstein, Jacob N; Watterson, D Martin; Rahman, Arshad

    2013-01-01

    The pathogenesis of acute lung injury (ALI) involves bidirectional cooperation and close interaction between inflammatory and coagulation pathways. A key molecule linking coagulation and inflammation is the procoagulant thrombin, a serine protease whose concentration is elevated in plasma and lavage fluids of patients with ALI and acute respiratory distress syndrome (ARDS). However, little is known about the mechanism by which thrombin contributes to lung inflammatory response. In this study, we developed a new mouse model that permits investigation of lung inflammation associated with intravascular coagulation. Using this mouse model and in vitro approaches, we addressed the role of non-muscle myosin light chain kinase (nmMLCK) in thrombin-induced endothelial cell (EC) inflammation and lung neutrophil (PMN) infiltration. Our in vitro experiments revealed a key role of nmMLCK in ICAM-1 expression by its ability to control nuclear translocation and transcriptional capacity of RelA/p65 in EC. When subjected to intraperitoneal thrombin challenge, wild type mice showed a marked increase in lung PMN infiltration via expression of ICAM-1. However, these responses were markedly attenuated in mice deficient in nmMLCK. These results provide mechanistic insight into lung inflammatory response associated with intravascular coagulation and identify nmMLCK as a critical target for modulation of lung inflammation.

  19. Graft Product for Autologous Peripheral Blood Stem Cell Transplantation Enhances Thrombin Generation and Expresses Procoagulant Microparticles and Tissue Factor.

    Science.gov (United States)

    Sidibe, Fatoumata; Spanoudaki, Anastasia; Vanneaux, Valerie; Mbemba, Elisabeth; Larghero, Jerome; Van Dreden, Patrick; Lotz, Jean-Pierre; Elalamy, Ismail; Larsen, Annette K; Gerotziafas, Grigoris T

    2018-05-01

    The beneficial effect of autologous peripheral blood stem cell transplantation (APBSCT) may be compromised by acute vascular complications related to hypercoagulability. We studied the impact of graft product on thrombin generation of normal plasma and the expression of tissue factor (TF) and procoagulant platelet-derived procoagulant microparticles (Pd-MPs) in samples of graft products. Graft products from 10 patients eligible for APBSCT were mixed with platelet-poor plasma (PPP) or platelet-rich plasma (PRP) from healthy volunteers and assessed for in vitro thrombin generation. In control experiments, thrombin generation was assessed in (1) PPP and PRP without any exogenous TF and/or procoagulant phospholipids, (2) PPP with the addition of TF (5 pM) and procoagulant phospholipids (4 μM), (3) in PRP with the addition of TF (5 pM). Graft products were assessed with Western blot assay for TF expression, with a specific clotting assay for TF activity and with flow cytometry assay for Pd-MPs. The graft product enhanced thrombin generation and its procoagulant activity was related to the presence of Pd-MPs and TF. The concentration of Pd-MPs in the graft product was characterized by a significant interindividual variability. The present study reveals the need for a thorough quality control of the graft products regarding their procoagulant potential.

  20. Should anti-inhibitor coagulant complex and tranexamic acid be used concomitantly?

    Science.gov (United States)

    Valentino, L A; Holme, P A

    2015-11-01

    Inhibitor development in haemophilia patients is challenging especially when undergoing surgical procedures. The development of an inhibitor precludes using factor VIII (FVIII) therapy thereby requiring a bypassing agent (BPA) for surgical bleeding prophylaxis if the FVIII inhibitor titre >5 BU. Concomitant use of anti-inhibitor coagulant complex (AICC) and tranexamic acid has been reported in the literature as a beneficial treatment for this population. Anti-inhibitor coagulant complex is known to cause an increase in thrombin generation and tranexamic acid inhibits fibrinolysis. Hence, the combined used of AICC and tranexamic acid has been limited due to safety concerns over possibilities of increased risk of thrombotic events and disseminated intravascular coagulation. However, the rationale for concomitant therapy is to obtain a potential synergistic effect and to increase clot stability. We conducted a literature review of past studies and individual case reports of concomitant use of AICC and tranexamic acid, which was extensively used during dental procedures. Evidence also exists for concomitant use of the combined therapy in orthopaedic procedures, control of gastrointestinal bleeding, epistaxis and cerebral haemorrhages. Some patients who received the combined therapy had failed monotherapy with a single BPA prior to combined therapy. There were no reports of thrombotic complications related to the concomitant therapy and haemostasis was achieved in all cases. Anti-inhibitor coagulant complex and tranexamic acid therapy was found to be safe, well-tolerated and effective therapy in haemophilia patients with inhibitors. Additional randomized controlled studies should be performed to confirm these findings. © 2015 John Wiley & Sons Ltd.

  1. Automatic and integrated micro-enzyme assay (AIμEA) platform for highly sensitive thrombin analysis via an engineered fluorescence protein-functionalized monolithic capillary column.

    Science.gov (United States)

    Lin, Lihua; Liu, Shengquan; Nie, Zhou; Chen, Yingzhuang; Lei, Chunyang; Wang, Zhen; Yin, Chao; Hu, Huiping; Huang, Yan; Yao, Shouzhuo

    2015-04-21

    Nowadays, large-scale screening for enzyme discovery, engineering, and drug discovery processes require simple, fast, and sensitive enzyme activity assay platforms with high integration and potential for high-throughput detection. Herein, a novel automatic and integrated micro-enzyme assay (AIμEA) platform was proposed based on a unique microreaction system fabricated by a engineered green fluorescence protein (GFP)-functionalized monolithic capillary column, with thrombin as an example. The recombinant GFP probe was rationally engineered to possess a His-tag and a substrate sequence of thrombin, which enable it to be immobilized on the monolith via metal affinity binding, and to be released after thrombin digestion. Combined with capillary electrophoresis-laser-induced fluorescence (CE-LIF), all the procedures, including thrombin injection, online enzymatic digestion in the microreaction system, and label-free detection of the released GFP, were integrated in a single electrophoretic process. By taking advantage of the ultrahigh loading capacity of the AIμEA platform and the CE automatic programming setup, one microreaction column was sufficient for many times digestion without replacement. The novel microreaction system showed significantly enhanced catalytic efficiency, about 30 fold higher than that of the equivalent bulk reaction. Accordingly, the AIμEA platform was highly sensitive with a limit of detection down to 1 pM of thrombin. Moreover, the AIμEA platform was robust and reliable to detect thrombin in human serum samples and its inhibition by hirudin. Hence, this AIμEA platform exhibits great potential for high-throughput analysis in future biological application, disease diagnostics, and drug screening.

  2. Kazal-type serine proteinase inhibitors in the midgut of Phlebotomus papatasi

    Directory of Open Access Journals (Sweden)

    Leah Theresa Sigle

    2013-09-01

    Full Text Available Sandflies (Diptera: Psychodidae are important disease vectors of parasites of the genus Leishmania, as well as bacteria and viruses. Following studies of the midgut transcriptome of Phlebotomus papatasi, the principal vector of Leishmania major, two non-classical Kazal-type serine proteinase inhibitors were identified (PpKzl1 and PpKzl2. Analyses of expression profiles indicated that PpKzl1 and PpKzl2 transcripts are both regulated by blood-feeding in the midgut of P. papatasi and are also expressed in males, larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression system (CHO-S free style cells that was applied to in vitro studies to assess serine proteinase inhibition. Recombinant PpKzl2 inhibited α-chymotrypsin to 9.4% residual activity and also inhibited α-thrombin and trypsin to 33.5% and 63.9% residual activity, suggesting that native PpKzl2 is an active serine proteinase inhibitor and likely involved in regulating digestive enzymes in the midgut. Early stages of Leishmania are susceptible to killing by digestive proteinases in the sandfly midgut. Thus, characterising serine proteinase inhibitors may provide new targets and strategies to prevent transmission of Leishmania.

  3. Effect of the direct renin inhibitor aliskiren on left ventricular remodelling following myocardial infarction with systolic dysfunction

    DEFF Research Database (Denmark)

    Solomon, Scott D; Shin, Sung Hee; Shah, Amil

    2011-01-01

    Direct renin inhibitors provide an alternative approach to inhibiting the renin-angiotensin-aldosterone system (RAAS) at the most proximal, specific, and rate-limiting step. We tested the hypothesis that direct renin inhibition would attenuate left ventricular remodelling in patients following...

  4. Shc adaptor proteins are key transducers of mitogenic signaling mediated by the G protein-coupled thrombin receptor

    DEFF Research Database (Denmark)

    Chen, Y; Grall, D; Salcini, A E

    1996-01-01

    The serine protease thrombin activates G protein signaling systems that lead to Ras activation and, in certain cells, proliferation. Whereas the steps leading to Ras activation by G protein-coupled receptors are not well defined, the mechanisms of Ras activation by receptor tyrosine kinases have......-insensitive proteins appear to mediate this effect, since (i) pertussis toxin pre-treatment of cells does not blunt the action of thrombin and (ii) Shc phosphorylation on tyrosine can be stimulated by the muscarinic m1 receptor. Shc phosphorylation does not appear to involve protein kinase C, since the addition of 4...

  5. Binding of thrombin-activated platelets to a fibrin scaffold through α(IIb)β₃ evokes phosphatidylserine exposure on their cell surface.

    Science.gov (United States)

    Brzoska, Tomasz; Suzuki, Yuko; Mogami, Hideo; Sano, Hideto; Urano, Tetsumei

    2013-01-01

    Recently, by employing intra-vital confocal microscopy, we demonstrated that platelets expose phosphatidylserine (PS) and fibrin accumulate only in the center of the thrombus but not in its periphery. To address the question how exposure of platelet anionic phospholipids is regulated within the thrombus, an in-vitro experiment using diluted platelet-rich plasma was employed, in which the fibrin network was formed in the presence of platelets, and PS exposure on the platelet surface was analyzed using Confocal Laser Scanning Microscopy. Almost all platelets exposed PS after treatment with tissue factor, thrombin or ionomycin. Argatroban abrogated fibrin network formation in all samples, however, platelet PS exposure was inhibited only in tissue factor- and thrombin-treated samples but not in ionomycin-treated samples. FK633, an α(IIb)β₃ antagonist, and cytochalasin B impaired platelet binding to the fibrin scaffold and significantly reduced PS exposure evoked by thrombin. Gly-Pro-Arg-Pro amide abrogated not only fibrin network formation, but also PS exposure on platelets without suppressing platelet binding to fibrin/fibrinogen. These results suggest that outside-in signals in platelets generated by their binding to the rigid fibrin network are essential for PS exposure after thrombin treatment.

  6. Comparing thrombin generation in patients with hemophilia A and patients on vitamin K antagonists

    NARCIS (Netherlands)

    de Koning, M L Y; Fischer, K; de Laat, B; Huisman, A; Ninivaggi, M; Schutgens, R E G

    Essentials: It is unknown if hemophilia patients with atrial fibrillation need anticoagulation. Endogenous thrombin potentials (ETP) in hemophilia patients and patients on coumarins were compared. Severe hemophilia patients had comparable ETP to therapeutic international normalized ratio (INR). In

  7. Enhanced electrochemiluminescence quenching of CdS:Mn nanocrystals by CdTe QDs-doped silica nanoparticles for ultrasensitive detection of thrombin

    Science.gov (United States)

    Shan, Yun; Xu, Jing-Juan; Chen, Hong-Yuan

    2011-07-01

    This work reports an aptasensor for ultrasensitive detection of thrombin based on remarkably efficient energy-transfer induced electrochemiluminescence (ECL) quenching from CdS:Mn nanocrystals (NCs) film to CdTe QDs-doped silica nanoparticles (CdTe/SiO2 NPs). CdTe/SiO2 NPs were synthesized via the Stöber method and showed black bodies' strong absorption in a wide spectral range without excitonic emission, which made them excellent ECL quenchers. Within the effective distance of energy scavenging, the ECL quenching efficiency was dependent on the number of CdTe QDs doped into the silica NPs. Using ca. 200 CdTe QDs doped silica NPs on average of 40 nm in diameter as ECL quenching labels, attomolar detection of thrombin was successfully realized. The protein detection involves a competition binding event, based on thrombin replacing CdTe/SiO2 NPs labeled probing DNA which is hybridized with capturing aptamer immobilized on a CdS:Mn NCs film modified glassy carbon electrode surface by specific aptamer-protein affinity interactions. It results in the displacement of ECL quenching labels from CdS:Mn NCs film and concomitant ECL signal recovery. Owing to the high-content CdTe QDs in silica NP, the increment of ECL intensity (ΔIECL) and the concentration of thrombin showed a double logarithmic linear correlation in the range of 5.0 aM~5.0 fM with a detection limit of 1aM. And, the aptasensor hardly responded to antibody, bovine serum albumin (BSA), haemoglobin (Hb) and lysozyme, showing good detection selectivity for thrombin. This long-distance energy scavenging could have a promising application perspective in the detection of biological recognition events on a molecular level.This work reports an aptasensor for ultrasensitive detection of thrombin based on remarkably efficient energy-transfer induced electrochemiluminescence (ECL) quenching from CdS:Mn nanocrystals (NCs) film to CdTe QDs-doped silica nanoparticles (CdTe/SiO2 NPs). CdTe/SiO2 NPs were synthesized via

  8. Active but inoperable thrombin is accumulated in a plasma protein layer surrounding Streptococcus pyogenes

    NARCIS (Netherlands)

    Naudin, Clément; Hurley, Sinead M.; Malmström, Erik; Plug, Tom; Shannon, Oonagh; Meijers, Joost C. M.; Mörgelin, Matthias; Björck, Lars; Herwald, Heiko

    2015-01-01

    Activation of thrombin is a critical determinant in many physiological and pathological processes including haemostasis and inflammation. Under physiological conditions many of these functions are involved in wound healing or eradication of an invading pathogen. However, when activated systemically,

  9. A sensitive HIV-1 envelope induced fusion assay identifies fusion enhancement of thrombin

    International Nuclear Information System (INIS)

    Cheng, De-Chun; Zhong, Guo-Cai; Su, Ju-Xiang; Liu, Yan-Hong; Li, Yan; Wang, Jia-Ye; Hattori, Toshio; Ling, Hong; Zhang, Feng-Min

    2010-01-01

    To evaluate the interaction between HIV-1 envelope glycoprotein (Env) and target cell receptors, various cell-cell-fusion assays have been developed. In the present study, we established a novel fusion system. In this system, the expression of the sensitive reporter gene, firefly luciferase (FL) gene, in the target cells was used to evaluate cell fusion event. Simultaneously, constitutively expressed Renilla luciferase (RL) gene was used to monitor effector cell number and viability. FL gave a wider dynamic range than other known reporters and the introduction of RL made the assay accurate and reproducible. This system is especially beneficial for investigation of potential entry-influencing agents, for its power of ruling out the false inhibition or enhancement caused by the artificial cell-number variation. As a case study, we applied this fusion system to observe the effect of a serine protease, thrombin, on HIV Env-mediated cell-cell fusion and have found the fusion enhancement activity of thrombin over two R5-tropic HIV strains.

  10. Monitoring low molecular weight heparins at therapeutic levels: dose-responses of, and correlations and differences between aPTT, anti-factor Xa and thrombin generation assays.

    Directory of Open Access Journals (Sweden)

    Owain Thomas

    Full Text Available Low molecular weight heparins (LMWH's are used to prevent and treat thrombosis. Tests for monitoring LMWH's include anti-factor Xa (anti-FXa, activated partial thromboplastin time (aPTT and thrombin generation. Anti-FXa is the current gold standard despite LMWH's varying affinities for FXa and thrombin.To examine the effects of two different LMWH's on the results of 4 different aPTT-tests, anti-FXa activity and thrombin generation and to assess the tests' concordance.Enoxaparin and tinzaparin were added ex-vivo in concentrations of 0.0, 0.5, 1.0 and 1.5 anti-FXa international units (IU/mL, to blood from 10 volunteers. aPTT was measured using two whole blood methods (Free oscillation rheometry (FOR and Hemochron Jr (HCJ and an optical plasma method using two different reagents (ActinFSL and PTT-Automat. Anti-FXa activity was quantified using a chromogenic assay. Thrombin generation (Endogenous Thrombin Potential, ETP was measured on a Ceveron Alpha instrument using the TGA RB and more tissue-factor rich TGA RC reagents.Methods' mean aPTT at 1.0 IU/mL LMWH varied between 54s (SD 11 and 69s (SD 14 for enoxaparin and between 101s (SD 21 and 140s (SD 28 for tinzaparin. ActinFSL gave significantly shorter aPTT results. aPTT and anti-FXa generally correlated well. ETP as measured with the TGA RC reagent but not the TGA RB reagent showed an inverse exponential relationship to the concentration of LMWH. The HCJ-aPTT results had the weakest correlation to anti-FXa and thrombin generation (Rs0.62-0.87, whereas the other aPTT methods had similar correlation coefficients (Rs0.80-0.92.aPTT displays a linear dose-response to LMWH. There is variation between aPTT assays. Tinzaparin increases aPTT and decreases thrombin generation more than enoxaparin at any given level of anti-FXa activity, casting doubt on anti-FXa's present gold standard status. Thrombin generation with tissue factor-rich activator is a promising method for monitoring LMWH's.

  11. Thrombin contributes to bronchoalveolar lavage fluid mitogenicity in lung disease of the premature infant

    NARCIS (Netherlands)

    Dik, Willem A.; Zimmermann, Luc J. I.; Naber, Brigitta A.; Janssen, Daphne J.; van Kaam, Anton H. L. C.; Versnel, Marjan A.

    2003-01-01

    Chronic lung disease of prematurity (CLD) is a common consequence of neonatal respiratory distress syndrome (RDS) and is characterized by pulmonary fibrosis. Increased thrombin activity in the alveolar compartment is associated with pulmonary fibrosis in adults and animals, and contributes to

  12. Enhanced electrochemiluminescence quenching of CdS:Mn nanocrystals by CdTe QDs-doped silica nanoparticles for ultrasensitive detection of thrombin.

    Science.gov (United States)

    Shan, Yun; Xu, Jing-Juan; Chen, Hong-Yuan

    2011-07-01

    This work reports an aptasensor for ultrasensitive detection of thrombin based on remarkably efficient energy-transfer induced electrochemiluminescence (ECL) quenching from CdS:Mn nanocrystals (NCs) film to CdTe QDs-doped silica nanoparticles (CdTe/SiO(2) NPs). CdTe/SiO(2) NPs were synthesized via the Stöber method and showed black bodies' strong absorption in a wide spectral range without excitonic emission, which made them excellent ECL quenchers. Within the effective distance of energy scavenging, the ECL quenching efficiency was dependent on the number of CdTe QDs doped into the silica NPs. Using ca. 200 CdTe QDs doped silica NPs on average of 40 nm in diameter as ECL quenching labels, attomolar detection of thrombin was successfully realized. The protein detection involves a competition binding event, based on thrombin replacing CdTe/SiO(2) NPs labeled probing DNA which is hybridized with capturing aptamer immobilized on a CdS:Mn NCs film modified glassy carbon electrode surface by specific aptamer-protein affinity interactions. It results in the displacement of ECL quenching labels from CdS:Mn NCs film and concomitant ECL signal recovery. Owing to the high-content CdTe QDs in silica NP, the increment of ECL intensity (ΔI(ECL)) and the concentration of thrombin showed a double logarithmic linear correlation in the range of 5.0 aM∼5.0 fM with a detection limit of 1aM. And, the aptasensor hardly responded to antibody, bovine serum albumin (BSA), haemoglobin (Hb) and lysozyme, showing good detection selectivity for thrombin. This long-distance energy scavenging could have a promising application perspective in the detection of biological recognition events on a molecular level.

  13. Phospholipid Binding Protein C Inhibitor (PCI) Is Present on Microparticles Generated In Vitro and In Vivo

    Science.gov (United States)

    Einfinger, Katrin; Badrnya, Sigrun; Furtmüller, Margareta; Handschuh, Daniela; Lindner, Herbert; Geiger, Margarethe

    2015-01-01

    Protein C inhibitor is a secreted, non-specific serine protease inhibitor with broad protease reactivity. It binds glycosaminoglycans and anionic phospholipids, which can modulate its activity. Anionic phospholipids, such as phosphatidylserine are normally localized to the inner leaflet of the plasma membrane, but are exposed on activated and apoptotic cells and on plasma membrane-derived microparticles. In this report we show by flow cytometry that microparticles derived from cultured cells and activated platelets incorporated protein C inhibitor during membrane blebbing. Moreover, protein C inhibitor is present in/on microparticles circulating in normal human plasma as judged from Western blots, ELISAs, flow cytometry, and mass spectrometry. These plasma microparticles are mainly derived from megakaryocytes. They seem to be saturated with protein C inhibitor, since they do not bind added fluorescence-labeled protein C inhibitor. Heparin partially removed microparticle-bound protein C inhibitor, supporting our assumption that protein C inhibitor is bound via phospholipids. To assess the biological role of microparticle-bound protein C inhibitor we performed protease inhibition assays and co-precipitated putative binding partners on microparticles with anti-protein C inhibitor IgG. As judged from amidolytic assays microparticle-bound protein C inhibitor did not inhibit activated protein C or thrombin, nor did microparticles modulate the activity of exogenous protein C inhibitor. Among the proteins co-precipitating with protein C inhibitor, complement factors, especially complement factor 3, were most striking. Taken together, our data do not support a major role of microparticle-associated protein C inhibitor in coagulation, but rather suggest an interaction with proteins of the complement system present on these phospholipid vesicles. PMID:26580551

  14. Platelet-Derived Short-Chain Polyphosphates Enhance the Inactivation of Tissue Factor Pathway Inhibitor by Activated Coagulation Factor XI.

    Directory of Open Access Journals (Sweden)

    Cristina Puy

    Full Text Available Factor (F XI supports both normal human hemostasis and pathological thrombosis. Activated FXI (FXIa promotes thrombin generation by enzymatic activation of FXI, FIX, FX, and FV, and inactivation of alpha tissue factor pathway inhibitor (TFPIα, in vitro. Some of these reactions are now known to be enhanced by short-chain polyphosphates (SCP derived from activated platelets. These SCPs act as a cofactor for the activation of FXI and FV by thrombin and FXIa, respectively. Since SCPs have been shown to inhibit the anticoagulant function of TFPIα, we herein investigated whether SCPs could serve as cofactors for the proteolytic inactivation of TFPIα by FXIa, further promoting the efficiency of the extrinsic pathway of coagulation to generate thrombin.Purified soluble SCP was prepared by size-fractionation of sodium polyphosphate. TFPIα proteolysis was analyzed by western blot. TFPIα activity was measured as inhibition of FX activation and activity in coagulation and chromogenic assays. SCPs significantly accelerated the rate of inactivation of TFPIα by FXIa in both purified systems and in recalcified plasma. Moreover, platelet-derived SCP accelerated the rate of inactivation of platelet-derived TFPIα by FXIa. TFPIα activity was not affected by SCP in recalcified FXI-depleted plasma.Our data suggest that SCP is a cofactor for TFPIα inactivation by FXIa, thus, expanding the range of hemostatic FXIa substrates that may be affected by the cofactor functions of platelet-derived SCP.

  15. Potent host-directed small-molecule inhibitors of myxovirus RNA-dependent RNA-polymerases.

    Directory of Open Access Journals (Sweden)

    Stefanie A Krumm

    Full Text Available Therapeutic targeting of host cell factors required for virus replication rather than of pathogen components opens new perspectives to counteract virus infections. Anticipated advantages of this approach include a heightened barrier against the development of viral resistance and a broadened pathogen target spectrum. Myxoviruses are predominantly associated with acute disease and thus are particularly attractive for this approach since treatment time can be kept limited. To identify inhibitor candidates, we have analyzed hit compounds that emerged from a large-scale high-throughput screen for their ability to block replication of members of both the orthomyxovirus and paramyxovirus families. This has returned a compound class with broad anti-viral activity including potent inhibition of different influenza virus and paramyxovirus strains. After hit-to-lead chemistry, inhibitory concentrations are in the nanomolar range in the context of immortalized cell lines and human PBMCs. The compound shows high metabolic stability when exposed to human S-9 hepatocyte subcellular fractions. Antiviral activity is host-cell species specific and most pronounced in cells of higher mammalian origin, supporting a host-cell target. While the compound induces a temporary cell cycle arrest, host mRNA and protein biosynthesis are largely unaffected and treated cells maintain full metabolic activity. Viral replication is blocked at a post-entry step and resembles the inhibition profile of a known inhibitor of viral RNA-dependent RNA-polymerase (RdRp activity. Direct assessment of RdRp activity in the presence of the reagent reveals strong inhibition both in the context of viral infection and in reporter-based minireplicon assays. In toto, we have identified a compound class with broad viral target range that blocks host factors required for viral RdRp activity. Viral adaptation attempts did not induce resistance after prolonged exposure, in contrast to rapid

  16. Binding of Thrombin-Activated Platelets to a Fibrin Scaffold through αIIbβ3 Evokes Phosphatidylserine Exposure on Their Cell Surface

    Science.gov (United States)

    Brzoska, Tomasz; Suzuki, Yuko; Mogami, Hideo; Sano, Hideto; Urano, Tetsumei

    2013-01-01

    Recently, by employing intra-vital confocal microscopy, we demonstrated that platelets expose phosphatidylserine (PS) and fibrin accumulate only in the center of the thrombus but not in its periphery. To address the question how exposure of platelet anionic phospholipids is regulated within the thrombus, an in-vitro experiment using diluted platelet-rich plasma was employed, in which the fibrin network was formed in the presence of platelets, and PS exposure on the platelet surface was analyzed using Confocal Laser Scanning Microscopy. Almost all platelets exposed PS after treatment with tissue factor, thrombin or ionomycin. Argatroban abrogated fibrin network formation in all samples, however, platelet PS exposure was inhibited only in tissue factor- and thrombin-treated samples but not in ionomycin-treated samples. FK633, an αIIbβ3 antagonist, and cytochalasin B impaired platelet binding to the fibrin scaffold and significantly reduced PS exposure evoked by thrombin. Gly-Pro-Arg-Pro amide abrogated not only fibrin network formation, but also PS exposure on platelets without suppressing platelet binding to fibrin/fibrinogen. These results suggest that outside-in signals in platelets generated by their binding to the rigid fibrin network are essential for PS exposure after thrombin treatment. PMID:23383331

  17. Binding of thrombin-activated platelets to a fibrin scaffold through α(IIbβ₃ evokes phosphatidylserine exposure on their cell surface.

    Directory of Open Access Journals (Sweden)

    Tomasz Brzoska

    Full Text Available Recently, by employing intra-vital confocal microscopy, we demonstrated that platelets expose phosphatidylserine (PS and fibrin accumulate only in the center of the thrombus but not in its periphery. To address the question how exposure of platelet anionic phospholipids is regulated within the thrombus, an in-vitro experiment using diluted platelet-rich plasma was employed, in which the fibrin network was formed in the presence of platelets, and PS exposure on the platelet surface was analyzed using Confocal Laser Scanning Microscopy. Almost all platelets exposed PS after treatment with tissue factor, thrombin or ionomycin. Argatroban abrogated fibrin network formation in all samples, however, platelet PS exposure was inhibited only in tissue factor- and thrombin-treated samples but not in ionomycin-treated samples. FK633, an α(IIbβ₃ antagonist, and cytochalasin B impaired platelet binding to the fibrin scaffold and significantly reduced PS exposure evoked by thrombin. Gly-Pro-Arg-Pro amide abrogated not only fibrin network formation, but also PS exposure on platelets without suppressing platelet binding to fibrin/fibrinogen. These results suggest that outside-in signals in platelets generated by their binding to the rigid fibrin network are essential for PS exposure after thrombin treatment.

  18. Inactivation of single-chain urokinase-type plasminogen activator by thrombin in human subjects

    NARCIS (Netherlands)

    Braat, E. A.; Levi, M. [=Marcel M.; Bos, R.; Haverkate, F.; Lassen, M. R.; de Maat, M. P.; Rijken, D. C.

    1999-01-01

    Thrombin cleaves single-chain urokinase-type plasminogen activator (scu-PA) into a virtually inactive two-chain form (tcu-PA/T), a process that may protect a blood clot from early fibrinolysis. It is not known under what circumstances tcu-PA/T can be generated in vivo. We have studied the occurrence

  19. Oncogenic Receptor Tyrosine Kinases Directly Phosphorylate Focal Adhesion Kinase (FAK) as a Resistance Mechanism to FAK-Kinase Inhibitors.

    Science.gov (United States)

    Marlowe, Timothy A; Lenzo, Felicia L; Figel, Sheila A; Grapes, Abigail T; Cance, William G

    2016-12-01

    Focal adhesion kinase (FAK) is a major drug target in cancer and current inhibitors targeted to the ATP-binding pocket of the kinase domain have entered clinical trials. However, preliminary results have shown limited single-agent efficacy in patients. Despite these unfavorable data, the molecular mechanisms that drive intrinsic and acquired resistance to FAK-kinase inhibitors are largely unknown. We have demonstrated that receptor tyrosine kinases (RTK) can directly bypass FAK-kinase inhibition in cancer cells through phosphorylation of FAK's critical tyrosine 397 (Y397). We also showed that HER2 forms a direct protein-protein interaction with the FAK-FERM-F1 lobe, promoting direct phosphorylation of Y397. In addition, FAK-kinase inhibition induced two forms of compensatory RTK reprogramming: (i) the rapid phosphorylation and activation of RTK signaling pathways in RTK High cells and (ii) the long-term acquisition of RTKs novel to the parental cell line in RTK Low cells. Finally, HER2 +: cancer cells displayed resistance to FAK-kinase inhibition in 3D growth assays using a HER2 isogenic system and HER2 + cancer cell lines. Our data indicate a novel drug resistance mechanism to FAK-kinase inhibitors whereby HER2 and other RTKs can rescue and maintain FAK activation (pY397) even in the presence of FAK-kinase inhibition. These data may have important ramifications for existing clinical trials of FAK inhibitors and suggest that individual tumor stratification by RTK expression would be important to predict patient response to FAK-kinase inhibitors. Mol Cancer Ther; 15(12); 3028-39. ©2016 AACR. ©2016 American Association for Cancer Research.

  20. Direct renin inhibitors – new approaches in the treatment of patients with arterial hypertension associated with obesity, diabetes mellitus, menopause and kidneys’ disorders

    OpenAIRE

    Syvolap, V. V.; Gerasko, M. P.

    2013-01-01

    In this review composed on the data of multicentred randomized investigations the advantages of direct renin inhibitors for patients with arterial hypertension are discussed. The prospects of using direct renin inhibitors in the cases of arterial hypertension associated with obesity, diabetes mellitus, menopause and kidneys’ disorders are studied.

  1. BjussuSP-I: a new thrombin-like enzyme isolated from Bothrops jararacussu snake venom.

    Science.gov (United States)

    Sant' Ana, Carolina D; Ticli, Fabio K; Oliveira, Leandro L; Giglio, Jose R; Rechia, Carem G V; Fuly, André L; Selistre de Araújo, Heloisa S; Franco, João J; Stabeli, Rodrigo G; Soares, Andreimar M; Sampaio, Suely V

    2008-11-01

    A thrombin-like enzyme named BjussuSP-I, isolated from B. jararacussu snake venom, is an acidic single chain glycoprotein with approximately 6% sugar, Mr=61,000 under reducing conditions and pI approximately 3.8, representing 1.09% of the chromatographic A(280) recovery. BjussuSP-I is a glycosylated serine protease containing both N-linked carbohydrates and sialic acid in its structure. BjussuSP-I showed a high clotting activity upon human plasma, which was inhibited by PMSF, leupeptin, heparin and 1,10-phenantroline. This enzyme showed high stability regarding coagulant activity when analyzed at different temperatures (-70 to 37 degrees C), pHs (4.5 to 8.0), and presence of two divalent metal ions (Ca(2+) and Mg(2+)). It also displayed TAME esterase and proteolytic activities toward natural (fibrinogen and fibrin) and synthetic (BAPNA) substrates, respectively, being also inhibited by PMSF and leupeptin. BjussuSP-I can induce production of polyclonal antibodies able to inhibit its clotting activity, but unable to inhibit its proteolytic activity on fibrinogen. The enzyme also showed crossed immunoreactivity against 11 venom samples of Bothrops, 1 of Crotalus, and 1 of Calloselasma snakes, in addition of LAAO isolated from B. moojeni venom. It displayed neither hemorrhagic, myotoxic, edema-inducing profiles nor proteolytic activity on casein. BjussuSP-I showed an N-terminal sequence (VLGGDECDINEHPFLA FLYS) similar to other thrombin-like enzymes from snake venoms. Based on its biochemical, enzymatic and pharmacological characteristics, BjussuSP-I was identified as a new thrombin-like enzyme isoform from Bothrops jararacussu snake venom.

  2. Anti-fibrinolytic and anti-microbial activities of a serine protease inhibitor from honeybee (Apis cerana) venom.

    Science.gov (United States)

    Yang, Jie; Lee, Kwang Sik; Kim, Bo Yeon; Choi, Yong Soo; Yoon, Hyung Joo; Jia, Jingming; Jin, Byung Rae

    2017-10-01

    Bee venom contains a variety of peptide constituents, including low-molecular-weight protease inhibitors. While the putative low-molecular-weight serine protease inhibitor Api m 6 containing a trypsin inhibitor-like cysteine-rich domain was identified from honeybee (Apis mellifera) venom, no anti-fibrinolytic or anti-microbial roles for this inhibitor have been elucidated. In this study, we identified an Asiatic honeybee (A. cerana) venom serine protease inhibitor (AcVSPI) that was shown to act as a microbial serine protease inhibitor and plasmin inhibitor. AcVSPI was found to consist of a trypsin inhibitor-like domain that displays ten cysteine residues. Interestingly, the AcVSPI peptide sequence exhibited high similarity to the putative low-molecular-weight serine protease inhibitor Api m 6, which suggests that AcVSPI is an allergen Api m 6-like peptide. Recombinant AcVSPI was expressed in baculovirus-infected insect cells, and it demonstrated inhibitory activity against trypsin, but not chymotrypsin. Additionally, AcVSPI has inhibitory effects against plasmin and microbial serine proteases; however, it does not have any detectable inhibitory effects on thrombin or elastase. Consistent with these inhibitory effects, AcVSPI inhibited the plasmin-mediated degradation of fibrin to fibrin degradation products. AcVSPI also bound to bacterial and fungal surfaces and exhibited anti-microbial activity against fungi as well as gram-positive and gram-negative bacteria. These findings demonstrate the anti-fibrinolytic and anti-microbial roles of AcVSPI as a serine protease inhibitor. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. [Atrial fibrillation in elderly].

    Science.gov (United States)

    Arquizan, Caroline

    2012-11-01

    Atrial fibrilation (AF) is frequent and a strong risk factor for ischemic stroke in elderly. Ischemic stroke in patients with AF are more severe. Vitamine K antagonist therapy is highly effective for stroke prevention but is associated with hemorrhagic risk. The new oral anticoagulants (direct thrombin inhibitor [dabigatran], and direct factor Xa inhibitors [rivaroxaban and apixaban]) have all shown non inferiority or superiority, with better safety, considering the risk of intracranial haemorrhage. On this basis, it is justified to give them in priority in the vast majority of patients with AF, the choice of the drug and the dose is individual.

  4. Thermodynamic and biological evaluation of a thrombin binding aptamer modified with several unlocked nucleic acid (UNA) monomers and a 2′-C-piperazino-UNA monomer

    DEFF Research Database (Denmark)

    Jensen, Troels B.; Henriksen, Jonas Rosager; Rasmussen, Bjarne E.

    2011-01-01

    Thrombin binding aptamer is a DNA 15-mer which forms a G-quadruplex structure and possess promising anticoagulant properties due to specific interactions with thrombin. Herein we present the influence of a single 2′-C-piperazino-UNA residue and UNA residues incorporated in several positions on th...

  5. Investigation of the thrombin-generating capacity, evaluated by thrombogram, and clot formation evaluated by thrombelastography of platelets stored in the blood bank for up to 7 days

    DEFF Research Database (Denmark)

    Johansson, Per Ingemar; Svendsen, M.S.; Salado, J.

    2008-01-01

    thrombin) and endogenous thrombin potential (ETP; nm thrombin*min) were registered. Clot formation was evaluated by TEG and the R time (min), maxial amplitude (MA; mm), time to maximum thrombus generation (TMG; min) and maximum thrombus generation (MTG; dynes cm(-2) s(-1)) and total thrombus generation...... (TTG; dyne cm(-2)) were registered. RESULTS: Platelets become more procoagulant, evaluated both by TEG and CAT during storage. The reduction in CAT lag time and the ttPeak correlated with a decrease in the TEG R time and TMG (P

  6. Correlation between Interleukin-6 and Thrombin-Antithrombin III Complex Levels in Retinal Diseases.

    Science.gov (United States)

    Ehrlich, Rita; Zahavi, Alon; Axer-Siegel, Ruth; Budnik, Ivan; Dreznik, Ayelet; Dahbash, Mor; Nisgav, Yael; Megiddo, Elinor; Kenet, Gili; Weinberger, Dov; Livnat, Tami

    2017-09-01

    This study aims to evaluate and correlate the levels of interleukin-6 (IL-6) and thrombin-antithrombin III complex (TAT) in the vitreous of patients with different vitreoretinal pathologies. Vitreous samples were collected from 78 patients scheduled for pars plana vitrectomy at a tertiary medical center. Patients were divided by the underlying vitreoretinal pathophysiology, as follows: macular hole (MH)/epiretinal membrane (ERM) (n = 26); rhegmatogenous retinal detachment (RRD) (n = 32); and proliferative diabetic retinopathy (PDR) (n = 20). Levels of IL-6 and TAT were measured by enzyme-linked immunosorbent assay and compared among the groups. A significant difference was found in the vitreal IL-6 and TAT levels between the MH/ERM group and both the PDR and RRD groups (P Diabetes was associated with higher IL-6 levels in the RRD group. Different relationships between the IL-6 and TAT levels were revealed in patients with different ocular pathologies. Our results imply that variations in vitreal TAT level may be attributable not only to an inflammatory reaction or blood-retinal barrier breakdown, but also to intraocular tissue-dependent regulation of thrombin.

  7. Duplex/quadruplex oligonucleotides: Role of the duplex domain in the stabilization of a new generation of highly effective anti-thrombin aptamers.

    Science.gov (United States)

    Russo Krauss, Irene; Napolitano, Valeria; Petraccone, Luigi; Troisi, Romualdo; Spiridonova, Vera; Mattia, Carlo Andrea; Sica, Filomena

    2018-02-01

    Recently, mixed duplex/quadruplex oligonucleotides have attracted great interest for use as biomedical aptamers. In the case of anti-thrombin aptamers, the addition of duplex-forming sequences to a G-quadruplex module identical or very similar to the best-known G-quadruplex of the Thrombin Binding Aptamer (HD1) results in new or improved biological properties, such as higher activity or different recognition properties with respect to HD1. Remarkably, this bimodular fold was hypothesized, based on its sequence, for the only anti-thrombin aptamer in advanced clinical trial, NU172. Whereas cation modulation of G-quadruplex conformation and stability is well characterized, only few data from similar analysis on duplex/quadruplex oligonucleotides exist. Here we have performed a characterization of structure and stability of four different duplex/quadruplex anti-thrombin aptamers, including NU172, in the presence of different cations and in physiological-mimicking conditions in comparison to HD1, by means of spectroscopic techniques (UV and circular dichroism) and differential scanning calorimetry. Our data show a strong reciprocal influence of each domain on the stability of the other and in particular suggest a stabilizing effect of the duplex region in the presence of solutions mimicking the physiological conditions, strengthening the idea that bimodular aptamers present better therapeutic potentialities than those containing a single G-quadruplex domain. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Enzyme-guided plasmonic biosensor based on dual-functional nanohybrid for sensitive detection of thrombin.

    Science.gov (United States)

    Yan, Jing; Wang, Lida; Tang, Longhua; Lin, Lei; Liu, Yang; Li, Jinghong

    2015-08-15

    Rapid and sensitive methodologies for the detection of protein are in urgent requirement for clinic diagnostics. Localized surface plasmon resonance (LSPR) of metal nanostructures has the potential to circumvent this problem due to its sensitive optical properties and strong electromagnetic near-field enhancements. In this work, an enzyme mediated plasmonic biosensor on the basis of a dual-functional nanohybrid was developed for the detection of thrombin. By utilizing LSPR-responsive nanohybrid and anaptamer-enzyme conjugated reporting probe, the sensing platform brings enhanced signal, stability as well as simplicity. Enzymatic reaction catalyzed the reduction of Au(3+) to Au° in situ, further leading to the rapid crystal growth of gold nanoparticles (AuNPs). The LSPR absorbance band and color changed company with the nanoparticle generation, which can be real-time monitoring by UV-visible spectrophotometer and naked eye. Nanohybrid constructed by gold and magnetic nanoparticles acts as a dual functional plasmonic unit, which not only plays the role of signal production, but also endows the sensor with the function of magnetic separation. Simultaneously, the introduction of enzyme effectively regulates the programming crystal growth of AuNPs. In addition, enzyme also serves as signal amplifier owing to its high catalysis efficiency. The response of the plasmonic sensor varies linearly with the logarithmic thrombin concentration up to 10nM with a limit of detection of 200 pM. The as-proposed strategy shows good analytical performance for thrombin determination. This simple, disposable method is promising in developing universal platforms for protein monitoring, drug discovery and point-of-care diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. SALO, a novel classical pathway complement inhibitor from saliva of the sand fly Lutzomyia longipalpis.

    Science.gov (United States)

    Ferreira, Viviana P; Fazito Vale, Vladimir; Pangburn, Michael K; Abdeladhim, Maha; Mendes-Sousa, Antonio Ferreira; Coutinho-Abreu, Iliano V; Rasouli, Manoochehr; Brandt, Elizabeth A; Meneses, Claudio; Lima, Kolyvan Ferreira; Nascimento Araújo, Ricardo; Pereira, Marcos Horácio; Kotsyfakis, Michalis; Oliveira, Fabiano; Kamhawi, Shaden; Ribeiro, Jose M C; Gontijo, Nelder F; Collin, Nicolas; Valenzuela, Jesus G

    2016-01-13

    Blood-feeding insects inject potent salivary components including complement inhibitors into their host's skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases.

  10. Treating seizures and epilepsy with anticoagulants?

    Directory of Open Access Journals (Sweden)

    Nicola eMaggio

    2013-03-01

    Full Text Available Thrombin is a serine protease playing an essential role in the blood coagulation cascade. Recent work, however, has identified a novel role for thrombin-mediated signaling pathways in the central nervous system. Binding of thrombin to protease-activated receptors (PARs in the brain appears to have multiple actions affecting both health and disease. Specifically, thrombin has been shown to lead to the onset of seizures via PAR-1 activation. In this perspective article, we review the putative mechanisms by which thrombin causes seizures and epilepsy. We propose a potential role of PAR-1 antagonists and novel thrombin inhibitors as new, possible antiepileptic drugs.

  11. Use of a Fibrinogen/Thrombin-Based Collagen Fleece (TachoComb, TachoSil) With a Stapled Closure to Prevent Pancreatic Fistula Formation Following Distal Pancreatectomy.

    Science.gov (United States)

    Mita, Kazuhito; Ito, Hideto; Murabayashi, Ryo; Asakawa, Hideki; Nabetani, Masashi; Kamasako, Akira; Koizumi, Kazuya; Hayashi, Takashi

    2015-12-01

    Postoperative pancreatic fistula formation remains a source of significant morbidity following distal pancreatectomy. The aim of this study was to evaluate the rate of clinically significant fistulas (International Study Group on Pancreatic Fistula grade B and grade C) after distal pancreatectomy using a fibrinogen/thrombin-based collagen fleece (TachoComb, TachoSil) with a stapled closure. Seventy-five patients underwent distal pancreatectomy at our institution between January 2005 and March 2014. A fibrinogen/thrombin-based collagen fleece was applied to the staple line of the pancreas before stapling. Twenty-six patients (34.7%) developed a pancreatic fistula, 8 patients (10.7%) developed a grade B fistula, and no patients developed a grade C fistula. The duration of the drain was significantly different in patients with or without a pancreatic fistula (8.0 ± 4.5 vs. 5.4 ± 1.3 days, P = .0003). Histological analysis showed that there was a tight covering with the fibrinogen/thrombin-based collagen fleece. The fibrinogen/thrombin-based collagen fleece (TachoComb, TachoSil) with a stapled closure has low rates of fistula formation and provides a safe alternative to the conventional stapled technique in distal pancreatectomy. © The Author(s) 2015.

  12. A sensitive electrochemical aptasensor based on water soluble CdSe quantum dots (QDs) for thrombin determination

    Energy Technology Data Exchange (ETDEWEB)

    Li Yanfen; Han Min [Jiangsu Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofuctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China); Bai Hongyan [Jiangsu Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofuctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China); College of Biological and Chemical Engineering, Jiaxing College, Jiaxing 314001 (China); Wu Yong [Jiangsu Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofuctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China); Dai Zhihui, E-mail: daizhihuii@njnu.edu.cn [Jiangsu Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofuctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China); Bao Jianchun, E-mail: baojianchun@njnu.edu.cn [Jiangsu Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofuctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China)

    2011-08-01

    A novel aptamer biosensor with easy operation and good sensitivity, specificity, stability and reproducibility was developed by immobilizing the aptamer on water soluble CdSe quantum dots (QDs) modified on the top of the glassy carbon electrode (GCE). Methylene blue (MB) was intercalated into the aptamer sequence and used as an electrochemical marker. CdSe QDs improved the electrochemical signal because of their larger surface area and ion centers of CdSe QDs may also had a major role on amplifying the signal. The higher ion concentration caused more combination of aptamer which caused larger signal. The thrombin was detected by differential pulse voltammetry (DPV) quantitatively. Under optimal conditions, the two linear ranges were obtained from 3 to 13 {mu}g mL{sup -1} and from 14 to 31 {mu}g mL{sup -1}, respectively. The detection limit was 0.08 {mu}g mL{sup -1} at 3{sigma}. The constructed biosensor had better responses compared with that in the absence of the CdSe QDs immobilizing. The control experiment was also carried out by using BSA, casein and IgG in the absence of thrombin. The results showed that the aptasensor had good specificity, stability and reproducibility to the thrombin. Moreover, the aptasensor could be used for detection of real sample with consistent results in comparison with those obtained by fluorescence method which could provide a promising platform for fabrication of aptamer based biosensors.

  13. Chronic kidney disease and anticoagulation

    DEFF Research Database (Denmark)

    Sciascia, Savino; Radin, Massimo; Schreiber, Karen

    2017-01-01

    Anticoagulation in patients with impaired kidney function can be challenging since drugs' pharmacokinetics and bioavailability are altered in this setting. Patients with chronic kidney disease (CKD) treated with conventional anticoagulant agents [vitamin K antagonist (VKA), low-molecular weight...... are eliminated via the kidneys pose additional challenges. More recently, two classes of direct oral anticoagulant agents (DOACs) have been investigated for the prevention and management of venous thromboembolic events: the direct factor Xa inhibitors rivaroxaban, apixaban and edoxaban, and the direct thrombin...

  14. Essential role of cofilin-1 in regulating thrombin-induced RelA/p65 nuclear translocation and intercellular adhesion molecule 1 (ICAM-1) expression in endothelial cells.

    Science.gov (United States)

    Fazal, Fabeha; Bijli, Kaiser M; Minhajuddin, Mohd; Rein, Theo; Finkelstein, Jacob N; Rahman, Arshad

    2009-07-31

    Activation of RhoA/Rho-associated kinase (ROCK) pathway and the associated changes in actin cytoskeleton induced by thrombin are crucial for activation of NF-kappaB and expression of its target gene ICAM-1 in endothelial cells. However, the events acting downstream of RhoA/ROCK to mediate these responses remain unclear. Here, we show a central role of cofilin-1, an actin-binding protein that promotes actin depolymerization, in linking RhoA/ROCK pathway to dynamic alterations in actin cytoskeleton that are necessary for activation of NF-kappaB and thereby expression of ICAM-1 in these cells. Stimulation of human umbilical vein endothelial cells with thrombin resulted in Ser(3) phosphorylation/inactivation of cofilin and formation of actin stress fibers in a ROCK-dependent manner. RNA interference knockdown of cofilin-1 stabilized the actin filaments and inhibited thrombin- and RhoA-induced NF-kappaB activity. Similarly, constitutively inactive mutant of cofilin-1 (Cof1-S3D), known to stabilize the actin cytoskeleton, inhibited NF-kappaB activity by thrombin. Overexpression of wild type cofilin-1 or constitutively active cofilin-1 mutant (Cof1-S3A), known to destabilize the actin cytoskeleton, also impaired thrombin-induced NF-kappaB activity. Additionally, depletion of cofilin-1 was associated with a marked reduction in ICAM-1 expression induced by thrombin. The effect of cofilin-1 depletion on NF-kappaB activity and ICAM-1 expression occurred downstream of IkappaBalpha degradation and was a result of impaired RelA/p65 nuclear translocation and consequently, RelA/p65 binding to DNA. Together, these data show that cofilin-1 occupies a central position in RhoA-actin pathway mediating nuclear translocation of RelA/p65 and expression of ICAM-1 in endothelial cells.

  15. Essential Role of Cofilin-1 in Regulating Thrombin-induced RelA/p65 Nuclear Translocation and Intercellular Adhesion Molecule 1 (ICAM-1) Expression in Endothelial Cells*

    Science.gov (United States)

    Fazal, Fabeha; Bijli, Kaiser M.; Minhajuddin, Mohd; Rein, Theo; Finkelstein, Jacob N.; Rahman, Arshad

    2009-01-01

    Activation of RhoA/Rho-associated kinase (ROCK) pathway and the associated changes in actin cytoskeleton induced by thrombin are crucial for activation of NF-κB and expression of its target gene ICAM-1 in endothelial cells. However, the events acting downstream of RhoA/ROCK to mediate these responses remain unclear. Here, we show a central role of cofilin-1, an actin-binding protein that promotes actin depolymerization, in linking RhoA/ROCK pathway to dynamic alterations in actin cytoskeleton that are necessary for activation of NF-κB and thereby expression of ICAM-1 in these cells. Stimulation of human umbilical vein endothelial cells with thrombin resulted in Ser3 phosphorylation/inactivation of cofilin and formation of actin stress fibers in a ROCK-dependent manner. RNA interference knockdown of cofilin-1 stabilized the actin filaments and inhibited thrombin- and RhoA-induced NF-κB activity. Similarly, constitutively inactive mutant of cofilin-1 (Cof1-S3D), known to stabilize the actin cytoskeleton, inhibited NF-κB activity by thrombin. Overexpression of wild type cofilin-1 or constitutively active cofilin-1 mutant (Cof1-S3A), known to destabilize the actin cytoskeleton, also impaired thrombin-induced NF-κB activity. Additionally, depletion of cofilin-1 was associated with a marked reduction in ICAM-1 expression induced by thrombin. The effect of cofilin-1 depletion on NF-κB activity and ICAM-1 expression occurred downstream of IκBα degradation and was a result of impaired RelA/p65 nuclear translocation and consequently, RelA/p65 binding to DNA. Together, these data show that cofilin-1 occupies a central position in RhoA-actin pathway mediating nuclear translocation of RelA/p65 and expression of ICAM-1 in endothelial cells. PMID:19483084

  16. Immune activation and HIV-specific T cell responses are modulated by a cyclooxygenase-2 inhibitor in untreated HIV-infected individuals: An exploratory clinical trial.

    Directory of Open Access Journals (Sweden)

    Christian Prebensen

    Full Text Available Pathologically elevated immune activation and inflammation contribute to HIV disease progression and immunodeficiency, potentially mediated by elevated levels of prostaglandin E2, which suppress HIV-specific T cell responses. We have previously shown that a high dose of the cyclooxygenase-2 inhibitor celecoxib can reduce HIV-associated immune activation and improve IgG responses to T cell-dependent vaccines. In this follow-up study, we included 56 HIV-infected adults, 28 antiretroviral therapy (ART-naïve and 28 on ART with undetectable plasma viremia but CD4 counts below 500 cells/μL. Patients in each of the two study groups were randomized to receive 90 mg qd of the cyclooxygenase-2 inhibitor etoricoxib for six months, two weeks or to a control arm, respectively. T cell activation status, HIV Gag-specific T cell responses and plasma inflammatory markers, tryptophan metabolism and thrombin generation were analyzed at baseline and after four months. In addition, patients received tetanus toxoid, conjugated pneumococcal and seasonal influenza vaccines, to which IgG responses were determined after four weeks. In ART-naïve patients, etoricoxib reduced the density of the activation marker CD38 in multiple CD8+ T cell subsets, improved Gag-specific T cell responses, and reduced in vitro plasma thrombin generation, while no effects were seen on plasma markers of inflammation or tryptophan metabolism. No significant immunological effects of etoricoxib were observed in ART-treated patients. Patients receiving long-term etoricoxib treatment had poorer tetanus toxoid and conjugated pneumococcal vaccine responses than those receiving short-course etoricoxib. Cyclooxygenase-2 inhibitors may attenuate harmful immune activation in HIV-infected patients without access to ART.

  17. Comparing thrombin generation in patients with hemophilia A and patients on vitamin K antagonists.

    Science.gov (United States)

    de Koning, M L Y; Fischer, K; de Laat, B; Huisman, A; Ninivaggi, M; Schutgens, R E G

    2017-05-01

    Essentials It is unknown if hemophilia patients with atrial fibrillation need anticoagulation. Endogenous thrombin potentials (ETP) in hemophilia patients and patients on coumarins were compared. Severe hemophilia patients had comparable ETP to therapeutic international normalized ratio (INR). In non-severe hemophilia, 33% had higher ETP than therapeutic INR and may need anticoagulation. Click to hear Dr Negrier's perspective on global assays for assessing coagulation SUMMARY: Background It is unknown whether patients with hemophilia A with atrial fibrillation require treatment with vitamin K antagonists (VKAs) to the same extent as the normal population. Objective To compare hemostatic potential in hemophilia patients and patients on VKAs using thrombin generation (TG). Methods In this cross-sectional study, TG, initiated with 1pM tissue factor, was measured in 133 patients with severe (FVIII hemophilia A, 97 patients on a VKA with an international normalized ratio (INR) ≥ 1.5 and healthy controls. Endogenous thrombin potential (ETP) (nm*min) was compared according to FVIII level (hemophilia patients and patients on VKAs had lower median ETPs at 304 (196-449) and 176 (100-250), respectively. ETP was quite similar in severe hemophilia patients (185 [116-307]) and patients with a therapeutic INR (156 [90-225]). Compared with patients with therapeutic INR, ETP in patients with FVIII 1-19% and patients with FVIII 20-50% was higher at 296 (203-430) and 397 (219-632), respectively. All patients with therapeutic INR had an ETP hemophilia patients, 70% of patients with FVIII 1-19% and 52% of patients with FVIII 20-50% had an ETP hemophilia patients, TG was comparable to that in patients with a therapeutic INR. In one-third of non-severe hemophilia patients, TG was higher. These results suggest that anticoagulation therapy should be considered in a substantial proportion of non-severe hemophilia patients. © 2017 International Society on Thrombosis and Haemostasis.

  18. Plasma centrifugation does not influence thrombin-antithrombin and plasmin-antiplasmin levels but determines platelet microparticles count.

    Science.gov (United States)

    Stępień, Ewa; Gruszczyński, Krzysztof; Kapusta, Przemysław; Kowalik, Artur; Wybrańska, Iwona

    2015-01-01

    Centrifugation is an essential step for plasma preparation to remove residual elements in plasma, especially platelets and platelet-derived microparticles (PMPs). Our working hypothesis was that centrifugation as a preanalytical step may influence some coagulation parameters. Healthy young men were recruited (N=17). For centrifugation, two protocols were applied: (A) the first centrifugation at 2500xg for 15 min and (B) at 2500xg for 20 min at room temperature with a light brake. In protocol (A), the second centrifugation was carried out at 2500xg for 15 min, whereas in protocol (B), the second centrifugation involved a 10 min spin at 13,000 x g. Thrombin-antithrombin (TAT) and plasmin-antiplasmin (PAP) complexes concentrations were determined by enzyme-linked immunosorbent assays. PMPs were stained with CD41 antibody and annexin V, and analyzed by flow cytometry method. Procoagulant activity was assayed by the Calibrated Automated Thrombogram method as a slope of thrombin formation (CAT velocity). Median TAT and PAP concentrations did not differ between the centrifugation protocols. The high speed centrifugation reduced the median (IQR) PMP count in plasma from 1291 (841-1975) to 573 (391-1010) PMP/µL (P=0.001), and CAT velocity from 2.01 (1.31-2.88) to 0.97 (0.82-1.73) nM/min (P=0.049). Spearman's rank correlation analysis showed correlation between TAT and PMPs in the protocol A plasma which was (rho=0.52, PCentrifugation protocols do not influence the markers of plasminogen (PAP) and thrombin (TAT) generation but they do affect the PMP count and procoagulant activity.

  19. Atrial fibrillation in the elderly

    Science.gov (United States)

    Franken, Roberto A.; Rosa, Ronaldo F.; Santos, Silvio CM

    2012-01-01

    This review discusses atrial fibrillation according to the guidelines of Brazilian Society of Cardiac Arrhythmias and the Brazilian Cardiogeriatrics Guidelines. We stress the thromboembolic burden of atrial fibrillation and discuss how to prevent it as well as the best way to conduct cases of atrial fibrillatios in the elderly, reverting the arrhythmia to sinus rhythm, or the option of heart rate control. The new methods to treat atrial fibrillation, such as radiofrequency ablation, new oral direct thrombin inhibitors and Xa factor inhibitors, as well as new antiarrhythmic drugs, are depicted. PMID:22916053

  20. Plasma membrane associated phospholipase C from human platelets: Synergistic stimulation of phosphatidylinositol 4,5-bisphosphate hydrolysis by thrombin and guanosine 5'-O-(3-thiotriphosphate)

    International Nuclear Information System (INIS)

    Baldassare, J.J.; Henderson, P.A.; Fisher, G.J.

    1989-01-01

    The effects of thrombin and GTPγS on the hydrolysis of phosphoinositides by membrane-associated phospholipase C (PLC) from human platelets were examined with endogenous [ 3 H]inositol-labeled membranes or with lipid vesicles containing either [ 3 H]phosphatidylinositol or [ 3 H]phosphatidylinositol 4,5-bisphosphate. GTPγS (1 μM) or thrombin (1 unit/mL) did not stimulate release of inositol trisphosphate (IP 3 ), inositol bisphosphate (IP 2 ), or inositol phosphate (IP) from [ 3 H]inositol-labeled membranes. IP 2 and IP 3 , but not IP, from [ 3 H]inositol-labeled membranes were, however, stimulated 3-fold by GTPγS (1 μM) plus thrombin (1 unit/mL). A higher concentration of GTPγS (100 μM) alone also stimulated IP 2 and IP 3 , but not IP, release. In the presence of 1 mM calcium, release of IP 2 and IP 3 was increased 6-fold over basal levels; however, formation of IP was not observed. At submicromolar calcium concentration, hydrolysis of exogenous phosphatidylinositol 4,5-bisphosphate (PIP 2 ) by platelet membrane associated PLC was also markedly enhanced by GTPγS (100 μM) or GTPγS (1 μM) plus thrombin (1 unit/mL). Under identical conditions, exogenous phosphatidylinositol (PI) was not hydrolyzed. The same substrate specificity was observed when the membrane-associated PLC was activated with 1 mM calcium. Thrombin-induced hydrolysis of PIP 2 was inhibited by treatment of the membranes with pertussis toxin or pretreatment of intact platelets with 12-O-tetradecanoyl-13-acetate (TPA) prior to preparation of membranes. Pertussis toxin did not inhibit GTPγS (100 μM) or calcium (1 mM) dependent PIP 2 breakdown, while TPA inhibited GTPγS-dependent but not calcium-dependent phospholipase C activity

  1. Optimizing electrode-attached redox-peptide systems for kinetic characterization of protease action on immobilized substrates. Observation of dissimilar behavior of trypsin and thrombin enzymes.

    Science.gov (United States)

    Anne, Agnès; Chovin, Arnaud; Demaille, Christophe

    2012-06-12

    In this work, we experimentally address the issue of optimizing gold electrode attached ferrocene (Fc)-peptide systems for kinetic measurements of protease action. Considering human α-thrombin and bovine trypsin as proteases of interest, we show that the recurring problem of incomplete cleavage of the peptide layer by these enzymes can be solved by using ultraflat template-stripped gold, instead of polished polycrystalline gold, as the Fc-peptide bearing electrode material. We describe how these fragile surfaces can be mounted in a rotating disk configuration so that enzyme mass transfer no longer limits the overall measured cleavage kinetics. Finally, we demonstrate that, once the system has been optimized, in situ real-time cyclic voltammetry monitoring of the protease action can yield high-quality kinetic data, showing no sign of interfering effects. The cleavage progress curves then closely match the Langmuirian variation expected for a kinetically controlled surface process. Global fit of the progress curves yield accurate values of the peptide cleavage rate for both trypsin and thrombin. It is shown that, whereas trypsin action on the surface-attached peptide closely follows Michaelis-Menten kinetics, thrombin displays a specific and unexpected behavior characterized by a nearly enzyme-concentration-independent cleavage rate in the subnanomolar enzyme concentration range. The reason for this behavior has still to be clarified, but its occurrence may limit the sensitivity of thrombin sensors based on Fc-peptide layers.

  2. Plasma thrombin-cleaved osteopontin elevation after carotid artery stenting in symptomatic ischemic stroke patients

    International Nuclear Information System (INIS)

    Kurata, Mie; Okura, Takafumi; Kumon, Yoshiaki; Tagawa, Masahiko; Watanabe, Hideaki; Miyazaki, Tatsuhiko; Higaki, Jitsuo; Nose, Masato; Nakahara, Toshinori

    2012-01-01

    Atherothrombosis is the primary pathophysiology that underlies ischemic cerebral infarction. Osteopontin (OPN) is produced in atherosclerotic lesions and is cleaved by activated thrombin. We hypothesized that the rupture or damage of an unstable atherosclerotic plaque increases plasma levels of thrombin-cleaved OPN (trOPN). This study included 90 patients who received carotid angioplasty with stenting (CAS), 23 patients with essential hypertension (EHT) and 10 patients who were treated with carotid endarterectomy (CEA). The CAS patient group included 36 patients that had pre- and post-operative blood tests, diffusion-weighted imaging (DWI) using cerebral MRIs and estimated thrombus debris within the protection device. Immunohistochemistry of CEA specimens revealed that trOPN was detected around intra-plaque vessels. The highest tertile of plasma trOPN levels in CAS patients was higher than trOPN levels in EHT patients. Post-operative trOPN levels were significantly higher in symptomatic compared with asymptomatic patients (P=0.003). New ipsilateral DWI-positive patients revealed higher post-operative trOPN levels (P=0.003) and a higher grade of thrombi (P<0.001) than DWI-negative patients. TrOPN may be a novel biomarker that reflects the atherothrombotic status in ischemic stroke. (author)

  3. Development of an Efficient G-Quadruplex-Stabilised Thrombin-Binding Aptamer Containing a Three-Carbon Spacer Molecule

    DEFF Research Database (Denmark)

    Aaldering, Lukas J.; Poongavanam, Vasanthanathan; Langkjær, Niels

    2017-01-01

    The thrombin-binding aptamer (TBA), which shows anticoagulant properties, is one of the most studied G-quadruplex-forming aptamers. In this study, we investigated the impact of different chemical modifications such as a three-carbon spacer (spacer-C3), unlocked nucleic acid (UNA) and 3′-amino-mod...

  4. Does a thrombin-based topical haemostatic agent reduce blood loss and transfusion requirements after total knee revision surgery? A randomized, controlled trial.

    Science.gov (United States)

    Romanò, Carlo L; Monti, Lorenzo; Logoluso, Nicola; Romanò, Delia; Drago, Lorenzo

    2015-11-01

    The aim of the present study was to assess the efficacy of a thrombin-based topical haemostatic in reducing blood requirements after total knee replacement (TKR) revision surgery. This prospective, randomized, controlled study was designed to evaluate the haemostatic efficacy and safety of a thrombin-based topical haemostatic (Floseal) versus standard treatment in patients receiving total knee revision arthroplasty. The decrease in haemoglobin values postsurgery and the blood units transfused were recorded. The decision to transfuse was made by a surgeon blinded to the patient's group allocation. Forty-eight patients were enroled in the study; twenty-four patients each were randomized to the treatment and control groups, respectively. The median decrease in haemoglobin concentration on the first postoperative day was 2.2 g/dL in the treatment group and 2.7 g/dL in the control group. A significant reduction in units of blood transfused was also observed in the treatment group compared with the control group [1.1 ± 1.13 (range 0-4) vs. 1.9 ± 1.41 (range 0-5) blood units; P = 0.04]. No major treatment-related adverse events were recorded in the study. This study shows that a thrombin-based topical haemostatic reduces the need for blood transfusion in TKR revision surgery. A thrombin-based topical haemostatic agent can be an appropriate solution to enhance haemostasis and vessel sealing at the operative site in TKR revision surgery, in order to reduce the need for blood transfusion after surgery. II.

  5. Effects of thrombin inhibition with melagatran on renal hemodynamics and function and liver integrity during early endotoxemia

    DEFF Research Database (Denmark)

    Nitescu, Nicoletta; Grimberg, Elisabeth; Ricksten, Sven-Erik

    2007-01-01

    Sepsis is associated with an activation of the coagulation system and multiorgan failure. The aim of the study was to examine the effects of selective thrombin inhibition with melagatran on renal hemodynamics and function, and liver integrity, during early endotoxemia. Endotoxemia was induced...

  6. Discovery of potent 1H-imidazo[4,5-b]pyridine-based c-Met kinase inhibitors via mechanism-directed structural optimization.

    Science.gov (United States)

    An, Xiao-De; Liu, Hongyan; Xu, Zhong-Liang; Jin, Yi; Peng, Xia; Yao, Ying-Ming; Geng, Meiyu; Long, Ya-Qiu

    2015-02-01

    Starting from our previously identified novel c-Met kinase inhibitors bearing 1H-imidazo[4,5-h][1,6]naphthyridin-2(3H)-one scaffold, a global structural exploration was conducted to furnish an optimal binding motif for further development, directed by the enzyme inhibitory mechanism. First round SAR study picked two imidazonaphthyridinone frameworks with 1,8- and 3,5-disubstitution pattern as class I and class II c-Met kinase inhibitors, respectively. Further structural optimization on type II inhibitors by truncation of the imidazonaphthyridinone core and incorporation of an N-phenyl cyclopropane-1,1-dicarboxamide pharmacophore led to the discovery of novel imidazopyridine-based c-Met kinase inhibitors, displaying nanomolar enzyme inhibitory activity and improved Met kinase selectivity. More significantly, the new chemotype c-Met kinase inhibitors effectively inhibited Met phosphorylation and its downstream signaling as well as the proliferation of Met-dependent EBC-1 human lung cancer cells at submicromolar concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Bioassay-directed fractionation of a blood coagulation factor Xa inhibitor, betulinic acid from Lycopus lucidus

    Directory of Open Access Journals (Sweden)

    Tan Yin-Feng

    2018-03-01

    Full Text Available Thrombosis is a major cause of morbidity and mortality worldwide and plays a pivotal role in the pathogenesis of several cardiovascular disorders, including acute coronary syndrome, unstable angina, myocardial infarction, sudden cardiac death, peripheral arterial occlusion, ischemic stroke, deep-vein thrombosis, and pulmonary embolism. Anticoagulants, antiplatelet agents, and fibrinolytics can reduce the risks of these clinical events. Especially, the blood coagulation factor Xa (FXa inhibitor is a proven anticoagulant. Promoting blood circulation, using traditional Chinese medicine (TCM, for the treatment of these diseases has been safely used for thousands of years in clinical practice. Therefore, highly safe and effective anticoagulant ingredients, including FXa inhibitors, could be found in TCM for activating the blood circulation. One FXa inhibitor, a pentacyclic triterpene (compound 1, betulinic acid characterized by IR, MS and NMR analyses, was isolated from the ethyl acetate fraction of Lycopus lucidus by bioassay-directed fractionation. Compound 1 exhibited an inhibitory effect on FXa with IC50 25.05 μmol/L and reduced the thrombus weight in an animal model at 25-100 mg/kg. These results indicate that betulinic acid could be the potential for anticoagulant therapy.

  8. "Normal" thrombin generation

    NARCIS (Netherlands)

    Butenas, S.; van't Veer, C.; Mann, K. G.

    1999-01-01

    We have investigated the influence of alterations in plasma coagulation factor levels between 50% and 150% of their mean values for prothrombin, factor X, factor XI, factor IX, factor VII, factor VIII, factor V, protein C, protein S, antithrombin III (AT-III), and tissue factor pathway inhibitor

  9. In vitro effect of hemodilution on activated clotting time and high-dose thrombin time during cardiopulmonary bypass

    NARCIS (Netherlands)

    Huyzen, RJ; vanOeveren, W; Wei, FY; Stellingwerf, P; Boonstra, PW; Gu, YJ

    Background. Extreme dilution of clotting factors, as may occur during pediatric or neonatal cardiopulmonary bypass, often leads to inadequate monitoring of anticoagulation with activated dotting time (ACT). In this study we postulate that the high-dose thrombin time (HiTT) is less influenced by

  10. Half-of-the-sites reactivity of outer-membrane phospholipase A against an active-site-directed inhibitor.

    Science.gov (United States)

    Ubarretxena-Belandia, I; Cox, R C; Dijkman, R; Egmond, M R; Verheij, H M; Dekker, N

    1999-03-01

    The reaction of a novel active-site-directed phospholipase A1 inhibitor with the outer-membrane phospholipase A (OMPLA) was investigated. The inhibitor 1-p-nitrophenyl-octylphosphonate-2-tridecylcarbamoyl-3-et hanesulfonyl -amino-3-deoxy-sn-glycerol irreversibly inactivated OMPLA. The inhibition reaction did not require the cofactor calcium or an unprotonated active-site His142. The inhibition of the enzyme solubilized in hexadecylphosphocholine micelles was characterized by a rapid (t1/2 = 20 min) and complete loss of enzymatic activity, concurrent with the covalent modification of 50% of the active-site serines, as judged from the amount of p-nitrophenolate (PNP) released. Modification of the remaining 50% occurred at a much lower rate, indicative of half-of-the-sites reactivity against the inhibitor of this dimeric enzyme. Inhibition of monomeric OMPLA solubilized in hexadecyl-N,N-dimethyl-1-ammonio-3-propanesulfonate resulted in an equimolar monophasic release of PNP, concurrent with the loss of enzymatic activity (t1/2 = 14 min). The half-of-the-sites reactivity is discussed in view of the dimeric nature of this enzyme.

  11. Tissue factor pathway inhibitor prevents airway obstruction, respiratory failure and death due to sulfur mustard analog inhalation

    International Nuclear Information System (INIS)

    Rancourt, Raymond C.; Veress, Livia A.; Ahmad, Aftab; Hendry-Hofer, Tara B.; Rioux, Jacqueline S.; Garlick, Rhonda B.; White, Carl W.

    2013-01-01

    Sulfur mustard (SM) inhalation causes airway injury, with enhanced vascular permeability, coagulation, and airway obstruction. The objective of this study was to determine whether recombinant tissue factor pathway inhibitor (TFPI) could inhibit this pathogenic sequence. Methods: Rats were exposed to the SM analog 2-chloroethyl ethyl sulfide (CEES) via nose-only aerosol inhalation. One hour later, TFPI (1.5 mg/kg) in vehicle, or vehicle alone, was instilled into the trachea. Arterial O 2 saturation was monitored using pulse oximetry. Twelve hours after exposure, animals were euthanized and bronchoalveolar lavage fluid (BALF) and plasma were analyzed for prothrombin, thrombin–antithrombin complex (TAT), active plasminogen activator inhibitor-1 (PAI-1) levels, and fluid fibrinolytic capacity. Lung steady-state PAI-1 mRNA was measured by RT-PCR analysis. Airway-capillary leak was estimated by BALF protein and IgM, and by pleural fluid measurement. In additional animals, airway cast formation was assessed by microdissection and immunohistochemical detection of airway fibrin. Results: Airway obstruction in the form of fibrin-containing casts was evident in central conducting airways of rats receiving CEES. TFPI decreased cast formation, and limited severe hypoxemia. Findings of reduced prothrombin consumption, and lower TAT complexes in BALF, demonstrated that TFPI acted to limit thrombin activation in airways. TFPI, however, did not appreciably affect CEES-induced airway protein leak, PAI-1 mRNA induction, or inhibition of the fibrinolytic activity present in airway surface liquid. Conclusions: Intratracheal administration of TFPI limits airway obstruction, improves gas exchange, and prevents mortality in rats with sulfur mustard-analog-induced acute lung injury. - Highlights: • TFPI administration to rats after mustard inhalation reduces airway cast formation. • Inhibition of thrombin activation is the likely mechanism for limiting casts. • Rats given TFPI had

  12. Tissue factor pathway inhibitor prevents airway obstruction, respiratory failure and death due to sulfur mustard analog inhalation

    Energy Technology Data Exchange (ETDEWEB)

    Rancourt, Raymond C., E-mail: raymond.rancourt@ucdenver.edu; Veress, Livia A., E-mail: livia.veress@ucdenver.edu; Ahmad, Aftab, E-mail: aftab.ahmad@ucdenver.edu; Hendry-Hofer, Tara B., E-mail: tara.hendry-hofer@ucdenver.edu; Rioux, Jacqueline S., E-mail: jacqueline.rioux@ucdenver.edu; Garlick, Rhonda B., E-mail: rhonda.garlick@ucdenver.edu; White, Carl W., E-mail: carl.w.white@ucdenver.edu

    2013-10-01

    Sulfur mustard (SM) inhalation causes airway injury, with enhanced vascular permeability, coagulation, and airway obstruction. The objective of this study was to determine whether recombinant tissue factor pathway inhibitor (TFPI) could inhibit this pathogenic sequence. Methods: Rats were exposed to the SM analog 2-chloroethyl ethyl sulfide (CEES) via nose-only aerosol inhalation. One hour later, TFPI (1.5 mg/kg) in vehicle, or vehicle alone, was instilled into the trachea. Arterial O{sub 2} saturation was monitored using pulse oximetry. Twelve hours after exposure, animals were euthanized and bronchoalveolar lavage fluid (BALF) and plasma were analyzed for prothrombin, thrombin–antithrombin complex (TAT), active plasminogen activator inhibitor-1 (PAI-1) levels, and fluid fibrinolytic capacity. Lung steady-state PAI-1 mRNA was measured by RT-PCR analysis. Airway-capillary leak was estimated by BALF protein and IgM, and by pleural fluid measurement. In additional animals, airway cast formation was assessed by microdissection and immunohistochemical detection of airway fibrin. Results: Airway obstruction in the form of fibrin-containing casts was evident in central conducting airways of rats receiving CEES. TFPI decreased cast formation, and limited severe hypoxemia. Findings of reduced prothrombin consumption, and lower TAT complexes in BALF, demonstrated that TFPI acted to limit thrombin activation in airways. TFPI, however, did not appreciably affect CEES-induced airway protein leak, PAI-1 mRNA induction, or inhibition of the fibrinolytic activity present in airway surface liquid. Conclusions: Intratracheal administration of TFPI limits airway obstruction, improves gas exchange, and prevents mortality in rats with sulfur mustard-analog-induced acute lung injury. - Highlights: • TFPI administration to rats after mustard inhalation reduces airway cast formation. • Inhibition of thrombin activation is the likely mechanism for limiting casts. • Rats given TFPI

  13. Antitubercular drugs for an old target: GSK693 as a promising InhA direct inhibitor

    Directory of Open Access Journals (Sweden)

    María Martínez-Hoyos

    2016-06-01

    Full Text Available Despite being one of the first antitubercular agents identified, isoniazid (INH is still the most prescribed drug for prophylaxis and tuberculosis (TB treatment and, together with rifampicin, the pillars of current chemotherapy. A high percentage of isoniazid resistance is linked to mutations in the pro-drug activating enzyme KatG, so the discovery of direct inhibitors (DI of the enoyl-ACP reductase (InhA has been pursued by many groups leading to the identification of different enzyme inhibitors, active against Mycobacterium tuberculosis (Mtb, but with poor physicochemical properties to be considered as preclinical candidates. Here, we present a series of InhA DI active against multidrug (MDR and extensively (XDR drug-resistant clinical isolates as well as in TB murine models when orally dosed that can be a promising foundation for a future treatment.

  14. Direct Oral Anticoagulants in Emergency Trauma Admissions.

    Science.gov (United States)

    Maegele, Marc; Grottke, Oliver; Schöchl, Herbert; Sakowitz, Oliver A; Spannagl, Michael; Koscielny, Jürgen

    2016-09-05

    Direct (non-vitamin-K-dependent) oral anticoagulants (DOAC) are given as an alternative to vitamin K antagonists (VKA) to prevent stroke and embolic disease in patients with atrial fibrillation that is not due to pathology of the heart valves. Fatal hemorrhage is rarer when DOACs are given (nonvalvular atrial fibrillation: odds ratio [OR] 0.68; 95% confidence interval [95% CI: 0.48; 0.96], and venous thromboembolism: OR 0.54; [0.22; 1.32]). 48% of emergency trauma patients need an emergency operation or early surgery. Clotting disturbances elevate the mortality of such patients to 43%, compared to 17% in patients without a clotting disturbance. This underscores the impor tance of the proper, targeted treatment of trauma patients who are aking DOAC. This review is based on articles retrieved by a selective search in PubMed and on a summary of expert opinion and the recommendations of the relevant medical specialty societies. Peak DOAC levels are reached 2-4 hours after the drug is taken. In patients with normal renal and hepatic function, no drug accumulation, and no drug interactions, the plasma level of DOAC 24 hours after administration is generally too low to cause any clinically relevant risk of bleeding. The risk of drug accumulation is higher in patients with renal dysfunction (creatinine clearance [CrCl] of 30 mL/min or less). Dabigatran levels can be estimated from the thrombin time, ecarin clotting time, and diluted thrombin time, while levels of factor Xa inhibitors can be estimated by means of calibrated chromogenic anti-factor Xa activity tests. Routine clotting studies do not reliably reflect the anticoagulant activity of DOAC. Surgery should be postponed, if possible, until at least 24-48 hours after the last dose of DOAC. For patients with mild, non-life threatening hemorrhage, it suffices to discontinue DOAC; for patients with severe hemorrhage, there are special treatment algorithms that should be followed. DOACs in the setting of hemorrhage are a

  15. Evaluation of the efficacy and safety of rivaroxaban using a computer model for blood coagulation.

    Directory of Open Access Journals (Sweden)

    Rolf Burghaus

    Full Text Available Rivaroxaban is an oral, direct Factor Xa inhibitor approved in the European Union and several other countries for the prevention of venous thromboembolism in adult patients undergoing elective hip or knee replacement surgery and is in advanced clinical development for the treatment of thromboembolic disorders. Its mechanism of action is antithrombin independent and differs from that of other anticoagulants, such as warfarin (a vitamin K antagonist, enoxaparin (an indirect thrombin/Factor Xa inhibitor and dabigatran (a direct thrombin inhibitor. A blood coagulation computer model has been developed, based on several published models and preclinical and clinical data. Unlike previous models, the current model takes into account both the intrinsic and extrinsic pathways of the coagulation cascade, and possesses some unique features, including a blood flow component and a portfolio of drug action mechanisms. This study aimed to use the model to compare the mechanism of action of rivaroxaban with that of warfarin, and to evaluate the efficacy and safety of different rivaroxaban doses with other anticoagulants included in the model. Rather than reproducing known standard clinical measurements, such as the prothrombin time and activated partial thromboplastin time clotting tests, the anticoagulant benchmarking was based on a simulation of physiologically plausible clotting scenarios. Compared with warfarin, rivaroxaban showed a favourable sensitivity for tissue factor concentration inducing clotting, and a steep concentration-effect relationship, rapidly flattening towards higher inhibitor concentrations, both suggesting a broad therapeutic window. The predicted dosing window is highly accordant with the final dose recommendation based upon extensive clinical studies.

  16. An evaluation of platelet-rich plasma without thrombin activation with or without anorganic bone mineral in the treatment of human periodontal intrabony defects.

    Science.gov (United States)

    Rodrigues, Silvia V; Acharya, Anirudh B; Thakur, Srinath L

    2011-01-01

    The efficacy of platelet-rich plasma (PRP) in periodontal regeneration is not well understood and the definite clinical viability of blood derived platelets lacks clarity. Also, the use of thrombin for platelet activation is disputed. Hence, the purpose of this study was to evaluate the efficacy of blood derived platelets without thrombin activation, alone or in combination with bovine anorganic bone mineral (ABM), in the treatment of human periodontal intrabony defects. PRP was prepared using a simple tabletop centrifuge and activated using calcium chloride without the addition of thrombin. This PRP was used alone (in Group A) and in combination with bovine ABM (in Group B) in the treatment of human periodontal angular defects. Both the control and the test groups showed definite improvement in clinical parameters. On comparison, however, there was a statistically significant improvement in the probing pocket depths and relative attachment level in Group B over Group A at 3 and 6 months intervals, whereas at the end of 9 months this difference was not statistically significant. There was no statistically significant difference between the groups with respect to the relative defect depth. Within the limitations of this study and the type of PRP used, i.e. without thrombin mediated activation, it can be concluded that both PRP and PRP combined with bovine ABM results in significant clinical improvement. Albeit statistically insignificant, there is a preponderance of better clinical results with the addition of ABM to PRP. Further studies need to be carried out on a larger sample size to confirm the results of the present study.

  17. Dynamic affinity chromatography in the separation of sulfated lignins binding to thrombin

    Science.gov (United States)

    Liang, Aiye; Thakkar, Jay N.; Hindle, Michael; Desai, Umesh R.

    2013-01-01

    Sulfated low molecular weight lignins (LMWLs), a mixture of chemo-enzymatically prepared oligomers, have been found to be potent antagonists of coagulation. However, structures that induce anticoagulation remain unidentified. The highly polar sulfate groups on these molecules and the thousands of different structures present in these mixtures make traditional chromatographic resolution of sulfated LMWLs difficult. We performed dynamic thrombin affinity chromatography monitored using chromogenic substrate hydrolysis assay to isolate sulfated LMWL fractions that differed significantly in their biophysical and biochemical properties. Three fractions, I35, I55 and Peak II, were isolated from the starting complex mixture. Independent plasma clotting assays suggested that I35 possessed good anticoagulation potential (APTT = 4.2 μM; PT = 6.8 μM), while I55 and Peak II were approximately 10- and 100-fold less potent. The ESI-MS spectrum of this oligomeric fraction showed multiple peaks at 684.8, 610.6, 557.4, 541.4, 536.5, and 519.4 m/z, which most probably arise from variably functionalized (β-O4—β-β-linked trimers and/or a β-O4—β-O4-linked dimers. The first direct observation of these structures in sulfated LMWLs will greatly assist in the discovery of more potent sulfated LMWL-based anticoagulants. PMID:23122400

  18. Effects of hereditary and acquired risk factors of venous thrombosis on a thrombin generation-based APC resistance test

    NARCIS (Netherlands)

    Curvers, J; Thomassen, MCLGD; Rimmer, J; Hamulyak, K; van der Meer, J; Tans, G; Preston, FE; Rosing, J

    Background. Several hereditary and acquired risk factors for venous thromboembolism (VTE) are associated with impaired down-regulation of thrombin formation via the protein C pathway. To identify individuals at risk, functional tests are needed that estimate the risk to develop venous thrombosis.

  19. Endoscopic management of acute peptic ulcer bleeding.

    Science.gov (United States)

    Lu, Yidan; Chen, Yen-I; Barkun, Alan

    2014-12-01

    This review discusses the indications, technical aspects, and comparative effectiveness of the endoscopic treatment of upper gastrointestinal bleeding caused by peptic ulcer. Pre-endoscopic considerations, such as the use of prokinetics and timing of endoscopy, are reviewed. In addition, this article examines aspects of postendoscopic care such as the effectiveness, dosing, and duration of postendoscopic proton-pump inhibitors, Helicobacter pylori testing, and benefits of treatment in terms of preventing rebleeding; and the use of nonsteroidal anti-inflammatory drugs, antiplatelet agents, and oral anticoagulants, including direct thrombin and Xa inhibitors, following acute peptic ulcer bleeding. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Proteolytic signatures define unique thrombin-derived peptides present in human wound fluid in vivo.

    Science.gov (United States)

    Saravanan, Rathi; Adav, Sunil S; Choong, Yeu Khai; van der Plas, Mariena J A; Petrlova, Jitka; Kjellström, Sven; Sze, Siu Kwan; Schmidtchen, Artur

    2017-10-13

    The disease burden of failing skin repair and non-healing ulcers is extensive. There is an unmet need for new diagnostic approaches to better predict healing activity and wound infection. Uncontrolled and excessive protease activity, of endogenous or bacterial origin, has been described as a major contributor to wound healing impairments. Proteolytic peptide patterns could therefore correlate and "report" healing activity and infection. This work describes a proof of principle delineating a strategy by which peptides from a selected protein, human thrombin, are detected and attributed to proteolytic actions. With a particular focus on thrombin-derived C-terminal peptides (TCP), we show that distinct peptide patterns are generated in vitro by the human S1 peptidases human neutrophil elastase and cathepsin G, and the bacterial M4 peptidases Pseudomonas aeruginosa elastase and Staphylococcus aureus aureolysin, respectively. Corresponding peptide sequences were identified in wound fluids from acute and non-healing ulcers, and notably, one peptide, FYT21 (FYTHVFRLKKWIQKVIDQFGE), was only present in wound fluid from non-healing ulcers colonized by P. aeruginosa and S. aureus. Our result is a proof of principle pointing at the possibility of defining peptide biomarkers reporting distinct proteolytic activities, of potential implication for improved diagnosis of wound healing and infection.

  1. High throughput protease profiling comprehensively defines active site specificity for thrombin and ADAMTS13.

    Science.gov (United States)

    Kretz, Colin A; Tomberg, Kärt; Van Esbroeck, Alexander; Yee, Andrew; Ginsburg, David

    2018-02-12

    We have combined random 6 amino acid substrate phage display with high throughput sequencing to comprehensively define the active site specificity of the serine protease thrombin and the metalloprotease ADAMTS13. The substrate motif for thrombin was determined by >6,700 cleaved peptides, and was highly concordant with previous studies. In contrast, ADAMTS13 cleaved only 96 peptides (out of >10 7 sequences), with no apparent consensus motif. However, when the hexapeptide library was substituted into the P3-P3' interval of VWF73, an exosite-engaging substrate of ADAMTS13, 1670 unique peptides were cleaved. ADAMTS13 exhibited a general preference for aliphatic amino acids throughout the P3-P3' interval, except at P2 where Arg was tolerated. The cleaved peptides assembled into a motif dominated by P3 Leu, and bulky aliphatic residues at P1 and P1'. Overall, the P3-P2' amino acid sequence of von Willebrand Factor appears optimally evolved for ADAMTS13 recognition. These data confirm the critical role of exosite engagement for substrates to gain access to the active site of ADAMTS13, and define the substrate recognition motif for ADAMTS13. Combining substrate phage display with high throughput sequencing is a powerful approach for comprehensively defining the active site specificity of proteases.

  2. Laboratory Assessment of the Anticoagulant Activity of Direct Oral Anticoagulants: A Systematic Review.

    Science.gov (United States)

    Samuelson, Bethany T; Cuker, Adam; Siegal, Deborah M; Crowther, Mark; Garcia, David A

    2017-01-01

    Direct oral anticoagulants (DOACs) are the treatment of choice for most patients with atrial fibrillation and/or noncancer-associated venous thromboembolic disease. Although routine monitoring of these agents is not required, assessment of anticoagulant effect may be desirable in special situations. The objective of this review was to summarize systematically evidence regarding laboratory assessment of the anticoagulant effects of dabigatran, rivaroxaban, apixaban, and edoxaban. PubMed, Embase, and Web of Science were searched for studies reporting relationships between drug levels and coagulation assay results. We identified 109 eligible studies: 35 for dabigatran, 50 for rivaroxaban, 11 for apixaban, and 13 for edoxaban. The performance of standard anticoagulation tests varied across DOACs and reagents; most assays, showed insufficient correlation to provide a reliable assessment of DOAC effects. Dilute thrombin time (TT) assays demonstrated linear correlation (r 2  = 0.67-0.99) across a range of expected concentrations of dabigatran, as did ecarin-based assays. Calibrated anti-Xa assays demonstrated linear correlation (r 2  = 0.78-1.00) across a wide range of concentrations for rivaroxaban, apixaban, and edoxaban. An ideal test, offering both accuracy and precision for measurement of any DOAC is not widely available. We recommend a dilute TT or ecarin-based assay for assessment of the anticoagulant effect of dabigatran and anti-Xa assays with drug-specific calibrators for direct Xa inhibitors. In the absence of these tests, TT or APTT is recommended over PT/INR for assessment of dabigatran, and PT/INR is recommended over APTT for detection of factor Xa inhibitors. Time since last dose, the presence or absence of drug interactions, and renal and hepatic function should impact clinical estimates of anticoagulant effect in a patient for whom laboratory test results are not available. Copyright © 2016 American College of Chest Physicians. Published by Elsevier

  3. Histones Differentially Modulate the Anticoagulant and Profibrinolytic Activities of Heparin, Heparin Derivatives, and Dabigatran.

    Science.gov (United States)

    Ammollo, Concetta Tiziana; Semeraro, Nicola; Carratù, Maria Rosaria; Colucci, Mario; Semeraro, Fabrizio

    2016-02-01

    The antithrombin activity of unfractionated heparin (UFH) is offset by extracellular histones, which, along with DNA, represent a novel mediator of thrombosis and a structural component of thrombi. Here, we systematically evaluated the effect of histones, DNA, and histone-DNA complexes on the anticoagulant and profibrinolytic activities of UFH, its derivatives enoxaparin and fondaparinux, and the direct thrombin inhibitor dabigatran. Thrombin generation was assessed by calibrated automated thrombinography, inhibition of factor Xa and thrombin by synthetic substrates, tissue plasminogen activator-mediated clot lysis by turbidimetry, and thrombin-activatable fibrinolysis inhibitor (TAFI) activation by a functional assay. Histones alone delayed coagulation and slightly stimulated fibrinolysis. The anticoagulant activity of UFH and enoxaparin was markedly inhibited by histones, whereas that of fondaparinux was enhanced. Histones neutralized both the anti-Xa and anti-IIa activities of UFH and preferentially blocked the anti-IIa activity of enoxaparin. The anti-Xa activity of fondaparinux was not influenced by histones when analyzed by chromogenic substrates, but was potentiated in a plasma prothrombinase assay. Histones inhibited the profibrinolytic activity of UFH and enoxaparin and enhanced that of fondaparinux by acting on the modulation of TAFI activation by anticoagulants. Histone H1 was mainly responsible for these effects. Histone-DNA complexes, as well as intact neutrophil extracellular traps, impaired the activities of UFH, enoxaparin, and fondaparinux. Dabigatran was not noticeably affected by histones and/or DNA, whatever the assay performed. In conclusion, histones and DNA present in the forming clot may variably influence the antithrombotic activities of anticoagulants, suggesting a potential therapeutic advantage of dabigatran and fondaparinux over heparins. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Effect of the immobilisation of DNA aptamers on the detection of thrombin by means of surface plasmon resonance

    Czech Academy of Sciences Publication Activity Database

    Hianik, T.; Ostatná, V.; Vaisocherová, Hana; Homola, Jiří

    2008-01-01

    Roč. 391, č. 5 (2008), s. 1861-1869 ISSN 1618-2642 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : DNA aptamer * thrombin * dendrimer s Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.328, year: 2008

  5. Changing the inhibitory specificity and function of Cucurbita maxima trypsin inhibitor-V by site-directed mutagenesis.

    Science.gov (United States)

    Wen, L; Lee, I; Chen, G; Huang, J K; Gong, Y; Krishnamoorthi, R

    1995-02-27

    Cucurbita maxima trypsin inhibitor-V (CMTI-V) is also a specific inhibitor of human blood coagulation factor beta-factor XIIa. A recombinant version of CMTI-V has allowed probing of roles of individual amino acid residues including the reactive site residue, lysine (P1), by site-directed mutagenesis. The K44R showed at least a 5-fold increase in inhibitory activity toward human beta-factor XIIa, while there was no change toward bovine trypsin. This result demonstrates that beta-factor-XIIa prefers an arginine residue over lysine residue, while trypsin is non-specific to lysine or arginine in its binding pocket. On the other hand, the specificity of CMTI-V could be changed from trypsin to chymotrypsin inhibition by mutation of the P1 residue to either leucine or methionine (K44L or K44M).

  6. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors.

    Science.gov (United States)

    Halasi, Marianna; Wang, Ming; Chavan, Tanmay S; Gaponenko, Vadim; Hay, Nissim; Gartel, Andrei L

    2013-09-01

    NAC (N-acetyl-L-cysteine) is commonly used to identify and test ROS (reactive oxygen species) inducers, and to inhibit ROS. In the present study, we identified inhibition of proteasome inhibitors as a novel activity of NAC. Both NAC and catalase, another known scavenger of ROS, similarly inhibited ROS levels and apoptosis associated with H₂O₂. However, only NAC, and not catalase or another ROS scavenger Trolox, was able to prevent effects linked to proteasome inhibition, such as protein stabilization, apoptosis and accumulation of ubiquitin conjugates. These observations suggest that NAC has a dual activity as an inhibitor of ROS and proteasome inhibitors. Recently, NAC was used as a ROS inhibitor to functionally characterize a novel anticancer compound, piperlongumine, leading to its description as a ROS inducer. In contrast, our own experiments showed that this compound depicts features of proteasome inhibitors including suppression of FOXM1 (Forkhead box protein M1), stabilization of cellular proteins, induction of ROS-independent apoptosis and enhanced accumulation of ubiquitin conjugates. In addition, NAC, but not catalase or Trolox, interfered with the activity of piperlongumine, further supporting that piperlongumine is a proteasome inhibitor. Most importantly, we showed that NAC, but not other ROS scavengers, directly binds to proteasome inhibitors. To our knowledge, NAC is the first known compound that directly interacts with and antagonizes the activity of proteasome inhibitors. Taken together, the findings of the present study suggest that, as a result of the dual nature of NAC, data interpretation might not be straightforward when NAC is utilized as an antioxidant to demonstrate ROS involvement in drug-induced apoptosis.

  7. Inhibitory Effects of Cytosolic Ca2+ Concentration by Ginsenoside Ro Are Dependent on Phosphorylation of IP3RI and Dephosphorylation of ERK in Human Platelets

    Directory of Open Access Journals (Sweden)

    Hyuk-Woo Kwon

    2015-01-01

    Full Text Available Intracellular Ca2+ ([Ca2+]i is platelet aggregation-inducing molecule and is involved in activation of aggregation associated molecules. This study was carried out to understand the Ca2+-antagonistic effect of ginsenoside Ro (G-Ro, an oleanane-type saponin in Panax ginseng. G-Ro, without affecting leakage of lactate dehydrogenase, dose-dependently inhibited thrombin-induced platelet aggregation, and the half maximal inhibitory concentration was approximately 155 μM. G-Ro inhibited strongly thrombin-elevated [Ca2+]i, which was strongly increased by A-kinase inhibitor Rp-8-Br-cAMPS compared to G-kinase inhibitor Rp-8-Br-cGMPS. G-Ro increased the level of cAMP and subsequently elevated the phosphorylation of inositol 1, 4, 5-triphosphate receptor I (IP3RI (Ser1756 to inhibit [Ca2+]i mobilization in thrombin-induced platelet aggregation. Phosphorylation of IP3RI (Ser1756 by G-Ro was decreased by PKA inhibitor Rp-8-Br-cAMPS. In addition, G-Ro inhibited thrombin-induced phosphorylation of ERK 2 (42 kDa, indicating inhibition of Ca2+ influx across plasma membrane. We demonstrate that G-Ro upregulates cAMP-dependent IP3RI (Ser1756 phosphorylation and downregulates phosphorylation of ERK 2 (42 kDa to decrease thrombin-elevated [Ca2+]i, which contributes to inhibition of ATP and serotonin release, and p-selectin expression. These results indicate that G-Ro in Panax ginseng is a beneficial novel Ca2+-antagonistic compound and may prevent platelet aggregation-mediated thrombotic disease.

  8. Characterization and pharmacological properties of a novel multifunctional Kunitz inhibitor from Erythrina velutina seeds.

    Directory of Open Access Journals (Sweden)

    Richele J A Machado

    Full Text Available Inhibitors of peptidases isolated from leguminous seeds have been studied for their pharmacological properties. The present study focused on purification, biochemical characterization and anti-inflammatory and anticoagulant evaluation of a novel Kunitz trypsin inhibitor from Erythrina velutina seeds (EvTI. Trypsin inhibitors were purified by ammonium sulfate (30-60%, fractionation followed by Trypsin-Sepharose affinity chromatography and reversed-phase high performance liquid chromatography. The purified inhibitor showed molecular mass of 19,210.48 Da. Furthermore, a second isoform with 19,228.16 Da was also observed. The inhibitor that showed highest trypsin specificity and enhanced recovery yield was named EvTI (P2 and was selected for further analysis. The EvTI peptide fragments, generated by trypsin and pepsin digestion, were further analyzed by MALDI-ToF-ToF mass spectrometry, allowing a partial primary structure elucidation. EvTI exhibited inhibitory activity against trypsin with IC50 of 2.2×10(-8 mol.L(-1 and constant inhibition (Ki of 1.0×10(-8 mol.L(-1, by a non-competitive mechanism. In addition to inhibit the activity of trypsin, EvTI also inhibited factor Xa and neutrophil elastase, but do not inhibit thrombin, chymotrypsin or peptidase 3. EvTI was investigated for its anti-inflammatory and anti-coagulant properties. Firstly, EvTI showed no cytotoxic effect on human peripheral blood cells. Nevertheless, the inhibitor was able to prolong the clotting time in a dose-dependent manner by using in vitro and in vivo models. Due to anti-inflammatory and anticoagulant EvTI properties, two sepsis models were here challenged. EvTI inhibited leukocyte migration and specifically acted by inhibiting TNF-α release and stimulating IFN-α and IL-12 synthesis. The data presented clearly contribute to a better understanding of the use of Kunitz inhibitors in sepsis as a bioactive agent capable of interfering in blood coagulation and inflammation.

  9. Influence of hirudin and cobra venom factor on the release of 14C-serotonin and 51chromium from human platelets induced by thrombin, collagen, aggregate gammaglobulin and HLA antibody

    International Nuclear Information System (INIS)

    Hagemeyer, G.M.

    1982-01-01

    The present work investigates the influence of hirudin and cobra venom factor on thrombin, collagen, aggregate gammaglobulin and HLA-antibody-induced release of 14 C-serotonin and 51 chromium from human platelets. Besides the platelet-specific release reaction ( 14 C-serotonin) the extent of platelet lysis was determined by measurement of the loss of 51 chromium from the platelets. The results showed the thrombin, collagen and aggregate-gammaglobulin-induced platelet alteration to be a non-complement-dependent reaction of the platelets with release of 14 C-serotonin. Following long-term incubation small quantities of 51 chromium are also released. As this release of 51 chromium cannot be inhibited using cobra venom factor and does not occur in washed platelets either, it is most probably a non-complement-dependent reaction. The HLA-antibody-induced, specific platelet alteration is both complement-dependent and complement-independent. Differentiation is possible by inhibition of the complement-dependent lysis. On the other hand thrombin is of no relevance to the collagen, aggregate gammaglobulin, and HLA-antibody-induced platelet alteration as the interactions of these substances with platelets are not inhibited by hirudin. The above results are confirmed by investigation of the 51 chromium uptake capacity of washed platelets treated previously with thrombin, collagen and HLA antibody. (orig./MG) [de

  10. Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors.

    Science.gov (United States)

    Stamatopoulou, Vassiliki; Apostolidi, Maria; Li, Shuang; Lamprinou, Katerina; Papakyriakou, Athanasios; Zhang, Jinwei; Stathopoulos, Constantinos

    2017-09-29

    Recently, it was discovered that exposure to mainstream antibiotics activate numerous bacterial riboregulators that control antibiotic resistance genes including metabolite-binding riboswitches and other transcription attenuators. However, the effects of commonly used antibiotics, many of which exhibit RNA-binding properties, on the widespread T-box riboswitches, remain unknown. In Staphylococcus aureus, a species-specific glyS T-box controls the supply of glycine for both ribosomal translation and cell wall synthesis, making it a promising target for next-generation antimicrobials. Here, we report that specific protein synthesis inhibitors could either significantly increase T-box-mediated transcription antitermination, while other compounds could suppress it, both in vitro and in vivo. In-line probing of the full-length T-box combined with molecular modelling and docking analyses suggest that the antibiotics that promote transcription antitermination stabilize the T-box:tRNA complex through binding specific positions on stem I and the Staphylococcal-specific stem Sa. By contrast, the antibiotics that attenuate T-box transcription bind to other positions on stem I and do not interact with stem Sa. Taken together, our results reveal that the transcription of essential genes controlled by T-box riboswitches can be directly modulated by commonly used protein synthesis inhibitors. These findings accentuate the regulatory complexities of bacterial response to antimicrobials that involve multiple riboregulators. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Loop Electrostatics Asymmetry Modulates the Preexisting Conformational Equilibrium in Thrombin.

    Science.gov (United States)

    Pozzi, Nicola; Zerbetto, Mirco; Acquasaliente, Laura; Tescari, Simone; Frezzato, Diego; Polimeno, Antonino; Gohara, David W; Di Cera, Enrico; De Filippis, Vincenzo

    2016-07-19

    Thrombin exists as an ensemble of active (E) and inactive (E*) conformations that differ in their accessibility to the active site. Here we show that redistribution of the E*-E equilibrium can be achieved by perturbing the electrostatic properties of the enzyme. Removal of the negative charge of the catalytic Asp102 or Asp189 in the primary specificity site destabilizes the E form and causes a shift in the 215-217 segment that compromises substrate entrance. Solution studies and existing structures of D102N document stabilization of the E* form. A new high-resolution structure of D189A also reveals the mutant in the collapsed E* form. These findings establish a new paradigm for the control of the E*-E equilibrium in the trypsin fold.

  12. Autophagy inhibitor 3-methyladenine protects against endothelial cell barrier dysfunction in acute lung injury.

    Science.gov (United States)

    Slavin, Spencer A; Leonard, Antony; Grose, Valerie; Fazal, Fabeha; Rahman, Arshad

    2018-03-01

    Autophagy is an evolutionarily conserved cellular process that facilitates the continuous recycling of intracellular components (organelles and proteins) and provides an alternative source of energy when nutrients are scarce. Recent studies have implicated autophagy in many disorders, including pulmonary diseases. However, the role of autophagy in endothelial cell (EC) barrier dysfunction and its relevance in the context of acute lung injury (ALI) remain uncertain. Here, we provide evidence that autophagy is a critical component of EC barrier disruption in ALI. Using an aerosolized bacterial lipopolysaccharide (LPS) inhalation mouse model of ALI, we found that administration of the autophagy inhibitor 3-methyladenine (3-MA), either prophylactically or therapeutically, markedly reduced lung vascular leakage and tissue edema. 3-MA was also effective in reducing the levels of proinflammatory mediators and lung neutrophil sequestration induced by LPS. To test the possibility that autophagy in EC could contribute to lung vascular injury, we addressed its role in the mechanism of EC barrier disruption. Knockdown of ATG5, an essential regulator of autophagy, attenuated thrombin-induced EC barrier disruption, confirming the involvement of autophagy in the response. Similarly, exposure of cells to 3-MA, either before or after thrombin, protected against EC barrier dysfunction by inhibiting the cleavage and loss of vascular endothelial cadherin at adherens junctions, as well as formation of actin stress fibers. 3-MA also reversed LPS-induced EC barrier disruption. Together, these data imply a role of autophagy in lung vascular injury and reveal the protective and therapeutic utility of 3-MA against ALI.

  13. Four-factor prothrombin complex concentrate improves thrombin generation and prothrombin time in patients with bleeding complications related to rivaroxaban: a single-center pilot trial.

    Science.gov (United States)

    Schenk, Bettina; Goerke, Stephanie; Beer, Ronny; Helbok, Raimund; Fries, Dietmar; Bachler, Mirjam

    2018-01-01

    Direct oral anticoagulants (DOACs) pose a great challenge for physicians in life-threatening bleeding events. The aim of this study was to test the efficacy of reversing the DOAC rivaroxaban using four-factor PCC (prothrombin complex concentrate), a non-specific reversing agent. Patients with life-threatening bleeding events during rivaroxaban treatment were included and administered 25 U kg -1 of PCC. Blood samples were collected immediately prior to as well as after PCC treatment at predefined time intervals. The primary endpoint was defined as the difference in thrombin generation (TG) parameters ETP (endogenous thrombin potential) and C max (peak thrombin generation) prior to and ten minutes subsequent to PCC treatment. Thirteen patients, of whom the majority suffered from intra-cranial haemorrhage (ICH) or subdural haemorrhage (SDH), were included and administered PCC. The results show that the ETP (TG) significantly ( p  = 0.001) improved by 68% and C max (TG) by 54% (p = 0.001) during PCC treatment. In addition, the Quick value (prothrombin time: Quick PT ) significantly improved by 28% and the activated partial thromboplastin time (aPTT) was decreased by 7% ten minutes after PCC administration. C max was reduced at baseline, but not ETP, aPTT or Quick PT . Lag time until initiation (TG, t lag ), thromboelastometry clotting time (CT EXTEM ) and time to peak (TG, t max ) correlated best with measured rivaroxaban levels and were out of normal ranges at baseline, but did not improve after PCC administration. In 77% of the patients bleeding (ICH/SDH-progression) ceased following PCC administration. During the study three participants passed away due to other complications not related to PCC treatment. The possibility of thrombosis formation was also evaluated seven days after administering PCC and no thromboses were found. This study shows that use of PCC improved ETP, C max, Quick PT and aPTT. However, of these parameters, only C max was reduced at the

  14. Roles of platelet STIM1 and Orai1 in glycoprotein VI- and thrombin-dependent procoagulant activity and thrombus formation.

    Science.gov (United States)

    Gilio, Karen; van Kruchten, Roger; Braun, Attila; Berna-Erro, Alejandro; Feijge, Marion A H; Stegner, David; van der Meijden, Paola E J; Kuijpers, Marijke J E; Varga-Szabo, David; Heemskerk, Johan W M; Nieswandt, Bernhard

    2010-07-30

    In platelets, STIM1 has been recognized as the key regulatory protein in store-operated Ca(2+) entry (SOCE) with Orai1 as principal Ca(2+) entry channel. Both proteins contribute to collagen-dependent arterial thrombosis in mice in vivo. It is unclear whether STIM2 is involved. A key platelet response relying on Ca(2+) entry is the surface exposure of phosphatidylserine (PS), which accomplishes platelet procoagulant activity. We studied this response in mouse platelets deficient in STIM1, STIM2, or Orai1. Upon high shear flow of blood over collagen, Stim1(-/-) and Orai1(-/-) platelets had greatly impaired glycoprotein (GP) VI-dependent Ca(2+) signals, and they were deficient in PS exposure and thrombus formation. In contrast, Stim2(-/-) platelets reacted normally. Upon blood flow in the presence of thrombin generation and coagulation, Ca(2+) signals of Stim1(-/-) and Orai1(-/-) platelets were partly reduced, whereas the PS exposure and formation of fibrin-rich thrombi were normalized. Washed Stim1(-/-) and Orai1(-/-) platelets were deficient in GPVI-induced PS exposure and prothrombinase activity, but not when thrombin was present as co-agonist. Markedly, SKF96365, a blocker of (receptor-operated) Ca(2+) entry, inhibited Ca(2+) and procoagulant responses even in Stim1(-/-) and Orai1(-/-) platelets. These data show for the first time that: (i) STIM1 and Orai1 jointly contribute to GPVI-induced SOCE, procoagulant activity, and thrombus formation; (ii) a compensating Ca(2+) entry pathway is effective in the additional presence of thrombin; (iii) platelets contain two mechanisms of Ca(2+) entry and PS exposure, only one relying on STIM1-Orai1 interaction.

  15. Construction of a Bivalent Thrombin Binding Aptamer and Its Antidote with Improved Properties

    Directory of Open Access Journals (Sweden)

    Quintin W. Hughes

    2017-10-01

    Full Text Available Aptamers are short synthetic DNA or RNA oligonucleotides that adopt secondary and tertiary conformations based on Watson–Crick base-pairing interactions and can be used to target a range of different molecules. Two aptamers, HD1 and HD22, that bind to exosites I and II of the human thrombin molecule, respectively, have been extensively studied due to their anticoagulant potentials. However, a fundamental issue preventing the clinical translation of many aptamers is degradation by nucleases and reduced pharmacokinetic properties requiring higher dosing regimens more often. In this study, we have chemically modified the design of previously described thrombin binding aptamers targeting exosites I, HD1, and exosite II, HD22. The individual aptamers were first modified with an inverted deoxythymidine nucleotide, and then constructed bivalent aptamers by connecting the HD1 and HD22 aptamers either through a triethylene glycol (TEG linkage or four consecutive deoxythymidines together with an inverted deoxythymidine nucleotide at the 3′-end. The anticoagulation potential, the reversal of coagulation with different antidote sequences, and the nuclease stability of the aptamers were then investigated. The results showed that a bivalent aptamer RNV220 containing an inverted deoxythymidine and a TEG linkage chemistry significantly enhanced the anticoagulation properties in blood plasma and nuclease stability compared to the existing aptamer designs. Furthermore, a bivalent antidote sequence RNV220AD efficiently reversed the anticoagulation effect of RNV220 in blood plasma. Based on our results, we believe that RNV220 could be developed as a potential anticoagulant therapeutic molecule.

  16. Host defense peptides of thrombin modulate inflammation and coagulation in endotoxin-mediated shock and Pseudomonas aeruginosa sepsis.

    Science.gov (United States)

    Kalle, Martina; Papareddy, Praveen; Kasetty, Gopinath; Mörgelin, Matthias; van der Plas, Mariena J A; Rydengård, Victoria; Malmsten, Martin; Albiger, Barbara; Schmidtchen, Artur

    2012-01-01

    Gram-negative sepsis is accompanied by a disproportionate innate immune response and excessive coagulation mainly induced by endotoxins released from bacteria. Due to rising antibiotic resistance and current lack of other effective treatments there is an urgent need for new therapies. We here present a new treatment concept for sepsis and endotoxin-mediated shock, based on host defense peptides from the C-terminal part of human thrombin, found to have a broad and inhibitory effect on multiple sepsis pathologies. Thus, the peptides abrogate pro-inflammatory cytokine responses to endotoxin in vitro and in vivo. Furthermore, they interfere with coagulation by modulating contact activation and tissue factor-mediated clotting in vitro, leading to normalization of coagulation responses in vivo, a previously unknown function of host defense peptides. In a mouse model of Pseudomonas aeruginosa sepsis, the peptide GKY25, while mediating a modest antimicrobial effect, significantly inhibited the pro-inflammatory response, decreased fibrin deposition and leakage in the lungs, as well as reduced mortality. Taken together, the capacity of such thrombin-derived peptides to simultaneously modulate bacterial levels, pro-inflammatory responses, and coagulation, renders them attractive therapeutic candidates for the treatment of invasive infections and sepsis.

  17. Host defense peptides of thrombin modulate inflammation and coagulation in endotoxin-mediated shock and Pseudomonas aeruginosa sepsis.

    Directory of Open Access Journals (Sweden)

    Martina Kalle

    Full Text Available Gram-negative sepsis is accompanied by a disproportionate innate immune response and excessive coagulation mainly induced by endotoxins released from bacteria. Due to rising antibiotic resistance and current lack of other effective treatments there is an urgent need for new therapies. We here present a new treatment concept for sepsis and endotoxin-mediated shock, based on host defense peptides from the C-terminal part of human thrombin, found to have a broad and inhibitory effect on multiple sepsis pathologies. Thus, the peptides abrogate pro-inflammatory cytokine responses to endotoxin in vitro and in vivo. Furthermore, they interfere with coagulation by modulating contact activation and tissue factor-mediated clotting in vitro, leading to normalization of coagulation responses in vivo, a previously unknown function of host defense peptides. In a mouse model of Pseudomonas aeruginosa sepsis, the peptide GKY25, while mediating a modest antimicrobial effect, significantly inhibited the pro-inflammatory response, decreased fibrin deposition and leakage in the lungs, as well as reduced mortality. Taken together, the capacity of such thrombin-derived peptides to simultaneously modulate bacterial levels, pro-inflammatory responses, and coagulation, renders them attractive therapeutic candidates for the treatment of invasive infections and sepsis.

  18. Thrombin-induced rabbit platelet microbicidal protein is fungicidal in vitro.

    Science.gov (United States)

    Yeaman, M R; Ibrahim, A S; Edwards, J E; Bayer, A S; Ghannoum, M A

    1993-03-01

    Platelet microbicidal protein (PMP) is released from platelets in response to thrombin stimulation. PMP is known to possess in vitro bactericidal activity against Staphylococcus aureus and viridans group streptococci. To determine whether PMP is active against other intravascular pathogens, we evaluated its potential fungicidal activity against strains of Candida species and Cryptococcus neoformans. Anionic resin adsorption and gel electrophoresis confirmed that the fungicidal activity of PMP resided in a small (approximately 8.5-kDa), cationic protein, identical to previous studies of PMP-induced bacterial killing (M.R. Yeaman, S.M. Puentes, D.C. Norman, and A.S. Bayer, Infect. Immun. 60:1202-1209, 1992). When assayed over a 180-min period in vitro, the susceptibilities of these fungi to PMP varied considerably. Generally, Candida albicans strains (mean survival, 33.5% +/- 6.9% [n = 6]) as well as isolates of Candida glabrata (mean survival, 50.8% +/- 2.9% [n = 2]) were the most susceptible to killing by PMP, while Candida guillermondii and Candida parapsilosis were relatively resistant to PMP-induced killing. Compared with C. albicans, C. neoformans was relatively resistant to the fungicidal activity of PMP, with a mean survival among the isolates studied of 77.4% +/- 12.4% (n = 6). Against C. albicans, PMP-induced fungicidal activity was time dependent (range, 0 to 180 min), PMP concentration dependent (range, 10 to 150 U/ml), and inversely related to the fungal inoculum (range, 5 x 10(3) to 1 x 10(5) CFU/ml). Scanning electron microscopy of PMP-exposed C. albicans and C. neoformans cells revealed extensive surface damage and collapse, suggesting that the site of PMP fungicidal action may directly or indirectly involve the fungal cell envelope.

  19. Structural Basis for the Inhibition of RNase H Activity of HIV-1 Reverse Transcriptase by RNase H Active Site-Directed Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hua-Poo; Yan, Youwei; Prasad, G. Sridhar; Smith, Robert F.; Daniels, Christopher L.; Abeywickrema, Pravien D.; Reid, John C.; Loughran, H. Marie; Kornienko, Maria; Sharma, Sujata; Grobler, Jay A.; Xu, Bei; Sardana, Vinod; Allison, Timothy J.; Williams, Peter D.; Darke, Paul L.; Hazuda, Daria J.; Munshi, Sanjeev (Merck)

    2010-09-02

    HIV/AIDS continues to be a menace to public health. Several drugs currently on the market have successfully improved the ability to manage the viral burden in infected patients. However, new drugs are needed to combat the rapid emergence of mutated forms of the virus that are resistant to existing therapies. Currently, approved drugs target three of the four major enzyme activities encoded by the virus that are critical to the HIV life cycle. Although a number of inhibitors of HIV RNase H activity have been reported, few inhibit by directly engaging the RNase H active site. Here, we describe structures of naphthyridinone-containing inhibitors bound to the RNase H active site. This class of compounds binds to the active site via two metal ions that are coordinated by catalytic site residues, D443, E478, D498, and D549. The directionality of the naphthyridinone pharmacophore is restricted by the ordering of D549 and H539 in the RNase H domain. In addition, one of the naphthyridinone-based compounds was found to bind at a second site close to the polymerase active site and non-nucleoside/nucleotide inhibitor sites in a metal-independent manner. Further characterization, using fluorescence-based thermal denaturation and a crystal structure of the isolated RNase H domain reveals that this compound can also bind the RNase H site and retains the metal-dependent binding mode of this class of molecules. These structures provide a means for structurally guided design of novel RNase H inhibitors.

  20. Protease-activated receptor-1 negatively regulates proliferation of neural stem/progenitor cells derived from the hippocampal dentate gyrus of the adult mouse

    Directory of Open Access Journals (Sweden)

    Masayuki Tanaka

    2016-07-01

    Full Text Available Thrombin-activated protease-activated receptor (PAR-1 regulates the proliferation of neural cells following brain injury. To elucidate the involvement of PAR-1 in the neurogenesis that occurs in the adult hippocampus, we examined whether PAR-1 regulated the proliferation of neural stem/progenitor cells (NPCs derived from the murine hippocampal dentate gyrus. NPC cultures expressed PAR-1 protein and mRNA encoding all subtypes of PAR. Direct exposure of the cells to thrombin dramatically attenuated the cell proliferation without causing cell damage. This thrombin-induced attenuation was almost completely abolished by the PAR antagonist RWJ 56110, as well as by dabigatran and 4-(2-aminoethylbenzenesulfonyl fluoride (AEBSF, which are selective and non-selective thrombin inhibitors, respectively. Expectedly, the PAR-1 agonist peptide (AP SFLLR-NH2 also attenuated the cell proliferation. The cell proliferation was not affected by the PAR-1 negative control peptide RLLFT-NH2, which is an inactive peptide for PAR-1. Independently, we determined the effect of in vivo treatment with AEBSF or AP on hippocampal neurogenesis in the adult mouse. The administration of AEBSF, but not that of AP, significantly increased the number of newly-generated cells in the hippocampal subgranular zone. These data suggest that PAR-1 negatively regulated adult neurogenesis in the hippocampus by inhibiting the proliferative activity of the NPCs.

  1. Roles of Platelet STIM1 and Orai1 in Glycoprotein VI- and Thrombin-dependent Procoagulant Activity and Thrombus Formation*

    Science.gov (United States)

    Gilio, Karen; van Kruchten, Roger; Braun, Attila; Berna-Erro, Alejandro; Feijge, Marion A. H.; Stegner, David; van der Meijden, Paola E. J.; Kuijpers, Marijke J. E.; Varga-Szabo, David; Heemskerk, Johan W. M.; Nieswandt, Bernhard

    2010-01-01

    In platelets, STIM1 has been recognized as the key regulatory protein in store-operated Ca2+ entry (SOCE) with Orai1 as principal Ca2+ entry channel. Both proteins contribute to collagen-dependent arterial thrombosis in mice in vivo. It is unclear whether STIM2 is involved. A key platelet response relying on Ca2+ entry is the surface exposure of phosphatidylserine (PS), which accomplishes platelet procoagulant activity. We studied this response in mouse platelets deficient in STIM1, STIM2, or Orai1. Upon high shear flow of blood over collagen, Stim1−/− and Orai1−/− platelets had greatly impaired glycoprotein (GP) VI-dependent Ca2+ signals, and they were deficient in PS exposure and thrombus formation. In contrast, Stim2−/− platelets reacted normally. Upon blood flow in the presence of thrombin generation and coagulation, Ca2+ signals of Stim1−/− and Orai1−/− platelets were partly reduced, whereas the PS exposure and formation of fibrin-rich thrombi were normalized. Washed Stim1−/− and Orai1−/− platelets were deficient in GPVI-induced PS exposure and prothrombinase activity, but not when thrombin was present as co-agonist. Markedly, SKF96365, a blocker of (receptor-operated) Ca2+ entry, inhibited Ca2+ and procoagulant responses even in Stim1−/− and Orai1−/− platelets. These data show for the first time that: (i) STIM1 and Orai1 jointly contribute to GPVI-induced SOCE, procoagulant activity, and thrombus formation; (ii) a compensating Ca2+ entry pathway is effective in the additional presence of thrombin; (iii) platelets contain two mechanisms of Ca2+ entry and PS exposure, only one relying on STIM1-Orai1 interaction. PMID:20519511

  2. Identification of polymorphisms in the 5'-untranslated region of the TAFI gene: relationship with plasma TAFI levels and risk of venous thrombosis

    NARCIS (Netherlands)

    Franco, R. F.; Fagundes, M. G.; Meijers, J. C.; Reitsma, P. H.; Lourenço, D.; Morelli, V.; Maffei, F. H.; Ferrari, I. C.; Piccinato, C. E.; Silva, W. A.; Zago, M. A.

    2001-01-01

    BACKGROUND AND OBJECTIVES: Thrombin activatable fibrinolysis inhibitor (TAFI) plays an important role in hemostasis, functioning as a potent fibrinolysis inhibitor. TAFI gene variations may contribute to plasma TAFI levels and thrombotic risk. DESIGN AND METHODS: We sequenced a 2083-bp region of the

  3. Direct Oral Anticoagulants: An Overview for the Interventional Radiologist

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pradesh, E-mail: pradeshkumar@doctors.org.uk; Ravi, Rajeev, E-mail: rajeev.ravi@aintree.nhs.uk; Sundar, Gaurav, E-mail: gaurav.sundar@aintree.nhs.uk [Aintree University Hospitals NHS Foundation Trust, Radiology Department (United Kingdom); Shiach, Caroline, E-mail: caroline.shiach@aintree.nhs.uk [Aintree University Hospitals NHS Foundation Trust, Haematology Department (United Kingdom)

    2017-03-15

    The direct oral anticoagulants (DOACs) have emerged as a good alternative for the treatment of thromboembolic diseases, and their use in clinical practice is increasing rapidly. The DOACs act by blocking the activity of one single step in the coagulation cascade. These drugs act downstream in the common pathway of the coagulation cascade by directly antagonising the action of thrombin or factor Xa. The development of DOACs represents a paradigm shift from the oral vitamin K antagonists such as warfarin. This article aims to describe the properties of the currently available DOACs including pharmacology and dosing. We also address the strategies for periprocedural management and reversal of anticoagulation of patients treated with these agents.

  4. Direct Oral Anticoagulants: An Overview for the Interventional Radiologist

    International Nuclear Information System (INIS)

    Kumar, Pradesh; Ravi, Rajeev; Sundar, Gaurav; Shiach, Caroline

    2017-01-01

    The direct oral anticoagulants (DOACs) have emerged as a good alternative for the treatment of thromboembolic diseases, and their use in clinical practice is increasing rapidly. The DOACs act by blocking the activity of one single step in the coagulation cascade. These drugs act downstream in the common pathway of the coagulation cascade by directly antagonising the action of thrombin or factor Xa. The development of DOACs represents a paradigm shift from the oral vitamin K antagonists such as warfarin. This article aims to describe the properties of the currently available DOACs including pharmacology and dosing. We also address the strategies for periprocedural management and reversal of anticoagulation of patients treated with these agents.

  5. Heparanase enhances the generation of activated factor X in the presence of tissue factor and activated factor VII.

    Science.gov (United States)

    Nadir, Yona; Brenner, Benjamin; Fux, Liat; Shafat, Itay; Attias, Judith; Vlodavsky, Israel

    2010-11-01

    Heparanase is an endo-β-D-glucuronidase dominantly involved in tumor metastasis and angiogenesis. Recently, we demonstrated that heparanase is involved in the regulation of the hemostatic system. Our hypothesis was that heparanase is directly involved in activation of the coagulation cascade. Activated factor X and thrombin were studied using chromogenic assays, immunoblotting and thromboelastography. Heparanase levels were measured by enzyme-linked immunosorbent assay. A potential direct interaction between tissue factor and heparanase was studied by co-immunoprecipitation and far-western assays. Interestingly, addition of heparanase to tissue factor and activated factor VII resulted in a 3- to 4-fold increase in activation of the coagulation cascade as shown by increased activated factor X and thrombin production. Culture medium of human embryonic kidney 293 cells over-expressing heparanase and its derivatives increased activated factor X levels in a non-enzymatic manner. When heparanase was added to pooled normal plasma, a 7- to 8-fold increase in activated factor X level was observed. Subsequently, we searched for clinical data supporting this newly identified role of heparanase. Plasma samples from 35 patients with acute leukemia at presentation and 20 healthy donors were studied for heparanase and activated factor X levels. A strong positive correlation was found between plasma heparanase and activated factor X levels (r=0.735, P=0.001). Unfractionated heparin and an inhibitor of activated factor X abolished the effect of heparanase, while tissue factor pathway inhibitor and tissue factor pathway inhibitor-2 only attenuated the procoagulant effect. Using co-immunoprecipitation and far-western analyses it was shown that heparanase interacts directly with tissue factor. Overall, our results support the notion that heparanase is a potential modulator of blood hemostasis, and suggest a novel mechanism by which heparanase increases the generation of activated

  6. Structural dynamics of thrombin-binding DNA aptamer d(GGTTGGTGTGGTTGG) quadruplex DNA studied by large-scale explicit solvent simulations

    Czech Academy of Sciences Publication Activity Database

    Reshetnikov, R.; Golovin, A.; Spiridonova, V.; Kopylov, A.; Šponer, Jiří

    2010-01-01

    Roč. 6, č. 10 (2010), s. 3003-3014 ISSN 1549-9618 R&D Projects: GA AV ČR(CZ) IAA400040802; GA ČR(CZ) GA203/09/1476; GA MŠk(CZ) LC06030 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : molecular dynamics * quadruplex DNA * thrombin Subject RIV: BO - Biophysics Impact factor: 5.138, year: 2010

  7. Cathepsin D inhibitors

    Directory of Open Access Journals (Sweden)

    M. Gacko

    2007-11-01

    Full Text Available Inhibitors of cathepsin D belong to chemical compounds that estrify carboxyl groups of the Asp33 and Asp231residues of its catalytic site, penta-peptides containing statin, i.e. the amino acid similar in structure to the tetraedric indirectproduct, and polypeptides found in the spare organs of many plants and forming permanent noncovalent complexes withcathepsin. Cathepsin D activity is also inhibited by alpha2-macroglobulin and antibodies directed against this enzyme.Methods used to determine the activity and concentration of these inhibitors and their analytical, preparative and therapeuticapplications are discussed.

  8. Thrombin-Binding Aptamer Quadruplex Formation: AFM and Voltammetric Characterization

    Directory of Open Access Journals (Sweden)

    Victor Constantin Diculescu

    2010-01-01

    Full Text Available The adsorption and the redox behaviour of thrombin-binding aptamer (TBA and extended TBA (eTBA were studied using atomic force microscopy and voltammetry at highly oriented pyrolytic graphite and glassy carbon. The different adsorption patterns and degree of surface coverage were correlated with the sequence base composition, presence/absence of K+, and voltammetric behaviour of TBA and eTBA. In the presence of K+, only a few single-stranded sequences present adsorption, while the majority of the molecules forms stable and rigid quadruplexes with no adsorption. Both TBA and eTBA are oxidized and the only anodic peak corresponds to guanine oxidation. Upon addition of K+ ions, TBA and eTBA fold into a quadruplex, causing the decrease of guanine oxidation peak and occurrence of a new peak at a higher potential due to the oxidation of G-quartets. The higher oxidation potential of G-quartets is due to the greater difficulty of electron transfer from the inside of the quadruplex to the electrode surface than electron transfer from the more flexible single strands.

  9. Den haemostatiske balance under behandling med nyere p-pillepraeparater

    DEFF Research Database (Denmark)

    Petersen, K R; Skouby, S O; Sidelmann, Johannes Jakobsen

    1994-01-01

    and concentration of tissue plasminogen activator inhibitor. The ratio between thrombin-antithrombin-III-complexes and fibrin degradation products were unchanged signifying no effect of hormonal intake on the balance between thrombin formation and fibrin resolution. In conclusion, the dynamic balance between...... generation and resolution of fibrin was undisturbed during treatment with both hormonal compounds and our findings do not provide evidence for increased risk of thrombosis in normal women....

  10. cGMP and nitric oxide modulate thrombin-induced endothelial permeability : Regulation via different pathways in human aortic and umbilical vein endothelial cells

    NARCIS (Netherlands)

    Draijer, R.; Atsma, D.E.; Laarse, A. van der; Hinsbergh, V.W.M. van

    1995-01-01

    Previous studies have demonstrated that cGMP and cAMP reduce the endothelial permeability for fluids and macromolecules when the endothelial permeability is increased by thrombin. In this study, we have investigated the mechanism by which cGMP improves the endothelial barrier function and examined

  11. Characterization of cucurbita maxima phloem serpin-1 (CmPS-1). A developmentally regulated elastase inhibitor.

    Science.gov (United States)

    Yoo, B C; Aoki, K; Xiang, Y; Campbell, L R; Hull, R J; Xoconostle-Cázares, B; Monzer, J; Lee, J Y; Ullman, D E; Lucas, W J

    2000-11-10

    We report on the molecular, biochemical, and functional characterization of Cucurbita maxima phloem serpin-1 (CmPS-1), a novel 42-kDa serine proteinase inhibitor that is developmentally regulated and has anti-elastase properties. CmPS-1 was purified to near homogeneity from C. maxima (pumpkin) phloem exudate and, based on microsequence analysis, the cDNA encoding CmPS-1 was cloned. The association rate constant (k(a)) of phloem-purified and recombinant His(6)-tagged CmPS-1 for elastase was 3.5 +/- 1.6 x 10(5) and 2.7 +/- 0.4 x 10(5) m(-)(1) s(-)(1), respectively. The fraction of complex-forming CmPS-1, X(inh), was estimated at 79%. CmPS-1 displayed no detectable inhibitory properties against chymotrypsin, trypsin, or thrombin. The elastase cleavage sites within the reactive center loop of CmPS-1 were determined to be Val(347)-Gly(348) and Val(350)-Ser(351) with a 3:2 molar ratio. In vivo feeding assays conducted with the piercing-sucking aphid, Myzus persicae, established a close correlation between the developmentally regulated increase in CmPS-1 within the phloem sap and the reduced ability of these insects to survive and reproduce on C. maxima. However, in vitro feeding experiments, using purified phloem CmPS-1, failed to demonstrate a direct effect on aphid survival. Likely roles of this novel phloem serpin in defense against insects/pathogens are discussed.

  12. Comparison of Ultrasound-Guided Thrombin Injection of Iatrogenic Pseudoaneurysms Based on Neck Dimension.

    Science.gov (United States)

    Yang, Ethan Y; Tabbara, Marwan M; Sanchez, Priscila G; Abi-Chaker, Andrew M; Patel, Jaimin; Bornak, Arash; Jones, Keith M; Rey, Jorge

    2018-02-01

    Ultrasound-guided thrombin injection (UGTI) of femoral artery pseudoaneurysms after endovascular procedures is an effective therapy. There is controversy in the literature regarding injecting pseudoaneurysms with short and/or wide necks. This article reports our experience in UGTI of pseudoaneurysms in 1 hospital regarding the efficacy of this treatment in all pseudoaneurysms regardless of the size of the necks. A retrospective review of 46 patients diagnosed between 2011 and 2016 with groin pseudoaneurysms using established duplex ultrasound criteria. Mean age was 68 years (range 27-87). Ten pseudoaneurysms thrombosed spontaneously, 5 were thrombosed by ultrasound-guided compression, and 2 were treated surgically due to disqualifying criteria. In this retrospective review, we analyzed the remaining 29 pseudoaneurysms regarding the dimensions of their neck lengths and outcomes after attempting thrombin injection. The mean aneurysm neck length and width were 1.03 ± 0.9 cm and 0.30 ± 0.1 cm, respectively. All 29 patients were evaluated with respect to pseudoaneurysm size, neck length, neck width, and complexity. Successful treatment of 29 pseudoaneurysms (2 external iliac, 20 common femoral, 2 deep femoral, and 5 superficial femoral) with UGTI was achieved without complications in 100% of the cases, regardless of pseudoaneurysm size, neck dimensions, or complexity. Anticoagulation status did not affect the efficacy of the procedure. Nine of the 29 pseudoaneurysms (31.0%) had neck length less than 0.5 cm. This study demonstrates the safety and efficacy of UGTI in treating iatrogenic pseudoaneurysm in 29 of 29 patients, even in patients with pseudoaneurysm with short neck lengths. Our experiences support injecting all pseudoaneurysms irrespective of dimension. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Electrochemical and circular dichroism spectroscopic evidence of two types of interaction between [Ru(NH3)(6)](3+) and an elongated thrombin binding aptamer G-quadruplex

    Czech Academy of Sciences Publication Activity Database

    De Rache, A.; Kejnovská, Iva; Buess-Herman, C.; Doneux, T.

    2015-01-01

    Roč. 179, OCT 2015 (2015), s. 84-92 ISSN 0013-4686 Institutional support: RVO:68081707 Keywords : Biosensors * Thrombin binding aptamer * Hexaammineruthenium Subject RIV: BO - Biophysics Impact factor: 4.803, year: 2015

  14. Dabigatran and its reversal with recombinant factor VIIa and prothrombin complex concentrate

    DEFF Research Database (Denmark)

    Sølbeck, Sacha; Nilsson, Caroline U; Engström, Martin

    2014-01-01

    OBJECTIVE: Dabigatran is a new oral direct thrombin inhibitor. No specific antidote exists in the event of hemorrhage, but prothrombin complex concentrate (PCC) and recombinant activated factor VII (rFVIIa) are suggested therapies. Sonoclot is a bedside viscoelastic instrument for monitoring...... different Sonoclot cuvettes: Glassbead, kaolin and tissue factor (diluted) activated. RESULTS: The Sonoclot detected in vitro-induced anticoagulation due to dabigatran with the glassbead- and kaolin-activated cuvettes. There was no reversing effect of PCC, probably due to the presence of heparin in the PCC...

  15. Time-dependent inhibitory effects of cGMP-analogues on thrombin-induced platelet-derived microparticles formation, platelet aggregation, and P-selectin expression

    International Nuclear Information System (INIS)

    Nygaard, Gyrid; Herfindal, Lars; Kopperud, Reidun; Aragay, Anna M.; Holmsen, Holm; Døskeland, Stein Ove; Kleppe, Rune; Selheim, Frode

    2014-01-01

    Highlights: • We investigated the impact of cyclic nucleotide analogues on platelet activation. • Different time dependence were found for inhibition of platelet activation. • Additive effect was found using PKA- and PKG-activating analogues. • Our results may explain some of the discrepancies reported for cNMP signalling. - Abstract: In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigated whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation

  16. Contributions of procoagulants and anticoagulants to the international normalized ratio and thrombin generation assay in patients treated with warfarin: potential role of protein Z as a powerful determinant of coagulation assays.

    Science.gov (United States)

    Choi, Qute; Kim, Ji-Eun; Hyun, Jungwon; Han, Kyou-Sup; Kim, Hyun Kyung

    2013-07-01

    The effects of warfarin are measured with the international normalized ratio (INR). However, the thrombin generation assay (TGA) may offer more information about global coagulation. We analyzed the monitoring performance of the TGA and INR and investigated the impact of procoagulants (fibrinogen, factor (F)II, FVII, FIX, and FX) and anticoagulants (proteins C, S, and Z) on them. The TGA was performed on a calibrated automated thrombogram, producing lag time, endogenous thrombin potential (ETP), and peak thrombin in 239 patients treated with warfarin. Pro- and anticoagulant levels were also measured. The INR was significantly and inversely correlated with ETP. The therapeutic range of ETP comparable to an INR range of 2.0-3.0 was 290.1-494.6. ETP showed comparable performance to the INR as a warfarin-monitoring parameter with respect to clinical complication rate. The median levels of FII, FVII, FIX, and FX and proteins C and Z tended to decrease gradually with increasing anticoagulation intensity according to the INR or ETP. Of note, protein Z levels decreased dramatically with increasing anticoagulation status. INRs were significantly determined by FII, FVII, and protein Z. ETP was significantly dependent on FVII, and proteins C and Z concentration. Protein Z significantly reduced the total amount of thrombin generation and prolonged PT value in vitro. The INR and ETP exhibit similar efficacy for warfarin monitoring according to the clinical complication rate. Protein Z is considered to be a significant determinant of INR and ETP in patients on warfarin therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Patients with deep venous thrombosis and thrombophilia risk factors have a specific prolongation of the lag time in a chromogenic thrombin generation assay

    NARCIS (Netherlands)

    Haas, F.J.L.M.; Kluft, C.; Biesma, D.H.; Schutgens, R.E.G.

    2011-01-01

    The objective of the present study was to evaluate the influence of thrombophilia risk factors on variables of a chromogenic thrombin generation assay (ETP) in a setting with acute deep venous thrombosis (DVT) and non-DVT patients. In 152 outpatients suspected for DVT, the results of thrombophilia

  18. PAR-1 and thrombin: the ties that bind the microenvironment to melanoma metastasis.

    Science.gov (United States)

    Zigler, Maya; Kamiya, Takafumi; Brantley, Emily C; Villares, Gabriel J; Bar-Eli, Menashe

    2011-11-01

    Progression of melanoma is dependent on cross-talk between tumor cells and the adjacent microenvironment. The thrombin receptor, protease-activated receptor-1 (PAR-1), plays a key role in exerting this function during melanoma progression. PAR-1 and its activating factors, which are expressed on tumor cells and the surrounding stroma, induce not only coagulation but also cell signaling, which promotes the metastatic phenotype. Several adhesion molecules, cytokines, growth factors, and proteases have recently been identified as downstream targets of PAR-1 and have been shown to modulate interactions between tumor cells and the microenvironment in the process of melanoma growth and metastasis. Inhibiting such interactions by targeting PAR-1 could potentially be a useful therapeutic modality for melanoma patients. ©2011 AACR.

  19. Lipopolysaccharide interactions of C-terminal peptides from human thrombin.

    Science.gov (United States)

    Singh, Shalini; Kalle, Martina; Papareddy, Praveen; Schmidtchen, Artur; Malmsten, Martin

    2013-05-13

    Interactions with bacterial lipopolysaccharide (LPS), both in aqueous solution and in lipid membranes, were investigated for a series of amphiphilic peptides derived from the C-terminal region of human thrombin, using ellipsometry, dual polarization interferometry, fluorescence spectroscopy, circular dichroism (CD), dynamic light scattering, and z-potential measurements. The ability of these peptides to block endotoxic effects caused by LPS, monitored through NO production in macrophages, was compared to peptide binding to LPS and its endotoxic component lipid A, and to size, charge, and secondary structure of peptide/LPS complexes. While the antiendotoxic peptide GKY25 (GKYGFYTHVFRLKKWIQKVIDQFGE) displayed significant binding to both LPS and lipid A, so did two control peptides with either selected D-amino acid substitutions or with maintained composition but scrambled sequence, both displaying strongly attenuated antiendotoxic effects. Hence, the extent of LPS or lipid A binding is not the sole discriminant for the antiendotoxic effect of these peptides. In contrast, helix formation in peptide/LPS complexes correlates to the antiendotoxic effect of these peptides and is potentially linked to this functionality. Preferential binding to LPS over lipid membrane was furthermore demonstrated for these peptides and preferential binding to the lipid A moiety within LPS inferred.

  20. Direct-to-consumer advertising of COX-2 inhibitors: effect on appropriateness of prescribing.

    Science.gov (United States)

    Spence, Michele M; Teleki, Stephanie S; Cheetham, T Craig; Schweitzer, Stuart O; Millares, Mirta

    2005-10-01

    Spending on direct-to-consumer advertising (DTCA) of prescription drugs has increased dramatically in the past several years. An unresolved question is whether such advertising leads to inappropriate prescribing. In this study, the authors use survey and administrative data to determine the association of DTCA with the appropriate prescribing of cyclooxygenase-2 (COX-2) inhibitors for 1,382 patients. Treatment with either a COX-2 or a traditional nonsteroidal anti-inflammatory drug (NSAID) was defined as appropriate or not according to three different definitions of gastrointestinal risk. Patients who saw or heard a COX-2 advertisement and asked their physician about the advertised drug were significantly more likely to be prescribed a COX-2 (versus a NSAID, as recommended by evidence-based guidelines) than all other patients. Findings also suggest that some patients may benefit from DTCA. The authors discuss the need for balanced drug information for consumers, increased physician vigilance in prescribing appropriately, and further study of DTCA.

  1. Directional Migration in Esophageal Squamous Cell Carcinoma (ESCC) is Epigenetically Regulated by SET Nuclear Oncogene, a Member of the Inhibitor of Histone Acetyltransferase Complex

    OpenAIRE

    Xiang Yuan; Xinshuai Wang; Bianli Gu; Yingjian Ma; Yiwen Liu; Man Sun; Jinyu Kong; Wei Sun; Huizhi Wang; Fuyou Zhou; Shegan Gao

    2017-01-01

    Directional cell migration is of fundamental importance to a variety of biological events, including metastasis of malignant cells. Herein, we specifically investigated SET oncoprotein, a subunit of the recently identified inhibitor of acetyltransferases (INHAT) complex and identified its role in the establishment of front–rear cell polarity and directional migration in Esophageal Squamous Cell Carcinoma (ESCC). We further define the molecular circuits that govern these processes by showing t...

  2. Isolation and characterization of a serine proteinase with thrombin-like activity from the venom of the snake Bothrops asper

    Directory of Open Access Journals (Sweden)

    A.V Pérez

    2008-01-01

    Full Text Available A serine proteinase with thrombin-like activity was isolated from the venom of the Central American pit viper Bothrops asper. Isolation was performed by a combination of affinity chromatography on aminobenzamidine-Sepharose and ion-exchange chromatography on DEAE-Sepharose. The enzyme accounts for approximately 0.13% of the venom dry weight and has a molecular mass of 32 kDa as determined by SDS-PAGE, and of 27 kDa as determined by MALDI-TOF mass spectrometry. Its partial amino acid sequence shows high identity with snake venom serine proteinases and a complete identity with a cDNA clone previously sequenced from this species. The N-terminal sequence of the enzyme is VIGGDECNINEHRSLVVLFXSSGFL CAGTLVQDEWVLTAANCDSKNFQ. The enzyme induces clotting of plasma (minimum coagulant dose = 4.1 µg and fibrinogen (minimum coagulant dose = 4.2 µg in vitro, and promotes defibrin(ogenation in vivo (minimum defibrin(ogenating dose = 1.0 µg. In addition, when injected intravenously in mice at doses of 5 and 10 µg, it induces a series of behavioral changes, i.e., loss of the righting reflex, opisthotonus, and intermittent rotations over the long axis of the body, which closely resemble the `gyroxin-like' effect induced by other thrombin-like enzymes from snake venoms.

  3. High-affinity, noninhibitory pathogenic C1 domain antibodies are present in patients with hemophilia A and inhibitors

    Science.gov (United States)

    Batsuli, Glaivy; Deng, Wei; Healey, John F.; Parker, Ernest T.; Baldwin, W. Hunter; Cox, Courtney; Nguyen, Brenda; Kahle, Joerg; Königs, Christoph; Li, Renhao; Lollar, Pete

    2016-01-01

    Inhibitor formation in hemophilia A is the most feared treatment-related complication of factor VIII (fVIII) therapy. Most inhibitor patients with hemophilia A develop antibodies against the fVIII A2 and C2 domains. Recent evidence demonstrates that the C1 domain contributes to the inhibitor response. Inhibitory anti-C1 monoclonal antibodies (mAbs) have been identified that bind to putative phospholipid and von Willebrand factor (VWF) binding epitopes and block endocytosis of fVIII by antigen presenting cells. We now demonstrate by competitive enzyme-linked immunosorbent assay and hydrogen-deuterium exchange mass spectrometry that 7 of 9 anti-human C1 mAbs tested recognize an epitope distinct from the C1 phospholipid binding site. These mAbs, designated group A, display high binding affinities for fVIII, weakly inhibit fVIII procoagulant activity, poorly inhibit fVIII binding to phospholipid, and exhibit heterogeneity with respect to blocking fVIII binding to VWF. Another mAb, designated group B, inhibits fVIII procoagulant activity, fVIII binding to VWF and phospholipid, fVIIIa incorporation into the intrinsic Xase complex, thrombin generation in plasma, and fVIII uptake by dendritic cells. Group A and B epitopes are distinct from the epitope recognized by the canonical, human-derived inhibitory anti-C1 mAb, KM33, whose epitope overlaps both groups A and B. Antibodies recognizing group A and B epitopes are present in inhibitor plasmas from patients with hemophilia A. Additionally, group A and B mAbs increase fVIII clearance and are pathogenic in a hemophilia A mouse tail snip bleeding model. Group A anti-C1 mAbs represent the first identification of pathogenic, weakly inhibitory antibodies that increase fVIII clearance. PMID:27381905

  4. Efficient Isothermal Titration Calorimetry Technique Identifies Direct Interaction of Small Molecule Inhibitors with the Target Protein.

    Science.gov (United States)

    Gal, Maayan; Bloch, Itai; Shechter, Nelia; Romanenko, Olga; Shir, Ofer M

    2016-01-01

    Protein-protein interactions (PPI) play a critical role in regulating many cellular processes. Finding novel PPI inhibitors that interfere with specific binding of two proteins is considered a great challenge, mainly due to the complexity involved in characterizing multi-molecular systems and limited understanding of the physical principles governing PPIs. Here we show that the combination of virtual screening techniques, which are capable of filtering a large library of potential small molecule inhibitors, and a unique secondary screening by isothermal titration calorimetry, a label-free method capable of observing direct interactions, is an efficient tool for finding such an inhibitor. In this study we applied this strategy in a search for a small molecule capable of interfering with the interaction of the tumor-suppressor p53 and the E3-ligase MDM2. We virtually screened a library of 15 million small molecules that were filtered to a final set of 80 virtual hits. Our in vitro experimental assay, designed to validate the activity of mixtures of compounds by isothermal titration calorimetry, was used to identify an active molecule against MDM2. At the end of the process the small molecule (4S,7R)-4-(4-chlorophenyl)-5-hydroxy-2,7-dimethyl-N-(6-methylpyridin-2-yl)-4,6,7,8 tetrahydrIoquinoline-3-carboxamide was found to bind MDM2 with a dissociation constant of ~2 µM. Following the identification of this single bioactive compound, spectroscopic measurements were used to further characterize the interaction of the small molecule with the target protein. 2D NMR spectroscopy was used to map the binding region of the small molecule, and fluorescence polarization measurement confirmed that it indeed competes with p53.

  5. Analytical and between-subject variation of thrombin generation measured by calibrated automated thrombography on plasma samples.

    Science.gov (United States)

    Kristensen, Anne F; Kristensen, Søren R; Falkmer, Ursula; Münster, Anna-Marie B; Pedersen, Shona

    2018-05-01

    The Calibrated Automated Thrombography (CAT) is an in vitro thrombin generation (TG) assay that holds promise as a valuable tool within clinical diagnostics. However, the technique has a considerable analytical variation, and we therefore, investigated the analytical and between-subject variation of CAT systematically. Moreover, we assess the application of an internal standard for normalization to diminish variation. 20 healthy volunteers donated one blood sample which was subsequently centrifuged, aliquoted and stored at -80 °C prior to analysis. The analytical variation was determined on eight runs, where plasma from the same seven volunteers was processed in triplicates, and for the between-subject variation, TG analysis was performed on plasma from all 20 volunteers. The trigger reagents used for the TG assays included both PPP reagent containing 5 pM tissue factor (TF) and PPPlow with 1 pM TF. Plasma, drawn from a single donor, was applied to all plates as an internal standard for each TG analysis, which subsequently was used for normalization. The total analytical variation for TG analysis performed with PPPlow reagent is 3-14% and 9-13% for PPP reagent. This variation can be minimally reduced by using an internal standard but mainly for ETP (endogenous thrombin potential). The between-subject variation is higher when using PPPlow than PPP and this variation is considerable higher than the analytical variation. TG has a rather high inherent analytical variation but considerable lower than the between-subject variation when using PPPlow as reagent.

  6. Inhibition of Cellular Adhesion by Immunological Targeting of Osteopontin Neoepitopes Generated through Matrix Metalloproteinase and Thrombin Cleavage.

    Science.gov (United States)

    Jürets, Alexander; Le Bras, Marie; Staffler, Günther; Stein, Gesine; Leitner, Lukas; Neuhofer, Angelika; Tardelli, Matteo; Turkof, Edvin; Zeyda, Maximilian; Stulnig, Thomas M

    2016-01-01

    Osteopontin (OPN), a secreted protein involved in inflammatory processes and cancer, induces cell adhesion, migration, and activation of inflammatory pathways in various cell types. Cells bind OPN via integrins at a canonical RGD region in the full length form as well as to a contiguous cryptic site that some have shown is unmasked upon thrombin or matrix metalloproteinase cleavage. Thus, the adhesive capacity of osteopontin is enhanced by proteolytic cleavage that may occur in inflammatory conditions such as obesity, atherosclerosis, rheumatoid arthritis, tumor growth and metastasis. Our aim was to inhibit cellular adhesion to recombinant truncated proteins that correspond to the N-terminal cleavage products of thrombin- or matrix metalloproteinase-cleaved OPN in vitro. We specifically targeted the cryptic integrin binding site with monoclonal antibodies and antisera induced by peptide immunization of mice. HEK 293 cells adhered markedly stronger to truncated OPN proteins than to full length OPN. Without affecting cell binding to the full length form, the raised monoclonal antibodies specifically impeded cellular adhesion to the OPN fragments. Moreover, we show that the peptides used for immunization were able to induce antisera, which impeded adhesion either to all OPN forms, including the full-length form, or selectively to the corresponding truncated recombinant proteins. In conclusion, we developed immunological tools to selectively target functional properties of protease-cleaved OPN forms, which could find applications in treatment and prevention of various inflammatory diseases and cancers.

  7. Plasmid-mediated resistance to thrombin-induced platelet microbicidal protein in staphylococci: role of the qacA locus.

    Science.gov (United States)

    Kupferwasser, L I; Skurray, R A; Brown, M H; Firth, N; Yeaman, M R; Bayer, A S

    1999-10-01

    Thrombin-induced platelet microbicidal protein 1 (tPMP-1) is a small, cationic peptide released from rabbit platelets following thrombin stimulation. In vitro resistance to this peptide among strains of Staphylococcus aureus correlates with the survival advantage of such strains at sites of endothelial damage in humans as well as in experimental endovascular infections. The mechanisms involved in the phenotypic resistance of S. aureus to tPMP-1 are not fully delineated. The plasmid-encoded staphylococcal gene qacA mediates multidrug resistance to multiple organic cations via a proton motive force-dependent efflux pump. We studied whether the qacA gene might also confer resistance to cationic tPMP-1. Staphylococcal plasmids encoding qacA were found to confer resistance to tPMP-1 in an otherwise susceptible parental strain. Deletions which removed the region containing the qacA gene in the S. aureus multiresistance plasmid pSK1 abolished tPMP-1 resistance. Resistance to tPMP-1 in the qacA-bearing strains was inoculum independent but peptide concentration dependent, with the level of resistance decreasing at higher peptide concentrations for a given inoculum. There was no apparent cross-resistance in qacA-bearing strains to other endogenous cationic antimicrobial peptides which are structurally distinct from tPMP-1, including human neutrophil defensin 1, protamine, or the staphylococcal lantibiotics pep5 and nisin. These data demonstrate that the staphylococcal multidrug resistance gene qacA also mediates in vitro resistance to cationic tPMP-1.

  8. Host defense peptides of thrombin modulate inflammation and coagulation in endotoxin-mediated shock and Pseudomonas aeruginosa sepsis

    DEFF Research Database (Denmark)

    Kalle, Martina; Papareddy, Praveen; Kasetty, Gopinath

    2012-01-01

    Gram-negative sepsis is accompanied by a disproportionate innate immune response and excessive coagulation mainly induced by endotoxins released from bacteria. Due to rising antibiotic resistance and current lack of other effective treatments there is an urgent need for new therapies. We here...... present a new treatment concept for sepsis and endotoxin-mediated shock, based on host defense peptides from the C-terminal part of human thrombin, found to have a broad and inhibitory effect on multiple sepsis pathologies. Thus, the peptides abrogate pro-inflammatory cytokine responses to endotoxin...

  9. Rho-associated kinase inhibitors: a novel glaucoma therapy.

    Science.gov (United States)

    Inoue, Toshihiro; Tanihara, Hidenobu

    2013-11-01

    The rho-associated kinase (ROCK) signaling pathway is activated via secreted bioactive molecules or via integrin activation after extracellular matrix binding. These lead to polymerization of actin stress fibers and formation of focal adhesions. Accumulating evidence suggests that actin cytoskeleton-modulating signals are involved in aqueous outflow regulation. Aqueous humor contains various biologically active factors, some of which are elevated in glaucomatous eyes. These factors affect aqueous outflow, in part, through ROCK signaling modulation. Various drugs acting on the cytoskeleton have also been shown to increase aqueous outflow by acting directly on outflow tissue. In vivo animal studies have shown that the trabecular meshwork (TM) actin cytoskeleton in glaucomatous eyes is more disorganized and more randomly oriented than in non-glaucomatous control eyes. In a previous study, we introduced ROCK inhibitors as a potential glaucoma therapy by showing that a selective ROCK inhibitor significantly lowered rabbit IOP. Rho-associated kinase inhibitors directly affect the TM and Schlemm's canal (SC), differing from the target sight of other glaucoma drugs. The TM is affected earlier and more strongly than ciliary muscle cells by ROCK inhibitors, largely because of pharmacological affinity differences stemming from regulatory mechanisms. Additionally, ROCK inhibitors disrupt tight junctions, result in F-actin depolymerization, and modulate intracellular calcium level, effectively increasing SC-cell monolayer permeability. Perfusion of an enucleated eye with a ROCK inhibitor resulted in wider empty spaces in the juxtacanalicular (JCT) area and more giant vacuoles in the endothelial cells of SC, while the endothelial lining of SC was intact. Interestingly, ROCK inhibitors also increase retinal blood flow by relaxing vascular smooth muscle cells, directly protecting neurons against various stresses, while promoting wound healing. These additional effects may help

  10. Anticoagulant activity in salivary glands of the insect vector Culicoides variipennis sonorensis by an inhibitor of factor Xa.

    Science.gov (United States)

    Pérez de León, A A; Valenzuela, J G; Tabachnick, W J

    1998-02-01

    Blood feeding by the insect vector Culicoides variipennis sonorensis involves laceration of superficial host tissues, an injury that would be expected to trigger the coagulation cascade. Accordingly, the salivary glands of C.v. sonorensis were examined for the presence of an antihemostatic that prevents blood coagulation. Assays using salivary gland extracts showed a delay in the recalcification time of plasma devoid of platelets, indicating the presence of anticoagulant activity. Retardation in the formation of a fibrin clot was also observed after the addition of tissue factor to plasma that was preincubated with salivary gland extracts. Similarly, an inhibitory effect by salivary gland extracts was detected in assays that included factors of the intrinsic pathway. Inhibition of the catalytic activity of purified factor Xa toward its chromogenic substrate suggested that it was the target of the salivary anticoagulant of C.v. sonorensis. This was corroborated by the coincidence of anticoagulant and anti-FXa activities obtained by reverse-phase HPLC. The depletion of anti-FXa activity from salivary glands during blood feeding suggests that the FXa inhibitor functions as anticoagulant. Molecular sieving HPLC yielded an apparent molecular mass of 28 kDa for the salivary FXa inhibitor of C.v. sonorensis. Preventing the formation of thrombin through the inhibition of FXa likely facilitates blood feeding by maintaining the pool of blood fluid at the feeding site. The salivary FXa inhibitor of C.v. sonorensis could impair the network of host-defense mechanisms in the skin microenvironment by avoiding blood coagulation at the site of feeding.

  11. Thiocarbamate-Directed Tandem Olefination-Intramolecular Sulfuration of Two Ortho C-H Bonds: Application to Synthesis of a COX-2 Inhibitor.

    Science.gov (United States)

    Li, Wendong; Zhao, Yingwei; Mai, Shaoyu; Song, Qiuling

    2018-02-16

    A palladium-catalyzed dual ortho C-H bond activation of aryl thiocarbamates is developed. This tandem reaction initiates by thiocarbamate-directed ortho C-H palladation, which leads to favorable olefin insertion rather than reductive elimination. The oxidative Heck reaction followed by another C-H activation and sulfuration affords the dual-functionalized products. This reaction provides a concise route to the S,O,C multisubstituted benzene skeleton which could be successfully applied for the synthesis of a COX-2 inhibitor.

  12. Serpine2 deficiency results in lung lymphocyte accumulation and bronchus-associated lymphoid tissue formation.

    Science.gov (United States)

    Solleti, Siva Kumar; Srisuma, Sorachai; Bhattacharya, Soumyaroop; Rangel-Moreno, Javier; Bijli, Kaiser M; Randall, Troy D; Rahman, Arshad; Mariani, Thomas J

    2016-07-01

    Serine proteinase inhibitor, clade E, member 2 (SERPINE2), is a cell- and extracellular matrix-associated inhibitor of thrombin. Although SERPINE2 is a candidate susceptibility gene for chronic obstructive pulmonary disease, the physiologic role of this protease inhibitor in lung development and homeostasis is unknown. We observed spontaneous monocytic-cell infiltration in the lungs of Serpine2-deficient (SE2(-/-)) mice, beginning at or before the time of lung maturity, which resulted in lesions that resembled bronchus-associated lymphoid tissue (BALT). The initiation of lymphocyte accumulation in the lungs of SE2(-/-) mice involved the excessive expression of chemokines, cytokines, and adhesion molecules that are essential for BALT induction, organization, and maintenance. BALT-like lesion formation in the lungs of SE2(-/-) mice was also associated with a significant increase in the activation of thrombin, a recognized target of SE2, and excess stimulation of NF-κB, a major regulator of chemokine expression and inflammation. Finally, systemic delivery of thrombin rapidly stimulated lung chemokine expression in vivo These data uncover a novel mechanism whereby loss of serine protease inhibition leads to lung lymphocyte accumulation.-Solleti, S. K., Srisuma, S., Bhattacharya, S., Rangel-Moreno, J., Bijli, K. M., Randall, T. D., Rahman, A., Mariani, T. J. Serpine2 deficiency results in lung lymphocyte accumulation and bronchus-associated lymphoid tissue formation. © FASEB.

  13. The Thrombin Receptor Antagonist for Clinical Event Reduction in Acute Coronary Syndrome (TRA*CER) trial: study design and rationale.

    Science.gov (United States)

    2009-09-01

    The protease-activated receptor 1 (PAR-1), the main platelet receptor for thrombin, represents a novel target for treatment of arterial thrombosis, and SCH 530348 is an orally active, selective, competitive PAR-1 antagonist. We designed TRA*CER to evaluate the efficacy and safety of SCH 530348 compared with placebo in addition to standard of care in patients with non-ST-segment elevation (NSTE) acute coronary syndromes (ACS) and high-risk features. TRA*CER is a prospective, randomized, double-blind, multicenter, phase III trial with an original estimated sample size of 10,000 subjects. Our primary objective is to demonstrate that SCH 530348 in addition to standard of care will reduce the incidence of the composite of cardiovascular death, myocardial infarction (MI), stroke, recurrent ischemia with rehospitalization, and urgent coronary revascularization compared with standard of care alone. Our key secondary objective is to determine whether SCH 530348 will reduce the composite of cardiovascular death, MI, or stroke compared with standard of care alone. Secondary objectives related to safety are the composite of moderate and severe GUSTO bleeding and clinically significant TIMI bleeding. The trial will continue until a predetermined minimum number of centrally adjudicated primary and key secondary end point events have occurred and all subjects have participated in the study for at least 1 year. The TRA*CER trial is part of the large phase III SCH 530348 development program that includes a concomitant evaluation in secondary prevention. TRA*CER will define efficacy and safety of the novel platelet PAR-1 inhibitor SCH 530348 in the treatment of high-risk patients with NSTE ACS in the setting of current treatment strategies.

  14. Laura: Soybean variety lacking Kunitz trypsin inhibitor

    Directory of Open Access Journals (Sweden)

    Srebrić Mirjana

    2010-01-01

    Full Text Available Grain of conventional soybean varieties requires heat processing to break down trypsin inhibitor's activity before using as food or animal feed. At the same time, protein denaturation and other qualitative changes occur in soybean grain, especially if the temperature of heating is not controlled. Two types of trypsin inhibitor were found in soybean grain the Kunitz trypsin inhibitor and the Bowman-Birk inhibitor. Mature grain of soybean Laura is lacking Kunitz trypsin inhibitor. Grain yield of variety Laura is equal to high yielding varieties from the maturity group I, where it belongs. Lacking of Kunitz-trypsin inhibitor makes soybean grain suitable for direct feeding in adult non ruminant animals without previous thermal processing. Grain of variety Laura can be processed for a shorter period of time than conventional soybeans. This way we save energy, and preserve valuable nutritional composition of soybean grain, which is of interest in industrial processing.

  15. Thrombin generation by activated factor VII on platelet activated by different agonists. Extending the cell-based model of hemostasis

    Directory of Open Access Journals (Sweden)

    Herrera Maria

    2006-04-01

    Full Text Available Abstract Background Platelet activation is crucial in normal hemostasis. Using a clotting system free of external tissue factor, we investigated whether activated Factor VII in combination with platelet agonists increased thrombin generation (TG in vitro. Methods and results TG was quantified by time parameters: lag time (LT and time to peak (TTP, and by amount of TG: peak of TG (PTG and area under thrombin formation curve after 35 minutes (AUC→35min in plasma from 29 healthy volunteers using the calibrated automated thrombography (CAT technique. TG parameters were measured at basal conditions and after platelet stimulation by sodium arachidonate (AA, ADP, and collagen (Col. In addition, the effects of recombinant activated FVII (rFVIIa alone or combined with the other platelet agonists on TG parameters were investigated. We found that LT and TTP were significantly decreased (p 35min were significantly increased (p 35min (but not PTG when compared to platelet rich plasma activated with agonists in the absence of rFVIIa. Conclusion Platelets activated by AA, ADP, Col or rFVIIa triggered TG. This effect was increased by combining rFVIIa with other agonists. Our intrinsic coagulation system produced a burst in TG independent of external tissue factor activity an apparent hemostatic effect with little thrombotic capacity. Thus we suggest a modification in the cell-based model of hemostasis.

  16. Old and new oral anticoagulants for secondary stroke prevention in atrial fibrillation

    Directory of Open Access Journals (Sweden)

    Tommaso Sacquegna

    2015-12-01

    Full Text Available Vitamin K antagonists, such as warfarin, used in oral anticoagulation therapy currently represent the standard drugs for the primary and secondary prevention of stroke in non-valvular atrial fibrillation (AF, with a relative risk reduction close to 70%. Newer oral anticoagulants, such as direct thrombin inhibitors (i.e., dabigatran and direct factor Xa inhibitors (i.e., apixaban and rivaroxaban have been recently compared with warfarin in large randomized trials for stroke prevention in AF. The new oral anticoagulants showed, compared with warfarin, no statistically significant difference in the rate of stroke or systemic embolism in secondary prevention (patients with previous transient ischemic attack or stroke subgroups. With regard to safety, the risk of intracranial bleeding was reduced with new anticoagulants compared with warfarin. Indirect treatment comparisons of clinical trials on secondary prevention cohorts showed no significant difference in efficacy among apixaban, rivaroxaban, and dabigatran; but dabigatran 110 mg was associated with less intracranial bleedings than rivaroxaban.

  17. Ultrasound-Guided Thrombin Injection Is a Safe and Effective Treatment for Femoral Artery Pseudoaneurysm in the Morbidly Obese.

    Science.gov (United States)

    Yoo, Taehwan; Starr, Jean E; Go, Michael R; Vaccaro, Patrick S; Satiani, Bhagwan; Haurani, Mounir J

    2017-08-01

    Ultrasound-guided thrombin injection (UGTI) is a well-established practice for the treatment of femoral artery pseudoaneurysm. This procedure is highly successful but dependent on appropriate pseudoaneurysm anatomy and adequate ultrasound visualization. Morbid obesity can present a significant technical challenge due to increased groin adiposity, resulting in poor visualization of critical structures needed to safely perform the procedure. We aim to evaluate the safety and efficacy of UGTI to treat femoral artery pseudoaneurysm in the morbidly obese. This is a retrospective cohort study in which all patients who underwent UGTI at The Ohio State University Ross Heart Hospital from 2009 to 2014 were analyzed for patient characteristics and stratified by body mass index (BMI). Patients with BMI ≥ 35 were considered morbidly obese and were compared to patients with a BMI injection. There were 41 nonmorbidly obese and 13 morbidly obese patients. Mean age was 64.5 years. The cohort was 44.4% male. There were 6 failures, of which 1 underwent successful repeat injection and 5 underwent open surgical repair. There was no statistically significant difference in failure between nonmorbidly obese and morbidly obese patients (9.8% vs 15.4%, P = .45). There were no embolic/thrombotic complications. Ultrasound-guided thrombin injection is a safe and effective therapy in the morbidly obese for the treatment of femoral artery pseudoaneurysm. In the hands of experienced sonographers and surgeons with adequate visualization of the pseudoaneurysm sac, UGTI should remain a standard therapy in the morbidly obese.

  18. Computationally derived points of fragility of a human cascade are consistent with current therapeutic strategies.

    Directory of Open Access Journals (Sweden)

    Deyan Luan

    2007-07-01

    Full Text Available The role that mechanistic mathematical modeling and systems biology will play in molecular medicine and clinical development remains uncertain. In this study, mathematical modeling and sensitivity analysis were used to explore the working hypothesis that mechanistic models of human cascades, despite model uncertainty, can be computationally screened for points of fragility, and that these sensitive mechanisms could serve as therapeutic targets. We tested our working hypothesis by screening a model of the well-studied coagulation cascade, developed and validated from literature. The predicted sensitive mechanisms were then compared with the treatment literature. The model, composed of 92 proteins and 148 protein-protein interactions, was validated using 21 published datasets generated from two different quiescent in vitro coagulation models. Simulated platelet activation and thrombin generation profiles in the presence and absence of natural anticoagulants were consistent with measured values, with a mean correlation of 0.87 across all trials. Overall state sensitivity coefficients, which measure the robustness or fragility of a given mechanism, were calculated using a Monte Carlo strategy. In the absence of anticoagulants, fluid and surface phase factor X/activated factor X (fX/FXa activity and thrombin-mediated platelet activation were found to be fragile, while fIX/FIXa and fVIII/FVIIIa activation and activity were robust. Both anti-fX/FXa and direct thrombin inhibitors are important classes of anticoagulants; for example, anti-fX/FXa inhibitors have FDA approval for the prevention of venous thromboembolism following surgical intervention and as an initial treatment for deep venous thrombosis and pulmonary embolism. Both in vitro and in vivo experimental evidence is reviewed supporting the prediction that fIX/FIXa activity is robust. When taken together, these results support our working hypothesis that computationally derived points of

  19. Fibrinolytic and procoagulant activities of Yersinia pestis and Salmonella enterica.

    Science.gov (United States)

    Korhonen, T K

    2015-06-01

    Pla of the plague bacterium Yersinia pestis and PgtE of the enteropathogen Salmonella enterica are surface-exposed, transmembrane β-barrel proteases of the omptin family that exhibit a complex array of interactions with the hemostatic systems in vitro, and both proteases are established virulence factors. Pla favors fibrinolysis by direct activation of plasminogen, inactivation of the serpins plasminogen activator inhibitor-1 and α2-antiplasmin, inactivation of the thrombin-activable fibrinolysis inhibitor, and activation of single-chain urokinase. PgtE is structurally very similar but exhibits partially different functions and differ in expression control. PgtE proteolysis targets control aspects of fibrinolysis, and mimicry of matrix metalloproteinases enhances cell migration that should favor the intracellular spread of the bacterium. Enzymatic activity of both proteases is strongly influenced by the environment-induced variations in lipopolysaccharide that binds to the β-barrel. Both proteases cleave the tissue factor pathway inhibitor and thus also express procoagulant activity. © 2015 International Society on Thrombosis and Haemostasis.

  20. Stroke Prevention: Managing Modifiable Risk Factors

    Directory of Open Access Journals (Sweden)

    Silvia Di Legge

    2012-01-01

    Full Text Available Prevention plays a crucial role in counteracting morbidity and mortality related to ischemic stroke. It has been estimated that 50% of stroke are preventable through control of modifiable risk factors and lifestyle changes. Antihypertensive treatment is recommended for both prevention of recurrent stroke and other vascular events. The use of antiplatelets and statins has been shown to reduce the risk of recurrent stroke and other vascular events. Angiotensin-converting enzyme inhibitors (ACEIs and angiotensin II receptor blockers (ARBs are indicated in stroke prevention because they also promote vascular health. Effective secondary-prevention strategies for selected patients include carotid revascularization for high-grade carotid stenosis and vitamin K antagonist treatment for atrial fibrillation. The results of recent clinical trials investigating new anticoagulants (factor Xa inhibitors and direct thrombin inhibitors clearly indicate alternative strategies in stroke prevention for patients with atrial fibrillation. This paper describes the current landscape and developments in stroke prevention with special reference to medical treatment in secondary prevention of ischemic stroke.

  1. PEDIATRIC LIVER TRANSPLANTATION WITH EX-SITU LIVER TRANSECTION AND THE APPLICATION OF THE HUMAN FIBRINOGEN AND THROMBIN SPONGE IN THE WOUND AREA.

    Science.gov (United States)

    Vicentine, Fernando Pompeu Piza; Gonzalez, Adriano Miziara; Azevedo, Ramiro Anthero de; Benini, Barbara Burza; Linhares, Marcelo Moura; Lopes-Filho, Gaspar de Jesus; Martins, Jose Luiz; Salzedas-Netto, Alcides Augusto

    2016-01-01

    Surgical strategy to increase the number of liver transplants in the pediatric population is the ex-situ liver transection (reduction or split). However, it is associated with complications such as hemorrhage and leaks. The human fibrinogen and thrombin sponge is useful for improving hemostasis in liver surgery. Compare pediatric liver transplants with ex-situ liver transection (reduction or split) with or without the human fibrinogen and thrombin sponge. Was performed a prospective analysis of 21 patients submitted to liver transplantation with ex-situ liver transection with the application of the human fibrinogen and thrombin sponge in the wound area (group A) and retrospective analysis of 59 patients without the sponge (group B). The characteristics of recipients and donors were similar. There were fewer reoperations due to bleeding in the wound area in group A (14.2%) compared to group B (41.7%, p=0.029). There was no difference in relation to the biliary leak (group A: 17.6%, group B: 5.1%, p=0.14). There was a lower number of reoperations due to bleeding of the wound area of ​​the hepatic graft when the human fibrinogen and thrombin sponge were used. Estratégia cirúrgica para aumentar o número de transplantes hepáticos na população pediátrica é a transecção hepática ex-situ (redução ou split). No entanto, ela está associada com complicações, tais como hemorragia e fístulas. A esponja de fibrinogênio e trombina humana é útil para melhorar a hemostasia nas operações hepáticas. Comparar transplantes hepáticos pediátricos com transecção hepática ex-situ (redução ou split) com ou sem a esponja de fibrinogênio e trombina humana. Foi realizada análise prospectiva de 21 pacientes submetidos ao transplante de fígado com transecção hepática ex-situ com a aplicação da esponja de fibrinogênio e trombina humana na área cruenta (grupo A) e análise retrospectiva de 59 pacientes sem a esponja (grupo B). As características dos

  2. Risk factors for epistaxis in patients followed in general practices in Germany.

    Science.gov (United States)

    Seidel, D U; Jacob, L; Kostev, K; Sesterhenn, A M

    2017-12-01

    The goal of the present study was to analyze the risk factors for epistaxis in patients followed in general practices in Germany. The current study sample included patients aged 18 years or older who received a first epistaxis diagnosis between January 2012 and December 2016 (index date). Epistaxis patients and controls without epistaxis were matched (1:1) on the basis of age, gender, insurance status and physician. A total of 16,801 patients with epistaxis and 16,801 control subjects were included in this study. Of the subjects, 53.2% were men, and the mean age was 59.6 years (SD=21.2 years). Epistaxis was found to be positively associated with hypertension, obesity, chronic sinusitis, other disorders of the nose and nasal sinuses, anxiety disorder, and adjustment disorder (ORs ranging from 1.13 to 1.44). Epistaxis was also associated with the prescription of vitamin K antagonists, preparations from the heparin group, platelet aggregation inhibitors excluding heparin, direct thrombin inhibitors, direct factor Xa inhibitors, other antithrombotic agents, selective serotonin reuptake inhibitors and nasal steroids (ORs ranging from 1.15 to 3.55). Overall, epistaxis risk is increased by multiple medical and psychiatric disorders. Several antithrombotic and nasal steroid therapies are also associated with this risk.

  3. Liraglutide in polycystic ovary syndrome: a randomized trial, investigating effects on thrombogenic potential

    Directory of Open Access Journals (Sweden)

    Malin Nylander

    2017-01-01

    Full Text Available Polycystic ovary syndrome (PCOS is associated with increased risk of venous thromboembolism (VTE and cardiovascular disease (CVD in later life. We aimed to study the effect of liraglutide intervention on markers of VTE and CVD risk, in PCOS. In a double-blind, placebo-controlled, randomized trial, 72 overweight and/or insulinresistant women with PCOS were randomized, in a 2:1 ratio, to liraglutide or placebo 1.8 mg/day. Endpoints included between-group difference in change (baseline to follow-up in plasminogen activator inhibitor-1 levels and in thrombin generation test parameters: endogenous thrombin potential, peak thrombin concentration, lag time and time to peak. Mean weight loss was 5.2 kg (95% CI 3.0–7.5 kg, P < 0.001 in the liraglutide group compared with placebo. We detected no effect on endogenous thrombin potential in either group. In the liraglutide group, peak thrombin concentration decreased by 16.71 nmol/L (95% CI 2.32–31.11, P < 0.05 and lag time and time to peak increased by 0.13 min (95% CI 0.01–0.25, P < 0.05 and 0.38 min (95% CI 0.09–0.68, P < 0.05, respectively, but there were no between-group differences. There was a trend toward 12% (95% CI 0–23, P = 0.05 decreased plasminogen activator inhibitor-1 in the liraglutide group, and there was a trend toward 16% (95% CI −4 to 32, P = 0.10 reduction, compared with placebo. In overweight women with PCOS, liraglutide intervention caused an approximate 5% weight loss. In addition, liraglutide affected thrombin generation, although not significantly differently from placebo. A concomitant trend toward improved fibrinolysis indicates a possible reduction of the baseline thrombogenic potential. The findings point toward beneficial effects of liraglutide on markers of VTE and CVD risk, which should be further pursued in larger studies.

  4. Effect of two oral doses of 17beta-estradiol associated with dydrogesterone on thrombin generation in healthy menopausal women: a randomized double-blind placebo-controlled study.

    Science.gov (United States)

    Rousseau, Alexandra; Robert, Annie; Gerotziafas, Grigoris; Torchin, Dahlia; Zannad, Faiez; Lacut, Karine; Libersa, Christian; Dasque, Eric; Démolis, Jean-Louis; Elalamy, Ismail; Simon, Tabassome

    2010-04-01

    Oral hormone therapy is associated with an increased risk of venous thrombosis. Drug agencies recommend the use of the lowest efficient dose to treat menopausal symptoms for a better risk/ratio profile, although this profile has not been totally investigated yet. The aim of the study was to compare the effect of the standard dose of 17beta-estradiol to a lower one on thrombin generation (TG). In a 2-month study, healthy menopausal women were randomized to receive daily 1mg or 2 mg of 17beta-estradiol (E1, n = 24 and E2, n = 26; respectively) with 10 mg dydrogesterone or placebo (PL, n = 22). Plasma levels factors VII, X, VIII and II were assessed before and after treatment as well as Tissue factor triggered TG, which allows the investigation of the different phases of coagulation process. The peak of thrombin was higher in hormone therapy groups (E1: 42.39 +/- 50.23 nm, E2: 31.08 +/- 85.86 nm vs. 10.52 +/- 40.63 nm in PL, P = 0.002 and P = 0.01). Time to reach the peak was also shortened (PL: 0.26 +/- 0.69 min vs. E1: -0.26 +/- 0.80 min, E2: -0.55 +/- 0.79 min, P <10(-3) for both comparisons) and mean rate index of the propagation phase of TG was significantly increased. Among the studied clotting factors, only the levels of FVII were significantly increased after treatment administration. The two doses of 17beta-estradiol induced in a similar degree an acceleration of the initiation and propagation phase of tissue factor triggered thrombin generation and a significant increase of FVII coagulant activity.

  5. Effects Of The Direct Renin Inhibitor Aliskiren On Oxidative Stress In Isolated Rat Heart

    Directory of Open Access Journals (Sweden)

    Plecevic Sasa

    2015-09-01

    Full Text Available Increased activity of the renin-angiotensin-aldosterone system (RAAS plays a significant role in the development and progression of various cardio-metabolic diseases, such as hypertension, atherosclerosis and heart failure. Aliskiren is the newest antihypertensive drug and the first orally active direct renin inhibitor to become available for clinical use. This study investigated the acute and direct effects of Aliskiren on different parameters of oxidative stress on isolated rat heart. The hearts of male Wistar albino rats (n = 24, 8 per experimental group, age 8 weeks, body mass 180–200 g, were excised and retrogradely perfused according to the Langendorfftechnique at a gradually increasing perfusion pressure (40-120 cmH2O. Markers of oxidative stress (NO2−, TBARS, H2O2 and O2− were measured spectrophotometrically after perfusion with three different concentrations of Aliskiren (0.1 μM, 1 μM, and 10 μM. The results demonstrated possible dose-dependent cardioprotective properties of Aliskiren, particularly with higher CPP. Lipid peroxidation (TBARS levels decreased with the highest dose of Aliskiren and higher CPP, and the same trend was observed in nitrite (NO2− and hydrogen peroxide (H2O2 levels. These findings indicate that the acute effects of Aliskiren do not likely promote the production of reactive oxygen species upon higher pressure with the highest dose. Aliskiren may exert beneficial effects on oxidative stress biomarkers.

  6. Direct Regulation of Androgen Receptor Activity by Potent CYP17 Inhibitors in Prostate Cancer Cells*

    Science.gov (United States)

    Soifer, Harris S.; Souleimanian, Naira; Wu, Sijian; Voskresenskiy, Anatoliy M.; Kisaayak Collak, Filiz; Cinar, Bekir; Stein, Cy A.

    2012-01-01

    TOK-001 and abiraterone are potent 17-heteroarylsteroid (17-HAS) inhibitors of Cyp17, one of the rate-limiting enzymes in the biosynthesis of testosterone from cholesterol in prostate cancer cells. Nevertheless, the molecular mechanism underlying the prevention of prostate cell growth by 17-HASs still remains elusive. Here, we assess the effects of 17-HASs on androgen receptor (AR) activity in LNCaP and LAPC-4 cells. We demonstrate that both TOK-001 and abiraterone reduced AR protein and mRNA expression, and antagonized AR-dependent promoter activation induced by androgen. TOK-001, but not abiraterone, is an effective apparent competitor of the radioligand [3H]R1881 for binding to the wild type and various mutant AR (W741C, W741L) proteins. In agreement with these data, TOK-001 is a consistently superior inhibitor than abiraterone of R1881-induced transcriptional activity of both wild type and mutant AR. However, neither agent was able to trans-activate the AR in the absence of R1881. Our data demonstrate that phospho-4EBP1 levels are significantly reduced by TOK-001 and to a lesser extent by abiraterone alcohol, and suggest a mechanism by which cap-dependent translation is suppressed by blocking assembly of the eIF4F and eIF4G complex to the mRNA 5′ cap. Thus, the effects of these 17-HASs on AR signaling are complex, ranging from a decrease in testosterone production through the inhibition of Cyp17 as previously described, to directly reducing both AR protein expression and R1881-induced AR trans-activation. PMID:22174412

  7. A novel serpin with antithrombin-like activity in Branchiostoma japonicum: implications for the presence of a primitive coagulation system.

    Directory of Open Access Journals (Sweden)

    Yeqing Chao

    Full Text Available Serine protease inhibitors, or serpins, are a group of widely distributed proteins with similar structures that use conformational change to inhibit proteases. Antithrombin (AT is a member of the serine protease inhibitor superfamily and a major coagulation inhibitor in all vertebrates, but its evolutionary origin remains elusive. In this study we isolated for the first time a cDNA encoding an antithrombin homolog, BjATl, from the protochordate Branchiostoma japonicum. The deduced protein BjATl consisted of 338 amino acids sharing 36.7% to 41.1% identity to known vertebrate ATs. BjATl contains a potential N-linked glycosylation site, two potential heparin binding sites and the reactive center loop with the absolutely conserved sequence Gly-Arg-Ser; all of these are features characteristic of ATs. All three phylogenetic trees constructed using Neighbor-Joining, Maximum-Likelihood and Bayesian-Inference methods also placed BjATl together with ATs. Moreover, BjATl expressed in yeast cells was able to inhibit bovine thrombin activity by forming a SDS-stable BjATl-thrombin complex. It also displays a concentration-dependent inhibition of thrombin that is accelerated by heparin. Furthermore, BjATl was predominantly expressed in the hepatic caecum and hind-gut, agreeing with the expression pattern of AT in mammalian species. All these data clearly demonstrate that BjATl is an ortholog of vertebrate ATs, suggesting that a primitive coagulation system emerged in the protochordate.

  8. In vitro assessment of Tc-99m labeled bovine thrombin and streptokinase-activated human plasmin: concise communication

    International Nuclear Information System (INIS)

    Wong, D.W.; Tanaka, T.; Mishkin, F.; Lee, T.

    1979-01-01

    Bovine thrombin and streptokinase-activated human plasmin have been labeled with Tc-99m using stannous reduction of pertechnetate under physiological conditions (pH 7.4). The binding efficiency of radiotechnetium to these enzymes is greater than 94%, with less than 5% of reduced but unbound Tc-99m (Sn) complex as assayed by ascending paper radiochromatography using ITLC silica gel plate. Free or unbound pertechnetate is less than 1%. In vitro enzymatic analyses of the Tc-99m-labeled enzymes demonstrate no evidence of protein denaturation or significant loss of enzymatic activity after labeling. Both labeled enzymes are biochemically active in vitro with their respective substrates

  9. The use of direct analysis in real time (DART) to assess the levels of inhibitors co-extracted with DNA and the associated impact in quantification and amplification.

    Science.gov (United States)

    Moreno, Lilliana I; McCord, Bruce R

    2016-10-01

    The measure of quality in DNA sample processing starts with an effective nucleic acid isolation procedure. Most problems with DNA sample typing can be attributed to low quantity DNA and/or to the presence of inhibitors in the sample. Therefore, establishing which isolation method is best at removing potential inhibitors may help overcome some of the problems analysts encounter by providing useful information in the determination of the optimal approach for any given sample. Direct analysis in real time (DART) mass spectrometry was used in this study to investigate the ability of different extraction methods to remove PCR inhibitors. Methods investigated included both liquid/liquid (phenol-chloroform) and solid phase based robotic procedures, (PrepFiler™ and EZ1 chemistries). Following extraction, samples were analyzed by DART in order to determine the level of remaining inhibitors and then quantified and amplified to determine the effect any remaining inhibitor had on the overall results. The data suggests that organic extraction methods result in detrimental amounts of phenol carryover while automated methods may produce carry-over of bile salts and other chemicals that preferentially bind the solid phase matrix. Both of these effects can have a negative impact in downstream sample processing and genotyping by PCR. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Statistical analysis plan for the WOMAN-ETAPlaT study: Effect of tranexamic acid on platelet function and thrombin generation [version 1; referees: 2 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Kastriot Dallaku

    2016-12-01

    Full Text Available Background. Postpartum haemorrhage (PPH is a potentially life-threatening complication for women, and the leading cause of maternal mortality. Tranexamic acid (TXA is an antifibrinolytic used worldwide to treat uterine haemorrhage and to reduce blood loss in general surgery. TXA may have effects on thrombin generation, platelet function and coagulation factors as a result of its inhibition on the plasmin.   Methods. WOMAN ETAPlaT is a sub-study of the World Maternal Antifibrinolitic trial (WOMAN trial. All adult women clinically diagnosed with PPH after a vaginal delivery or caesarean section, are eligible for inclusion in the study. Blood samples will be collected at the baseline and 30 minutes after the first dose of study treatment is given. Platelet function will be evaluated in whole blood immediately after sampling with Multiplate® tests (ADPtest and TRAPtest. Thrombin generation, fibrinogen, D-dimer, and coagulation factors vW, V and VIII will be analysed using platelet poor plasma.   Results. Recruitment to WOMAN ETAPlaT started on 04 November 2013 and closed on 13 January 2015, during this time  188 patients were recruited. The final participant follow-up was completed on 04 March 2015. This article introduces the statistical analysis plan for the study, without reference to unblinded data.   Conclusion. The data from this study will provide evidence for the effect of TXA on thrombin generation, platelet function and coagulation factors in women with PPH.   Trial registration: ClinicalTrials.gov Identifier: NCT00872469; ISRCTN76912190

  11. Statistical analysis plan for the WOMAN-ETAPlaT study: Effect of tranexamic acid on platelet function and thrombin generation [version 2; referees: 2 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Kastriot Dallaku

    2017-06-01

    Full Text Available Background. Postpartum haemorrhage (PPH is a potentially life-threatening complication for women, and the leading cause of maternal mortality. Tranexamic acid (TXA is an antifibrinolytic used worldwide to treat uterine haemorrhage and to reduce blood loss in general surgery. TXA may have effects on thrombin generation, platelet function and coagulation factors as a result of its inhibition on the plasmin.   Methods. WOMAN ETAPlaT is a sub-study of the World Maternal Antifibrinolitic trial (WOMAN trial. All adult women clinically diagnosed with PPH after a vaginal delivery or caesarean section, are eligible for inclusion in the study. Blood samples will be collected at the baseline and 30 minutes after the first dose of study treatment is given. Platelet function will be evaluated in whole blood immediately after sampling with Multiplate® tests (ADPtest and TRAPtest. Thrombin generation, fibrinogen, D-dimer, and coagulation factors vW, V and VIII will be analysed using platelet poor plasma.   Results. Recruitment to WOMAN ETAPlaT started on 04 November 2013 and closed on 13 January 2015, during this time  188 patients were recruited. The final participant follow-up was completed on 04 March 2015. This article introduces the statistical analysis plan for the study, without reference to unblinded data.   Conclusion. The data from this study will provide evidence for the effect of TXA on thrombin generation, platelet function and coagulation factors in women with PPH.   Trial registration: ClinicalTrials.gov Identifier: NCT00872469; ISRCTN76912190

  12. DNA-directed control of enzyme-inhibitor complex formation: a modular approach to reversibly switch enzyme activity

    NARCIS (Netherlands)

    Janssen, B.M.G.; Engelen, W.; Merkx, M.

    2015-01-01

    DNA-templated reversible assembly of an enzyme–inhibitor complex is presented as a new and highly modular approach to control enzyme activity. TEM1-ß-lactamase and its inhibitor protein BLIP were conjugated to different oligonucleotides, resulting in enzyme inhibition in the presence of template

  13. Cost of care of haemophilia with inhibitors.

    Science.gov (United States)

    Di Minno, M N D; Di Minno, G; Di Capua, M; Cerbone, A M; Coppola, A

    2010-01-01

    In Western countries, the treatment of patients with inhibitors is presently the most challenging and serious issue in haemophilia management, direct costs of clotting factor concentrates accounting for >98% of the highest economic burden absorbed for the healthcare of patients in this setting. Being designed to address questions of resource allocation and effectiveness, decision models are the golden standard to reliably assess the overall economic implications of haemophilia with inhibitors in terms of mortality, bleeding-related morbidity, and severity of arthropathy. However, presently, most data analyses stem from retrospective short-term evaluations, that only allow for the analysis of direct health costs. In the setting of chronic diseases, the cost-utility analysis, that takes into account the beneficial effects of a given treatment/healthcare intervention in terms of health-related quality of life, is likely to be the most appropriate approach. To calculate net benefits, the quality adjusted life year, that significantly reflects such health gain, has to be compared with specific economic impacts. Differences in data sources, in medical practice and/or in healthcare systems and costs, imply that most current pharmacoeconomic analyses are confined to a narrow healthcare payer perspective. Long-term/lifetime prospective or observational studies, devoted to a careful definition of when to start a treatment; of regimens (dose and type of product) to employ, and of inhibitor population (children/adults, low-responding/high responding inhibitors) to study, are thus urgently needed to allow for newer insights, based on reliable data sources into resource allocation, effectiveness and cost-utility analysis in the treatment of haemophiliacs with inhibitors.

  14. Apixaban versus enoxaparin for thromboprophylaxis after hip replacement

    DEFF Research Database (Denmark)

    Lassen, Michael Rud; Gallus, Alexander; Raskob, Gary E

    2010-01-01

    There are various regimens for thromboprophylaxis after hip replacement. Low-molecular-weight heparins such as enoxaparin predominantly inhibit factor Xa but also inhibit thrombin to some degree. Orally active, specific factor Xa inhibitors such as apixaban may provide effective thromboprophylaxis...

  15. Lack of TAFI increases brain damage and microparticle generation after thrombolytic therapy in ischemic stroke

    NARCIS (Netherlands)

    Orbe, J.; Alexandru, N.; Roncal, C.; Belzunce, M.; Bibiot, P.; Rodriguez, J. A.; Meijers, J. C. M.; Georgescu, A.; Paramo, J. A.

    2015-01-01

    Background: Thrombin-activatable fibrinolysis inhibitor (TAFI) plays an important role in coagulation and fibrinolysis. Whereas TAFI deficiency may lead to a haemorrhagic tendency, data from TAFI knockout mice (TAFI-/-) are controversial and no differences have been reported in these animals after

  16. Contact activation: a revision.

    Science.gov (United States)

    Schmaier, A H

    1997-07-01

    In conclusion, a revised view of the contact system has been presented. This system has little to do with the initiation of hemostasis. Like lupus anticoagulants, deficiencies of contact proteins give prolonged APTTs but may be risk factors for thrombosis. BK from kininogens is a potent modulator of vascular biology inducing vasodilation, tissue plasminogen activator release, and prostacyclin liberation. Kininogens, themselves, are selective inhibitors of alpha-thrombin-induced platelet activation preventing alpha-thrombin from cleaving the cloned thrombin receptor after arginine41. Kininogens' alpha-thrombin inhibitory activity exists in intact kininogens, BK, and all of BK's breakdown products. HK also is the pivotal protein for contact protein assembly on endothelium. It is the receptor for prekallikrein which when bound to HK becomes activated to kallikrein by an endothelial cell enzyme system independent of activated forms of plasma factor XII. Prekallikrein activation on endothelial cells results in kinetically favorable single chain urokinase and plasminogen activation. Thus the "physiologic, negatively charged surface" for contact system activation is really the assembly of these proteins on cell membranes and activation by membrane-associated enzymes.

  17. The evolution of renin-angiotensin blockade: angiotensin-converting enzyme inhibitors as the starting point.

    Science.gov (United States)

    Sica, Domenic A

    2010-04-01

    The renin-angiotensin system has been a target in the treatment of hypertension for close to three decades. Several medication classes that block specific aspects of this system have emerged as useful therapies, including angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and, most recently, direct renin inhibitors. There has been a natural history to the development of each of these three drug classes, starting with their use as antihypertensive agents; thereafter, in each case they have been employed as end-organ protective agents. To date, there has been scant evidence to favor angiotensin receptor blockers or direct renin inhibitors over angiotensin-converting enzyme inhibitors in treating hypertension or in affording end-organ protection; thus, angiotensin-converting enzyme inhibitors remain the standard of care when renin-angiotensin system blockade is warranted.

  18. Characterization of a thrombin cleavage site mutation (Arg 1689 to Cys) in the factor VIII gene of two unrelated patients with cross-reacting material-positive hemophilia A.

    Science.gov (United States)

    Arai, M; Higuchi, M; Antonarakis, S E; Kazazian, H H; Phillips, J A; Janco, R L; Hoyer, L W

    1990-01-15

    The molecular defect responsible for moderate and severe hemophilia A has been identified for two unrelated patients with the CRM-positive form of this disorder (factor VIII activity of 0.02 and 0.05 U/mL with factor VIII antigen of 0.87 and 2.20 U/mL). In both cases, the immunopurified dysfunctional factor VIII protein is abnormal, in that the 80 Kd light chain is not cleaved by thrombin at arginine-1689. The basis for this failure was identified by polymerase chain reaction amplification of exon 14 of the variant factor VIII genes and direct sequencing of the amplified products. In both cases, a single base substitution (C to T) was identified that produces an arginine to cysteine substitution at amino acid residue 1689. These data identify the molecular defects of the two identical factor VIII variant proteins. The dysfunctional factor VIII has been designated "Factor VIII-East Hartford," the residence of the patient in whom the defect was first identified.

  19. Bivalirudin for Pediatric Procedural Anticoagulation: A Narrative Review.

    Science.gov (United States)

    Zaleski, Katherine L; DiNardo, James A; Nasr, Viviane G

    2018-02-14

    Bivalirudin (Angiomax; The Medicines Company, Parsippany, NJ), a direct thrombin inhibitor, has found increasing utilization as a heparin alternative in the pediatric population, most commonly for the treatment of thrombosis secondary to heparin-induced thrombocytopenia. Due to the relative rarity of heparin-induced thrombocytopenia as well as the lack of Food and Drug Administration-approved indications in this age group, much of what is known regarding the pharmacokinetics and pharmacodynamics of bivalirudin in this population has been extrapolated from adult data. This narrative review will present recommendations regarding the use of bivalirudin for procedural anticoagulation in the pediatric population based on the published literature.

  20. Historical perspective and contemporary management of acute coronary syndromes: from MONA to THROMBINS2.

    Science.gov (United States)

    Kline, Kristopher P; Conti, C Richard; Winchester, David E

    2015-01-01

    Acute coronary syndrome (ACS) remains a major burden on morbidity and mortality in the United States. Medical professionals and students often use the mnemonic 'MONA' (morphine, oxygen, nitroglycerin and aspirin) to recall treatments for ACS; however, this list of therapies is outdated. We provide a historical perspective on 'MONA,' attempt to uncover its origin in the medical literature, and demonstrate the myriad changes that have occurred over the last 50 years of ACS management. We have developed a novel mnemonic, 'THROMBINS2' (thienopyridines, heparin/enoxaparin, renin-angiotensin system blockers, oxygen, morphine, beta blocker, intervention, nitroglycerin, statin/salicylate) to help bedside clinicians recall all the elements of contemporary ACS management. We demonstrate the mortality benefit for each component of contemporary ACS management, correlating the continued improvement with historical data on mortality after myocardial infarction. We encourage providers to utilize this mnemonic to explore options and guide treatments in ACS patients.

  1. Thrombin Avtivable Fibrinolysis Inhibitor in Venous and Arterial Thrombosis

    NARCIS (Netherlands)

    E.L.E. de Bruijne

    2011-01-01

    textabstractVenous and arterial thromboses are major causes of morbidity and mortality. Venous thrombosis is the result of pathological occlusive clot formation in the veins. It occurs mainly in the deep veins of the leg (deep vein thrombosis), from which parts of the clot frequently embolize to the

  2. Effect of kinase inhibitors on the therapeutic properties of monoclonal antibodies.

    Science.gov (United States)

    Duong, Minh Ngoc; Matera, Eva-Laure; Mathé, Doriane; Evesque, Anne; Valsesia-Wittmann, Sandrine; Clémenceau, Béatrice; Dumontet, Charles

    2015-01-01

    Targeted therapies of malignancies currently consist of therapeutic monoclonal antibodies and small molecule kinase inhibitors. The combination of these novel agents raises the issue of potential antagonisms. We evaluated the potential effect of 4 kinase inhibitors, including the Bruton tyrosine kinase inhibitor ibrutinib, and 3 PI3K inhibitors idelalisib, NVP-BEZ235 and LY294002, on the effects of the 3 monoclonal antibodies, rituximab and obinutuzumab (directed against CD20) and trastuzumab (directed against HER2). We found that ibrutinib potently inhibits antibody-dependent cell-mediated cytotoxicity exerted by all antibodies, with a 50% inhibitory concentration of 0.2 microM for trastuzumab, 0.5 microM for rituximab and 2 microM for obinutuzumab, suggesting a lesser effect in combination with obinutuzumab than with rituximab. The 4 kinase inhibitors were found to inhibit phagocytosis by fresh human neutrophils, as well as antibody-dependent cellular phagocytosis induced by the 3 antibodies. Conversely co-administration of ibrutinib with rituximab, obinutuzumab or trastuzumab did not demonstrate any inhibitory effect of ibrutinib in vivo in murine xenograft models. In conclusion, some kinase inhibitors, in particular, ibrutinib, are likely to exert inhibitory effects on innate immune cells. However, these effects do not compromise the antitumor activity of monoclonal antibodies in vivo in the models that were evaluated.

  3. Identification of anthranilamide derivatives as potential factor Xa inhibitors: drug design, synthesis and biological evaluation.

    Science.gov (United States)

    Xing, Junhao; Yang, Lingyun; Li, Hui; Li, Qing; Zhao, Leilei; Wang, Xinning; Zhang, Yuan; Zhou, Muxing; Zhou, Jinpei; Zhang, Huibin

    2015-05-05

    The coagulation enzyme factor Xa (fXa) plays a crucial role in the blood coagulation cascade. In this study, three-dimensional fragment based drug design (FBDD) combined with structure-based pharmacophore (SBP) model and structural consensus docking were employed to identify novel fXa inhibitors. After a multi-stage virtual screening (VS) workflow, two hit compounds 3780 and 319 having persistent high performance were identified. Then, these two hit compounds and several analogs were synthesized and screened for in-vitro inhibition of fXa. The experimental data showed that most of the designed compounds displayed significant in vitro potency against fXa. Among them, compound 9b displayed the greatest in vitro potency against fXa with the IC50 value of 23 nM and excellent selectivity versus thrombin (IC50 = 40 μM). Moreover, the prolongation of the prothrombin time (PT) was measured for compound 9b to evaluate its in vitro anticoagulant activity. As a result, compound 9b exhibited pronounced anticoagulant activity with the 2 × PT value of 8.7 μM. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. Recent advances in botulinum neurotoxin inhibitor development.

    Science.gov (United States)

    Kiris, Erkan; Burnett, James C; Kane, Christopher D; Bavari, Sina

    2014-01-01

    Botulinum neurotoxins (BoNTs) are endopeptidases that target motor neurons and block acetylcholine neurotransmitter release. This action results in the muscle paralysis that defines the disease botulism. To date, there are no FDA-approved therapeutics to treat BoNT-mediated paralysis after intoxication of the motor neuron. Importantly, the rationale for pursuing treatments to counter these toxins is driven by their potential misuse. Current drug discovery efforts have mainly focused on small molecules, peptides, and peptidomimetics that can directly and competitively inhibit BoNT light chain proteolytic activity. Although this is a rational approach, direct inhibition of the Zn(2+) metalloprotease activity has been elusive as demonstrated by the dearth of candidates undergoing clinical evaluation. Therefore, broadening the scope of viable targets beyond that of active site protease inhibitors represents an additional strategy that could move the field closer to the clinic. Here we review the rationale, and discuss the outcomes of earlier approaches and highlight potential new targets for BoNT inhibition. These include BoNT uptake and processing inhibitors, enzymatic inhibitors, and modulators of neuronal processes associated with toxin clearance, neurotransmitter potentiation, and other pathways geared towards neuronal recovery and repair.

  5. Pharmacology of new oral anticoagulants: mechanism of action, pharmacokinetics, pharmacodynamics

    Directory of Open Access Journals (Sweden)

    Luca Masotti

    2013-12-01

    Full Text Available Due to their mechanism of action, the new oral anticoagulants are named direct oral anticoagulants (DOACs. Dabigatran is a selective, competitive, direct inhibitor of thrombin (Factor IIa while rivaroxaban, apixaban and edoxaban act by directly inhibiting the activated Factor X (FXa in a selective and competitive manner. DOACs have a relatively short half-life and almost immediate anticoagulant activity, and rapidly reach the plasma peak concentration. Therefore, they do not need a phase of overlapping with parenteral anticoagulants. After their withdrawal, their removal is sufficiently rapid, although influenced by renal function. Dabigatran is the only DOACs to be administered as a pro-drug and becomes active after drug metabolization. The route of elimination of dabigatran is primarily renal, whereas FXa inhibitors are mainly eliminated by the biliary-fecal route. The drug interactions of DOACs are mainly limited to drugs that act on P-glycoprotein for dabigatran and on P-glycoprotein and/or cytochrome P3A4 for anti-Xa. DOACs have no interactions with food. Given their linear pharmacodynamics, with a predictable dose/response relationship and anticoagulant effect, DOACs are administered at a fixed dose and do not require routine laboratory monitoring.

  6. SGLT2 Inhibitors May Predispose to Ketoacidosis.

    Science.gov (United States)

    Taylor, Simeon I; Blau, Jenny E; Rother, Kristina I

    2015-08-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors are antidiabetic drugs that increase urinary excretion of glucose, thereby improving glycemic control and promoting weight loss. Since approval of the first-in-class drug in 2013, data have emerged suggesting that these drugs increase the risk of diabetic ketoacidosis. In May 2015, the Food and Drug Administration issued a warning that SGLT2 inhibitors may lead to ketoacidosis. Using PubMed and Google, we conducted Boolean searches including terms related to ketone bodies or ketoacidosis with terms for SGLT2 inhibitors or phlorizin. Priority was assigned to publications that shed light on molecular mechanisms whereby SGLT2 inhibitors could affect ketone body metabolism. SGLT2 inhibitors trigger multiple mechanisms that could predispose to diabetic ketoacidosis. When SGLT2 inhibitors are combined with insulin, it is often necessary to decrease the insulin dose to avoid hypoglycemia. The lower dose of insulin may be insufficient to suppress lipolysis and ketogenesis. Furthermore, SGLT2 is expressed in pancreatic α-cells, and SGLT2 inhibitors promote glucagon secretion. Finally, phlorizin, a nonselective inhibitor of SGLT family transporters decreases urinary excretion of ketone bodies. A decrease in the renal clearance of ketone bodies could also increase the plasma ketone body levels. Based on the physiology of SGLT2 and the pharmacology of SGLT2 inhibitors, there are several biologically plausible mechanisms whereby this class of drugs has the potential to increase the risk of developing diabetic ketoacidosis. Future research should be directed toward identifying which patients are at greatest risk for this side effect and also to optimizing pharmacotherapy to minimize the risk to patients.

  7. Organophosphate acetylcholine esterase inhibitor poisoning from a home-made shampoo.

    Science.gov (United States)

    Sadaka, Yair; Broides, Arnon; Tzion, Raffi Lev; Lifshitz, Matitiahu

    2011-07-01

    Organophosphate acetylcholine esterase inhibitor poisoning is a major health problem in children. We report an unusual cause of organophosphate acetylcholine esterase inhibitor poisoning. Two children were admitted to the pediatric intensive care unit due to organophosphate acetylcholine esterase inhibitor poisoning after exposure from a home-made shampoo that was used for the treatment of head lice. Owing to no obvious source of poisoning, the diagnosis of organophosphate acetylcholine esterase inhibitor poisoning in one of these patients was delayed. Both patients had an uneventful recovery. Organophosphate acetylcholine esterase inhibitor poisoning from home-made shampoo is possible. In cases where the mode of poisoning is unclear, direct questioning about the use of home-made shampoo is warranted, in these cases the skin and particularly the scalp should be rinsed thoroughly as soon as possible.

  8. The proton pump inhibitor, omeprazole, but not lansoprazole or pantoprazole, is a metabolism-dependent inhibitor of CYP2C19: implications for coadministration with clopidogrel.

    Science.gov (United States)

    Ogilvie, Brian W; Yerino, Phyllis; Kazmi, Faraz; Buckley, David B; Rostami-Hodjegan, Amin; Paris, Brandy L; Toren, Paul; Parkinson, Andrew

    2011-11-01

    As a direct-acting inhibitor of CYP2C19 in vitro, lansoprazole is more potent than omeprazole and other proton pump inhibitors (PPIs), but lansoprazole does not cause clinically significant inhibition of CYP2C19 whereas omeprazole does. To investigate this apparent paradox, we evaluated omeprazole, esomeprazole, R-omeprazole, lansoprazole, and pantoprazole for their ability to function as direct-acting and metabolism-dependent inhibitors (MDIs) of CYP2C19 in pooled human liver microsomes (HLM) as well as in cryopreserved hepatocytes and recombinant CYP2C19. In HLM, all PPIs were found to be direct-acting inhibitors of CYP2C19 with IC(50) values varying from 1.2 μM [lansoprazole; maximum plasma concentration (C(max)) = 2.2 μM] to 93 μM (pantoprazole; C(max) = 6.5 μM). In addition, we identified omeprazole, esomeprazole, R-omeprazole, and omeprazole sulfone as MDIs of CYP2C19 (they caused IC(50) shifts after a 30-min preincubation with NADPH-fortified HLM of 4.2-, 10-, 2.5-, and 3.2-fold, respectively), whereas lansoprazole and pantoprazole were not MDIs (IC(50) shifts lansoprazole, or pantoprazole, as irreversible (or quasi-irreversible) MDIs of CYP2C19. These results have important implications for the mechanism of the clinical interaction reported between omeprazole and clopidogrel, as well as other CYP2C19 substrates.

  9. Meta-analysis of randomized controlled trials on risk of myocardial infarction from the use of oral direct thrombin inhibitors

    DEFF Research Database (Denmark)

    Artang, Ramin; Rome, Eric; Nielsen, Jørn Dalsgaard

    2013-01-01

    . To address these questions, we systematically searched MEDLINE and performed a meta-analysis on randomized trials that compared oral DTIs with warfarin for any indication with end point of MIs after randomization. We furthermore performed a secondary meta-analysis on atrial fibrillation stroke prevention...... to experience an MI than their counterparts treated with warfarin (285 of 23,333 vs 133 of 16,024, odds ratio 1.35, 95% confidence interval 1.10 to 1.66, p = 0.005). For secondary analysis, 8 studies (69,615 patients) were identified that compared warfarin with alternative anticoagulant including factor Xa...

  10. The effect of defibrotide on thromboembolism in the pulmonary vasculature of mice and rabbits and in the cerebral vasculature of rabbits.

    Science.gov (United States)

    Paul, W.; Gresele, P.; Momi, S.; Bianchi, G.; Page, C. P.

    1993-01-01

    1. Administration of bovine thrombin (100 u kg-1) into the carotid artery of rabbits induces a sustained accumulation of 111 Indium-labelled platelets within the cranial vasculature over the subsequent 3 h. 2. Intracarotid (i.c.) administration of defibrotide (64 mg kg-1 bolus plus 64 mg kg-1 h-1 for 1 h) prior to i.c. thrombin (100 u kg-1) significantly reduces the ability of thrombin to induce cranial thromboembolism in rabbits. 3. Intravenous (i.v.) administration of thrombin (20 u kg-1) in rabbits induces a reversible accumulation of radiolabelled platelets into the thoracic circulation which is significantly reduced by i.v. administration of defibrotide (64 mg kg-1 bolus plus 64 mg kg-1 h-1 for 1 h) prior to i.v. thrombin. In contrast, platelet accumulation in response to adenosine diphosphate (ADP; 20 micrograms kg-1, i.v.) or platelet activating factor (PAF; 50 ng kg-1, i.v.) is not significantly affected by this treatment. 4. Intravenous administration of the nitric oxide (NO)-synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 10 mg kg-1) potentiates platelet accumulation induced by low dose thrombin (10 u kg-1, i.v.) within the pulmonary vasculature of rabbits. The potentiated response is significantly abrogated following pretreatment with defibrotide (64 mg kg-1 bolus plus 64 mg kg-1 h-1 for 1 h, i.v.). 5. Intravenous injection of human thrombin (1250 u kg-1) to mice induces death within the majority of animals which is significantly reduced by pretreatment with defibrotide (150-175 mg kg-1, i.v.).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8306102

  11. Two Kazal-type protease inhibitors from Macrobrachium nipponense and Eriocheir sinensis: comparative analysis of structure and activities.

    Science.gov (United States)

    Qian, Ye-Qing; Li, Ye; Yang, Fan; Yu, Yan-Qin; Yang, Jin-Shu; Yang, Wei-Jun

    2012-03-01

    Kazal-type inhibitors (KPIs) play important roles in many biological and physiological processes, such as blood clotting, the immune response and reproduction. In the present study, two male reproductive tract KPIs, termed Man-KPI and Ers-KPI, were identified in Macrobrachium nipponense and Eriocheir sinensis, respectively. The inhibitory activities of recombinant Man-KPI and Ers-KPI against chymotrypsin, elastase, trypsin and thrombin were determined. The results showed that both of them strongly inhibit chymotrypsin and elastase. Kinetic studies were performed to elucidate their inhibition mechanism. Furthermore, individual domains were also expressed to learn further which domain contributes to the inhibitory activities of intact KPIs. Only Man-KPI_domain3 is active in the inhibition of chymotrypsin and elastase. Meanwhile, Ers-KPI_domain2 and 3 are responsible for inhibition of chymotrypsin, and Ers-KPI_domains2, 3 and 4 are responsible for the inhibition of elastase. Meanwhile, the inhibitory activities of these two KPIs toward Macrobrachium rosenbergii, M. nipponense and E. sinensis sperm were compared with that of the Kazal-type peptidase inhibitor (MRPINK) characterized from the M. rosenbergii reproductive tract in a previous study. The results demonstrated that KPIs can completely inhibit the gelatinolytic activities of sperm proteases from their own species, while different levels of cross-inhibition were observed between KPI and proteases from different species. These results may provide new perspective to further clarify the mechanism of KPI-proteases interaction in the male reproductive system. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  12. Hepatitis C Virus NS3 Inhibitors: Current and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Kazi Abdus Salam

    2013-01-01

    Full Text Available Currently, hepatitis C virus (HCV infection is considered a serious health-care problem all over the world. A good number of direct-acting antivirals (DAAs against HCV infection are in clinical progress including NS3-4A protease inhibitors, RNA-dependent RNA polymerase inhibitors, and NS5A inhibitors as well as host targeted inhibitors. Two NS3-4A protease inhibitors (telaprevir and boceprevir have been recently approved for the treatment of hepatitis C in combination with standard of care (pegylated interferon plus ribavirin. The new therapy has significantly improved sustained virologic response (SVR; however, the adverse effects associated with this therapy are still the main concern. In addition to the emergence of viral resistance, other targets must be continually developed. One such underdeveloped target is the helicase portion of the HCV NS3 protein. This review article summarizes our current understanding of HCV treatment, particularly with those of NS3 inhibitors.

  13. In vitro assessment of Tc-99m labeled bovine thrombin and streptokinase-activated human plasmin: concise communication. [Iodine 125

    Energy Technology Data Exchange (ETDEWEB)

    Wong, D.W.; Tanaka, T.; Mishkin, F.; Lee, T.

    1979-09-01

    Bovine thrombin and streptokinase-activated human plasmin have been labeled with Tc-99m using stannous reduction of pertechnetate under physiological conditions (pH 7.4). The binding efficiency of radiotechnetium to these enzymes is greater than 94%, with less than 5% of reduced but unbound Tc-99m (Sn) complex as assayed by ascending paper radiochromatography using ITLC silica gel plate. Free or unbound pertechnetate is less than 1%. In vitro enzymatic analyses of the Tc-99m-labeled enzymes demonstrate no evidence of protein denaturation or significant loss of enzymatic activity after labeling. Both labeled enzymes are biochemically active in vitro with their respective substrates.

  14. Comparison between SGLT2 inhibitors and DPP4 inhibitors added to insulin therapy in type 2 diabetes: a systematic review with indirect comparison meta-analysis.

    Science.gov (United States)

    Min, Se Hee; Yoon, Jeong-Hwa; Hahn, Seokyung; Cho, Young Min

    2017-01-01

    Both sodium glucose cotransporter 2 (SGLT2) inhibitors and dipeptidyl peptidase-4 (DPP4) inhibitors can be used to treat patients with type 2 diabetes mellitus (T2DM) that is inadequately controlled with insulin therapy, and yet there has been no direct comparison of these two inhibitors. We searched MEDLINE, EMBASE, LILACS, the Cochrane Central Register of Controlled Trials and ClinicalTrials.gov through June 2015. Randomized controlled trials published in English that compare SGLT2 inhibitor plus insulin (SGLT2i/INS) with placebo plus insulin or DPP4 inhibitor plus insulin (DPP4i/INS) with placebo plus insulin in patients with T2DM were selected. Data on the study characteristics, efficacy and safety outcomes were extracted. We compared the efficacy and safety between SGLT2i/INS and DPP4i/INS indirectly with covariates adjustment. Risk of potential bias was assessed. Fourteen eligible randomized controlled trials comprising 6980 patients were included (five SGLT2 inhibitor studies and nine DPP4 inhibitor studies). Covariate-adjusted indirect comparison using meta-regression analyses revealed that SGLT2i/INS achieved greater reduction in HbA 1c [weighted mean difference (WMD) -0.24%, 95% confidence interval (CI) -0.43 to -0.05%], fasting plasma glucose (WMD -18.0 mg/dL, 95% CI -28.5 to -7.6 mg/dL) and body weight (WMD -2.38 kg, 95% CI -3.18 to -1.58 kg) from baseline than DPP4i/INS without increasing the risk of hypoglycaemia (relative risks 1.19, 95% CI 0.78 to 1.82). Sodium glucose cotransporter 2 inhibitors achieved better glycaemic control and greater weight reduction than DPP4 inhibitors without increasing the risk of hypoglycaemia in patients with T2DM that is inadequately controlled with insulin. There has been no direct comparison of SGLT2 inhibitors and DPP4 inhibitors in patients with T2DM inadequately controlled with insulin therapy. In this study, we performed indirect meta-analysis comparing SGLT2 inhibitors and DPP4 inhibitors added to insulin

  15. Gap junction protein connexin43 exacerbates lung vascular permeability.

    Directory of Open Access Journals (Sweden)

    James J O'Donnell

    Full Text Available Increased vascular permeability causes pulmonary edema that impairs arterial oxygenation and thus contributes to morbidity and mortality associated with Acute Respiratory Distress Syndrome and sepsis. Although components of intercellular adhesive and tight junctions are critical for maintaining the endothelial barrier, there has been limited study of the roles of gap junctions and their component proteins (connexins. Since connexins can modulate inflammatory signaling in other systems, we hypothesized that connexins may also regulate pulmonary endothelial permeability. The relationships between connexins and the permeability response to inflammatory stimuli were studied in cultured human pulmonary endothelial cells. Prolonged treatment with thrombin, lipopolysaccharide, or pathological cyclic stretch increased levels of mRNA and protein for the major connexin, connexin43 (Cx43. Thrombin and lipopolysaccharide both increased intercellular communication assayed by transfer of microinjected Lucifer yellow. Although thrombin decreased transendothelial resistance in these cells, the response was attenuated by pretreatment with the connexin inhibitor carbenoxolone. Additionally, the decreases of transendothelial resistance produced by either thrombin or lipopolysaccharide were attenuated by reducing Cx43 expression by siRNA knockdown. Both carbenoxolone and Cx43 knockdown also abrogated thrombin-induced phosphorylation of myosin light chain. Taken together, these data suggest that increased lung vascular permeability induced by inflammatory conditions may be amplified via increased expression of Cx43 and intercellular communication among pulmonary endothelial cells.

  16. Anti-thrombin III, Protein C, and Protein S deficiency in acute coronary syndrome

    Directory of Open Access Journals (Sweden)

    Dasnan Ismail

    2002-06-01

    Full Text Available The final most common pathway for the majority of coronary artery disease is occlusion of a coronary vessel. Under normal conditions, antithrombin III (AT III, protein C, and protein S as an active protein C cofactor, are natural anticoagulants (hemostatic control that balances procoagulant activity (thrombin antithrombin complex balance to prevent thrombosis. If the condition becomes unbalanced, natural anticoagulants and the procoagulants can lead to thrombosis. Thirty subjects with acute coronary syndrome (ACS were studied for the incidence of antithrombin III (AT III, protein C, and protein S deficiencies, and the result were compare to the control group. Among patients with ACS, the frequency of distribution of AT-III with activity < 75% were 23,3% (7 of 30, and only 6,7% ( 2 of 30 in control subject. No one of the 30 control subject have protein C activity deficient, in ACS with activity < 70% were 13,3% (4 of 30. Fifteen out of the 30 (50% control subjects had protein S activity deficiency, while protein S deficiency activity < 70% was found 73.3.% (22 out of 30. On linear regression, the deterministic coefficient of AT-III activity deficiency to the development ACS was 13,25 %, and the deterministic coefficient of protein C activity deficient to the development of ACS was 9,06 %. The cut-off point for AT-III without protein S deficiency expected to contribute to the development of vessel disease was 45%. On discriminant analysis, protein C activity deficiency posed a risk for ACS of 4,5 greater than non deficient subjects, and AT-III activity deficiency posed a risk for ACS of 3,5 times greater than non deficient subjects. On binary logistic regression, protein S activity acted only as a reinforcing factor of AT-III activity deficiency in the development of ACS. Protein C and AT III deficiency can trigger ACS, with determinant coefficients of 9,06% and 13,25% respectively. Low levels of protein C posed a greater risk of

  17. Novel multi-target-directed ligands for Alzheimer's disease: Combining cholinesterase inhibitors and 5-HT6 receptor antagonists. Design, synthesis and biological evaluation.

    Science.gov (United States)

    Więckowska, Anna; Kołaczkowski, Marcin; Bucki, Adam; Godyń, Justyna; Marcinkowska, Monika; Więckowski, Krzysztof; Zaręba, Paula; Siwek, Agata; Kazek, Grzegorz; Głuch-Lutwin, Monika; Mierzejewski, Paweł; Bienkowski, Przemysław; Sienkiewicz-Jarosz, Halina; Knez, Damijan; Wichur, Tomasz; Gobec, Stanislav; Malawska, Barbara

    2016-11-29

    As currently postulated, a complex treatment may be key to an effective therapy for Alzheimer's disease (AD). Recent clinical trials in patients with moderate AD have shown a superior effect of the combination therapy of donepezil (a selective acetylcholinesterase inhibitor) with idalopirdine (a 5-HT 6 receptor antagonist) over monotherapy with donepezil. Here, we present the first report on the design, synthesis and biological evaluation of a novel class of multifunctional ligands that combines a 5-HT 6 receptor antagonist with a cholinesterase inhibitor. Novel multi-target-directed ligands (MTDLs) were designed by combining pharmacophores directed against the 5-HT 6 receptor (1-(phenylsulfonyl)-4-(piperazin-1-yl)-1H-indole) and cholinesterases (tacrine or N-benzylpiperidine analogues). In vitro evaluation led to the identification of tacrine derivative 12 with well-balanced potencies against the 5-HT 6 receptor (K b  = 27 nM), acetylcholinesterase and butyrylcholinesterase (IC 50 hAChE  = 12 nM, IC 50 hBuChE  = 29 nM). The compound also showed good in vitro blood-brain-barrier permeability (PAMPA-BBB assay), which was confirmed in vivo (open field study). Central cholinomimetic activity was confirmed in vivo in rats using a scopolamine-induced hyperlocomotion model. A novel class of multifunctional ligands with compound 12 as the best derivative in a series represents an excellent starting point for the further development of an effective treatment for AD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Impact of hormone-associated resistance to activated protein C on the thrombotic potential of oral contraceptives: a prospective observational study.

    Directory of Open Access Journals (Sweden)

    Heiko Rühl

    Full Text Available The increased thrombotic risk of oral contraceptives (OC has been attributed to various alterations of the hemostatic system, including acquired resistance to activated protein C (APC. To evaluate to what extent OC-associated APC resistance induces a prothrombotic state we monitored plasma levels of thrombin and molecular markers specific for thrombin formation in women starting OC use. Elevated plasma levels of thrombin have been reported to characterize situations of high thrombotic risk such as trauma-induced hypercoagulability, but have not yet been studied during OC use.Blood samples were collected prospectively from healthy women (n = 21 before and during three menstruation cycles after start of OC. APC resistance was evaluated using a thrombin generation-based assay. Plasma levels of thrombin and APC were directly measured using highly sensitive oligonucleotide-based enzyme capture assay (OECA technology. Thrombin generation markers and other hemostasis parameters were measured additionally.All women developed APC resistance as indicated by an increased APC sensitivity ratio compared with baseline after start of OC (p = 0.0003. Simultaneously, plasma levels of thrombin, prothrombin fragment 1+2, and of thrombin-antithrombin complexes did not change, ruling out increased thrombin formation. APC plasma levels were also not influenced by OC use, giving further evidence that increased thrombin formation did not occur.In the majority of OC users no enhanced thrombin formation occurs despite the development of APC resistance. It cannot be ruled out, however, that thrombin formation might occur to a greater extent in the presence of additional risk factors. If this were the case, endogenous thrombin levels might be a potential biomarker candidate to identify women at high thrombotic risk during OC treatment. Large-scale studies are required to assess the value of plasma levels of thrombin as predictors of OC-associated thrombotic risk.

  19. Fixation of split-thickness skin graft using fast-clotting fibrin glue containing undiluted high-concentration thrombin or sutures: a comparison study.

    Science.gov (United States)

    Han, Hyun Ho; Jun, Daiwon; Moon, Suk-Ho; Kang, In Sook; Kim, Min Cheol

    2016-01-01

    For skin defects caused by full-thickness burns, trauma, or tumor tissue excision, skin grafting is one of the most convenient and useful treatment methods. In this situation, graft fixation is important in skin grafting. This study was performed to compare the effectiveness of skin graft fixation between high-concentration fibrin sealant and sutures. There have been numerous studies using fibrin sealant for graft fixation, but they utilized slow-clotting fibrin sealant containing less than 10 IU/mL thrombin. Twenty-five patients underwent split-thickness skin grafting using fast-clotting fibrin sealant containing 400 IU/mL thrombin, while 30 patients underwent grafting using sutures. Rates of hematoma/seroma formation, graft dislocation, graft necrosis, and graft take were investigated postoperatively. The graft surface area was calculated using Image J software (National Institutes of Health, Bethesda, MD, USA). After 5 days, rates of hematoma/seroma formation and graft dislocation were 7.84 and 1.29% in group I, and 9.55 and 1.45% in group II, respectively. After 30 days, rates of graft necrosis and graft take were 1.86 and 98.14% in group I, and 4.65 and 95.35% in group II. Undiluted fibrin sealant showed significantly superior results for all rates ( p  < 0.05) except graft dislocation. When high-concentration fast-clotting fibrin sealant was applied to skin grafts without dilution, no difficulty was experienced during surgery. Sealant showed superior results compared with sutures and had an excellent graft take rate. II.

  20. Systemic Thrombolysis in Acute Ischemic Stroke after Dabigatran Etexilate Reversal with Idarucizumab—A Case Report

    DEFF Research Database (Denmark)

    Tireli, Derya; He, Jun; Nordling, Mette Maria

    2017-01-01

    Introduction Idarucizumab is a reversal agent for dabigatran etexilate. By reversing the anticoagulating effect of dabigatran etexilate with idarucizumab (Praxbind), patients presenting with an acute ischemic stroke can now be eligible for thrombolysis. Patient We describe our experience with ida......Introduction Idarucizumab is a reversal agent for dabigatran etexilate. By reversing the anticoagulating effect of dabigatran etexilate with idarucizumab (Praxbind), patients presenting with an acute ischemic stroke can now be eligible for thrombolysis. Patient We describe our experience...... of embolic stroke in patients with atrial fibrillation. Dabigatran etexilate is an oral thrombin inhibitor that can be reversed by idarucizumab. Idarucizumab, a monoclonal antibody fragment, directly binds dabigatran etexilate and neutralizes its activity. Conclusion Reversal of dabigatran etexilate using...

  1. Effects of Incretin-Based Therapies and SGLT2 Inhibitors on Skeletal Health.

    Science.gov (United States)

    Egger, Andrea; Kraenzlin, Marius E; Meier, Christian

    2016-12-01

    Anti-diabetic drugs are widely used and are essential for adequate glycemic control in patients with type 2 diabetes. Recently, marketed anti-diabetic drugs include incretin-based therapies (GLP-1 receptor agonists and DPP-4 inhibitors) and sodium-glucose co-transporter 2 (SGLT2) inhibitors. In contrast to well-known detrimental effects of thiazolidinediones on bone metabolism and fracture risk, clinical data on the safety of incretin-based therapies is limited. Based on meta-analyses of trials investigating the glycemic-lowering effect of GLP-1 receptor agonists and DPP4 inhibitors, it seems that incretin-based therapies are not associated with an increase in fracture risk. Sodium-glucose co-transporter 2 inhibitors may alter calcium and phosphate homeostasis as a result of secondary hyperparathyroidism induced by increased phosphate reabsorption. Although these changes may suggest detrimental effects of SGLT-2 inhibitors on skeletal integrity, treatment-related direct effects on bone metabolism seem unlikely. Observed changes in BMD, however, seem to result from increased bone turnover in the early phase of drug-induced weight loss. Fracture risk, which is observed in older patients with impaired renal function and elevated cardiovascular disease risk treated with SGLT2 inhibitors, seems to be independent of direct effects on bone but more likely to be associated with falls and changes in hydration status secondary to osmotic diuresis.

  2. Sodium-Glucose Linked Transporter-2 Inhibitors in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    L. Zanoli

    2015-01-01

    Full Text Available SGLT2 inhibitors are new antihyperglycaemic agents whose ability to lower glucose is directly proportional to GFR. Therefore, in chronic kidney disease (CKD the blood glucose lowering effect is reduced. Unlike many current therapies, the mechanism of action of SGLT2 inhibitors is independent of insulin action or beta-cell function. In addition, the mechanism of action of SGLT2 inhibitors is complementary and not alternative to other antidiabetic agents. SGLT2 inhibitors could be potentially effective in attenuating renal hyperfiltration and, consequently, the progression of CKD. Moreover, the reductions in intraglomerular pressure, systemic blood pressure, and uric acid levels induced by SGLT inhibition may potentially be of benefit in CKD subjects without diabetes. However, at present, only few clinical studies were designed to evaluate the effects of SGLT2 inhibitors in CKD. Consequently, safety and potential efficacy beyond blood glucose lowering should be better clarified in CKD. In this paper we provide an updated review of the use of SGLT2 inhibitors in clinical practice, with particular attention on subjects with CKD.

  3. Recombinant activated factor VII: 30 years of research and innovation.

    Science.gov (United States)

    Hedner, Ulla

    2015-06-01

    Recombinant activated factor VII (rFVIIa) was initially developed to treat bleeding episodes in patients with congenital haemophilia and inhibitors. The story of its development began in the 1970s, when FVIIa was identified as one of the activated coagulation factors that has minimal potential for inducing thromboembolic side-effects. Extensive research over the last 30 years has greatly increased our knowledge of the characteristics of FVII, its activation, and the mechanisms by which rFVIIa restores haemostasis. In haemophilia, the haemostatic effect of rFVIIa is mediated via binding to thrombin-activated platelets at the site of injury, thereby enhancing thrombin generation also in the absence of factor (F) VIII or FIX. The mechanism of action of rFVIIa has also allowed its successful use in other clinical scenarios characterised by impaired thrombin generation, and its licensed uses have now been extended to acquired haemophilia, congenital FVII deficiency and Glanzmann's thrombasthenia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Thrombin Injection Failure with Subsequent Successful Stent-Graft Placement for the Treatment of an Extracranial Internal Carotid Pseudoaneurysm in a 5-Year-Old Child

    International Nuclear Information System (INIS)

    Garcia-Monaco, R. D.; Kohan, A. A.; Martinez-Corvalan, M. P.; Cacchiarelli, N.; Peralta, O.; Wahren, C. G.

    2012-01-01

    Internal carotid artery pseudoaneurysm is a rare life-threatening condition that may develop in different clinical situations. We report the case of an extracranial internal carotid artery pseudoaneurysm secondary to a throat infection in a pediatric patient that was initially treated with percutaneous thrombin injection under ultrasound guidance. However, recanalization occurred at 48 h, and definitive treatment was then performed by endovascular stent-graft placement. We briefly review the clinical characteristics of this uncommon clinical condition as well as the treatment options.

  5. Vorapaxar: The Current Role and Future Directions of a Novel Protease-Activated Receptor Antagonist for Risk Reduction in Atherosclerotic Disease.

    Science.gov (United States)

    Gryka, Rebecca J; Buckley, Leo F; Anderson, Sarah M

    2017-03-01

    Despite the current standard of care, patients with cardiovascular disease remain at a high risk for recurrent events. Inhibition of thrombin-mediated platelet activation through protease-activated receptor-1 antagonism may provide reductions in atherosclerotic disease beyond those achievable with the current standard of care. Our primary objective is to evaluate the clinical literature regarding the role of vorapaxar (Zontivity™) in the reduction of cardiovascular events in patients with a history of myocardial infarction and peripheral artery disease. In particular, we focus on the potential future directions for protease-activating receptor antagonists in the treatment of a broad range of atherosclerotic diseases. A literature search of PubMed and EBSCO was conducted to identify randomized clinical trials from August 2005 to June 2016 using the search terms: 'vorapaxar', 'SCH 530348', 'protease-activated receptor-1 antagonist', and 'Zontivity™'. Bibliographies were searched and additional resources were obtained. Vorapaxar is a first-in-class, protease-activated receptor-1 antagonist. The Thrombin Receptor Antagonist for Clinical Event Reduction (TRACER) trial did not demonstrate a significant reduction in a broad primary composite endpoint. However, the Thrombin-Receptor Antagonist in Secondary Prevention of Atherothrombotic Ischemic Events (TRA 2°P-TIMI 50) trial examined a more traditional composite endpoint and found a significant benefit with vorapaxar. Vorapaxar significantly increased bleeding compared with standard care. Ongoing trials will help define the role of vorapaxar in patients with peripheral arterial disease, patients with diabetes mellitus, and other important subgroups. The use of multivariate modeling may enable the identification of subgroups with maximal benefit and minimal harm from vorapaxar. Vorapaxar provides clinicians with a novel mechanism of action to further reduce the burden of ischemic heart disease. Identification of

  6. Paroxetine Is a Direct Inhibitor of G Protein-Coupled Receptor Kinase 2 and Increases Myocardial Contractility

    Energy Technology Data Exchange (ETDEWEB)

    Thal, David M. [Univ. of Michigan, Ann Arbor, MI (United States); Homan, Kristoff T. [Univ. of Michigan, Ann Arbor, MI (United States); Chen, Jun [Univ. of New Mexico Health Sciences Center, Albuquerque, NM (United States); Wu, Emily K. [Univ. of Michigan, Ann Arbor, MI (United States); Hinkle, Patricia M. [Univ. of Rochester Medical Center, Rochester, NY (United States); Huang, Z. Maggie [Temple Univ. School of Medicine, Philadelphia, Pennsylvania (United States); Chuprun, J. Kurt [Temple Univ. School of Medicine, Philadelphia, Pennsylvania (United States); Song, Jianliang [Temple Univ. School of Medicine, Philadelphia, Pennsylvania (United States); Gao, Erhe [Temple Univ. School of Medicine, Philadelphia, Pennsylvania (United States); Cheung, Joseph Y. [Temple Univ. School of Medicine, Philadelphia, Pennsylvania (United States); Sklar, Larry A. [Univ. of New Mexico Health Sciences Center, Albuquerque, NM (United States); Koch, Walter J. [Temple Univ. School of Medicine, Philadelphia, Pennsylvania (United States); Tesmer, John J.G. [Univ. of Michigan, Ann Arbor, MI (United States)

    2012-08-10

    G protein-coupled receptor kinase 2 (GRK2) is a well-established therapeutic target for the treatment of heart failure. In this paper we identify the selective serotonin reuptake inhibitor (SSRI) paroxetine as a selective inhibitor of GRK2 activity both in vitro and in living cells. In the crystal structure of the GRK2·paroxetine–Gβγ complex, paroxetine binds in the active site of GRK2 and stabilizes the kinase domain in a novel conformation in which a unique regulatory loop forms part of the ligand binding site. Isolated cardiomyocytes show increased isoproterenol-induced shortening and contraction amplitude in the presence of paroxetine, and pretreatment of mice with paroxetine before isoproterenol significantly increases left ventricular inotropic reserve in vivo with no significant effect on heart rate. Neither is observed in the presence of the SSRI fluoxetine. Our structural and functional results validate a widely available drug as a selective chemical probe for GRK2 and represent a starting point for the rational design of more potent and specific GRK2 inhibitors.

  7. Effects of calcium binding and of EDTA and CaEDTA on the clotting of bovine fibrinogen by thrombin.

    Science.gov (United States)

    Perizzolo, K E; Sullivan, S; Waugh, D F

    1985-03-01

    Studies were carried out at pH 7.0 and gamma/2 0.15 before addition of CaCl2 or EDTA. Clotting time, tau, at 3.03 microM fibrinogen and 0.91 u/ml thrombin was determined for equilibrium systems. With added Ca2+, tau decreases, from tau 0 at 0 added Ca2+ (mean, 29.7 +/- 3 s), by approximately 3 s at 5 mM added Ca2+. With added EDTA, tau increases sigmoidally from tau 0 at 0 EDTA to a maximum (mean tau m = 142 +/- 23 s) at approximately 200 microM EDTA. tau then decreases slightly to a minimum at approximately 1.3 mM and finally increases to infinity at approximately 10 mM EDTA. Between 0 and 1.3 mM EDTA, effects on clotting time are completely reversed by adding Ca2+ and, after equilibration at 400 microM EDTA, tau is independent of EDTA concentration. Thus, up to 400 microM EDTA, effects on clotting time are attributed to decreasing fibrinogen bound Ca2+. Between 5 mM Ca2+ and 200 microM EDTA it is assumed that an equilibrium distribution of fibrinogen species having 3, 2, 1, or 0 bound calcium ions is established and that a clotting time is determined by the sum of products of species fractional abundance and pure species clotting time. Analysis indicates that pure species clotting times increase proportionately with decreasing Ca2+ binding, binding sites are nearly independent, and the microscopic association constant for the first bound Ca2+ is approximately 4.9 X 10(6) M-1. Effects of adding Ca2+ at times t1 after thrombin addition to systems initially equilibrated at 200 microM EDTA were determined. Analysis of the relation between tau and t1 indicates that as Ca2+ binding decreases, rate constants for release of B peptides decrease less than those for release of A peptides. As EDTA concentration is increased above 1.3 mM, inhibitory effects of EDTA and CaEDTA progressively increase.

  8. Inhibitors

    Science.gov (United States)

    ... JM, and the Hemophilia Inhibitor Research Study Investigators. Validation of Nijmegen-Bethesda assay modifications to allow inhibitor ... webinars on blood disorders Language: English (US) Español (Spanish) File Formats Help: How do I view different ...

  9. Elevated plasma factor VIII enhances venous thrombus formation in rabbits: contribution of factor XI, von Willebrand factor and tissue factor.

    Science.gov (United States)

    Sugita, Chihiro; Yamashita, Atsushi; Matsuura, Yunosuke; Iwakiri, Takashi; Okuyama, Nozomi; Matsuda, Shuntaro; Matsumoto, Tomoko; Inoue, Osamu; Harada, Aya; Kitazawa, Takehisa; Hattori, Kunihiro; Shima, Midori; Asada, Yujiro

    2013-07-01

    Elevated plasma levels of factor VIII (FVIII) are associated with increased risk of deep venous thrombosis. The aim of this study is to elucidate how elevated FVIII levels affect venous thrombus formation and propagation in vivo. We examined rabbit plasma FVIII activity, plasma thrombin generation, whole blood coagulation, platelet aggregation and venous wall thrombogenicity before and one hour after an intravenous infusion of recombinant human FVIII (rFVIII). Venous thrombus induced by the endothelial denudation of rabbit jugular veins was histologically assessed. Thrombus propagation was evaluated as indocyanine green fluorescence intensity. Argatroban, a thrombin inhibitor, and neutralised antibodies for tissue factor (TF), factor XI (FXI), and von Willebrand factor (VWF) were infused before or after thrombus induction to investigate their effects on venous thrombus formation or propagation. Recombinant FVIII (100 IU/kg) increased rabbit plasma FVIII activity two-fold and significantly enhanced whole blood coagulation and total plasma thrombin generation, but did not affect initial thrombin generation time, platelet aggregation and venous wall thrombogenicity. The rFVIII infusion also increased the size of venous thrombus 1 hour after thrombus induction. Argatroban and the antibodies for TF, FXI or VWF inhibited such enhanced thrombus formation and all except TF suppressed thrombus propagation. In conclusion, elevated plasma FVIII levels enhance venous thrombus formation and propagation. Excess thrombin generation by FXI and VWF-mediated FVIII recruitment appear to contribute to the growth of FVIII-driven venous thrombus.

  10. ERK mutations confer resistance to mitogen-activated protein kinase pathway inhibitors.

    Science.gov (United States)

    Goetz, Eva M; Ghandi, Mahmoud; Treacy, Daniel J; Wagle, Nikhil; Garraway, Levi A

    2014-12-01

    The use of targeted therapeutics directed against BRAF(V600)-mutant metastatic melanoma improves progression-free survival in many patients; however, acquired drug resistance remains a major medical challenge. By far, the most common clinical resistance mechanism involves reactivation of the MAPK (RAF/MEK/ERK) pathway by a variety of mechanisms. Thus, targeting ERK itself has emerged as an attractive therapeutic concept, and several ERK inhibitors have entered clinical trials. We sought to preemptively determine mutations in ERK1/2 that confer resistance to either ERK inhibitors or combined RAF/MEK inhibition in BRAF(V600)-mutant melanoma. Using a random mutagenesis screen, we identified multiple point mutations in ERK1 (MAPK3) and ERK2 (MAPK1) that could confer resistance to ERK or RAF/MEK inhibitors. ERK inhibitor-resistant alleles were sensitive to RAF/MEK inhibitors and vice versa, suggesting that the future development of alternating RAF/MEK and ERK inhibitor regimens might help circumvent resistance to these agents. ©2014 American Association for Cancer Research.

  11. Tranexamic Acid Failed to Reverse the Anticoagulant Effect and Bleeding by an Oral Direct Factor Xa Inhibitor Edoxaban.

    Science.gov (United States)

    Honda, Yuko; Furugohri, Taketoshi; Morishima, Yoshiyuki

    2018-01-01

    Agents to reverse the anticoagulant effect of edoxaban, an oral direct factor Xa inhibitor, would be desirable in emergency situations. The aim of this study is to determine the effect of tranexamic acid, an antifibrinolytic agent, on the anticoagulant activity and bleeding by edoxaban in rats. A supratherapeutic dose of edoxaban (3 mg/kg) was intravenously administered to rats. Three minutes after dosing, tranexamic acid (100 mg/kg) was given intravenously. Bleeding was induced by making an incision with a blade on the planta 8 min after edoxaban injection and bleeding time was measured. Prothrombin time (PT) and clot lysis were examined. A supratherapeutic dose of edoxaban significantly prolonged PT and bleeding time. Tranexamic acid did not affect PT or bleeding time prolonged by edoxaban, although tranexamic acid significantly inhibited clot lysis in rat plasma. An antifibrinolytic agent tranexamic acid failed to reverse the anticoagulant effect and bleeding by edoxaban in rats. © 2017 S. Karger AG, Basel.

  12. A novel method for screening the glutathione transferase inhibitors

    Directory of Open Access Journals (Sweden)

    Węgrzyn Grzegorz

    2009-03-01

    Full Text Available Abstract Background Glutathione transferases (GSTs belong to the family of Phase II detoxification enzymes. GSTs catalyze the conjugation of glutathione to different endogenous and exogenous electrophilic compounds. Over-expression of GSTs was demonstrated in a number of different human cancer cells. It has been found that the resistance to many anticancer chemotherapeutics is directly correlated with the over-expression of GSTs. Therefore, it appears to be important to find new GST inhibitors to prevent the resistance of cells to anticancer drugs. In order to search for glutathione transferase (GST inhibitors, a novel method was designed. Results Our results showed that two fragments of GST, named F1 peptide (GYWKIKGLV and F2 peptide (KWRNKKFELGLEFPNL, can significantly inhibit the GST activity. When these two fragments were compared with several known potent GST inhibitors, the order of inhibition efficiency (measured in reactions with 2,4-dinitrochlorobenzene (CDNB and glutathione as substrates was determined as follows: tannic acid > cibacron blue > F2 peptide > hematin > F1 peptide > ethacrynic acid. Moreover, the F1 peptide appeared to be a noncompetitive inhibitor of the GST-catalyzed reaction, while the F2 peptide was determined as a competitive inhibitor of this reaction. Conclusion It appears that the F2 peptide can be used as a new potent specific GST inhibitor. It is proposed that the novel method, described in this report, might be useful for screening the inhibitors of not only GST but also other enzymes.

  13. Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    Science.gov (United States)

    Pearman, B. P.; Calle, L. M.; Zhang, X.; Li, W.; Buhrow, J. W.; Johnsey, M. N.; Montgomery, E. L.; Fitzpatrick, L.; Surma, J. M.

    2015-01-01

    The NASA Kennedy Space Center's Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods. Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The release of the inhibitors from the microparticles in basic solution was studied. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed. The inhibition efficacy of the inhibitors, incorporated directly and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.

  14. In vitro dissolution of calcium oxalate stones with ethylenediaminetetraacetic acid and snake venom thrombin-like enzyme.

    Science.gov (United States)

    Zhou, Xiang-Jun; Zhang, Jie; Zhang, Ci; Xu, Chang-Geng

    2014-01-01

    The aim of this study was to determine the feasibility of using snake venom thrombin-like enzyme (SVTLE) and/or ethylenediaminetetraacetic acid (EDTA) to dissolve calcium oxalate stones in vitro. Seven calcium oxalate stones were incubated with various chemolytic agents [EDTA, Tris-HCl/EDTA (TE) buffer or SVTLE diluted in TE buffer]. The pH, calcium concentration, stone weight and stone surface integrity were recorded, as well as related pathological changes to bladder mucosae. Compared to all other solutions, those containing SVTLE and buffered EDTA had higher concentrations of mobilized calcium and caused significantly more stone weight loss, stone fragility and gaps in the calcium crystals. Also, there were no adverse pathological effects on rabbit bladder mucosae from any of the solutions. The data indicate that buffered EDTA and SVTLE can be used to dissolve calcium oxalate stones and, at the concentrations used here, do not damage tissue. 2013 S. Karger AG, Basel.

  15. Discovery of novel STAT3 small molecule inhibitors via in silico site-directed fragment-based drug design.

    Science.gov (United States)

    Yu, Wenying; Xiao, Hui; Lin, Jiayuh; Li, Chenglong

    2013-06-13

    Constitutive activation of signal transducer and activator of transcription 3 (STAT3) has been validated as an attractive therapeutic target for cancer therapy. To stop both STAT3 activation and dimerization, a viable strategy is to design inhibitors blocking its SH2 domain phosphotyrosine binding site that is responsible for both actions. A new fragment-based drug design (FBDD) strategy, in silico site-directed FBDD, was applied in this study. A designed novel compound, 5,8-dioxo-6-(pyridin-3-ylamino)-5,8-dihydronaphthalene-1-sulfonamide (LY5), was confirmed to bind to STAT3 SH2 by fluorescence polarization assay. In addition, four out of the five chosen compounds have IC50 values lower than 5 μM for the U2OS cancer cells. 8 (LY5) has an IC50 range in 0.5-1.4 μM in various cancer cell lines. 8 also suppresses tumor growth in an in vivo mouse model. This study has demonstrated the utility of this approach and could be used to other drug targets in general.

  16. The regulatory mechanism of fruit ripening revealed by analyses of direct targets of the tomato MADS-box transcription factor RIPENING INHIBITOR

    Science.gov (United States)

    Fujisawa, Masaki; Ito, Yasuhiro

    2013-01-01

    The developmental process of ripening is unique to fleshy fruits and a key factor in fruit quality. The tomato (Solanum lycopersicum) MADS-box transcription factor RIPENING INHIBITOR (RIN), one of the earliest-acting ripening regulators, is required for broad aspects of ripening, including ethylene-dependent and -independent pathways. However, our knowledge of direct RIN target genes has been limited, considering the broad effects of RIN on ripening. In a recent work published in The Plant Cell, we identified 241 direct RIN target genes by chromatin immunoprecipitation coupled with DNA microarray (ChIP-chip) and transcriptome analysis. Functional classification of the targets revealed that RIN participates in the regulation of many biological processes including well-known ripening processes such as climacteric ethylene production and lycopene accumulation. In addition, we found that ethylene is required for the full expression of RIN and several RIN-targeting transcription factor genes at the ripening stage. Here, based on our recently published findings and additional data, we discuss the ripening processes regulated by RIN and the interplay between RIN and ethylene. PMID:23518588

  17. Effect of MCM09, an active site-directed inhibitor of factor Xa, on B16-BL6 melanoma lung colonies in mice.

    Science.gov (United States)

    Rossi, C; Hess, S; Eckl, R W; di Lena, A; Bruno, A; Thomas, O; Poggi, A

    2006-03-01

    Treatment with anticoagulant drugs has shown potential inhibitory effect on tumor invasion, although the relationship with clotting inhibition was not clear. The aim of our study was to evaluate the potential antitumor activity of MCM09, a newly developed, active site-directed, small molecule inhibitor of factor Xa (FXa) [WO0216312], and to relate the findings to anticlotting potency. MCM09 (0.1-10 mg kg(-1)) or heparin (H; 10 mg kg(-1)) was injected intravenously (i.v.), with 5 x 10(4) B16-BL6 melanoma cells, in C57BL/6 mice. Mice were killed after 18 days, to count lung colonies. Ex vivo anticoagulant activity was measured by activated partial thromboplastin time (APTT) on mouse plasma. MCM09, a selective inhibitor of FXa (IC-50 = 2.4 nm against human FXa), inhibited in a dose-dependent manner B16-BL6 melanoma lung colonies in mice. Mean lung metastasis number was 20.9 +/- 4.8 in controls (n = 10), 1.2 +/- 0.4 in mice treated with H, 10 mg kg(-1) i.v. (P < 0.01), 0.9 +/- 0.3, 9.2 +/- 2.2 and 15.5 +/- 2.6 in mice treated with MCM09, at 10 (P < 0.01), 1 (P < 0.05) and 0.1 mg kg(-1) i.v. (ns), respectively. MCM09 (10 mg kg(-1) i.v.) significantly prolonged APTT (57.1 +/- 10.2 s) 30 min after i.v. injection when compared with controls (25.3 +/- 1.6 s; P < 0.05). Lung colonies were 74.2-72.6% reduced by MCM09 (10 mg kg(-1)) given 60 or 120 min before cells, but not by MCM09 given 60 min thereafter, suggesting a direct cell interaction as a mechanism underlying antitumor activity.

  18. Safety and Efficacy of Argatroban in the Management of Heparin-Induced Thrombocytopenia

    Directory of Open Access Journals (Sweden)

    Bernd Saugel

    2011-01-01

    Full Text Available Heparin-induced thrombocytopenia (HIT is a life-threatening adverse reaction to heparin therapy that is characterized by thrombocytopenia and an increased risk of venous and arterial thrombosis. According to guidelines, in patients with strongly suspected or confirmed HIT all sources of heparin have to be discontinued and an alternative, nonheparin anticoagulant for HIT treatment must immediately be started. For both the prophylaxis of thrombembolic events in HIT and the treatment of HIT with thrombosis the direct thrombin inhibitor argatroban is approved in the United States. The objective of this review is to describe the mechanism of action and the pharmacokinetic profile of argatroban, to characterize argatroban regarding its safety and therapeutic efficacy and to discuss its place in therapy in HIT.

  19. Recombinant activated factor VII: its mechanism of action and role in the control of hemorrhage.

    Science.gov (United States)

    Allen, Geoffrey A; Hoffman, Maureane; Roberts, Harold R; Monroe, Dougald M

    2002-12-01

    Recombinant activated factor VII (rFVIIa) has proven both safe and efficacious in the treatment of bleeding episodes in patients with hemophilia A or B who have developed inhibitors. More recently, a growing number of reports suggests that rFVIIa may also have indications for the treatment of bleeding in patients with other hemostatic disorders, including qualitative and quantitative platelet defects, factor deficiencies other than hemophilia, and in otherwise healthy patients with uncontrollable hemorrhage following surgery or trauma. We have attempted to reconcile the various proposed mechanisms of action of rFVIIa with its apparent efficacy in such diverse clinical settings. A review of the literature was performed to determine those clinical scenarios in which rFVIIa appears to have been effective in controlling associated hemorrhage. Findings from our group and others have demonstrated that rFVIIa is able to directly activate factor X and increase thrombin production on the surface of activated platelets in the absence of factor VIII or IX, as well as to improve thrombin generation in thrombocytopenia, and to yield a fibrin dot more resistant to fibrinolysis in vitro. Through these primary mechanisms, we believe that rFVIIa may be able to compensate for a variety of defects in hemostasis and merits further investigation as a general therapeutic for uncontrollable hemorrhage.

  20. Unfavorably Altered Fibrin Clot Properties in Patients with Eosinophilic Granulomatosis with Polyangiitis (Churg-Strauss Syndrome): Association with Thrombin Generation and Eosinophilia.

    Science.gov (United States)

    Mastalerz, Lucyna; Celińska-Lӧwenhoff, Magdalena; Krawiec, Piotr; Batko, Bogdan; Tłustochowicz, Witold; Undas, Anetta

    2015-01-01

    Given reports on the increased prevalence of thromboembolic incidents in patients with eosinophilic granulomatosis with polyangiitis (EGPA; Churg-Strauss syndrome), we investigated whether fibrin clot properties are unfavorably altered in EGPA. Ex vivo plasma fibrin clot characteristics, including clot permeability, turbidimetry and efficiency of fibrinolysis using two assays, were investigated in 34 consecutive patients with remission in EGPA according to the Birmingham Vasculitis Activity Score version 3 (23 female, 11 male), aged 48 (range, 21-80) years. The control group comprised 34 age- and sex- matched volunteers. Compared with controls, patients with EGPA were characterized by denser fiber clots (estimated pore size, Ks, 7.30±0.93 vs 10.14±1.07 10-9 cm2), faster fibrin polymerization (lag phase in a turbidimetric curve, 41.8±3.6 vs 47.4±2.9 s), thicker fibrin fibers (maximum absorbance, ΔAbs, 0.87±0.09 vs 0.72±0.07), higher maximum levels of D-dimer released from clots (DDmax 4.10±0.46 vs 3.54±0.35 mg/L), and prolonged clot lysis time (t50%; 9.50±1.45 vs 7.56±0.87 min); all p<0.0001. Scanning electron microscopy images confirmed denser plasma fibrin networks composed of thinner fibers formed in EGPA. Antineutrophil cytoplasmic antibody status and C-reactive protein did not affect clot variables. Multivariate analysis adjusted for fibrinogen showed that Ks was predicted by eosinophil count, peak thrombin generation, factor VIII, and soluble CD40 ligand, whereas eosinophil count, peak thrombin generation and antiplasmin predicted t50%. This study is the first to show that EGPA is associated with prothrombotic plasma fibrin clot phenotype, which may contribute to thromboembolic manifestations reported in this disease.

  1. Unfavorably Altered Fibrin Clot Properties in Patients with Eosinophilic Granulomatosis with Polyangiitis (Churg-Strauss Syndrome: Association with Thrombin Generation and Eosinophilia.

    Directory of Open Access Journals (Sweden)

    Lucyna Mastalerz

    Full Text Available Given reports on the increased prevalence of thromboembolic incidents in patients with eosinophilic granulomatosis with polyangiitis (EGPA; Churg-Strauss syndrome, we investigated whether fibrin clot properties are unfavorably altered in EGPA.Ex vivo plasma fibrin clot characteristics, including clot permeability, turbidimetry and efficiency of fibrinolysis using two assays, were investigated in 34 consecutive patients with remission in EGPA according to the Birmingham Vasculitis Activity Score version 3 (23 female, 11 male, aged 48 (range, 21-80 years. The control group comprised 34 age- and sex- matched volunteers.Compared with controls, patients with EGPA were characterized by denser fiber clots (estimated pore size, Ks, 7.30±0.93 vs 10.14±1.07 10-9 cm2, faster fibrin polymerization (lag phase in a turbidimetric curve, 41.8±3.6 vs 47.4±2.9 s, thicker fibrin fibers (maximum absorbance, ΔAbs, 0.87±0.09 vs 0.72±0.07, higher maximum levels of D-dimer released from clots (DDmax 4.10±0.46 vs 3.54±0.35 mg/L, and prolonged clot lysis time (t50%; 9.50±1.45 vs 7.56±0.87 min; all p<0.0001. Scanning electron microscopy images confirmed denser plasma fibrin networks composed of thinner fibers formed in EGPA. Antineutrophil cytoplasmic antibody status and C-reactive protein did not affect clot variables. Multivariate analysis adjusted for fibrinogen showed that Ks was predicted by eosinophil count, peak thrombin generation, factor VIII, and soluble CD40 ligand, whereas eosinophil count, peak thrombin generation and antiplasmin predicted t50%.This study is the first to show that EGPA is associated with prothrombotic plasma fibrin clot phenotype, which may contribute to thromboembolic manifestations reported in this disease.

  2. Thrombin selectively engages LIM kinase 1 and slingshot-1L phosphatase to regulate NF-κB activation and endothelial cell inflammation.

    Science.gov (United States)

    Leonard, Antony; Marando, Catherine; Rahman, Arshad; Fazal, Fabeha

    2013-11-01

    Endothelial cell (EC) inflammation is a central event in the pathogenesis of many pulmonary diseases such as acute lung injury and its more severe form acute respiratory distress syndrome. Alterations in actin cytoskeleton are shown to be crucial for NF-κB regulation and EC inflammation. Previously, we have described a role of actin binding protein cofilin in mediating cytoskeletal alterations essential for NF-κB activation and EC inflammation. The present study describes a dynamic mechanism in which LIM kinase 1 (LIMK1), a cofilin kinase, and slingshot-1Long (SSH-1L), a cofilin phosphatase, are engaged by procoagulant and proinflammatory mediator thrombin to regulate these responses. Our data show that knockdown of LIMK1 destabilizes whereas knockdown of SSH-1L stabilizes the actin filaments through modulation of cofilin phosphorylation; however, in either case thrombin-induced NF-κB activity and expression of its target genes (ICAM-1 and VCAM-1) is inhibited. Further mechanistic analyses reveal that knockdown of LIMK1 or SSH-1L each attenuates nuclear translocation and thereby DNA binding of RelA/p65. In addition, LIMK1 or SSH-1L depletion inhibited RelA/p65 phosphorylation at Ser(536), a critical event conferring transcriptional competency to the bound NF-κB. However, unlike SSH-1L, LIMK1 knockdown also impairs the release of RelA/p65 by blocking IKKβ-dependent phosphorylation/degradation of IκBα. Interestingly, LIMK1 or SSH-1L depletion failed to inhibit TNF-α-induced RelA/p65 nuclear translocation and proinflammatory gene expression. Thus this study provides evidence for a novel role of LIMK1 and SSH-1L in selectively regulating EC inflammation associated with intravascular coagulation.

  3. Analysis of Milk from Mothers Who Delivered Prematurely Reveals Few Changes in Proteases and Protease Inhibitors across Gestational Age at Birth and Infant Postnatal Age.

    Science.gov (United States)

    Demers-Mathieu, Veronique; Nielsen, Søren Drud; Underwood, Mark A; Borghese, Robyn; Dallas, David C

    2017-06-01

    Background: Peptidomics research has demonstrated that protease activity is higher in breast milk from preterm-delivering mothers than from term-delivering mothers. However, to our knowledge, the effect of the degree of prematurity and postnatal age on proteases and protease inhibitors in human milk remains unknown. Objective: We aimed to determine the change of proteases and protease inhibitors in milk from mothers who delivered prematurely across gestational age (GA) and postnatal age. Methods: Milk samples were collected from 18 mothers aged 26-40 y who delivered preterm infants and who lacked mastitis. For analysis, samples were separated into 2 groups: 9 from early GA (EGA) (24-26 wk GA)-delivering mothers and 9 from late GA (LGA) (27-32 wk GA)-delivering mothers. Within the 9 samples in each group, the collection time ranged from postnatal days 2 to 47. The activity and predicted activity of proteases in preterm milk were determined with the use of fluorometric and spectrophotometric assays and peptidomics, respectively. Protease and protease inhibitor concentrations were determined with the use of ELISA. Linear mixed models were applied to compare enzymes across GA and postnatal age. Results: Carboxypeptidase B2, kallikrein, plasmin, elastase, thrombin, and cytosol aminopeptidase were present and active in the milk of preterm-delivering mothers. Most milk protease and antiprotease concentrations did not change with GA or postnatal age. However, the concentration and activity of kallikrein, the most abundant and active protease in preterm milk, increased by 25.4 ng · mL -1 · d -1 and 0.454 μg · mL -1 · d -1 postnatally, respectively, in EGA milk samples while remaining stable in LGA milk samples. Conclusions: This research demonstrates that proteases are active in human milk and begin to degrade milk protein within the mammary gland before consumption by infants. Proteases and protease inhibitors in milk from mothers of premature infants mostly did not

  4. 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors: From Chemical Biology to Agrochemicals.

    Science.gov (United States)

    Ndikuryayo, Ferdinand; Moosavi, Behrooz; Yang, Wen-Chao; Yang, Guang-Fu

    2017-10-04

    The development of new herbicides is receiving considerable attention to control weed biotypes resistant to current herbicides. Consequently, new enzymes are always desired as targets for herbicide discovery. 4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is an enzyme engaged in photosynthetic activity and catalyzes the transformation of 4-hydroxyphenylpyruvic acid (HPPA) into homogentisic acid (HGA). HPPD inhibitors constitute a promising area of discovery and development of innovative herbicides with some advantages, including excellent crop selectivity, low application rates, and broad-spectrum weed control. HPPD inhibitors have been investigated for agrochemical interests, and some of them have already been commercialized as herbicides. In this review, we mainly focus on the chemical biology of HPPD, discovery of new potential inhibitors, and strategies for engineering transgenic crops resistant to current HPPD-inhibiting herbicides. The conclusion raises some relevant gaps for future research directions.

  5. Resistance Patterns Associated with HCV NS5A Inhibitors Provide Limited Insight into Drug Binding

    Directory of Open Access Journals (Sweden)

    Moheshwarnath Issur

    2014-11-01

    Full Text Available Direct-acting antivirals (DAAs have significantly improved the treatment of infection with the hepatitis C virus. A promising class of novel antiviral agents targets the HCV NS5A protein. The high potency and broad genotypic coverage are favorable properties. NS5A inhibitors are currently assessed in advanced clinical trials in combination with viral polymerase inhibitors and/or viral protease inhibitors. However, the clinical use of NS5A inhibitors is also associated with new challenges. HCV variants with decreased susceptibility to these drugs can emerge and compromise therapy. In this review, we discuss resistance patterns in NS5A with focus prevalence and implications for inhibitor binding.

  6. UPLC-MRM Mass Spectrometry Method for Measurement of the Coagulation Inhibitors Dabigatran and Rivaroxaban in Human Plasma and Its Comparison with Functional Assays.

    Science.gov (United States)

    Kuhn, Joachim; Gripp, Tatjana; Flieder, Tobias; Dittrich, Marcus; Hendig, Doris; Busse, Jessica; Knabbe, Cornelius; Birschmann, Ingvild

    2015-01-01

    The fast, precise, and accurate measurement of the new generation of oral anticoagulants such as dabigatran and rivaroxaban in patients' plasma my provide important information in different clinical circumstances such as in the case of suspicion of overdose, when patients switch from existing oral anticoagulant, in patients with hepatic or renal impairment, by concomitant use of interaction drugs, or to assess anticoagulant concentration in patients' blood before major surgery. Here, we describe a quick and precise method to measure the coagulation inhibitors dabigatran and rivaroxaban using ultra-performance liquid chromatography electrospray ionization-tandem mass spectrometry in multiple reactions monitoring (MRM) mode (UPLC-MRM MS). Internal standards (ISs) were added to the sample and after protein precipitation; the sample was separated on a reverse phase column. After ionization of the analytes the ions were detected using electrospray ionization-tandem mass spectrometry. Run time was 2.5 minutes per injection. Ion suppression was characterized by means of post-column infusion. The calibration curves of dabigatran and rivaroxaban were linear over the working range between 0.8 and 800 μg/L (r >0.99). Limits of detection (LOD) in the plasma matrix were 0.21 μg/L for dabigatran and 0.34 μg/L for rivaroxaban, and lower limits of quantification (LLOQ) in the plasma matrix were 0.46 μg/L for dabigatran and 0.54 μg/L for rivaroxaban. The intraassay coefficients of variation (CVs) for dabigatran and rivaroxaban were method comparison between our UPLC-MRM MS method, the commercially available automated Direct Thrombin Inhibitor assay (DTI assay) for dabigatran measurement from CoaChrom Diagnostica, as well as the automated anti-Xa assay for rivaroxaban measurement from Chromogenix both performed by ACL-TOP showed a high degree of correlation. However, UPLC-MRM MS measurement of dabigatran and rivaroxaban has a much better selectivity than classical functional

  7. SGLT2 Inhibitors and the Diabetic Kidney.

    Science.gov (United States)

    Fioretto, Paola; Zambon, Alberto; Rossato, Marco; Busetto, Luca; Vettor, Roberto

    2016-08-01

    Diabetic nephropathy (DN) is the most common cause of end-stage renal disease worldwide. Blood glucose and blood pressure control reduce the risk of developing this complication; however, once DN is established, it is only possible to slow progression. Sodium-glucose cotransporter 2 (SGLT2) inhibitors, the most recent glucose-lowering oral agents, may have the potential to exert nephroprotection not only through improving glycemic control but also through glucose-independent effects, such as blood pressure-lowering and direct renal effects. It is important to consider, however, that in patients with impaired renal function, given their mode of action, SGLT2 inhibitors are less effective in lowering blood glucose. In patients with high cardiovascular risk, the SGLT2 inhibitor empagliflozin lowered the rate of cardiovascular events, especially cardiovascular death, and substantially reduced important renal outcomes. Such benefits on DN could derive from effects beyond glycemia. Glomerular hyperfiltration is a potential risk factor for DN. In addition to the activation of the renin-angiotensin-aldosterone system, renal tubular factors, including SGLT2, contribute to glomerular hyperfiltration in diabetes. SGLT2 inhibitors reduce sodium reabsorption in the proximal tubule, causing, through tubuloglomerular feedback, afferent arteriole vasoconstriction and reduction in hyperfiltration. Experimental studies showed that SGLT2 inhibitors reduced hyperfiltration and decreased inflammatory and fibrotic responses of proximal tubular cells. SGLT2 inhibitors reduced glomerular hyperfiltration in patients with type 1 diabetes, and in patients with type 2 diabetes, they caused transient acute reductions in glomerular filtration rate, followed by a progressive recovery and stabilization of renal function. Interestingly, recent studies consistently demonstrated a reduction in albuminuria. Although these data are promising, only dedicated renal outcome trials will clarify whether

  8. Activated protein C plays no major roles in the inhibition of coagulation or increased fibrinolysis in acute coagulopathy of trauma-shock: a systematic review.

    Science.gov (United States)

    Gando, Satoshi; Mayumi, Toshihiko; Ukai, Tomohiko

    2018-01-01

    The pathophysiological mechanisms of acute coagulopathy of trauma-shock (ACOTS) are reported to include activated protein C-mediated suppression of thrombin generation via the proteolytic inactivation of activated Factor V (FVa) and FVIIIa; an increased fibrinolysis via neutralization of plasminogen activator inhibitor-1 (PAI-1) by activated protein C. The aims of this study are to review the evidences for the role of activated protein C in thrombin generation and fibrinolysis and to validate the diagnosis of ACOTS based on the activated protein C dynamics. We conducted systematic literature search (2007-2017) using PubMed, the Cochrane Database of Systematic Reviews (CDSR), and the Cochrane Central Register of Controlled Trials (CENTRAL). Clinical studies on trauma that measured activated protein C or the circulating levels of activated protein C-related coagulation and fibrinolysis markers were included in our study. Out of 7613 studies, 17 clinical studies met the inclusion criteria. The levels of activated protein C in ACOTS were inconsistently decreased, showed no change, or were increased in comparison to the control groups. Irrespective of the activated protein C levels, thrombin generation was always preserved or highly elevated. There was no report on the activated protein C-mediated neutralization of PAI-1 with increased fibrinolysis. No included studies used unified diagnostic criteria to diagnose ACOTS and those studies also used different terms to refer to the condition known as ACOTS. None of the studies showed direct cause and effect relationships between activated protein C and the suppression of coagulation and increased fibrinolysis. No definitive diagnostic criteria or unified terminology have been established for ACOTS based on the activated protein C dynamics.

  9. α2-Macroglobulin Is a Significant In Vivo Inhibitor of Activated Protein C and Low APC:α2M Levels Are Associated with Venous Thromboembolism.

    Science.gov (United States)

    Martos, Laura; Ramón, Luis Andrés; Oto, Julia; Fernández-Pardo, Álvaro; Bonanad, Santiago; Cid, Ana Rosa; Gruber, Andras; Griffin, John H; España, Francisco; Navarro, Silvia; Medina, Pilar

    2018-04-01

     Activated protein C (APC) is a major regulator of thrombin formation. Two major plasma inhibitors form complexes with APC, protein C inhibitor (PCI) and α 1 -antitrypsin (α 1 AT), and these complexes have been quantified by specific enzyme-linked immunosorbent assays (ELISAs). Also, complexes of APC with α 2 -macroglobulin (α 2 M) have been observed by immunoblotting. Here, we report an ELISA for APC:α 2 M complexes in plasma.  Plasma samples were pre-treated with dithiothreitol and then with iodoacetamide. The detection range of the newly developed APC:α 2 M assay was 0.031 to 8.0 ng/mL of complexed APC. Following infusions of APC in humans and baboons, complexes of APC with α 2 M, PCI and α 1 AT were quantified. These complexes as well as circulating APC were also measured in 121 patients with a history of venous thromboembolism (VTE) and 119 matched controls.  In all the in vivo experiments, α 2 M was a significant APC inhibitor. The VTE case-control study showed that VTE patients had significantly lower APC:α 2 M and APC levels than the controls ( p  APC:α 2 M or the lowest quartile of APC had approximately four times more VTE risk than those in the highest quartile of APC:α 2 M or of APC. The risk increased for individuals with low levels of both parameters.  The APC:α 2 M assay reported here may be useful to help monitor the in vivo fate of APC in plasma. In addition, our results show that a low APC:α 2 M level is associated with increased VTE risk. Schattauer GmbH Stuttgart.

  10. Mechanism of action of recombinant activated factor VII: an update.

    Science.gov (United States)

    Hedner, Ulla

    2006-01-01

    Bleeding episodes in patients with hemophilia and inhibitors must be managed using agents that are hemostatically active in the absence of factor VIII or IX. Activated prothrombin complex concentrates have long been used in this context. However, the search for safer and more effective agents has led to the development of recombinant activated factor VII (rFVIIa; NovoSeven, Novo Nordisk, Bagsvaerd, Denmark). This paper presents an update on the mechanism of action of rFVIIa, and describes how pharmacologic doses of this agent enhance thrombin production and thus contribute to the development of a stable, lysis-resistant fibrin plug at the site of vessel damage. This mechanism explains the reported efficacy of rFVIIa in a range of clinical situations characterized by impaired thrombin generation.

  11. UPLC-MRM Mass Spectrometry Method for Measurement of the Coagulation Inhibitors Dabigatran and Rivaroxaban in Human Plasma and Its Comparison with Functional Assays.

    Directory of Open Access Journals (Sweden)

    Joachim Kuhn

    least one week. A method comparison between our UPLC-MRM MS method, the commercially available automated Direct Thrombin Inhibitor assay (DTI assay for dabigatran measurement from CoaChrom Diagnostica, as well as the automated anti-Xa assay for rivaroxaban measurement from Chromogenix both performed by ACL-TOP showed a high degree of correlation. However, UPLC-MRM MS measurement of dabigatran and rivaroxaban has a much better selectivity than classical functional assays measuring activities of various coagulation factors which are susceptible to interference by other coagulant drugs.Overall, we developed and validated a sensitive and specific UPLC-MRM MS assay for the quick and specific measurement of dabigatran and rivaroxaban in human plasma.

  12. The M358R variant of α_1-proteinase inhibitor inhibits coagulation factor VIIa

    International Nuclear Information System (INIS)

    Sheffield, William P.; Bhakta, Varsha

    2016-01-01

    The naturally occurring M358R mutation of the plasma serpin α_1-proteinase inhibitor (API) changes both its cleavable reactive centre bond to Arg–Ser and the efficacy with which it inhibits different proteases, reducing the rate of inhibition of neutrophil elastase, and enhancing that of thrombin, factor XIa, and kallikrein, by several orders of magnitude. Although another plasma serpin with an Arg–Ser reactive centre, antithrombin (AT), has been shown to inhibit factor VIIa (FVIIa), no published data are available with respect to FVIIa inhibition by API M358R. Recombinant bacterially-expressed API M358R and plasma-derived AT were therefore compared using gel-based and kinetic assays of FVIIa integrity and activity. Under pseudo-first order conditions of excess serpin over protease, both AT and API M358R formed denaturation-resistant inhibitory complexes with FVIIa in reactions accelerated by TF; AT, but not API M358R, also required heparin for maximal activity. The second order rate constant for heparin-independent API M358R-mediated FVIIa inhibition was determined to be 7.8 ± 0.8 × 10"2 M"−"1sec"−"1. We conclude that API M358R inhibits FVIIa by forming inhibitory complexes of the serpin type more rapidly than AT in the absence of heparin. The likely 20-fold excess of API M358R over AT in patient plasma during inflammation raises the possibility that it could contribute to the hemorrhagic tendencies manifested by rare individuals expressing this mutant serpin. - Highlights: • The inhibitory specificity of the serpin alpha-1-proteinase inhibitor (API) is sharply altered in the M358R variant. • API M358R forms denaturation-resistant complexes with coagulation factor VIIa at a rate accelerated by tissue factor but unaffected by heparin. • Complex formation was shown by gel-based assays and quantified kinetically by inhibition of FVIIa-dependent amidolysis.

  13. Application of Molecular Modeling to Urokinase Inhibitors Development

    Directory of Open Access Journals (Sweden)

    V. B. Sulimov

    2014-01-01

    Full Text Available Urokinase-type plasminogen activator (uPA plays an important role in the regulation of diverse physiologic and pathologic processes. Experimental research has shown that elevated uPA expression is associated with cancer progression, metastasis, and shortened survival in patients, whereas suppression of proteolytic activity of uPA leads to evident decrease of metastasis. Therefore, uPA has been considered as a promising molecular target for development of anticancer drugs. The present study sets out to develop the new selective uPA inhibitors using computer-aided structural based drug design methods. Investigation involves the following stages: computer modeling of the protein active site, development and validation of computer molecular modeling methods: docking (SOL program, postprocessing (DISCORE program, direct generalized docking (FLM program, and the application of the quantum chemical calculations (MOPAC package, search of uPA inhibitors among molecules from databases of ready-made compounds to find new uPA inhibitors, and design of new chemical structures and their optimization and experimental examination. On the basis of known uPA inhibitors and modeling results, 18 new compounds have been designed, calculated using programs mentioned above, synthesized, and tested in vitro. Eight of them display inhibitory activity and two of them display activity about 10 μM.

  14. The refined 2.0 A X-ray crystal structure of the complex formed between bovine beta-trypsin and CMTI-I, a trypsin inhibitor from squash seeds (Cucurbita maxima). Topological similarity of the squash seed inhibitors with the carboxypeptidase A inhibitor from potatoes.

    Science.gov (United States)

    Bode, W; Greyling, H J; Huber, R; Otlewski, J; Wilusz, T

    1989-01-02

    The stoichiometric complex formed between bovine beta-trypsin and the Cucurbita maxima trypsin inhibitor I (CMTI-I) was crystallized and its X-ray crystal structure determined using Patterson search techniques. Its structure has been crystallographically refined to a final R value of 0.152 (6.0-2.0 A). CMTI-I is of ellipsoidal shape; it lacks helices or beta-sheets, but consists of turns and connecting short polypeptide stretches. The disulfide pairing is CYS-3I-20I, Cys-10I-22I and Cys-16I-28I. According to the polypeptide fold and disulfide connectivity its structure resembles that of the carboxypeptidase A inhibitor from potatoes. Thirteen of the 29 inhibitor residues are in direct contact with trypsin; most of them are in the primary binding segment Val-2I (P4)-Glu-9I (P4') which contains the reactive site bond Arg-5I-Ile-6I and is in a conformation observed also for other serine proteinase inhibitors.

  15. Structure-guided approach identifies a novel class of HIV-1 ribonuclease H inhibitors: binding mode insights through magnesium complexation and site-directed mutagenesis studies

    DEFF Research Database (Denmark)

    Poongavanam, Vasanthanathan; Corona, Angela; Steinmann, Casper

    2018-01-01

    is a long and expensive process that can be speeded up by in silico methods. In the present study, a structure-guided screening is coupled with a similarity-based search on the Specs database to identify a new class of HIV-1 RNase H inhibitors. Out of the 45 compounds selected for experimental testing, 15...... inhibited the RNase H function below 100 μM with three hits exhibiting IC50 values active compound, AA, inhibits HIV-1 RNase H with an IC50 of 5.1 μM and exhibits a Mg-independent mode of inhibition. Site-directed mutagenesis studies provide valuable insight into the binding mode of newly...

  16. The effect of phosphodiesterase-5 inhibitors on cerebral blood flow in humans

    DEFF Research Database (Denmark)

    Pauls, Mathilde Mh; Moynihan, Barry; Barrick, Thomas R

    2018-01-01

    , ED, type 2 diabetes, stroke, pulmonary hypertension, Becker muscular dystrophy and subarachnoid haemorrhage. Most studies used middle cerebral artery flow velocity to estimate CBF. Few studies employed direct measurements of tissue perfusion. Resting CBF velocity was unaffected by phosphodiesterase-5...... inhibitors, but cerebrovascular regulation was improved in ED, pulmonary hypertension, diabetes, Becker's and a group of healthy volunteers. This evidence suggests that phosphodiesterase-5 inhibitors improve responsiveness of the cerebral vasculature, particularly in disease states associated...

  17. Unfolding mechanism of thrombin-binding aptamer revealed by molecular dynamics simulation and Markov State Model.

    Science.gov (United States)

    Zeng, Xiaojun; Zhang, Liyun; Xiao, Xiuchan; Jiang, Yuanyuan; Guo, Yanzhi; Yu, Xinyan; Pu, Xuemei; Li, Menglong

    2016-04-05

    Thrombin-binding aptamer (TBA) with the sequence 5'GGTTGGTGTGGTTGG3' could fold into G-quadruplex, which correlates with functionally important genomic regionsis. However, unfolding mechanism involved in the structural stability of G-quadruplex has not been satisfactorily elucidated on experiments so far. Herein, we studied the unfolding pathway of TBA by a combination of molecular dynamics simulation (MD) and Markov State Model (MSM). Our results revealed that the unfolding of TBA is not a simple two-state process but proceeds along multiple pathways with multistate intermediates. One high flux confirms some observations from NMR experiment. Another high flux exhibits a different and simpler unfolding pathway with less intermediates. Two important intermediate states were identified. One is similar to the G-triplex reported in the folding of G-quadruplex, but lack of H-bonding between guanines in the upper plane. More importantly, another intermediate state acting as a connector to link the folding region and the unfolding one, was the first time identified, which exhibits higher population and stability than the G-triplex-like intermediate. These results will provide valuable information for extending our understanding the folding landscape of G-quadruplex formation.

  18. Noncoded amino acids in protein engineering: Structure-activity relationship studies of hirudin-thrombin interaction.

    Science.gov (United States)

    De Filippis, Vincenzo; Acquasaliente, Laura; Pontarollo, Giulia; Peterle, Daniele

    2018-01-01

    The advent of recombinant DNA technology allowed to site-specifically insert, delete, or mutate almost any amino acid in a given protein, significantly improving our knowledge of protein structure, stability, and function. Nevertheless, a quantitative description of the physical and chemical basis that makes a polypeptide chain to efficiently fold into a stable and functionally active conformation is still elusive. This mainly originates from the fact that nature combined, in a yet unknown manner, different properties (i.e., hydrophobicity, conformational propensity, polarizability, and hydrogen bonding capability) into the 20 standard natural amino acids, thus making difficult, if not impossible, to univocally relate the change in protein stability or function to the alteration of physicochemical properties caused by amino acid exchange(s). In this view, incorporation of noncoded amino acids with tailored side chains, allowing to finely tune the structure at a protein site, would facilitate to dissect the effects of a given mutation in terms of one or a few physicochemical properties, thus much expanding the scope of physical organic chemistry in the study of proteins. In this review, relevant applications from our laboratory will be presented on the use of noncoded amino acids in structure-activity relationships studies of hirudin binding to thrombin. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  19. Rapid, Automated, and Specific Immunoassay to Directly Measure Matrix Metalloproteinase-9–Tissue Inhibitor of Metalloproteinase-1 Interactions in Human Plasma Using AlphaLISA Technology: A New Alternative to Classical ELISA

    Directory of Open Access Journals (Sweden)

    Helena Pulido-Olmo

    2017-07-01

    Full Text Available The protocol describes a novel, rapid, and no-wash one-step immunoassay for highly sensitive and direct detection of the complexes between matrix metalloproteinases (MMPs and their tissue inhibitor of metalloproteinases (TIMPs based on AlphaLISA® technology. We describe two procedures: (i one approach is used to analyze MMP-9–TIMP-1 interactions using recombinant human MMP-9 with its corresponding recombinant human TIMP-1 inhibitor and (ii the second approach is used to analyze native or endogenous MMP-9–TIMP-1 protein interactions in samples of human plasma. Evaluating native MMP-9–TIMP-1 complexes using this approach avoids the use of indirect calculations of the MMP-9/TIMP-1 ratio for which independent MMP-9 and TIMP-1 quantifications by two conventional ELISAs are needed. The MMP-9–TIMP-1 AlphaLISA® assay is quick, highly simplified, and cost-effective and can be completed in less than 3 h. Moreover, the assay has great potential for use in basic and preclinical research as it allows direct determination of native MMP-9–TIMP-1 complexes in circulating blood as biofluid.

  20. Real-Time Inhibitor Recession Measurements in Two Space Shuttle Reusable Solid Rocket Motors

    Science.gov (United States)

    McWhorter, B. B.; Ewing, M. E.; Bolton, D. E.; Albrechtsen, K. U.; Earnest, T. E.; Noble, T. C.; Longaker, M.

    2003-01-01

    Real-time internal motor insulation char line recession measurements have been evaluated for two full-scale static tests of the Space Shuttle Reusable Solid Rocket Motor (RSRM). These char line recession measurements were recorded on the forward facing propellant grain inhibitors to better understand the thermal performance of these inhibitors. The RSRM propellant grain inhibitors are designed to erode away during motor operation, thus making it difficult to use post-fire observations to determine inhibitor thermal performance. Therefore, this new internal motor instrumentation is invaluable in establishing an accurate understanding of inhibitor recession versus motor operation time. The data for the first test was presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (AIAA 2001-3280) in July 2001. Since that time, a second full scale static test has delivered additional real-time data on inhibitor thermal performance. The evaluation of this data is presented in this paper. The second static test, in contrast to the first test, used a slightly different arrangement of instrumentation in the inhibitors. This instrumentation has yielded a better understanding of the inhibitor time dependent inboard tip recession. Graphs of inhibitor recession profiles with time are presented. Inhibitor thermal ablation models have been created from theoretical principals. The model predictions compare favorably with data from both tests. This verified modeling effort is important to support new inhibitor designs for a five segment Space Shuttle solid rocket motor. The internal instrumentation project on RSRM static tests is providing unique opportunities for other real-time internal motor measurements that could not otherwise be directly quantified.

  1. A historical sketch of the discovery and development of HIV-1 integrase inhibitors.

    Science.gov (United States)

    Savarino, Andrea

    2006-12-01

    The long process of HIV-1 integrase inhibitor discovery and development can be attributed to both the complexity of HIV-1 integration and poor 'integration' of these researches into mainstream investigations on antiretroviral therapy in the mid-1990s. Of note, some fungal extracts investigated during this period contain the beta-hydroxyketo group, later recognised to be a key structural requirement for keto-enol acids (also referred to as diketo acids) and other integrase inhibitors. This review reconstructs (in the general context of the history of AIDS research) the principal steps that led to the integrase inhibitors currently in clinical trials, and discusses possible future directions.

  2. Virtual screening of selective inhibitors of phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis

    Science.gov (United States)

    Podshivalov, D. D.; Timofeev, V. I.; Sidorov-Biryukov, D. D.; Kuranova, I. P.

    2017-05-01

    Bacterial phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis (PPAT Mt) is a convenient target protein for the directed search for selective inhibitors as potent antituberculosis drugs. Four compounds suitable for the detailed investigation of their interactions with PPAT Mt were found by virtual screening. The active-site region of the enzyme was chosen as the ligand-binding site. The positions of the ligands found by the docking were refined by molecular dynamics simulation. The nearest environment of the ligands, the positions of which in the active site of the enzyme were found in a computational experiment, was analyzed. The compounds under consideration were shown to directly interact with functionally important active-site amino-acid residues and block access of substrates to the active site. Therefore, these compounds can be used for the design of selective inhibitors of PPAT Mt as potent antituberculosis drugs.

  3. Italian intersociety consensus on DOAC use in internal medicine.

    Science.gov (United States)

    Prisco, Domenico; Ageno, Walter; Becattini, Cecilia; D'Angelo, Armando; Davì, Giovanni; De Cristofaro, Raimondo; Dentali, Francesco; Di Minno, Giovanni; Falanga, Anna; Gussoni, Gualberto; Masotti, Luca; Palareti, Gualtiero; Pignatelli, Pasquale; Santi, Roberto M; Santilli, Francesca; Silingardi, Mauro; Tufano, Antonella; Violi, Francesco

    2017-04-01

    The direct oral anticoagulants (DOACs) are drugs used in clinical practice since 2009 for the prevention of stroke or systemic embolism in non-valvular atrial fibrillation, and for the treatment and secondary prevention of venous thromboembolism. The four DOACs, including the three factor Xa inhibitors (rivaroxaban, apixaban and edoxaban) and one direct thrombin inhibitor (dabigatran) provide oral anticoagulation therapy alternatives to Vitamin K antagonists (VKAs). Despite their clear advantages, the DOACs require on the part of the internist a thorough knowledge of their pharmacokinetic and pharmacodynamic characteristics to ensure their correct use, laboratory monitoring and the appropriate management of adverse events. This document represents a consensus paper on the use of DOACs by representatives of three Italian scientific societies: the Italian Society of Internal Medicine (SIMI), the Federation of the Associations of Hospital Managers (FADOI), and the Society for the Study of Haemostasis and Thrombosis (SISET). This document formulates expert opinion guidance for pragmatic managing, monitoring and reversing the anticoagulant effect of DOACs in both chronic and emergency settings. This practical guidance may help the internist to create adequate protocols for patients hospitalized ion internal medicine wards, where patients are often elderly subjects affected by poly-morbidities and renal insufficiency, and, thus, require particular attention to drug-drug interactions and peri-procedural protocols.

  4. The M358R variant of α{sub 1}-proteinase inhibitor inhibits coagulation factor VIIa

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, William P., E-mail: sheffiel@mcmaster.ca [Canadian Blood Services, Centre for Innovation, Hamilton, Ontario (Canada); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario (Canada); Bhakta, Varsha [Canadian Blood Services, Centre for Innovation, Hamilton, Ontario (Canada)

    2016-02-12

    The naturally occurring M358R mutation of the plasma serpin α{sub 1}-proteinase inhibitor (API) changes both its cleavable reactive centre bond to Arg–Ser and the efficacy with which it inhibits different proteases, reducing the rate of inhibition of neutrophil elastase, and enhancing that of thrombin, factor XIa, and kallikrein, by several orders of magnitude. Although another plasma serpin with an Arg–Ser reactive centre, antithrombin (AT), has been shown to inhibit factor VIIa (FVIIa), no published data are available with respect to FVIIa inhibition by API M358R. Recombinant bacterially-expressed API M358R and plasma-derived AT were therefore compared using gel-based and kinetic assays of FVIIa integrity and activity. Under pseudo-first order conditions of excess serpin over protease, both AT and API M358R formed denaturation-resistant inhibitory complexes with FVIIa in reactions accelerated by TF; AT, but not API M358R, also required heparin for maximal activity. The second order rate constant for heparin-independent API M358R-mediated FVIIa inhibition was determined to be 7.8 ± 0.8 × 10{sup 2} M{sup −1}sec{sup −1}. We conclude that API M358R inhibits FVIIa by forming inhibitory complexes of the serpin type more rapidly than AT in the absence of heparin. The likely 20-fold excess of API M358R over AT in patient plasma during inflammation raises the possibility that it could contribute to the hemorrhagic tendencies manifested by rare individuals expressing this mutant serpin. - Highlights: • The inhibitory specificity of the serpin alpha-1-proteinase inhibitor (API) is sharply altered in the M358R variant. • API M358R forms denaturation-resistant complexes with coagulation factor VIIa at a rate accelerated by tissue factor but unaffected by heparin. • Complex formation was shown by gel-based assays and quantified kinetically by inhibition of FVIIa-dependent amidolysis.

  5. Endothelium-dependent relaxation induced by cathepsin G in porcine pulmonary arteries

    Science.gov (United States)

    Glusa, Erika; Adam, Christine

    2001-01-01

    Serine proteinases elicit profound cellular effects in various tissues mediated by activation of proteinase-activated receptors (PAR). In the present study, we investigated the vascular effects of cathepsin G, a serine proteinase that is present in the azurophil granules of leukocytes and is known to activate several cells that express PARs. In prostaglandin F2α (3 μM)-precontracted rings from porcine pulmonary arteries with intact endothelium, cathepsin G caused concentration-dependent relaxant responses (pEC50=9.64±0.12). The endothelium-dependent relaxant effect of cathepsin G could also be demonstrated in porcine coronary arteries (pEC50=9.23±0.07). In pulmonary arteries the cathepsin G-induced relaxation was inhibited after blockade of nitric oxide synthesis by L-NAME (200 μM) and was absent in endothelium-denuded vessels. Bradykinin- and cathepsin G-induced relaxant effects were associated with a 5.7 fold and 2.4 fold increase in the concentration of cyclic GMP, respectively. Compared with thrombin and trypsin, which also produced an endothelium-dependent relaxation in pulmonary arteries, cathepsin G was 2.5 and four times more potent, respectively. Cathepsin G caused only small homologous desensitization. In cathepsin G-challenged vessels, thrombin was still able to elicit a relaxant effect. The effects of cathepsin G were blocked by soybean trypsin inhibitor (IC50=0.043 μg ml−1), suggesting that proteolytic activity is essential for induction of relaxation. Recombinant acetyl-eglin C proved to be a potent inhibitor (IC50=0.14 μg ml−1) of the cathepsin G effect, whereas neither indomethacin (3 μM) nor the thrombin inhibitor hirudin (5 ATU ml−1) elicited any inhibitory activity. Due to their polyanionic structure defibrotide (IC50=0.11 μg ml−1), heparin (IC50=0.48 μg ml−1) and suramin (IC50=1.85 μg ml−1) diminished significantly the relaxation in response to the basic protein cathepsin G. In conclusion, like

  6. Discovery of natural mouse serum derived HIV-1 entry inhibitor(s).

    Science.gov (United States)

    Wei, M; Chen, Y; Xi, J; Ru, S; Ji, M; Zhang, D; Fang, Q; Tang, B

    Among rationally designed human immunodeficiency virus 1 (HIV-1) inhibitors, diverse natural factors have showed as potent anti-HIV activity in human blood. We have discovered that the boiled supernatant of healthy mouse serum could suppress HIV-1 entry, and exhibited reduced inhibitory activity after trypsin digestion. Further analysis demonstrated that only the fraction containing 10-25 K proteins could inhibit HIV-1 mediated cell-cell fusion. These results suggest that the 10-25 K protein(s) is novel natural HIV-1 entry inhibitor(s). Our findings provide important information about novel natural HIV entry inhibitors in mouse serum.

  7. Role of tissue-type plasminogen activator and plasminogen activator inhibitor-1 in psychological stress and depression.

    Science.gov (United States)

    Tsai, Shih-Jen

    2017-12-22

    Major depressive disorder is a common illness worldwide, but the pathogenesis of the disorder remains incompletely understood. The tissue-type plasminogen activator-plasminogen proteolytic cascade is highly expressed in the brain regions involved in mood regulation and neuroplasticity. Accumulating evidence from animal and human studies suggests that tissue-type plasminogen activator and its chief inhibitor, plasminogen activator inhibitor-1, are related to stress reaction and depression. Furthermore, the neurotrophic hypothesis of depression postulates that compromised neurotrophin brain-derived neurotrophic factor (BDNF) function is directly involved in the pathophysiology of depression. In the brain, the proteolytic cleavage of proBDNF, a BDNF precursor, to mature BDNF through plasmin represents one mechanism that can change the direction of BDNF action. We also discuss the implications of tissue-type plasminogen activator and plasminogen activator inhibitor-1 alterations as biomarkers for major depressive disorder. Using drugs that increase tissue-type plasminogen activator or decrease plasminogen activator inhibitor-1 levels may open new avenues to develop conceptually novel therapeutic strategies for depression treatment.

  8. Stimulus-response coupling in platelets

    International Nuclear Information System (INIS)

    Huang, E.M.

    1986-01-01

    To understand the mechanism of stimulus-response coupling in platelets, the potentiating effect of succinate and lithium on platelet activation was examined. The action of succinate was immediate; preincubation with succinate did not lead to desensitization. Succinate was comparable to ADP in lowering cAMP levels previously elevated by PGl 2 . Since inhibition of cAMP is not a prerequisite for platelet activation, the mechanism of potentiation of succinate remains undefined. Lithium has also been shown to inhibit adenylate cyclase in PGl 2 -pretreated platelets. Lithium, however, can also inhibit inositol phosphate (InsP) phosphatase and lead to an accumulation of InsP. In human platelets, lithium also enhanced the thrombin-induced accumulation of [ 3 H]inositol-labelled inositol trisphosphate (InsP 3 ), and inositol bisphosphate (InsP 2 ). One hour after thrombin addition, all 3 inositol phosphates returned to near basal levels. In the presence of lithium, while labelled InsP 2 and InsP 3 returned to their respective basal levels, the InsP level remained elevated, consistent with the known inhibitory effect of lithium on InsP phosphatase. In thrombin-stimulated platelets prelabeled with [ 32 P]phosphate, lithium led to a decrease in labelled phosphatidylinositol 4-phosphate (PtdIns4P) as well as an enhanced production of labelled lysophosphatidylinositol, suggesting multiple effects of lithium on platelet phosphoinositide metabolism. These observed effects, however, occurred too slowly to be the mechanism by which lithium potentiated agonist-induced platelet activation. To study the agonist-receptor interaction, the effect of the specific, high affinity thrombin inhibitor, hirudin, on thrombin-induced accumulation of [ 3 H]inositol-labelled inositol phosphates was studied

  9. Two acidic, anticoagulant PLA2 isoenzymes purified from the venom of monocled cobra Naja kaouthia exhibit different potency to inhibit thrombin and factor Xa via phospholipids independent, non-enzymatic mechanism.

    Directory of Open Access Journals (Sweden)

    Ashis K Mukherjee

    Full Text Available The monocled cobra (Naja kaouthia is responsible for snakebite fatality in Indian subcontinent and in south-western China. Phospholipase A2 (PLA2; EC 3.1.1.4 is one of the toxic components of snake venom. The present study explores the mechanism and rationale(s for the differences in anticoagulant potency of two acidic PLA2 isoenzymes, Nk-PLA2α (13463.91 Da and Nk-PLA2β (13282.38 Da purified from the venom of N. kaouthia.By LC-MS/MS analysis, these PLA2s showed highest similarity (23.5% sequence coverage with PLA2 III isolated from monocled cobra venom. The catalytic activity of Nk-PLA2β exceeds that of Nk-PLA2α. Heparin differentially regulated the catalytic and anticoagulant activities of these Nk-PLA2 isoenzymes. The anticoagulant potency of Nk-PLA2α was comparable to commercial anticoagulants warfarin, and heparin/antithrombin-III albeit Nk-PLA2β demonstrated highest anticoagulant activity. The anticoagulant action of these PLA2s was partially contributed by a small but specific hydrolysis of plasma phospholipids. The strong anticoagulant effect of Nk-PLA2α and Nk-PLA2β was achieved via preferential, non-enzymatic inhibition of FXa (Ki = 43 nM and thrombin (Ki = 8.3 nM, respectively. Kinetics study suggests that the Nk-PLA2 isoenzymes inhibit their "pharmacological target(s" by uncompetitive mechanism without the requirement of phospholipids/Ca(2+. The anticoagulant potency of Nk-PLA2β which is higher than that of Nk-PLA2α is corroborated by its superior catalytic activity, its higher capacity for binding to phosphatidylcholine, and its greater strength of thrombin inhibition. These PLA2 isoenzymes thus have evolved to affect haemostasis by different mechanisms. The Nk-PLA2β partially inhibited the thrombin-induced aggregation of mammalian platelets suggesting its therapeutic application in the prevention of unwanted clot formation.In order to develop peptide-based superior anticoagulant therapeutics, future application of Nk-PLA2

  10. Rapid Screening of Acetylcholinesterase Inhibitors by Effect-Directed Analysis Using LC × LC Fractionation, a High Throughput in Vitro Assay, and Parallel Identification by Time of Flight Mass Spectrometry.

    Science.gov (United States)

    Ouyang, Xiyu; Leonards, Pim E G; Tousova, Zuzana; Slobodnik, Jaroslav; de Boer, Jacob; Lamoree, Marja H

    2016-02-16

    Effect-directed analysis (EDA) is a useful tool to identify bioactive compounds in complex samples. However, identification in EDA is usually challenging, mainly due to limited separation power of the liquid chromatography based fractionation. In this study, comprehensive two-dimensional liquid chromatography (LC × LC) based microfractionation combined with parallel high resolution time of flight (HR-ToF) mass spectrometric detection and a high throughput acetylcholinesterase (AChE) assay was developed. The LC × LC fractionation method was validated using analytical standards and a C18 and pentafluorophenyl (PFP) stationary phase combination was selected for the two-dimensional separation and fractionation in four 96-well plates. The method was successfully applied to identify AChE inhibitors in a wastewater treatment plant (WWTP) effluent. Good orthogonality (>0.9) separation was achieved and three AChE inhibitors (tiapride, amisulpride, and lamotrigine), used as antipsychotic medicines, were identified and confirmed by two-dimensional retention alignment as well as their AChE inhibition activity.

  11. Disadvantages of VKA and requirements for novel anticoagulants.

    Science.gov (United States)

    Shameem, Raji; Ansell, Jack

    2013-06-01

    Vitamin K antagonists have been in wide use for over 70 years. Warfarin, the most commonly used vitamin K antagonist, has been shown to be highly effective in treating and preventing thrombosis. Despite this, warfarin has many disadvantages, which has led to the development of a new class of oral anticoagulants targeted to specific coagulation factors designated as target-specific oral anticoagulants (TSOAs). TSOAs include the thrombin inhibitors (dabigatran) and factor Xa inhibitors (rivaroxaban, apixaban). This chapter reviews the disadvantages of warfarin and evaluates both the advantages and disadvantages of the new oral anticoagulants. © 2013 Elsevier Ltd. All rights reserved.

  12. A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication

    Energy Technology Data Exchange (ETDEWEB)

    Ratia, Kiira; Pegan, Scott; Takayama, Jun; Sleeman, Katrina; Coughlin, Melissa; Baliji, Surendranath; Chaudhuri, Rima; Fu, Wentao; Prabhakar, Bellur S.; Johnson, Michael E.; Baker, Susan C.; Ghosh, Arun K.; Mesecar, Andrew D. (Loyola); (Purdue); (UIC)

    2008-10-27

    We report the discovery and optimization of a potent inhibitor against the papain-like protease (PLpro) from the coronavirus that causes severe acute respiratory syndrome (SARS-CoV). This unique protease is not only responsible for processing the viral polyprotein into its functional units but is also capable of cleaving ubiquitin and ISG15 conjugates and plays a significant role in helping SARS-CoV evade the human immune system. We screened a structurally diverse library of 50,080 compounds for inhibitors of PLpro and discovered a noncovalent lead inhibitor with an IC{sub 50} value of 20 {mu}M, which was improved to 600 nM via synthetic optimization. The resulting compound, GRL0617, inhibited SARS-CoV viral replication in Vero E6 cells with an EC{sub 50} of 15 {mu}M and had no associated cytotoxicity. The X-ray structure of PLpro in complex with GRL0617 indicates that the compound has a unique mode of inhibition whereby it binds within the S4-S3 subsites of the enzyme and induces a loop closure that shuts down catalysis at the active site. These findings provide proof-of-principle that PLpro is a viable target for development of antivirals directed against SARS-CoV, and that potent noncovalent cysteine protease inhibitors can be developed with specificity directed toward pathogenic deubiquitinating enzymes without inhibiting host DUBs.

  13. In vitro anti-thrombotic and anti-coagulant properties of blacklip abalone (Haliotis rubra) viscera hydrolysate.

    Science.gov (United States)

    Suleria, Hafiz Ansar Rasul; Masci, Paul P; Addepalli, Rama; Chen, Wei; Gobe, Glenda C; Osborne, Simone A

    2017-07-01

    Abalone viscera contain sulphated polysaccharides with anti-thrombotic and anti-coagulant activities. In this study, a hydrolysate was prepared from blacklip abalone (Haliotis rubra) viscera using papain and bromelain and fractionated using ion exchange and size exclusion chromatography. Hydrolysates and fractions were investigated for in vitro thrombin inhibition mediated through heparin cofactor II (HCII) as well as anti-coagulant activity in plasma and whole blood. On the basis of sulphated polysaccharide concentration, the hydrolysate inhibited thrombin through HCII with an inhibitor concentration at 50% (IC50) of 16.5 μg/mL compared with 2.1 μg/mL for standard heparin. Fractionation concentrated HCII-mediated thrombin inhibition down to an IC50 of 1.8 μg/mL and improved anti-coagulant activities by significantly delaying clotting time. This study confirmed the presence of anti-thrombotic and anti-coagulant molecules in blacklip abalone viscera and demonstrated that these activities can be enriched with a simple chromatography regime. Blacklip abalone viscera warrant further investigation as a source of nutraceutical or functional food ingredients. Graphical abstract Schematic showing preparation of bioactive extracts and fractions from blacklip abalone.

  14. Does Lipid Profile Affect Thrombin Generation During Ramadan Fasting in Patients With Cardiovascular Risks?

    Science.gov (United States)

    Sassi, Mouna; Chakroun, Taher; Chouchène, Saoussen; Hellara, Ilhem; Boubaker, Hamdi; Grissa, Mohamed Habib; Khochtali, Ines; Hassine, Mohsen; Addad, Faouzi; Elalamy, Ismail; Nouira, Semir

    2017-11-01

    There is evidence that diet and variation in lipid metabolism can influence blood coagulation, but little is known about the effect of Ramadan fasting on plasmatic coagulation pattern. We investigated the effect of Ramadan fasting on thrombin generation (TG) in patients with cardiovascular disease (CVD) risks, and we aimed to assess the effect of lipid profile on TG parameters. The study was conducted in 36 adults having at least 2 CVD risks and in 30 healthy controls. Coagulation pattern was assessed by both classical clotting times and TG test. A complete lipid profile was performed simultaneously. Patients were invited 2 times: 1 week before Ramadan and during the last week of the Ramadan. The TG parameters were not different in patients with CVD risks compared to healthy controls. Fasting had no effect on plasmatic coagulation parameters and on TG profile. Individual analysis of the mean rate index (MRI) of TG revealed 3 groups: group 1 with no modification of MRI, group 2 with a significant increase in MRI (81.64 nM/min vs 136.07 nM/min; P fasting did not influence the global coagulation pattern in patients with CVD risks. Whereas, a significant increase in the propagation phase of TG was associated with a significant increase in cholesterol levels, which was not found with the other TG parameters.

  15. Proton pump inhibitors and osteoporosis

    DEFF Research Database (Denmark)

    Andersen, Bjarne Nesgaard; Johansen, Per Birger; Abrahamsen, Bo

    2016-01-01

    PURPOSE OF REVIEW: The purpose of the review is to provide an update on recent advances in the evidence based on proton pump inhibitors (PPI) as a possible cause of osteoporosis and osteoporotic fractures. This review focuses, in particular, on new studies published in the last 18 months and a di......PURPOSE OF REVIEW: The purpose of the review is to provide an update on recent advances in the evidence based on proton pump inhibitors (PPI) as a possible cause of osteoporosis and osteoporotic fractures. This review focuses, in particular, on new studies published in the last 18 months...... and a discussion of these findings and how this has influenced our understanding of this association, the clinical impact and the underlying pathophysiology. RECENT FINDINGS: New studies have further strengthened existing evidence linking use of PPIs to osteoporosis. Short-term use does not appear to pose a lower...... risk than long-term use. There is a continued lack of conclusive studies identifying the pathogenesis. Direct effects on calcium absorption or on osteoblast or osteoclast action cannot at present plausibly explain the mechanism. SUMMARY: The use of PPIs is a risk factor for development of osteoporosis...

  16. Epitope-Targeting of Tertiary Protein Structure Enables Target-Guided Synthesis of a Potent in Cell Inhibitor of Botulinum Neurotoxin**

    OpenAIRE

    Farrow, Blake; Wong, Michelle; Malette, Jacquie; Lai, Bert; Deyle, Kaycie M.; Das, Samir; Nag, Arundhati; Agnew, Heather D.; Heath, James R.

    2015-01-01

    Botulinum neurotoxin (BoNT) serotype A is the most lethal known toxin and has an occluded structure, which prevents direct inhibition of its active site before it enters the cytosol. Target-guided synthesis by in situ click chemistry is combined with synthetic epitope targeting to exploit the tertiary structure of the BoNT protein as a landscape for assembling a competitive inhibitor. A substrate-mimicking peptide macrocycle is used as a direct inhibitor of BoNT. An epitope-targeting in situ ...

  17. Histone Deacetylase Inhibitors Prolong Cardiac Repolarization through Transcriptional Mechanisms.

    Science.gov (United States)

    Spence, Stan; Deurinck, Mark; Ju, Haisong; Traebert, Martin; McLean, LeeAnne; Marlowe, Jennifer; Emotte, Corinne; Tritto, Elaine; Tseng, Min; Shultz, Michael; Friedrichs, Gregory S

    2016-09-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of anticancer agents that modify gene expression by altering the acetylation status of lysine residues of histone proteins, thereby inducing transcription, cell cycle arrest, differentiation, and cell death or apoptosis of cancer cells. In the clinical setting, treatment with HDAC inhibitors has been associated with delayed cardiac repolarization and in rare instances a lethal ventricular tachyarrhythmia known as torsades de pointes. The mechanism(s) of HDAC inhibitor-induced effects on cardiac repolarization is unknown. We demonstrate that administration of structurally diverse HDAC inhibitors to dogs causes delayed but persistent increases in the heart rate corrected QT interval (QTc), an in vivo measure of cardiac repolarization, at timepoints far removed from the Tmax for parent drug and metabolites. Transcriptional profiling of ventricular myocardium from dogs treated with various HDAC inhibitors demonstrated effects on genes involved in protein trafficking, scaffolding and insertion of various ion channels into the cell membrane as well as genes for specific ion channel subunits involved in cardiac repolarization. Extensive in vitro ion channel profiling of various structural classes of HDAC inhibitors (and their major metabolites) by binding and acute patch clamp assays failed to show any consistent correlations with direct ion channel blockade. Drug-induced rescue of an intracellular trafficking-deficient mutant potassium ion channel, hERG (G601S), and decreased maturation (glycosylation) of wild-type hERG expressed by CHO cells in vitro correlated with prolongation of QTc intervals observed in vivo The results suggest that HDAC inhibitor-induced prolongation of cardiac repolarization may be mediated in part by transcriptional changes of genes required for ion channel trafficking and localization to the sarcolemma. These data have broad implications for the development of these drug classes and

  18. The effect of chemical anti-inhibitors on fibrinolytic enzymes and inhibitors

    DEFF Research Database (Denmark)

    Sidelmann, Johannes Jakobsen; Jespersen, J; Kluft, C

    1997-01-01

    proteases. We studied the influence of chemical anti-inhibitors (chloramine T, flufenamate, sodium lauryl sulfate, and methylamine) on fibrinolytic serine proteases and fibrinolytic enzyme inhibitors using the physiological substrate fibrin as plasmin substrate. Low concentrations of chloramine T (0.01 mmol......%) and plasminogen activators (apparent recovery > 200%). Sodium lauryl sulfate eliminates the major fibrinolytic enzyme inhibitors, but increases the activity of plasmin (apparent recovery > 200%) and plasminogen activator, urokinase type (apparent recovery 130%). Methylamine affects only plasmin inhibition. We...

  19. Effects of a phospholipase A2 inhibitor on uptake and toxicity of liposomes containing plant phosphatidylinositol

    International Nuclear Information System (INIS)

    Jett, M.; Alving, C.R.

    1986-01-01

    Plant phosphatidylinositol (PI) has been shown by us to have a direct cytotoxic effect on cultured tumor cells but not on normal cells. Synthetic PI containing 14 C-linoleic acid in the sn-2 position, also showed the same pattern of selective cytotoxicity. When the metabolic fate of synthetic PI was examined with tumor cells, the radioactivity which no longer occurred as PI, was found as either products of phospholipase A 2 (93%, free fatty acids and phosphatidylcholine) or phospholipase C (7%, diglycerides). Uptake of liposomal PI was directly correlated with cytotoxicity. They tested a variety of inhibitors to see the effect on uptake and/or cytotoxicity of plant PI. General metabolic inhibitors such as metrizamide or sodium azide did not alter cellular uptake of the plant PI liposomes. Inhibitors of lipoxygenase formation, such as indomethacin, also did not alter the uptake or cytotoxicity induced by plant PI. Quinacrine, an inhibitor of phospholipase A 2 , decreased the uptake of the PI containing liposomes to 50% of that seen in the presence or absence of any other inhibitor. Although quinacrine is itself toxic to cells, at low concentrations of quinacrine, plant PI did not show the same degree of cytotoxicity as in the absence of quinacrine. These data are compatible with the hypothesis that plant PI exerts cytotoxicity by serving as a substrate for phospholipase A 2

  20. Impact of the clinical use of ROCK inhibitor on the pathogenesis and treatment of glaucoma.

    Science.gov (United States)

    Honjo, Megumi; Tanihara, Hidenobu

    2018-03-01

    Rho-associated protein kinase (ROCK), a ubiquitously expressed signaling messenger and downstream effector of Rho, is activated by several bioactive factors in the aqueous humor (AH). Rho-ROCK signaling regulates a wide spectrum of fundamental cellular events, including cell adhesion, motility, proliferation, differentiation, and apoptosis. Previous studies, including our own, found that ROCK inhibitor lowers intraocular pressure (IOP) via a direct effect on the conventional AH outflow pathway, by regulation of contractile properties, fibrotic activity, and permeability of the trabecular meshwork (TM) and Schlemm's canal (SC) tissues, influencing extracellular matrix (ECM) production. Recently, a novel ROCK inhibitor, ripasudil, has been introduced in Japan. Other ROCK inhibitors are now in clinical trials as new IOP-lowering drugs for glaucoma patients. To date, ripasudil, administered together with other glaucoma medications, has proved safe and efficient in lowering IOP as well as additional effects such as prostaglandin analogs, beta-blockers, and carbonic anhydrase inhibitors, all of which help lower IOP by different mechanisms. In addition, we found that long-term treatment with ripasudil exerted an additional IOP-lowering effect, especially in eyes with high IOP, suggesting that late-onset remodeling of the ECM in glaucomatous eyes may elicit mild and delayed changes in IOP levels. ROCK inhibitors have also shown several additional effects, including increased retinal blood flow, direct protection of neurons against various types of stress, and regulation of wound healing; these benefits may potentially be useful in glaucoma treatment.

  1. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyeon-Ok [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Hong, Sung-Eun [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Kim, Chang Soon [Department of Microbiological Engineering, Kon-Kuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143–701 (Korea, Republic of); Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Park, In-Chul, E-mail: parkic@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Lee, Jin Kyung, E-mail: jklee@kirams.re.kr [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of)

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC.

  2. SGLT2 inhibitors: a novel choice for the combination therapy in diabetic kidney disease.

    Science.gov (United States)

    Zou, Honghong; Zhou, Baoqin; Xu, Gaosi

    2017-05-16

    Diabetic kidney disease (DKD) is the most common cause of end stage renal disease. The comprehensive management of DKD depends on combined target-therapies for hyperglycemia, hypertension, albuminuria, and hyperlipaemia, etc. Sodium-glucose co-transporter 2 (SGLT2) inhibitors, the most recently developed oral hypoglycemic agents acted on renal proximal tubules, suppress glucose reabsorption and increase urinary glucose excretion. Besides improvements in glycemic control, they presented excellent performances in direct renoprotective effects and the cardiovascular (CV) safety by decreasing albuminuria and the independent CV risk factors such as body weight and blood pressure, etc. Simultaneous use of SGLT-2 inhibitors and renin-angiotensin-aldosterone system (RAAS) blockers are novel strategies to slow the progression of DKD via reducing inflammatory and fibrotic markers induced by hyperglycaemia more than either drug alone. The available population and animal based studies have described SGLT2 inhibitors plus RAAS blockers. The present review was to systematically review the potential renal benefits of SGLT2 inhibitors combined with dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists, mineralocorticoid receptor antagonists, and especially the angiotensin-converting enzyme inhibitors/angiotensin receptor blockers.

  3. Synergistic apoptosis induction in leukemic cells by the phosphatase inhibitor salubrinal and proteasome inhibitors.

    Directory of Open Access Journals (Sweden)

    Hannes C A Drexler

    Full Text Available Cells adapt to endoplasmic reticulum (ER-stress by arresting global protein synthesis while simultaneously activating specific transcription factors and their downstream targets. These processes are mediated in part by the phosphorylation-dependent inactivation of the translation initiation factor eIF2alpha. Following restoration of homeostasis protein synthesis is resumed when the serine/threonine-protein phosphatase PP1 dephosphorylates and reactivates eIF2alpha. Proteasome inhibitors, used to treat multiple myeloma patients evoke ER-stress and apoptosis by blocking the ER-associated degradation of misfolded proteins (ERAD, however, the role of eIF2alpha phosphorylation in leukemic cells under conditions of proteasome inhibitor-mediated ER stress is currently unclear.Bcr-Abl-positive and negative leukemic cell lines were used to investigate the functional implications of PP1-related phosphatase activities on eIF2alpha phosphorylation in proteasome inhibitor-mediated ER stress and apoptosis. Rather unexpectedly, salubrinal, a recently identified PP1 inhibitor capable to protect against ER stress in various model systems, strongly synergized with proteasome inhibitors to augment apoptotic death of different leukemic cell lines. Salubrinal treatment did not affect the phosphorlyation status of eIF2alpha. Furthermore, the proapoptotic effect of salubrinal occurred independently from the chemical nature of the proteasome inhibitor, was recapitulated by a second unrelated phosphatase inhibitor and was unaffected by overexpression of a dominant negative eIF2alpha S51A variant that can not be phosphorylated. Salubrinal further aggravated ER-stress and proteotoxicity inflicted by the proteasome inhibitors on the leukemic cells since characteristic ER stress responses, such as ATF4 and CHOP synthesis, XBP1 splicing, activation of MAP kinases and eventually apoptosis were efficiently abrogated by the translational inhibitor cycloheximide.Although PP1

  4. Tyrosinase inhibitor screening in traditional Chinese medicines by electrophoretically mediated microanalysis.

    Science.gov (United States)

    Tang, Lilin; Zhang, Wenpeng; Zhao, Haiyan; Chen, Zilin

    2015-08-01

    A capillary-electrophoresis-based method for the screening of tyrosinase inhibitors in traditional Chinese medicines was developed. The method integrated electrophoretically mediated microanalysis with sandwich mode injection, partial filling, and rapid polarity switching techniques, and carried out on-column enzyme reaction and the separation of substrate and product. The conditions were optimized including the background electrolyte, mixing voltage, and the incubation time. Finally, the screening of nine standard natural compounds of traditional Chinese medicines was carried out. The inhibitors can be directly identified from the reduced peak area of the product compared to that obtained without any inhibitor. Chlorogenic acid (100 μM) showed inhibitory activity with the inhibitory percentage of 19.8%, while the other compounds showed no inhibitory activity. This method has great application potential in drug discovery from traditional Chinese medicines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Electrospray ionisation mass spectrometry facilitates detection of fibrinogen (Bbeta 14 Arg --> Cys) mutation in a family with thrombosis.

    Science.gov (United States)

    Brennan, S O; Hammonds, B; Spearing, R; George, P M

    1997-12-01

    We report the first direct detection of a fibrinogen mutation by electrospray ionisation mass spectrometry. The propositus, from a family with a history of thrombosis, came to attention after a pulmonary embolism subsequent to a spontaneous abortion. Prolonged thrombin (41 s) and reptilase times (26 s) together with an impairment of fibrinopeptide B release suggested a mutation at the thrombin cleavage site of the Bbeta chain. Direct mass analysis of purified fibrin chains from a thrombin induced clot showed that 50% of the Bbeta chains remained uncleaved. The measured mass of the mono sialo isoform of this uncleaved chain was 54150 Da, compared to a value of 54198 Da for normal Bbeta chains. This decrease of 48 Da in the intact protein is indicative of either a Bbeta 14 Arg to Cys, or Arg to Leu substitution. Heterozygosity for the Bbeta 14 Arg --> Cys mutation was verified by PCR amplification and DNA sequence analysis.

  6. Evidence supporting the use of recombinant activated factor VII in congenital bleeding disorders

    Directory of Open Access Journals (Sweden)

    Pär I Johansson

    2010-06-01

    Full Text Available Pär I Johansson, Sisse R OstrowskiCapital Region Blood Bank, Section for Transfusion Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, DenmarkBackground: Recombinant activated factor VII (rFVIIa, NovoSeven® was introduced in 1996 for the treatment of hemophilic patients with antibodies against coagulation factor VIII or IX.Objective: To review the evidence supporting the use of rFVIIa for the treatment of patients with congenital bleeding disorders.Patients and methods: English-language databases were searched in September 2009 for reports of randomized controlled trials (RCTs evaluating the ability of rFVIIa to restore hemostasis in patients with congenital bleeding disorders.Results: Eight RCTs involving 256 hemophilic patients with antibodies against coagulation factors, also known as inhibitors, were identified. The evidence supporting the use of rFVIIa in these patients was weak with regard to dose, clinical setting, mode of administration, efficacy, and adverse events, given the limited sample size of each RCT and the heterogeneity of the studies.Conclusion: The authors suggest that rFVIIa therapy in hemophilic patients with inhibitors should be based on the individual’s ability to generate thrombin and form a clot, and not on the patient’s weight alone. Therefore, assays for thrombin generation, such as whole-blood thromboelastography, have the potential to significantly improve the treatment of these patients.Keywords: hemophilia, inhibitors, coagulation factor VIII, coagulation factor IX, rFVIIa, NovoSeven, FEIBA, hemostasis, RCT

  7. Encoded library technology as a source of hits for the discovery and lead optimization of a potent and selective class of bactericidal direct inhibitors of Mycobacterium tuberculosis InhA.

    Science.gov (United States)

    Encinas, Lourdes; O'Keefe, Heather; Neu, Margarete; Remuiñán, Modesto J; Patel, Amish M; Guardia, Ana; Davie, Christopher P; Pérez-Macías, Natalia; Yang, Hongfang; Convery, Maire A; Messer, Jeff A; Pérez-Herrán, Esther; Centrella, Paolo A; Alvarez-Gómez, Daniel; Clark, Matthew A; Huss, Sophie; O'Donovan, Gary K; Ortega-Muro, Fátima; McDowell, William; Castañeda, Pablo; Arico-Muendel, Christopher C; Pajk, Stane; Rullás, Joaquín; Angulo-Barturen, Iñigo; Alvarez-Ruíz, Emilio; Mendoza-Losana, Alfonso; Ballell Pages, Lluís; Castro-Pichel, Julia; Evindar, Ghotas

    2014-02-27

    Tuberculosis (TB) is one of the world's oldest and deadliest diseases, killing a person every 20 s. InhA, the enoyl-ACP reductase from Mycobacterium tuberculosis, is the target of the frontline antitubercular drug isoniazid (INH). Compounds that directly target InhA and do not require activation by mycobacterial catalase peroxidase KatG are promising candidates for treating infections caused by INH resistant strains. The application of the encoded library technology (ELT) to the discovery of direct InhA inhibitors yielded compound 7 endowed with good enzymatic potency but with low antitubercular potency. This work reports the hit identification, the selected strategy for potency optimization, the structure-activity relationships of a hundred analogues synthesized, and the results of the in vivo efficacy studies performed with the lead compound 65.

  8. Screening of protein kinase inhibitors identifies PKC inhibitors as inhibitors of osteoclastic acid secretion and bone resorption

    Directory of Open Access Journals (Sweden)

    Boutin Jean A

    2010-10-01

    Full Text Available Abstract Background Bone resorption is initiated by osteoclastic acidification of the resorption lacunae. This process is mediated by secretion of protons through the V-ATPase and chloride through the chloride antiporter ClC-7. To shed light on the intracellular signalling controlling extracellular acidification, we screened a protein kinase inhibitor library in human osteoclasts. Methods Human osteoclasts were generated from CD14+ monocytes. The effect of different kinase inhibitors on lysosomal acidification in human osteoclasts was investigated using acridine orange for different incubation times (45 minutes, 4 and 24 hours. The inhibitors were tested in an acid influx assay using microsomes isolated from human osteoclasts. Bone resorption by human osteoclasts on bone slices was measured by calcium release. Cell viability was measured using AlamarBlue. Results Of the 51 compounds investigated only few inhibitors were positive in both acidification and resorption assays. Rottlerin, GF109203X, Hypericin and Ro31-8220 inhibited acid influx in microsomes and bone resorption, while Sphingosine and Palmitoyl-DL-carnitine-Cl showed low levels of inhibition. Rottlerin inhibited lysosomal acidification in human osteoclasts potently. Conclusions In conclusion, a group of inhibitors all indicated to inhibit PKC reduced acidification in human osteoclasts, and thereby bone resorption, indicating that acid secretion by osteoclasts may be specifically regulated by PKC in osteoclasts.

  9. The development prospection of HDAC inhibitors as a potential therapeutic direction in Alzheimer?s disease

    OpenAIRE

    Yang, Shuang-shuang; Zhang, Rui; Wang, Gang; Zhang, Yong-fang

    2017-01-01

    Alzheimer?s disease (AD) is a chronic neurodegenerative disease, which is associated with learning and memory impairment in the elderly. Recent studies have found that treating AD in the way of chromatin remodeling via histone acetylation is a promising therapeutic regimen. In a number of recent studies, inhibitors of histone deacetylase (HDACs) have been found to be a novel promising therapeutic?agents for neurological disorders, particularly for AD and other neurodegenerative diseases. Alth...

  10. Effect of protease inhibitors on thermal gelation of squid (Illex argentinus. mantle paste

    Directory of Open Access Journals (Sweden)

    Maria Elida Paredi

    2014-04-01

    Full Text Available The characteristics of the thermal gelation of squid mantle paste and the effect of protease inhibitors on them were investigated. Pastes in the absence and presence the protease inhibitors, ethylendiaminetetracetic acid (EDTA and phenylmethylsulfonyl fluoride (PMSF, were formulated. Pastes were made by the respective one or two step thermal treatments: direct heating at 85°C for 20 min and preincubation at 27 or 40 °C for 3 or 2 hours, followed by heating at 85 °C for 20 min. The gel strength, water holding capacity (WHC and whiteness of gelled pastes were analyzed. The tricloroacetic acid (TCA soluble peptides in homogenate of the muscle were determined. Gel strength decreased when heating was made in two steps. EDTA and PMSF were effective in avoiding that decrease when pre-incubation was made at 40 °C. Maximum gel strength was observed for the gels in presence of EDTA, giving values of 255 and 219 g x cm for the samples made by direct heating and pre-incubated at 40 °C  respectively. TCA soluble peptides increased between 20 and 60 °C, with maximum values reached at 30 and 60 °C. No significant differences (p>0.05 were observed in gel whiteness, neither with the thermal treatment nor with the inhibitors. The WHC was higher (p<0.05 in the gelated paste formulated with EDTA. These results show a good gelation capacity of I argentinus pastes and improvements with protease inhibitors

  11. Synthesis of the proteinase inhibitor LEKTI domain 6 by the fragment condensation method and regioselective disulfide bond formation.

    Science.gov (United States)

    Vasileiou, Zoe; Barlos, Kostas K; Gatos, Dimitrios; Adermann, Knut; Deraison, Celine; Barlos, Kleomenis

    2010-01-01

    Proteinase inhibitors are of high pharmaceutical interest and are drug candidates for a variety of indications. Specific kallikrein inhibitors are important for their antitumor activity and their potential application to the treatment of skin diseases. In this study we describe the synthesis of domain 6 of the kallikrein inhibitor Lympho-Epithilial Kazal-Type Inhibitor (LEKTI) by the fragment condensation method and site-directed cystine bridge formation. To obtain the linear LEKTI precursor, the condensation was best performed in solution, coupling the protected fragment 1-22 to 23-68. This method yielded LEKTI domain 6 of high purity and equipotent to the recombinantly produced peptide. (c) 2010 Wiley Periodicals, Inc.

  12. Pharmacological basis and clinical evidence of dabigatran therapy

    Directory of Open Access Journals (Sweden)

    Redondo Santiago

    2011-12-01

    Full Text Available Abstract Dabigatran is an emerging oral anticoagulant which is a direct inhibitor of thrombin activity. It has been approved in the European Union and the United States of America for the prevention of thrombosis after major orthopedic surgery. It has also been approved by the American Food and Drug Administration and the European Medicines Agency for the prevention of stroke in chronic atrial fibrillation. Dabigatran provides a stable anticoagulation effect without any need to perform periodical laboratory controls. Of note, there is a growing amount of clinical evidence which shows its safety and efficacy. For these reasons, dabigatran may suppose a revolution in oral anticoagulation. However, two important limitations remain. First, it is contraindicated in patients with end-stage renal disease. Second, there is no evidence of the prevention of thrombosis in mechanical heart valves.

  13. Direct-acting antivirals and host-targeting strategies to combat enterovirus infections.

    Science.gov (United States)

    Bauer, Lisa; Lyoo, Heyrhyoung; van der Schaar, Hilde M; Strating, Jeroen Rpm; van Kuppeveld, Frank Jm

    2017-06-01

    Enteroviruses (e.g., poliovirus, enterovirus-A71, coxsackievirus, enterovirus-D68, rhinovirus) include many human pathogens causative of various mild and more severe diseases, especially in young children. Unfortunately, antiviral drugs to treat enterovirus infections have not been approved yet. Over the past decades, several direct-acting inhibitors have been developed, including capsid binders, which block virus entry, and inhibitors of viral enzymes required for genome replication. Capsid binders and protease inhibitors have been clinically evaluated, but failed due to limited efficacy or toxicity issues. As an alternative approach, host-targeting inhibitors with potential broad-spectrum activity have been identified. Furthermore, drug repurposing screens have recently uncovered promising new inhibitors with disparate viral and host targets. Together, these findings raise hope for the development of (broad-range) anti-enteroviral drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Discovery of DNA repair inhibitors by combinatorial library profiling

    Science.gov (United States)

    Moeller, Benjamin J.; Sidman, Richard L.; Pasqualini, Renata; Arap, Wadih

    2011-01-01

    Small molecule inhibitors of DNA repair are emerging as potent and selective anti-cancer therapies, but the sheer magnitude of the protein networks involved in DNA repair processes poses obstacles to discovery of effective candidate drugs. To address this challenge, we used a subtractive combinatorial selection approach to identify a panel of peptide ligands that bind DNA repair complexes. Supporting the concept that these ligands have therapeutic potential, we show that one selected peptide specifically binds and non-competitively inactivates DNA-PKcs, a protein kinase critical in double-strand DNA break repair. In doing so, this ligand sensitizes BRCA-deficient tumor cells to genotoxic therapy. Our findings establish a platform for large-scale parallel screening for ligand-directed DNA repair inhibitors, with immediate applicability to cancer therapy. PMID:21343400

  15. Dengue Virus NS2B/NS3 Protease Inhibitors Exploiting the Prime Side.

    Science.gov (United States)

    Lin, Kuan-Hung; Ali, Akbar; Rusere, Linah; Soumana, Djade I; Kurt Yilmaz, Nese; Schiffer, Celia A

    2017-05-15

    The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a small protein with high affinity for DENV protease. In this study, we designed a series of cyclic peptides interacting with both sides of the active site as inhibitors of dengue virus protease. The design was based on two aprotinin loops and aimed to leverage both key specific interactions of substrate sequences and the entropic advantage driving aprotinin's high affinity. By optimizing the cyclization linker, length, and amino acid sequence, the tightest cyclic peptide achieved a K i value of 2.9 μM against DENV3 wild-type (WT) protease. These inhibitors provide proof of concept that both sides of DENV protease active site can be exploited to potentially achieve specificity and lower hydrophilicity in the design of inhibitors targeting DENV. IMPORTANCE Viruses of the flaviviral family, including DENV and Zika virus transmitted by Aedes aegypti , continue to be a threat to global health by causing major outbreaks in tropical and subtropical regions, with no available direct-acting antivirals for treatment. A better understanding of the molecular requirements for the design of potent and specific inhibitors against flaviviral proteins will contribute to the development of targeted therapies for infections by these viruses. The cyclic peptides reported here as DENV protease inhibitors

  16. An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture

    International Nuclear Information System (INIS)

    Misselbrook, T H; Cardenas, L M; Camp, V; Thorman, R E; Williams, J R; Rollett, A J; Chambers, B J

    2014-01-01

    A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N 2 O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH 3 ) volatilization, nitrate (NO 3 − ) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N 2 O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N 2 O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH 3 volatilization, NO 3 − leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N 2 O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N 2 O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted. (paper)

  17. PD-1/PD-L1 Inhibitors for Immuno-oncology: From Antibodies to Small Molecules.

    Science.gov (United States)

    Geng, Qiaohong; Jiao, Peifu; Jin, Peng; Su, Gaoxing; Dong, Jinlong; Yan, Bing

    2018-02-12

    The recent regulatory approvals of immune checkpoint protein inhibitors, such as ipilimumab, pembrolizumab, nivolumab, atezolizumab, durvalumab, and avelumab ushered a new era in cancer therapy. These inhibitors do not attack tumor cells directly but instead mobilize the immune system to re-recognize and eradicate tumors, which endows them with unique advantages including durable clinical responses and substantial clinical benefits. PD-1/PD-L1 inhibitors, a pillar of immune checkpoint protein inhibitors, have demonstrated unprecedented clinical efficacy in more than 20 cancer types. Besides monoclonal antibodies, diverse PD- 1/PD-L1 inhibiting candidates, such as peptides, small molecules have formed a powerful collection of weapons to fight cancer. The goal of this review is to summarize and discuss the current PD-1/PD-L1 inhibitors including candidates under clinical development, their molecular interactions with PD-1 or PD-L1, the disclosed structureactivity relationships of peptides and small molecules as inhibitors. Current PD-1/PD-L1 inhibitors under clinical development are exclusively dominated by antibodies. The molecular interactions of therapeutic antibodies with PD-1 or PD-L1 have been gradually elucidated for the design of novel inhibitors. Various peptides and traditional small molecules have been investigated in preclinical model to discover novel PD-1/PD-L1 inhibitors. Peptides and small molecules may play an important role in immuno-oncology because they may bind to multiple immune checkpoint proteins via rational design, opening opportunity for a new generation of novel PD-1/PD-L1 inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Discovery and Characterization of Novel Nonsubstrate and Substrate NAMPT Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Wilsbacher, Julie L.; Cheng, Min; Cheng, Dong; Trammell, Samuel A.J.; Shi, Yan; Guo, Jun; Koeniger, Stormy L.; Kovar, Peter J.; He, Yupeng; Selvaraju, Sujatha; Heyman, H. Robin; Sorensen, Bryan K.; Clark, Richard F.; Hansen, T. Matthew; Longenecker, Kenton L.; Raich, Diana; Korepanova, Alla V.; Cepa, Steven; Towne, Danli L.; Abraham, Vivek C.; Tang, Hua; Richardson, Paul L.; McLoughlin, Shaun M.; Badagnani, Ilaria; Curtin, Michael L.; Michaelides, Michael R.; Maag, David; Buchanan, F. Gregory; Chiang, Gary G.; Gao, Wenqing; Rosenberg, Saul H.; Brenner, Charles; Tse, Chris (AbbVie)

    2017-05-03

    Cancer cells are highly reliant on NAD+-dependent processes, including glucose metabolism, calcium signaling, DNA repair, and regulation of gene expression. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for NAD+ salvage from nicotinamide, has been investigated as a target for anticancer therapy. Known NAMPT inhibitors with potent cell activity are composed of a nitrogen-containing aromatic group, which is phosphoribosylated by the enzyme. Here, we identified two novel types of NAM-competitive NAMPT inhibitors, only one of which contains a modifiable, aromatic nitrogen that could be a phosphoribosyl acceptor. Both types of compound effectively deplete cellular NAD+, and subsequently ATP, and produce cell death when NAMPT is inhibited in cultured cells for more than 48 hours. Careful characterization of the kinetics of NAMPT inhibition in vivo allowed us to optimize dosing to produce sufficient NAD+ depletion over time that resulted in efficacy in an HCT116 xenograft model. Our data demonstrate that direct phosphoribosylation of competitive inhibitors by the NAMPT enzyme is not required for potent in vitro cellular activity or in vivo antitumor efficacy. Mol Cancer Ther; 16(7); 1236–45.

  19. Epitope targeting of tertiary protein structure enables target-guided synthesis of a potent in-cell inhibitor of botulinum neurotoxin.

    Science.gov (United States)

    Farrow, Blake; Wong, Michelle; Malette, Jacquie; Lai, Bert; Deyle, Kaycie M; Das, Samir; Nag, Arundhati; Agnew, Heather D; Heath, James R

    2015-06-08

    Botulinum neurotoxin (BoNT) serotype A is the most lethal known toxin and has an occluded structure, which prevents direct inhibition of its active site before it enters the cytosol. Target-guided synthesis by in situ click chemistry is combined with synthetic epitope targeting to exploit the tertiary structure of the BoNT protein as a landscape for assembling a competitive inhibitor. A substrate-mimicking peptide macrocycle is used as a direct inhibitor of BoNT. An epitope-targeting in situ click screen is utilized to identify a second peptide macrocycle ligand that binds to an epitope that, in the folded BoNT structure, is active-site-adjacent. A second in situ click screen identifies a molecular bridge between the two macrocycles. The resulting divalent inhibitor exhibits an in vitro inhibition constant of 165 pM against the BoNT/A catalytic chain. The inhibitor is carried into cells by the intact holotoxin, and demonstrates protection and rescue of BoNT intoxication in a human neuron model. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Variable Resistance to Plasminogen Activator Initiated Fibrinolysis for Intermediate-Risk Pulmonary Embolism.

    Science.gov (United States)

    Stubblefield, William B; Alves, Nathan J; Rondina, Matthew T; Kline, Jeffrey A

    2016-01-01

    We examine the clinical significance and biomarkers of tissue plasminogen activator (tPA)-catalyzed clot lysis time (CLT) in patients with intermediate-risk pulmonary embolism (PE). Platelet-poor, citrated plasma was obtained from patients with PE. Healthy age- and sex-matched patients served as disease-negative controls. Fibrinogen, α2-antiplasmin, plasminogen, thrombin activatable fibrinolysis inhibitor (TAFI), plasminogen activator Inhibitor 1 (PAI-1), thrombin time and D-dimer were quantified. Clotting was induced using CaCl2, tissue factor, and phospholipid. Lysis was induced using 60 ng/mL tPA. Time to 50% clot lysis (CLT) was assessed by both thromboelastography (TEG) and turbidimetry (A405). Compared with disease-negative controls, patients with PE exhibited significantly longer mean CLT on TEG (+2,580 seconds, 95% CI 1,380 to 3,720 sec). Patients with PE and a short CLT who were treated with tenecteplase had increased risk of bleeding, whereas those with long CLT had significantly worse exercise tolerance and psychometric testing for quality of life at 3 months. A multivariate stepwise removal regression model selected PAI-1 and TAFI as predictive biomarkers of CLT. The CLT from TEG predicted increased risk of bleeding and clinical failure with tenecteplase treatment for intermediate-risk PE. Plasmatic PAI-1 and TAFI were independent predictors of CLT.

  1. Cytokinesis defect in BY-2 cells caused by ATP-competitive kinase inhibitors.

    Science.gov (United States)

    Kozgunova, Elena; Higashiyama, Tetsuya; Kurihara, Daisuke

    2016-10-02

    Cytokinesis is last but not least in cell division as it completes the formation of the two cells. The main role in cell plate orientation and expansion have been assigned to microtubules and kinesin proteins. However, recently we reported severe cytokinesis defect in BY-2 cells not accompanied by changes in microtubules dynamics. Here we also confirmed that distribution of kinesin NACK1 is not the cause of cytokinesis defect. We further explored inhibition of the cell plate expansion by ATP-competitive inhibitors. Two different inhibitors, 5-Iodotubercidin and ML-7 resulted in a very similar phenotype, which indicates that they target same protein cascade. Interestingly, in our previous study we showed that 5-Iodotubercidin treatment affects concentration of actin filaments on the cell plate, while ML-7 is inhibitor of myosin light chain kinase. Although not directly, it indicates importance of actomyosin complex in plant cytokinesis.

  2. Caveats in studies of the physiological role of polyphosphates in coagulation.

    Science.gov (United States)

    Lindahl, Tomas L; Ramström, Sofia; Boknäs, Niklas; Faxälv, Lars

    2016-02-01

    Platelet-derived polyphosphates (polyP), stored in dense granule and released upon platelet activation, have been claimed to enhance thrombin activation of coagulation factor XI (FXI) and to activate FXII directly. The latter claim is controversial and principal results leading to these conclusions are probably influenced by methodological problems. It is important to consider that low-grade contact activation is initiated by all surfaces and is greatly amplified by the presence of phospholipids simulating the procoagulant membranes of activated platelets. Thus, proper use of inhibitors of the contact pathway and a careful choice of materials for plates and tubes is important to avoid artefacts. The use of phosphatases used to degrade polyP has an important drawback as it also degrades the secondary activators ADP and ATP, which are released from activated platelets. In addition, the use of positively charged inhibitors, such as polymyxin B, to inhibit polyP in platelet-rich plasma and blood is problematic, as polymyxin B also slows coagulation in the absence of polyP. In conclusion we hope awareness of the above caveats may improve research on the physiological roles of polyP in coagulation. © 2016 Authors; published by Portland Press Limited.

  3. Efficacy of c-Met inhibitor for advanced prostate cancer

    International Nuclear Information System (INIS)

    Tu, William H; Zhu, Chunfang; Clark, Curtis; Christensen, James G; Sun, Zijie

    2010-01-01

    Aberrant expression of HGF/SF and its receptor, c-Met, often correlates with advanced prostate cancer. Our previous study showed that expression of c-Met in prostate cancer cells was increased after attenuation of androgen receptor (AR) signalling. This suggested that current androgen ablation therapy for prostate cancer activates c-Met expression and may contribute to development of more aggressive, castration resistant prostate cancer (CRPC). Therefore, we directly assessed the efficacy of c-Met inhibition during androgen ablation on the growth and progression of prostate cancer. We tested two c-Met small molecule inhibitors, PHA-665752 and PF-2341066, for anti-proliferative activity by MTS assay and cell proliferation assay on human prostate cancer cell lines with different levels of androgen sensitivity. We also used renal subcapsular and castrated orthotopic xenograft mouse models to assess the effect of the inhibitors on prostate tumor formation and progression. We demonstrated a dose-dependent inhibitory effect of PHA-665752 and PF-2341066 on the proliferation of human prostate cancer cells and the phosphorylation of c-Met. The effect on cell proliferation was stronger in androgen insensitive cells. The c-Met inhibitor, PF-2341066, significantly reduced growth of prostate tumor cells in the renal subcapsular mouse model and the castrated orthotopic mouse model. The effect on cell proliferation was greater following castration. The c-Met inhibitors demonstrated anti-proliferative efficacy when combined with androgen ablation therapy for advanced prostate cancer

  4. Evaluating Factor XIII Specificity for Glutamine-Containing Substrates Using a MALDI-TOF Mass Spectrometry Assay

    Science.gov (United States)

    Doiphode, Prakash G.; Malovichko, Marina V.; Mouapi, Kelly Njine; Maurer, Muriel C.

    2014-01-01

    Activated Factor XIII (FXIIIa) catalyzes the formation of γ-glutamyl-ε-lysyl cross-links within the fibrin blood clot network. Although several cross-linking targets have been identified, the characteristic features that define FXIIIa substrate specificity are not well understood. To learn more about how FXIIIa selects its targets, a matrix-assisted laser desorption ionization – time of flight mass spectrometry (MALDI-TOF MS) based assay was developed that could directly follow the consumption of a glutamine-containing substrate and the formation of a cross-linked product with glycine ethylester. This FXIIIa kinetics assay is no longer reliant on a secondary coupled reaction, on substrate labeling, or on detecting the final deacylation portion of the transglutaminase reaction. With the MALDI-TOF MS assay, glutamine-containing peptides derived from α2-antiplasmin, S. Aureus fibronectin binding protein A, and thrombin activatable fibrinolysis inhibitor were examined directly. Results suggest that the FXIIIa active site surface responds to changes in substrate residues following the reactive glutamine. The P-1 substrate position is sensitive to charge character and the P-2 and P-3 to the broad FXIIIa substrate specificity pockets. The more distant P-8 to P-11 region serves as a secondary substrate anchoring point. New knowledge on FXIIIa specificity may be used to design better substrates or inhibitors of this transglutaminase. PMID:24751466

  5. Allosteric small-molecule kinase inhibitors

    DEFF Research Database (Denmark)

    Wu, Peng; Clausen, Mads Hartvig; Nielsen, Thomas E.

    2015-01-01

    current barriers of kinase inhibitors, including poor selectivity and emergence of drug resistance. In spite of the small number of identified allosteric inhibitors in comparison with that of inhibitors targeting the ATP pocket, encouraging results, such as the FDA-approval of the first small...

  6. [Research progress in hirudin fusion protein--review].

    Science.gov (United States)

    Zhang, Chuan-Ling; Yu, Ai-Ping; Jin, Ji-De; Wu, Chu-Tse

    2007-02-01

    Natural hirudin extracted from the secretion of medical leech salivary gland is a single-chain peptide containing 65 aminoacid residues with molecular weight of 7000 D, and exists in three isomers of HV1, HV2 and HV3. Hirudin possesses three disulfide bridges forming the structure of core cyclic peptides, which binds to the catalytic site of thrombin so as to inhibit the catalysis of thrombin. Its c-terminus rich in acidic aminoacid residues possesses hydrophilicity, and is free on the molecular surface, and can bind with fibrin recognition site of hirudin. The minimal segment of 12 - 16 C-terminal acidic residues keeps the minimal activity of anti-thrombosis. Thus, hirudin, as a potent and specific inhibitor of thrombin, can be used to protect from and to treat clinically thrombosis. As it has some disadvantages such as short half-life, bleeding side-effect and mono-function, and so on, hirudin has been fused with some other functional proteins in recent years. The obtained fusion proteins can prolong the half life of hirudin, or relieve it bleeding side effect, or bring new functions, such as thrombolysis, inhibiting the platelet aggregation, targeting specifically. The research progress in hirudin fusion protein was summarized in this review.

  7. Design, Synthesis, and Evaluation of Dihydrobenzo[cd]indole-6-sulfonamide as TNF-alpha Inhibitors

    Science.gov (United States)

    Deng, Xiaobing; Zhang, Xiaoling; Tang, Bo; Liu, Hongbo; Shen, Qi; Liu, Ying; Lai, Luhua

    2018-04-01

    Tumor necrosis factor-α (TNF-α) plays a pivotal role in inflammatory response. Dysregulation of TNF can lead to a variety of disastrous pathological effects, including auto-inflammatory diseases. Antibodies that directly targeting TNF-α have been proven effective in suppressing symptoms of these disorders. Compared to protein drugs, small molecule drugs are normally orally available and less expensive. Till now, peptide and small molecule TNF-α inhibitors are still in the early stage of development, and much more efforts should be made. In a previously study, we reported a TNF-α inhibitor, EJMC-1 with modest activity. Here, we optimized this compound by shape screen and rational design. In the first round, we screened commercial compound library for EJMC-1 analogs based on shape similarity. Out of the 68 compounds tested, 20 compounds showed better binding affinity than EJMC-1 in the SPR competitive binding assay. These 20 compounds were tested in cell assay and the most potent compound was 2-oxo-N-phenyl-1,2-dihydrobenzo[cd]indole-6-sulfonamide (S10) with an IC50 of 14 M, which was 2.2-fold stronger than EJMC-1. Based on the docking analysis of S10 and EJMC-1 binding with TNF-α, in the second round, we designed S10 analogues, purchased 7 of them and synthesized 7 new compounds. The best compound, 4e showed an IC50 value of 3 M in cell assay, which was 14-fold stronger than EJMC-1. 4e was among the most potent TNF-α organic compound inhibitors reported so far. Our study demonstrated that 2-oxo-N-phenyl-1,2-dihydrobenzo[cd]indole-6-sulfonamide analogues could be developed as potent TNF-α inhibitors. 4e can be further optimized for its activity and properties. Our study provides insights into designing small molecule inhibitors directly targeting TNF-α and for protein-protein interaction inhibitor design.

  8. Cellular Models of Aggregation-dependent Template-directed Proteolysis to Characterize Tau Aggregation Inhibitors for Treatment of Alzheimer Disease.

    Science.gov (United States)

    Harrington, Charles R; Storey, John M D; Clunas, Scott; Harrington, Kathleen A; Horsley, David; Ishaq, Ahtsham; Kemp, Steven J; Larch, Christopher P; Marshall, Colin; Nicoll, Sarah L; Rickard, Janet E; Simpson, Michael; Sinclair, James P; Storey, Lynda J; Wischik, Claude M

    2015-04-24

    Alzheimer disease (AD) is a degenerative tauopathy characterized by aggregation of Tau protein through the repeat domain to form intraneuronal paired helical filaments (PHFs). We report two cell models in which we control the inherent toxicity of the core Tau fragment. These models demonstrate the properties of prion-like recruitment of full-length Tau into an aggregation pathway in which template-directed, endogenous truncation propagates aggregation through the core Tau binding domain. We use these in combination with dissolution of native PHFs to quantify the activity of Tau aggregation inhibitors (TAIs). We report the synthesis of novel stable crystalline leucomethylthioninium salts (LMTX®), which overcome the pharmacokinetic limitations of methylthioninium chloride. LMTX®, as either a dihydromesylate or a dihydrobromide salt, retains TAI activity in vitro and disrupts PHFs isolated from AD brain tissues at 0.16 μM. The Ki value for intracellular TAI activity, which we have been able to determine for the first time, is 0.12 μM. These values are close to the steady state trough brain concentration of methylthioninium ion (0.18 μM) that is required to arrest progression of AD on clinical and imaging end points and the minimum brain concentration (0.13 μM) required to reverse behavioral deficits and pathology in Tau transgenic mice. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Covalent cross-linking of insulin-like growth factor-1 to a specific inhibitor from human serum

    International Nuclear Information System (INIS)

    Ooi, G.T.; Herington, A.C.

    1986-01-01

    Previous studies have shown that a specific inhibitor of insulin-like growth factor (IGF) action in vitro can be isolated from normal human serum and subsequently partially purified on an IGF-affinity column. The ability of the inhibitor to bind the IGFs has now been confirmed directly using covalent cross-linking techniques. When 125 I-IGF-1 was cross-linked to inhibitor using disuccinimidyl suberate, five specifically labelled bands were seen on SDS-PAGE and autoradiography. Two bands (MW 21.5 K and 25.5 K) were intensely labelled, while the remaining three (MW 37 K, 34 K and 18 K) appeared as minor bands only. Inhibitor bioactivity, following further analysis by hydrophobic interaction chromatography or Con A-Sepharose affinity chromatography, was always associated with the presence of the 21.5 K and/or 25.5 K bands

  10. Inhibition of Protease-activated Receptor 1 Ameliorates Intestinal Radiation Mucositis in a Preclinical Rat Model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junru; Kulkarni, Ashwini [Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Chintala, Madhu [Schering-Plough Research Institute, Kenilworth, New Jersey (United States); Fink, Louis M. [Nevada Cancer Institute, Las Vegas, Nevada (United States); Hauer-Jensen, Martin, E-mail: mhjensen@life.uams.edu [Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Surgery Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas (United States)

    2013-01-01

    Purpose: To determine, using a specific small-molecule inhibitor of protease-activated receptor 1 (PAR1) signaling, whether the beneficial effect of thrombin inhibition on radiation enteropathy development is due to inhibition of blood clotting or to cellular (PAR1-mediated) thrombin effects. Methods and Materials: Rats underwent fractionated X-irradiation (5 Gy Multiplication-Sign 9) of a 4-cm small-bowel segment. Early radiation toxicity was evaluated in rats receiving PAR1 inhibitor (SCH602539, 0, 10, or 15 mg/kg/d) from 1 day before to 2 weeks after the end of irradiation. The effect of PAR1 inhibition on development of chronic intestinal radiation fibrosis was evaluated in animals receiving SCH602539 (0, 15, or 30 mg/kg/d) until 2 weeks after irradiation, or continuously until termination of the experiment 26 weeks after irradiation. Results: Blockade of PAR1 ameliorated early intestinal toxicity, with reduced overall intestinal radiation injury (P=.002), number of myeloperoxidase-positive (P=.03) and proliferating cell nuclear antigen-positive (P=.04) cells, and collagen III accumulation (P=.005). In contrast, there was no difference in delayed radiation enteropathy in either the 2- or 26-week administration groups. Conclusion: Pharmacological blockade of PAR1 seems to reduce early radiation mucositis but does not affect the level of delayed intestinal radiation fibrosis. Early radiation enteropathy is related to activation of cellular thrombin receptors, whereas platelet activation or fibrin formation may play a greater role in the development of delayed toxicity. Because of the favorable side-effect profile, PAR1 blockade should be further explored as a method to ameliorate acute intestinal radiation toxicity in patients undergoing radiotherapy for cancer and to protect first responders and rescue personnel in radiologic/nuclear emergencies.

  11. Thrombin-activatable fibrinolysis inhibitor is degraded by Salmonella enterica and Yersinia pestis

    NARCIS (Netherlands)

    Valls Serón, M.; Haiko, J.; de Groot, P. G.; Korhonen, T. K.; Meijers, J. C. M.

    2010-01-01

    Background: Pathogenic bacteria modulate the host coagulation system to evade immune responses or to facilitate dissemination through extravascular tissues. In particular, the important bacterial pathogens Salmonella enterica and Yersinia pestis intervene with the plasminogen/fibrinolytic system.

  12. A bistable mechanism for directional sensing

    International Nuclear Information System (INIS)

    Beta, C; Amselem, G; Bodenschatz, E

    2008-01-01

    We present a generic mechanism for directional sensing in eukaryotic cells that is based on bistable dynamics. As the key feature of this modeling approach, the velocity of trigger waves in the bistable sensing system changes its sign across cells that are exposed to an external chemoattractant gradient. This is achieved by combining a two-component activator/inhibitor system with a bistable switch that induces an identical symmetry breaking for arbitrary gradient input signals. A simple kinetic example is designed to illustrate the dynamics of a bistable directional sensing mechanism in numerical simulations

  13. Inhibitory Effect of Triterpenoids from Panax ginseng on Coagulation Factor X

    Directory of Open Access Journals (Sweden)

    Lingxin Xiong

    2017-04-01

    Full Text Available Enzymes involved in the coagulation process have received great attention as potential targets for the development of oral anti-coagulants. Among these enzymes, coagulation factor Xa (FXa has remained the center of attention in the last decade. In this study, 16 ginsenosides and two sapogenins were isolated, identified and quantified. To determine the inhibitory potential on FXa, the chromogenic substrates method was used. The assay suggested that compounds 5, 13 and 18 were mainly responsible for the anti-coagulant effect. Furthermore, these three compounds also possessed high thrombin selectivity in the thrombin inhibition assay. Furthermore, Glide XP from Schrödinger was employed for molecular docking to clarify the interaction between the bioactive compounds and FXa. Therefore, the chemical and biological results indicate that compounds 5 (ginsenoside Rg2, 13 (ginsenoside Rg3 and 18 (protopanaxtriol, PPT are potential natural inhibitors against FXa.

  14. Super-Hydrophobic Green Corrosion Inhibitor On Carbon Steel

    Science.gov (United States)

    Hassan, H.; Ismail, A.; Ahmad, S.; Soon, C. F.

    2017-06-01

    There are many examples of organic coatings used for corrosion protection. In particular, hydrophobic and super-hydrophobic coatings are shown to give good protection because of their enhanced ability to slow down transport of water and ions through the coating. The purpose of this research is to develop water repellent coating to avoid direct contact between metal and environment corrosive and mitigate corrosion attack at pipeline system. This water repellent characteristic on super-hydrophobic coating was coated by electrodeposition method. Wettability of carbon steel with super-hydrophobic coating (cerium chloride and myristic acid) and oxidized surface was investigated through contact angle and inhibitor performance test. The inhibitor performance was studied in 25% tannin acid corrosion test at 30°C and 3.5% sodium chloride (NaCl). The water contact angle test was determined by placing a 4-μL water droplet of distilled water. It shows that the wettability of contact angle super-hydrophobic with an angle of 151.60° at zero minute can be classified as super-hydrophobic characteristic. By added tannin acid as inhibitor the corrosion protection on carbon steel becomes more consistent. This reveals that the ability of the coating to withstand with the corrosion attack in the seawater at different period of immersions. The results elucidate that the weight loss increased as the time of exposure increased. However, the corrosion rates for uncoated carbon steel is high compared to coated carbon steel. As a conclusion, from both samples it can be seen that the coated carbon steel has less corrosion rated compared to uncoated carbon steel and addition of inhibitor to the seawater provides more protection to resist corrosion attack on carbon steel.

  15. Ecological costs and benefits correlated with trypsin protease inhibitor production in Nicotiana attenuata

    NARCIS (Netherlands)

    Glawe, G.A.; Zavala, J.A.; Kessler, A.; Van Dam, N.M.; Baldwin, I.T.

    2003-01-01

    Genotypes of the wild tobacco Nicotiana attenuata from different geographic regions in North America vary considerably in the level of constitutive and inducible trypsin protease inhibitors (TrypPIs), a potent direct defense, as well as in the production of herbivore-induced volatiles that function

  16. Microdrilled cartilage defects treated with thrombin-solidified chitosan/blood implant regenerate a more hyaline, stable, and structurally integrated osteochondral unit compared to drilled controls.

    Science.gov (United States)

    Marchand, Catherine; Chen, Gaoping; Tran-Khanh, Nicolas; Sun, Jun; Chen, Hongmei; Buschmann, Michael D; Hoemann, Caroline D

    2012-03-01

    This study analyzed the long-term cartilage and subchondral bone repair of microdrilled defects treated with chitosan glycerol-phosphate/blood implant, using thrombin (Factor IIa) to accelerate in situ solidification. We also evaluated the cartilage repair response to six smaller microdrill holes compared with two larger holes. Bilateral knee trochlear cartilage defects were created in n=8 skeletally mature rabbits, drilled with six proximal 0.5 mm and two distal 0.9 mm holes, then covered with in situ-solidified IIa-implants (treated) or with IIa-alone (control). After 6.5 months of repair, cartilage repair tissues were analyzed by histological scoring and histomorphometry for hyaline matrix characteristics and osseous integration. Subchondral repair bone was analyzed by 3D microcomputed tomography and compared to acute defects (n=6) and intact trochlea (n=8). Implant-treated cartilage repair tissues had higher structural integrity through the entire defect (p=0.02), twofold higher percent staining for glycosaminoglycan (p=0.0004), and ~24% more collagen type II staining over the smaller drill holes (p=0.008) compared with controls. Otherwise, hole diameter had no specific effect on cartilage repair. The subchondral bone plate was partially restored in treated and control defects but less dense than intact trochlea, with evidence of incomplete regeneration of the calcified cartilage layer. More residual drill holes (p=0.054) were detected in control versus treated defects, and control defects with more than 40% residual holes presented abnormally thicker trabeculae compared with treated defects. Low osteoclast numbers after 6.5 months repair suggested that bone was no longer remodeling. The subchondral bone plate surrounding the defects exhibited a significant thickening compared with age-matched intact trochlea. These data suggest that debridement and drilling can lead to long-term subchondral bone changes outside the cartilage defect. Compared with drilled

  17. Identification of small molecule inhibitors of Pseudomonas aeruginosa exoenzyme S using a yeast phenotypic screen.

    Directory of Open Access Journals (Sweden)

    Anthony Arnoldo

    2008-02-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic human pathogen that is a key factor in the mortality of cystic fibrosis patients, and infection represents an increased threat for human health worldwide. Because resistance of Pseudomonas aeruginosa to antibiotics is increasing, new inhibitors of pharmacologically validated targets of this bacterium are needed. Here we demonstrate that a cell-based yeast phenotypic assay, combined with a large-scale inhibitor screen, identified small molecule inhibitors that can suppress the toxicity caused by heterologous expression of selected Pseudomonas aeruginosa ORFs. We identified the first small molecule inhibitor of Exoenzyme S (ExoS, a toxin involved in Type III secretion. We show that this inhibitor, exosin, modulates ExoS ADP-ribosyltransferase activity in vitro, suggesting the inhibition is direct. Moreover, exosin and two of its analogues display a significant protective effect against Pseudomonas infection in vivo. Furthermore, because the assay was performed in yeast, we were able to demonstrate that several yeast homologues of the known human ExoS targets are likely ADP-ribosylated by the toxin. For example, using an in vitro enzymatic assay, we demonstrate that yeast Ras2p is directly modified by ExoS. Lastly, by surveying a collection of yeast deletion mutants, we identified Bmh1p, a yeast homologue of the human FAS, as an ExoS cofactor, revealing that portions of the bacterial toxin mode of action are conserved from yeast to human. Taken together, our integrated cell-based, chemical-genetic approach demonstrates that such screens can augment traditional drug screening approaches and facilitate the discovery of new compounds against a broad range of human pathogens.

  18. Inhibitors for human glutaminyl cyclase by structure based design and bioisosteric replacement.

    Science.gov (United States)

    Buchholz, Mirko; Hamann, Antje; Aust, Susanne; Brandt, Wolfgang; Böhme, Livia; Hoffmann, Torsten; Schilling, Stephan; Demuth, Hans-Ulrich; Heiser, Ulrich

    2009-11-26

    The inhibition of human glutaminyl cyclase (hQC) has come into focus as a new potential approach for the treatment of Alzheimer's disease. The hallmark of this principle is the prevention of the formation of Abeta(3,11(pE)-40,42), as these Abeta-species were shown to be of elevated neurotoxicity and likely to act as a seeding core leading to an accelerated formation of Abeta-oligomers and fibrils. Starting from 1-(3-(1H-imidazol-1-yl)propyl)-3-(3,4-dimethoxyphenyl)thiourea, bioisosteric replacements led to the development of new classes of inhibitors. The optimization of the metal-binding group was achieved by homology modeling and afforded a first insight into the probable binding mode of the inhibitors in the hQC active site. The efficacy assessment of the hQC inhibitors was performed in cell culture, directly monitoring the inhibition of Abeta(3,11(pE)-40,42) formation.

  19. Clinical impact of a pharmacist-led inpatient anticoagulation service: a review of the literature

    Directory of Open Access Journals (Sweden)

    Lee T

    2016-05-01

    Full Text Available Tiffany Lee, Erin Davis, Jason Kielly School of Pharmacy, Memorial University, St John's, NL, Canada Background: Anticoagulant therapies provide management options for potentially life-threatening thromboembolic conditions. They also carry significant safety risks, requiring careful consideration of medication dose, close monitoring, and follow-up. Inpatients are particularly at risk, considering the widespread use of anticoagulants in hospitals. This has prompted the introduction of safety goals for anticoagulants in Canada and the USA, which recommend increased pharmacist involvement to reduce patient harm. The goal of this review is to evaluate the efficacy and safety of pharmacist-led inpatient anticoagulation services compared to usual or physician-managed care. Methods: This narrative review includes articles identified through a literature search of PubMed, Embase, and International Pharmaceutical Abstracts databases, as well as hand searches of the references of relevant articles. Full publications of pharmacist-managed inpatient anticoagulation services were eligible if they were published in English and assessed clinical outcomes. Results: Twenty-six studies were included and further divided into two categories: 1 autonomous pharmacist-managed anticoagulation programs (PMAPs and 2 pharmacist recommendation. Pharmacist management of heparin and warfarin appears to result in improvements in some surrogate outcomes (international normalized ratio [INR] stability and time in INR goal range, while results for others are mixed (time to therapeutic INR, length of stay, and activated partial thromboplastin time [aPTT] measures. There is also some indication that PMAPs may be associated with reduced patient mortality. When direct thrombin inhibitors are managed by pharmacists, there seems to be a shorter time to therapeutic aPTT and a greater percentage of time in the therapeutic range, as well as a decrease in the frequency of medication

  20. SGLT2 inhibitors.

    Science.gov (United States)

    Dardi, I; Kouvatsos, T; Jabbour, S A

    2016-02-01

    Diabetes mellitus is a serious health issue and an economic burden, rising in epidemic proportions over the last few decades worldwide. Although several treatment options are available, only half of the global diabetic population achieves the recommended or individualized glycemic targets. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with a novel insulin-independent action. SGLT2 is a transporter found in the proximal renal tubules, responsible for the reabsorption of most of the glucose filtered by the kidney. Inhibition of SGLT2 lowers the blood glucose level by promoting the urinary excretion of excess glucose. Due to their insulin-independent action, SGLT2 inhibitors can be used with any degree of beta-cell dysfunction or insulin resistance, related to a very low risk of hypoglycemia. In addition to improving glycemic control, SGLT2 inhibitors have been associated with a reduction in weight and blood pressure when used as monotherapy or in combination with other antidiabetic agents in patients with type 2 diabetes mellitus (T2DM). Treatment with SGLT2 inhibitors is usually well tolerated; however, they have been associated with an increased incidence of urinary tract and genital infections, although these infections are usually mild and easy to treat. SGLT2 inhibitors are a promising new option in the armamentarium of drugs for patients with T2DM. Copyright © 2015 Elsevier Inc. All rights reserved.