WorldWideScience

Sample records for direct surface examination

  1. Patient surface doses in computerized tomography examinations

    International Nuclear Information System (INIS)

    Vekic, B; Kovacevic, S.; Ranogajec-Komor, M.; Duvnjak, N.; Marusic, P.; Anic, P.; Dolencic, P.

    1996-01-01

    The diagnostic value of computerized tomography has increased due to very rapid technical advances in both equipment and techniques. When the CT scanners were introduced, a significant problem for the specification of the radiation dose imparted to the patient undergoing CT examination has been created. In CT, the conditions of exposure are quite different from those in conventional X-ray imaging. CT procedure involves the continuous tomography of thin layers. Some of these layers touch each other while others overlap. The radiation doses received by patients can vary considerably. In addition to the radiation from the collimated primary beam, patients are exposed to significant scattered doses in unpredictable amounts. Every effort should be made to keep these doses to a reasonable minimum, without sacrificing the image quality. The aims of this work were to determine the surface doses delivered to various organs of patients during various computerized tomography examinations (head, thorax, kidney, abdomen and pelvis). Particular attention was directed to the precise determination of doses received by the eyes (during CT of head) and gonads (during CT of pelvis and lower abdomen) since these organs can be near or even in the primary X-ray beam

  2. Spectrophotometric Examination of Rough Print Surfaces

    Directory of Open Access Journals (Sweden)

    Erzsébet Novotny

    2011-05-01

    Full Text Available The objective was to assess the impact of the surface texture of individual creative paper types (coated or patternedon the quality of printing and to identify to what extent the various creative paper types require specific types ofspectrophotometers. We used stereomicroscopic images to illustrate unprinted and printed surfaces of creative papertypes. Surface roughness was measured to obtain data on the unevenness of surfaces. Spectrophotometric tests wereused to select the most suitable spectrophotometer from meters with different illumination setup for testing anygiven print. For the purpose of testing, we used spectrophotometers which are commonly available generally used totest print products for colour accuracy. With the improvement of measuring geometries, illumination setup, colourmeasurement becomes more and more capable of producing reliable results unaffected by surface textures. Our testshave proved this fact by showing that the GretagMacbeth Spectrolino with annular illumination is less sensitive tosurface texture than the X-Rite Spetrodensitometer and the Techkon SpetroDens with directional illumination. Furthertests have brought us to the conclusion that there is a difference even between the two devices with directionalillumination. While the X-Rite 530 Spectrodensitometer is more suitable for testing coated surfaces, the TechkonSpectroDens can come close to ΔE*ab values produced by the annular illuminated device for textured surfaces.

  3. Patient surface doses in computerized tomography examinations

    International Nuclear Information System (INIS)

    Vekic, B.; Kovacevic, S.; Ranogajec Komor, M.; Duvnjak, N.; Marusic, P.; Anic, P.; Dolencic, P.

    1996-01-01

    Computed tomography (CT) has become a major source of the population exposure to diagnostic x-rays, and acknowledge of the doses delivered by the CT equipment has become very important. Considerable efforts should be made to keep these doses to a reasonable minimum, without sacrificing the image quality. The conditions of exposure in CT are quite different from dose in conventional x-ray imaging. This has required the development of specific techniques for assessing patient dose from CT. The aims of this work were to determine the dose delivered to various organs of patients undergoing computed tomography of abdomen, thorax, pelvis and kidney as measured on the surface of the body and to estimate the risk to the patients. Dosimetric measurements were performed at two different CT scanners (Siemens SOMATOM DR-H ver. HC-1 and Shimadzu SCT-4500TE). The dose absorbed by different organs (gonads, chest, thyroid and eye lens) and by the examined part of the body of 95 patients of various sex and age were measured with TLD-700. The doses absorbed by different organs during the diagnostic CT examination of the body depend on the technical parameters, such as the number of scan, mAs, the thickness of scans, scanning times, tube voltage and other characteristics, some of each depend on the type and severity of illness. Clinical parameters, such as patient size and composition, and patient cooperation with regard to the control and motion, also influence the dose and the image quality. The highest dose measured in this study (89.19 mGy) was delivered to kidney during CT examination of this organ. (author)

  4. Modification of Surface Energy via Direct Laser Ablative Surface Patterning

    Science.gov (United States)

    Wohl, Christopher J., Jr. (Inventor); Belcher, Marcus A. (Inventor); Connell, John W. (Inventor); Hopkins, John W. (Inventor)

    2015-01-01

    Surface energy of a substrate is changed without the need for any template, mask, or additional coating medium applied to the substrate. At least one beam of energy directly ablates a substrate surface to form a predefined topographical pattern at the surface. Each beam of energy has a width of approximately 25 micrometers and an energy of approximately 1-500 microJoules. Features in the topographical pattern have a width of approximately 1-500 micrometers and a height of approximately 1.4-100 micrometers.

  5. Influence of engineered surface on cell directionality and motility

    International Nuclear Information System (INIS)

    Tang, Qing Yuan; Pang, Stella W; Tong, Wing Yin; Shi, Peng; Lam, Yun Wah; Shi, Jue

    2014-01-01

    Control of cell migration is important in numerous key biological processes, and is implicated in pathological conditions such as cancer metastasis and inflammatory diseases. Many previous studies indicated that cell migration could be guided by micropatterns fabricated on cell culture surfaces. In this study, we designed a polydimethylsiloxane cell culture substrate with gratings punctuated by corners and ends, and studied its effects on the behavior of MC3T3-E1 osteoblast cells. MC3T3-E1 cells elongated and aligned with the gratings, and the migration paths of the cells appeared to be guided by the grating pattern. Interestingly, more than 88% of the cells cultured on these patterns were observed to reverse their migration directions at least once during the 16 h examination period. Most of the reversal events occurred at the corners and the ends of the pattern, suggesting these localized topographical features induce an abrupt loss in directional persistence. Moreover, the cell speed was observed to increase temporarily right after each directional reversal. Focal adhesion complexes were more well-established in cells on the angular gratings than on flat surfaces, but the formation of filipodia appeared to be imbalanced at the corners and the ends, possibly leading to the loss of directional persistence. This study describes the first engineered cell culture surface that consistently induces changes in the directional persistence of adherent cells. This will provide an experimental model for the study of this phenomenon and a valuable platform to control the cell motility and directionality, which can be used for cell screening and selection. (paper)

  6. Macroscopic and radiographic examination of proximal root surface caries

    International Nuclear Information System (INIS)

    Nordenram, G.; Bergvist, A.; Johnson, G.; Henriksen, C.O.; Anneroth, G.

    1988-01-01

    The purpose of the study was to compare macroscopic and radiographic examination of proximal root surface caries of extracted teeth from patients aged 65-95 years. Although the study conditions for macroscopic and radiographic diagnosis favored more sensitive evaluations than routine clinical conditions, there was a 24% disagreement in diagnosis. This finding indicates that under routine clinical conditions it is difficult to register with certainty all superficial root carious lesions. Even in the absence of clinically detectable root surface caries, preventive measures should be considered for elderly people with exposed root surfaces

  7. Examination of soldier target recognition with direct view optics

    Science.gov (United States)

    Long, Frederick H.; Larkin, Gabriella; Bisordi, Danielle; Dorsey, Shauna; Marianucci, Damien; Goss, Lashawnta; Bastawros, Michael; Misiuda, Paul; Rodgers, Glenn; Mazz, John P.

    2017-10-01

    Target recognition and identification is a problem of great military and scientific importance. To examine the correlation between target recognition and optical magnification, ten U.S. Army soldiers were tasked with identifying letters on targets at 800 and 1300 meters away. Letters were used since they are a standard method for measuring visual acuity. The letters were approximately 90 cm high, which is the size of a well-known rifle. Four direct view optics with angular magnifications of 1.5x, 4x, 6x, and 9x were used. The goal of this approach was to measure actual probabilities for correct target identification. Previous scientific literature suggests that target recognition can be modeled as a linear response problem in angular frequency space using the established values for the contrast sensitivity function for a healthy human eye and the experimentally measured modulation transfer function of the optic. At the 9x magnification, the soldiers could identify the letters with almost no errors (i.e., 97% probability of correct identification). At lower magnification, errors in letter identification were more frequent. The identification errors were not random but occurred most frequently with a few pairs of letters (e.g., O and Q), which is consistent with the literature for letter recognition. In addition, in the small subject sample of ten soldiers, there was considerable variation in the observer recognition capability at 1.5x and a range of 800 meters. This can be directly attributed to the variation in the observer visual acuity.

  8. Switchable directional excitation surface plasmon polaritons with dielectric nanoantennas

    DEFF Research Database (Denmark)

    Sinev, I.; Komissarenko, F.; Bogdanov, A.

    We demonstrate directional launching of surface plasmon polaritons on thin goldfilm with a single silicon nanosphere. The directivity pattern of the excited surface waves exhibits rapid switching from forward to backward excitation, which is driven by the mutual interference of magnetic and elect......We demonstrate directional launching of surface plasmon polaritons on thin goldfilm with a single silicon nanosphere. The directivity pattern of the excited surface waves exhibits rapid switching from forward to backward excitation, which is driven by the mutual interference of magnetic...

  9. Concentric artificial impedance surface for directional sound beamforming

    Directory of Open Access Journals (Sweden)

    Kyungjun Song

    2017-03-01

    Full Text Available Utilizing acoustic metasurfaces consisting of subwavelength resonant textures, we design an artificial impedance surface by creating a new boundary condition. We demonstrate a circular artificial impedance surface with surface impedance modulation for directional sound beamforming in three-dimensional space. This artificial impedance surface is implemented by revolving two-dimensional Helmholtz resonators with varying internal coiled path. Physically, the textured surface has inductive surface impedance on its inner circular patterns and capacitive surface impedance on its outer circular patterns. Directional receive beamforming can be achieved using an omnidirectional microphone located at the focal point formed by the gradient-impeding surface. In addition, the uniaxial surface impedance patterning inside the circular aperture can be used for steering the direction of the main lobe of the radiation pattern.

  10. Ultrasonic examination of defects close to the outer surface

    International Nuclear Information System (INIS)

    Benoist, P.; Serre, M.; Champigny, F.

    1986-11-01

    During the examination of a pressurized water reactor vessel with an in Service Inspection Machine (MIS), various welds are scanned with immersion ultrasonic focused transducers from the inside of the vessel. Defects close to the outer surface are sometimes detected, and sizing with the successive 6 dB drop method leads to oversize some indications; this is caused by various reflections on the outer wall; the corner echo is of particular importance here. CEA and EDF have started an experimental program in order to study the response of volumetric and planar defects located near the outer surface. We present here the first results obtained with artificial defects. 2 refs

  11. Forensic Examination Using a Nondestructive Evaluation Method for Surface Metrology

    Science.gov (United States)

    Eisenmann, David J.; Chumbley, L. Scott

    2009-03-01

    The objective of this paper is to describe the use of a new technique of optical profilometry in a nondestructive, non-contact fashion for the comparison of two metallic surfaces, one hard and one soft. When brought in contact with one another, the harder material (i.e. the tool) will impress its surface roughness onto the softer. It is understood that the resulting set of impressions left from a tool tip act in a manner similar to a photographic negative, in that it leaves a reverse, or negative impression on the surface of a plate. If properly inverted and reversed, measurements from the softer material should be identical to the harder indenting object with regard to surface texture and roughness. This assumption is inherent in the area of forensics, where bullets, cartridge cases, and toolmarked surfaces from crime scenes are compared to similar marks made under controlled conditions in the forensic laboratory. This paper will examine the methodology used to compare two surfaces for similarities and dissimilarities, and comment on the applicability of this technique to other studies.

  12. Nanofluidic bubble pump using surface tension directed gas injection

    NARCIS (Netherlands)

    Tas, Niels Roelof; Berenschot, Johan W.; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt; van den Berg, Albert

    2002-01-01

    A new concept for liquid manipulation has been developed and implemented in surface-micromachined fluid channels. It is based on the surface tension directed injection of a gas into the liquid flow through micrometer-sized holes in the microchannel wall. The injected gas is directed to an exhaust by

  13. Switchable directional excitation surface plasmon polaritons with dielectric nanoantennas

    DEFF Research Database (Denmark)

    Sinev, I.; Komissarenko, F.; Bogdanov, A.

    2017-01-01

    We demonstrate directional launching of surface plasmon polaritons on thin goldfilm with a single silicon nanosphere. The directivity pattern of the excited surface waves exhibits rapid switching from forward to backward excitation, which is driven by the mutual interference of magnetic and elect...... and electric dipole moments supported by the dielectric nanoantenna....

  14. Surface acoustic waves voltage controlled directional coupler

    Science.gov (United States)

    Golan, G.; Griffel, G.; Yanilov, E.; Ruschin, S.; Seidman, A.; Croitoru, N.

    1988-10-01

    An important condition for the development of surface wave integrated-acoustic devices is the ability to guide and control the propagation of the acoustic energy. This can be implemented by deposition of metallic "loading" channels on an anisotropic piezoelectric substrate. Deposition of such two parallel channels causes an effective coupling of acoustic energy from one channel to the other. A basic requirement for this coupling effect is the existence of the two basic modes: a symmetrical and a nonsymmetrical one. A mode map that shows the number of sustained modes as a function of the device parameters (i.e., channel width; distance between channels; material velocity; and acoustical exciting frequency) is presented. This kind of map can help significantly in the design process of such a device. In this paper we devise an advanced acoustical "Y" coupler with the ability to control its effective coupling by an externally applied voltage, thereby causing modulation of the output intensities of the signals.

  15. Probing Anisotropic Surface Properties of Molybdenite by Direct Force Measurements.

    Science.gov (United States)

    Lu, Zhenzhen; Liu, Qingxia; Xu, Zhenghe; Zeng, Hongbo

    2015-10-27

    Probing anisotropic surface properties of layer-type mineral is fundamentally important in understanding its surface charge and wettability for a variety of applications. In this study, the surface properties of the face and the edge surfaces of natural molybdenite (MoS2) were investigated by direct surface force measurements using atomic force microscope (AFM). The interaction forces between the AFM tip (Si3N4) and face or edge surface of molybdenite were measured in 10 mM NaCl solutions at various pHs. The force profiles were well-fitted with classical DLVO (Derjaguin-Landau-Verwey-Overbeek) theory to determine the surface potentials of the face and the edge surfaces of molybdenite. The surface potentials of both the face and edge surfaces become more negative with increasing pH. At neutral and alkaline conditions, the edge surface exhibits more negative surface potential than the face surface, which is possibly due to molybdate and hydromolybdate ions on the edge surface. The point of zero charge (PZC) of the edge surface was determined around pH 3 while PZC of the face surface was not observed in the range of pH 3-11. The interaction forces between octadecyltrichlorosilane-treated AFM tip (OTS-tip) and face or edge surface of molybdenite were also measured at various pHs to study the wettability of molybdenite surfaces. An attractive force between the OTS-tip and the face surface was detected. The force profiles were well-fitted by considering DLVO forces and additional hydrophobic force. Our results suggest the hydrophobic feature of the face surface of molybdenite. In contrast, no attractive force between the OTS-tip and the edge surface was detected. This is the first study in directly measuring surface charge and wettability of the pristine face and edge surfaces of molybdenite through surface force measurements.

  16. Entrance surface dose measurements in pediatric radiological examinations

    International Nuclear Information System (INIS)

    Ribeiro, L.A.; Yoshimura, E.M.

    2008-01-01

    A survey of pediatric radiological examinations was carried out in a reference pediatric hospital of the city of Sao Paulo, in order to investigate the doses to children undergoing conventional X-ray examinations. The results showed that the majority of pediatric patients are below 4 years, and that about 80% of the examinations correspond to chest projections. Doses to typical radiological examinations were measured in vivo with thermoluminescent dosimeters (LiF: Mg, Ti and LiF: Mg, Cu, P) attached to the skin of the children to determine entrance surface dose (ESD). Also homogeneous phantoms were used to obtain ESD to younger children, because the technique uses a so small kVp that the dosimeters would produce an artifact image in the patient radiograph. Four kinds of pediatric examinations were investigated: three conventional examinations (chest, skull and abdomen) and a fluoroscopic procedure (barium swallow). Relevant information about kVp and mAs values used in the examinations was collected, and we discuss how these parameters can affect the ESD. The ESD values measured in this work are compared to reference levels published by the European Commission for pediatric patients. The results obtained (third-quartile of the ESD distribution) for chest AP examinations in three age groups were: 0.056 mGy (2-4 years old); 0.068 mGy (5-9 years old); 0.069 mGy (10-15 years old). All of them are below the European reference level (0.100 mGy). ESD values measured to the older age group in skull and abdomen AP radiographs (mean values 3.44 and 1.20 mGy, respectively) are above the European reference levels (1.5 mGy to skull and 1.0 mGy to abdomen). ESD values measured in the barium swallow examination reached 10 mGy in skin regions corresponding to thyroid and esophagus. It was noticed during this survey that some technicians use, improperly, X-ray fluoroscopy in conventional examinations to help them in positioning the patient. The results presented here are a

  17. Improvement of silicon direct bonding using surfaces activated by hydrogen plasma treatment

    CERN Document Server

    Choi, W B; Lee Jae Sik; Sung, M Y

    2000-01-01

    The plasma surface treatment, using hydrogen gas, of silicon wafers was studied as a pretreatment for silicon direct bonding. Chemical reactions of the hydrogen plasma with the surfaces were used for both surface activation and removal of surface contaminants. Exposure of the silicon wafers to the plasma formed an active oxide layer on the surface. This layer was hydrophilic. The surface roughness and morphology were examined as functions of the plasma exposure time and power. The surface became smoother with shorter plasma exposure time and lower power. In addition, the plasma surface treatment was very efficient in removing the carbon contaminants on the silicon surface. The value of the initial surface energy, as estimated by using the crack propagation method, was 506 mJ/M sup 2 , which was up to about three times higher than the value for the conventional direct bonding method using wet chemical treatments.

  18. Examination of fracture surfaces using focused ion beam milling

    International Nuclear Information System (INIS)

    Cairney, J.M.; Munroe, P.R.; Schneibel, J.H.

    2000-01-01

    Composite materials consisting of an iron aluminide matrix with composition approximately Fe-40at%Al, reinforced with a volume fraction of 40--70% ceramic particles (TiC, WC, TiB 2 or ZrB 2 ), are currently being developed. Focused ion beam milling is a relatively new tool to materials science. It uses a high resolution (<5nm), energetic beam of gallium ions to selectively sputter regions of a material, whilst also functioning as a scanning ion microscope. The milling accuracy is of the order of the beam size allowing very precise sectioning to be carried out. The focused ion beam can be used to prepare highly localized cross sections which reveal the internal sub-structure of materials, avoiding detrimental processes such as deformation, or closing of existing cracks by mechanical abrasion. An area is milled from the sample such that, upon tilting, the internal structure can be imaged. The focused ion beam therefore offers a unique opportunity to examine cross-sections of the fracture surfaces in FeAl-based composites. In the present study, the focused ion beam was used to obtain cross-sections of fracture surfaces in two composite materials, in order to examine the extent of interfacial debonding and matrix deformation, thus providing more information about the mode of fracture. These cross-sections were prepared at regions where significant debonding was observed

  19. Examination of material manufactured by direct metal laser sintering (DMLS

    Directory of Open Access Journals (Sweden)

    J. Dobránsky

    2015-07-01

    Full Text Available This article is concerned with assessing microstructural properties of metal component manufactured by additive DMLS technology. Two series of samples were assessed. The first one was manufactured without heat treatment. Samples in the second series were treated with heat in order to assess increase in hardness and influence on modification of microstructure. Subsequently, values of hardness were measured by Vickers Hardness Test and modification of microstructure was observed by optical microscope. Evaluations were carried out in three planes in order to assess the differences in layering of material during its processing. Differences in values of hardness and microstructural components were discovered by examination of changes in three planes.

  20. Directional uv photoemission from (100) and (110) molybdenum surfaces

    DEFF Research Database (Denmark)

    Cinti, R. C.; Khoury, E. Al; Chakraverty, B. K.

    1976-01-01

    A study of the (100) and (110) molybdenum surfaces by directional photoemission spectroscopy is presented. Energy distribution spectra formed by photoelectrons emitted normal to the surfaces have been measured for photon energies between 10.2 and 21.2 eV. The results are discussed in terms of cal......-transition and surface-emission processes. Two extra structures are interpreted in terms of surface states or resonances: on the (100) surface, 0.5 eV below EF; on the (110) surface, 4.5 eV below EF in the s-d hybridization gap....... of calculated band structure within the framework of the K∥-conservation assumption. A good agreement is found between the main features of the experimental spectra and the emission expected from the band structure along the corresponding symmetry line in the Brillouin zone, assuming essentially direct...

  1. Direct NO decomposition over stepped transition-metal surfaces

    DEFF Research Database (Denmark)

    Falsig, Hanne; Bligaard, Thomas; Christensen, Claus H.

    2007-01-01

    We establish the full potential energy diagram for the direct NO decomposition reaction over stepped transition-metal surfaces by combining a database of adsorption energies on stepped metal surfaces with known Bronsted-Evans-Polanyi (BEP) relations for the activation barriers of dissociation...

  2. Direct evaluation of transient surface temperatures and heat fluxes

    International Nuclear Information System (INIS)

    Axford, R.A.

    1975-08-01

    Evaluations of transient surface temperatures resulting from the absorption of radiation are required in laser fusion reactor systems studies. A general method for the direct evaluation of transient surface temperatures and heat fluxes on the boundaries of bounded media is developed by constructing fundamental solutions of the scalar Helmholtz equation and performing certain elementary integrations

  3. Direct Measurement of the Surface Energy of Graphene.

    Science.gov (United States)

    van Engers, Christian D; Cousens, Nico E A; Babenko, Vitaliy; Britton, Jude; Zappone, Bruno; Grobert, Nicole; Perkin, Susan

    2017-06-14

    Graphene produced by chemical vapor deposition (CVD) is a promising candidate for implementing graphene in a range of technologies. In most device configurations, one side of the graphene is supported by a solid substrate, wheras the other side is in contact with a medium of interest, such as a liquid or other two-dimensional material within a van der Waals stack. In such devices, graphene interacts on both faces via noncovalent interactions and therefore surface energies are key parameters for device fabrication and operation. In this work, we directly measured adhesive forces and surface energies of CVD-grown graphene in dry nitrogen, water, and sodium cholate using a modified surface force balance. For this, we fabricated large (∼1 cm 2 ) and clean graphene-coated surfaces with smooth topography at both macro- and nanoscales. By bringing two such surfaces into contact and measuring the force required to separate them, we measured the surface energy of single-layer graphene in dry nitrogen to be 115 ± 4 mJ/m 2 , which was similar to that of few-layer graphene (119 ± 3 mJ/m 2 ). In water and sodium cholate, we measured interfacial energies of 83 ± 7 and 29 ± 6 mJ/m 2 , respectively. Our work provides the first direct measurement of graphene surface energy and is expected to have an impact both on the development of graphene-based devices and contribute to the fundamental understanding of surface interactions.

  4. Grating-assisted surface acoustic wave directional couplers

    Science.gov (United States)

    Golan, G.; Griffel, G.; Seidman, A.; Croitoru, N.

    1991-07-01

    Physical properties of novel grating-assisted Y directional couplers are examined using the coupled-mode theory. A general formalism for the analysis of the lateral perturbed directional coupler properties is presented. Explicit expressions for waveguide key parameters such as coupling length, grating period, and other structural characterizations, are obtained. The influence of other physical properties such as time and frequency response or cutoff conditions are also analyzed. A plane grating-assisted directional coupler is presented and examined as a basic component in the integrated acoustic technology.

  5. Extending the Direct Behavior Rating: An Examination of Schoolwide Behavior Ratings and Academic Engagement

    Science.gov (United States)

    Bruhn, Allison; Barron, Sheila; Fernando, Josephine; Balint-Langel, Kinga

    2018-01-01

    Direct behavior ratings have been identified as a practical and feasible alternative to direct observation of behavior for monitoring behavioral progress. Despite the evidence of usability, there have been calls for further examination of direct behavior ratings using different behaviors and scales. To this end, we examined the ratings of…

  6. Remote sensing of land surface temperature: The directional viewing effect

    International Nuclear Information System (INIS)

    Smith, J.A.; Schmugge, T.J.; Ballard, J.R. Jr.

    1997-01-01

    Land Surface Temperature (LST) is an important parameter in understanding global environmental change because it controls many of the underlying processes in the energy budget at the surface and heat and water transport between the surface and the atmosphere. The measurement of LST at a variety of spatial and temporal scales and extension to global coverage requires remote sensing means to achieve these goals. Land surface temperature and emissivity products are currently being derived from satellite and aircraft remote sensing data using a variety of techniques to correct for atmospheric effects. Implicit in the commonly employed approaches is the assumption of isotropy in directional thermal infrared exitance. The theoretical analyses indicate angular variations in apparent infrared temperature will typically yield land surface temperature errors ranging from 1 to 4 C unless corrective measures are applied

  7. Direct methods for surface X-ray diffraction

    International Nuclear Information System (INIS)

    Saldin, D. K.; Harder, R.; Shneerson, V. L.; Vogler, H.; Moritz, W.

    2000-01-01

    We develop of a direct method for surface X-ray diffraction that exploits the holographic feature of a known reference wave from the substrate. A Bayesian analysis of the optimal inference to be made from an incomplete data set suggests a maximum entropy algorithm that balances agreement with the data and other statistical considerations

  8. Wind direction dependent vertical wind shear and surface roughness parameter in two different coastal environments

    International Nuclear Information System (INIS)

    Bagavathsingh, A.; Srinivas, C.V.; Baskaran, R.; Venkatraman, B.; Sardar Maran, P.

    2016-01-01

    Atmospheric boundary layer parameters and surface layer parameterizations are important prerequisites for air pollution dispersion analysis. The turbulent flow characteristics vary at coastal and inland sites where the nuclear facilities are situated. Many pollution sources and their dispersion occur within the roughness sub layer in the lower atmosphere. In this study analysis of wind direction dependence vertical wind shear, surface roughness lengths and surface layer wind condition has been carried out at a coastal and the urban coastal site for the different wind flow regime. The differential response of the near coastal and inland urban site SBL parameters (wind shear, roughness length, etc) was examined as a function of wind direction

  9. Directional radiative properties of anisotropic rough silicon and gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.J.; Chen, Y.B.; Zhang, Z.M. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2006-11-15

    Recent studies have shown that the topography of some chemically etched microrough silicon surfaces is non-Gaussian and may be strongly anisotropic. However, the bidirectional reflectance distribution function (BRDF) of anisotropic surfaces has not been fully understood. The present study uses the Monte Carlo method to investigate the out-of-plane BRDF, multiple scattering, and the change of the polarization state upon reflection. Two ray-tracing algorithms are developed that incorporate the surface topography or slope distribution of the samples obtained by the use of an atomic force microscope. The predicted BRDFs for silicon surfaces with or without a gold coating are in reasonable agreement with the results measured using a laser scatterometer at a wavelength of 635nm. The employment of surface topographic data is indispensable to the BRDF modeling of anisotropic surfaces. While first-order scattering makes the dominant contribution to reflections from the studied surfaces, it is critical to consider the polarization state change in order to correctly predict the out-of-plane BRDF. The versatile Monte Carlo modeling tools developed through the present study help gain a better understanding of the directional radiative properties of microrough surfaces and, furthermore, will have an impact on thermal metrology in the semiconductor industry. (author)

  10. Inkjet printing for direct micropatterning of a superhydrophobic surface: Toward biomimetic fog harvesting surfaces

    KAUST Repository

    Zhang, Lianbin

    2015-01-01

    The preparation of biomimetic superhydrophobic surfaces with hydrophilic micro-sized patterns is highly desirable, but a one-step, mask-free method to produce such surfaces has not previously been reported. We have developed a direct method to produce superhydrophilic micropatterns on superhydrophobic surfaces based on inkjet printing technology. This work was inspired by the efficient fog-harvesting behavior of Stenocara beetles in the Namib Desert. A mussel-inspired ink consisting of an optimized solution of dopamine was applied directly by inkjet printing to superhydrophobic surfaces. Stable Wenzel\\'s microdroplets of the dopamine solution with well-defined micropatterns were obtained on these surfaces. Superhydrophilic micropatterns with well-controlled dimensions were then readily achieved on the superhydrophobic surfaces by the formation of polydopamine via in situ polymerization. The micropatterned superhydrophobic surfaces prepared by this inkjet printing method showed enhanced water collection efficiency compared with uniform superhydrophilic and superhydrophobic surfaces. This method can be used for the facile large-scale patterning of superhydrophobic surfaces with high precision and superior pattern stability and is therefore a key step toward patterning superhydrophobic surfaces for practical applications. This journal is

  11. Direct surface magnetometry with photoemission magnetic x-ray dichroism

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J.G.; Goodman, K.W. [Lawrence Berkeley National Lab., CA (United States); Schumann, F.O. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1997-04-01

    Element specific surface magnetometry remains a central goal of synchrotron radiation based studies of nanomagnetic structures. One appealing possibility is the combination of x-ray absorption dichroism measurements and the theoretical framework provided by the {open_quotes}sum rules.{close_quotes} Unfortunately, sum rule analysis are hampered by several limitations including delocalization of the final state, multi-electronic phenomena and the presence of surface dipoles. An alternative experiment, Magnetic X-Ray Dichroism in Photoelectron Spectroscopy, holds out promise based upon its elemental specificity, surface sensitivity and high resolution. Computational simulations by Tamura et al. demonstrated the relationship between exchange and spin orbit splittings and experimental data of linear and circular dichroisms. Now the authors have developed an analytical framework which allows for the direct extraction of core level exchange splittings from circular and linear dichroic photoemission data. By extending a model initially proposed by Venus, it is possible to show a linear relation between normalized dichroism peaks in the experimental data and the underlying exchange splitting. Since it is reasonable to expect that exchange splittings and magnetic moments track together, this measurement thus becomes a powerful new tool for direct surface magnetometry, without recourse to time consuming and difficult spectral simulations. The theoretical derivation will be supported by high resolution linear and circular dichroism data collected at the Spectromicroscopy Facility of the Advanced Light Source.

  12. Direct modification of silicon surface by nanosecond laser interference lithography

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dapeng [JR3CN and CNM (Changchun University of Science and Technology), Changchun 130022 (China); JR3CN and IRAC (University of Bedfordshire), Luton LU1 3JU (United Kingdom); Wang, Zuobin, E-mail: wangz@cust.edu.cn [JR3CN and CNM (Changchun University of Science and Technology), Changchun 130022 (China); JR3CN and IRAC (University of Bedfordshire), Luton LU1 3JU (United Kingdom); Zhang, Ziang [JR3CN and CNM (Changchun University of Science and Technology), Changchun 130022 (China); Yue, Yong [JR3CN and CNM (Changchun University of Science and Technology), Changchun 130022 (China); JR3CN and IRAC (University of Bedfordshire), Luton LU1 3JU (United Kingdom); Li, Dayou [JR3CN and IRAC (University of Bedfordshire), Luton LU1 3JU (United Kingdom); Maple, Carsten [JR3CN and CNM (Changchun University of Science and Technology), Changchun 130022 (China); JR3CN and IRAC (University of Bedfordshire), Luton LU1 3JU (United Kingdom)

    2013-10-01

    Periodic and quasi-periodic structures on silicon surface have numerous significant applications in photoelectronics and surface engineering. A number of technologies have been developed to fabricate the structures in various research fields. In this work, we take the strategy of direct nanosecond laser interference lithography technology, and focus on the silicon material to create different well-defined surface structures based on theoretical analysis of the formation of laser interference patterns. Two, three and four-beam laser interference systems were set up to fabricate the grating, regular triangle and square structures on silicon surfaces, respectively. From the AFM micrographs, the critical features of structures have a dependence on laser fluences. For a relative low laser fluence, grating and dot structures formed with bumps due to the Marangoni Effect. With the increase of laser fluences, melt and evaporation behaviors can be responsible for the laser modification. By properly selecting the process parameters, well-defined grating and dot structures can been achieved. It can be demonstrated that direct laser interference lithography is a facile and efficient technology with the advantage of a single process procedure over macroscale areas for the fabrication of micro and nano structures.

  13. Directional mass transport in an atmospheric pressure surface barrier discharge.

    Science.gov (United States)

    Dickenson, A; Morabit, Y; Hasan, M I; Walsh, J L

    2017-10-25

    In an atmospheric pressure surface barrier discharge the inherent physical separation between the plasma generation region and downstream point of application reduces the flux of reactive chemical species reaching the sample, potentially limiting application efficacy. This contribution explores the impact of manipulating the phase angle of the applied voltage to exert a level of control over the electrohydrodynamic forces generated by the plasma. As these forces produce a convective flow which is the primary mechanism of species transport, the technique facilitates the targeted delivery of reactive species to a downstream point without compromising the underpinning species generation mechanisms. Particle Imaging Velocimetry measurements are used to demonstrate that a phase shift between sinusoidal voltages applied to adjacent electrodes in a surface barrier discharge results in a significant deviation in the direction of the plasma induced gas flow. Using a two-dimensional numerical air plasma model, it is shown that the phase shift impacts the spatial distribution of the deposited charge on the dielectric surface between the adjacent electrodes. The modified surface charge distribution reduces the propagation length of the discharge ignited on the lagging electrode, causing an imbalance in the generated forces and consequently a variation in the direction of the resulting gas flow.

  14. Direct instrumental identification of catalytically active surface sites

    Science.gov (United States)

    Pfisterer, Jonas H. K.; Liang, Yunchang; Schneider, Oliver; Bandarenka, Aliaksandr S.

    2017-09-01

    The activity of heterogeneous catalysts—which are involved in some 80 per cent of processes in the chemical and energy industries—is determined by the electronic structure of specific surface sites that offer optimal binding of reaction intermediates. Directly identifying and monitoring these sites during a reaction should therefore provide insight that might aid the targeted development of heterogeneous catalysts and electrocatalysts (those that participate in electrochemical reactions) for practical applications. The invention of the scanning tunnelling microscope (STM) and the electrochemical STM promised to deliver such imaging capabilities, and both have indeed contributed greatly to our atomistic understanding of heterogeneous catalysis. But although the STM has been used to probe and initiate surface reactions, and has even enabled local measurements of reactivity in some systems, it is not generally thought to be suited to the direct identification of catalytically active surface sites under reaction conditions. Here we demonstrate, however, that common STMs can readily map the catalytic activity of surfaces with high spatial resolution: we show that by monitoring relative changes in the tunnelling current noise, active sites can be distinguished in an almost quantitative fashion according to their ability to catalyse the hydrogen-evolution reaction or the oxygen-reduction reaction. These data allow us to evaluate directly the importance and relative contribution to overall catalyst activity of different defects and sites at the boundaries between two materials. With its ability to deliver such information and its ready applicability to different systems, we anticipate that our method will aid the rational design of heterogeneous catalysts.

  15. Re-examination of the threshold energy surface in copper

    International Nuclear Information System (INIS)

    King, W.E.; Benedek, R.; Merkle, K.L.; Meshii, M.

    1981-01-01

    Radiation-induced defect production in copper has been studied using in-situ electrical resistivity damage-rate measurements in the HVEM and molecular dynamics simulations. Analysis of the results yields a threshold energy surface characterized by two isolated pockets of low threshold energy centered at and surrounded by regions of much higher threshold energy; the corresponding damage function exhibits a plateau at 0.65 Frenkel pairs. A Frenkel pair resistivity of (2.75/sub -0.2/ + 0 6 ) x 10 - 4 Ω-cm is proposed. A model damage function is constructed and compared to results from ion irradiation damage-rate measurements. 7 figures

  16. Selection of the reference concept for the surface examination stations in the fuels and materials examination facility

    International Nuclear Information System (INIS)

    Frandsen, G.B.; Nash, C.R.

    1978-01-01

    The prototype surface examination station for the Fuels and Materials Examination Facility (FMEF) will use closed circuit television (CCTV) for routine modes of operation along with a nuclear periscope for special examination needs. The CCTV and the nuclear periscope were evaluated against prescribed station requirements and compared in a side-by-side demonstration. A quantitative evaluation of their outputs showed that both systems were capable of meeting surface anomaly detection requirements. The CCTV system was superior in its ability to collect, suppress and present data into a more useful form for the experimenters

  17. Thermodynamics and structure of liquid surfaces investigated directly with surface analytical tools

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Gunther [Flinders Univ., Adelaide, SA (Australia). Centre for NanoScale Science and Technology; Morgner, Harald [Leipzig Univ. (Germany). Wilhelm Ostwald Inst. for Physical and Theoretical Chemistry

    2017-06-15

    Measuring directly the composition, the distribution of constituents as function of the depth and the orientation of molecules at liquid surfaces is essential for determining physicochemical properties of liquid surfaces. While the experimental tools that have been developed for analyzing solid surfaces can in principal be applied to liquid surfaces, it turned out that they had to be adjusted to the particular challenges imposed by liquid samples, e.g. by the unavoidable vapor pressure and by the mobility of the constituting atoms/molecules. In the present work it is shown, how electron spectroscopy and ion scattering spectroscopy have been used for analyzing liquid surfaces. The emphasis of this review is on using the structural information gained for determining the physicochemical properties of liquid surfaces. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Reduction of radiation exposure for the examiner in angiography using a direct dosimeter

    International Nuclear Information System (INIS)

    Kamusella, Peter; Wissgott, C.; Scheer, F.; Andresen, R.; Wiggermann, P.

    2013-01-01

    Purpose: To evaluate whether a reduction in radiation exposure can be achieved using a direct dosimeter with an acoustic warning signal (model EDD-30, Unfors Instruments, Billdal, Sweden). Materials and Methods: A total of 183 diagnostic and interventional angiographies of the pelvis and lower limbs using a direct dosimeter were analyzed. The vascular interventions were performed either by an experienced examiner (> 5000 interventions), an intermediate examiner (> 1000 interventions) or by a beginner (< 200 interventions). The measuring sensor of the direct dosimeter was attached to the back of the left hand, below the sterile glove, and was worn throughout the examination. If the limit values set on the dosimeter were exceeded, an acoustic signal sounded. At the end of the examination, the mean dose and the mean dose rate could be read off directly. Results: Exposure is clearly dependent on the experience of the examiner. The highest mean dose rate was found for the beginner, followed by the intermediate examiner. The lowest dose rate was shown by the experienced examiner, even though he mostly performed complex interventions. Over the course of 3 months, an improvement in the average dose rate can be shown in the third month for the intermediate examiner. Conclusion: The use of a direct dosimeter with an acoustic warning signal is a practicable tool for sensitizing interventional radiologists to unavoidable radiation exposure, with the aim of reducing the dose. 'Real-time' dosimetry represents a sensible extension of indirect protection of the radiation-exposed examiner in angiography. (orig.)

  19. Direct surface PEGylation of nanodiamond via RAFT polymerization

    International Nuclear Information System (INIS)

    Shi, Yingge; Liu, Meiying; Wang, Ke; Huang, Hongye; Wan, Qing; Tao, Lei; Fu, Lihua; Zhang, Xiaoyong; Wei, Yen

    2015-01-01

    Graphical abstract: In this paper, we describe an efficient, practical and novel method to modify ND via direct immobilization of chain transfer agent for RAFT polymerization. - Highlights: • Surface PEGylation of ND via RAFT polymerization. • ND with high water dispersibility and excellent biocompatibility. • Controlled living polymerization. - Abstract: Nanodiamond (ND) is a novel class of carbon nanomaterials, which has been extensively investigated for biomedical applications because of its small size, high surface area and excellent biocompatibility. However, the biomedical applications of unmodified ND are still largely restricted because of their poor dispersibility in both aqueous and organic medium. In this work, we reported a novel strategy for the surface modification of ND via reversible addition fragmentation chain transfer (RAFT) polymerization. For preparation of the PEGylated ND (pPEGMA-ND), chain transfer agent (CTA) was immobilized onto ND through reaction between the hydroxyl group of ND and the carboxyl group of CTA, which was used as the initiator for surface-initiated RAFT polymerization. The successful preparation of pPEGMA-ND was characterized by nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectra and thermal gravimetric analysis in detail. Results demonstrated that pPEGMA-ND exhibited enhanced water dispersibility and desirable biocompatibility, making it promising for biomedical applications.

  20. Direct surface PEGylation of nanodiamond via RAFT polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yingge [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Liu, Meiying [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wang, Ke [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China); Huang, Hongye; Wan, Qing [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Tao, Lei [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China); Fu, Lihua [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)

    2015-12-01

    Graphical abstract: In this paper, we describe an efficient, practical and novel method to modify ND via direct immobilization of chain transfer agent for RAFT polymerization. - Highlights: • Surface PEGylation of ND via RAFT polymerization. • ND with high water dispersibility and excellent biocompatibility. • Controlled living polymerization. - Abstract: Nanodiamond (ND) is a novel class of carbon nanomaterials, which has been extensively investigated for biomedical applications because of its small size, high surface area and excellent biocompatibility. However, the biomedical applications of unmodified ND are still largely restricted because of their poor dispersibility in both aqueous and organic medium. In this work, we reported a novel strategy for the surface modification of ND via reversible addition fragmentation chain transfer (RAFT) polymerization. For preparation of the PEGylated ND (pPEGMA-ND), chain transfer agent (CTA) was immobilized onto ND through reaction between the hydroxyl group of ND and the carboxyl group of CTA, which was used as the initiator for surface-initiated RAFT polymerization. The successful preparation of pPEGMA-ND was characterized by nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectra and thermal gravimetric analysis in detail. Results demonstrated that pPEGMA-ND exhibited enhanced water dispersibility and desirable biocompatibility, making it promising for biomedical applications.

  1. Direct electrodeposition of metal nanowires on electrode surface

    International Nuclear Information System (INIS)

    Gambirasi, Arianna; Cattarin, Sandro; Musiani, Marco; Vazquez-Gomez, Lourdes; Verlato, Enrico

    2011-01-01

    A method for decorating the surface of disk electrodes with metal nanowires is presented. Cu and Ni nanowires with diameters from 1.0 μm to 0.2 μm are directly deposited on the electrode surface using a polycarbonate membrane filter template maintained in contact with the metal substrate by the soft homogeneous pressure of a sponge soaked with electrolyte. The morphologic and structural properties of the deposit are characterized by scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). The latter shows that the head of nanowires with diameter of 0.4 μm is ordinarily polycrystalline, and that of nanowires with diameter of 0.2 μm is almost always monocrystalline for Cu and frequently also for Ni. Cyclic voltammetries and impedance investigations recorded in alkaline solutions at representative Ni electrodes decorated with nanowires provide consistent values of roughness factor, in the range 20-25.

  2. Surface return direction-of-arrival analysis for radar ice sounding surface clutter suppression

    DEFF Research Database (Denmark)

    Nielsen, Ulrik; Dall, Jørgen

    2015-01-01

    Airborne radar ice sounding is challenged by surface clutter masking the depth signal of interest. Surface clutter may even be prohibitive for potential space-based ice sounding radars. To some extent the radar antenna suppresses the surface clutter, and a multi-phase-center antenna in combination...... with coherent signal processing techniques can improve the suppression, in particular if the direction of arrival (DOA) of the clutter signal is estimated accurately. This paper deals with data-driven DOA estimation. By using P-band data from the ice shelf in Antarctica it is demonstrated that a varying...

  3. Near-surface structural examination of human tooth enamel subject to in vitro demineralization and remineralization

    Science.gov (United States)

    Gaines, Carmen Veronica

    The early stages of chemical tooth decay are governed by dynamic processes of demineralization and remineralization of dental enamel that initiates along the surface of the tooth. Conventional diagnostic techniques lack the spatial resolution required to analyze near-surface structural changes in enamel at the submicron level. In this study, slabs of highly-polished, decay-free human enamel were subjected to 0.12M EDTA and buffered lactic acid demineralizing agents and MI Paste(TM) and calcifying (0.1 ppm F) remineralizing treatments in vitro. Grazing incidence x-ray diffraction (GIXD), a technique typically used for thin film analysis, provided depth profiles of crystallinity changes in surface enamel with a resolution better than 100 nm. In conjunction with nanoindentation, a technique gaining acceptance as a means of examining the mechanical properties of sound enamel, these results were corroborated with well-established microscopy and Raman techniques to assess the nanohardness, morphologies and chemical nature of treated enamel. Interestingly, the average crystallite size of surface enamel along its c-axis dimension increased by nearly 40% after a 60 min EDTA treatment as detected by GIXD. This result was in direct contrast to the obvious surface degradation observed by microscopic and confocal Raman imaging. A decrease in nanohardness from 4.86 +/- 0.44 GPa to 0.28 +/- 0.10 GPa was observed. Collective results suggest that mineral dissolution characteristics evident on the micron scale may not be fully translated to the nanoscale in assessing the integrity of chemically-modified tooth enamel. While an intuitive decrease in enamel crystallinity was observed with buffered lactic acid-treated samples, demineralization was too slow to adequately quantify the enamel property changes seen. MI Paste(TM) treatment of EDTA-demineralized enamel showed preferential growth along the a-axis direction. Calcifying solution treatments of both demineralized sample types

  4. A comparison of photographic, replication and direct clinical examination methods for detecting developmental defects of enamel

    Directory of Open Access Journals (Sweden)

    Pakshir Hamid-Reza

    2011-04-01

    Full Text Available Abstract Background Different methods have been used for detecting developmental defects of enamel (DDE. This study aimed to compare photographic and replication methods with the direct clinical examination method for detecting DDE in children's permanent incisors. Methods 110 8-10-year-old schoolchildren were randomly selected from an examined sample of 335 primary Shiraz school children. Modified DDE index was used in all three methods. Direct examinations were conducted by two calibrated examiners using flat oral mirrors and tongue blades. Photographs were taken using a digital SLR camera (Nikon D-80, macro lens, macro flashes, and matt flash filters. Impressions were taken using additional-curing silicon material and casts made in orthodontic stone. Impressions and models were both assessed using dental loupes (magnification=x3.5. Each photograph/impression/cast was assessed by two calibrated examiners. Reliability of methods was assessed using kappa agreement tests. Kappa agreement, McNemar's and two-sample proportion tests were used to compare results obtained by the photographic and replication methods with those obtained by the direct examination method. Results Of the 110 invited children, 90 were photographed and 73 had impressions taken. The photographic method had higher reliability levels than the other two methods, and compared to the direct clinical examination detected significantly more subjects with DDE (P = 0.002, 3.1 times more DDE (P Conclusion The photographic method was much more sensitive than direct clinical examination in detecting DDE and was the best of the three methods for epidemiological studies. The replication method provided less information about DDE compared to photography. Results of this study have implications for both epidemiological and detailed clinical studies on DDE.

  5. Room temperature Cu-Cu direct bonding using surface activated bonding method

    International Nuclear Information System (INIS)

    Kim, T.H.; Howlader, M.M.R.; Itoh, T.; Suga, T.

    2003-01-01

    Thin copper (Cu) films of 80 nm thickness deposited on a diffusion barrier layered 8 in. silicon wafers were directly bonded at room temperature using the surface activated bonding method. A low energy Ar ion beam of 40-100 eV was used to activate the Cu surface prior to bonding. Contacting two surface-activated wafers enables successful Cu-Cu direct bonding. The bonding process was carried out under an ultrahigh vacuum condition. No thermal annealing was required to increase the bonding strength since the bonded interface was strong enough at room temperature. The chemical constitution of the Cu surface was examined by Auger electron spectroscope. It was observed that carbon-based contaminations and native oxides on copper surface were effectively removed by Ar ion beam irradiation for 60 s without any wet cleaning processes. An atomic force microscope study shows that the Ar ion beam process causes no surface roughness degradation. Tensile test results show that high bonding strength equivalent to bulk material is achieved at room temperature. The cross-sectional transmission electron microscope observations reveal the presence of void-free bonding interface without intermediate layer at the bonded Cu surfaces

  6. Consistency of direct microscopic examination and ELISA in detection of Giardia in stool specimen among children

    Directory of Open Access Journals (Sweden)

    Zohreh Torabi

    2014-09-01

    Full Text Available Objective: To investigate the consistency of direct microscopic examination and ELISA for determination of Giadia in stool specimen. Method: Study population consisted of children with any clinical symptoms of Giardia infestation since last two weeks. Fresh stool specimen was collected from each child. The stools specimens were assessed by two methods of direct microscopic examination and ELISA.The degree of agreement between direct stool exam and ELISA was calculated by Cohen's kappa coefficient. Results: In this study, 124 children with age range 2-12 years were investigated. A total of 64 (61.7% and 79 (65.7% of children had Giardia by direct stool exam and ELISA test respectively. There was association between frequency of constipation and Giardia infection (P=0.036. The Cohen's kappa coefficient calculated for degree of agreement between direct stool exam and ELISA showed κ=0.756 (P<0.001. Conclusions: The frequency of Giardia infection in symptomatic children was high and there was high agreement rate between ELISA and direct stool smear.

  7. Should cavitation in proximal surfaces be reported in cone beam computed tomography examination

    DEFF Research Database (Denmark)

    Sansare, K.; Singh, D.; Sontakke, S.

    2014-01-01

    proximal surfaces without restorations in permanent teeth were examined. Patients suspected to have carious lesions after a visual clinical and a bitewing examination participated in a CBCT examination (Kodak 9000 3D, 5 × 3.7 cm field of view, voxel size 0.07 mm). Ethical approval and informed consent were...

  8. Direct quantification of negatively charged functional groups on membrane surfaces

    KAUST Repository

    Tiraferri, Alberto; Elimelech, Menachem

    2012-01-01

    groups at the surface of dense polymeric membranes. Both techniques consist of associating the membrane surface moieties with chemical probes, followed by quantification of the bound probes. Uranyl acetate and toluidine blue O dye, which interact

  9. Examining Urban Impervious Surface Distribution and Its Dynamic Change in Hangzhou Metropolis

    Directory of Open Access Journals (Sweden)

    Longwei Li

    2016-03-01

    Full Text Available Analysis of urban distribution and its expansion using remote sensing data has received increasing attention in the past three decades, but little research has examined spatial patterns of urban distribution and expansion with buffer zones in different directions. This research selected Hangzhou metropolis as a case study to analyze spatial patterns and dynamic changes based on time-series urban impervious surface area (ISA datasets. ISA was developed from Landsat imagery between 1991 and 2014 using a hybrid approach consisting of linear spectral mixture analysis, decision tree classifiers, and post-processing. The spatial patterns of ISA distribution and its dynamic changes in eight directions—east, southeast, south, southwest, west, northwest, north, and northeast—at the temporal scale were analyzed with a buffer zone-based approach. This research indicated that ISA can be extracted from Landsat imagery with both producer and user accuracies of over 90%. ISA in Hangzhou metropolis increased from 146 km2 in 1991 to 868 km2 in 2014. Annual ISA growth rates were between 15.6 km2 and 48.8 km2 with the lowest growth rate in 1994–2000 and the highest growth rate in 2005–2010. Urban ISA increase before 2000 was mainly due to infilling within the urban landscape, and, after 2005, due to urban expansion in the urban-rural interfaces. Urban expansion in this study area has different characteristics in various directions that are influenced by topographic factors and urban development policies.

  10. Controlling the stainless steel surface wettability by nanosecond direct laser texturing at high fluences

    Science.gov (United States)

    Gregorčič, P.; Šetina-Batič, B.; Hočevar, M.

    2017-12-01

    This work investigates the influence of the direct laser texturing at high fluences (DLT-HF) on surface morphology, chemistry, and wettability. We use a Nd:YAG laser ( λ = 1064 nm) with pulse duration of 95 ns to process stainless steel surface. The surface morphology and chemistry after the texturing is examined by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD), while the surface wettability is evaluated by measuring the static contact angle. Immediately after the texturing, the surface is superhydrophilic in a saturated Wenzel regime. However, this state is not stable and the superhydrophilic-to-superhydrophobic transition happens if the sample is kept in atmospheric air for 30 days. After this period, the laser-textured stainless steel surface expresses lotus-leaf-like behavior. By using a high-speed camera at 10,000 fps, we measured that the water droplet completely rebound from this superhydrophobic surface after the contact time of 12 ms.

  11. Direct observation of atoms on surfaces by scanning tunnelling microscopy

    International Nuclear Information System (INIS)

    Baldeschwieler, J.D.

    1989-01-01

    The scanning tunnelling microscope is a non-destructive means of achieving atomic level resolution of crystal surfaces in real space to elucidate surface structures, electronic properties and chemical composition. Scanning tunnelling microscope is a powerful, real space surface structure probe complementary to other techniques such as x-ray diffraction. 21 refs., 8 figs

  12. SEM examination and analysis of the interface character in surface modified aramid-epoxy composite

    International Nuclear Information System (INIS)

    Hussain, S.; Khan, M.B.; Hussain, R.

    2011-01-01

    The surface of Kevlar fibers is chemically modified by treatment with Phthalic anhydride (PA) and the effect is examined by SEM for the laser cut, three point bending and interlaminar shear delaminated surfaces. The surface modification improved the adhesion to epoxy resin that clearly leads to cohesive fracture as opposed to interfacial failure in the untreated specimen. SEM reveals marginal surface roughening of fibers without compromising their strength. The interface modification technique described in this paper is attractive thermodynamically as it does not compromise surface free energy of the polymer matrix or that of the fiber itself to enhance wet ability. (author)

  13. 43 CFR 23.5 - Technical examination of prospective surface exploration and mining operations.

    Science.gov (United States)

    2010-10-01

    ... mining operations vary widely with respect to topography, climate, surrounding land uses, proximity to... surface exploration and mining operations. 23.5 Section 23.5 Public Lands: Interior Office of the Secretary of the Interior SURFACE EXPLORATION, MINING AND RECLAMATION OF LANDS § 23.5 Technical examination...

  14. Direct detection of near-surface faults by migration of back-scattered surface waves

    KAUST Repository

    Yu, Han; Guo, Bowen; Hanafy, Sherif; Lin, Fan-Chi; Schuster, Gerard T.

    2014-01-01

    We show that diffraction stack migration can be used to estimate the distribution of near-surface faults. The assumption is that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. The processing steps

  15. Examining direct and indirect pathways to health behaviour: the influence of cognitive and affective probability beliefs.

    Science.gov (United States)

    Janssen, Eva; van Osch, Liesbeth; de Vries, Hein; Lechner, Lilian

    2013-01-01

    This study aimed to extricate the influence of rational (e.g., 'I think …') and intuitive (e.g., 'I feel …') probability beliefs in the behavioural decision-making process regarding skin cancer prevention practices. Structural equation modelling was used in two longitudinal surveys (sun protection during winter sports [N = 491]; sun protection during summer [N = 277]) to examine direct and indirect behavioural effects of affective and cognitive likelihood (i.e. unmediated or mediated by intention), controlled for attitude, social influence and self-efficacy. Affective likelihood was directly related to sun protection in both studies, whereas no direct effects were found for cognitive likelihood. After accounting for past sun protective behaviour, affective likelihood was only directly related to sun protection in Study 1. No support was found for the indirect effects of affective and cognitive likelihood through intention. The findings underscore the importance of feelings of (cancer) risk in the decision-making process and should be acknowledged by health behaviour theories and risk communication practices. Suggestions for future research are discussed.

  16. Direct Trajectory Interpolation on the Surface using an Open CNC

    OpenAIRE

    Beudaert , Xavier; Lavernhe , Sylvain; Tournier , Christophe

    2014-01-01

    International audience; Free-form surfaces are used for many industrial applications from aeronautical parts, to molds or biomedical implants. In the common machining process, computer-aided manufacturing (CAM) software generates approximated tool paths because of the limitation induced by the input tool path format of the industrial CNC. Then, during the tool path interpolation, marks on finished surfaces can appear induced by non smooth feedrate planning. Managing the geometry of the tool p...

  17. Efficient and Anisotropic Fog Harvesting on a Hybrid and Directional Surface

    KAUST Repository

    Wu, Jinbo

    2016-12-05

    A straight throughout superhydrophilic track that contains high contrast and directional wettability on a superhydrophobic surface is designed. Despite droplets that tend to slide more easily along a direction parallel to the track, it is found that such hybrid strip-pattern surfaces have higher fog harvesting efficiency along a direction perpendicular to the tracks due to the larger accumulation area for droplet removal.

  18. Direct quantification of negatively charged functional groups on membrane surfaces

    KAUST Repository

    Tiraferri, Alberto

    2012-02-01

    Surface charge plays an important role in membrane-based separations of particulates, macromolecules, and dissolved ionic species. In this study, we present two experimental methods to determine the concentration of negatively charged functional groups at the surface of dense polymeric membranes. Both techniques consist of associating the membrane surface moieties with chemical probes, followed by quantification of the bound probes. Uranyl acetate and toluidine blue O dye, which interact with the membrane functional groups via complexation and electrostatic interaction, respectively, were used as probes. The amount of associated probes was quantified using liquid scintillation counting for uranium atoms and visible light spectroscopy for the toluidine blue dye. The techniques were validated using self-assembled monolayers of alkanethiols with known amounts of charged moieties. The surface density of negatively charged functional groups of hand-cast thin-film composite polyamide membranes, as well as commercial cellulose triacetate and polyamide membranes, was quantified under various conditions. Using both techniques, we measured a negatively charged functional group density of 20-30nm -2 for the hand-cast thin-film composite membranes. The ionization behavior of the membrane functional groups, determined from measurements with toluidine blue at varying pH, was consistent with published data for thin-film composite polyamide membranes. Similarly, the measured charge densities on commercial membranes were in general agreement with previous investigations. The relative simplicity of the two methods makes them a useful tool for quantifying the surface charge concentration of a variety of surfaces, including separation membranes. © 2011 Elsevier B.V.

  19. Molecular Diagnosis of Trichomoniasis in Negative Samples Examined by Direct Smear and Culture

    Directory of Open Access Journals (Sweden)

    Z Valadkhani

    2010-12-01

    Full Text Available Background: Trichomoniasis is an extremely common sexually transmitted infection (STI world­wide and is associated with important public health problems, including amplification of HIV transmission. This disease is in forms of symptomatic and asymptomatic in women and may de­pend on host as well as parasite variables. Most of the studies reported from females are based on examination of vaginal secretions and urine samples by direct smear and culture in modified Dia­mond's media. The aim of this study was checking the samples, which were negative by direct smear and culture, with PCR technique.Methods: The urine samples and vaginal discharge of patients attending Gynecology Clinics of Ma­zandaran Province, Iran with different symptoms rechecked for Trichomonas vaginalis by PCR technique using primers targeting a conserved region of the beta-tubulin genes of the para­site. Data were analyzed by Epi Info software programResults: Out of 161 negative samples by direct smear and culture, seven samples (4.3% were posi­tive by PCR technique.Conclusion: Diagnosis of trichomoniasis by PCR is a sensitive and specific method that could play important role to help the physicians for properly treatment and control of infection.

  20. Directed supramolecular surface assembly of SNAP-tag fusion proteins

    NARCIS (Netherlands)

    Uhlenheuer, D.A.; Wasserberg, D.; Haase, C.; Nguyen, H.; Schenkel, J.H.; Huskens, J.; Ravoo, B.J.; Jonkheijm, P.; Brunsveld, L.

    2012-01-01

    Supramolecular assembly of proteins on surfaces and vesicles was investigated by site-selective incorporation of a supramolecular guest element on proteins. Fluorescent proteins were site-selectively labeled with bisadamantane by SNAP-tag technology. The assembly of the bisadamantane functionalized

  1. Directed Supramolecular Surface Assembly of SNAP-tag Fusion Proteins

    NARCIS (Netherlands)

    Uhlenheuer, D.A.; Wasserberg, D.; Haase, C.; Nguyen, Hoang D.; Schenkel, J.H.; Huskens, Jurriaan; Ravoo, B.J.; Jonkheijm, Pascal; Brunsveld, Luc

    2012-01-01

    Supramolecular assembly of proteins on surfaces and vesicles was investigated by site-selective incorporation of a supramolecular guest element on proteins. Fluorescent proteins were site-selectively labeled with bisadamantane by SNAP-tag technology. The assembly of the bisadamantane functionalized

  2. Efficient and Anisotropic Fog Harvesting on a Hybrid and Directional Surface

    KAUST Repository

    Wu, Jinbo; Zhang, Lianbin; Wang, Yuchao; Wang, Peng

    2016-01-01

    A straight throughout superhydrophilic track that contains high contrast and directional wettability on a superhydrophobic surface is designed. Despite droplets that tend to slide more easily along a direction parallel to the track, it is found

  3. Directional couplers using long-range surface plasmon polariton waveguides

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Bozhevolnyi, Sergey I.

    2006-01-01

    14-nm-thick stripes and a wavelength of 1550 urn, LR-SPP propagation loss is determined for the stripe widths varying from 2 to 12 mu m and is found to be similar to 7 and 5 dB/cm for 10- and 4-mu m-wide stripes, respectively. For the directional couplers based on 14-nm-thick and 8-mu m-wide gold...... stripes and a wavelength of 1570 nm, the coupling lengths of 4.1, 1.9, and 0.8 mm are found for the respective waveguide separations of 8, 4, and 0 mu m. We model the LR-SPP-based directional couplers using the effective-refractive-index method and obtain a good agreement with the experimental results....... The transmission spectra of LR-SPP-based directional couplers are presented demonstrating an efficient (similar to 30 dB) separation of different telecom wavelength bands. Various possibilities for dynamic control of wavelength division/multiplexing with LRSPP-based directional couplers that utilize the thermo...

  4. Examination of the effect of blowing on the near-surface flow structure over a dimpled surface

    Science.gov (United States)

    Borchetta, C. G.; Martin, A.; Bailey, S. C. C.

    2018-03-01

    The near surface flow over a dimpled surface with flow injection through it was documented using time-resolved particle image velocimetry. The instantaneous flow structure, time-averaged statistics, and results from snapshot proper orthogonal decomposition were used to examine the coherent structures forming near the dimpled surface. In particular, the modifications made to the flow structures by the addition of flow injection through the surface were studied. It was observed that without flow injection, inclined flow structures with alternating vorticity from neighboring dimples are generated by the dimples and advect downstream. This behavior is coupled with fluid becoming entrained inside the dimples, recirculating and ejecting away from the surface. When flow injection was introduced through the surface, the flow structures became more disorganized, but some of the features of the semi-periodic structures observed without flow injection were preserved. The structures with flow injection appear in multiple wall-normal layers, formed from vortical structures shed from upstream dimples, with a corresponding increase in the size of the advecting structures. As a result of the more complex flow field observed with flow injection, there was an increase in turbulent kinetic energy and Reynolds shear stress, with the Reynolds shear stress representing an increase in vertical transport of momentum by sweeping and ejecting motions that were not present without flow injection.

  5. Constructive, collaborative, contextual, and self-directed learning in surface anatomy education.

    Science.gov (United States)

    Bergman, Esther M; Sieben, Judith M; Smailbegovic, Ida; de Bruin, Anique B H; Scherpbier, Albert J J A; van der Vleuten, Cees P M

    2013-01-01

    Anatomy education often consists of a combination of lectures and laboratory sessions, the latter frequently including surface anatomy. Studying surface anatomy enables students to elaborate on their knowledge of the cadaver's static anatomy by enabling the visualization of structures, especially those of the musculoskeletal system, move and function in a living human being. A recent development in teaching methods for surface anatomy is body painting, which several studies suggest increases both student motivation and knowledge acquisition. This article focuses on a teaching approach and is a translational contribution to existing literature. In line with best evidence medical education, the aim of this article is twofold: to briefly inform teachers about constructivist learning theory and elaborate on the principles of constructive, collaborative, contextual, and self-directed learning; and to provide teachers with an example of how to implement these learning principles to change the approach to teaching surface anatomy. Student evaluations of this new approach demonstrate that the application of these learning principles leads to higher student satisfaction. However, research suggests that even better results could be achieved by further adjustments in the application of contextual and self-directed learning principles. Successful implementation and guidance of peer physical examination is crucial for the described approach, but research shows that other options, like using life models, seem to work equally well. Future research on surface anatomy should focus on increasing the students' ability to apply anatomical knowledge and defining the setting in which certain teaching methods and approaches have a positive effect. Copyright © 2012 American Association of Anatomists.

  6. Directly thiolated modification onto the surface of detonation nanodiamonds.

    Science.gov (United States)

    Hsu, Ming-Hua; Chuang, Hong; Cheng, Fong-Yu; Huang, Ying-Pei; Han, Chien-Chung; Chen, Jiun-Yu; Huang, Su-Chin; Chen, Jen-Kun; Wu, Dian-Syue; Chu, Hsueh-Liang; Chang, Chia-Ching

    2014-05-28

    An efficient method for modifying the surface of detonation nanodiamonds (5 and 100 nm) with thiol groups (-SH) by using an organic chemistry strategy is presented herein. Thiolated nanodiamonds were characterized by spectroscopic techniques, and the atomic percentage of sulfur was analyzed by elemental analysis and X-ray photoelectron spectroscopy. The conjugation between thiolated nanodiamonds and gold nanoparticles was elucidated by transmission electron microscopy and UV-vis spectrometry. Moreover, the material did not show significant cytotoxicity to the human lung carcinoma cell line and may prospectively be applied in bioconjugated technology. The new method that we elucidated may significantly improve the approach to surface modification of detonation nanodiamonds and build up a new platform for the application of nanodiamonds.

  7. An examination of surface epithelium structures of the embryo across the genus Poeciliopsis (Poeciliidae).

    Science.gov (United States)

    Panhuis, Tami M; Fris, Megan; Tuhela, Laura; Kwan, Lucia

    2017-12-01

    In viviparous, teleost fish, with postfertilization maternal nutrient provisioning, embryonic structures that facilitate maternal-fetal nutrient transfer are predicted to be present. For the family Poeciliidae, only a handful of morphological studies have explored these embryonic specializations. Here, we present a comparative morphological study in the viviparous poeciliid genus, Poeciliopsis. Using microscopy techniques, we examine the embryonic surface epidermis of Poeciliopsis species that vary in their level of postfertilization maternal nutrient provisioning and placentation across two phylogenetic clades and three independent evolutionary origins of placentation. We focus on surface features of the embryo that may facilitate maternal-fetal nutrient transfer. Specifically, we studied cell apical-surface morphology associated with the superficial epithelium that covers the body and sac (yolk and pericardial) of embryos at different developmental stages. Scanning electron microscopy revealed common surface epithelial cells across species, including pavement cells with apical-surface microridges or microvilli and presumed ionocytes and/or mucus-secreting cells. For three species, in the mid-stage embryos, the surface of the body and sac were covered in microvillus epithelium. The remaining species did not display microvillus epithelium at any of the stages examined. Instead, their epithelium of the body and sac were composed of cells with apical-surface microridges. For all species, in the late stage embryos, the surface of the body proper was composed of apical-surface microridges in a "fingerprint-like arrangement." Despite the differences in the surface epithelium of embryos across Poeciliopsis species and embryonic developmental stages, this variation was not associated with the level of postfertilization maternal nutrient provisioning. We discuss these results in light of previous morphological studies of matrotrophic, teleost fish, phylogenetic

  8. Micro-lubrication of Directionally Oriented Contact Surfaces

    Directory of Open Access Journals (Sweden)

    O. Maršálek

    2014-12-01

    Full Text Available A description of the set of software tools for detailed computational modelling of thin lubrication layers behaviour is presented in this paper. Individual chapters outline reasons for realization of its each part, explain the functionality of each software tool and the given mathematical definition or digital implementation of all important equations or formulae. The following are examples of partial results of the analysis carried out and the resulting flow factors databases for some kinds of rough surfaces, together with an example of the analysis result of the connecting rod sliding bearing of supercharged internal combustion engine.

  9. Examining factors that influence the effectiveness of cleaning antineoplastic drugs from drug preparation surfaces: a pilot study.

    Science.gov (United States)

    Hon, Chun-Yip; Chua, Prescillia Ps; Danyluk, Quinn; Astrakianakis, George

    2014-06-01

    Occupational exposure to antineoplastic drugs has been documented to result in various adverse health effects. Despite the implementation of control measures to minimize exposure, detectable levels of drug residual are still found on hospital work surfaces. Cleaning these surfaces is considered as one means to minimize the exposure potential. However, there are no consistent guiding principles related to cleaning of contaminated surfaces resulting in hospitals to adopt varying practices. As such, this pilot study sought to evaluate current cleaning protocols and identify those factors that were most effective in reducing contamination on drug preparation surfaces. Three cleaning variables were examined: (1) type of cleaning agent (CaviCide®, Phenokil II™, bleach and chlorhexidine), (2) application method of cleaning agent (directly onto surface or indirectly onto a wipe) and (3) use of isopropyl alcohol after cleaning agent application. Known concentrations of antineoplastic drugs (either methotrexate or cyclophosphamide) were placed on a stainless steel swatch and then, systematically, each of the three cleaning variables was tested. Surface wipes were collected and quantified using high-performance liquid chromatography-tandem mass spectrometry to determine the percent residual of drug remaining (with 100% being complete elimination of the drug). No one single cleaning agent proved to be effective in completely eliminating all drug contamination. The method of application had minimal effect on the amount of drug residual. In general, application of isopropyl alcohol after the use of cleaning agent further reduced the level of drug contamination although measureable levels of drug were still found in some cases.

  10. Directed Growth of Virus Nanofilaments on a Superhydrophobic Surface

    KAUST Repository

    Marinaro, Giovanni

    2015-06-17

    The evaporation of single droplets of colloidal tobacco mosaic virus (TMV) nanoparticles on a superhydrophobic surface with a hexagonal pillar-pattern results in the formation of coffee-ring type residues. We imaged surface features by optical, scanning electron, and atomic force microscopies. Bulk features were probed by raster-scan X-ray nanodiffraction. At ∼100 pg/μL nanoparticle concentration, the rim of the residue connects to neighboring pillars via fibrous extensions containing flow-aligned crystalline domains. At ∼1 pg/μL nanoparticle concentration, nanofilaments of ¥80 nm diameter and ∼20 μm length are formed, extending normal to the residue-rim across a range of pillars. X-ray scattering is dominated by the nanofilament form-factor but some evidence for crystallinity has been obtained. The observation of sheets composed of stacks of self-assembled nanoparticles deposited on pillars suggests that the nanofilaments are drawn from a structured droplet interface. © 2015 American Chemical Society.

  11. Directed Growth of Virus Nanofilaments on a Superhydrophobic Surface

    KAUST Repository

    Marinaro, Giovanni; Burghammer, Manfred; Costa, Luca; Dane, Thomas; De Angelis, Francesco; Di Fabrizio, Enzo M.; Riekel, Christian

    2015-01-01

    The evaporation of single droplets of colloidal tobacco mosaic virus (TMV) nanoparticles on a superhydrophobic surface with a hexagonal pillar-pattern results in the formation of coffee-ring type residues. We imaged surface features by optical, scanning electron, and atomic force microscopies. Bulk features were probed by raster-scan X-ray nanodiffraction. At ∼100 pg/μL nanoparticle concentration, the rim of the residue connects to neighboring pillars via fibrous extensions containing flow-aligned crystalline domains. At ∼1 pg/μL nanoparticle concentration, nanofilaments of ¥80 nm diameter and ∼20 μm length are formed, extending normal to the residue-rim across a range of pillars. X-ray scattering is dominated by the nanofilament form-factor but some evidence for crystallinity has been obtained. The observation of sheets composed of stacks of self-assembled nanoparticles deposited on pillars suggests that the nanofilaments are drawn from a structured droplet interface. © 2015 American Chemical Society.

  12. A new holder and surface MRI coil for the examination of the newborn infant hip

    Energy Technology Data Exchange (ETDEWEB)

    Krasny, R. (Dept. of Diagnostic Radiology, Univ. of Technology, Aachen (Germany)); Casser, H.R. (Dept. of Orthopedics, Univ. of Technology, Aachen (Germany)); Requardt, H. (Siemens AG, Erlangen (Germany)); Botschek, A. (Dept. of Diagnostic Radiology, Univ. of Technology, Aachen (Germany))

    1993-11-01

    A special holder was developed for examination of the infant hip joint using MRI. This holder allows the infant hip joint to be examined both in a neutral position and in various defined functional positions. A special integrated surface coil, also developed for this purpose, provides the high spatial resolution required for assessment of the fine joint structures. Thirty infants were examined and the new device has proved useful in advanced hip dysplasia, therapy-resistant subluxation and luxation, and for operative therapy planning (reconstruction of the acetabular roof, redirectional osteotomies). Interpretation errors due to misprojection can be eliminated to a large extent since the holder allows standardized and reproducible positioning. (orig.)

  13. Examining the Early Evidence for Self-Directed Marriage and Relationship Education: A Meta-Analytic Study

    Science.gov (United States)

    McAllister, Shelece; Duncan, Stephen F.; Hawkins, Alan J.

    2012-01-01

    This meta-analysis examines the efficacy of self-directed marriage and relationship education (MRE) programs on relationship quality and communication skills. Programs combining traditional face-to-face learning with self-directed elements are also examined, and traditional programs' effectiveness is included as a comparison point. Sixteen studies…

  14. Direct detection of near-surface faults by migration of back-scattered surface waves

    KAUST Repository

    Yu, Han

    2014-08-05

    We show that diffraction stack migration can be used to estimate the distribution of near-surface faults. The assumption is that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. The processing steps are to isolate the back-scattered surface waves, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. A deconvolution filter derived from the data can be used to collapse a dispersive arrival into a non-dispersive event. Results with synthetic data and field records validate the feasibility of this method. Applying this method to USArray data or passively recorded exploration data might open new opportunities in mapping tectonic features over the extent of the array.

  15. Inkjet printing for direct micropatterning of a superhydrophobic surface: Toward biomimetic fog harvesting surfaces

    KAUST Repository

    Zhang, Lianbin; Wu, Jinbo; Hedhili, Mohamed N.; Yang, Xiulin; Wang, Peng

    2015-01-01

    water collection efficiency compared with uniform superhydrophilic and superhydrophobic surfaces. This method can be used for the facile large-scale patterning of superhydrophobic surfaces with high precision and superior pattern stability

  16. Determining eyeball surface area directly exposed to the effects of external factors.

    Science.gov (United States)

    Juliszewski, Tadeusz; Kadłuczka, Filip; Kiełbasa, Paweł

    2016-01-01

    This article discusses determining the surface area of eyeballs of men and women exposed to the direct effects of external factors in the working environment. For one eye, the mean surface is 172-182 mm(2). The determined surface area can be used in formulas for calculating the exposure of eyeballs to harmful chemical substances in workplace air.

  17. Directed transport by surface chemical potential gradients for enhancing analyte collection in nanoscale sensors.

    Science.gov (United States)

    Sitt, Amit; Hess, Henry

    2015-05-13

    Nanoscale detectors hold great promise for single molecule detection and the analysis of small volumes of dilute samples. However, the probability of an analyte reaching the nanosensor in a dilute solution is extremely low due to the sensor's small size. Here, we examine the use of a chemical potential gradient along a surface to accelerate analyte capture by nanoscale sensors. Utilizing a simple model for transport induced by surface binding energy gradients, we study the effect of the gradient on the efficiency of collecting nanoparticles and single and double stranded DNA. The results indicate that chemical potential gradients along a surface can lead to an acceleration of analyte capture by several orders of magnitude compared to direct collection from the solution. The improvement in collection is limited to a relatively narrow window of gradient slopes, and its extent strongly depends on the size of the gradient patch. Our model allows the optimization of gradient layouts and sheds light on the fundamental characteristics of chemical potential gradient induced transport.

  18. Luminescence evolution from alumina ceramic surface before flashover under direct and alternating current voltage in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Su, Guo-Qiang; Wang, Yi-Bo; Song, Bai-Peng; Mu, Hai-Bao, E-mail: haibaomu@xjtu.edu.cn, E-mail: gjzhang@xjtu.edu.cn; Zhang, Guan-Jun, E-mail: haibaomu@xjtu.edu.cn, E-mail: gjzhang@xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Li, Feng; Wang, Meng [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China)

    2016-06-15

    The luminescence evolution phenomena from alumina ceramic surface in vacuum under high voltage of direct and alternating current are reported, with the voltage covering a large range from far below to close to the flashover voltage. Its time resolved and spatial distributed behaviors are examined by a photon counting system and an electron-multiplying charge-coupled device (EMCCD) together with a digital camera, respectively. The luminescence before flashover exhibits two stages as voltage increasing, i.e., under a relative low voltage (Stage A), the luminescence is ascribed to radiative recombination of hetero-charges injected into the sample surface layer by Schottky effect; under a higher voltage (Stage B), a stable secondary electron emission process, resulting from the Fowler-Nordheim emission at the cathode triple junction (CTJ), is responsible for the luminescence. Spectrum analysis implies that inner secondary electrons within the surface layer of alumina generated during the SSEE process also participate in the luminescence of Stage B. A comprehensive interpretation of the flashover process is formulated, which might promote a better understanding of flashover issue in vacuum.

  19. Analysis on the entrance surface dose and contrast medium dose at computed tomography and angiography in cardiovascular examination

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Young Hyun [Dept. of Cardiovascular Center, Yeocheon Jeonnam Hospital, Yeosu (Korea, Republic of); Han, Jae Bok; Choi, Nam Gil; Song, Jong Nam [Dept. of Radiological Science, Dongshin University, Naju (Korea, Republic of)

    2016-12-15

    This study aimed to identify dose reduction measures by retrospectively analyzing the entrance surface dose at computed tomography and angiography in cardiovascular examination and to contribute the patients with renal impairmend and a high probability of side effects to determine the inspection's direction by measuring the contrast usages actually to active actions for the dose by actually measuring the contrast medium dose. The CTDIvol value and air kerma value, which are the entrance surface doses of the two examinations, and the contrast medium dose depending on the number of slides were compared and analyzed. This study was conducted in 21 subjects (11 males; 10 females) who underwent Cardiac Computed Tomographic Angiography (CCTA) and Coronary Angiography (CAG) in this hospital during the period from May 2014 to May 2016. The subject's age was 48-85 years old (mean 65±10 years old), and the weight was 37.6~83.3 kg (mean 63±6 kg). Dose reduction could be expected in the cardiovascular examination using CCTA rather than in the examination using CAG. In terms of contrast medium dose, CAG used a smaller dose than CCTA. In particular, as the number of slides increases at CAG, the contrast medium dose increases. Therefore, in order to reduce the contrast medium dose, the number of slides suitable for the scan range must be selected.

  20. Going direct to the consumer: Examining treatment preferences for veterans with insomnia, PTSD, and depression.

    Science.gov (United States)

    Gutner, Cassidy A; Pedersen, Eric R; Drummond, Sean P A

    2018-05-01

    Inclusion of consumer preferences to disseminate evidence-based psychosocial treatment (EBPT) is crucial to effectively bridge the science-to-practice quality chasm. We examined this treatment gap for insomnia, posttraumatic stress disorder (PTSD), depression, and comorbid symptoms in a sample of 622 young adult veterans through preference in symptom focus, treatment modality, and related gender differences among those screening positive for each problem. Data were collected from veteran drinkers recruited through targeted Facebook advertisements as part of a brief online alcohol intervention. Analyses demonstrated that veterans reported greater willingness to seek insomnia-focused treatment over PTSD- or depression-focused care. Notably, even when participants screened negative for insomnia, they preferred sleep-focused care to PTSD- or depression-focused care. Although one in five veterans with a positive screen would not consider care, veterans screening for both insomnia and PTSD who would consider care had a preference for in-person counseling, and those screening for both insomnia and depression had similar preferences for in-person and mobile app-based/computer self-help treatment. Marginal gender differences were found. Incorporating direct-to-consumer methods into research can help educate stakeholders about methods to expand EBPT access. Though traditional in-person counseling was often preferred, openness to app-based/computer interventions offers alternative methods to provide veterans with EBPTs. Published by Elsevier B.V.

  1. Examining the free radical bonding mechanism of benzoquinone– and hydroquinone–methanol passivation of silicon surfaces

    International Nuclear Information System (INIS)

    Kotulak, Nicole A.; Chen, Meixi; Schreiber, Nikolas; Jones, Kevin; Opila, Robert L.

    2015-01-01

    Highlights: • Photons are required for high levels of c-Si passivation by both BQ/ME and HQ/ME solutions. • Protons are required for high levels of c-Si passivation by both BQ/ME and HQ/ME solutions. • The free radical QH· is the likely passivating species for c-Si surfaces from BQ/ME and HQ/ME solutions. - Abstract: The surface passivation of p-benzoquinone (BQ) and hydroquinone (HQ) when dissolved in methanol (ME) has been examined through effective lifetime testing of crystalline silicon (c-Si) wafers treated with the aforementioned solutions. Changes in the availability of both photons and protons in the solutions were demonstrated to affect the level of passivation achieved. The requirement of both excess protons and ambient light exposure to maintain high effective lifetimes supports the presence of a free radical species that drives the surface passivation. Surface analysis suggests a 1:1 ratio of HQ-like bonds to methoxy bonds on the c-Si surface after treatment with a BQ/ME solution.

  2. Quantitative examination of carbide and sulphide precipitates in chemically complex steels processed by direct strip casting

    Energy Technology Data Exchange (ETDEWEB)

    Dorin, Thomas, E-mail: thomas.dorin@deakin.edu.au [Deakin University, Pigdons Road, Geelong, Victoria, 3216 (Australia); Wood, Kathleen [Australian Nuclear Science and Technology Organisation, Bragg Institute, New South Wales, 2234, Menai (Australia); Taylor, Adam; Hodgson, Peter; Stanford, Nicole [Deakin University, Pigdons Road, Geelong, Victoria, 3216 (Australia)

    2016-02-15

    A high strength low alloy steel composition has been melted and processed by two different routes: simulated direct strip casting and slow cooled ingot casting. The microstructures were examined with scanning and transmission electron microscopy, atom probe tomography and small angle neutron scattering (SANS). The formation of cementite (Fe{sub 3}C), manganese sulphides (MnS) and niobium carbo-nitrides (Nb(C,N)) was investigated in both casting conditions. The sulphides were found to be significantly refined by the higher cooling rate, and developed an average diameter of only 100 nm for the fast cooled sample, and a diameter too large to be measured with SANS in the slow cooled condition (> 1.1 μm). Slow cooling resulted in the development of classical Nb(C,N) precipitation, with an average diameter of 7.2 nm. However, after rapid cooling both the SANS and atom probe tomography data indicated that the Nb was retained in the matrix as a random solid solution. There was also some evidence that O, N and S are also retained in solid solution in levels not found during conventional processing. - Highlights: • The influence of cooling rate on microstructure is investigated in a HSLA steel. • SANS, TEM and APT are used to characterise the sulphides and Nb(C,N) precipitates. • The slow cooling rate result in the formation of Nb(C,N) precipitates. • The fast cooling rate results in a microstructure supersaturated in Nb, C and N. • The sulphides are 100 nm in the fast cooled sample and > 1 μm in the slow cooled one.

  3. Direct measurement of Cu surface self-diffusion on a checked surface

    International Nuclear Information System (INIS)

    Cousty, Jacques; Peix, Roger; Perraillon, Bernard.

    1976-01-01

    A radiotracer technique ( 64 Cu) was developed to measure surface diffusion on copper surfaces of total impurity concentration not exceeding some 10 -3 monolayers. The apparatus used consists of a slow electron diffraction device, an Auger analysis spectrometer (CMA), an ion gun and an evaporation device assembled in an ultra-vacuum chamber holding a residual pressure below 10 -10 Torr. A sample handler enables the surface studied to be positioned in front of each of these instruments. During the diffusion treatment the chemical composition of the surface is checked intermittently, and afterwards the spread of the deposit is measured outside the ultravacuum chamber. Slices several microns thick are removed and dissolved separately in dishes containing HNO 3 . The activity is then measured with a flow counter [fr

  4. Examining the decontaminability of surfaces from the beginnings of nuclear technology

    International Nuclear Information System (INIS)

    Kunze, S.

    2003-01-01

    Parallel with the development of nuclear technology in the 1950s, methods of examining the decontaminability of surface materials were elaborated, improved, and partly standardized in many countries. In 1988, ISO 8690 was adopted as an internationally accepted method of examination (technically identical to DIN 25 415, Part 1). A first range of coatings for nuclear applications were compiled from the large number of commercial products available on the market on the basis of the test method developed since 1962 at the Karlsruhe Nuclear Research Center and then at the Karlsruhe Research Center. Subsequently, the continuously improved test method was used to study, in mainly chemically curing two-component coatings, the reduction of gloss by dulling agents and fillers as well as various shades of color. Floor and container coatings were also examined for their resistance to radiation and to chemicals as well as wear. (orig.) [de

  5. Direct site-directed photocoupling of proteins onto surfaces coated with β-cyclodextrins

    DEFF Research Database (Denmark)

    Städe, Lars W; Wimmer, Reinhard; Stensballe, Allan

    2010-01-01

    . Insertion of pBpa was verified by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectroscopy. A molecular dynamic simulation, with water as solvent, showed high solvent accessibility of the pBpa benzophenone group in N27pBpa-cutinase mutant. The formation of an inclusion......A method called Dock'n'Flash was developed to offer site-specific capture and direct UVA-induced photocoupling of recombinant proteins. The method involves the tagging of recombinant proteins with photoreactive p-benzoyl-L-phenylalanine (pBpa) by genetic engineering. The photoreactive pBpa tag...... is used for affinity capture of the recombinant protein by beta-cyclodextrin (beta-CD), which provides hydrogen atoms to be abstracted in the photocoupling process. To exemplify the method, a recombinant, folded, and active N27pBpa mutant of cutinase from Fusarium solani pisi was produced in E. coli...

  6. Modeling directional effects in land surface temperature derived from geostationary satellite data

    DEFF Research Database (Denmark)

    Rasmussen, Mads Olander

    This PhD-thesis investigates the directional effects in land surface temperature (LST) estimates from the SEVIRI sensor onboard the Meteosat Second Generation (MSG) satellites. The directional effects are caused by the land surface structure (i.e. tree size and shape) interacting with the changing...... sun-target-sensor geometry. The directional effects occur because the different surface components, e.g. tree canopies and bare soil surfaces, will in many cases have significantly different temperatures. Depending on the viewing angle, different fractions of each of the components will be viewed...... by the sensor. This is further complicated by temperature differences between the sunlit and shaded parts of each of the components, controlled by the exposure of the components to direct sunlight. As the SEVIRI sensor is onboard a geostationary platform, the viewing geometry is fixed (for each pixel), while...

  7. Assessing Impact Direction in 3-point Bending of Human Femora: Incomplete Butterfly Fractures and Fracture Surfaces,.

    Science.gov (United States)

    Isa, Mariyam I; Fenton, Todd W; Deland, Trevor; Haut, Roger C

    2018-01-01

    Current literature associates bending failure with butterfly fracture, in which fracture initiates transversely at the tensile surface of a bent bone and branches as it propagates toward the impact surface. The orientation of the resulting wedge fragment is often considered diagnostic of impact direction. However, experimental studies indicate bending does not always produce complete butterfly fractures or produces wedge fragments variably in tension or compression, precluding their use in interpreting directionality. This study reports results of experimental 3-point bending tests on thirteen unembalmed human femora. Complete fracture patterns varied following bending failure, but incomplete fractures and fracture surface characteristics were observed in all impacted specimens. A flat, billowy fracture surface was observed in tension, while jagged, angular peaks were observed in compression. Impact direction was accurately reconstructed using incomplete tension wedge butterfly fractures and tension and compression fracture surface criteria in all thirteen specimens. © 2017 American Academy of Forensic Sciences.

  8. Direct measurement of surface-state conductance by microscopic four-point probe method

    DEFF Research Database (Denmark)

    Hasegawa, S.; Shiraki, I.; Tanikawa, T.

    2002-01-01

    For in situ measurements of local electrical conductivity of well defined crystal surfaces in ultrahigh vacuum, we have developed microscopic four-point probes with a probe spacing of several micrometres, installed in a scanning-electron - microscope/electron-diffraction chamber. The probe...... is precisely positioned on targeted areas of the sample surface by using piezoactuators. This apparatus enables conductivity measurement with extremely high surface sensitivity, resulting in direct access to surface-state conductivity of the surface superstructures, and clarifying the influence of atomic steps...

  9. Direct measurement of sub-Debye-length attraction between oppositely charged surfaces.

    Science.gov (United States)

    Kampf, Nir; Ben-Yaakov, Dan; Andelman, David; Safran, S A; Klein, Jacob

    2009-09-11

    Using a surface force balance with fast video analysis, we have measured directly the attractive forces between oppositely charged solid surfaces (charge densities sigma(+), sigma(-)) across water over the entire range of interaction, in particular, at surface separations D below the Debye screening length lambda(S). At very low salt concentration we find a long-ranged attraction between the surfaces (onset ca. 100 nm), whose variation at Dsurface charge asymmetry (sigma(+) not equal to |sigma(-)|).

  10. Direct observation of surface reconstruction and termination on a complex metal oxide catalyst by electron microscopy

    KAUST Repository

    Zhu, Yihan

    2012-03-19

    On the surface: The surface reconstruction of an MoVTeO complex metal oxide catalyst was observed directly by various electron microscopic techniques and the results explain the puzzling catalytic behavior. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effectiveness of WRF wind direction for retrieving coastal sea surface wind from synthetic aperture radar

    DEFF Research Database (Denmark)

    Takeyama, Yuko; Ohsawa, Teruo; Kozai, Katsutoshi

    2013-01-01

    Wind direction is required as input to the geophysical model function (GMF) for the retrieval of sea surface wind speed from a synthetic aperture radar (SAR) images. The present study verifies the effectiveness of using the wind direction obtained from the weather research and forecasting model (...

  12. A surface-analytical examination of stringer particles in aluminum-lithium-copper alloys

    Science.gov (United States)

    Larson, L. A.; Avalos-Borja, M.; Pizzo, P. P.

    1984-01-01

    A surface analytical examination of powder metallurgy processed Al-Li-Cu alloys was conducted. The oxide stringer particles often found in these alloys are characterized. Particle characterization is important to more fully understand their impact on the stress corrosion and fracture properties of the alloy. The techniques used where SIMS (Secondary Ion Mass Spectroscopy) and SAM (Scanning Auger Microscopy). The results indicate that the oxide stringer particles contain both Al and LI with relatively high Li content and the Li compounds may be associated with the stringer particles, thereby locally depleting the adjacent matrix of Li solute.

  13. Frequency splitter based on the directional emission from surface modes in dielectric photonic crystal structures.

    Science.gov (United States)

    Tasolamprou, Anna C; Zhang, Lei; Kafesaki, Maria; Koschny, Thomas; Soukoulis, Costas M

    2015-06-01

    We demonstrate the numerical design and the experimental validation of frequency dependent directional emission from a dielectric photonic crystal structure. The wave propagates through a photonic crystal line-defect waveguide, while a surface layer at the termination of the photonic crystal enables the excitation of surface modes and a subsequent grating layer transforms the surface energy into outgoing propagating waves of the form of a directional beam. The angle of the beam is controlled by the frequency and the structure operates as a frequency splitter in the intermediate and far field region.

  14. Adsorption of the diazo dye Direct Red 23 onto a zinc oxide surface: A spectroscopic study

    Science.gov (United States)

    Lucilha, Adriana Campano; Bonancêa, Carlos Eduardo; Barreto, Wagner José; Takashima, Keiko

    2010-01-01

    The adsorption of the diazo dye Direct Red 23 onto a zinc oxide surface at 30 °C in the dark was investigated. The color reduction was monitored by spectrophotometry at 503 nm. The FTIR and Raman spectra of the Direct Red 23 adsorption as a function of ZnO concentration were registered. From the PM3 semi-empirical calculations of the atomic charge density and dipole moment of the Direct Red 23 molecule, it was demonstrated that the azo dye molecule may be adsorbed onto the ZnO surface through molecule geometry modifications, enhancing the interfacial area causing a variation in the bonding frequencies.

  15. Preliminary Examination of Particles Recovered from the Surface of the Asteroid Itokawa by the Hayabusa Mission

    Science.gov (United States)

    Tsuchiyama, A.; Ebihara, M.; Kimura, M.; Kitajima, F.; Kotsugi, M.; Ito, S.; Nagao, K.; Nakamura, T.; Naraoka, H.; Noguchi, T.; hide

    2011-01-01

    The Hayabusa spacecraft arrived at S-type Asteroid 25143 Itokawa in November 2006, and reveal astounding features of the small asteroid (535 x 294 x 209 m). Near-infrared spectral shape indicates that the surface of this body has an olivinerich mineral assemblage potentially similar to that of LL5 or LL6 chondrites with different degrees of space weathering. Based on the surface morphological features observed in high-resolution images of Itokawa s surface, two major types of boulders were distinguished: rounded and angular boulders. Rounded boulders seem to be breccias, while angular boulders seem to have severe impact origin. Although the sample collection did not be made by normal operations, it was considered that some amount of samples, probably small particles of regolith, was collected from MUSES-C regio on the Itokawa s surface. The sample capsule was successfully recovered on the earth on June 13, 2010, and was opened at curation facility of JAXA (Japan Aerospace Exploration Agency), Sagamihara, Japan. A large number of small particles were found in the sample container. Preliminary analysis with SEM/EDX at the curation facility showed that at least more than 1500 grains were identified as rocky particles, and most of them were judged to be of extraterrestrial origin, and definitely from Asteroid Itokawa. Minerals (olivine, low-Ca pyroxene, high-Ca pyroxene, plagioclase, Fe sulfide, Fe-Ni metal, chromite, Ca phosphate), roughly estimated mode the minerals and rough measurement of the chemical compositions of the silicates show that these particles are roughly similar to LL chondrites. Although their size are mostly less than 10 m, some larger particles of about 100 m or larger were also identified. A part of the sample (probably several tens particles) will be selected by Hayabusa sample curation team and examined preliminary in Japan within one year after the sample recovery in prior to detailed analysis phase. Hayabusa Asteroidal Sample Preliminary

  16. The cardiovascular in-training examination: development, implementation, results, and future directions.

    Science.gov (United States)

    Kuvin, Jeffrey T; Soto, Amanda; Foster, Lauren; Dent, John; Kates, Andrew M; Polk, Donna M; Rosenzweig, Barry; Indik, Julia

    2015-03-31

    The American College of Cardiology (ACC), in collaboration with the National Board of Medical Examiners (NBME), developed the first standardized in-training examination (ITE) for cardiovascular disease fellows-in-training (FITs). In addition to testing knowledge, this examination uses the newly developed ACC Curricular Milestones to provide specific, competency-based feedback to program directors and FITs. The ACC ITE has been administered more than 5,000 times since 2011. This analysis sought to report the initial experience with the ITE, including feasibility and reliability of test development and implementation, as well as the ability of this process to provide useful feedback in key content areas. The annual ACC ITE has been available to cardiovascular disease fellowship programs in the United States since 2011. Questions for this Web-based, secure, multiple-choice examination were developed by a group of cardiovascular disease specialists and each question was analyzed by the NBME to ensure quality. Scores were equated and standardized to allow for comparability. Trainees and program directors were provided detailed feedback, including a list of the curricular competencies tested by those questions answered incorrectly. The ITE was administered 5,118 times. In 2013, the examination was taken by 1,969 fellows, representing 194 training programs. Among the 3 training years, there was consistency in the examination scores. Total test scores and scores within each of the content areas increased with each FIT year (there was a statistically significant difference in each cohort's average scale score across administration years). There was also significant improvement in examination scores across the fellowship years. The ACC ITE is a powerful tool available to all training programs to assess medical knowledge. This examination also delivers robust and timely feedback addressing individual knowledge gaps, and thus, may serve as a basis for improving training

  17. Direct mass spectrometric screening of antibiotics from bacterial surfaces using liquid extraction surface analysis.

    Science.gov (United States)

    Kai, Marco; González, Ignacio; Genilloud, Olga; Singh, Sheo B; Svatoš, Aleš

    2012-10-30

    There is a need to find new antibiotic agents to fight resistant pathogenic bacteria. To search successfully for novel antibiotics from bacteria cultivated under diverse conditions, we need a fast and cost-effective screening method. A combination of Liquid Extraction Surface Analysis (LESA), automated chip-based nanoelectrospray ionization, and high-resolution mass or tandem mass spectrometry using an Orbitrap XL was tested as the screening platform. Actinobacteria, known to produce well-recognized thiazolyl peptide antibiotics, were cultivated on a plate of solid medium and the antibiotics were extracted by organic solvent mixtures from the surface of colonies grown on the plate and analyzed using mass spectrometry (MS). LESA combined with high-resolution MS is a powerful tool with which to extract and detect thiazolyl peptide antibiotics from different Actinobacteria. Known antibiotics were correctly detected with high mass accuracy (antibiotics in particular and natural products in general. The method described in this paper is suitable for (1) screening the natural products produced by bacterial colonies on cultivation plates within the first 2 min following extraction and (2) detecting antibiotics at high mass accuracy; the cost is around 2 Euro per sample. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Examining Attitudes of Students Regarding the Sports Education Model and Direct Teaching Model

    Science.gov (United States)

    Bilgin, Nevruz; Dalkiran, Oguzhan

    2017-01-01

    The aim of the research was to investigate the effects of sports education model and direct teaching model on the attitudes of the students, and the differences among the attitudes of students. The study group of the research included 29 students from 6th and 7th grade of a secondary school in the 2015-2016 academic years. The experimental group…

  19. Defect detection and classification of machined surfaces under multiple illuminant directions

    Science.gov (United States)

    Liao, Yi; Weng, Xin; Swonger, C. W.; Ni, Jun

    2010-08-01

    Continuous improvement of product quality is crucial to the successful and competitive automotive manufacturing industry in the 21st century. The presence of surface porosity located on flat machined surfaces such as cylinder heads/blocks and transmission cases may allow leaks of coolant, oil, or combustion gas between critical mating surfaces, thus causing damage to the engine or transmission. Therefore 100% inline inspection plays an important role for improving product quality. Although the techniques of image processing and machine vision have been applied to machined surface inspection and well improved in the past 20 years, in today's automotive industry, surface porosity inspection is still done by skilled humans, which is costly, tedious, time consuming and not capable of reliably detecting small defects. In our study, an automated defect detection and classification system for flat machined surfaces has been designed and constructed. In this paper, the importance of the illuminant direction in a machine vision system was first emphasized and then the surface defect inspection system under multiple directional illuminations was designed and constructed. After that, image processing algorithms were developed to realize 5 types of 2D or 3D surface defects (pore, 2D blemish, residue dirt, scratch, and gouge) detection and classification. The steps of image processing include: (1) image acquisition and contrast enhancement (2) defect segmentation and feature extraction (3) defect classification. An artificial machined surface and an actual automotive part: cylinder head surface were tested and, as a result, microscopic surface defects can be accurately detected and assigned to a surface defect class. The cycle time of this system can be sufficiently fast that implementation of 100% inline inspection is feasible. The field of view of this system is 150mm×225mm and the surfaces larger than the field of view can be stitched together in software.

  20. Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit

    Science.gov (United States)

    Li, Xiaowei; Tan, Qiaofeng; Bai, Benfeng; Jin, Guofan

    2011-06-01

    We demonstrate experimentally the directional excitation of surface plasmon polaritons (SPPs) on a metal film by a subwavelength double slit under backside illumination, based on the interference of SPPs generated by the two slits. By varying the incident angle, the SPPs can be tunably directed into two opposite propagating directions with a predetermined splitting ratio. Under certain incident angle, unidirectional SPP excitation can be achieved. This compact directional SPP coupler is potentially useful for many on-chip applications. As an example, we show the integration of the double-slit couplers with SPP Bragg mirrors, which can effectively realize selective coupling of SPPs into different ports in an integrated plasmonic chip.

  1. Examining the Support Peer Supporters Provide Using Structural Equation Modeling: Nondirective and Directive Support in Diabetes Management.

    Science.gov (United States)

    Kowitt, Sarah D; Ayala, Guadalupe X; Cherrington, Andrea L; Horton, Lucy A; Safford, Monika M; Soto, Sandra; Tang, Tricia S; Fisher, Edwin B

    2017-12-01

    Little research has examined the characteristics of peer support. Pertinent to such examination may be characteristics such as the distinction between nondirective support (accepting recipients' feelings and cooperative with their plans) and directive (prescribing "correct" choices and feelings). In a peer support program for individuals with diabetes, this study examined (a) whether the distinction between nondirective and directive support was reflected in participants' ratings of support provided by peer supporters and (b) how nondirective and directive support were related to depressive symptoms, diabetes distress, and Hemoglobin A1c (HbA1c). Three hundred fourteen participants with type 2 diabetes provided data on depressive symptoms, diabetes distress, and HbA1c before and after a diabetes management intervention delivered by peer supporters. At post-intervention, participants reported how the support provided by peer supporters was nondirective or directive. Confirmatory factor analysis (CFA), correlation analyses, and structural equation modeling examined the relationships among reports of nondirective and directive support, depressive symptoms, diabetes distress, and measured HbA1c. CFA confirmed the factor structure distinguishing between nondirective and directive support in participants' reports of support delivered by peer supporters. Controlling for demographic factors, baseline clinical values, and site, structural equation models indicated that at post-intervention, participants' reports of nondirective support were significantly associated with lower, while reports of directive support were significantly associated with greater depressive symptoms, altogether (with control variables) accounting for 51% of the variance in depressive symptoms. Peer supporters' nondirective support was associated with lower, but directive support was associated with greater depressive symptoms.

  2. Results of the study of entrance surface dose from conventional examinations in diagnostic radiology

    International Nuclear Information System (INIS)

    Martinez, A.; Jova, L.; Carrazana, J.; Diaz, E.; Mora, R. de la; Guevara, C.; Fleitas, I.

    2001-01-01

    The wide diffusion of X-ray diagnostic together with the quick development and expansion that has come with experiencing the technology in this practice, has motivated the emission of recommendations in the Basic Safety Standards of the IAEA for the establishment of guidance levels for different radiological examinations in each country that allow the optimization of the medical exposure. Considering the above-mentioned and the existence in Cuba in a great number of conventional X-ray equipment, with an average of over 10 years of use which influences directly on the patient dose, in 1999, an investigation began in the country on the patient exposure in this practice. This work shows the first results of measurements carried out in 9 major hospitals of several provinces of the country. The doses were evaluated in the examinations of lumbar spine AP, lumbar spine LAT, thorax PA, skull AP and skull LAT. The determination of the doses in these examinations was carried out by 'in-vivo' measurements on the patients, placing in the center of the irradiation field TLD of LiF. The distributions obtained in the studies are compared with the guidance levels that is shown in the Basic Safety Standards of the IAEA. (author)

  3. Direct Observation of Domain-Wall Surface Tension by Deflating or Inflating a Magnetic Bubble

    Science.gov (United States)

    Zhang, Xueying; Vernier, Nicolas; Zhao, Weisheng; Yu, Haiming; Vila, Laurent; Zhang, Yue; Ravelosona, Dafiné

    2018-02-01

    The surface energy of a magnetic domain wall (DW) strongly affects its static and dynamic behaviors. However, this effect is seldom directly observed, and some of the related phenomena are not well understood. Moreover, a reliable method to quantify the DW surface energy is still absent. Here, we report a series of experiments in which the DW surface energy becomes a dominant parameter. We observe that a semicircular magnetic domain bubble can spontaneously collapse under the Laplace pressure induced by DW surface energy. We further demonstrate that the surface energy can lead to a geometrically induced pinning when the DW propagates in a Hall cross or from a nanowire into a nucleation pad. Based on these observations, we develop two methods to quantify the DW surface energy, which can be very helpful in the estimation of intrinsic parameters such as Dzyaloshinskii-Moriya interactions or exchange stiffness in magnetic ultrathin films.

  4. Parenting and Children's Distress Reactivity during Toddlerhood: An Examination of Direction of Effects

    Science.gov (United States)

    Scaramella, Laura V.; Sohr-Preston, Sara L.; Mirabile, Scott P.; Robison, Sarah D.; Callahan, Kristin L.

    2008-01-01

    During early childhood, harsh and emotionally negative parent-child exchanges are expected to increase children's risk for developing later conduct problems. The present study examined longitudinal associations between the quality of parenting responses and children's distress reactivity during children's second year of life. Forty-seven…

  5. Examination of returned solar-max surfaces for impacting orbital debris and meteoroids

    Science.gov (United States)

    Kessler, D. J.; Zook, H. A.; Potter, A. E.; Mckay, D. S.; Clanton, U. S.; Warren, J. L.; Watts, L. A.; Schultz, R. A.; Schramm, L. S.; Wentworth, S. J.

    1985-01-01

    Previous theoretical studies predicted that in certain regions of earth orbit, the man-made earth orbiting debris environment will soon exceed the interplanetary meteoroid environment for sizes smaller than 1 cm. The surfaces returned from the repaired Solar Max Mission (SMM) by STS 41-C on April 12, 1984, offered an excellent opportunity to examine both the debris and meteoroid environments. To date, approximately 0.7 sq. met. of the thermal insulation and 0.05 sq. met of the aluminum louvers have been mapped by optical microscope for crater diameters larger than 40 microns. Craters larger in diameter than about 100 microns found on the initial 75 micron thick Kapton first sheet on the MEB (Main Electronics Box) blanket are actually holes and constitute perforations through that blanket. The following populations have been found to date in impact sites on these blankets: (1) meteoritic material; (2) thermal paint particles; (3) aluminum droplets; and (4) waste particles.

  6. The calculation of the surface dose in examinations following cardiac catheterization

    International Nuclear Information System (INIS)

    Ewen, K.

    1995-01-01

    It is inevitable in examinations requiring patient exposure to high doses that the investigators and medical assistants receive high wholebody doses on account of fray radiation and, occasionally, also high partial body doses (hands) on account of the useful beam range. A number of different circumstances are adding up to create this extreme situation. In this connection, a mathematical method for the calculation of the surface dose (cutaneous dose rate) is described that is based on sets of parameters commonly used in diagnostic radiology: Set I of parameters: Tube voltage - current strength of tube - distance between focus and skin; - set II of parameters: Incidence dose rate of image intensifier - distance between focus and skin -distance between image intensifier and plane of ray incidence (skin). (orig./VHE) [de

  7. Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Hu, A.; Rybachuk, M.; Lu, Q.-B.; Duley, W. W.

    2007-01-01

    Microscopic phase transformation from graphite to sp-bonded carbon chains (carbyne) and nanodiamond has been induced by femtosecond laser pulses on graphite surface. UV/surface enhanced Raman scattering spectra and x-ray photoelectron spectra displayed the local synthesis of carbyne in the melt zone while nanocrystalline diamond and trans-polyacetylene chains form in the edge area of gentle ablation. These results evidence possible direct 'writing' of variable chemical bonded carbons by femtosecond laser pulses for carbon-based applications

  8. Examination of the surface coatings removed from K-East Basin fuel elements

    International Nuclear Information System (INIS)

    Abrefah, J.; Marschman, S.C.; Jenson, E.D.

    1998-05-01

    This report provides the results of studies conducted on coatings discovered on the surfaces of some N-Reactor spent nuclear fuel (SNF) elements stored at the Hanford K-East Basin. These elements had been removed from the canisters and visually examined in-basin during FY 1996 as part of a series of characterization tests. The characterization tests are being performed to support the Integrated Process Strategy developed to package, dry, transport, and store the SNF in an interim storage facility on the Hanford site. Samples of coating materials were removed from K-East canister elements 2350E and 2540E, which had been sent, along with nine other elements, to the Postirradiation Testing Laboratory (327 Building) for further characterization following the in-basin examinations. These coating samples were evaluated by Pacific Northwest National Laboratory using various analytical methods. This report is part of the overall studies to determine the drying behavior of corrosion products associated with the K-Basin fuel elements. Altogether, five samples of coating materials were analyzed. These analyses suggest that hydration of the coating materials could be an additional source of moisture in the Multi-Canister Overpacks being used to contain the fuel for storage

  9. Examination of the surface coating removed from K-East Basin fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Abrefah, J.; Marschman, S.C.; Jenson, E.D.

    1998-05-01

    This report provides the results of studies conducted on coatings discovered on the surfaces of some N-Reactor spent nuclear fuel (SNF) elements stored at the Hanford K-East Basin. These elements had been removed from the canisters and visually examined in-basin during FY 1996 as part of a series of characterization tests. The characterization tests are being performed to support the Integrated Process Strategy developed to package, dry, transport, and store the SNF in an interim storage facility on the Hanford site. Samples of coating materials were removed from K-East canister elements 2350E and 2540E, which had been sent, along with nine other elements, to the Postirradiation Testing Laboratory (327 Building) for further characterization following the in-basin examinations. These coating samples were evaluated by Pacific Northwest National Laboratory using various analytical methods. This report is part of the overall studies to determine the drying behavior of corrosion products associated with the K-Basin fuel elements. Altogether, five samples of coating materials were analyzed. These analyses suggest that hydration of the coating materials could be an additional source of moisture in the Multi-Canister Overpacks being used to contain the fuel for storage.

  10. Producer firms, technology diffusion and spillovers to local suppliers : Examining the effects of Foreign Direct Investment and the technology gap

    NARCIS (Netherlands)

    Jordaan, J.A.

    2017-01-01

    In this paper, we conduct a detailed examination of the effects of Foreign Direct Investment (FDI) and the technology gap on local technology dissemination and spillovers. Using unique firm level data from surveys among FDI firms and domestic producer firms and a random sample of their suppliers in

  11. Examining the Regional Aspect of Foreign Direct Investment to Developing Countries

    DEFF Research Database (Denmark)

    Sunesen, Eva Rytter

    This paper applies a general-to-specific analysis to detect regularities in the driving forces of foreign direct investment (FDI) that can explain why some regions are more attractive to foreign investors than others. The results suggest that regional differences in FDI inflows to African, Asian...... at improving the investment climate for foreign investors. This also means that there is no African bias. Among a large number of return and risk variables applied in the empirical literature, growth and inflation turn out to be the only robust and significant FDI determinants across regions although the size...... and Latin American countries can be fully explained by structural characteristics rather than fixed regional effects. The implication of this finding is that countries that are lagging behind other developing countries in attracting foreign capital have the opportunity to implement policies aimed...

  12. A mixed-method examination of food marketing directed towards children in Australian supermarkets.

    Science.gov (United States)

    Campbell, Sarah; James, Erica L; Stacey, Fiona G; Bowman, Jennifer; Chapman, Kathy; Kelly, Bridget

    2014-06-01

    The purpose of this study was to determine the prevalence of children's food requests, and parents' experiences of food marketing directed towards children, in the supermarket environment. A mixed-method design was used. Firstly, intercept interviews were conducted with parents accompanied by a child/children on exiting supermarkets (sampled from a large regional centre in Australia). Parents were asked about the prevalence and types of food requests by child/children during their supermarket visit and whether they purchased these foods. Secondly, focus groups (n = 13) and telephone interviews (n = 3) were conducted exploring parents' experiences of supermarket shopping with children and the impact of child-directed marketing. Of the 158 intercept survey participants (30% response rate), 73% reported a food request during the supermarket visit. Most requested food items (88%) were unhealthy foods, with chocolate/confectionery being the most common food category requested (40%). Most parents (70%) purchased at least one food item requested during the shopping trip. Qualitative interviews identified four themes associated with food requests and prompts in the supermarket: parents' experience of pester power in the supermarket; prompts for food requests in the supermarket; parental responses to pestering in the supermarket environment, and; strategies to manage pestering and minimize requests for food items. Food requests from children are common during supermarket shopping. Despite the majority of the requests being unhealthy, parents often purchase these foods. Parents reported difficulties dealing with constant requests and expressed desire for environmental changes including confectionery-free checkouts, minimization of child friendly product placement and reducing children's exposure to food marketing.

  13. Fabrication of multi-functional silicon surface by direct laser writing

    Science.gov (United States)

    Verma, Ashwani Kumar; Soni, R. K.

    2018-05-01

    We present a simple, quick and one-step methodology based on nano-second laser direct writing for the fabrication of micro-nanostructures on silicon surface. The fabricated surfaces suppress the optical reflection by multiple reflection due to light trapping effect to a much lower value than polished silicon surface. These textured surfaces offer high enhancement ability after gold nanoparticle deposition and then explored for Surface Enhanced Raman Scattering (SERS) for specific molecular detection. The effect of laser scanning line interval on optical reflection and SERS signal enhancement ability was also investigated. Our results indicate that low optical reflection substrates exhibit uniform SERS enhancement with enhancement factor of the order of 106. Furthermore, this methodology provide an alternative approach for cost-effective large area fabrication with good control over feature size.

  14. Research on the effect of coverage rate on the surface quality in laser direct writing process

    Science.gov (United States)

    Pan, Xuetao; Tu, Dawei

    2017-07-01

    Direct writing technique is usually used in femtosecond laser two-photon micromachining. The size of the scanning step is an important factor affecting the surface quality and machining efficiency of micro devices. According to the mechanism of two-photon polymerization, combining the distribution function of light intensity and the free radical concentration theory, we establish the mathematical model of coverage of solidification unit, then analyze the effect of coverage on the machining quality and efficiency. Using the principle of exposure equivalence, we also obtained the analytic expressions of the relationship among the surface quality characteristic parameters of microdevices and the scanning step, and carried out the numerical simulation and experiment. The results show that the scanning step has little influence on the surface quality of the line when it is much smaller than the size of the solidification unit. However, with increasing scanning step, the smoothness of line surface is reduced rapidly, and the surface quality becomes much worse.

  15. Applicability of surface-enhanced resonance Raman scattering for the direct discrimination of ballpoint pen inks

    NARCIS (Netherlands)

    Seifar, R.M.; Verheul, J.M.; Ariese, F.; Brinkman, U.A.T.; Gooijer, C.

    2001-01-01

    In situ surface-enhanced resonance Raman spectroscopy (SERRS) with excitation at 685 nm is suitable for the direct discrimination of blue and black ballpoint pen inks on paper. For black inks, shorter excitation wavelengths can also be used. For blue inks, SERRS at 514.5 and 457.9 nm does not

  16. An Improved Local Gradient Method for Sea Surface Wind Direction Retrieval from SAR Imagery

    Directory of Open Access Journals (Sweden)

    Lizhang Zhou

    2017-06-01

    Full Text Available Sea surface wind affects the fluxes of energy, mass and momentum between the atmosphere and ocean, and therefore regional and global weather and climate. With various satellite microwave sensors, sea surface wind can be measured with large spatial coverage in almost all-weather conditions, day or night. Like any other remote sensing measurements, sea surface wind measurement is also indirect. Therefore, it is important to develop appropriate wind speed and direction retrieval models for different types of microwave instruments. In this paper, a new sea surface wind direction retrieval method from synthetic aperture radar (SAR imagery is developed. In the method, local gradients are computed in frequency domain by combining the operation of smoothing and computing local gradients in one step to simplify the process and avoid the difference approximation. This improved local gradients (ILG method is compared with the traditional two-dimensional fast Fourier transform (2D FFT method and local gradients (LG method, using interpolating wind directions from the European Centre for Medium-Range Weather Forecast (ECMWF reanalysis data and the Cross-Calibrated Multi-Platform (CCMP wind vector product. The sensitivities to the salt-and-pepper noise, the additive noise and the multiplicative noise are analyzed. The ILG method shows a better performance of retrieval wind directions than the other two methods.

  17. Effect of nanoscale surface roughness on the bonding energy of direct-bonded silicon wafers

    Science.gov (United States)

    Miki, N.; Spearing, S. M.

    2003-11-01

    Direct wafer bonding of silicon wafers is a promising technology for manufacturing three-dimensional complex microelectromechanical systems as well as silicon-on-insulator substrates. Previous work has reported that the bond quality declines with increasing surface roughness, however, this relationship has not been quantified. This article explicitly correlates the bond quality, which is quantified by the apparent bonding energy, and the surface morphology via the bearing ratio, which describes the area of surface lying above a given depth. The apparent bonding energy is considered to be proportional to the real area of contact. The effective area of contact is defined as the area sufficiently close to contribute to the attractive force between the two bonding wafers. Experiments were conducted with silicon wafers whose surfaces were roughened by a buffered oxide etch solution (BOE, HF:NH4F=1:7) and/or a potassium hydroxide solution. The surface roughness was measured by atomic force microscopy. The wafers were direct bonded to polished "monitor" wafers following a standard RCA cleaning and the resulting bonding energy was measured by the crack-opening method. The experimental results revealed a clear correlation between the bonding energy and the bearing ratio. A bearing depth of ˜1.4 nm was found to be appropriate for the characterization of direct-bonded silicon at room temperature, which is consistent with the thickness of the water layer at the interface responsible for the hydrogen bonds that link the mating wafers.

  18. Studies on surface modification of poly(tetrafluoroethylene) film by remote and direct Ar plasma

    International Nuclear Information System (INIS)

    Wang Chen; Chen Jierong; Li Ru

    2008-01-01

    Poly(tetrafluoroethylene) (PTFE) surfaces are modified with remote and direct Ar plasma, and the effects of the modification on the hydrophilicity of PTFE are investigated. The surface microstructures and compositions of the PTFE film were characterized with the goniometer, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Results show that the remote and direct plasma treatments modify the PTFE surface in morphology and composition, and both modifications cause surface oxidation of PTFE films, in the forming of some polar functional groups enhancing polymer wettability. When the remote and direct Ar plasma treats PTFE film, the contact angles decrease from the untreated 108-58 o and 65.2 o , respectively. The effect of the remote Ar plasma is more noticeable. The role of all kinds of active species, e.g. electrons, ions and free radicals involved in plasma surface modification is further evaluated. This shows that remote Ar plasma can restrain the ion and electron etching reaction and enhance radical reaction

  19. pH-sensitive diamond field-effect transistors (FETs) with directly aminated channel surface

    International Nuclear Information System (INIS)

    Song, Kwang-Soup; Nakamura, Yusuke; Sasaki, Yuichi; Degawa, Munenori; Yang, Jung-Hoon; Kawarada, Hiroshi

    2006-01-01

    We have introduced pH sensors fabricated on diamond thin films through modification of the surface-terminated atom. We directly modified the diamond surface from hydrogen to amine or oxygen with ultraviolet (UV) irradiation under ammonia gas. The quantified amine site based on the spectra obtained by X-ray photoelectron spectroscopy (XPS) is 26% (2.6 x 10 14 cm -2 ) with UV irradiation for 8 h and its coverage is dependent on the UV irradiation time. This directly aminated diamond surface is stable with long-term exposure in air and electrolyte solution. We fabricated diamond solution-gate field-effect transistors (SGFETs) without insulating layers on the channel surface. These diamond SGFETs with amine modified by direct amination are sensitive to pH (45 mV/pH) over a wide range from pH 2 to 12 and their sensitivity is dependent on the density of binding sites corresponding to UV irradiation time on the channel surface

  20. Mapping Direct Observations From Objective Structured Clinical Examinations to the Milestones Across Specialties.

    Science.gov (United States)

    Baker-Genaw, Kimberly; Kokas, Maria S; Ahsan, Syed F; Darnley-Fisch, Deborah; Drake, Sean; Goyal, Nikhil; Inamdar, Kedar; Moutzouros, Vasilios; Prabhakar, Deepak; Rolland, Laurie; Sangha, Roopina; Shreve, Maria; Woodward, Ann

    2016-07-01

    Little is known about residents' performance on the milestones at the institutional level. Our institution formed a work group to explore this using an institutional-level curriculum and residents' evaluation of the milestones. We assessed whether beginner-level milestones for interpersonal and communication skills (ICS) related to observable behaviors in ICS-focused objective structured clinical examinations (OSCEs) for postgraduate year (PGY) 1 residents across specialties. The work group compared ICS subcompetencies across 12 programs to identify common beginner-level physician-patient communication milestones. The selected ICS milestone sets were compared for common language with the ICS-OSCE assessment tool-the Kalamazoo Essential Elements of Communication Checklist-Adapted (KEECC-A). To assess whether OSCE scores related to ICS milestone scores, all PGY-1 residents from programs that were part of Next Accreditation System Phase 1 were identified; their OSCE scores from July 2013 to June 2014 and ICS subcompetency scores from December 2014 were compared. The milestones for 10 specialties and the transitional year had at least 1 ICS subcompetency that related to physician-patient communication. The language of the ICS beginner-level milestones appears similar to behaviors outlined in the KEECC-A. All 60 residents with complete data received at least a beginner-level ICS subcompetency score and at least a satisfactory score on all 3 OSCEs. The ICS-OSCE scores for PGY-1 residents appear to relate to beginner-level milestones for physician-patient communication across multiple specialties.

  1. Measurement of the sea surface wind speed and direction by an airborne microwave radar altimeter

    Energy Technology Data Exchange (ETDEWEB)

    Nekrassov, A. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    2001-07-01

    A pilot needs operational information about wind over sea as well as wave height to provide safety of a hydroplane landing on water. Near-surface wind speed and direction can be obtained with an airborne microwave scatterometer, radar designed for measuring the scatter characteristics of a surface. Mostly narrow-beam antennas are applied for such wind measurement. Unfortunately, a microwave narrow-beam antenna has considerable size that hampers its placing on flying apparatus. In this connection, a possibility to apply a conventional airborne radar altimeter as a scatterometer with a nadir-looking wide-beam antenna in conjunction with Doppler filtering for recovering the wind vector over sea is discussed, and measuring algorithms of sea surface wind speed and direction are proposed. The obtained results can be used for creation of an airborne radar system for operational measurement of the sea roughness characteristics and for safe landing of a hydroplane on water. (orig.)

  2. Multisensor satellite data integration for sea surface wind speed and direction determination

    Science.gov (United States)

    Glackin, D. L.; Pihos, G. G.; Wheelock, S. L.

    1984-01-01

    Techniques to integrate meteorological data from various satellite sensors to yield a global measure of sea surface wind speed and direction for input to the Navy's operational weather forecast models were investigated. The sensors were launched or will be launched, specifically the GOES visible and infrared imaging sensor, the Nimbus-7 SMMR, and the DMSP SSM/I instrument. An algorithm for the extrapolation to the sea surface of wind directions as derived from successive GOES cloud images was developed. This wind veering algorithm is relatively simple, accounts for the major physical variables, and seems to represent the best solution that can be found with existing data. An algorithm for the interpolation of the scattered observed data to a common geographical grid was implemented. The algorithm is based on a combination of inverse distance weighting and trend surface fitting, and is suited to combing wind data from disparate sources.

  3. Direct observation of deformation of nafion surfaces induced by methanol treatment by using atomic force microscopy

    International Nuclear Information System (INIS)

    Umemura, Kazuo; Kuroda, Reiko; Gao Yanfeng; Nagai, Masayuki; Maeda, Yuta

    2008-01-01

    We successfully characterized the effect of methanol treatment on the nanoscopic structures of a nafion film, which is widely used in direct methanol fuel cells (DMFCs). Atomic force microscopy (AFM) was used to repetitively image a particular region of a nafion sample before and after methanol solutions were dropped onto the nafion film and dried in air. When the surface was treated with 20% methanol for 5 min, many nanopores appeared on the surface. The number of nanopores increased when the sample was treated twice or thrice. By repetitive AFM imaging of a particular region of the same sample, we found that the shapes of the nanopores were deformed by the repeated methanol treatment, although the size of the nanopores had not significantly changed. The creation of the nanopores was affected by the concentration of methanol. Our results directly visualized the effects of methanol treatment on the surface structures of a nafion film at nanoscale levels for the first time

  4. Surface preparation for high purity alumina ceramics enabling direct brazing in hydrogen atmospheres

    Science.gov (United States)

    Cadden, Charles H.; Yang, Nancy Yuan Chi; Hosking, Floyd M.

    2001-01-01

    The present invention relates to a method for preparing the surface of a high purity alumina ceramic or sapphire specimen that enables direct brazing in a hydrogen atmosphere using an active braze alloy. The present invention also relates to a method for directly brazing a high purity alumina ceramic or sapphire specimen to a ceramic or metal member using this method of surface preparation, and to articles produced by this brazing method. The presence of silicon, in the form of a SiO.sub.2 -containing surface layer, can more than double the tensile bond strength in alumina ceramic joints brazed in a hydrogen atmosphere using an active Au-16Ni-0.75 Mo-1.75V filler metal. A thin silicon coating applied by PVD processing can, after air firing, produce a semi-continuous coverage of the alumina surface with a SiO.sub.2 film. Room temperature tensile strength was found to be proportional to the fraction of air fired surface covered by silicon-containing films. Similarly, the ratio of substrate fracture versus interface separation was also related to the amount of surface silicon present prior to brazing. This process can replace the need to perform a "moly-manganese" metallization step.

  5. UV Direct Laser Interference Patterning of polyurethane substrates as tool for tuning its surface wettability

    Energy Technology Data Exchange (ETDEWEB)

    Estevam-Alves, Regina [Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos (Brazil); Günther, Denise; Dani, Sophie; Eckhardt, Sebastian; Roch, Teja [Fraunhofer Institute for Material and Beam Technology IWS, Winterbergstr. 28, Dresden 01277 (Germany); Chair for Large Area Laser Based Surface Micro/Nano-Structuring, Institute for Manufacturing Technology, Technische Universität Dresden, George-Bähr-Str. 3c, 01069 Dresden (Germany); Mendonca, Cleber R., E-mail: crmendon@ifsc.usp.br [Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos (Brazil); Cestari, Ismar N. [Heart Institute (InCOr), University of São Paulo Medical School, São Paulo 05403-000 (Brazil); Lasagni, Andrés F., E-mail: andres_fabian.lasagni@tu-dresden.de [Fraunhofer Institute for Material and Beam Technology IWS, Winterbergstr. 28, Dresden 01277 (Germany); Chair for Large Area Laser Based Surface Micro/Nano-Structuring, Institute for Manufacturing Technology, Technische Universität Dresden, George-Bähr-Str. 3c, 01069 Dresden (Germany)

    2016-06-30

    Highlights: • First reported experiments on Direct Laser Interference Patterning of polyurethane. • First reported sub-micrometer structures (feature size ∼250 nm) fabricated in polyurethane materials using laser processing technologies. • Anisotropic wetting behavior of structured surfaces and possibility to tune the contact angle as function of surface structure parameters. - Abstract: Direct Laser Interference Patterning (DLIP) is a versatile tool for the fabrication of micro and sub-micropatterns on different materials. In this work, DLIP was used to produce periodic surface structures on polyurethane (PU) substrates with spatial periods ranging from 0.5 to 5.0 μm. The influence of the laser energy density on the quality and topographical characteristics of the produced micropatterns was investigated. To characterize the surface topography of the produced structures, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Confocal Microscopy (CFM) were utilized. It was found that high quality and defect free periodic line-like patterns with spatial periods down to 500 nm could be fabricated, with structure depths between 0.88 up to 1.25 μm for spatial periods larger than 2.0 μm and up to 270 nm for spatial periods between 500 nm and 1.0 μm. Measurements of the contact angle of water on the treated surface allowed to identify an anisotropic wetting behavior depending mainly on the spatial period and filling factor of the structured surfaces.

  6. Surface modification of polyacrylonitrile co-polymer membranes using pulsed direct current nitrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Dipankar; Neogi, Sudarsan; De, Sirshendu, E-mail: sde@che.iitkgp.ernet.in

    2015-12-31

    Low temperature plasma treatment using pulsed direct current discharge of nitrogen gas was employed to enhance hydrophilicity of the polyacrylonitrile co-polymer membranes. The membranes were characterized in terms of morphology, structure, hydrophilicity, and membrane performance. Properties and functional groups on the surface of polyacrylonitrile co-polymer membranes were investigated by contact angle, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Effects of plasma conditions, namely, pulsed voltage, duty cycle and treatment time on increase in membrane hydrophilicity were studied. Permeability of treated membrane was increased by 47% and it was retained up to 70 days. Surface etching due to plasma treatment was confirmed by weight loss of the treated membranes. Due to surface etching, average pore size increased and rejection of 200 kDa polyethylene glycol decreased to about 70% for the treated membrane. Oxygen and nitrogen functional groups were responsible for surface hydrophilicity. - Highlights: • Surface modification of polyacrylonitrile co-polymer membranes by pulsed direct current nitrogen plasma • Hydrophilic functional groups incorporated on the membrane surface • Significant enhancement of the permeability and wettability of the membranes • Water contact angle increased with storage time and finally stabilized.

  7. Surface modification of polyacrylonitrile co-polymer membranes using pulsed direct current nitrogen plasma

    International Nuclear Information System (INIS)

    Pal, Dipankar; Neogi, Sudarsan; De, Sirshendu

    2015-01-01

    Low temperature plasma treatment using pulsed direct current discharge of nitrogen gas was employed to enhance hydrophilicity of the polyacrylonitrile co-polymer membranes. The membranes were characterized in terms of morphology, structure, hydrophilicity, and membrane performance. Properties and functional groups on the surface of polyacrylonitrile co-polymer membranes were investigated by contact angle, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Effects of plasma conditions, namely, pulsed voltage, duty cycle and treatment time on increase in membrane hydrophilicity were studied. Permeability of treated membrane was increased by 47% and it was retained up to 70 days. Surface etching due to plasma treatment was confirmed by weight loss of the treated membranes. Due to surface etching, average pore size increased and rejection of 200 kDa polyethylene glycol decreased to about 70% for the treated membrane. Oxygen and nitrogen functional groups were responsible for surface hydrophilicity. - Highlights: • Surface modification of polyacrylonitrile co-polymer membranes by pulsed direct current nitrogen plasma • Hydrophilic functional groups incorporated on the membrane surface • Significant enhancement of the permeability and wettability of the membranes • Water contact angle increased with storage time and finally stabilized.

  8. Direct numerical simulation of turbulent channel flow over a liquid-infused micro-grooved surface

    Science.gov (United States)

    Chang, Jaehee; Jung, Taeyong; Choi, Haecheon; Kim, John

    2016-11-01

    Recently a superhydrophobic surface has drawn much attention as a passive device to achieve high drag reduction. Despite the high performance promised at ideal conditions, maintaining the interface in real flow conditions is an intractable problem. A non-wetting surface, known as the slippery liquid-infused porous surface (SLIPS) or the lubricant-impregnated surface (LIS), has shown a potential for drag reduction, as the working fluid slips at the interface but cannot penetrate into the lubricant layer. In the present study, we perform direct numerical simulation of turbulent channel flow over a liquid-infused micro-grooved surface to investigate the effects of this surface on the interfacial slip and drag reduction. The flow rate of water is maintained constant corresponding to Reτ 180 in a fully developed turbulent channel flow, and the lubricant layer is shear-driven by the turbulent water flow. The lubricant layer is also simulated with the assumption that the interface is flat (i.e. the surface tension effect is neglected). The solid substrate in which the lubricant is infused is modelled as straight ridges using an immersed boundary method. DNS results show that drag reduction by the liquid-infused surface is highly dependent on the viscosity of the lubricant.

  9. Characterization of anti-theft devices directly from the surface of banknotes via easy ambient sonic spray ionization mass spectrometry.

    Science.gov (United States)

    Schmidt, Eduardo Morgado; Franco, Marcos Fernando; Cuelbas, Claudio José; Zacca, Jorge Jardim; de Carvalho Rocha, Werickson Fortunato; Borges, Rodrigo; de Souza, Wanderley; Sawaya, Alexandra Christine Helena Frankland; Eberlin, Marcos Nogueira; Correa, Deleon Nascimento

    2015-09-01

    Using Brazilian banknotes as a test case, forensic examination and identification of Rhodamine B dye anti-theft device (ATD) staining on banknotes were performed. Easy ambient sonic spray ionization mass spectrometry (EASI-MS) was used since it allows fast and simple analysis with no sample preparation providing molecular screening of the surface with direct desorption and ionization of the security dye. For a more accurate molecular characterization of the ATD dye, Q Exactive Orbitrap™ Fourier transform (tandem) mass spectrometry using eletrospray ionization (ESI-HRMS/MS) was also applied. Copyright © 2015 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  10. A Comparison of Assessment Tools: Is Direct Observation an Improvement Over Objective Structured Clinical Examinations for Communications Skills Evaluation?

    Science.gov (United States)

    Goch, Abraham M; Karia, Raj; Taormina, David; Kalet, Adina; Zuckerman, Joseph; Egol, Kenneth A; Phillips, Donna

    2018-04-01

    Evaluation of resident physicians' communications skills is a challenging task and is increasingly accomplished with standardized examinations. There exists a need to identify the effective, efficient methods for assessment of communications skills. We compared objective structured clinical examination (OSCE) and direct observation as approaches for assessing resident communications skills. We conducted a retrospective cohort analysis of orthopaedic surgery resident physicians at a single tertiary care academic institution, using the Institute for Healthcare Communication "4 Es" model for effective communication. Data were collected between 2011 and 2015. A total of 28 residents, each with OSCE and complete direct observation assessment checklists, were included in the analysis. Residents were included if they had 1 OSCE assessment and 2 or more complete direct observation assessments. There were 28 of a possible 59 residents (47%) included. A total of 89% (25 of 28) of residents passed the communications skills OSCE; only 54% (15 of 28) of residents passed the direct observation communications assessment. There was a positive, moderate correlation between OSCE and direct observation scores overall ( r  = 0.415, P  = .028). There was no agreement between OSCE and direct observation in categorizing residents into passing and failing scores (κ = 0.205, P  = .16), after adjusting for chance agreement. Our results suggest that OSCE and direct observation tools provide different insights into resident communications skills (simulation of rare and challenging situations versus real-life daily encounters), and may provide useful perspectives on resident communications skills in different contexts.

  11. Probing surface charge potentials of clay basal planes and edges by direct force measurements.

    Science.gov (United States)

    Zhao, Hongying; Bhattacharjee, Subir; Chow, Ross; Wallace, Dean; Masliyah, Jacob H; Xu, Zhenghe

    2008-11-18

    The dispersion and gelation of clay suspensions have major impact on a number of industries, such as ceramic and composite materials processing, paper making, cement production, and consumer product formulation. To fundamentally understand controlling mechanisms of clay dispersion and gelation, it is necessary to study anisotropic surface charge properties and colloidal interactions of clay particles. In this study, a colloidal probe technique was employed to study the interaction forces between a silica probe and clay basal plane/edge surfaces. A muscovite mica was used as a representative of 2:1 phyllosilicate clay minerals. The muscovite basal plane was prepared by cleavage, while the edge surface was obtained by a microtome cutting technique. Direct force measurements demonstrated the anisotropic surface charge properties of the basal plane and edge surface. For the basal plane, the long-range forces were monotonically repulsive within pH 6-10 and the measured forces were pH-independent, thereby confirming that clay basal planes have permanent surface charge from isomorphic substitution of lattice elements. The measured interaction forces were fitted well with the classical DLVO theory. The surface potentials of muscovite basal plane derived from the measured force profiles were in good agreement with those reported in the literature. In the case of edge surfaces, the measured forces were monotonically repulsive at pH 10, decreasing with pH, and changed to be attractive at pH 5.6, strongly suggesting that the charge on the clay edge surfaces is pH-dependent. The measured force profiles could not be reasonably fitted with the classical DLVO theory, even with very small surface potential values, unless the surface roughness was considered. The surface element integration (SEI) method was used to calculate the DLVO forces to account for the surface roughness. The surface potentials of the muscovite edges were derived by fitting the measured force profiles with the

  12. NOx Direct Decomposition: Potentially Enhanced Thermodynamics and Kinetics on Chemically Modified Ferroelectric Surfaces

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2014-03-01

    NOx are regulated pollutants produced during automotive combustion. As part of an effort to design catalysts for NOx decomposition that operate in oxygen rich environment and permit greater fuel efficiency, we study chemistry of NOx on (001) ferroelectric surfaces. Changing the polarization at such surfaces modifies electronic properties and leads to switchable surface chemistry. Using first principles theory, our previous work has shown that addition of catalytic RuO2 monolayer on ferroelectric PbTiO3 surface makes direct decomposition of NO thermodynamically favorable for one polarization. Furthermore, the usual problem of blockage of catalytic sites by strong oxygen binding is overcome by flipping polarization that helps desorb the oxygen. We describe a thermodynamic cycle for direct NO decomposition followed by desorption of N2 and O2. We provide energy barriers and transition states for key steps of the cycle as well as describing their dependence on polarization direction. We end by pointing out how a switchable order parameter of substrate,in this case ferroelectric polarization, allows us to break away from some standard compromises for catalyst design(e.g. the Sabatier principle). This enlarges the set of potentially catalytic metals. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  13. Relationships between southeastern Australian rainfall and sea surface temperatures examined using a climate model

    Science.gov (United States)

    Watterson, I. G.

    2010-05-01

    Rainfall in southeastern Australia has declined in recent years, particularly during austral autumn over the state of Victoria. A recent study suggests that sea surface temperature (SST) variations in both the Indonesian Throughflow (ITF) region and in a meridional dipole in the central Indian Ocean have influenced Victorian late autumn rainfall since 1950. However, it remains unclear to what extent SSTs in these and other regions force such a teleconnection. Analysis of a 1080 year simulation by the climate model CSIRO Mk3.5 shows that the model Victorian rainfall is correlated rather realistically with SSTs but that part of the above relationships is due to the model ENSO. Furthermore, the remote patterns of pressure, rainfall, and land temperature greatly diminish when the data are lagged by 1 month, suggesting that the true forcing by the persisting SSTs is weak. In a series of simulations of the atmospheric Mk3.5 with idealized SST anomalies, raised SSTs to the east of Indonesia lower the simulated Australian rainfall, while those to the west raise it. A positive ITF anomaly lowers pressure over Australia, but with little effect on Victorian rainfall. The meridional dipole and SSTs to the west and southeast of Australia have little direct effect on southeastern Australia in the model. The results suggest that tropical SSTs predominate as an influence on Victorian rainfall. However, the SST indices appear to explain only a fraction of the observed trend, which in the case of decadal means remains within the range of unforced variability simulated by Mk3.5.

  14. Stereo imaging and cytocompatibility of a model dental implant surface formed by direct laser fabrication.

    Science.gov (United States)

    Mangano, Carlo; Raspanti, Mario; Traini, Tonino; Piattelli, Adriano; Sammons, Rachel

    2009-03-01

    Direct laser fabrication (DLF) allows solids with complex geometry to be produced by sintering metal powder particles in a focused laser beam. In this study, 10 Ti6Al4V alloy model dental root implants were obtained by DLF, and surface characterization was carried out using stereo scanning electron microscopy to produce 3D reconstructions. The surfaces were extremely irregular, with approximately 100 microm deep, narrow intercommunicating crevices, shallow depressions and deep, rounded pits of widely variable shape and size, showing ample scope for interlocking with the host bone. Roughness parameters were as follows: R(t), 360.8 microm; R(z), 358.4 microm; R(a), 67.4 microm; and R(q), 78.0 microm. Disc specimens produced by DLF with an identically prepared surface were used for biocompatibility studies with rat calvarial osteoblasts: After 9 days, cells had attached and spread on the DLF surface, spanning across the crevices, and voids. Cell density was similar to that on a commercial rough microtextured surface but lower than on commercial smooth machined and smooth-textured grit-blasted, acid-etched surfaces. Human fibrin clot extension on the DLF surface was slightly improved by inorganic acid etching to increase the microroughness. With further refinements, DLF could be an economical means of manufacturing implants from titanium alloys. (c) 2008 Wiley Periodicals, Inc.

  15. Wind speed and direction shears with associated vertical motion during strong surface winds

    Science.gov (United States)

    Alexander, M. B.; Camp, D. W.

    1984-01-01

    Strong surface winds recorded at the NASA 150-Meter Ground Winds Tower facility at Kennedy Space Center, Florida, are analyzed to present occurrences representative of wind shear and vertical motion known to be hazardous to the ascent and descent of conventional aircraft and the Space Shuttle. Graphical (percentage frequency distributions) and mathematical (maximum, mean, standard deviation) descriptions of wind speed and direction shears and associated updrafts and downdrafts are included as functions of six vertical layers and one horizontal distance for twenty 5-second intervals of parameters sampled simultaneously at the rate of ten per second during a period of high surface winds.

  16. Examination of Surface Residuals Obtained During Re-Lubrication of the International Space Station (ISS) Solar Alpha Rotary Joint (SARJ)

    Science.gov (United States)

    Martinez, J. E.; Golden, J. L.

    2012-01-01

    The starboard SARJ mechanism on the ISS suffered a premature lubrication failure, resulting in widespread loss of the nitride case layer on its 10.3 meter circumference, 15-5PH steel race ring [1, 2]. To restore functionality, vacuum-stable grease was applied on-orbit, first to the port SARJ mechanism to save it from the damage suffered by the starboard mechanism. After 3 years of greased operation, telemetry indicated that the port mechanism required relubrication, so part of that process included sampling each of the three race ring surfaces to evaluate any wear debris recovered and the state of the originally applied grease. Extensive microscopic examination was conducted, which directed subsequent microanalysis of particulate. Since the SARJ mechanism operates in the vacuum of space, a sampling method and tool had to be developed for use by astronauts while working in the extravehicular mobility unit (EMU). The sampling tool developed was a cotton terry-cloth mitt for the EMU glove, with samples taken by swiping each of the three port SARJ race-ring surfaces. The sample mitts for each surface were folded inward after sampling to preserve sample integrity, for return and ground analysis. The sample mitt for what is termed the outer canted surface of the SARJ race-ring is shown in Figure 1. Figure 1 also demonstrates how increasing levels of magnification were used to survey the contamination removed in sampling, specifically looking for signs of wear debris or other features which could be further evaluated using Scanning Electron Microscopy (SEM) methods. The most surprising overall result at this point in the analysis was the relatively small amounts of grease recovered during sampling. It is clear that the mechanism was not operating with surplus lubricant. Obviously, evidence of molybdenum disulfide (MoS2), a major component in the grease applied, was prevalent in the analysis conducted. But a small amount of mechanism wear debris was observed. Figure 2

  17. Two new techniques for the remote evaluation of reactor steel condition - microscopic removal and surface examination

    International Nuclear Information System (INIS)

    Clayton, R.

    Much reactor inspection work involves an assessment of the condition of structural steel. This paper reviews two different techniques which provide information for such an assessment. The first - micro-sample removal (for the measurement of surface oxide thickness and chemical composition) - requires contact with the steel surface, whereas the second - a 'teach and learn' photographic technique (in which a special photogrammatic camera is used to obtain high-quality close-up photographs, to assess surface condition and corrosion growth) can obtain surface information on inaccessible components. (author)

  18. Carbon out-diffusion mechanism for direct graphene growth on a silicon surface

    International Nuclear Information System (INIS)

    Kim, Byung-Sung; Lee, Jong Woon; Jang, Yamujin; Choi, Soon Hyung; Cha, Seung Nam; Sohn, Jung Inn; Kim, Jong Min; Joo, Won-Jae; Hwang, Sungwoo; Whang, Dongmok

    2015-01-01

    Direct growth of graphene on silicon (Si) through chemical vapor deposition has predominantly focused on surface-mediated processes due to the low carbon (C) solubility in Si. However, a considerable quantity of C atoms was incorporated in Si and formed Si 1−x C x alloy with a reduced lattice dimension even in the initial stage of direct graphene growth. Subsequent high temperature annealing promoted active C out-diffusion, resulting in the formation of a graphitic layer on the Si surface. Furthermore, the significantly low thermal conductivity of the Si 1−x C x alloy shows that the incorporated C atoms affect the properties of a semiconductor adjacent to the graphene. These findings provide a key guideline for controlling desirable properties of graphene and designing hybrid semiconductor/graphene architectures for various applications

  19. Dual brush process for selective surface modification in graphoepitaxy directed self-assembly

    Science.gov (United States)

    Doise, Jan; Chan, Boon Teik; Hori, Masafumi; Gronheid, Roel

    2017-07-01

    Graphoepitaxy directed self-assembly is a potential low-cost solution for patterning via layers with pitches beyond the reach of a single optical lithographic exposure. In this process, selective control of the interfacial energy at the bottom and sidewall of the template is an important but challenging exercise. A dual brush process is implemented, in which two brushes with distinct end-groups are consecutively grafted to the prepattern to achieve fully independent modification of the bottom and sidewall surface of the template. A comprehensive study of hole pattern quality shows that using a dual brush process leads to a substantial improvement in terms of positional and dimensional variability across the process window. These findings will be useful to others who wish to manipulate polymer-surface interactions in directed self-assembly flows.

  20. Ultrafast directional beam switching in coupled vertical-cavity surface-emitting lasers

    International Nuclear Information System (INIS)

    Ning, C. Z.; Goorjian, P.

    2001-01-01

    We propose a strategy to performing ultrafast directional beam switching using two coupled vertical-cavity surface-emitting lasers (VCSELs). The proposed strategy is demonstrated for two VCSELs of 5.6 μm in diameter placed about 1 μm apart from the edges, showing a switching speed of 42 GHz with a maximum far-field angle span of about 10 degree. [copyright] 2001 American Institute of Physics

  1. Direct investigation of (sub-) surface preparation artifacts in GaAs based materials by FIB sectioning

    Energy Technology Data Exchange (ETDEWEB)

    Belz, Jürgen; Beyer, Andreas; Torunski, Torsten; Stolz, Wolfgang; Volz, Kerstin

    2016-04-15

    The introduction of preparation artifacts is almost inevitable when producing samples for (scanning) transmission electron microscopy ((S)TEM). These artifacts can be divided in extrinsic artifacts like damage processes and intrinsic artifacts caused by the deviations from the volume strain state in thin elastically strained material systems. The reduction and estimation of those effects is of great importance for the quantitative analysis of (S)TEM images. Thus, optimized ion beam preparation conditions are investigated for high quality samples. Therefore, the surface topology is investigated directly with atomic force microscopy (AFM) on the actual TEM samples. Additionally, the sectioning of those samples by a focused ion beam (FIB) is used to investigate the damage depth profile directly in the TEM. The AFM measurements show good quantitative agreement of sample height modulation due to strain relaxation to finite elements simulations. Strong indications of (sub-) surface damage by ion beams are observed. Their influence on high angle annular dark field (HAADF) imaging is estimated with focus on thickness determination by absolute intensity methods. Data consolidation of AFM and TEM measurements reveals a 3.5 nm surface amorphization, negligible surface roughness on the scale of angstroms and a sub-surface damage profile in the range of up to 8.0 nm in crystalline gallium arsenide (GaAs) and GaAs-based ternary alloys. A correction scheme for thickness evaluation of absolute HAADF intensities is proposed and applied for GaAs based materials. - Highlights: • The damage by Ar-ion milling during TEM sample preparation is investigated directly. • After FIB sectioning damage and deep disorder of c-GaAs is seen in cross-section. • The influence of such disorder on conventional ADF measurements is estimated. • A correction for HAADF measurements is proposed with focus on thickness estimations.

  2. Direct transfer of multilayer graphene grown on a rough metal surface using PDMS adhesion engineering

    Science.gov (United States)

    Jang, Heejun; Kang, Il-Suk; Lee, Youngbok; Cha, Yun Jeong; Yoon, Dong Ki; Ahn, Chi Won; Lee, Wonhee

    2016-09-01

    The direct transfer of graphene using polydimethylsiloxane (PDMS) stamping has advantages such as a ‘pick-and-place’ capability and no chemical residue problems. However, it is not easy to apply direct PDMS stamping to graphene grown via chemical vapor deposition on rough, grainy metal surfaces due to poor contact between the PDMS and graphene. In this study, graphene consisting of a mixture of monolayers and multiple layers grown on a rough Ni surface was directly transferred without the use of an adhesive layer. Liquid PDMS was cured on graphene to effect a conformal contact with the graphene. A fast release of graphene from substrate was achieved by carrying out wet-etching-assisted mechanical peeling. We also carried out a thermal post-curing of PDMS to control the level of adhesion between PDMS and graphene and hence facilitate a damage-free release of the graphene. Characterization of the transferred graphene by micro-Raman spectroscopy, SEM/EDS and optical microscopy showed neither cracks nor contamination from the transfer. This technique allows a fast and simple transfer of graphene, even for multilayer graphene grown on a rough surface.

  3. Effects of piston surface treatments on performance and emissions of a methanol-fueled, direct injection, stratified charge engine

    Energy Technology Data Exchange (ETDEWEB)

    West, B.; Green, J.B. [Oak Ridge National Lab., TN (United States)

    1994-07-01

    The purpose of this study was to investigate the effects of thermal barrier coatings and/or surface treatments on the performance and emissions of a methanol-fueled, direct-injection, stratified-charge (DISC) engine. A Ricardo Hydra Mark III engine was used for this work and in previous experiments at Oak Ridge National Laboratory (ORNL). The primary focus of the study was to examine the effects of various piston insert surface treatments on hydrocarbon (HC) and oxides of nitrogen (NO{sub x}) emissions. Previous studies have shown that engines of this class have a tendency to perform poorly at low loads and have high unburned fuel emissions. A blank aluminum piston was modified to employ removable piston bowl inserts. Four different inserts were tested in the experiment: aluminum, stainless steel with a 1.27-mm (0.050-in.) air gap (to act as a thermal barrier), and two stainless steel/air-gap inserts with coatings. Two stainless steel inserts were dimensionally modified to account for the coating thickness (1.27-mm) and coated identically with partially stabilized zirconia (PSZ). One of the coated inserts then had an additional seal-coat applied. The coated inserts were otherwise identical to the stainless steel/air-gap insert (i.e., they employed the same 1.27-mm air gap). Thermal barrier coatings were employed in an attempt to increase combustion chamber surface temperatures, thereby reducing wall quenching and promoting more complete combustion of the fuel in the quench zone. The seal-coat was applied to the zirconia to reduce the surface porosity; previous research suggested that despite the possibly higher surface temperatures obtainable with a ceramic coating, the high surface area of a plasma-sprayed coating may actually allow fuel to adhere to the surface and increase the unburned fuel emissions and fuel consumption.

  4. Microscopic examination and elemental analysis of surface defects in LEP superconducting cavities

    International Nuclear Information System (INIS)

    Benvenuti, C.; Cosso, R.; Hauer, M.; Hellgren, N.; Lacarrere, D.

    1996-01-01

    A diagnostic tool, based on a computer controlled surface analysis instrument, incorporating secondary electron imaging, static auger electron spectroscopy and scanning auger mapping has been designed and built at CERN to characterize the inner surface of LEP superconducting cavities with provide unsatisfactory radio-frequency performance. The experimental results obtained to date are reported and discussed. (author)

  5. Synergistic cytotoxic effects of antibodies directed against different cell surface determinants

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, E V; Pindar, A; Stevenson, F K; Stevenson, G T [Southampton General Hospital (UK). Tenovus Research Lab.

    1978-03-01

    Three antibody populations were raised in rabbits against surface antigens on guinea-pig L/sub 2/C leukaemic lymphocytes: against idiotypic determinants on the lambda chain of the surface immunoglobulin, against C region determinants on the lambda chain, and against the surface antigens recognised by conventional anti-lymphocyte sera. Complement and K-cell cytotoxicities effected by the antibodies on L/sub 2/C cells were studied in vitro. In both cytotoxic systems mixtures of the antibodies revealed synergy, in that the titres of the mixtures exceeded predicted additive titres of their components. The synergy was greater when the mixed antibodies were directed to determinants on the same molecule rather than to determinants on different molecules.

  6. Direct Monte Carlo dose calculation using polygon-surface computational human model

    International Nuclear Information System (INIS)

    Jeong, Jong Hwi; Kim, Chan Hyeong; Yeom, Yeon Su; Cho, Sungkoo; Chung, Min Suk; Cho, Kun-Woo

    2011-01-01

    In the present study, a voxel-type computational human model was converted to a polygon-surface model, after which it was imported directly to the Geant4 code without using a voxelization process, that is, without converting back to a voxel model. The original voxel model was also imported to the Geant4 code, in order to compare the calculated dose values and the computational speed. The average polygon size of the polygon-surface model was ∼0.5 cm 2 , whereas the voxel resolution of the voxel model was 1.981 × 1.981 × 2.0854 mm 3 . The results showed a good agreement between the calculated dose values of the two models. The polygon-surface model was, however, slower than the voxel model by a factor of 6–9 for the photon energies and irradiation geometries considered in the present study, which nonetheless is considered acceptable, considering that direct use of the polygon-surface model does not require a separate voxelization process. (author)

  7. Polycarbonate surface cell's adhesion examination after Nd:YAG laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ramazani, S.A. Ahmad, E-mail: Ramazani@sharif.ir [Polymer Group, Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mousavi, Seyyed Abbas, E-mail: Musavi@che.sharif.ir [Department of Chemistry, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Seyedjafari, Ehsan [Department of Biotechnology, University College of Science, University of Tehran (Iran, Islamic Republic of); Poursalehi, Reza [Department of Physics, University of Shahed, Tehran (Iran, Islamic Republic of); Sareh, Shohreh [Research Center of Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Silakhori, Kaveh [Laser Research Center, Atomic Energy Organization, Tehran (Iran, Islamic Republic of); Poorfatollah, Ali Akbar [Research Center of Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Shamkhali, Amir Nasser [Department of Chemistry, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2009-05-05

    Nd:YAG laser treatment was used in order to increase surface cell adhesion aspects of polycarbonate (PC) films prepared via melt process. The treatment was carried out under different wavelengths and beam diameters. ATR-FTIR and UV spectra obtained from different samples before and after laser treatment in air showed that laser irradiation has induced some chemical and physical changes in surface properties. The irradiated films were also characterized using scanning electron microscopy (SEM) and contact angle measurements. Effect of pulse numbers on the surface properties was also investigated. Cell culture test was used to evaluate cell adhesion property on the PC films before and after treatment. The results obtained from this test showed that after laser treatment, the cells were attached and proliferated extensively on the Nd:YAG laser treated films in comparison with the unmodified PC. Moreover, it was revealed that a decrease in the laser beam diameter and an increase in the irradiated pulse numbers increased surface wettability and caused a better cell attachment on the polymer surface. The obtained results also showed that a decrease in the laser beam diameter and an increase in the irradiated pulse numbers increased surface wettability and caused a better cell attachment on the polymer surface.

  8. Comparison of a PCR-Based Method with Culture and Direct Examination for Diagnosis of Acanthamoeba keratitis

    Directory of Open Access Journals (Sweden)

    S Farnia

    2009-05-01

    Full Text Available "nBackground: The aim was to compare three different methods (direct examination, culture and PCR meth­ods for the diagnosis of Acanthamoeba keratitis (AK in corneal scrapes."nMethods: Twenty eight corneal scrapes and contact lenses were collected from keratitis patients and re­ferred to the De­partment of Medical Parasitology and Mycology, School of Public Health, Tehran Univer­sity of Medical Sci­ences. Corneal scrapes were divided in three parts for direct examination, culture on non-nutrient agar and PCR analysis. PCR analysis was also performed using a 18S rRNA gene primer pair (DF3 region. DF3 (Diagnostic frag­ment 3 is a region of the nuclear small subunit ribosomal RNA gene which is specific for detecting Acan­thamoeba strains."nResults:  Acanthamoeba was the causative agent of keratitis in 50% of the patients. Direct smear of all pre­pared corneal scrapes in AK patients was negative and culture was positive in only 14.3% of the isolates. PCR analysis was positive in 71.4% of AK patients. These three methods were negative in corneal scrapes of non-AK patients. The sensitivity and specificity of PCR technique for the detection of Acanthamoeba sp. were calculated as 71.4% and 100%, respectively."nConclusion: According to high sensitivity and specificity of PCR-based method, this study confirmed that PCR using 18S rRNA gene primers (DF3 region is more useful for detecting AK cases compare to culture and direct microscopy methods.

  9. Direct-to-consumer advertising of predictive genetic tests: a health belief model based examination of consumer response.

    Science.gov (United States)

    Rollins, Brent L; Ramakrishnan, Shravanan; Perri, Matthew

    2014-01-01

    Direct-to-consumer (DTC) advertising of predictive genetic tests (PGTs) has added a new dimension to health advertising. This study used an online survey based on the health belief model framework to examine and more fully understand consumers' responses and behavioral intentions in response to a PGT DTC advertisement. Overall, consumers reported moderate intentions to talk with their doctor and seek more information about PGTs after advertisement exposure, though consumers did not seem ready to take the advertised test or engage in active information search. Those who perceived greater threat from the disease, however, had significantly greater behavioral intentions and information search behavior.

  10. Direct numerical simulation of turbulent flows over superhydrophobic surfaces with gas pockets using linearized boundary conditions

    Science.gov (United States)

    Seo, Jongmin; Bose, Sanjeeb; Garcia-Mayoral, Ricardo; Mani, Ali

    2012-11-01

    Superhydrophobic surfaces are shown to be effective for surface drag reduction under laminar regime by both experiments and simulations (see for example, Ou and Rothstein, Phys. Fluids 17:103606, 2005). However, such drag reduction for fully developed turbulent flow maintaining the Cassie-Baxter state remains an open problem due to high shear rates and flow unsteadiness of turbulent boundary layer. Our work aims to develop an understanding of mechanisms leading to interface breaking and loss of gas pockets due to interactions with turbulent boundary layers. We take advantage of direct numerical simulation of turbulence with slip and no-slip patterned boundary conditions mimicking the superhydrophobic surface. In addition, we capture the dynamics of gas-water interface, by deriving a proper linearized boundary condition taking into account the surface tension of the interface and kinematic matching of interface deformation and normal velocity conditions on the wall. We will show results from our simulations predicting the dynamical behavior of gas pocket interfaces over a wide range of dimensionless surface tensions. Supported by the Office of Naval Research and the Kwanjeong Educational Scholarship Foundation.

  11. Motivating women and men to take protective action against rape: examining direct and indirect persuasive fear appeals.

    Science.gov (United States)

    Morrison, Kelly

    2005-01-01

    This article examines the effectiveness of persuasive fear appeals in motivating women to enroll in self-defense classes to take protective action against rape. Witte's extended parallel process model is used as a framework to examine the relations between perceived invulnerability, perceived fear, and fear control processes. Because women may perceive invulnerability to rape, persuasive fear appeals targeted toward them may be ineffective in achieving attitude, intention, and behavioral change toward protecting themselves. One possible solution is to persuade men to talk with women about whom they care. Results indicated that women did not perceive invulnerability to rape, and although there was no differential impact between high- and low-threat messages, women did report positive intention and behaviors in response to direct fear appeals. Moreover, men reported positive intention and behaviors in response to indirect fear appeals.

  12. Acoustic communication in the Greater Sage-Grouse (Centrocercus urophasianus) an examination into vocal sacs, sound propagation, and signal directionality

    Science.gov (United States)

    Dantzker, Marc Steven

    The thesis is an inquiry into the acoustic communication of a very unusual avian species, the Greater Sage-Grouse, Centrocercus urophasianus. One of the most outstanding features of this animal's dynamic mating display is its use of paired air sacs that emerge explosively from an esophageal pouch. My first line of inquiry into this system is a review of the form and function of similar vocal apparatuses, collectively called vocal sacs, in birds. Next, with a combination of mathematical models and field measurements, My collaborator and I investigate the acoustic environment where the Greater Sage-Grouse display. The complexities of this acoustic environment are relevant both to the birds and to the subsequent examinations of the display's properties. Finally, my collaborators and I examine a cryptic component of the acoustic display --- directionality --- which we measured simultaneously from multiple locations around free moving grouse on their mating grounds.

  13. Direct measurements of meltwater runoff on the Greenland ice sheet surface.

    Science.gov (United States)

    Smith, Laurence C; Yang, Kang; Pitcher, Lincoln H; Overstreet, Brandon T; Chu, Vena W; Rennermalm, Åsa K; Ryan, Jonathan C; Cooper, Matthew G; Gleason, Colin J; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R; van de Berg, Willem Jan; Noël, Brice; Langen, Peter L; Cullather, Richard I; Zhao, Bin; Willis, Michael J; Hubbard, Alun; Box, Jason E; Jenner, Brittany A; Behar, Alberto E

    2017-12-12

    Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km 2 moulin-terminating internally drained catchment (IDC) on Greenland's midelevation (1,207-1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems. Copyright © 2017 the Author(s). Published by PNAS.

  14. Direct measurements of meltwater runoff on the Greenland ice sheet surface

    Science.gov (United States)

    Smith, Laurence C.; Yang, Kang; Pitcher, Lincoln H.; Overstreet, Brandon T.; Chu, Vena W.; Rennermalm, Åsa K.; Ryan, Jonathan C.; Cooper, Matthew G.; Gleason, Colin J.; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R.; van de Berg, Willem Jan; Noël, Brice; Langen, Peter L.; Cullather, Richard I.; Zhao, Bin; Willis, Michael J.; Hubbard, Alun; Box, Jason E.; Jenner, Brittany A.; Behar, Alberto E.

    2017-12-01

    Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland's midelevation (1,207–1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems.

  15. Directed Evolution to Engineer Monobody for FRET Biosensor Assembly and Imaging at Live-Cell Surface.

    Science.gov (United States)

    Limsakul, Praopim; Peng, Qin; Wu, Yiqian; Allen, Molly E; Liang, Jing; Remacle, Albert G; Lopez, Tyler; Ge, Xin; Kay, Brian K; Zhao, Huimin; Strongin, Alex Y; Yang, Xiang-Lei; Lu, Shaoying; Wang, Yingxiao

    2018-04-19

    Monitoring enzymatic activities at the cell surface is challenging due to the poor efficiency of transport and membrane integration of fluorescence resonance energy transfer (FRET)-based biosensors. Therefore, we developed a hybrid biosensor with separate donor and acceptor that assemble in situ. The directed evolution and sequence-function analysis technologies were integrated to engineer a monobody variant (PEbody) that binds to R-phycoerythrin (R-PE) dye. PEbody was used for visualizing the dynamic formation/separation of intercellular junctions. We further fused PEbody with the enhanced CFP and an enzyme-specific peptide at the extracellular surface to create a hybrid FRET biosensor upon R-PE capture for monitoring membrane-type-1 matrix metalloproteinase (MT1-MMP) activities. This biosensor revealed asymmetric distribution of MT1-MMP activities, which were high and low at loose and stable cell-cell contacts, respectively. Therefore, directed evolution and rational design are promising tools to engineer molecular binders and hybrid FRET biosensors for monitoring molecular regulations at the surface of living cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Ultrasonic pumping of liquids in the two directions of a vertical tube by a vibrating surface

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco; Cutanda Henriquez, Vicente

    2010-01-01

    of the oscillations of the vibrating horizontal surface determine the direction in which the liquid is pumped. In addition, the size of the gap is also a relevant factor, which has to be significantly small. The carried out numerical simulations show that the Lagrangian excess pressure and the density of linear......It has been reported that it is possible to pump a liquid into the interior of a vertical pipe when its lower end is facing a vibrating plane surface immersed in the liquid. The column of liquid pumped in a thin pipe can be higher than 2 m if the gap between the pipe end and the vibrating...... horizontal surface is very small, around 0.01 mm. In this paper we present experimental results showing that, with a similar set up as the one mentioned above, it is also possible to pump liquids in the opposite direction, from the interior of the pipe through the gap. The general objective of the work has...

  17. Examining the direct and indirect effects of visual-verbal paired associate learning on Chinese word reading.

    Science.gov (United States)

    Georgiou, George; Liu, Cuina; Xu, Shiyang

    2017-08-01

    Associative learning, traditionally measured with paired associate learning (PAL) tasks, has been found to predict reading ability in several languages. However, it remains unclear whether it also predicts word reading in Chinese, which is known for its ambiguous print-sound correspondences, and whether its effects are direct or indirect through the effects of other reading-related skills such as phonological awareness and rapid naming. Thus, the purpose of this study was to examine the direct and indirect effects of visual-verbal PAL on word reading in an unselected sample of Chinese children followed from the second to the third kindergarten year. A sample of 141 second-year kindergarten children (71 girls and 70 boys; mean age=58.99months, SD=3.17) were followed for a year and were assessed at both times on measures of visual-verbal PAL, rapid naming, and phonological awareness. In the third kindergarten year, they were also assessed on word reading. The results of path analysis showed that visual-verbal PAL exerted a significant direct effect on word reading that was independent of the effects of phonological awareness and rapid naming. However, it also exerted significant indirect effects through phonological awareness. Taken together, these findings suggest that variations in cross-modal associative learning (as measured by visual-verbal PAL) place constraints on the development of word recognition skills irrespective of the characteristics of the orthography children are learning to read. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Analysis of stress fractures associated with lameness in Thoroughbred flat racehorses training on different track surfaces undergoing nuclear scintigraphic examination.

    Science.gov (United States)

    MacKinnon, M C; Bonder, D; Boston, R C; Ross, M W

    2015-05-01

    There is limited information regarding the impact of training track surface on the occurrence of stress fractures. To evaluate the impact of training track surface on the proportion of long bone and pelvic stress fractures associated with lameness in Thoroughbred horses in flat race training undergoing nuclear scintigraphic examination. Retrospective study. Scintigraphic examinations of Thoroughbred flat racehorses were evaluated from 2 hospitals (hospital A [Toronto Equine Hospital], 2003-2009, and hospital B [George D. Widener Hospital for Large Animals, School of Veterinary Medicine, University of Pennsylvania], 1994-2006). Horses admitted to hospital A trained at a single track, at which the main training surface changed from dirt to synthetic on 27 August 2006. Two distinct populations existed at hospital B: horses that trained on dirt (numerous trainers) and those that trained on turf (single trainer). All scintigraphic images were evaluated by a blinded reviewer. Fisher's exact test and logistic regression were used when appropriate, and significance was set at Pfractures detected in scintigraphic examinations from horses training on a synthetic surface (31.7%) in comparison to scintigraphic examinations from horses training on a dirt surface (23.0%) at an earlier point in time (P = 0.03). There was a greater proportion of hindlimb/pelvic and tibial stress fractures diagnosed in horses from the synthetic surface-trained group than from the dirt-trained group at hospital A (Pfractures diagnosed, but other factors, such as training philosophy, appear to be important. Future prospective investigations to fully elucidate the relationship between training track surface and the proportion of stress fractures and other nonfatal musculoskeletal injuries are warranted. © 2014 EVJ Ltd.

  19. Mechanistic examination of pre-exfoliating confinement of surface-active polystyrene nanobeads within pristine clay.

    Science.gov (United States)

    Khvan, Svetlana; Kim, Junkyung; Lee, Sang-Soo

    2007-02-01

    Hydrophobic polymer (PS) nanoparticles preformed through an emulsifier-free emulsion polymerization method were successfully incorporated into a gallery of pristine sodium montmorillonite via interfacial cation exchange. The polymer beads confined between clay nanosheets were capable of (1) preventing the silicate layers from restacking and (2) maintaining the exfoliated state of clay. The increase in the abundance of surface groups promoted adsorption of the nanobeads onto the silicate surface and eventually led to the establishment of strong polymer-clay interactions. These findings suggest that, on the basis of the obtained pre-exfoliated clay masterbatch, the presence of strong polymer-clay interactions could improve the mechanical performance of nanocomposites.

  20. On Surface Losses in Direct Metal Laser Sintering Printed Millimeter and Submillimeter Waveguides

    Science.gov (United States)

    Holmberg, Max; Dancila, Dragos; Rydberg, Anders; Hjörvarsson, Björgvin; Jansson, Ulf; Marattukalam, Jithin James; Johansson, Niklas; Andersson, Joakim

    2018-06-01

    Different lengths of WR3 (220-330 GHz) and WR10 (75-110 GHz) waveguides are fabricated through direct metal laser sintering (DMLS). The losses in these waveguides are measured and modelled using the Huray surface roughness model. The losses in WR3 are around 0.3 dB/mm and in WR10 0.05 dB/mm. The Huray equation model is accounting relatively good for the attenuation in the WR10 waveguide but deviates more in the WR3 waveguide. The model is compared to finite element simulations of the losses assuming an approximate surface structure similar to the resulting one from the DMLS process.

  1. 25 CFR 216.4 - Technical examination of prospective surface exploration and mining operations.

    Science.gov (United States)

    2010-04-01

    ... mining sites and mining operations vary widely with respect to topography, climate, surrounding land uses... and mining operations. 216.4 Section 216.4 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS SURFACE EXPLORATION, MINING, AND RECLAMATION OF LANDS General Provisions § 216...

  2. Metacognitive and Motivational Predictors of Surface Approach to Studying and Academic Examination Performance

    Science.gov (United States)

    Spada, Marcantonio M.; Moneta, Giovanni B.

    2014-01-01

    The objective of this study was to verify the structure of a model of how surface approach to studying is influenced by the trait variables of motivation and metacognition and the state variables of avoidance coping and evaluation anxiety. We extended the model to include: (1) the investigation of the relative contribution of the five…

  3. Full surface examination of small spheres with a computer controlled scanning electron microscope

    International Nuclear Information System (INIS)

    Ward, C.M.; Willenborg, D.L.; Montgomery, K.L.

    1979-01-01

    This report discusses a computer automated stage and Scanning Electron Microscopy (SEM) system for detecting defects in glass spheres for inertial confinement laser fusion experiments. This system detects submicron defects and permits inclusion of acceptable spheres in targets after examination. The stage used to examine and manipulate the spheres through 4π steradians is described. Primary image recording is made on a roster scanning video disc. The need for SEM stability and methods of achieving it are discussed

  4. Surface Tension Directed Fluidic Self-Assembly of Semiconductor Chips across Length Scales and Material Boundaries

    Directory of Open Access Journals (Sweden)

    Shantonu Biswas

    2016-03-01

    Full Text Available This publication provides an overview and discusses some challenges of surface tension directed fluidic self-assembly of semiconductor chips which are transported in a liquid medium. The discussion is limited to surface tension directed self-assembly where the capture, alignment, and electrical connection process is driven by the surface free energy of molten solder bumps where the authors have made a contribution. The general context is to develop a massively parallel and scalable assembly process to overcome some of the limitations of current robotic pick and place and serial wire bonding concepts. The following parts will be discussed: (2 Single-step assembly of LED arrays containing a repetition of a single component type; (3 Multi-step assembly of more than one component type adding a sequence and geometrical shape confinement to the basic concept to build more complex structures; demonstrators contain (3.1 self-packaging surface mount devices, and (3.2 multi-chip assemblies with unique angular orientation. Subsequently, measures are discussed (4 to enable the assembly of microscopic chips (10 μm–1 mm; a different transport method is introduced; demonstrators include the assembly of photovoltaic modules containing microscopic silicon tiles. Finally, (5 the extension to enable large area assembly is presented; a first reel-to-reel assembly machine is realized; the machine is applied to the field of solid state lighting and the emerging field of stretchable electronics which requires the assembly and electrical connection of semiconductor devices over exceedingly large area substrates.

  5. Directed Acceleration of Electrons from a Solid Surface by Sub-10-fs Laser Pulses

    International Nuclear Information System (INIS)

    Brandl, F.; Hidding, B.; Osterholz, J.; Hemmers, D.; Pretzler, G.; Karmakar, A.; Pukhov, A.

    2009-01-01

    Electrons have been accelerated from solid target surfaces by sub-10-fs laser pulses of 120 μJ energy which were focused to an intensity of 2x10 16 W/cm 2 . The electrons have a narrow angular distribution, and their observed energies exceed 150 keV. We show that these energies are not to be attributed to collective plasma effects but are mainly gained directly via repeated acceleration in the transient field pattern created by incident and reflected laser, alternating with phase-shift-generating scattering events in the solid.

  6. Direct observation of asperity deformation of specimens with random rough surfaces in upsetting and indentation processes

    DEFF Research Database (Denmark)

    Azushima, A.; Kuba, S.; Tani, S.

    2006-01-01

    The trapping behavior of liquid lubricant and contact behavior of asperities at the workpiece-tool interface during upsetting and indentation are observed directly using a compression subpress which consists of a transparent die made of sapphire, a microscope with a CCD camera and a video system....... The experiments are carried out without lubricant and with lubricant. Specimens used are commercially pure A1100 aluminum with a random rough surface. From these observations, the change in the fraction of real contact area is measured by an image processor. The real contact area ratios in upsetting experiments...

  7. Direct Observation of Asperity Deformation of Specimen with Random Rough Surface in Upsetting Process

    DEFF Research Database (Denmark)

    Azushima, A.; Kuba, S.; Tani, S.

    2004-01-01

    The trapping behavior of liquid lubricant and contact behavior of asperities at the workpiece-tool interface during upsetting and indentation are observed directly using a compression subpress which consists of a transparent die made of sapphire, a microscope with a CCD camera and a video system....... The experiments are carried out without lubricant and with lubricant. Specimens used are commercially pure A1100 Aluminum with a random rough surface. From this observation, the change in the fraction of real contact area is measured by an image processor. The real contact area ratios in upsetting experiment...

  8. Highly directive Fabry-Perot leaky-wave nanoantennas based on optical partially reflective surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lorente-Crespo, M.; Mateo-Segura, C., E-mail: C.Mateo-Segura@hw.ac.uk [Institute of Sensors, Signals and Systems, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom)

    2015-05-04

    Nanoantennas enhance the conversion between highly localized electromagnetic fields and far-field radiation. Here, we investigate the response of a nano-patch partially reflective surface backed with a silver mirror to an optical source embedded at the centre of the structure. Using full wave simulations, we demonstrate a two orders of magnitude increased directivity compared to the isotropic radiator, 50% power confinement to a 13.8° width beam and a ±16 nm bandwidth. Our antenna does not rely on plasmonic phenomena thus reducing non-radiative losses and conserving source coherence.

  9. Direct Effect of Dielectric Surface Energy on Carrier Transport in Organic Field-Effect Transistors.

    Science.gov (United States)

    Zhou, Shujun; Tang, Qingxin; Tian, Hongkun; Zhao, Xiaoli; Tong, Yanhong; Barlow, Stephen; Marder, Seth R; Liu, Yichun

    2018-05-09

    The understanding of the characteristics of gate dielectric that leads to optimized carrier transport remains controversial, and the conventional studies applied organic semiconductor thin films, which introduces the effect of dielectric on the growth of the deposited semiconductor thin films and hence only can explore the indirect effects. Here, we introduce pregrown organic single crystals to eliminate the indirect effect (semiconductor growth) in the conventional studies and to undertake an investigation of the direct effect of dielectric on carrier transport. It is shown that the matching of the polar and dispersive components of surface energy between semiconductor and dielectric is favorable for higher mobility. This new empirical finding may show the direct relationship between dielectric and carrier transport for the optimized mobility of organic field-effect transistors and hence show a promising potential for the development of next-generation high-performance organic electronic devices.

  10. UV laser ablation of intraocular lenses: SEM and AFM microscopy examination of the biomaterial surface

    International Nuclear Information System (INIS)

    Spyratou, E.; Asproudis, I.; Tsoutsi, D.; Bacharis, C.; Moutsouris, K.; Makropoulou, M.; Serafetinides, A.A.

    2010-01-01

    Several new materials and patterns are studied for the formation and etching of intraocular lenses (IOLs), in order to improve their optical properties, to reduce the diffractive aberrations and to decrease the incidence of posterior capsular opacification. The aim of this study is to investigate the use of UV (λ = 266 nm) laser pulses to ablate the intraocular lenses materials, and thus to provide an alternative to conventional surface shaping techniques for IOLs fabrication. Ablation experiments were conducted using various polymer substrates of hydrophobic acrylic IOLs and PMMA IOLs. We investigated the ablation efficiency and the morphology of the ablated area by imaging the surface modification with atomic force microscopy (AFM) and scanning electron microscopy (SEM). The morphological appearance of IOL samples reveals the effect of a photochemical and photothermal ablation mechanism.

  11. UV laser ablation of intraocular lenses: SEM and AFM microscopy examination of the biomaterial surface

    Energy Technology Data Exchange (ETDEWEB)

    Spyratou, E., E-mail: ellas5@central.ntua.gr [National Technical University of Athens, School of Applied Mathematical and Physical Sciences, Department of Physics, Zografou Campus, Athens, 15780 (Greece); Asproudis, I. [Department of Ophthalmology, University Hospital of Ioannina, Ioannina, 45110 (Greece); Tsoutsi, D. [Department of Chemistry, University of Ioannina, Ioannina, 45110 (Greece); Bacharis, C.; Moutsouris, K.; Makropoulou, M.; Serafetinides, A.A. [National Technical University of Athens, School of Applied Mathematical and Physical Sciences, Department of Physics, Zografou Campus, Athens, 15780 (Greece)

    2010-02-01

    Several new materials and patterns are studied for the formation and etching of intraocular lenses (IOLs), in order to improve their optical properties, to reduce the diffractive aberrations and to decrease the incidence of posterior capsular opacification. The aim of this study is to investigate the use of UV ({lambda} = 266 nm) laser pulses to ablate the intraocular lenses materials, and thus to provide an alternative to conventional surface shaping techniques for IOLs fabrication. Ablation experiments were conducted using various polymer substrates of hydrophobic acrylic IOLs and PMMA IOLs. We investigated the ablation efficiency and the morphology of the ablated area by imaging the surface modification with atomic force microscopy (AFM) and scanning electron microscopy (SEM). The morphological appearance of IOL samples reveals the effect of a photochemical and photothermal ablation mechanism.

  12. SURFACE TREATMENT AND EXAMINATION OF GRADE 2 AND GRADE 5 TITANIUM

    Directory of Open Access Journals (Sweden)

    Peter Nagy

    2016-02-01

    Full Text Available Surface characteristics play an important role in the implant-bone integration that is required for the long-term reliability of dental and orthopedic implants. In this paper, we investigate the effect of acid etching on the mass reduction and roughness of grade 2 and grade 5 Ti under controlled experimental conditions. Three different etching compounds were investigated: 30% HCl, 85% H3PO4 and the compound of 30% (COOH2 × 2H2O and 30% H2O2 in various treatment intervals under controlled temperature. Stereo microscopy, scanning electron microscopy, roughness and weight measurements were carried out on the samples. We found that neither 85% H3PO4 nor the compound of 30% (COOH2 × 2H2O and 30% H2O2 were able to remove the machining marks from the surface of Ti discs in our experimental setting. On the other hand, etching in 30% HCl yielded even surfaces both on Ti grade 2 and 5 discs. We also found that etching at higher temperatures in 30% HCl resulted in significant mass loss.

  13. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    Science.gov (United States)

    Markwitz, Andreas; Gupta, Prasanth; Mohr, Berit; Hübner, René; Leveneur, Jerome; Zondervan, Albert; Becker, Hans-Werner

    2016-03-01

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction 1H(15N, αγ)12C (Eres = 6.385 MeV). The films produced at 3.0-10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp2 hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  14. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, Andreas, E-mail: A.Markwitz@gns.cri.nz [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Gupta, Prasanth [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, Berit [GNS Science, Lower Hutt (New Zealand); Hübner, René [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Leveneur, Jerome; Zondervan, Albert [GNS Science, Lower Hutt (New Zealand); Becker, Hans-Werner [RUBION, Ruhr-University Bochum (Germany)

    2016-03-15

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction {sup 1}H({sup 15}N, αγ){sup 12}C (E{sub res} = 6.385 MeV). The films produced at 3.0–10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp{sup 2} hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  15. Feedrate optimization in 5-axis machining based on direct trajectory interpolation on the surface using an open cnc

    OpenAIRE

    Beudaert , Xavier; Lavernhe , Sylvain; Tournier , Christophe

    2014-01-01

    International audience; In the common machining process of free-form surfaces, CAM software generates approximated tool paths because of the input tool path format of the industrial CNC. Then, marks on finished surfaces may appear due to non smooth feedrate planning during interpolation. The Direct Trajectory Interpolation on the Surface (DTIS) method allows managing the tool path geometry and the kinematical parameters to achieve higher productivity and a better surface quality. Machining ex...

  16. Examination and Manipulation of Protein Surface Charge in Solution with Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Gross, Deborah S.; Van Ryswyk, Hal

    2014-01-01

    Electrospray ionization mass spectrometry (ESI-MS) is a powerful tool for examining the charge of proteins in solution. The charge can be manipulated through choice of solvent and pH. Furthermore, solution-accessible, protonated lysine side chains can be specifically tagged with 18-crown-6 ether to form noncovalent adducts. Chemical derivatization…

  17. Direct impression on agar surface as a diagnostic sampling procedure for candida balanitis.

    Science.gov (United States)

    Lisboa, Carmen; Santos, António; Azevedo, Filomena; Pina-Vaz, Cidália; Rodrigues, Acácio Gonçalves

    2010-02-01

    The diagnosis of candida balanitis should be based upon both clinical and mycological data. The procedure of material collection is a critical issue to confirm or rule out the clinical diagnosis of candida balanitis. To compare direct impression of the glans on the agar surface of solid culture media with the collection of genital exudates with cotton swab for the diagnosis of candida balanitis. A prospective cross-sectional study was carried out during a 36-month period. Sexually transmitted disease clinic attendees with balanitis and asymptomatic men were included. Specimens for yeast culture were collected from the glans penis and inner preputial layer using the direct impression on CHROMagar candida medium and by swabbing with a sterile cotton swab. Among 478 men enrolled, 189 had balanitis. The prevalence of candida balanitis was 17.8% (85/478) confirmed after culture by direct impression; the swab method detected only 54/85 (63.5%) of these men. Of the 289 asymptomatic men, 36 (12.5%) yielded Candida spp; the swab method detected only 38.9% of these men. The risk of having candida balanitis is 8.9 (IC 95% 2.48 to 32.04) whenever the number of candida colonies recovered by direct impression was greater than 10. Direct impression on CHROMagar candida medium resulted in the highest Candida spp recovery rate. More than 10 colonies yielded by impression culture were statistically associated with candida balanitis. This method shows the ideal profile for sampling the male genital area for yeasts and should be included in the management of balanitis.

  18. Direct Measurement of Surface Dissolution Rates in Potential Nuclear Waste Forms: The Example of Pyrochlore.

    Science.gov (United States)

    Fischer, Cornelius; Finkeldei, Sarah; Brandt, Felix; Bosbach, Dirk; Luttge, Andreas

    2015-08-19

    The long-term stability of ceramic materials that are considered as potential nuclear waste forms is governed by heterogeneous surface reactivity. Thus, instead of a mean rate, the identification of one or more dominant contributors to the overall dissolution rate is the key to predict the stability of waste forms quantitatively. Direct surface measurements by vertical scanning interferometry (VSI) and their analysis via material flux maps and resulting dissolution rate spectra provide data about dominant rate contributors and their variability over time. Using pyrochlore (Nd2Zr2O7) pellet dissolution under acidic conditions as an example, we demonstrate the identification and quantification of dissolution rate contributors, based on VSI data and rate spectrum analysis. Heterogeneous surface alteration of pyrochlore varies by a factor of about 5 and additional material loss by chemo-mechanical grain pull-out within the uppermost grain layer. We identified four different rate contributors that are responsible for the observed dissolution rate range of single grains. Our new concept offers the opportunity to increase our mechanistic understanding and to predict quantitatively the alteration of ceramic waste forms.

  19. Airborne hyperspectral observations of surface and cloud directional reflectivity using a commercial digital camera

    Directory of Open Access Journals (Sweden)

    A. Ehrlich

    2012-04-01

    Full Text Available Spectral radiance measurements by a digital single-lens reflex camera were used to derive the directional reflectivity of clouds and different surfaces in the Arctic. The camera has been calibrated radiometrically and spectrally to provide accurate radiance measurements with high angular resolution. A comparison with spectral radiance measurements with the Spectral Modular Airborne Radiation measurement sysTem (SMART-Albedometer showed an agreement within the uncertainties of both instruments (6% for both. The directional reflectivity in terms of the hemispherical directional reflectance factor (HDRF was obtained for sea ice, ice-free ocean and clouds. The sea ice, with an albedo of ρ = 0.96 (at 530 nm wavelength, showed an almost isotropic HDRF, while sun glint was observed for the ocean HDRF (ρ = 0.12. For the cloud observations with ρ = 0.62, the cloudbow – a backscatter feature typically for scattering by liquid water droplets – was covered by the camera. For measurements above heterogeneous stratocumulus clouds, the required number of images to obtain a mean HDRF that clearly exhibits the cloudbow has been estimated at about 50 images (10 min flight time. A representation of the HDRF as a function of the scattering angle only reduces the image number to about 10 (2 min flight time.

    The measured cloud and ocean HDRF have been compared to radiative transfer simulations. The ocean HDRF simulated with the observed surface wind speed of 9 m s−1 agreed best with the measurements. For the cloud HDRF, the best agreement was obtained by a broad and weak cloudbow simulated with a cloud droplet effective radius of Reff = 4 μm. This value agrees with the particle sizes derived from in situ measurements and retrieved from the spectral radiance of the SMART-Albedometer.

  20. Relationship between source-surface distance and patient dose in fluoroscopic X-ray examinations

    International Nuclear Information System (INIS)

    Suzuki, Shoichi; Asada, Yasuki; Nishi, Kazuta; Mizuno, Emiko; Hara, Natsue; Orito, Takeo; Kamei, Tetsuya; Koga, Sukehiko

    2000-01-01

    The International Electrotechnical Commission, IEC provided in its standard IEC 60601-1-3 (1994) to prevent the use during radioscopic irradiation of focal spot to skin distances less than 20 cm if the X-RAY EQUIPMENT is specified for RADIOSCOPY during surgery or 30 cm for other specified applications. This standard was reflected in the Japanese Industrial Standard JIS Z 4701-1997, which provided the minimum distance from focal spot to skin to be 30 cm for the use of a fluoroscopic and radiographic table (Under-table type). However, JIS had formerly provided the minimum distance to be 40 cm and so does the current Medical Treatment Law. The draft revision for the Medical Treatment Law currently discussed has consideration to adopt the value 30 cm in accordance with the current JIS. Our research intended to investigate the impact on the entrance surface dose for the change of the focal spot to skin distance from 40 cm to 30 cm. The result was 20-30% increase of the entrance surface dose for the focal spot to skin distance 30 cm. Taking patient exposure dose into account, we need further and more sufficient discussion with this result before adopting this value to the Medical Treatment Law. (author)

  1. Multifrequency eddy current examination for surface defects detection of hot steel products

    International Nuclear Information System (INIS)

    Hiroshima, Tatsuo; Sakamoto, Takahide; Takahashi, Akio; Miyata, Kenichi.

    1985-01-01

    Multifrequency eddy current testing method using probe coils has been studied for surface defects detection in hot steel products at high temperature over the magnetic Curie point. The conventional signal processing method is not available for suppression of an undesirable signal caused by lift-off variation or unevenness in inspected surfaces, because the undesirable signal pattern is similar to a defect signal pattern. In order to suppress the undesirable signal a new dual frequency signal processing method using three phase rotators has been developed, and was applied to several hot steel inspections. The results are as follows. 1. In the rotating eddy current machine for hot steel rods, the lift-off variation signal caused by a wobble of rods or the difference between rotating center and pass center of rods can be suppressed. A long seam or crack whose depth is more than 0.5mm can be detected. 2. In the hot inspection for continuously cast slabs, the signal caused by oscillation mark whose depth is under 1 mm can be suppressed. A fine transversal crack whose depth is 2 mm can be detected. 3. In the hot inspection for round billets, the lift-off variation signal caused by oval shape can be eliminated, and a crack which is deeper than 1.5 mm can be clearly detected. The detectability of defects can be improved by the analysis of dual frequency signal pattern. (author)

  2. Surface-discharging hydrothermal systems at Yucca Mountain: Examining the evidence

    International Nuclear Information System (INIS)

    Levy, S.S.

    1992-01-01

    This paper discusses exposures of altered rock that have been thought to form by recent discharge of water from depth. They were examined to address a concern that hydrothermal processes could compromise the isolation capability of a potential high-level nuclear waste repository at Yucca Mountain. Suspected hot-spring and hydrothermal-vent deposits are more likely the products of infiltration of meteoric water into newly deposited and still-hot pyroclastic flows >12 Myr ago

  3. Simulation of surface wear by using a pin-on-disk tribometer, metallographic examination

    International Nuclear Information System (INIS)

    Brin, C.; Villain, J.P.; Riviere, J.P.; Cauvin, R.

    1998-01-01

    Simple laboratory tests have been realized in water using a pin-on-disc tribometer under Hertz pressures well below the elastic limit of the 304 steel studied. The wear morphologies obtained under different experimental conditions (load, applied time, elimination or non-elimination of wear particles) always present a semi-periodic structure of tracks with small roughness. The structural (X-ray and TEM) characterizations reveal the existence of martensite, both in the degraded areas and in the wear particles. The track formation would result from the pulling out of particles, together with the local phase transformation of austenite into martensite under stresses, followed by the ploughing of the surface. The wear mechanism could be essentially attributed to mechanical and metallurgical effects. (authors)

  4. Label-free direct surface-enhanced Raman scattering (SERS) of nucleic acids (Conference Presentation)

    Science.gov (United States)

    Guerrini, Luca; Morla-Folch, Judit; Gisbert-Quilis, Patricia; Xie, Hainan; Alvarez-Puebla, Ramon

    2016-03-01

    Recently, plasmonic-based biosensing has experienced an unprecedented level of attention, with a particular focus on the nucleic acid detection, offering efficient solutions to engineer simple, fast, highly sensitive sensing platforms while overcoming important limitations of PCR and microarray techniques. In the broad field of plasmonics, surface-enhanced Raman scattering (SERS) spectroscopy has arisen as a powerful analytical tool for detection and structural characterization of biomolecules. Today applications of SERS to nucleic acid analysis largely rely on indirect strategies, which have been demonstrated very effective for pure sensing purposes but completely dismiss the exquisite structural information provided by the direct acquisition of the biomolecular vibrational fingerprint. Contrarily, direct label-free SERS of nucleic acid shows an outstanding potential in terms of chemical-specific information which, however, remained largely unexpressed mainly because of the inherent poor spectral reproducibility and/or limited sensitivity. To address these limitations, we developed a fast and affordable high-throughput screening direct SERS method for gaining detailed genomic information on nucleic acids (DNA and RNA) and for the characterization and quantitative recognition of DNA interactions with exogenous agents. The simple strategy relies on the electrostatic adhesion of DNA/RNA onto positively-charged silver colloids that promotes the nanoparticle aggregation into stable clusters yielding intense and reproducible SERS spectra at picogram level (i.e. the analysis can be performed without the necessity of amplification steps thus providing realistic direct information of the nucleic acid in its native state). We anticipate this method to gain a vast impact and set of applications in different fields, including medical diagnostics, genomic screening, drug discovery, forensic science and even molecular electronics.

  5. Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, David, E-mail: caballero@unistra.fr [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); University of Barcelona, Department of Electronics, C/ Marti i Franques 1, 08028 Barcelona (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza (Spain); Martinez, Elena [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza (Spain); Bausells, Joan [Centre Nacional de Microelectronica (CNM-IMB), CSIC, Campus UAB, 08193 Bellaterra (Spain); Errachid, Abdelhamid, E-mail: abdelhamid.errachid-el-salhi@univ-lyon1.fr [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); Universite Claude Bernard - Lyon 1, LSA - UMR 5180, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Samitier, Josep [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); University of Barcelona, Department of Electronics, C/ Marti i Franques 1, 08028 Barcelona (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza (Spain)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer An impedimetric label-free immunosensor was developed for the specific detection of human serum albumin proteins. Black-Right-Pointing-Pointer Anti-HSA antibodies were covalently immobilized on silicon nitride surfaces using a direct functionalization methodology. Black-Right-Pointing-Pointer Silicon nitride offers multiple advantages compared to other common materials. Black-Right-Pointing-Pointer The proposed sensor has high sensitivity and good selectivity for the detection of HSA proteins. - Abstract: In this work we report the fabrication and characterization of a label-free impedimetric immunosensor based on a silicon nitride (Si{sub 3}N{sub 4}) surface for the specific detection of human serum albumin (HSA) proteins. Silicon nitride provides several advantages compared with other materials commonly used, such as gold, and in particular in solid-state physics for electronic-based biosensors. However, few Si{sub 3}N{sub 4}-based biosensors have been developed; the lack of an efficient and direct protocol for the integration of biological elements with silicon-based substrates is still one of its the main drawbacks. Here, we use a direct functionalization method for the direct covalent binding of monoclonal anti-HSA antibodies on an aldehyde-functionalized Si-p/SiO{sub 2}/Si{sub 3}N{sub 4} structure. This methodology, in contrast with most of the protocols reported in literature, requires less chemical reagents, it is less time-consuming and it does not need any chemical activation. The detection capability of the immunosensor was tested by performing non-faradaic electrochemical impedance spectroscopy (EIS) measurements for the specific detection of HSA proteins. Protein concentrations within the linear range of 10{sup -13}-10{sup -7} M were detected, showing a sensitivity of 0.128 {Omega} {mu}M{sup -1} and a limit of detection of 10{sup -14} M. The specificity of the sensor was also addressed by studying the

  6. Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface

    International Nuclear Information System (INIS)

    Caballero, David; Martinez, Elena; Bausells, Joan; Errachid, Abdelhamid; Samitier, Josep

    2012-01-01

    Highlights: ► An impedimetric label-free immunosensor was developed for the specific detection of human serum albumin proteins. ► Anti-HSA antibodies were covalently immobilized on silicon nitride surfaces using a direct functionalization methodology. ► Silicon nitride offers multiple advantages compared to other common materials. ► The proposed sensor has high sensitivity and good selectivity for the detection of HSA proteins. - Abstract: In this work we report the fabrication and characterization of a label-free impedimetric immunosensor based on a silicon nitride (Si 3 N 4 ) surface for the specific detection of human serum albumin (HSA) proteins. Silicon nitride provides several advantages compared with other materials commonly used, such as gold, and in particular in solid-state physics for electronic-based biosensors. However, few Si 3 N 4 -based biosensors have been developed; the lack of an efficient and direct protocol for the integration of biological elements with silicon-based substrates is still one of its the main drawbacks. Here, we use a direct functionalization method for the direct covalent binding of monoclonal anti-HSA antibodies on an aldehyde-functionalized Si-p/SiO 2 /Si 3 N 4 structure. This methodology, in contrast with most of the protocols reported in literature, requires less chemical reagents, it is less time-consuming and it does not need any chemical activation. The detection capability of the immunosensor was tested by performing non-faradaic electrochemical impedance spectroscopy (EIS) measurements for the specific detection of HSA proteins. Protein concentrations within the linear range of 10 −13 –10 −7 M were detected, showing a sensitivity of 0.128 Ω μM −1 and a limit of detection of 10 −14 M. The specificity of the sensor was also addressed by studying the interferences with a similar protein, bovine serum albumin. The results obtained show that the antibodies were efficiently immobilized and the proteins

  7. A direct examination of the effect of intranasal administration of oxytocin on approach-avoidance motor responses to emotional stimuli.

    Directory of Open Access Journals (Sweden)

    Angeliki Theodoridou

    Full Text Available Oxytocin has been shown to promote a host of social behaviors in humans but the exact mechanisms by which it exerts its effects are unspecified. One prominent theory suggests that oxytocin increases approach and decreases avoidance to social stimuli. Another dominant theory posits that oxytocin increases the salience of social stimuli. Herein, we report a direct test of these hypotheses. In a double-blind, placebo-controlled study we examined approach-avoidance motor responses to social and non-social emotional stimuli. One hundred and twenty participants self-administered either 24 IU oxytocin or placebo and moved a lever toward or away from pictures of faces depicting emotional expressions or from natural scenes appearing before them on a computer screen. Lever movements toward stimuli decreased and movements away increased stimuli size producing the illusion that stimuli moved away from or approached participants. Reaction time data were recorded. The task produced the effects that were anticipated on the basis of the approach-avoidance literature in relation to emotional stimuli, yet the anticipated speeded approach and slowed avoidance responses to emotional faces by the oxytocin group were not observed. Interestingly, the oxytocin treatment group was faster to approach and avoid faces depicting disgust relative to the placebo group, suggesting a salience of disgust for the former group. Results also showed that within the oxytocin group women's reaction times to all emotional faces were faster than those of men, suggesting sex specific effects of oxytocin. The present findings provide the first direct evidence that intranasal oxytocin administration does not enhance approach/avoidance to social stimuli and does not exert a stronger effect on social vs. non-social stimuli in the context of processing of emotional expressions and scenes. Instead, our data suggest that oxytocin administration increases the salience of certain social stimuli

  8. Quantitative Examination of Piezoelectric/Seismoelectric Anomalies from Near-Surface Targets

    Directory of Open Access Journals (Sweden)

    Lev Eppelbaum

    2017-09-01

    Full Text Available The piezoelectric and seismo-electrokinetic phenomena are manifested by electrical and electromagnetic processes that occur in rocks under the influence of elastic oscillations triggered by shots or mechanical impacts. Differences in piezoelectric properties between the studied targets and host media determine the possibilities of the piezoelectric/seismoelectric method application. Over a long time, an interpretation of obtained data is carried out by the use of methods developed in seismic prospecting. Examination of nature of piezoelectric/seismoelectric anomalies observed in subsurface indicates that these may be related (mainly to electric potential field. In this paper, it is shown that quantitative analysis of piezoelectric/seismoelectric anomalies may be performed by the advanced and reliable methodologies developed in magnetic prospecting. Some examples from mining geophysics (Russia and ancient metallurgical site (Israel confirm applicability of the suggested approach.

  9. Direct numerical simulations of a thin liquid film coating an axially oscillating cylindrical surface

    Energy Technology Data Exchange (ETDEWEB)

    Binz, Matthias; Rohlfs, Wilko; Kneer, Reinhold, E-mail: rohlfs@wsa.rwth-aachen.de [Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, D-52056 Aachen (Germany)

    2014-08-01

    Liquid films on cylindrical bodies like wires or fibers disintegrate into droplets if their length exceeds a critical measure (Plateau–Rayleigh instability). Stabilization of such films can be achieved by an axial oscillation of the solid core provided that a suitable combination of forcing amplitude and frequency is given. To investigate the stabilizing effect, direct numerical simulations of the axisymmetric problem are conducted in this study. Thus, a modified volume-of-fluid solver is employed based on the open source library OpenFOAM{sup ®}. The effect of film stabilization is demonstrated and the required conditions for a stable film configuration are found to be in accordance with other studies. Finally, parameter variations are conducted to investigate the influence on the long-term shape of the stabilized film surface. (paper)

  10. Direct examination of cadmium bonding in rat tissues dosed with mine wastes and cadmium-containing solutions

    International Nuclear Information System (INIS)

    Diacomanolis, V.; Ng, J. C.; Sadler, R.; Harris, H. H.; Nomura, M.; Noller, B. N.

    2010-01-01

    Direct examination by XANES and EXAFS of metal bonding in tissue can be demonstrated by examining cadmium uptake and bonding in animal tissue maintained at cryogenic temperatures. XANES at the K-edge of cadmium were collected at the Photon Factory Advanced Ring (PF-AR), NW10A beam line at KEK-Tsukuba-Japan. Rats fed with 1g mine waste containing 8-400 mg/kg cadmium per 200g body weight (b.w.) or dosed by oral gavage with either cadmium chloride solution alone (at 6 mg/kg b.w.) or in combination with other salts (As, Cu or Zn), 5 days/week for 6 weeks, had 0.1-7.5 and 8-86 mg/kg cadmium in the liver or kidney, respectively. Rats given intraperitoneally (ip) or intravenously (iv) 1-4 times with 1 mg/kg b.w. cadmium solution had 30-120 mg/kg cadmium in the liver or kidney. Tissues from rats were kept and transferred at cryogenic temperature and XANES were recorded at 20 K. The spectra for rat liver samples suggested conjugation of cadmium with glutathione or association with the sulfide bond (Cd-S) of proteins and peptides. EXAFS of rat liver fed by Cd and Zn solutions showed that Cd was clearly bound to S ligands with an inter-atomic distance of 2.54 A ring for Cd-S that was similar to cadmium sulfide with an inter-atomic distance of 2.52 A ring for Cd-S. Liver or kidney of rats fed with mine wastes did not give an edge in the XANES spectra indicating little uptake of cadmium by the animals. Longer and higher dosing regimen may be required in order to observe the same Cd-S bond in the rat tissue from mine wastes, including confirmation by EXAFS.

  11. Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose

    Science.gov (United States)

    2013-01-01

    Background Numerous studies have examined the direct fermentation of cellulosic materials by cellulase-expressing yeast; however, ethanol productivity in these systems has not yet reached an industrial level. Certain microorganisms, such as the cellulolytic fungus Trichoderma reesei, produce expansin-like proteins, which have a cellulose-loosening effect that may increase the breakdown of cellulose. Here, to improve the direct conversion of cellulose to ethanol, yeast Saccharomyces cerevisiae co-displaying cellulase and expansin-like protein on the cell surface were constructed and examined for direct ethanol fermentation performance. Results The cellulase and expansin-like protein co-expressing strain showed 246 mU/g-wet cell of phosphoric acid swollen cellulose (PASC) degradation activity, which corresponded to 2.9-fold higher activity than that of a cellulase-expressing strain. This result clearly demonstrated that yeast cell-surface expressed cellulase and expansin-like protein act synergistically to breakdown cellulose. In fermentation experiments examining direct ethanol production from PASC, the cellulase and expansin-like protein co-expressing strain produced 3.4 g/L ethanol after 96 h of fermentation, a concentration that was 1.4-fold higher than that achieved by the cellulase-expressing strain (2.5 g/L). Conclusions The PASC degradation and fermentation ability of an engineered yeast strain was markedly improved by co-expressing cellulase and expansin-like protein on the cell surface. To our knowledge, this is the first report to demonstrate the synergetic effect of co-expressing cellulase and expansin-like protein on a yeast cell surface, which may be a promising strategy for constructing direct ethanol fermenting yeast from cellulose. PMID:23835302

  12. Data fusion analysis of a surface direct-current resistivity and well pick data set

    International Nuclear Information System (INIS)

    Clayton, E.A.; Lewis, R.E.

    1995-09-01

    Pacific Northwest Laboratory (PNL) has been tasked with testing, debugging, and refining the Hanford Site data fusion workstation (DFW), with the assistance of Coleman Research Corporation (CRC), before delivering the DFW to the environmental restoration client at the Hanford Site. Data fusion is the mathematical combination (or fusion) of disparate data sets into a single interpretation. The data fusion software used in this study was developed by CRC. This report discusses the results of evaluating a surface direct-current (dc) resistivity and well-pick data set using two methods: data fusion technology and commercially available software (i.e., RESIX Plus from Interpex Ltd., Golden, Colorado), the conventional method of analysis. The report compares the two technologies; describes the survey, procedures, and results; and includes conclusions and recommendations. The surface dc resistivity and well-pick data set had been acquired by PNL from a study performed in May 1993 at Eielson Air Force Base near Fairbanks, Alaska. The resistivity survey data were acquired to map the top of permafrost in support of a hydrogeologic study. This data set provided an excellent opportunity to test and refine the dc resistivity capabilities of the DFW; previously, the data fusion software was untested on dc resistivity data. The DFW was used to evaluate the dc resistivity survey data and to produce a 3-dimensional earth model of the study area

  13. Identification of distant drug off-targets by direct superposition of binding pocket surfaces.

    Science.gov (United States)

    Schumann, Marcel; Armen, Roger S

    2013-01-01

    Correctly predicting off-targets for a given molecular structure, which would have the ability to bind a large range of ligands, is both particularly difficult and important if they share no significant sequence or fold similarity with the respective molecular target ("distant off-targets"). A novel approach for identification of off-targets by direct superposition of protein binding pocket surfaces is presented and applied to a set of well-studied and highly relevant drug targets, including representative kinases and nuclear hormone receptors. The entire Protein Data Bank is searched for similar binding pockets and convincing distant off-target candidates were identified that share no significant sequence or fold similarity with the respective target structure. These putative target off-target pairs are further supported by the existence of compounds that bind strongly to both with high topological similarity, and in some cases, literature examples of individual compounds that bind to both. Also, our results clearly show that it is possible for binding pockets to exhibit a striking surface similarity, while the respective off-target shares neither significant sequence nor significant fold similarity with the respective molecular target ("distant off-target").

  14. Finding shortest non-trivial cycles in directed graphs on surfaces

    Directory of Open Access Journals (Sweden)

    Sergio Cabello

    2016-04-01

    Full Text Available Let $D$ be a weighted directed graph cellularly embedded in a surface of genus $g$, orientable or not, possibly with boundary.  We describe algorithms to compute shortest non-contractible and shortest surface non-separating cycles in $D$, generalizing previous results that dealt with undirected graphs.Our first algorithm computes such cycles in $O(n^2\\log n$ time, where $n$ is the total number of vertices and edges of $D$, thus matching the complexity of the best general algorithm in the undirected case.  It revisits and extends Thomassen's 3-path condition; the technique applies to other families of cycles as well.We also provide more efficient algorithms in special cases, such as graphs with small genus or bounded treewidth, using a divide-and-conquer technique that simplifies the graph while preserving the topological properties of its cycles.  Finally, we give an efficient output-sensitive algorithm, whose running time depends on the length of the shortest non-contractible or non-separating cycle.

  15. Direct chemical synthesis of MnO2 nanowhiskers on MXene surfaces for supercapacitor applications

    KAUST Repository

    Baby, Rakhi Raghavan

    2016-07-05

    Transition metal carbides (MXenes) are an emerging class of two dimensional (2D) materials with promising electrochemical energy storage performance. Herein, for the first time, by direct chemical synthesis, nanocrystalline ε-MnO2 whiskers were formed on MXene nanosheet surfaces (ε-MnO2/Ti2CTx and ε-MnO2/Ti3C2Tx) to make nanocomposite electrodes for aqueous pseudocapacitors. The ε-MnO2 nanowhiskers increase the surface area of the composite electrode and enhance the specific capacitance by nearly three orders of magnitude compared to pure MXene based symmetric supercapacitors. Combined with enhanced pseudocapacitance, the fabricated ε-MnO2/MXene supercapacitors exhibited excellent cycling stability with ~88% of the initial specific capacitance retained after 10000 cycles which is much higher than pure ε-MnO2 based supercapacitors (~74%). The proposed electrode structure capitalizes on the high specific capacitance of MnO2 and the ability of MXenes to improve conductivity and cycling stability.

  16. Return polynomials for non-intersecting paths above a surface on the directed square lattice

    Energy Technology Data Exchange (ETDEWEB)

    Brak, R. [Deartment of Mathematics, University of Melbourne, Parkville, VIC (Australia)]. E-mail: r.brak@ms.unimelb.edu.au; Essam, J.W. [Department of Mathematics, Royal Holloway College, University of London, Egham, Surrey (United Kingdom)]. E-mail: j.essam@alpha1.rhul.ac.uk

    2001-12-14

    We enumerate sets of n non-intersecting, t-step paths on the directed square lattice which are excluded from the region below the surface y=0 to which they are initially attached. In particular we obtain a product formula for the number of star configurations in which the paths have arbitrary fixed endpoints. We also consider the 'return' polynomial, R-'{sup W}{sub t}(y;k)={sigma}{sub m{>=}}{sub 0}r-'{sup W}{sub t}(y;m)k{sup m} where r-'{sup W}{sub t}(y;m) is the number of n-path configurations of watermelon type having deviation {gamma} for which the path closest to the surface returns to the surface m times. The 'marked return' polynomial is defined by u-'{sup W}{sub t}(y;k{sub 1}){identical_to}R-'{sup W}{sub 1}(y;k{sub 1}+l)={sigma}{sub m{>=}}{sub 0}u-'{sup W}{sub t}(y;m)k{sub 1}{sup m} where u-'{sup W}{sub t}(y;m) is the number of marked configurations having at least m returns, just m of which are marked. Both r-'{sup W}{sub t}(y;m) and u-'{sup W}(y;m) are expressed in terms of the numbers of paths ignoring returns but introducing a suitably modified endpoint condition. This enables u-'{sup W}{sub t}(y;m) to be written in product form for arbitrary y, but for r-'{sup W}{sub t}(y;m) this can only be done in the case y=0. (author)

  17. Direct protein quantification in complex sample solutions by surface-engineered nanorod probes

    KAUST Repository

    Schrittwieser, Stefan

    2017-06-30

    Detecting biomarkers from complex sample solutions is the key objective of molecular diagnostics. Being able to do so in a simple approach that does not require laborious sample preparation, sophisticated equipment and trained staff is vital for point-of-care applications. Here, we report on the specific detection of the breast cancer biomarker sHER2 directly from serum and saliva samples by a nanorod-based homogeneous biosensing approach, which is easy to operate as it only requires mixing of the samples with the nanorod probes. By careful nanorod surface engineering and homogeneous assay design, we demonstrate that the formation of a protein corona around the nanoparticles does not limit the applicability of our detection method, but on the contrary enables us to conduct in-situ reference measurements, thus further strengthening the point-of-care applicability of our method. Making use of sandwich assays on top of the nanorods, we obtain a limit of detection of 110 pM and 470 pM in 10-fold diluted spiked saliva and serum samples, respectively. In conclusion, our results open up numerous applications in direct protein biomarker quantification, specifically in point-of-care settings where resources are limited and ease-of-use is of essence.

  18. Direct protein quantification in complex sample solutions by surface-engineered nanorod probes

    KAUST Repository

    Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang J.; Lentijo Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Schotter, Joerg

    2017-01-01

    Detecting biomarkers from complex sample solutions is the key objective of molecular diagnostics. Being able to do so in a simple approach that does not require laborious sample preparation, sophisticated equipment and trained staff is vital for point-of-care applications. Here, we report on the specific detection of the breast cancer biomarker sHER2 directly from serum and saliva samples by a nanorod-based homogeneous biosensing approach, which is easy to operate as it only requires mixing of the samples with the nanorod probes. By careful nanorod surface engineering and homogeneous assay design, we demonstrate that the formation of a protein corona around the nanoparticles does not limit the applicability of our detection method, but on the contrary enables us to conduct in-situ reference measurements, thus further strengthening the point-of-care applicability of our method. Making use of sandwich assays on top of the nanorods, we obtain a limit of detection of 110 pM and 470 pM in 10-fold diluted spiked saliva and serum samples, respectively. In conclusion, our results open up numerous applications in direct protein biomarker quantification, specifically in point-of-care settings where resources are limited and ease-of-use is of essence.

  19. Direct Observation of Double Hydrogen Transfer via Quantum Tunneling in a Single Porphycene Molecule on a Ag(110) Surface.

    Science.gov (United States)

    Koch, Matthias; Pagan, Mark; Persson, Mats; Gawinkowski, Sylwester; Waluk, Jacek; Kumagai, Takashi

    2017-09-13

    Quantum tunneling of hydrogen atoms (or protons) plays a crucial role in many chemical and biological reactions. Although tunneling of a single particle has been examined extensively in various one-dimensional potentials, many-particle tunneling in high-dimensional potential energy surfaces remains poorly understood. Here we present a direct observation of a double hydrogen atom transfer (tautomerization) within a single porphycene molecule on a Ag(110) surface using a cryogenic scanning tunneling microscope (STM). The tautomerization rates are temperature independent below ∼10 K, and a large kinetic isotope effect (KIE) is observed upon substituting the transferred hydrogen atoms by deuterium, indicating that the process is governed by tunneling. The observed KIE for three isotopologues and density functional theory calculations reveal that a stepwise transfer mechanism is dominant in the tautomerization. It is also found that the tautomerization rate is increased by vibrational excitation via an inelastic electron tunneling process. Moreover, the STM tip can be used to manipulate the tunneling dynamics through modification of the potential landscape.

  20. Phase transformations on the surface of YAG composite ceramics under the action of directed laser treatment

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, M., E-mail: vlasovamarina@inbox.ru; Márquez Aguilar, P.A.; Escobar Martinez, A.; Kakazey, M.; Guardian Tapia, R.; Trujillo Estrada, A.

    2016-07-30

    Highlights: • During directed laser treatment of the surface of the composite ceramics consisting of predominantly Y{sub 3}Al{sub 5}O{sub 12} and Al{sub 2}O{sub 3}, the oriented crystallization of YAG and Al{sub 2}O{sub 3} takes place. • As a result of high-temperature heating, in the surface layer of tracks, the partial dissociation of Y{sub 3}Al{sub 5}O{sub 12}, Y{sub 2}Ti{sub 2}O{sub 7}, and Al{sub 2}Y{sub 4}O{sub 9} and enrichment in YAlO{sub 3} occur. • The content of YAlO{sub 3}, the size of YAG crystallites, and their crystallographic texturing depend on the irradiation mode. • After laser treatment, the ceramic material transforms into a three-layer macrostructure consisting of the basic ceramic material, near-surface textured layer, and surface layer. - Abstract: The laser treatment of composite ceramics based on Y{sub 3}Al{sub 5}O{sub 12} with Y{sub 2}Ti{sub 2}O{sub 7}, Al{sub 2}Y{sub 4}O{sub 9}, and Al{sub 2}O{sub 3} additives is accompanied by the melting of the surface layer and formation of tracks. In the volume of tracks, the partial dissociation of Y{sub 3}Al{sub 5}O{sub 12}, Y{sub 2}Ti{sub 2}O{sub 7}, and Al{sub 2}Y{sub 4}O{sub 9}, and the formation of new phases such as YAlO{sub 3} of orthorhombic and hexagonal modifications along with the appearance of additional content of Y{sub 3}Al{sub 5}O{sub 12} and Al{sub 2}O{sub 3} are observed. The content of all these phases depends on the irradiation mode and the phase composition of the ceramics. With increase in the corundum content in ceramic specimens, in the tracks, the Al{sub 2}O{sub 3} content increases, and the Y{sub 3}Al{sub 5}O{sub 12} content decreases. In the volume of tracks, Y{sub 3}Al{sub 5}O{sub 12} crystallites are textured. The size of YAG crystallites and their crystallographic texturing depend on the irradiation mode and Y{sub 3}Al{sub 5}O{sub 12}/Al{sub 2}O{sub 3} phase ratio. On the surface of tracks, a layer enriched in YAlO{sub 3} forms. Thus, as a result of laser

  1. Examination of Surface Deposits on Oldbury Reactor Core Graphite to Determine the Concentration and Distribution of 14C.

    Directory of Open Access Journals (Sweden)

    Liam Payne

    Full Text Available Pile Grade A graphite was used as a moderator and reflector material in the first generation of UK Magnox nuclear power reactors. As all of these reactors are now shut down there is a need to examine the concentration and distribution of long lived radioisotopes, such as 14C, to aid in understanding their behaviour in a geological disposal facility. A selection of irradiated graphite samples from Oldbury reactor one were examined where it was observed that Raman spectroscopy can distinguish between underlying graphite and a surface deposit found on exposed channel wall surfaces. The concentration of 14C in this deposit was examined by sequentially oxidising the graphite samples in air at low temperatures (450°C and 600°C to remove the deposit and then the underlying graphite. The gases produced were captured in a series of bubbler solutions that were analysed using liquid scintillation counting. It was observed that the surface deposit was relatively enriched with 14C, with samples originating lower in the reactor exhibiting a higher concentration of 14C. Oxidation at 600°C showed that the remaining graphite material consisted of two fractions of 14C, a surface associated fraction and a graphite lattice associated fraction. The results presented correlate well with previous studies on irradiated graphite that suggest there are up to three fractions of 14C; a readily releasable fraction (corresponding to that removed by oxidation at 450°C in this study, a slowly releasable fraction (removed early at 600°C in this study, and an unreleasable fraction (removed later at 600°C in this study.

  2. The economic impact of GERD and PUD: examination of direct and indirect costs using a large integrated employer claims database.

    Science.gov (United States)

    Joish, Vijay N; Donaldson, Gary; Stockdale, William; Oderda, Gary M; Crawley, Joseph; Sasane, Rahul; Joshua-Gotlib, Sandra; Brixner, Diana I

    2005-04-01

    The objective of this study was to examine the relationship of work loss associated with gastro- the relationship of work loss associated with gastro- the relationship of work loss associated with gastro-esophageal reflux disease (GERD) and peptic ulcer disease (GERD) and peptic ulcer disease (PUD) in a large population of employed individuals in the United States (US) and quantify the individuals in the United States (US) and quantify the economic impact of these diseases to the employer. A proprietary database that contained work place absence, disability and workers' compensation data in addition to prescription drug and medical claims was used to answer the objectives. Employees with a medical claim with an ICD-9 code for GERD or PUD were identified from 1 January 1997 to 31 December 2000. A cohort of controls was identified for the same time period using the method of frequency matching on age, gender, industry type, occupational status, and employment status. Work absence rates and health care costs were compared between the groups after adjusting for demo graphic, and employment differences using analysis of covariance models. There were significantly lower (p rate of adjusted all-cause absenteeism and sickness-related absenteeism were observed between the disease groups versus the controls. In particular, controls had an average of 1.2 to 1.6 days and 0.4 to 0.6 lower all-cause and sickness-related absenteeism compared to the disease groups. The incremental economic impact projected to a hypothetical employed population was estimated to be $3441 for GERD, $1374 for PUD, and $4803 for GERD + PUD per employee per year compared to employees without these diseases. Direct medical cost and work absence in employees with GERD, PUD and GERD + PUD represent a significant burden to employees and employers.

  3. Quantitative surface topography assessment of directly compressed and roller compacted tablet cores using photometric stereo image analysis

    DEFF Research Database (Denmark)

    Allesø, Morten; Carstensen, Jens Michael; Holm, Per

    2016-01-01

    Surface topography, in the context of surface smoothness/roughness, was investigated by the use of an image analysis technique, MultiRay™, related to photometric stereo, on different tablet batches manufactured either by direct compression or roller compaction. In the present study, oblique...... illumination of the tablet (darkfield) was considered and the area of cracks and pores in the surface was used as a measure of tablet surface topography; the higher a value, the rougher the surface. The investigations demonstrated a high precision of the proposed technique, which was able to rapidly (within...... milliseconds) and quantitatively measure the obtained surface topography of the produced tablets. Compaction history, in the form of applied roll force and tablet punch pressure, was also reflected in the measured smoothness of the tablet surfaces. Generally it was found that a higher degree of plastic...

  4. A Metallurgical Investigation of the Direct Energy Deposition Surface Repair of Ferrous Alloys

    Science.gov (United States)

    Marya, Manuel; Singh, Virendra; Hascoet, Jean-Yves; Marya, Surendar

    2018-02-01

    Among additive manufacturing (AM) processes, the direct energy deposition (DED) by laser is explored to establish its applicability for the repair of ferrous alloys such as UNS G41400 low-alloy steel, UNS S41000 martensitic stainless steel, UNS S17400 precipitation-strengthened martensitic stainless steel, and UNS S32750 super-duplex stainless steel. Unlike plating, thermal spray, and conventional cladding weld, DED laser powder deposition offers potential advantages, e.g., thin deposits, limited dilutions, narrow heat-affected zones (HAZ), potentially improved surface properties. In this investigation, all AM deposits were completed with an IREPA CLAD™ system using a powder feed of UNS N06625, an alloy largely selected for its outstanding corrosion resistance. This investigation first addresses topological aspects of AM deposits (including visual imperfections) before focusing on changes in microstructure, microhardness, chemical composition across AM deposits and base materials. It has been established that dense, uniform, hard ( 300 HVN), crack-free UNS N06625-compliant AM deposits of fine dendritic microstructures are reliably produced. However, except for the UNS S32750 steel, a significant martensitic hardening was observed in the HAZs of UNS G41400 ( 650 HVN), UNS S41000 ( 500 HVN), and UNS S17400 ( 370 HVN). In summary, this investigation demonstrates that the DED laser repair of ferrous parts with UNS N06625 may restore damaged surfaces, but it also calls for cautions and complementary investigations for alloys experiencing a high HAZ hardening, for which industry standard recommendations are exceeded and lead to an increased risk of delayed cracking in corrosive environments.

  5. Facile surface glycosylation of PVDF microporous membrane via direct surface-initiated AGET ATRP and improvement of antifouling property and biocompatibility

    International Nuclear Information System (INIS)

    Yuan Jing; Meng Jianqiang; Kang Yinlin; Du Qiyun; Zhang Yufeng

    2012-01-01

    This paper describes a facile and novel approach for the surface glycosylation of poly(vinylidene difluoride) (PVDF) microporous membrane. A glycopolymer poly(D-gluconamidoethyl methacrylate) (PGAMA) was tethered onto the membrane surface via activators generated by electron transfer atom transfer radical polymerization (AGET ATRP) directly initiated from the PVDF surface. Chemical changes of membrane surface were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). It was revealed that PGAMA was successfully grafted onto the membrane surface and its grafting density can be modulated in a wide range up to 2.4 μmol/cm 2 . The effects of glycosylation on membrane morphology, flux and surface hydrophilicity were investigated. Field emission scanning electron microscopy (FESEM) results indicated shrinkage of the surface pore diameters and the growth of the glycopolymer layer on the membrane surface. The static water contact angle (WCA) of the membrane surface decreased from 110° to 30.4° with the increase of grafting density, indicating that the PGAMA grafts dramatically improved the surface hydrophilicity. The protein adsorption and platelets adhesion experiments indicated that the grafted PGAMA could effectively improve the membrane antifouling property and biocompatibility.

  6. Near-surface non-destructive examination of reactor steels: a state-of-the-art report

    International Nuclear Information System (INIS)

    Launay, J.P.

    1985-06-01

    A Working Group has been set up to deal with nondestructive testing reliability within the OECD/CSNI framework. One of its activities was to initiate consideration on near surface defect inspection, especially inner surfaces of reactors. The purpose of the survey was to clarify the three following points: present regulations of safety authorities and implementation of these regulations concerning manufacturing examinations and in-service inspection; results of R and D work already performed in this field; R and D work in progress and proposal for an expansion within the framework of the CSNI Special Working Group. This document summarizes information received from the following countries: USA, Spain, the Netherlands, France, United Kingdom, Belgium, Switzerland

  7. Urban Surface Temperature Reduction via the Urban Aerosol Direct Effect: A Remote Sensing and WRF Model Sensitivity Study

    Directory of Open Access Journals (Sweden)

    Menglin Jin

    2010-01-01

    Full Text Available The aerosol direct effect, namely, scattering and absorption of sunlight in the atmosphere, can lower surface temperature by reducing surface insolation. By combining National Aeronautics and Space Administration (NASA AERONET (AErosol RObotic NETwork observations in large cities with Weather Research and Forecasting (WRF model simulations, we find that the aerosol direct reduction of surface insolation ranges from 40–100Wm−2, depending on aerosol loading and land-atmosphere conditions. To elucidate the maximum possible effect, values are calculated using a radiative transfer model based on the top quartile of the multiyear instantaneous aerosol data observed by AERONET sites. As a result, surface skin temperature can be reduced by 1°C-2°C while 2-m surface air temperature reductions are generally on the order of 0.5°C–1°C.

  8. Site-Directed Immobilization of Bone Morphogenetic Protein 2 to Solid Surfaces by Click Chemistry.

    Science.gov (United States)

    Siverino, Claudia; Tabisz, Barbara; Lühmann, Tessa; Meinel, Lorenz; Müller, Thomas; Walles, Heike; Nickel, Joachim

    2018-03-29

    Different therapeutic strategies for the treatment of non-healing long bone defects have been intensively investigated. Currently used treatments present several limitations that have led to the use of biomaterials in combination with osteogenic growth factors, such as bone morphogenetic proteins (BMPs). Commonly used absorption or encapsulation methods require supra-physiological amounts of BMP2, typically resulting in a so-called initial burst release effect that provokes several severe adverse side effects. A possible strategy to overcome these problems would be to covalently couple the protein to the scaffold. Moreover, coupling should be performed in a site-specific manner in order to guarantee a reproducible product outcome. Therefore, we created a BMP2 variant, in which an artificial amino acid (propargyl-L-lysine) was introduced into the mature part of the BMP2 protein by codon usage expansion (BMP2-K3Plk). BMP2-K3Plk was coupled to functionalized beads through copper catalyzed azide-alkyne cycloaddition (CuAAC). The biological activity of the coupled BMP2-K3Plk was proven in vitro and the osteogenic activity of the BMP2-K3Plk-functionalized beads was proven in cell based assays. The functionalized beads in contact with C2C12 cells were able to induce alkaline phosphatase (ALP) expression in locally restricted proximity of the bead. Thus, by this technique, functionalized scaffolds can be produced that can trigger cell differentiation towards an osteogenic lineage. Additionally, lower BMP2 doses are sufficient due to the controlled orientation of site-directed coupled BMP2. With this method, BMPs are always exposed to their receptors on the cell surface in the appropriate orientation, which is not the case if the factors are coupled via non-site-directed coupling techniques. The product outcome is highly controllable and, thus, results in materials with homogeneous properties, improving their applicability for the repair of critical size bone defects.

  9. Hot Press as a Sustainable Direct Recycling Technique of Aluminium: Mechanical Properties and Surface Integrity.

    Science.gov (United States)

    Yusuf, Nur Kamilah; Lajis, Mohd Amri; Ahmad, Azlan

    2017-08-03

    Meltless recycling technique has been utilized to overcome the lack of primary resources, focusing on reducing the usage of energy and materials. Hot press was proposed as a novel direct recycling technique which results in astoundingly low energy usage in contrast with conventional recycling. The aim of this study is to prove the technical feasibility of this approach by characterizing the recycled samples. For this purpose, AA6061 aluminium chips were recycled by utilizing hot press process under various operating temperature (T s = 430, 480, and 530 °C) and holding times (t s = 60, 90, and 120 min). The maximum mechanical properties of recycled chip are Ultimate tensile strength (UTS) = 266.78 MPa, Elongation to failure (ETF) = 16.129%, while, for surface integrity of the chips, the calculated microhardness is 81.744 HV, exhibited at T s = 530 °C and t s = 120 min. It is comparable to theoretical AA6061 T4-temper where maximum UTS and microhardness is increased up to 9.27% and 20.48%, respectively. As the desired mechanical properties of forgings can only be obtained by means of a final heat treatment, T5-temper, aging after forging process was employed. Heat treated recycled billet AA6061 (T5-temper) are considered comparable with as-received AA6061 T6, where the value of microhardness (98.649 HV) at 175 °C and 120 min of aging condition was revealed to be greater than 3.18%. Although it is quite early to put a base mainly on the observations in experimental settings, the potential for significant improvement offered by the direct recycling methods for production aluminium scrap can be clearly demonstrated. This overtures perspectives for industrial development of solid state recycling processes as environmentally benign alternatives of current melting based practices.

  10. Surface modification of indium tin oxide for direct writing of silver nanoparticulate ink micropatterns

    International Nuclear Information System (INIS)

    Vunnam, Swathi; Ankireddy, Krishnamraju; Kellar, Jon; Cross, William

    2013-01-01

    Surface treatment techniques were deployed to alter the surface of indium tin oxide (ITO) samples to attain a favorable interface between printed nano-inks and ITO surface. Surface free energy components of treated ITO substrates were calculated for each treatment using the van Oss–Chaudhury–Good method. The surface treatments of ITO changed the Lifshitz–van der Waals and Lewis acid–base components, and contact angle hysteresis significantly. Among all the surface treatments, air plasma treated samples showed high polar in nature, whereas dodecyltrichlorosilane self-assembled monolayer treated sample showed the lowest. In addition to the polarity and homogeneity, the surface roughness of the ITO was studied with respect to the surface treatment. Silver nanoparticulate ink was printed on treated ITO surfaces using aerosol jet printing system. Printed silver nano-ink line width and morphology strongly depended on the surface treatment of the ITO, ink properties and printing parameters. - Highlights: ► Surface treatments on indium tin oxide (ITO) altered its surface free energy. ► Surface free energies were studied in terms of acid–base components. ► ITO surface morphology and roughness were changed with the surface treatment. ► Silver ink was printed on treated ITO samples using aerosol jet printing system. ► Line widths of printed patterns clearly depended on the surface free energy of ITO

  11. Surface modification of indium tin oxide for direct writing of silver nanoparticulate ink micropatterns

    Energy Technology Data Exchange (ETDEWEB)

    Vunnam, Swathi, E-mail: swathi.vunnam@mines.sdsmt.edu [Nanoscience and Nanoengineering Department, South Dakota School of Mines and Technology, Rapid City, SD-57701 (United States); Ankireddy, Krishnamraju; Kellar, Jon; Cross, William [Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD-57701 (United States)

    2013-03-01

    Surface treatment techniques were deployed to alter the surface of indium tin oxide (ITO) samples to attain a favorable interface between printed nano-inks and ITO surface. Surface free energy components of treated ITO substrates were calculated for each treatment using the van Oss–Chaudhury–Good method. The surface treatments of ITO changed the Lifshitz–van der Waals and Lewis acid–base components, and contact angle hysteresis significantly. Among all the surface treatments, air plasma treated samples showed high polar in nature, whereas dodecyltrichlorosilane self-assembled monolayer treated sample showed the lowest. In addition to the polarity and homogeneity, the surface roughness of the ITO was studied with respect to the surface treatment. Silver nanoparticulate ink was printed on treated ITO surfaces using aerosol jet printing system. Printed silver nano-ink line width and morphology strongly depended on the surface treatment of the ITO, ink properties and printing parameters. - Highlights: ► Surface treatments on indium tin oxide (ITO) altered its surface free energy. ► Surface free energies were studied in terms of acid–base components. ► ITO surface morphology and roughness were changed with the surface treatment. ► Silver ink was printed on treated ITO samples using aerosol jet printing system. ► Line widths of printed patterns clearly depended on the surface free energy of ITO.

  12. Examination of two methods for statistical analysis of data with magnitude and direction emphasizing vestibular research applications

    Science.gov (United States)

    Calkins, D. S.

    1998-01-01

    When the dependent (or response) variable response variable in an experiment has direction and magnitude, one approach that has been used for statistical analysis involves splitting magnitude and direction and applying univariate statistical techniques to the components. However, such treatment of quantities with direction and magnitude is not justifiable mathematically and can lead to incorrect conclusions about relationships among variables and, as a result, to flawed interpretations. This note discusses a problem with that practice and recommends mathematically correct procedures to be used with dependent variables that have direction and magnitude for 1) computation of mean values, 2) statistical contrasts of and confidence intervals for means, and 3) correlation methods.

  13. Multiscale Characterization of Bacterial Swarming Illuminates Principles Governing Directed Surface Motility

    Science.gov (United States)

    Strickland, Ben; Hoeger, Kentaro; Ursell, Tristan

    In many systems, individual characteristics interact, leading to the spontaneous emergence of order and complexity. In biological settings like microbes, such collective behaviors can imbue a variety of benefits to constituent individuals, including increased spatial range, improved access to nutrients, and enhanced resistance to antibiotic threats. To untangle the biophysical underpinnings of collective motility, we use passive tracers and a curated genetic library of Bacillus subtilis, including motile, non-motile, biofilm-deficient, and non-chemotactic mutants. We characterize and connect individual behavior on the microscopic scale to macroscopic colony morphology and motility of dendritic swarming. We analyze the persistence and dynamics of coordinated movement on length scales up to 4 orders of magnitude larger than that of individual cells, revealing rapid and directed responses of microbial groups to external stimuli, such as avoidance dynamics across chemical gradients. Our observations uncover the biophysical interplay between individual motility, surface wetness, phenotypic diversity, and external physical forces that robustly precipitate coordinated group behavior in microbes, and suggest general principles that govern the transition from individual to group behavior.

  14. Bi-directional Reflectance of Icy Surface Analogs: A Dual Approach

    Science.gov (United States)

    Quinones, Juan Manuel; Vides, Christina; Nelson, Robert M.; Boryta, Mark; Mannat, Ken s.

    2018-01-01

    Bi-directional reflectance measurements of analogs for planetary regolith have provided insight into the surface properties of planetary satellites and small bodies. Because Aluminum Oxide (Al2O3) and water ice share a similar hexagonal crystalline structure, the former has been used in laboratory experiments to simulate the regolith of both icy and dusty planetary bodies. By measuring various sizes of well sorted size fractions of Al2O3, the reflectance phase curve and porosity of a planetary regolith can be determined. We have designed an experiment to test the laboratory measurements produced by Nelson et al. (2000). Additionally, we made reflectance measurements for other alkali-halide compounds that could be used for applications beyond astronomy and planetary science.In order to provide an independent check on the Nelson et al. data, we designed an instrument with a different configuration. While both instruments take bidirectional reflectance measurements, our instrument, the Rigid Photometric Goniometer (RPG), is fixed at a phase angle of 5° and detects the scattered light with a photomultiplier tube (PMT). The PMT current is then measured with an electrometer. Following the example of Nelson et al., we measured the bidirectional reflectance of Al2O3 particulate size fractions between 0.1sizes from 20size that provided optimal, or maximum, reflectance for each compound. Our conclusions bring confirmation and clarity to photometric sciences.

  15. Direct formation of gold nanorods on surfaces using polymer-immobilised gold seeds

    Directory of Open Access Journals (Sweden)

    Majid K. Abyaneh

    2016-06-01

    Full Text Available Herein, we present the formation of gold nanorods (GNRs on novel gold–poly(methyl methacrylate (Au–PMMA nanocomposite substrates with unprecedented growth control through the polymer molecular weight (Mw and gold-salt-to-polymer weight ratio. For the first time, GNRs have been produced by seed-mediated direct growth on surfaces that were pre-coated with polymer-immobilised gold seeds. A Au–PMMA nanocomposite formed by UV photoreduction has been used as the gold seed. The influence of polymer Mw and gold concentration on the formation of GNRs has been investigated and discussed. The polymer nanocomposite formed with a lower Mw PMMA and 20 wt % gold salt provides a suitable medium for growing well-dispersed GNRs. In this sample, the average dimension of produced GNRs is 200 nm in length with aspect ratios up to 10 and a distribution of GNRs to nanoparticles of nearly 22%. Suitable characterization techniques such as AFM and SEM have been used to support concept of the proposed growth method.

  16. Synchrotron radiation induced direct photo-etching and surface modification of PTFE

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Washio, Masakazu

    2003-01-01

    In the first part of this article, we have described and discussed the measurement results of etching rates by direct photo-etching using Synchrotron Radiation (SR) for various kind of crosslinked PTFEs, which were prepared by different crosslinking doses, comparing with the non-crosslinked PTFE. It has been found that the etching rates obtained for crosslinked PTFE were much larger than that of non-crosslinked one. These results are not described by simple consideration such as the G values of main chain scission. We propose that the etching rates should be discussed by the complex mechanism through at least two different steps such as polymer decomposition and fragment desorption. In the second part of the article, we have described and discussed the abnormal reaction induced at the surface region after the SR etching for non-crosslinked PTFE. Through the measurements using DSC and solid state 19 F-NMR, we have confirmed the crosslinking reaction of PTFE even in solid state PTFE. This should be induced by the very high density radical formation in very thin area of PTFE films by SR radiation. (author)

  17. Surface patterned dielectrics by direct writing of anodic oxides using scanning droplet cell microscopy

    International Nuclear Information System (INIS)

    Siket, Christian M.; Mardare, Andrei Ionut; Kaltenbrunner, Martin; Bauer, Siegfried; Hassel, Achim Walter

    2013-01-01

    Highlights: • Scanning droplet cell microscopy was applied for local gate oxide writing. • Sharp lines are obtained at the highest writing speed of 1 mm min −1 . • 13.4 kC cm −3 was found as charge per volume for aluminium oxide. • High field constant of 24 nm V −1 and dielectric constant of 12 were determined for Al 2 O 3 by CV and EIS. -- Abstract: Scanning droplet cell microscopy was used for patterning of anodic oxide lines on the surface of Al thin films by direct writing. The structural modifications of the written oxide lines as a function of the writing speed were studied by analyzing the relative error of the line widths. Sharper lines were obtained for writing speeds faster than 1 mm min −1 . An increase in sharpness was observed for higher writing speeds. A theoretical model based on the Faraday law is proposed to explain the constant anodisation current measured during the writing process and yielded a charge per volume of 13.4 kC cm −3 for Al 2 O 3 . From calculated oxide film thicknesses the high field constant was found to be 24 nm V −1 . Electrochemical impedance spectroscopy revealed an increase of the electrical permittivity up to ε = 12 with the decrease of the writing speed of the oxide line. Writing of anodic oxide lines was proven to be an important step in preparing capacitors and gate dielectrics in plastic electronics

  18. Laser-Aided Directed Energy Deposition of Steel Powder over Flat Surfaces and Edges.

    Science.gov (United States)

    Caiazzo, Fabrizia; Alfieri, Vittorio

    2018-03-16

    In the framework of Additive Manufacturing of metals, Directed Energy Deposition of steel powder over flat surfaces and edges has been investigated in this paper. The aims are the repair and overhaul of actual, worn-out, high price sensitive metal components. A full-factorial experimental plan has been arranged, the results have been discussed in terms of geometry, microhardness and thermal affection as functions of the main governing parameters, laser power, scanning speed and mass flow rate; dilution and catching efficiency have been evaluated as well to compare quality and effectiveness of the process under conditions of both flat and edge depositions. Convincing results are presented to give grounds for shifting the process to actual applications: namely, no cracks or pores have been found in random cross-sections of the samples in the processing window. Interestingly an effect of the scanning conditions has been proven on the resulting hardness in the fusion zone; therefore, the mechanical characteristics are expected to depend on the processing parameters.

  19. Elucidation of Peptide-Directed Palladium Surface Structure for Biologically Tunable Nanocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bedford, Nicholas M.; Ramezani-Dakhel, Hadi; Slocik, Joseph M.; Briggs, Beverly D.; Ren, Yang; Frenkel, Anatoly I.; Petkov, Valeri; Heinz, Hendrik; Naik, Rajesh R.; Knecht, Mark R.

    2015-05-01

    Peptide-enabled synthesis of inorganic nanostructures represents an avenue to access catalytic materials with tunable and optimized properties. This is achieved via peptide complexity and programmability that is missing in traditional ligands for catalytic nanomaterials. Unfortunately, there is limited information available to correlate peptide sequence to particle structure and catalytic activity to date. As such, the application of peptide-enabled nanocatalysts remains limited to trial and error approaches. In this paper, a hybrid experimental and computational approach is introduced to systematically elucidate biomolecule-dependent structure/function relationships for peptide-capped Pd nanocatalysts. Synchrotron X-ray techniques were used to uncover substantial particle surface structural disorder, which was dependent upon the amino acid sequence of the peptide capping ligand. Nanocatalyst configurations were then determined directly from experimental data using reverse Monte Carlo methods and further refined using molecular dynamics simulation, obtaining thermodynamically stable peptide-Pd nanoparticle configurations. Sequence-dependent catalytic property differences for C-C coupling and olefin hydrogenation were then eluddated by identification of the catalytic active sites at the atomic level and quantitative prediction of relative reaction rates. This hybrid methodology provides a clear route to determine peptide-dependent structure/function relationships, enabling the generation of guidelines for catalyst design through rational tailoring of peptide sequences

  20. Mixing of two co-directional Rayleigh surface waves in a nonlinear elastic material.

    Science.gov (United States)

    Morlock, Merlin B; Kim, Jin-Yeon; Jacobs, Laurence J; Qu, Jianmin

    2015-01-01

    The mixing of two co-directional, initially monochromatic Rayleigh surface waves in an isotropic, homogeneous, and nonlinear elastic solid is investigated using analytical, finite element method, and experimental approaches. The analytical investigations show that while the horizontal velocity component can form a shock wave, the vertical velocity component can form a pulse independent of the specific ratios of the fundamental frequencies and amplitudes that are mixed. This analytical model is then used to simulate the development of the fundamentals, second harmonics, and the sum and difference frequency components over the propagation distance. The analytical model is further extended to include diffraction effects in the parabolic approximation. Finally, the frequency and amplitude ratios of the fundamentals are identified which provide maximum amplitudes of the second harmonics as well as of the sum and difference frequency components, to help guide effective material characterization; this approach should make it possible to measure the acoustic nonlinearity of a solid not only with the second harmonics, but also with the sum and difference frequency components. Results of the analytical investigations are then confirmed using the finite element method and the experimental feasibility of the proposed technique is validated for an aluminum specimen.

  1. Design of a surface-scanning coil detector for direct bacteria detection on food surfaces using a magnetoelastic biosensor

    Science.gov (United States)

    Chai, Yating; Wikle, Howard C.; Wang, Zhenyu; Horikawa, Shin; Best, Steve; Cheng, Zhongyang; Dyer, Dave F.; Chin, Bryan A.

    2013-09-01

    The real-time, in-situ bacteria detection on food surfaces was achieved by using a magnetoelastic biosensor combined with a surface-scanning coil detector. This paper focuses on the coil design for signal optimization. The coil was used to excite the sensor's vibration and detect its resonant frequency signal. The vibrating sensor creates a magnetic flux change around the coil, which then produces a mutual inductance. In order to enhance the signal amplitude, a theory of the sensor's mutual inductance with the measurement coil is proposed. Both theoretical calculations and experimental data showed that the working length of the coil has a significant effect on the signal amplitude. For a 1 mm-long sensor, a coil with a working length of 1.3 mm showed the best signal amplitude. The real-time detection of Salmonella bacteria on a fresh food surface was demonstrated using this new technology.

  2. Multi-directional plasmonic surface-wave splitters with full bandwidth isolation

    International Nuclear Information System (INIS)

    Gao, Zhen; Gao, Fei; Zhang, Baile

    2016-01-01

    We present a multidirectional plasmonic surface-wave splitter with full bandwidth isolation experimentally based on coupled defect surface modes in a surface-wave photonic crystal. In contrast to conventional plasmonic surface-wave frequency splitters with polaritonic dispersion relations that overlap at low frequencies, this multidirectional plasmonic surface-wave splitter based on coupled defect surface modes can split different frequency bands into different waveguide branches without bandwidth overlap. Transmission spectra and near-field imaging measurements have been implemented in the microwave frequencies to verify the performance of the multidirectional plasmonic surface-wave splitter. This surface wave structure can be used as a plasmonic wavelength-division multiplexer that may find potential applications in the surface-wave integrated circuits from microwave to terahertz frequencies.

  3. Examining microbial community response to a strong chemical gradient: the effects of surface coal mining on stream bacteria

    Science.gov (United States)

    Bier, R.; Lindberg, T. T.; Wang, S.; Ellis, J. C.; Di Giulio, R. T.; Bernhardt, E. S.

    2012-12-01

    Surface coal mining is the dominant form of land cover change in northern and central Appalachia. In this process, shallow coal seams are exposed by removing overlying rock with explosives. The resulting fragmented carbonate rock and coal residues are disposed of in stream valleys. These valley fills generate alkaline mine drainage (AlkMD), dramatically increasing alkalinity, ionic strength, substrate supply (esp. SO42-), and trace element (Mn, Li, Se, U) concentrations in downstream rivers as well as significant losses of sensitive fish and macroinvertebrate species. In prior work within the Mud River, which drains the largest surface mine complex in Appalachia, we found that concentrations of AlkMD increase proportionally with the extent of upstream mining. Here we ask "How do stream microbial communities change along this strong chemical gradient?" We collected surface water and benthic biofilms from 25 stream reaches throughout the Mud River spanning the full range of surface mining impacts, with 0-96% of the contributing watershed area converted to surface coal mines. Microbial communities were collected from biofilms grown on a common substrate (red maple veneers) that were incubated in each stream reach for four months prior to collection in April, 2011. 16S rRNA genes from microbial communities at each study site were examined using 454 sequencing and compared with a generalized UniFrac distance matrix (674 sequence eveness) that was used in statistical analyses. Water chemistry at the sites was sampled monthly from July 2010 to December 2010 and again in April 2011. In April, surface water concentrations of SO42-, Ca2+, Mg2+, and Se2- increased linearly with the extent of upstream mining (all regressions R2 >0.43; pPERMANOVA; p=0.029). Bacterial diversity (OTU richness defined at 3% sequence difference) peaked at intermediate conductivities (600 μS cm-1). Environmental data that correlated significantly with the ordination axes were a variety of surface

  4. Immobilization of oligonucleotide probes on silicon surfaces using biotin–streptavidin system examined with microscopic and spectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Awsiuk, K., E-mail: kamil.awsiuk@uj.edu.pl [M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, Kraków 30-059 (Poland); Rysz, J. [M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, Kraków 30-059 (Poland); Petrou, P. [Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, NCSR “Demokritos”, End Patriarchou Gregoriou Str., Aghia Paraskevi 15310 (Greece); Budkowski, A. [M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, Kraków 30-059 (Poland); Bernasik, A. [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, Kraków 30-059 (Poland); Kakabakos, S. [Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, NCSR “Demokritos”, End Patriarchou Gregoriou Str., Aghia Paraskevi 15310 (Greece); Marzec, M.M. [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, Kraków 30-059 (Poland); Raptis, I. [Institute for Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, NCSR “Demokritos”, End Patriarchou Gregoriou Str., Aghia Paraskevi 15310 (Greece)

    2014-01-30

    To immobilize effectively oligonucleotide probes on SiO{sub 2} modified with (3-aminopropyl)triethoxysilane, four procedures based on streptavidin–biotin system are compared with Atomic Force Microscopy, Angle-Resolved X-ray Photoelectron Spectroscopy and Time-of-Flight Secondary Ion Mass Spectrometry. The first approach involves: adsorption of biotinylated Bovine Serum Albumin, blocking free surface sites with BSA, binding of streptavidin and biotinylated oligonucleotide (b-oligo). Final steps are exchanged in the second procedure with immobilization of preformed streptavidin–b-oligo conjugate. The third approach consists of streptavidin adsorption, blocking with BSA and b-oligo binding. Finally, streptavidin–b-oligo conjugate is immobilized directly within the fourth method. Surface coverage with biomolecules, determined from ARXPS, accords with average AFM height, and is anti-correlated with the intensity of Si+ ions. Higher biomolecular coverage was achieved during the last steps of the first (2.45(±0.38) mg/m{sup 2}) and second (1.31(±0.22) mg/m{sup 2}) approach, as compared to lower surface density resulting from the third (0.58(±0.20) mg/m{sup 2}) and fourth (0.41(±0.11) mg/m{sup 2}) method. Phosphorus atomic concentration indicates effectiveness of oligonucleotide immobilization. Secondary ions intensities, characteristic for oligonucleotides, streptavidin, BSA, and proteins, allow additional insight into overlayer composition. These measurements verify the ARXPS results and show the superiority of the first two immobilization approaches in terms of streptavidin and oligonucleotide density achieved onto the surface.

  5. Immobilization of oligonucleotide probes on silicon surfaces using biotin–streptavidin system examined with microscopic and spectroscopic techniques

    International Nuclear Information System (INIS)

    Awsiuk, K.; Rysz, J.; Petrou, P.; Budkowski, A.; Bernasik, A.; Kakabakos, S.; Marzec, M.M.; Raptis, I.

    2014-01-01

    To immobilize effectively oligonucleotide probes on SiO 2 modified with (3-aminopropyl)triethoxysilane, four procedures based on streptavidin–biotin system are compared with Atomic Force Microscopy, Angle-Resolved X-ray Photoelectron Spectroscopy and Time-of-Flight Secondary Ion Mass Spectrometry. The first approach involves: adsorption of biotinylated Bovine Serum Albumin, blocking free surface sites with BSA, binding of streptavidin and biotinylated oligonucleotide (b-oligo). Final steps are exchanged in the second procedure with immobilization of preformed streptavidin–b-oligo conjugate. The third approach consists of streptavidin adsorption, blocking with BSA and b-oligo binding. Finally, streptavidin–b-oligo conjugate is immobilized directly within the fourth method. Surface coverage with biomolecules, determined from ARXPS, accords with average AFM height, and is anti-correlated with the intensity of Si+ ions. Higher biomolecular coverage was achieved during the last steps of the first (2.45(±0.38) mg/m 2 ) and second (1.31(±0.22) mg/m 2 ) approach, as compared to lower surface density resulting from the third (0.58(±0.20) mg/m 2 ) and fourth (0.41(±0.11) mg/m 2 ) method. Phosphorus atomic concentration indicates effectiveness of oligonucleotide immobilization. Secondary ions intensities, characteristic for oligonucleotides, streptavidin, BSA, and proteins, allow additional insight into overlayer composition. These measurements verify the ARXPS results and show the superiority of the first two immobilization approaches in terms of streptavidin and oligonucleotide density achieved onto the surface.

  6. Constructive, collaborative, contextual, and self-directed learning in surface anatomy education

    NARCIS (Netherlands)

    Bergman-de Bres, E.M.; Sieben, J.M.; Smailbegovic, I.; Bruin, A. de; Scherpbier, A.J.J.A.; Vleuten, C.P.M. van der

    2013-01-01

    Anatomy education often consists of a combination of lectures and laboratory sessions, the latter frequently including surface anatomy. Studying surface anatomy enables students to elaborate on their knowledge of the cadaver's static anatomy by enabling the visualization of structures, especially

  7. A theoretical and numerical study of polarimetric scattering and emission from random rough surfaces with anisotropic directional spectrum

    Science.gov (United States)

    Yueh, S. H.; Kwok, R.

    1993-01-01

    In this paper, theoretical and numerical results of the polarimetric scattering and emission from random rough surfaces with anisotropic directional spectrum are presented for the remote sensing of ocean and soil surfaces. The polarimetric scattered field for rough dielectric surfaces is derived to the second order by the small perturbation method (SPM). It is found that the second-order scattered field is coherent in nature, and its coefficients for different polarizations present the lowest-order corrections to the Fresnel reflection coefficients of the surfaces. In addition, the cross-polarized (HV and VH) components of the coherent fields are reciprocal and not zero for surfaces with anisotropic directional spectrum when the azimuth angle of the incident direction is not aligned with the symmetry directions of surfaces. In order to verify the energy conservation condition of the theoretical results, which is important if the theory is to be applied to the passive polarimetry of rough surfaces, a Monte Carlo simulation is performed to numerically calculate the polarimetric reflectivities of one-dimensional random rough surfaces which are generated with a prescribed power-law spectrum in the spectral domain and transformed to the spatial domain by the FFT. The surfaces simulated by this approach are periodic with the period corresponding to the low-wavenumber cutoff. To calculate the scattering from periodic dielectric surfaces, the authors present a new numerical technique which applies the Floquet theorem to reduce the problem to one period and does not require the evaluation of one-dimensional periodic Green's function used in the conventional method of moment formulation. Once the scattering coefficients are obtained, the polarimetric Stokes vectors for the emission from the random surfaces are then calculated according to the Kirchhoff's law and are illustrated as functions of relative azimuth observation and row directions. The second-order SPM is also

  8. Examination of Regional Trends in Cloud Properties over Surface Sites Derived from MODIS and AVHRR using the CERES Cloud Algorithm

    Science.gov (United States)

    Smith, W. L., Jr.; Minnis, P.; Bedka, K. M.; Sun-Mack, S.; Chen, Y.; Doelling, D. R.; Kato, S.; Rutan, D. A.

    2017-12-01

    Recent studies analyzing long-term measurements of surface insolation at ground sites suggest that decadal-scale trends of increasing (brightening) and decreasing (dimming) downward solar flux have occurred at various times over the last century. Regional variations have been reported that range from near 0 Wm-2/decade to as large as 9 Wm-2/decade depending on the location and time period analyzed. The more significant trends have been attributed to changes in overhead clouds and aerosols, although quantifying their relative impacts using independent observations has been difficult, owing in part to a lack of consistent long-term measurements of cloud properties. This paper examines new satellite based records of cloud properties derived from MODIS (2000-present) and AVHRR (1981- present) data to infer cloud property trends over a number of surface radiation sites across the globe. The MODIS cloud algorithm was developed for the NASA Clouds and the Earth's Radiant Energy System (CERES) project to provide a consistent record of cloud properties to help improve broadband radiation measurements and to better understand cloud radiative effects. The CERES-MODIS cloud algorithm has been modified to analyze other satellites including the AVHRR on the NOAA satellites. Compared to MODIS, obtaining consistent cloud properties over a long period from AVHRR is a much more significant challenge owing to the number of different satellites, instrument calibration uncertainties, orbital drift and other factors. Nevertheless, both the MODIS and AVHRR cloud properties will be analyzed to determine trends, and their level of consistency and correspondence with surface radiation trends derived from the ground-based radiometer data. It is anticipated that this initial study will contribute to an improved understanding of surface solar radiation trends and their relationship to clouds.

  9. A study of direct-current surface discharge plasma for a Mach 3 supersonic flow control

    Science.gov (United States)

    Shin, Jichul

    A direct-current, non-equilibrium surface glow discharge plasma in the presence of a Mach 2.85 flow is studied experimentally for flow control applications. The discharge is generated with pin-like electrodes flush mounted on a ceramic plate with sustaining currents from 25 mA to 300 mA. In the presence of a supersonic flow, two distinct discharge modes - diffuse and constricted - are observed depending on the flow and discharge operating conditions. In cathode upstream location, both diffuse and constricted discharges are observed while in cathode downstream location, the discharge mostly exhibits either constricted mode or bistable mixed mode. The effect of the discharge on the flow ("plasma actuation'') is characterized by the appearance of a weak shock wave in the vicinity of the discharge. The shock is observed at low powers (˜10 W) for the diffuse discharge mode but is absent for the higher power (˜100 W) constricted mode. High speed laser schlieren imaging suggests that the diffuse mode plasma actuation is rapid as it occurs on a time scale that is less than 100 microsec. Rotational (gas) and vibrational temperatures within the discharge are estimated by emission spectral line fits of N 2 and N+2 rovibronic bands near 365-395 nm. The electronic temperatures are estimated by using the Boltzmann plot method for Fe(I) atomic lines. Rotational temperatures are found to be high (˜1500 K) in the absence of a flow but drop sharply (˜500 K) in the presence of a supersonic flow for both the diffuse and constricted discharge modes. The vibrational and electronic temperatures are measured to be about 3000 K and 1.25 eV (14500 K), respectively, and these temperatures are the same with and without flow. The gas (rotational) temperature spatial profiles above the cathode surface are found to be similar for the diffuse and constricted modes indicating that dilatational effects due to gas heating are similar. However, complete absence of flow actuation for the

  10. Surface enhanced Raman spectroscopic direct determination of low molecular weight biothiols in umbilical cord whole blood.

    Science.gov (United States)

    Kuligowski, Julia; El-Zahry, Marwa R; Sánchez-Illana, Ángel; Quintás, Guillermo; Vento, Máximo; Lendl, Bernhard

    2016-04-07

    Biothiols play an essential role in a number of biological processes in living organisms including detoxification and metabolism. Fetal to neonatal transition poses a pro-oxidant threat for newborn infants, especially those born prematurely. A reliable and rapid tool for the direct determination of thiols in small volume whole blood (WB) samples would be desirable for its application in clinical practice. This study shows the feasibility of Surface Enhanced Raman Spectroscopy (SERS) using a silver colloid prepared by reduction of silver nitrate using hydroxylamine, as the SERS substrate for the quantification of thiols in WB samples after a simple precipitation step for protein removal. Bands originating from biothiols (790, 714 and 642 cm(-1)) were enhanced by the employed SERS substrate and the specificity of the detected SERS signal was tested for molecules presenting -SH functional groups. A statistically significant correlation between the obtained SERS signals and the thiol concentration measured using a chromatographic reference method in umbilical cord WB samples could be demonstrated. Using WB GSH concentrations obtained from the chromatographic reference procedure, a Partial Least Squares (PLS) regression model covering GSH concentrations from 13 to 2200 μM was calculated obtaining a root mean square error of prediction (RMSEP) of 381 μM when applied to an external test set. The developed approach uses small blood sample volumes (50 μL), which is important for clinical applications, especially in the field of neonatology. This feasibility study shows that the present approach combines all the necessary characteristics for its potential application in clinical practice.

  11. Direct releases to the surface and associated complementary cumulative distribution functions in the 1996 performance assessment for the Waste Isolation Pilot Plant: direct brine release

    International Nuclear Information System (INIS)

    Stoelzel, D.M.; O'Brien, D.G.; Garner, J.W.; Helton, J.C.; Johnson, J.D.; Smith, L.N.

    2000-01-01

    The following topics related to the treatment of direct brine releases to the surface environment in the 1996 performance assessment for the Waste Isolation Pilot Plant (WIPP) are presented: (i) mathematical description of models; (ii) uncertainty and sensitivity analysis results arising from subjective (i.e. epistemic) uncertainty for individual releases; (iii) construction of complementary cumulative distribution functions (CCDFs) arising from stochastic (i.e. aleatory) uncertainty; and (iv) uncertainty and sensitivity analysis results for CCDFs. The presented analyses indicate that direct brine releases do not constitute a serious threat to the effectiveness of the WIPP as a disposal facility for transuranic waste. Even when the effects of uncertain analysis inputs are taken into account, the CCDFs for direct brine releases fall substantially to the left of the boundary line specified in the US Environmental Protection Agency's standard for the geologic disposal of radioactive waste (40 CFR 191, 40 CFR 194)

  12. Thermal radiation characteristics and direct evidence of tungsten cooling on the way to nanostructure formation on its surface

    Energy Technology Data Exchange (ETDEWEB)

    Takamura, S., E-mail: takamura@aitech.ac.jp [Faculty of Engineering, Aichi Institute of Technology, Yakusa-cho, Toyota 470-0392 (Japan); Miyamoto, T. [Faculty of Engineering, Aichi Institute of Technology, Yakusa-cho, Toyota 470-0392 (Japan); Ohno, N. [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2013-07-15

    The physical properties of tungsten with nanostructure on its surface are investigated focusing on the thermal radiation and cooling characteristics. First, direct evidence of substantial W surface cooling has been clearly shown with use of a very thin thermocouple inserted into W target, which solves an uncertainty associated with a radiation thermometer. Second, the above measurements of W surface temperature make it possible to estimate quantitatively the total emissivity from which we may evaluate the radiative power through the Stefan–Boltzmann equation, which is very important for mitigation evaluation of a serious plasma heat load to the plasma-facing component.

  13. Thermal radiation characteristics and direct evidence of tungsten cooling on the way to nanostructure formation on its surface

    International Nuclear Information System (INIS)

    Takamura, S.; Miyamoto, T.; Ohno, N.

    2013-01-01

    The physical properties of tungsten with nanostructure on its surface are investigated focusing on the thermal radiation and cooling characteristics. First, direct evidence of substantial W surface cooling has been clearly shown with use of a very thin thermocouple inserted into W target, which solves an uncertainty associated with a radiation thermometer. Second, the above measurements of W surface temperature make it possible to estimate quantitatively the total emissivity from which we may evaluate the radiative power through the Stefan–Boltzmann equation, which is very important for mitigation evaluation of a serious plasma heat load to the plasma-facing component

  14. Deposition, characterization, and in vivo performance of parylene coating on general-purpose silicone for examining potential biocompatible surface modifications

    International Nuclear Information System (INIS)

    Chou, Chia-Man; Shiao, Chiao-Ju; Chung, Chi-Jen; He, Ju-Liang

    2013-01-01

    In this study, a thorough investigation of parylene coatings was conducted, as follows: microstructure (i.e., X-ray diffractometer (XRD) and cold field emission scanning electron microscope (FESEM)), mechanical property (i.e., pencil hardness and cross-cut adhesion test), surface property (i.e., water contact angle measurement, IR, and X-ray photoelectron spectroscopy (XPS)), and biocompatibility tests (i.e., fibroblast cell culture, platelet adhesion, and animal studies). The results revealed that parylene, a crystalline and brittle coating, exhibited satisfactory film adhesion and relative hydrophobicity, thereby contributing to its effective barrier properties. Fibroblast cell culturing on the parylene-deposited specimen demonstrated improved cell proliferation and equivalent to or superior blood compatibility than that of the medical-grade silicone (currently used clinically). In the animal study, parylene coatings exhibited similar subcutaneous inflammatory reactions compared with the medical-grade silicone. Both in vitro and in vivo tests demonstrated the satisfactory biocompatibility of parylene coatings. - Highlights: • A complete investigation to identify the characteristics of parylene coatings on general-purpose silicones. • Microstructures, surface properties and mechanical properties of parylene coatings were examined. • In vitro (Cell culture, platelet adhesion) tests and animal studies revealed satisfactory biocompatibility. • An alternative of medical-grade silicones is expected to be obtained

  15. Deposition, characterization, and in vivo performance of parylene coating on general-purpose silicone for examining potential biocompatible surface modifications

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Man [Division of Pediatric Surgery, Department of Surgery, Taichung Veterans General Hospital, 160, Sec. 3, Taichung Port Rd., Taichung 40705, Taiwan, ROC (China); Department of Medicine, National Yang-Ming University, 155, Sec. 2, Linong Street, Taipei 11221, Taiwan, ROC (China); Shiao, Chiao-Ju [Department of Materials Science and Engineering, Feng Chia University, 100, Wen-Hwa Rd., Taichung 40724, Taiwan, ROC (China); Chung, Chi-Jen, E-mail: cjchung@seed.net.tw [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, 666 Buzih Rd., Beitun District, Taichung 40601, Taiwan, ROC (China); He, Ju-Liang [Department of Materials Science and Engineering, Feng Chia University, 100, Wen-Hwa Rd., Taichung 40724, Taiwan, ROC (China)

    2013-12-31

    In this study, a thorough investigation of parylene coatings was conducted, as follows: microstructure (i.e., X-ray diffractometer (XRD) and cold field emission scanning electron microscope (FESEM)), mechanical property (i.e., pencil hardness and cross-cut adhesion test), surface property (i.e., water contact angle measurement, IR, and X-ray photoelectron spectroscopy (XPS)), and biocompatibility tests (i.e., fibroblast cell culture, platelet adhesion, and animal studies). The results revealed that parylene, a crystalline and brittle coating, exhibited satisfactory film adhesion and relative hydrophobicity, thereby contributing to its effective barrier properties. Fibroblast cell culturing on the parylene-deposited specimen demonstrated improved cell proliferation and equivalent to or superior blood compatibility than that of the medical-grade silicone (currently used clinically). In the animal study, parylene coatings exhibited similar subcutaneous inflammatory reactions compared with the medical-grade silicone. Both in vitro and in vivo tests demonstrated the satisfactory biocompatibility of parylene coatings. - Highlights: • A complete investigation to identify the characteristics of parylene coatings on general-purpose silicones. • Microstructures, surface properties and mechanical properties of parylene coatings were examined. • In vitro (Cell culture, platelet adhesion) tests and animal studies revealed satisfactory biocompatibility. • An alternative of medical-grade silicones is expected to be obtained.

  16. A new geometrical construction using rounded surfaces proposed for the transverse flux machine for direct drive wind turbine

    DEFF Research Database (Denmark)

    Argeseanu, Alin; Nica, Florin Valentin Traian; Ritchie, Ewen

    2014-01-01

    This paper proposes a new construction for transverse flux machines (TFM) using a rounded surfaces core geometry. The new concept has been developed for TFM with U core geometry. In this case a new analytic design procedure was proposed. The analytic design of the new TFM construction is further ...... proposed concept is more attractive for the direct-drive wind turbine application....

  17. ZnO nanostructures directly grown on paper and bacterial cellulose substrates without any surface modification layer.

    Science.gov (United States)

    Costa, Saionara V; Gonçalves, Agnaldo S; Zaguete, Maria A; Mazon, Talita; Nogueira, Ana F

    2013-09-21

    In this report, hierarchical ZnO nano- and microstructures were directly grown for the first time on a bacterial cellulose substrate and on two additional different papers by hydrothermal synthesis without any surface modification layer. Compactness and smoothness of the substrates are two important parameters that allow the growth of oriented structures.

  18. Direct monophasic replacement of fatty acid by DMSA on SPION surface

    Energy Technology Data Exchange (ETDEWEB)

    Gogoi, M. [Department of Physics, Tezpur University (Central University), Tezpur 784028 (India); Deb, P., E-mail: pdeb@tezu.ernet.in [Department of Physics, Tezpur University (Central University), Tezpur 784028 (India); Interface Chemistry and Surface Engineering, Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Duesseldorf (Germany); Vasan, G.; Keil, P.; Kostka, A.; Erbe, A. [Interface Chemistry and Surface Engineering, Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Duesseldorf (Germany)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer Monophasic replacement of fatty acid coating. Black-Right-Pointing-Pointer Ultrastable dispersion of hydrophilic SPION in a wide pH range. Black-Right-Pointing-Pointer Unaltered microstructure and property on surface modification. - Abstract: Tailoring the surface and understanding the surface characteristics is necessary for biomedical applications of superparamagnetic nanoparticles. In this paper, superparamagnetic iron oxide nanoparticles (SPIONs) were prepared by thermal decomposition of iron nitrate in presence of stearic acid as surfactant. Due to the multilayer organization of surfactant molecules over the nanoparticle surface, the surface potential can be tuned by pH changes and hence the nanoparticles can be made dispersible in nonpolar as well as in polar solvents. We have presented a simple, facile procedure for controlled replacement of stearic acid from maghemite surface and subsequent derivatization by biocompatible dimercaptosuccinic acid (DMSA) to obtain ultrastable hydrophilic nanoparticles with unaltered morphology, phase and properties. The surface chemistry of the functionalized SPIONs was analyzed by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) revealing the presence of bound and unbound thiol groups and disulfides, leading to its prolonged stability in aqueous medium. The consequence of spatially selective functionalization on the stability and solubility of surface hydrophilic SPION has also been realized.

  19. Direct observation of ozone formation on SiO2 surfaces in O2 discharges

    Science.gov (United States)

    Marinov, D.; Guaitella, O.; Booth, J. P.; Rousseau, A.

    2013-01-01

    Ozone production is studied in a pulsed O2 discharge at pressures in the range 1.3-6.7 mbar. Time-resolved absolute concentrations of O3 and O are measured in the post-discharge using UV absorption spectroscopy and two-photon absorption laser-induced fluorescence. In a bare silica discharge tube ozone is formed mainly by three-body gas-phase recombination. When the tube surface is covered by a high specific surface silica catalyst heterogeneous formation becomes the main source of ozone. The efficiency of this surface process increases with O2 pressure and is favoured by the presence of OH groups and adsorbed H2O on the surface. At p = 6.7 mbar ozone production accounts for up to 25% of the atomic oxygen losses on the surface.

  20. Direct observation of ozone formation on SiO2 surfaces in O2 discharges

    International Nuclear Information System (INIS)

    Marinov, D; Guaitella, O; Booth, J P; Rousseau, A

    2013-01-01

    Ozone production is studied in a pulsed O 2 discharge at pressures in the range 1.3-6.7 mbar. Time-resolved absolute concentrations of O 3 and O are measured in the post-discharge using UV absorption spectroscopy and two-photon absorption laser-induced fluorescence. In a bare silica discharge tube ozone is formed mainly by three-body gas-phase recombination. When the tube surface is covered by a high specific surface silica catalyst heterogeneous formation becomes the main source of ozone. The efficiency of this surface process increases with O 2 pressure and is favoured by the presence of OH groups and adsorbed H 2 O on the surface. At p = 6.7 mbar ozone production accounts for up to 25% of the atomic oxygen losses on the surface.

  1. Topographical cues of direct metal laser sintering titanium surfaces facilitate osteogenic differentiation of bone marrow mesenchymal stem cells through epigenetic regulation.

    Science.gov (United States)

    Zheng, Guoying; Guan, Binbin; Hu, Penghui; Qi, Xingying; Wang, Pingting; Kong, Yu; Liu, Zihao; Gao, Ping; Li, Rui; Zhang, Xu; Wu, Xudong; Sui, Lei

    2018-04-27

    To investigate the role of hierarchical micro/nanoscale topography of direct metal laser sintering (DMLS) titanium surfaces in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), as well as the possible underlying epigenetic mechanism. Three groups of titanium specimens were prepared, including DMLS group, sandblasted, large-grit, acid-etched (SLA) group and smooth titanium (Ti) group. BMSCs were cultured on discs followed by surface characterization. Cell adhesion and proliferation were examined by SEM and CCK-8 assay, while osteogenic-related gene expression was detected by real-time RT-PCR. Immunofluorescence, western blotting and in vivo study were also performed to evaluate the potential for osteogenic induction of materials. In addition, to investigate the underlying epigenetic mechanisms, immunofluorescence and western blotting were performed to evaluate the global level of H3K4me3 during osteogenesis. The H3K4me3 and H3K27me3 levels at the promoter area of the osteogenic gene Runx2 were detected by ChIP assay. The DMLS surface exhibits greater protein adsorption ability and shows better cell adhesion performance than SLA and Ti surfaces. Moreover, both in vitro and in vivo studies demonstrated that the DMLS surface is more favourable for the osteogenic differentiation of BMSCs than SLA and Ti surfaces. Accordingly, osteogenesis-associated gene expression in BMSCs is efficiently induced by a rapid H3K27 demethylation and increase in H3K4me3 levels at gene promoters upon osteogenic differentiation on DMLS titanium surface. Topographical cues of DMLS surfaces have greater potential for the induction of osteogenic differentiation of BMSCs than SLA and Ti surfaces both in vitro and in vivo. A potential epigenetic mechanism is that the appropriate topography allows rapid H3K27 demethylation and an increased H3K4me3 level at the promoter region of osteogenesis-associated genes during the osteogenic differentiation of BMSCs. © 2018 John Wiley

  2. The Relationship between Bullying Victimization and School Avoidance: An Examination of Direct Associations, Protective Influences, and Aggravating Factors

    Science.gov (United States)

    Hutzell, Kirsten L.; Payne, Allison Ann

    2018-01-01

    This study examines the impact of bullying victimization on school avoidance by proposing the following hypotheses: (1) Net of other factors, students who have experienced bullying victimization are more likely to engage in school avoidance behaviors; (2) There are protective factors that will decrease this relationship between bullying…

  3. Protein consensus-based surface engineering (ProCoS): a computer-assisted method for directed protein evolution.

    Science.gov (United States)

    Shivange, Amol V; Hoeffken, Hans Wolfgang; Haefner, Stefan; Schwaneberg, Ulrich

    2016-12-01

    Protein consensus-based surface engineering (ProCoS) is a simple and efficient method for directed protein evolution combining computational analysis and molecular biology tools to engineer protein surfaces. ProCoS is based on the hypothesis that conserved residues originated from a common ancestor and that these residues are crucial for the function of a protein, whereas highly variable regions (situated on the surface of a protein) can be targeted for surface engineering to maximize performance. ProCoS comprises four main steps: ( i ) identification of conserved and highly variable regions; ( ii ) protein sequence design by substituting residues in the highly variable regions, and gene synthesis; ( iii ) in vitro DNA recombination of synthetic genes; and ( iv ) screening for active variants. ProCoS is a simple method for surface mutagenesis in which multiple sequence alignment is used for selection of surface residues based on a structural model. To demonstrate the technique's utility for directed evolution, the surface of a phytase enzyme from Yersinia mollaretii (Ymphytase) was subjected to ProCoS. Screening just 1050 clones from ProCoS engineering-guided mutant libraries yielded an enzyme with 34 amino acid substitutions. The surface-engineered Ymphytase exhibited 3.8-fold higher pH stability (at pH 2.8 for 3 h) and retained 40% of the enzyme's specific activity (400 U/mg) compared with the wild-type Ymphytase. The pH stability might be attributed to a significantly increased (20 percentage points; from 9% to 29%) number of negatively charged amino acids on the surface of the engineered phytase.

  4. EXAMINATION ABOUT INFLUENCE FOR PRECISION OF 3D IMAGE MEASUREMENT FROM THE GROUND CONTROL POINT MEASUREMENT AND SURFACE MATCHING

    Directory of Open Access Journals (Sweden)

    T. Anai

    2015-05-01

    Full Text Available As the 3D image measurement software is now widely used with the recent development of computer-vision technology, the 3D measurement from the image is now has acquired the application field from desktop objects as wide as the topography survey in large geographical areas. Especially, the orientation, which used to be a complicated process in the heretofore image measurement, can be now performed automatically by simply taking many pictures around the object. And in the case of fully textured object, the 3D measurement of surface features is now done all automatically from the orientated images, and greatly facilitated the acquisition of the dense 3D point cloud from images with high precision. With all this development in the background, in the case of small and the middle size objects, we are now furnishing the all-around 3D measurement by a single digital camera sold on the market. And we have also developed the technology of the topographical measurement with the air-borne images taken by a small UAV [1~5]. In this present study, in the case of the small size objects, we examine the accuracy of surface measurement (Matching by the data of the experiments. And as to the topographic measurement, we examine the influence of GCP distribution on the accuracy by the data of the experiments. Besides, we examined the difference of the analytical results in each of the 3D image measurement software. This document reviews the processing flow of orientation and the 3D measurement of each software and explains the feature of the each software. And as to the verification of the precision of stereo-matching, we measured the test plane and the test sphere of the known form and assessed the result. As to the topography measurement, we used the air-borne image data photographed at the test field in Yadorigi of Matsuda City, Kanagawa Prefecture JAPAN. We have constructed Ground Control Point which measured by RTK-GPS and Total Station. And we show the results

  5. Examination about Influence for Precision of 3d Image Measurement from the Ground Control Point Measurement and Surface Matching

    Science.gov (United States)

    Anai, T.; Kochi, N.; Yamada, M.; Sasaki, T.; Otani, H.; Sasaki, D.; Nishimura, S.; Kimoto, K.; Yasui, N.

    2015-05-01

    As the 3D image measurement software is now widely used with the recent development of computer-vision technology, the 3D measurement from the image is now has acquired the application field from desktop objects as wide as the topography survey in large geographical areas. Especially, the orientation, which used to be a complicated process in the heretofore image measurement, can be now performed automatically by simply taking many pictures around the object. And in the case of fully textured object, the 3D measurement of surface features is now done all automatically from the orientated images, and greatly facilitated the acquisition of the dense 3D point cloud from images with high precision. With all this development in the background, in the case of small and the middle size objects, we are now furnishing the all-around 3D measurement by a single digital camera sold on the market. And we have also developed the technology of the topographical measurement with the air-borne images taken by a small UAV [1~5]. In this present study, in the case of the small size objects, we examine the accuracy of surface measurement (Matching) by the data of the experiments. And as to the topographic measurement, we examine the influence of GCP distribution on the accuracy by the data of the experiments. Besides, we examined the difference of the analytical results in each of the 3D image measurement software. This document reviews the processing flow of orientation and the 3D measurement of each software and explains the feature of the each software. And as to the verification of the precision of stereo-matching, we measured the test plane and the test sphere of the known form and assessed the result. As to the topography measurement, we used the air-borne image data photographed at the test field in Yadorigi of Matsuda City, Kanagawa Prefecture JAPAN. We have constructed Ground Control Point which measured by RTK-GPS and Total Station. And we show the results of analysis made

  6. Quantitative surface topography assessment of directly compressed and roller compacted tablet cores using photometric stereo image analysis.

    Science.gov (United States)

    Allesø, Morten; Holm, Per; Carstensen, Jens Michael; Holm, René

    2016-05-25

    Surface topography, in the context of surface smoothness/roughness, was investigated by the use of an image analysis technique, MultiRay™, related to photometric stereo, on different tablet batches manufactured either by direct compression or roller compaction. In the present study, oblique illumination of the tablet (darkfield) was considered and the area of cracks and pores in the surface was used as a measure of tablet surface topography; the higher a value, the rougher the surface. The investigations demonstrated a high precision of the proposed technique, which was able to rapidly (within milliseconds) and quantitatively measure the obtained surface topography of the produced tablets. Compaction history, in the form of applied roll force and tablet punch pressure, was also reflected in the measured smoothness of the tablet surfaces. Generally it was found that a higher degree of plastic deformation of the microcrystalline cellulose resulted in a smoother tablet surface. This altogether demonstrated that the technique provides the pharmaceutical developer with a reliable, quantitative response parameter for visual appearance of solid dosage forms, which may be used for process and ultimately product optimization. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Electrostatic interaction between an enzyme and electrodes in the electric double layer examined in a view of direct electron transfer-type bioelectrocatalysis.

    Science.gov (United States)

    Sugimoto, Yu; Kitazumi, Yuki; Tsujimura, Seiya; Shirai, Osamu; Yamamoto, Masahiro; Kano, Kenji

    2015-01-15

    Effects of the electrode poential on the activity of an adsorbed enzyme has been examined by using copper efflux oxidase (CueO) as a model enzyme and by monitoring direct electron transfer (DET)-type bioelectrocatalysis of oxygen reduction. CueO adsorbed on bare Au electrodes at around the point of zero charge (E(pzc)) shows the highest DET activity, and the activity decreases as the adsorption potential (E(ad); at which the enzyme adsorbs) is far from E(pzc). We propose a model to explain the phenomena in which the electrostatic interaction between the enzyme and electrodes in the electric double layer affects the orientation and the stability of the adsorbed enzyme. The self-assembled monolayer of butanethiol on Au electrodes decreases the electric field in the outside of the inner Helmholtz plane and drastically diminishes the E(ad) dependence of the DET activity of CueO. When CueO is adsorbed on bare Au electrodes under open circuit potential and then is held at hold potentials (E(ho)) more positive than E(pzc), the DET activity of the CueO rapidly decreases with the hold time. The strong electric field with positive surface charge density on the metallic electrode (σ(M)) leads to fatal denaturation of the adsorbed CueO. Such denaturation effect is not so serious at E(ho)

  8. Measurement of Near-Surface Salinity, Temperature and Directional Wave Spectra using a Novel Wave-Following, Lagrangian Surface Contact Buoy

    Science.gov (United States)

    Boyle, J. P.

    2016-02-01

    Results from a surface contact drifter buoy which measures near-surface conductivity ( 10 cm depth), sea state characteristics and near-surface water temperature ( 2 cm depth) are described. This light (righting. It has a small above-surface profile and low windage, resulting in near-Lagrangian drift characteristics. It is autonomous, with low power requirements and solar panel battery recharging. Onboard sensors include an inductive toroidal conductivity probe for salinity measurement, a nine-degrees-of-freedom motion package for derivation of directional wave spectra and a thermocouple for water temperature measurement. Data retrieval for expendable, ocean-going operation uses an onboard Argos transmitter. Scientific results as well as data processing algorithms are presented from laboratory and field experiments which support qualification of buoy platform measurements. These include sensor calibration experiments, longer-term dock-side biofouling experiments during 2013-2014 and a series of short-duration ocean deployments in the Gulf Stream in 2014. In addition, a treatment method will be described which appears to minimize the effects of biofouling on the inductive conductivity probe when in coastal surface waters. Due to its low cost and ease of deployment, scores, perhaps hundreds of these novel instruments could be deployed from ships or aircraft during process studies or to provide surface validation for satellite-based measurements, particularly in high precipitation regions.

  9. Examination of the protective roles of helmet/faceshield and directionality for human head under blast waves.

    Science.gov (United States)

    Sarvghad-Moghaddam, Hesam; Jazi, Mehdi Salimi; Rezaei, Asghar; Karami, Ghodrat; Ziejewski, Mariusz

    2015-01-01

    A parametric study was conducted to delineate the efficacy of personal protective equipment (PPE), such as ballistic faceshields and advanced combat helmets, in the case of a blast. The propagations of blast waves and their interactions with an unprotected head, a helmeted one, and a fully protected finite element head model (FEHM) were modeled. The biomechanical parameters of the brain were recorded when the FEHM was exposed to shockwaves from the front, back, top, and bottom. The directional dependent tissue response of the brain and the variable efficiency of PPE with respect to the blast orientation were two major results of this study.

  10. Self-Assembled Nanocube-Based Plasmene Nanosheets as Soft Surface-Enhanced Raman Scattering Substrates toward Direct Quantitative Drug Identification on Surfaces.

    Science.gov (United States)

    Si, Kae Jye; Guo, Pengzhen; Shi, Qianqian; Cheng, Wenlong

    2015-05-19

    We report on self-assembled nanocube-based plasmene nanosheets as new surface-enhanced Raman scattering (SERS) substrates toward direct identification of a trace amount of drugs sitting on topologically complex real-world surfaces. The uniform nanocube arrays (superlattices) led to low spatial SERS signal variances (∼2%). Unlike conventional SERS substrates which are based on rigid nanostructured metals, our plasmene nanosheets are mechanically soft and optically semitransparent, enabling conformal attachment to real-world solid surfaces such as banknotes for direct SERS identification of drugs. Our plasmene nanosheets were able to detect benzocaine overdose down to a parts-per-billion (ppb) level with an excellent linear relationship (R(2) > 0.99) between characteristic peak intensity and concentration. On banknote surfaces, a detection limit of ∼0.9 × 10(-6) g/cm(2) benzocaine could be achieved. Furthermore, a few other drugs could also be identified, even in their binary mixtures with our plasmene nanosheets. Our experimental results clearly show that our plasmene sheets represent a new class of unique SERS substrates, potentially serving as a versatile platform for real-world forensic drug identification.

  11. Directional and dynamic modulation of the optical emission of an individual GaAs nanowire using surface acoustic waves.

    Science.gov (United States)

    Kinzel, Jörg B; Rudolph, Daniel; Bichler, Max; Abstreiter, Gerhard; Finley, Jonathan J; Koblmüller, Gregor; Wixforth, Achim; Krenner, Hubert J

    2011-04-13

    We report on optical experiments performed on individual GaAs nanowires and the manipulation of their temporal emission characteristics using a surface acoustic wave. We find a pronounced, characteristic suppression of the emission intensity for the surface acoustic wave propagation aligned with the axis of the nanowire. Furthermore, we demonstrate that this quenching is dynamical as it shows a pronounced modulation as the local phase of the surface acoustic wave is tuned. These effects are strongly reduced for a surface acoustic wave applied in the direction perpendicular to the axis of the nanowire due to their inherent one-dimensional geometry. We resolve a fully dynamic modulation of the nanowire emission up to 678 MHz not limited by the physical properties of the nanowires.

  12. Direct Fermi-surface image of hidden nesting for NaMo6O17 and KMo6O17

    International Nuclear Information System (INIS)

    Gweon, G.-.; Allen, J.W.; Clack, J.A.; Zhang, Y.X.; Poirier, D.M.; Benning, P.J.; Olson, C.G.; Marcus, J.; Schlenker, C.

    1997-01-01

    We report direct Fermi-surface images obtained with angle-resolved photoemission spectroscopy (ARPES) for NaMo 6 O 17 and KMo 6 O 17 above the charge-density wave transition temperatures. We also report ARPES spectra of the valence band of NaMo 6 O 17 . The images imply a Fermi surface (FS) based on three underlying quasi-one-dimensional (quasi-1D) surfaces. Thus it agrees in detail with that expected in the hidden nesting picture of Whangbo et al. [Science 252, 96 (1991)], but differs greatly from a FS deduced in a previous study by Breuer et al. [Phys. Rev. Lett. 76, 3172 (1996)], which found only two underlying quasi-1D surfaces. copyright 1997 The American Physical Society

  13. Direct Observation of Molecular Preorganization for Chirality Transfer on a Catalyst Surface

    DEFF Research Database (Denmark)

    Demers-Carpentier, Vincent; Goubert,, Guillaume; Masini, Federico

    2011-01-01

    The chemisorption of specific optically active compounds on metal surfaces can create catalytically active chirality transfer sites. However, the mechanism through which these sites bias the stereoselectivity of reactions (typically hydrogenations) is generally assumed to be so complex that conti......The chemisorption of specific optically active compounds on metal surfaces can create catalytically active chirality transfer sites. However, the mechanism through which these sites bias the stereoselectivity of reactions (typically hydrogenations) is generally assumed to be so complex...... functional theory calculations reveals the stereodirecting forces governing preorganization into precise chiral modifier-substrate bimolecular surface complexes. The study shows that the chiral modifier induces prochiral switching on the surface and that different prochiral ratios prevail at different...

  14. Native Liquid Extraction Surface Analysis Mass Spectrometry: Analysis of Noncovalent Protein Complexes Directly from Dried Substrates

    Science.gov (United States)

    Martin, Nicholas J.; Griffiths, Rian L.; Edwards, Rebecca L.; Cooper, Helen J.

    2015-08-01

    Liquid extraction surface analysis (LESA) mass spectrometry is a promising tool for the analysis of intact proteins from biological substrates. Here, we demonstrate native LESA mass spectrometry of noncovalent protein complexes of myoglobin and hemoglobin from a range of surfaces. Holomyoglobin, in which apomyoglobin is noncovalently bound to the prosthetic heme group, was observed following LESA mass spectrometry of myoglobin dried onto glass and polyvinylidene fluoride surfaces. Tetrameric hemoglobin [(αβ)2 4H] was observed following LESA mass spectrometry of hemoglobin dried onto glass and polyvinylidene fluoride (PVDF) surfaces, and from dried blood spots (DBS) on filter paper. Heme-bound dimers and monomers were also observed. The `contact' LESA approach was particularly suitable for the analysis of hemoglobin tetramers from DBS.

  15. Stardust Interstellar Preliminary Examination X: Impact Speeds and Directions of Interstellar Grains on the Stardust Dust Collector

    Science.gov (United States)

    Sterken, Veerle J.; Westphal, Andrew J.; Altobelli, Nicolas; Grun, Eberhard; Hillier, Jon K.; Postberg, Frank; Allen, Carlton; Stroud, Rhonda M.; Sandford, S. A.; Zolensky, Michael E.

    2014-01-01

    On the basis of an interstellar dust model compatible with Ulysses and Galileo observations, we calculate and predict the trajectories of interstellar dust (ISD) in the solar system and the distribution of the impact speeds, directions, and flux of ISD particles on the Stardust Interstellar Dust Collector during the two collection periods of the mission. We find that the expected impact velocities are generally low (less than 10 km per second) for particles with the ratio of the solar radiation pressure force to the solar gravitational force beta greater than 1, and that some of the particles will impact on the cometary side of the collector. If we assume astronomical silicates for particle material and a density of 2 grams per cubic centimeter, and use the Ulysses measurements and the ISD trajectory simulations, we conclude that the total number of (detectable) captured ISD particles may be on the order of 50. In companion papers in this volume, we report the discovery of three interstellar dust candidates in the Stardust aerogel tiles. The impact directions and speeds of these candidates are consistent with those calculated from our ISD propagation model, within the uncertainties of the model and of the observations.

  16. Examining the Direct and Indirect Effects of Fear and Anger on Criminal Decision Making Among Known Offenders.

    Science.gov (United States)

    Bouffard, Jeff A

    2015-12-01

    Deterrence represents the central theoretical core of the American criminal justice system, yet relatively little attention has been paid to how emotions like fear and anger may relate to deterrence. Psychological research has debated whether negative emotions each have similar impacts on decision making (valence approaches) or if distinct emotions have unique impacts (appraisal tendency approaches). This study explores the direct and indirect influences of fear and anger on hypothetical drunk driving likelihood, including their impact on cost perceptions. Surveys were administered to 1,013 male and female incarcerated felony offenders in the Southwestern United States. Using a multivariate path model and controlling for a number of other individual factors, current fear related to increased cost perceptions and anger to decreased costs. Anger also maintained a direct influence on drunk driving, whereas fear did not. Despite their shared negative valence, fear and anger appear to have dissimilar influences on cost perceptions and criminal decision making. A better understanding of these processes may lead to improved crime prevention approaches. © The Author(s) 2014.

  17. Water in contact with extended hydrophobic surfaces: Direct evidence of weak dewetting

    International Nuclear Information System (INIS)

    Jensen, Torben R.; Kjaer, Kristian; Oestergaard Jensen, Morten; Peters, Guenther H.; Reitzel, Niels; Balashev, Konstantin; Bjoernholm, Thomas

    2003-01-01

    X-ray reflectivity measurements reveal a significant dewetting of a large hydrophobic paraffin surface floating on water. The dewetting phenomenon extends less than 15 A into the bulk water phase and results in an integrated density deficit of about one water molecule per 25-30 A 2 of water in contact with the paraffin surface. The results are supported by molecular dynamics simulations and related to the hydrophobic effect

  18. Direct Covalent Grafting of Phytate to Titanium Surfaces through Ti-O-P Bonding Shows Bone Stimulating Surface Properties and Decreased Bacterial Adhesion.

    Science.gov (United States)

    Córdoba, Alba; Hierro-Oliva, Margarita; Pacha-Olivenza, Miguel Ángel; Fernández-Calderón, María Coronada; Perelló, Joan; Isern, Bernat; González-Martín, María Luisa; Monjo, Marta; Ramis, Joana M

    2016-05-11

    Myo-inositol hexaphosphate, also called phytic acid or phytate (IP6), is a natural molecule abundant in vegetable seeds and legumes. Among other functions, IP6 inhibits bone resorption. It is adsorbed on the surface of hydroxyapatite, inhibiting its dissolution and decreasing the progressive loss of bone mass. We present here a method to directly functionalize Ti surfaces covalently with IP6, without using a cross-linker molecule, through the reaction of the phosphate groups of IP6 with the TiO2 layer of Ti substrates. The grafting reaction consisted of an immersion in an IP6 solution to allow the physisorption of the molecules onto the substrate, followed by a heating step to obtain its chemisorption, in an adaptation of the T-Bag method. The reaction was highly dependent on the IP6 solution pH, only achieving a covalent Ti-O-P bond at pH 0. We evaluated two acidic pretreatments of the Ti surface, to increase its hydroxylic content, HNO3 30% and HF 0.2%. The structure of the coated surfaces was characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and ellipsometry. The stability of the IP6 coating after three months of storage and after sterilization with γ-irradiation was also determined. Then, we evaluated the biological effect of Ti-IP6 surfaces in vitro on MC3T3-E1 osteoblastic cells, showing an osteogenic effect. Finally, the effect of the surfaces on the adhesion and biofilm viability of oral microorganisms S. mutans and S. sanguinis was also studied, and we found that Ti-IP6 surfaces decreased the adhesion of S. sanguinis. A surface that actively improves osseointegration while decreasing the bacterial adhesion could be suitable for use in bone implants.

  19. Plasmonic detection and visualization of directed adsorption of charged single nanoparticles to patterned surfaces

    International Nuclear Information System (INIS)

    Scherbahn, Vitali; Nizamov, Shavkat; Mirsky, Vladimir M.

    2016-01-01

    It has recently been shown that surface plasmon microscopy (SPM) allows single nanoparticles (NPs) on sensor surfaces to be detected and analyzed. The authors have applied this technique to study the adsorption of single metallic and plastic NPs. Binding of gold NPs (40, 60 and 100 nm in size) and of 100 nm polystyrene NPs to gold surfaces modified by differently ω-functionalized alkyl thiols was studied first. Self-assembled monolayers (SAM) with varying terminal functions including amino, carboxy, oligo(ethylene glycol), methyl, or trimethylammonium groups were deposited on gold films to form surfaces possessing different charge and hydrophobicity. The affinity of NPs to these surfaces depends strongly on the type of coating. SAMs terminated with trimethylammonium groups and carboxy group display highly different affinity and therefore were preferred when creating patterned charged surfaces. Citrate-stabilized gold NPs and sulfate-terminated polystyrene NPs were used as negatively charged NPs, while branched polyethylenimine-coated silver NPs were used as positively charged NPs. It is shown that the charged patterned areas on the gold films are capable of selectively adsorbing oppositely charged NPs that can be detected and analyzed with an ∼1 ng⋅mL −1 detection limit. (author)

  20. Large-Area Direct Laser-Shock Imprinting of a 3D Biomimic Hierarchical Metal Surface for Triboelectric Nanogenerators.

    Science.gov (United States)

    Jin, Shengyu; Wang, Yixiu; Motlag, Maithilee; Gao, Shengjie; Xu, Jin; Nian, Qiong; Wu, Wenzhuo; Cheng, Gary J

    2018-03-01

    Ongoing efforts in triboelectric nanogenerators (TENGs) focus on enhancing power generation, but obstacles concerning the economical and cost-effective production of TENGs continue to prevail. Micro-/nanostructure engineering of polymer surfaces has been dominantly utilized for boosting the contact triboelectrification, with deposited metal electrodes for collecting the scavenged energy. Nevertheless, this state-of-the-art approach is limited by the vague potential for producing 3D hierarchical surface structures with conformable coverage of high-quality metal. Laser-shock imprinting (LSI) is emerging as a potentially scalable approach for directly surface patterning of a wide range of metals with 3D nanoscale structures by design, benefiting from the ultrahigh-strain-rate forming process. Here, a TENG device is demonstrated with LSI-processed biomimetic hierarchically structured metal electrodes for efficient harvesting of water-drop energy in the environment. Mimicking and transferring hierarchical microstructures from natural templates, such as leaves, into these water-TENG devices is effective regarding repelling water drops from the device surface, since surface hydrophobicity from these biomicrostructures maximizes the TENG output. Among various leaves' microstructures, hierarchical microstructures from dried bamboo leaves are preferable regarding maximizing power output, which is attributed to their unique structures, containing both dense nanostructures and microscale features, compared with other types of leaves. Also, the triboelectric output is significantly improved by closely mimicking the hydrophobic nature of the leaves in the LSI-processed metal surface after functionalizing it with low-surface-energy self-assembled-monolayers. The approach opens doors to new manufacturable TENG technologies for economically feasible and ecologically friendly production of functional devices with directly patterned 3D biomimic metallic surfaces in energy

  1. Nondestructive examination

    International Nuclear Information System (INIS)

    Mletzko, U.

    1980-01-01

    Visual examination is treated as a method for the control of size and shape of components, surface quality and weld performance. Dye penetrant, magnetic particle and eddy current examinations are treated as methods for the evaluation of surface defects and material properties. The limitations to certain materials, defect sizes and types are shown. (orig./RW)

  2. Direct surface analysis coupled to high-resolution mass spectrometry reveals heterogeneous composition of the cuticle of Hibiscus trionum petals.

    Science.gov (United States)

    Giorio, Chiara; Moyroud, Edwige; Glover, Beverley J; Skelton, Paul C; Kalberer, Markus

    2015-10-06

    Plant cuticle, which is the outermost layer covering the aerial parts of all plants including petals and leaves, can present a wide range of patterns that, combined with cell shape, can generate unique physical, mechanical, or optical properties. For example, arrays of regularly spaced nanoridges have been found on the dark (anthocyanin-rich) portion at the base of the petals of Hibiscus trionum. Those ridges act as a diffraction grating, producing an iridescent effect. Because the surface of the distal white region of the petals is smooth and noniridescent, a selective chemical characterization of the surface of the petals on different portions (i.e., ridged vs smooth) is needed to understand whether distinct cuticular patterns correlate with distinct chemical compositions of the cuticle. In the present study, a rapid screening method has been developed for the direct surface analysis of Hibiscus trionum petals using liquid extraction surface analysis (LESA) coupled with high-resolution mass spectrometry. The optimized method was used to characterize a wide range of plant metabolites and cuticle monomers on the upper (adaxial) surface of the petals on both the white/smooth and anthocyanic/ridged regions, and on the lower (abaxial) surface, which is entirely smooth. The main components detected on the surface of the petals are low-molecular-weight organic acids, sugars, and flavonoids. The ridged portion on the upper surface of the petal is enriched in long-chain fatty acids, which are constituents of the wax fraction of the cuticle. These compounds were not detected on the white/smooth region of the upper petal surface or on the smooth lower surface.

  3. "When diet and exercise are not enough": an examination of lifestyle change inefficacy claims in direct-to-consumer advertising.

    Science.gov (United States)

    Byrne, Sahara; Niederdeppe, Jeff; Avery, Rosemary J; Cantor, Jonathan

    2013-01-01

    Previous research suggests that direct-to-consumer (DTC) advertisements for pharmaceutical drugs have the potential to influence consumers' perceptions of whether symptoms should be treated medically and/or through behavior change. However, the relative frequency of messages emphasizing these approaches in pharmaceutical advertising remains largely unknown. A content analysis of print and television advertisements for cholesterol management medication between 1994 and 2005 (for print) and between 1999 and 2007 (for television) was conducted. First, the extent to which established theoretical constructs drawn from health communication scholarship are depicted in the content of DTC cholesterol advertisements is quantified. Second, specific claims about behavior change inefficacy when a pharmaceutical alternative is available are identified. Findings indicate that DTC ads offer many mixed messages about the efficacy of diet and exercise in reducing cholesterol and risk of heart disease. Theoretical and practical implications of this work are discussed.

  4. Direct chemical synthesis of MnO2 nanowhiskers on MXene surfaces for supercapacitor applications

    KAUST Repository

    Baby, Rakhi Raghavan; Ahmed, Bilal; Anjum, Dalaver H.; Alshareef, Husam N.

    2016-01-01

    Transition metal carbides (MXenes) are an emerging class of two dimensional (2D) materials with promising electrochemical energy storage performance. Herein, for the first time, by direct chemical synthesis, nanocrystalline ε-MnO2 whiskers were

  5. Establishing Antibacterial Multilayer Films on the Surface of Direct Metal Laser Sintered Titanium Primed with Phase-Transited Lysozyme

    Science.gov (United States)

    Guan, Binbin; Wang, Haorong; Xu, Ruiqing; Zheng, Guoying; Yang, Jie; Liu, Zihao; Cao, Man; Wu, Mingyao; Song, Jinhua; Li, Neng; Li, Ting; Cai, Qing; Yang, Xiaoping; Li, Yanqiu; Zhang, Xu

    2016-11-01

    Direct metal laser sintering is a technology that allows the fabrication of titanium (Ti) implants with a functional gradation of porosity and surface roughness according to three-dimensional (3D) computer data. The surface roughness of direct metal laser sintered titanium (DMLS-Ti) implants may provide abundant binding sites for bacteria. Bacterial colonization and subsequent biofilm formation can cause unsatisfactory cell adhesion and implant-related infections. To prevent such infections, a novel phase-transited lysozyme (PTL) was utilized as an initial functional layer to simply and effectively prime DMLS-Ti surfaces for subsequent coating with antibacterial multilayers. The purpose of the present study was to establish a surface with dual biological functionality. The minocycline-loaded polyelectrolyte multilayers of hyaluronic acid (HA) and chitosan (CS) formed via a layer-by-layer (LbL) self-assembly technique on PTL-functionalized DMLS-Ti were designed to inhibit pathogenic microbial infections while allowing the DMLS-Ti itself and the modified coatings to retain acceptable biocompatibility. The experimental results indicate that the DMLS-Ti and the hydrogel treated surfaces can inhibit early bacterial adhesion while completely preserving osteoblast functions. This design is expected to gain considerable interest in the medical field and to have good potential for applications in multifunctional DMLS-Ti implants.

  6. Establishing Antibacterial Multilayer Films on the Surface of Direct Metal Laser Sintered Titanium Primed with Phase-Transited Lysozyme.

    Science.gov (United States)

    Guan, Binbin; Wang, Haorong; Xu, Ruiqing; Zheng, Guoying; Yang, Jie; Liu, Zihao; Cao, Man; Wu, Mingyao; Song, Jinhua; Li, Neng; Li, Ting; Cai, Qing; Yang, Xiaoping; Li, Yanqiu; Zhang, Xu

    2016-11-08

    Direct metal laser sintering is a technology that allows the fabrication of titanium (Ti) implants with a functional gradation of porosity and surface roughness according to three-dimensional (3D) computer data. The surface roughness of direct metal laser sintered titanium (DMLS-Ti) implants may provide abundant binding sites for bacteria. Bacterial colonization and subsequent biofilm formation can cause unsatisfactory cell adhesion and implant-related infections. To prevent such infections, a novel phase-transited lysozyme (PTL) was utilized as an initial functional layer to simply and effectively prime DMLS-Ti surfaces for subsequent coating with antibacterial multilayers. The purpose of the present study was to establish a surface with dual biological functionality. The minocycline-loaded polyelectrolyte multilayers of hyaluronic acid (HA) and chitosan (CS) formed via a layer-by-layer (LbL) self-assembly technique on PTL-functionalized DMLS-Ti were designed to inhibit pathogenic microbial infections while allowing the DMLS-Ti itself and the modified coatings to retain acceptable biocompatibility. The experimental results indicate that the DMLS-Ti and the hydrogel treated surfaces can inhibit early bacterial adhesion while completely preserving osteoblast functions. This design is expected to gain considerable interest in the medical field and to have good potential for applications in multifunctional DMLS-Ti implants.

  7. Directed Hierarchical Patterning of Polycarbonate Bisphenol A Glass Surface along Predictable Sites

    Directory of Open Access Journals (Sweden)

    Mazen Khaled

    2015-01-01

    Full Text Available This paper reports a new approach in designing textured and hierarchical surfaces on polycarbonate bisphenol A type glass to improve hydrophobicity and dust repellent application for solar panels. Solvent- and vapor-induced crystallization of thermoplastic glass polycarbonate bisphenol A (PC is carried out to create hierarchically structured surfaces. In this approach dichloromethane (DCM and acetone are used in sequence. Samples are initially immersed in DCM liquid to generate nanopores, followed by exposing to acetone vapor resulting in the generation of hierarchical structure along the interporous sites. The effects of exposure time on the size, density, and distance of the generated spherules and gaps are studied and correlated with the optical transmittance and contact angle measurements at the surface. At optimized exposure time a contact angle of 98° was achieved with 80% optical transmittance. To further increase the hydrophobicity while maintaining optical properties, the hierarchical surfaces were coated with a transparent composite of tetraethyl orthosilicate as precursor and hexamethyldisilazane as silylation agent resulting in an average contact angle of 135.8° and transmittance of around 70%. FTIR and AFM characterization techniques are employed to study the composition and morphology of the generated surfaces.

  8. Serial number coding and decoding by laser interference direct patterning on the original product surface for anti-counterfeiting.

    Science.gov (United States)

    Park, In-Yong; Ahn, Sanghoon; Kim, Youngduk; Bae, Han-Sung; Kang, Hee-Shin; Yoo, Jason; Noh, Jiwhan

    2017-06-26

    Here, we investigate a method to distinguish the counterfeits by patterning multiple reflective type grating directly on the surface of the original product and analyze the serial number from its rotation angles of diffracted fringes. The micro-sized gratings were fabricated on the surface of the material at high speeds by illuminating the interference fringe generated by passing a high-energy pulse laser through the Fresnel biprism. In addition, analysis of the grating's diffraction fringes was performed using a continuous wave laser.

  9. The effect of nanoscratching direction on the plastic deformation and surface morphology of InP crystals

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J. Y.; Ponce, F. A. [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States); Caldas, P. G.; Prioli, R. [Departamento de Física, Pontificia Universidade Católica do Rio de Janeiro, Marques de São Vicente 225, Rio de Janeiro, 22453-900 Rio de Janeiro (Brazil); Almeida, C. M. [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Technología (INMETRO), Duque de Caxias, Rio de Janeiro 25250-020 (Brazil)

    2013-11-28

    The microstructure of (001) InP crystals scratched with a sharp diamond tip depends strongly on the scratching direction. The scratch surface is found to conform to the radius of curvature of the tip (∼60 nm) by the formation of atomic crystal steps produced by dislocation glide along (111) planes. 〈110〉 scratches lead to coherent local crystal lattice movement and rotation causing deep dislocation propagation into the crystal and irregular pileups at the sides of the scratch surface. 〈100〉 scratches lead to incoherent lattice movement causing dislocation locking that inhibits their propagation and results in regular pileups.

  10. Large displacement bi-directional out-of-plane Lorentz actuator array for surface manipulation

    International Nuclear Information System (INIS)

    Park, Byoungyoul; Afsharipour, Elnaz; Chrusch, Dwayne; Shafai, Cyrus; Andersen, David; Burley, Greg

    2017-01-01

    This paper presents a large displacement out-of-plane Lorentz actuator array for surface manipulation. Actuators are formed from single crystal silicon flexible serpentine springs on either side of a rigid crossbar containing a narrow contact pillar. A rigid mounting rail system was employed to enable a 5  ×  5 array, which offers scalability of the array size. Analytical and finite element models were used to optimize actuator design. Individual actuators were tested to show linear deflection response of  ±150 µ m motion, using a  ±14.7 mA current in the presence of a 0.48 T magnetic field. This actuator array is suitable for various 2D surface modification applications due to its large deformation with low current and temperature of operation, and narrow contact area to a target surface. (paper)

  11. Direct Experimental Evidence of Back-Surface Acceleration from Laser-Irradiated Foils

    International Nuclear Information System (INIS)

    Allen, M; Patel, P; Mackinnon, A; Price, D; Wilks, S; Morse, E

    2004-01-01

    Au foils were irradiated with a 100-TW, 100-fs laser at intensities greater than 10 20 W/cm 2 producing proton beams with a total yield of ∼ 10 11 and maximum proton energy of > 9 MeV. Removing contamination from the back surface of Au foils with an Ar-ion sputter gun reduced the total yield of accelerated protons to less than 1% of the yield observed without removing contamination. Removing contamination the front surface (laser-interaction side) of the target had no observable effect on the proton beam. We present a one-dimensional particle-in-cell simulation that models the experiment. Both experimental and simulation results are consistent with the back-surface acceleration mechanism described in the text

  12. Evaluation of pediatrics entrance surface air kerma during chest X-ray examinations in some Khartoum hospitals

    International Nuclear Information System (INIS)

    Mohamed, Hassan Ishag Yahya

    2015-10-01

    The aim of this study was to determine the amount of entrance surface air kerma dose in air that can reflect the amount of the risk that the children, are subjected to. The parameters that are involved in this project are x-ray tube current (mA), exposure time (sec.), and focal skin distance (FSD) in cm. ESAK is calculated using the equation: ESAK=(Output (mGy/mAs) x (100/FSD) 2 X mAs) for different examination of different patients. 65 cases were involved in this study, the results show that the ESAK mean value (0.18±0.07) mGy, (0.06±0.07) mGy, (0.045±0.017) mGy and (0.049±0.013) mGy at the hospitals (IBNIOF Omdurman, police, clinic doctor) respectively. IBNIOF presented the highest ESAK (0.18±0.07) mGy, while it was lowest in police (0.045±0.017) mGy. The estimated ESAK value were within the established international reference dose values and also the values obtained in pervious studies however, variations were observed in ESAK values among hospitals under study which could be due to the differences in exposure parameters used. Also tube output has some effect on obtained ESAK. (author)

  13. Direct observation of spin-resolved full and empty electron states in ferromagnetic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Berti, G., E-mail: giulia.berti@polimi.it; Calloni, A.; Brambilla, A.; Bussetti, G.; Duò, L.; Ciccacci, F. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano (Italy)

    2014-07-15

    We present a versatile apparatus for the study of ferromagnetic surfaces, which combines spin-polarized photoemission and inverse photoemission spectroscopies. Samples can be grown by molecular beam epitaxy and analyzed in situ. Spin-resolved photoemission spectroscopy analysis is done with a hemispherical electron analyzer coupled to a 25 kV-Mott detector. Inverse photoemission spectroscopy experiments are performed with GaAs crystals as spin-polarized electron sources and a UV bandpass photon detector. As an example, measurements on the oxygen passivated Fe(100)-p(1×1)O surface are presented.

  14. The effects of psychotherapy treatment on outcome in bulimia nervosa: Examining indirect effects through emotion regulation, self-directed behavior, and self-discrepancy within the mediation model.

    Science.gov (United States)

    Peterson, Carol B; Berg, Kelly C; Crosby, Ross D; Lavender, Jason M; Accurso, Erin C; Ciao, Anna C; Smith, Tracey L; Klein, Marjorie; Mitchell, James E; Crow, Scott J; Wonderlich, Stephen A

    2017-06-01

    The purpose of this investigation was to examine the indirect effects of Integrative Cognitive-Affective Therapy (ICAT-BN) and Cognitive-Behavioral Therapy-Enhanced (CBT-E) on bulimia nervosa (BN) treatment outcome through three hypothesized maintenance variables: emotion regulation, self-directed behavior, and self-discrepancy. Eighty adults with BN were randomized to 21 sessions of ICAT-BN or CBT-E. A regression-based bootstrapping approach was used to test the indirect effects of treatment on outcome at end of treatment through emotion regulation and self-directed behavior measured at mid-treatment, as well as the indirect effects of treatment at follow-up through emotion regulation, self-directed behavior, and self-discrepancy measured at end of treatment. No significant differences in outcome between treatment conditions were observed, and no significant direct or indirect effects were found. Examination of the individual paths within the indirect effects models revealed comparable treatment effects. Across treatments, improvements in emotion regulation and self-directed behavior between baseline and mid-treatment predicted improvements in global eating disorder scores but not binge eating and purging frequency at end of treatment. Baseline to end of treatment improvements in emotion regulation and self-directed behavior also predicted improvements in global eating disorder scores at follow-up. Baseline to end of treatment improvements in emotion regulation predicted improvements in binge eating and baseline to end of treatment increases in positive self-directed behavior predicted improvements in purging at follow-up. These findings suggest that emotion regulation and self-directed behavior are important treatment targets and that ICAT-BN and CBT-E are comparable in modifying these psychological processes among individuals with BN. © 2017 Wiley Periodicals, Inc.

  15. Rapid and Direct VHH and Target Identification by Staphylococcal Surface Display Libraries

    Directory of Open Access Journals (Sweden)

    Marco Cavallari

    2017-07-01

    Full Text Available Unbiased and simultaneous identification of a specific antibody and its target antigen has been difficult without prior knowledge of at least one interaction partner. Immunization with complex mixtures of antigens such as whole organisms and tissue extracts including tumoral ones evokes a highly diverse immune response. During such a response, antibodies are generated against a variety of epitopes in the mixture. Here, we propose a surface display design that is suited to simultaneously identify camelid single domain antibodies and their targets. Immune libraries of single-domain antigen recognition fragments from camelid heavy chain-only antibodies (VHH were attached to the peptidoglycan of Gram-positive Staphylococcus aureus employing its endogenous housekeeping sortase enzyme. The sortase transpeptidation reaction covalently attached the VHH to the bacterial peptidoglycan. The reversible nature of the reaction allowed the recovery of the VHH from the bacterial surface and the use of the VHH in downstream applications. These staphylococcal surface display libraries were used to rapidly identify VHH as well as their targets by immunoprecipitation (IP. Our novel bacterial surface display platform was stable under harsh screening conditions, allowed fast target identification, and readily permitted the recovery of the displayed VHH for downstream analysis.

  16. Water in contact with extended hydrophobic surfaces: Direct evidence of weak dewetting

    DEFF Research Database (Denmark)

    Jensen, Torben René; Jensen, Morten Østergaard; Reitzel, Niels

    2003-01-01

    X-ray reflectivity measurements reveal a significant dewetting of a large hydrophobic paraffin surface floating on water. The dewetting phenomenon extends less than 15 Angstrom into the bulk water phase and results in an integrated density deficit of about one water molecule per 25-30 Angstrom(2...

  17. Direct electrical control of IgG conformation and functional activity at surfaces

    Science.gov (United States)

    Ghisellini, Paola; Caiazzo, Marialuisa; Alessandrini, Andrea; Eggenhöffner, Roberto; Vassalli, Massimo; Facci, Paolo

    2016-11-01

    We have devised a supramolecular edifice involving His-tagged protein A and antibodies to yield surface immobilized, uniformly oriented, IgG-type, antibody layers with Fab fragments exposed off an electrode surface. We demonstrate here that we can affect the conformation of IgGs, likely pushing/pulling electrostatically Fab fragments towards/from the electrode surface. A potential difference between electrode and solution acts on IgGs’ charged aminoacids modulating the accessibility of the specific recognition regions of Fab fragments by antigens in solution. Consequently, antibody-antigen affinity is affected by the sign of the applied potential: a positive potential enables an effective capture of antigens; a negative one pulls the fragments towards the electrode, where steric hindrance caused by neighboring molecules largely hampers the capture of antigens. Different experimental techniques (electrochemical quartz crystal microbalance, electrochemical impedance spectroscopy, fluorescence confocal microscopy and electrochemical atomic force spectroscopy) were used to evaluate binding kinetics, surface coverage, effect of the applied electric field on IgGs, and role of charged residues on the phenomenon described. These findings expand the concept of electrical control of biological reactions and can be used to gate electrically specific recognition reactions with impact in biosensors, bioactuators, smart biodevices, nanomedicine, and fundamental studies related to chemical reaction kinetics.

  18. Ultraclean Si/Si interface formation by surface preparation and direct bonding in ultrahigh vacuum

    DEFF Research Database (Denmark)

    Hermansson, Karin; Grey, Francois; Bengtsson, Stefan

    1998-01-01

    Silicon surfaces have been cleaned and bonded in ultrahigh vacuum, at a pressure in the 10(-10) Torr range. The bonded interfaces show extremely low contamination levels as measured by secondary ion mass spectroscopy. Nevertheless, a potential barrier could be detected at the interface by spreading...

  19. Laser direct writing of oxide structures on hydrogen-passivated silicon surfaces

    DEFF Research Database (Denmark)

    Müllenborn, Matthias; Birkelund, Karen; Grey, Francois

    1996-01-01

    on amorphous and crystalline silicon surfaces in order to determine the depassivation mechanism. The minimum linewidth achieved is about 450 nm using writing speeds of up to 100 mm/s. The process is fully compatible with local oxidation of silicon by scanning probe lithography. Wafer-scale patterns can...

  20. Direct measurement of colloidal interactions between polyaniline surfaces in a uv-curable coating formulation

    DEFF Research Database (Denmark)

    Jafarzadeh, Shadi; Claesson, Per M.; Pan, Jinshan

    2014-01-01

    cantilever and a pressed pellet of either hydrophilic or hydrophobic polyaniline powders, in resins of various polymer:monomer ratios. A short-range purely repulsive interaction was observed between hydrophilic polyaniline (doped with phosphoric acid) surfaces in polyester acrylate resin. In contrast...

  1. A direct approach to nonlinear shells with application to surface-substrate interactions

    Czech Academy of Sciences Publication Activity Database

    Šilhavý, Miroslav

    2013-01-01

    Roč. 1, č. 2 (2013), s. 211-232 ISSN 2326-7186 Institutional support: RVO:67985840 Keywords : thin films * nonlinear shells * surface geometry Subject RIV: BA - General Mathematics http://msp.org/memocs/2013/1-2/p04.xhtml

  2. Role of arginine-292 in the substrate specificity of aspartate aminotransferase as examined by site-directed mutagenesis

    International Nuclear Information System (INIS)

    Cronin, C.N.; Kirsch, J.F.

    1988-01-01

    X-ray crystallographic data have implicated Arg-292 as the residue responsible for the preferred side-chain substrate specificity of asparate aminotransferase. It forms a salt bridge with the β or γ carboxylate group of the substrate. In order to test this proposal and, in addition, to attempt to reverse the substrate charge specificity of this enzyme, Arg-292 has been converted to Asp-292 by site-directed mutagenesis. The activity k/sub cat//K/sub M/) of the mutant enzyme, R292D, toward the natural anionic substrates L-aspartate, L-glutamate, and α-ketoglutarate is depressed by over 5 orders of magnitude, whereas the activity toward the keto acid pyruvate and a number of aromatic and other neutral amino acids is reduced by only 2-9-fold. These results confirm the proposal that Arg-292 is critical for the rapid turnover of substrates bearing anionic side chains and show further that, apart from the desired alteration no major perturbations of the remainder of the molecule have been made. The activity of R292D toward the cationic amino acids L-arginine, L-lysine, and L-ornithine is increased by 9-16-fold over that of wild type and the ratio (k/sub cat//K/sub M/)/sub cationic//(k/sub cat//K/sub M/)/sub anionic/ is in the range 2-40-fold for R292D, whereas this ratio has a range of [(0.3-6) x 10 -6 ]-fold for wild type. Thus, the mutation has produced an inversion of the substrate charge specificity. Possible explanations for the less-than-expected reactivity of R292D with arginine are discussed

  3. Re-examining the automaticity and directionality of the activation of the spatial-valence "good is up" metaphoric association.

    Directory of Open Access Journals (Sweden)

    Yanli Huang

    Full Text Available According to the Conceptual Metaphor Theory, people understand abstract concepts depending on the activation of more concrete concepts, but not vice versa. The present research aims to investigate the role of directionality and automaticity regarding the activation of the conceptual metaphor "good is up". Experiment 1 tested the automaticity of the spatial-to-valence metaphoric congruency effect by having participants judge the valence of a positive or negative word that appeared either at the top or at the bottom of the screen. They performed the task concurrently with a 6-digit verbal rehearsal task in the working-memory-load (WML blocks and without this task in the non-WML blocks. The spatial-to-valence metaphoric congruency effect occurred for the positive words in the non-WML blocks (i.e., positive words are judged more quickly when they appeared at the top than at the bottom of the screen, but not in the WML blocks, suggesting that this metaphoric association might not be activated automatically. Experiments 2-6 investigated the valence-to-spatial metaphoric association and its automaticity. Participants processed a positive or negative prime, which appeared at the center of the screen, and then identified a letter (p/q that subsequently appeared at the top or bottom of the screen. The valence-to-spatial metaphoric congruency effect did not occur in the WML (6-digit verbal rehearsal or non-WML blocks, whether response modality to the prime was key-press or vocal, or whether the prime was a word or a picture. The effect only unexpectedly occurred when the task was simultaneously performed with a 4-dot-position visuospatial rehearsal task. Nevertheless, the data collapsed across multiple experiments showed a null valence-to-spatial metaphoric congruency effect, suggesting the absence of the valence-to-spatial metaphoric association in general. The implications of the current findings for the Conceptual Metaphor Theory and its alternatives

  4. Examining the effect of state anxiety on compensatory and strategic adjustments in the planning of goal-directed aiming.

    Science.gov (United States)

    Roberts, James W; Wilson, Mark R; Skultety, Jessica K; Lyons, James L

    2018-04-01

    The anxiety-perceptual-motor performance relationship may be enriched by investigations involving discrete manual responses due to the definitive demarcation of planning and control processes, which comprise the early and late portions of movement, respectively. To further examine the explanatory power of self-focus and distraction theories, we explored the potential of anxiety causing changes to movement planning that accommodate for anticipated negative effects in online control. As a result, we posed two hypotheses where anxiety causes performers to initially undershoot the target and enable more time to use visual feedback ("play-it-safe"), or fire a ballistic reach to cover a greater distance without later undertaking online control ("go-for-it"). Participants were tasked with an upper-limb movement to a single target under counter-balanced instructions to execute fast and accurate responses (low/normal anxiety) with non-contingent negative performance feedback (high anxiety). The results indicated that the previously identified negative impact of anxiety in online control was replicated. While anxiety caused a longer displacement to reach peak velocity and greater tendency to overshoot the target, there appeared to be no shift in the attempts to utilise online visual feedback. Thus, the tendency to initially overshoot may manifest from an inefficient auxiliary procedure that manages to uphold overall movement time and response accuracy. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia

    International Nuclear Information System (INIS)

    El-Sebaii, A.A.; Al-Hazmi, F.S.; Al-Ghamdi, A.A.; Yaghmour, S.J.

    2010-01-01

    The measured data of global and diffuse solar radiation on a horizontal surface, the number of bright sunshine hours, mean daily ambient temperature, maximum and minimum ambient temperatures, relative humidity and amount of cloud cover for Jeddah (lat. 21 o 42'37''N, long. 39 o 11'12''E), Saudi Arabia, during the period (1996-2007) are analyzed. The monthly averages of daily values for these meteorological variables have been calculated. The data are then divided into two sets. The sub-data set I (1996-2004) are employed to develop empirical correlations between the monthly average of daily global solar radiation fraction (H/H 0 ) and the various weather parameters. The sub-data set II (2005-2007) are then used to evaluate the derived correlations. Furthermore, the total solar radiation on horizontal surfaces is separated into the beam and diffuses components. Empirical correlations for estimating the diffuse solar radiation incident on horizontal surfaces have been proposed. The total solar radiation incident on a tilted surface facing south H t with different tilt angles is then calculated using both Liu and Jordan isotropic model and Klucher's anisotropic model. It is inferred that the isotropic model is able to estimate H t more accurate than the anisotropic one. At the optimum tilt angle, the maximum value of H t is obtained as ∼36 (MJ/m 2 day) during January. Comparisons with 22 years average data of NASA SSE Model showed that the proposed correlations are able to predict the total annual energy on horizontal and tilted surfaces in Jeddah with a reasonable accuracy. It is also found that at Jeddah, the solar energy devices have to be tilted to face south with a tilt angle equals the latitude of the place in order to achieve the best performance all year round.

  6. Stimulated Raman signals at conical intersections: Ab initio surface hopping simulation protocol with direct propagation of the nuclear wave function

    Energy Technology Data Exchange (ETDEWEB)

    Kowalewski, Markus, E-mail: mkowalew@uci.edu; Mukamel, Shaul, E-mail: smukamel@uci.edu [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States)

    2015-07-28

    Femtosecond Stimulated Raman Spectroscopy (FSRS) signals that monitor the excited state conical intersections dynamics of acrolein are simulated. An effective time dependent Hamiltonian for two C—H vibrational marker bands is constructed on the fly using a local mode expansion combined with a semi-classical surface hopping simulation protocol. The signals are obtained by a direct forward and backward propagation of the vibrational wave function on a numerical grid. Earlier work is extended to fully incorporate the anharmonicities and intermode couplings.

  7. Stimulated Raman signals at conical intersections: Ab initio surface hopping simulation protocol with direct propagation of the nuclear wave function

    International Nuclear Information System (INIS)

    Kowalewski, Markus; Mukamel, Shaul

    2015-01-01

    Femtosecond Stimulated Raman Spectroscopy (FSRS) signals that monitor the excited state conical intersections dynamics of acrolein are simulated. An effective time dependent Hamiltonian for two C—H vibrational marker bands is constructed on the fly using a local mode expansion combined with a semi-classical surface hopping simulation protocol. The signals are obtained by a direct forward and backward propagation of the vibrational wave function on a numerical grid. Earlier work is extended to fully incorporate the anharmonicities and intermode couplings

  8. CFD simulation of direct contact condensation with ANSYS CFX using surface renewal theory based heat transfer coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Wanninger, Andreas; Ceuca, Sabin Cristian; Macian-Juan, Rafael [Technische Univ. Muenchen, Garching (Germany). Dept. of Nuclear Engineering

    2013-07-01

    Different approaches for the calculation of Direct Contact Condensation (DCC) using Heat Transfer Coefficients (HTC) based on the Surface Renewal Theory (SRT) are tested using the CFD simulation tool ANSYS CFX. The present work constitutes a preliminary study of the flow patterns and conditions observed using different HTC models. A complex 3D flow pattern will be observed in the CFD simulations as well as a strong coupling between the condensation rate and the two-phase flow dynamics. (orig.)

  9. Engagement of National Board of Examinations in strengthening public health education in India: present landscape, opportunities and future directions.

    Science.gov (United States)

    Sharma, Anjali; Zodpey, Sanjay; Batra, Bipin

    2014-01-01

    A trained and adequate heath workforce forms the crux in designing, implementing and monitoring health programs and delivering quality health services. Education is recognized as a critical instrument for creating such trained health professionals who can effectively address the 21 st century health challenges. At present, the Public Health Education in India is offered through medical colleges and also outside the corridors of medical colleges which was not the scenario earlier. Traditionally, Public Health Education has been a domain of medical colleges and was open for medical graduates only. In order to standardize the Postgraduate Medical Education in India, the National Board of Examinations (NBE) was set up as an independent autonomous body of its kind in the country in the field of medical sciences with the prime objective of improving the quality of the medical education. NBE has also played a significant role in enhancing Public Health Education in India through its Diplomat of National Board (DNB) Programs in Social and Preventive Medicine, Health and Hospital Administration, Maternal and Child Health, Family Medicine and Field Epidemiology. It envisions creating a cadre of skilled and motivated public health professionals and also developing a roadmap for postgraduate career pathways. However, there still exists gamut of opportunities for it to engage in expanding the scope of Public Health Education. It can play a key role in accreditation of public health programs and institutions which can transform the present landscape of education of health professionals. It also needs to revisit and re-initiate programs like DNB in Tropical Medicine and Occupational Health which were discontinued. The time is imperative for NBE to seize these opportunities and take necessary actions in strengthening and expanding the scope of Public Health Education in India.

  10. Direct surface analysis of pesticides on soil, leaves, grass, and stainless steel by static secondary ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, J.C.; Groenewold, G.S.; Appelhans, A.D.; Delmore, J.E.; Olson, J.E.; Miller, D.L. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-02-01

    Direct surface analyses by static secondary ion mass spectrometry (SIMS) were performed for the following pesticides adsorbed on dandelion leaves, grass, soil, and stainless steel samples: alachlor, atrazine, captan, carbofuran, chlorpyrifos, chlorosulfuron, chlorthal-dimethyl, cypermethrin, 2,4-D, diuron, glyphosate, malathion, methomyl, methyl arsonic acid, mocap, norflurazon, oxyfluorfen, paraquat, temik, and trifluralin. The purpose of this study was to evaluate static SIMS as a tool for pesticide analysis, principally for use in screening samples for pesticides. The advantage of direct surface analysis compared with conventional pesticide analysis methods is the elimination of sample pretreatment including extraction, which streamlines the analysis substantially; total analysis time for SIMS analysis was ca. 10 min/sample. Detection of 16 of the 20 pesticides on all four substrates was achieved. Of the remaining four pesticides, only one (trifluralin) was not detected on any of the samples. The minimum detectable quantity was determined for paraquat on soil in order to evaluate the efficacy of using SIMS as a screening tool. Paraquat was detected at 3 pg/mm{sup 2} (c.a. 0.005 monolayers). The results of these studies suggest that SIMS is capable of direct surface detection of a range of pesticides, with low volatility, polar pesticides being the most easily detected. 25 refs., 2 figs., 2 tabs.

  11. Direct simulation of liquid–gas–solid flow with a free surface lattice Boltzmann method

    NARCIS (Netherlands)

    Bogner, S.P.M.; Harting, J.D.P.; Rüde, U.

    2017-01-01

    Direct numerical simulation of liquid–gas–solid flows is uncommon due to the considerable computational cost. As the grid spacing is determined by the smallest involved length scale, large grid sizes become necessary–in particular, if the bubble–particle aspect ratio is on the order of 10 or larger.

  12. Direct plasma NOx reduction using single surface dielectric barrier discharge

    DEFF Research Database (Denmark)

    Kroushawi, Feisal; Stamate, Eugen

    2014-01-01

    NOx reduction using direct atmospheric barrier discharge in air-NO mixture at different voltages and flow rates is inversigated. Reduction rate of 80% is achieved at 3.18 W/cm2 power density and gas mixture of 20 slm air and 0.006 slm NO. The ozone for NO reduction is produced by a honeycomb stru...

  13. Differential loggerhead by-catch and direct mortality due to surface longlines according to boat strata and gear type

    Directory of Open Access Journals (Sweden)

    Juan A. Camiñas

    2006-12-01

    Full Text Available Surface longline gears are used to fish different species, mainly albacore Thunnus alalunga (Bonnaterre, 1788, bluefin tuna Thunnus thynnus (Linnaeus, 1758, and swordfish Xiphias gladius Linnaeus, 1758, and are considered highly dangerous for threatened marine turtles. Loggerheads Caretta caretta (Linnaeus, 1758 can be incidentally captured by surface longlines. A number of captured individuals die during the fishing operation, which we consider direct mortality due to fishing. We analysed the relative loggerhead by-catch and direct mortality associated with each type of boat and gear from April to December during the period 1999-2004 in the Spanish surface longline fleet that fishes in the western Mediterranean Sea, an important fishing area for this fleet. We used different indices to compute the catch per unit effort (CPUE according to the number of hooks and to the number of fishing operations for each type of boat and gear. Both by-catch and direct mortality differed significantly according to the type of boat and gear. With respect to the number of hooks, boats longer than 12 m not using a roller and targeting bluefin tuna captured the highest number of loggerheads, whereas boats longer than 12 m with a roller that targeted swordfish caused the highest direct mortality. With respect to the number of fishing operations, boats longer than 12 m without a roller that targeted albacore captured the highest number of loggerheads; the highest direct mortality was caused by this type of boat and by boats longer than 12 m using a roller and targeting swordfish.

  14. Fabrication of hydrophobic structures on coronary stent surface based on direct three-beam laser interference lithography

    Science.gov (United States)

    Gao, Long-yue; Zhou, Wei-qi; Wang, Yuan-bo; Wang, Si-qi; Bai, Chong; Li, Shi-ming; Liu, Bin; Wang, Jun-nan; Cui, Cheng-kun; Li, Yong-liang

    2016-05-01

    To solve the problems with coronary stent implantation, coronary artery stent surface was directly modified by three-beam laser interference lithography through imitating the water-repellent surface of lotus leaf, and uniform micro-nano structures with the controllable period were fabricated. The morphological properties and contact angle (CA) of the microstructure were measured by scanning electron microscope (SEM) and CA system. The water repellency of stent was also evaluated by the contact and then separation between the water drop and the stent. The results show that the close-packed concave structure with the period of about 12 μm can be fabricated on the stent surface with special parameters (incident angle of 3°, laser energy density of 2.2 J·cm-2 and exposure time of 80 s) by using the three-beam laser at 1 064 nm, and the structure has good water repellency with CA of 120°.

  15. A versatile class of cell surface directional motors gives rise to gliding motility and sporulation in Myxococcus xanthus.

    Directory of Open Access Journals (Sweden)

    Morgane Wartel

    2013-12-01

    Full Text Available Eukaryotic cells utilize an arsenal of processive transport systems to deliver macromolecules to specific subcellular sites. In prokaryotes, such transport mechanisms have only been shown to mediate gliding motility, a form of microbial surface translocation. Here, we show that the motility function of the Myxococcus xanthus Agl-Glt machinery results from the recent specialization of a versatile class of bacterial transporters. Specifically, we demonstrate that the Agl motility motor is modular and dissociates from the rest of the gliding machinery (the Glt complex to bind the newly expressed Nfs complex, a close Glt paralogue, during sporulation. Following this association, the Agl system transports Nfs proteins directionally around the spore surface. Since the main spore coat polymer is secreted at discrete sites around the spore surface, its transport by Agl-Nfs ensures its distribution around the spore. Thus, the Agl-Glt/Nfs machineries may constitute a novel class of directional bacterial surface transporters that can be diversified to specific tasks depending on the cognate cargo and machinery-specific accessories.

  16. Atmospheric pressure surface sampling/ionization techniques for direct coupling of planar separations with mass spectrometry.

    Science.gov (United States)

    Pasilis, Sofie P; Van Berkel, Gary J

    2010-06-18

    Planar separations, which include thin layer chromatography and gel electrophoresis, are in widespread use as important and powerful tools for conducting separations of complex mixtures. To increase the utility of planar separations, new methods are needed that allow in situ characterization of the individual components of the separated mixtures. A large number of atmospheric pressure surface sampling and ionization techniques for use with mass spectrometry have emerged in the past several years, and several have been investigated as a means for mass spectrometric read-out of planar separations. In this article, we review the atmospheric pressure surface sampling and ionization techniques that have been used for the read-out of planar separation media. For each technique, we briefly explain the operational basics and discuss the analyte type for which it is appropriate and some specific applications from the literature. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  17. Disposable screen printed graphite electrode for the direct electrochemical determination of ibuprofen in surface water

    KAUST Repository

    Amin, Sidra

    2014-08-01

    The potential of square wave voltammetry (SWV) for the determination of ibuprofen in aqueous solution, applying baseline correction, is reported. A screen printed graphite electrodes (SPGEs), especially pretreated for this purpose, were used to investigate the electrochemical oxidation and detection of ibuprofen. After optimization of SWV parameters, measurements were carried out at 200 Hz modulation frequency, 4 mV step potential and 40 mV pulse amplitude for the determination of ibuprofen. The surfaces of both untreated and pretreated SPGEs were characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The electro-catalytic properties of both the electrodes were correlated with the surface treatment. The pretreated screen printed graphite electrode exhibited a high sensitivity toward ibuprofen even in low concentration. The developed method was found rapid, cost-effective and reproducible for in-field ibuprofen detection.

  18. Disposable screen printed graphite electrode for the direct electrochemical determination of ibuprofen in surface water

    KAUST Repository

    Amin, Sidra; Soomro, M. Tahir; Memon, Najma; Solangi, Amber R.; Sirajuddin; Qureshi, Tahira; Behzad, Ali Reza

    2014-01-01

    The potential of square wave voltammetry (SWV) for the determination of ibuprofen in aqueous solution, applying baseline correction, is reported. A screen printed graphite electrodes (SPGEs), especially pretreated for this purpose, were used to investigate the electrochemical oxidation and detection of ibuprofen. After optimization of SWV parameters, measurements were carried out at 200 Hz modulation frequency, 4 mV step potential and 40 mV pulse amplitude for the determination of ibuprofen. The surfaces of both untreated and pretreated SPGEs were characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The electro-catalytic properties of both the electrodes were correlated with the surface treatment. The pretreated screen printed graphite electrode exhibited a high sensitivity toward ibuprofen even in low concentration. The developed method was found rapid, cost-effective and reproducible for in-field ibuprofen detection.

  19. Surface tailored single walled carbon nanotubes as catalyst support for direct methanol fuel cell

    Science.gov (United States)

    Kireeti, Kota V. M. K.; Jha, Neetu

    2017-10-01

    A strategy for tuning the surface property of Single Walled Carbon Nanotubes (SWNTs) for enhanced methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) along with methanol tolerance is presented. The surface functionality is tailored using controlled acid and base treatment. Acid treatment leads to the attachment of carboxylic carbon (CC) fragments to SWNT making it hydrophilic (P3-SWNT). Base treatment of P3-SWNT with 0.05 M NaOH reduces the CCs and makes it hydrophobic (P33-SWNT). Pt catalyst supported on the P3-SWNT possesses enhanced MOR whereas that supported on P33-SWNT not only enhances ORR kinetics but also possess good tolerance towards methanol oxidation as verified by the electrochemical technique.

  20. Direct gamma-ray measurement of different radionuclides in the surface water of Suez Canal

    International Nuclear Information System (INIS)

    Lasheen, Y.F.; El-Zakla, T.; Seliman, A.F.; Abdel-Rassoul, A.A.

    2008-01-01

    The radioactivity levels of naturally-occurring 238 U, 232 Th, 226 Ra and 40 K and anthropogenic 137 Cs in surface water from eight locations in the Suez Canal have been assessed by gamma-ray spectrometry. The samples were further characterized by determination of the common cations and anions using ion chromatography. A comparison of 137 Cs radioactivity levels in surface water from the Suez Canal with those of other sea waters is presented. The radioactivity levels of 238 U, 232 Th, 226 Ra and 40 K from sea water are also reported. The effect of total dissolved solids (T.D.S.), chloride, sulphate ion concentrations on the radioactivity levels of 238 U, 232 Th and 226 Ra is discussed. (authors)

  1. Improving operational land surface model canopy evapotranspiration in Africa using a direct remote sensing approach

    CSIR Research Space (South Africa)

    Marshall, M

    2013-03-01

    Full Text Available , latent energy (LE: ET energy equivalent) during the rainy season is the primary regulator after solar forcing of energy balance seasonal variability, the strength of which changes signifi- cantly across land cover types (Ramier et al., 2009). At inter... Table 1. Acronyms and their definitions in order of appearance. Acronym Definition ET Evapotranspiration LE Latent Heat LSM Land Surface Model NDVI Normalized Difference Vegetation Index PET Potential Evapotranspiration AMMA African Monsoon...

  2. Presence or absence of ocular surface inflammation directs clinical and therapeutic management of dry eye

    OpenAIRE

    Sambursky, Robert

    2016-01-01

    Robert Sambursky Coastal Eye Institute, Cornea and Comprehensive Ophthalmology, Bradenton, FL, USA Background: The presence of clinically significant inflammation has been confirmed in the tears of 40%–65% of patients with symptoms of dry eye. Ocular surface inflammation may lead to tear film instability, epithelial cell irregularities, and permeability, resulting in chronic symptomatic pain and fluctuating vision as well as negative surgical outcomes.Patients and methods: A retro...

  3. Planar Functionalized Surfaces for Direct Immunoaffinity Desorption/Ionization Mass Spectrometry

    Czech Academy of Sciences Publication Activity Database

    Pompach, Petr; Kavan, Daniel; Benada, Oldřich; Růžička, V.; Volný, M.; Novák, Petr

    2016-01-01

    Roč. 62, č. 1 (2016), s. 270-278 ISSN 0009-9147 R&D Projects: GA MŠk LO1509; GA MŠk(CZ) EE2.3.30.0003; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : TREATED METAL-SURFACE * IN-SITU ENRICHMENT * ELECTROSPRAY DEPOSITION Subject RIV: CE - Biochemistry Impact factor: 8.008, year: 2016

  4. Surface plasmon resonance biosensor for direct detection of antibody against Epstein-Barr virus

    Czech Academy of Sciences Publication Activity Database

    Vaisocherová, Hana; Mrkvová, Kateřina; Piliarik, Marek; Jinoch, P.; Šteinbachová, M.; Homola, Jiří

    2007-01-01

    Roč. 22, č. 6 (2007), s. 1020-1026 ISSN 0956-5663 R&D Projects: GA ČR GA102/03/0633; GA ČR(CZ) GA303/03/0249 Grant - others:European Commission(XE) QLK4-CT-2002-02323 Institutional research plan: CEZ:AV0Z20670512 Keywords : biosensors * surface plasmon resonance * optical sensors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 5.061, year: 2007

  5. Surface-modified Y zeolite-filled chitosan membrane for direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong; Zheng, Bin; Zheng, Xiaohong; Wang, Jingtao; Yuan, Weikang; Jiang, Zhongyi [Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2007-11-15

    Hybrid membranes composed of chitosan (CS) as organic matrix and surface-modified Y zeolite as inorganic filler are prepared and their applicability for DMFC is demonstrated by methanol permeability, proton conductivity and swelling property. Y zeolite is modified using silane coupling agents, 3-aminopropyl-triethoxysilane (APTES) and 3-mercaptopropyl-trimethoxysilane (MPTMS), to improve the organic-inorganic interfacial morphology. The mercapto group on MPTMS-modified Y zeolite is further oxidized into sulfonic group. Then, the resultant surface-modified Y zeolites with either aminopropyl groups or sulfonicpropyl groups are mixed with chitosan in acetic acid solution and cast into membranes. The transitional phase generated between chitosan matrix and zeolite filler reduces or even eliminates the nonselective voids commonly exist at the interface. The hybrid membranes exhibit a significant reduction in methanol permeability compared with pure chitosan and Nafion117 membranes, and this reduction extent becomes more pronounced with the increase of methanol concentration. By introducing -SO{sub 3}H groups onto zeolite surface, the conductivity of hybrid membranes is increased up to 2.58 x 10{sup -2} S cm{sup -1}. In terms of the overall selectivity index ({beta} = {sigma}/P), the hybrid membrane is comparable with Nafion117 at low methanol concentration (2 mol L{sup -1}) and much better (three times) at high methanol concentration (12 mol L{sup -1}). (author)

  6. Isolation of recombinant antibodies directed against surface proteins of Clostridium difficile.

    Science.gov (United States)

    Shirvan, Ali Nazari; Aitken, Robert

    2016-01-01

    Clostridium difficile has emerged as an increasingly important nosocomial pathogen and the prime causative agent of antibiotic-associated diarrhoea and pseudomembranous colitis in humans. In addition to toxins A and B, immunological studies using antisera from patients infected with C. difficile have shown that a number of other bacterial factors contribute to the pathogenesis, including surface proteins, which are responsible for adhesion, motility and other interactions with the human host. In this study, various clostridial targets, including FliC, FliD and cell wall protein 66, were expressed and purified. Phage antibody display yielded a large panel of specific recombinant antibodies, which were expressed, purified and characterised. Reactions of the recombinant antibodies with their targets were detected by enzyme-linked immunosorbent assay; and Western blotting suggested that linear rather than conformational epitopes were recognised. Binding of the recombinant antibodies to surface-layer proteins and their components showed strain specificity, with good recognition of proteins from C. difficile 630. However, no reaction was observed for strain R20291-a representative of the 027 ribotype. Binding of the recombinant antibodies to C. difficile M120 extracts indicated that a component of a surface-layer protein of this strain might possess immunoglobulin-binding activities. The recombinant antibodies against FliC and FliD proteins were able to inhibit bacterial motility. Copyright © 2016. Published by Elsevier Editora Ltda.

  7. Analysis of direct immobilized recombinant protein G on a gold surface

    International Nuclear Information System (INIS)

    Kim, Hyunhee; Kang, Da-Yeon; Goh, Hyun-Jeong; Oh, Byung-Keun; Singh, Ravindra P.; Oh, Soo-Min; Choi, Jeong-Woo

    2008-01-01

    Abstact: For the immobilization of IgG, various techniques such as chemical linker, thiolated protein G methods, and fragmentation of antibodies have been reported [Y.M. Bae, B.K. Oh, W. Lee, W.H. Lee, J.W. Choi, Biosensors Bioelectron. 21 (2005) 103; W. Lee, B.K. Oh, W.H. Lee, J.W. Choi, Colloids Surf. B-Biointerfaces, 40 (2005) 143; A.A. Karyakin, G.V. Presnova, M.Y. Rubtsova, A.M. Egorov, Anal. Chem. 72 (2000) 3805]. Here, we modified the immunoglobulin Fc-binding B-domain of protein G to contain two cysteine residues at its C-terminus by a genetic engineering technique. The resulting recombinant protein, RPGcys, retained IgG-binding activity in the same manner as native protein G. RPGcys was immobilized on a gold surface by strong affinity between thiol of cysteine and gold. The orientations of both IgG layers immobilized on the base recombinant protein Gs were analyzed by fluorescence microscope, atomic force microscope (AFM), and surface plasmon resonance (SPR). Our data revealed that IgG-binding activity of RPGcys on gold surface significantly increased in comparison to wild type of protein G (RPGwild), which was physically adsorbed due to absence of cysteine residue. Immobilization of highly oriented antibodies based on cysteine-modified protein G could be useful for the fabrication of immunosensor systems

  8. Direct Measurement of the Surface Energy of Bimetallic Nanoparticles: Evidence of Vegard's Rulelike Dependence.

    Science.gov (United States)

    Chmielewski, Adrian; Nelayah, Jaysen; Amara, Hakim; Creuze, Jérôme; Alloyeau, Damien; Wang, Guillaume; Ricolleau, Christian

    2018-01-12

    We use in situ transmission electron microscopy to monitor in real time the evaporation of gold, copper, and bimetallic copper-gold nanoparticles at high temperature. Besides, we extend the Kelvin equation to two-component systems to predict the evaporation rates of spherical liquid mono- and bimetallic nanoparticles. By linking this macroscopic model to experimental TEM data, we determine the surface energies of pure gold, pure copper, Cu_{50}Au_{50}, and Cu_{25}Au_{75} nanoparticles in the liquid state. Our model suggests that the surface energy varies linearly with the composition in the liquid Cu-Au nanoalloy; i.e., it follows a Vegard's rulelike dependence. To get atomic-scale insights into the thermodynamic properties of Cu-Au alloys on the whole composition range, we perform Monte Carlo simulations employing N-body interatomic potentials. These simulations at a microscopic level confirm the Vegard's rulelike behavior of the surface energy obtained from experiments combined with macroscopic modeling.

  9. Directed self-assembly of nanogold using a chemically modified nanopatterned surface

    Science.gov (United States)

    Nidetz, Robert; Kim, Jinsang

    2012-02-01

    Electron-beam lithography (EBL) was used to define an aminosilane nanopatterned surface in order to electrostatically self-assemble gold nanoparticles (Au NPs). The chemically modified nanopatterned surfaces were immersed into a Au NP solution to allow the Au NPs to self-assemble. Equilibrium self-assembly was achieved in only 20 min. The number of Au NPs that self-assembled on an aminosilane dot was controlled by manipulating the diameters of both the Au NPs and the dots. Adding salt to the Au NP solution enabled the Au NPs to self-assemble in greater numbers on the same sized dot. However, the preparation of the Au NP solution containing salt was sensitive to spikes in the salt concentration. These spikes led to aggregation of the Au NPs and non-specific deposition of Au NPs on the substrate. The Au NP patterned surfaces were immersed in a sodium hydroxide solution in order to lift-off the patterned Au NPs, but no lift-off was observed without adequate physical agitation. The van der Waals forces are too strong to allow for lift-off despite the absence of electrostatic forces.

  10. Directed self-assembly of nanogold using a chemically modified nanopatterned surface

    International Nuclear Information System (INIS)

    Nidetz, Robert; Kim, Jinsang

    2012-01-01

    Electron-beam lithography (EBL) was used to define an aminosilane nanopatterned surface in order to electrostatically self-assemble gold nanoparticles (Au NPs). The chemically modified nanopatterned surfaces were immersed into a Au NP solution to allow the Au NPs to self-assemble. Equilibrium self-assembly was achieved in only 20 min. The number of Au NPs that self-assembled on an aminosilane dot was controlled by manipulating the diameters of both the Au NPs and the dots. Adding salt to the Au NP solution enabled the Au NPs to self-assemble in greater numbers on the same sized dot. However, the preparation of the Au NP solution containing salt was sensitive to spikes in the salt concentration. These spikes led to aggregation of the Au NPs and non-specific deposition of Au NPs on the substrate. The Au NP patterned surfaces were immersed in a sodium hydroxide solution in order to lift-off the patterned Au NPs, but no lift-off was observed without adequate physical agitation. The van der Waals forces are too strong to allow for lift-off despite the absence of electrostatic forces. (paper)

  11. Surface-directed molecular assembly of pentacene on monolayer graphene for high-performance organic transistors.

    Science.gov (United States)

    Lee, Wi Hyoung; Park, Jaesung; Sim, Sung Hyun; Lim, Soojin; Kim, Kwang S; Hong, Byung Hee; Cho, Kilwon

    2011-03-30

    Organic electronic devices that use graphene electrodes have received considerable attention because graphene is regarded as an ideal candidate electrode material. Transfer and lithographic processes during fabrication of patterned graphene electrodes typically leave polymer residues on the graphene surfaces. However, the impact of these residues on the organic semiconductor growth mechanism on graphene surface has not been reported yet. Here, we demonstrate that polymer residues remaining on graphene surfaces induce a stand-up orientation of pentacene, thereby controlling pentacene growth such that the molecular assembly is optimal for charge transport. Thus, pentacene field-effect transistors (FETs) using source/drain monolayer graphene electrodes with polymer residues show a high field-effect mobility of 1.2 cm(2)/V s. In contrast, epitaxial growth of pentacene having molecular assembly of lying-down structure is facilitated by π-π interaction between pentacene and the clean graphene electrode without polymer residues, which adversely affects lateral charge transport at the interface between electrode and channel. Our studies provide that the obtained high field-effect mobility in pentacene FETs using monolayer graphene electrodes arises from the extrinsic effects of polymer residues as well as the intrinsic characteristics of the highly conductive, ultrathin two-dimensional monolayer graphene electrodes.

  12. Design of LD in-band direct-pumping side surface polished micro-rod Nd:YVO4 laser

    International Nuclear Information System (INIS)

    Zhang Wen-Qi; Wang Fei; Liu Qiang; Gong Ma-Li

    2016-01-01

    To diminish the thermal load, two ways, that is, in-band direct pumping and micro-rod crystal, could be adopted at the same time. The efficiency of LD in-band direct-pumping side surface polished micro-rod Nd:YVO 4 laser is numerically analyzed. By optimizing parameters such as crystal length, laser mode radius, pump beam radius, doping concentration and crystal cross-section size, the overall efficiency can reach over 50%. It is found that with micro-rod crystal implemented in the laser oscillator, high overall efficiency LD in-band direct-pumping Nd:YVO 4 laser could be realized. High efficiency combined with low thermal load makes this laser an outstanding scheme for building high-power Nd:YVO 4 lasers. (paper)

  13. The radial hardness-profile and the microstructure of railroad car axle materials treated by surface rolling, determined by novel examination methods

    International Nuclear Information System (INIS)

    Berecz, Tibor; Balogh, Levente; Mészáros, István; Steinbach, Ágoston

    2014-01-01

    Surface rolling is a cold-working technique used for hardening the surface of steel and ductile cast iron components. This process increases the surface hardness and improves the fatigue properties of components, so it is commonly used to treat railroad car wheel axles. The present paper examines the influence of this surface strengthening technique on the microstructure of the railroad car wheel axle material by hardness tests, optical microscopy (OM), and other novel examination methods, such as scanning electron microscopy (SEM), X-ray line profile analysis (XLPA), non-destructive magnetic evaluation (NDE) and automated electron backscatter diffraction (EBSD). The results show that surface rolling causes an increase in hardness down to a depth of ∼10 mm. It is also shown, that the increase in hardness is not due to grain refinement or change in grain morphology; thus it is likely to be caused by an increase in dislocation density

  14. The radial hardness-profile and the microstructure of railroad car axle materials treated by surface rolling, determined by novel examination methods

    Energy Technology Data Exchange (ETDEWEB)

    Berecz, Tibor, E-mail: berecz@eik.bme.hu [Department of Materials Science and Engineering, Budapest University of Technology and Economics, 1111 Budapest, Bertalan Lajos utca 7 (Hungary); Balogh, Levente, E-mail: levente@metal.elte.hu [Department of Materials Physics, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/a (Hungary); Mészáros, István, E-mail: meszaros@eik.bme.hu [Department of Materials Science and Engineering, Budapest University of Technology and Economics, 1111 Budapest, Bertalan Lajos utca 7 (Hungary); Steinbach, Ágoston, E-mail: sa984@hszk.bme.hu [Department of Materials Science and Engineering, Budapest University of Technology and Economics, 1111 Budapest, Bertalan Lajos utca 7 (Hungary)

    2014-01-13

    Surface rolling is a cold-working technique used for hardening the surface of steel and ductile cast iron components. This process increases the surface hardness and improves the fatigue properties of components, so it is commonly used to treat railroad car wheel axles. The present paper examines the influence of this surface strengthening technique on the microstructure of the railroad car wheel axle material by hardness tests, optical microscopy (OM), and other novel examination methods, such as scanning electron microscopy (SEM), X-ray line profile analysis (XLPA), non-destructive magnetic evaluation (NDE) and automated electron backscatter diffraction (EBSD). The results show that surface rolling causes an increase in hardness down to a depth of ∼10 mm. It is also shown, that the increase in hardness is not due to grain refinement or change in grain morphology; thus it is likely to be caused by an increase in dislocation density.

  15. Identifying the nature of surface chemical modification for directed self-assembly of block copolymers

    Directory of Open Access Journals (Sweden)

    Laura Evangelio

    2017-09-01

    Full Text Available In recent years, block copolymer lithography has emerged as a viable alternative technology for advanced lithography. In chemical-epitaxy-directed self-assembly, the interfacial energy between the substrate and each block copolymer domain plays a key role on the final ordering. Here, we focus on the experimental characterization of the chemical interactions that occur at the interface built between different chemical guiding patterns and the domains of the block copolymers. We have chosen hard X-ray high kinetic energy photoelectron spectroscopy as an exploration technique because it provides information on the electronic structure of buried interfaces. The outcome of the characterization sheds light onto key aspects of directed self-assembly: grafted brush layer, chemical pattern creation and brush/block co-polymer interface.

  16. Spontaneous and artificial direct nanostructuring of solid surface by extreme ultraviolet laser with nanosecond pulses

    Czech Academy of Sciences Publication Activity Database

    Koláček, Karel; Schmidt, Jiří; Štraus, Jaroslav; Frolov, Oleksandr; Prukner, Václav; Melich, Radek; Psota, Pavel

    2016-01-01

    Roč. 34, č. 1 (2016), s. 11-22 ISSN 0263-0346 Institutional support: RVO:61389021 Keywords : Extreme ultraviolet (XUV) interferometer * Aspheric interferometer mirrors * Multilayer reflection coating for 46.9 nm * Ar8+ laser application * XUV direct nanostructuring Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.420, year: 2016 http://dx.doi.org/10.1017/S0263034615000786

  17. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    Science.gov (United States)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  18. An Artificial Turf-Based Surrogate Surface Collector for the Direct Measurement of Atmospheric Mercury Dry Deposition

    Directory of Open Access Journals (Sweden)

    Naima L. Hall

    2017-02-01

    Full Text Available This paper describes the development of a new artificial turf surrogate surface (ATSS sampler for use in the measurement of mercury (Hg dry deposition. In contrast to many existing surrogate surface designs, the ATSS utilizes a three-dimensional deposition surface that may more closely mimic the physical structure of many natural surfaces than traditional flat surrogate surface designs (water, filter, greased Mylar film. The ATSS has been designed to overcome several complicating factors that can impact the integrity of samples with other direct measurement approaches by providing a passive system which can be deployed for both short and extended periods of time (days to weeks, and is not contaminated by precipitation and/or invalidated by strong winds. Performance characteristics including collocated precision, in-field procedural and laboratory blanks were evaluated. The results of these performance evaluations included a mean collocated precision of 9%, low blanks (0.8 ng, high extraction efficiency (97%–103%, and a quantitative matrix spike recovery (100%.

  19. Direct observation of Fermi surface in YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Haghighi, H.; Kaiser, J.H.; Rayner, S.; West, R.N.; Liu, J.Z.; Shelton, R.; Howell, R.H.; Solal, F.; Fluss, M.J.

    1991-01-01

    We have performed a high-precision measurement (5x10 8 coincidence counts) of the basal-plane electron-positron momentum density in well oxygenated, twin-free, single crystals of YBa 2 Cu 3 O 7-δ . The raw, processed, and K-space reduced spectra unambiguously show a clear image of a major Fermi surface sheet. The form and profile of that image are in substantial quantitative agreement with theoretical predictions of a Γ-X electron ridge section associated with states in the CuO chains

  20. The role of direct photolysis and indirect photochemistry in the environmental fate of ethylhexyl methoxy cinnamate (EHMC) in surface waters.

    Science.gov (United States)

    Vione, D; Calza, P; Galli, F; Fabbri, D; Santoro, V; Medana, C

    2015-12-15

    The aquatic environmental fate of ethylhexyl methoxy cinnamate (EHMC), one of the most used UVB filters worldwide, was studied by assessing its environmental persistence and photoinduced transformations. The role of direct and indirect photolysis was evaluated. Direct photolysis was shown to play a key role, and this process is expected to be the main attenuation route of EHMC in sunlit surface waters. In contrast, the reaction with OH radicals would be negligible and that with (3)CDOM* would at most be a secondary process. The measurement of the quantum yield of direct photolysis and of the rate constants of reaction with photogenerated transient species (or, sometimes, the use of reasonable values for the latter) allowed the prediction of the EHMC half-life time in surface waters, by means of a validated photochemical model. The predicted EHMC lifetime is of the order of hours to a few days in fair-weather summertime, and the main factors controlling the EHMC phototransformation in sunlit surface waters would be the water depth and the dissolved organic carbon (DOC) content. The formation of transformation products (TPs) was followed as well via HPLC/HRMS. Three TPs were detected in the samples exposed to UVA radiation, while one additional TP was detected in the samples exposed to UVB radiation. The detected TPs comprised 4-methoxybenzaldehyde, a hydroxylated derivative and dimeric species. Through the use of heterogeneous photocatalysis with TiO2, seven additional TPs were identified, most of them resulting from the further degradation of primary TPs formed through direct photolysis and that might be detected in aquatic systems as well. The photodegradation of EHMC in the presence of TiO2 yielded more toxic TPs than the parent compound (as determined with the Vibrio fischeri Microtox assay). The increased toxicity is partially accounted for by the formation of 4-methoxybenzaldehyde. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Improving operational land surface model canopy evapotranspiration in Africa using a direct remote sensing approach

    Science.gov (United States)

    Marshall, M.; Tu, K.; Funk, C.; Michaelsen, J.; Williams, P.; Williams, C.; Ardö, J.; Boucher, M.; Cappelaere, B.; de Grandcourt, A.; Nickless, A.; Nouvellon, Y.; Scholes, R.; Kutsch, W.

    2013-03-01

    Climate change is expected to have the greatest impact on the world's economically poor. In the Sahel, a climatically sensitive region where rain-fed agriculture is the primary livelihood, expected decreases in water supply will increase food insecurity. Studies on climate change and the intensification of the water cycle in sub-Saharan Africa are few. This is due in part to poor calibration of modeled evapotranspiration (ET), a key input in continental-scale hydrologic models. In this study, a remote sensing model of transpiration (the primary component of ET), driven by a time series of vegetation indices, was used to substitute transpiration from the Global Land Data Assimilation System realization of the National Centers for Environmental Prediction, Oregon State University, Air Force, and Hydrology Research Laboratory at National Weather Service Land Surface Model (GNOAH) to improve total ET model estimates for monitoring purposes in sub-Saharan Africa. The performance of the hybrid model was compared against GNOAH ET and the remote sensing method using eight eddy flux towers representing major biomes of sub-Saharan Africa. The greatest improvements in model performance were at humid sites with dense vegetation, while performance at semi-arid sites was poor, but better than the models before hybridization. The reduction in errors using the hybrid model can be attributed to the integration of a simple canopy scheme that depends primarily on low bias surface climate reanalysis data and is driven primarily by a time series of vegetation indices.

  2. Peeling back the lithosphere: Controlling parameters, surface expressions and the future directions in delamination modeling

    Science.gov (United States)

    Göğüş, Oğuz H.; Ueda, Kosuke

    2018-06-01

    Geodynamical models investigate the rheological and physical properties of the lithosphere that peels back (delaminates) from the upper-middle crust. Meanwhile, model predictions are used to relate to a set of observations in the geological context to the test the validity of delamination. Here, we review numerical and analogue models of delamination from these perspectives and provide a number of first-order topics which future modeling studies may address. Models suggest that the presence of the weak lower crust that resides between the strong mantle lithosphere (at least 100 times more viscous/stronger) and the strong upper crust is necessary to develop delamination. Lower crustal weakening may be induced by melt infiltration, shear heating or it naturally occurs through the jelly sandwich type strength profile of the continental lithosphere. The negative buoyancy of the lithosphere required to facilitate the delamination is induced by the pre-existing ocean subduction and/or the lower crustal eclogitization. Surface expression of the peeling back lithosphere has a distinct transient and migratory imprint on the crust, resulting in rapid surface uplift/subsidence, magmatism, heating and shortening/extension. New generation of geodynamical experiments can explain how different types of melting (e.g hydrated, dry melting) occurs with delamination. Reformation of the lithosphere after removal, three dimensional aspects, and the termination of the process are key investigation areas for future research. The robust model predictions, as with other geodynamic modeling studies should be reconciled with observations.

  3. Direct-scanning alpha spectrometer for americium and plutonium contamination on highly-enriched uranium surfaces

    International Nuclear Information System (INIS)

    Ward, W.C.; Martinez, H.E.; Abeyta, C.L.; Morgan, A.N.; Nelson, T.O.

    1997-01-01

    Trace Pu 239 and Am 241 contamination on a surface whose alpha count is dominated by U 235 and U 234 decay has been successfully quantified by counting swipes in external alpha spectroscopy chambers. The swipe process, however, is labor intensive and subject to uncertainties in the swiping process as well as degraded spectral resolution due to the presence of the swipe material. A multichannel instrument for automated in situ measurements of interior and exterior contamination has been developed which incorporates a rotary table, 13 fixed ion-implanted silicon detectors, and spectroscopy electronics. Custom software was written to allow alpha spectrometer to function as a virtual instrument in the LabView environment. This system gives improved speed and resolution as well as a complete log of the location of areas of high surface contamination, a feature not practical to obtain by other methods, and one which opens the possibility of long term studies such as Pu outgrowth evaluation employing the instrument. The authors present performance data as well as system integration, calibration, control, and dynamic geometric efficiency calculations related to the design of this and next generation systems

  4. A surface plasmon resonance biosensor for direct detection of the rabies virus

    Directory of Open Access Journals (Sweden)

    Jing Xu

    2012-01-01

    Full Text Available A surface plasmon resonance biosensor chip was constructed for detection of rabies virus. For the construction of the biosensor chip, N protein specific antibody and N protein specific antibody combined with G protein specific antibody of rabies virus were linked on two different flow cells on one CM5 chip, respectively. The chip was tested for the detection of rabies virus antigens using the crude extract of rabies virus from infected BHK cell strain culture. Tenfold serial dilutions of SRV9 strain virus-infected cell cultures were tested by the biosensor chip to establish the detection limit. The limit detection was approximately 70 pg/ml of nucleoprotein and glycoprotein. The biosensor chip developed in this study was employed for the detection of rabies virus in five suspect infectious specimens of brain tissue from guinea pigs; the results were compared by fluorescent antibody test. Surface plasmon resonance biosensor chip could be a useful automatic tool for prompt detection of rabies virus infection.

  5. Direct Imaging of Stellar Surfaces: Results from the Stellar Imager (SI) Vision Mission Study

    Science.gov (United States)

    Carpenter, Kenneth; Schrijver, Carolus; Karovska, Margarita

    2006-01-01

    The Stellar Imager (SI) is a UV-Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and stellar interiors (via asteroseismology) and of the Universe in general. SI is identified as a "Flagship and Landmark Discovery Mission'' in the 2005 Sun Solar System Connection (SSSC) Roadmap and as a candidate for a "Pathways to Life Observatory'' in the Exploration of the Universe Division (EUD) Roadmap (May, 2005). The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes: The 0.1 mas resolution of this deep-space telescope will transform point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. In this paper we will discuss the results of the SI Vision Mission Study, elaborating on the science goals of the SI Mission and a mission architecture that could meet those goals.

  6. Direct UV/Optical Imaging of Stellar Surfaces: The Stellar Imager (SI) Vision Mission

    Science.gov (United States)

    Carpenter, Kenneth G.; Lyon, Richard G.; Schrijver, Carolus; Karovska, Margarita; Mozurkewich, David

    2007-01-01

    The Stellar Imager (SI) is a UV/optical, space-based interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives, in support of the Living with a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in thc Universe. SI is a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap. We discuss herein the science goals of the SI Mission, a mission architecture that could meet those goals, and the technologies needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  7. Direct surface plasmon resonance immunosensing of pyraclostrobin residues in untreated fruit juices.

    Science.gov (United States)

    Mauriz, E; García-Fernández, C; Mercader, J V; Abad-Fuentes, A; Escuela, A M; Lechuga, L M

    2012-12-01

    A surface plasmon resonance (SPR) immunoassay for on-line detection of the strobilurin fungicide pyraclostrobin in untreated fruit juices is presented. The analysis of pyraclostrobin residues is accomplished in apple, grape, and cranberry samples by monitoring the recognition events occurring separately in a two-channel home-made SPR biosensor. Covalent coupling of the analyte derivative results in a reversible method, enabling more than 80 measurements on the same sensor surface. Optimization of the immunoassay conditions provides limits of detection as low as 0.16 μg L(-1). The selectivity and reproducibility of the analysis is ensured by studying both non-specific interactions with unrelated compounds and inter-assay coefficients of variation. Excellent recovery ranging from 98 to 103% was achieved by a simple 1:5 dilution of fruit juice with assay buffer before the analysis. The lack of previous cleaning and homogenization procedures reduces the analysis time of a single food sample to only 25 min, including the regeneration cycle.

  8. Direct measurement of the adsorption kinetics of 2-Mercaptobenzothiazole on a microcrystalline copper surface

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Cano, J. A.; Veleva, L.

    2016-05-01

    The adsorption on copper of 2-Mercaptobenzothiazole (2-MBT), a heterocyclic compound member of the tiazole family, has been investigated at different concentrations (1x10{sup -}1 to 1x10{sup -}6 M) in water, employing the Electrochemical Quartz Crystal Microbalance (EQCM). The frequency response over time was obtained for each concentration, showing a defined exponential behavior at higher concentrations (1x10{sup -}1, 1x10{sup -}2 and 1x10{sup -}3 M), which was filed to the Langmuir adsorption isotherm with a good correlation coefficients (R{sup 2}=0.91 to 0.98) Surface coverage (θ) was calculated and found to be in the order of 0.50 to 0.01 for 2-MBT high concentrations. The free energy of adsorption was ΔG{sub a}ds=-5.59 kJ mol{sup -}1, corresponding to physisorption process, probably of electrostatic nature of the interaction between 2-MBT and copper surface in aqueous solution. (Author)

  9. Templating Biomineralization: Surface Directed Protein Self-assembly and External Magnetic Field Stimulation of Osteoblasts

    Science.gov (United States)

    Ba, Xiaolan

    biomineralization is investigated by SEM, GIXRD and energy dispersive X-ray spectroscopy (EDXS). Gene expression during the exposure of SMF is also studies by RT-PCR. The results indicated that exposure to SMF induces osteoblasts to produce larger quantities of HA, with higher degree of crystalline order. The controlling and understanding of protein on the surface is of great interest in biomedical application such as implant medicine, biosensor design, food processing, and chromatographic separations. The adsorbed protein onto the surface significantly determines the performance of biomaterials in a biological environment. Recent studies have suggested that the preservation of the native secondary structure of protein adsorbed is essential for biological application. In order to manipulate protein adsorption and design biocompatible materials, the mechanisms underlying protein-surface interactions, especially how surface properties of materials induce conformational changes of adsorbed proteins, needs to be well understood. Here we demonstrated that even though SPS is a necessary condition, it is not sufficient. We show that low substrate conductivity as well as proper salt concentration are also critical in sustained protein adsorption continuously. These factors allow one to pattern regions of different conducting properties and for the first time patterns physiologically relevant protein structures. Here we show that we can achieve patterned biomineralized regimes, both with plasma proteins in a simple and robust manner without additional functionalization or application of electrochemical gradients. Since the data indicate that the patterns just need to differ in electrical conductivity, rather than surface chemistry, we propose that the creation of transient image charges, due to incomplete charge screening, may be responsible for sustain the driving force for continual protein absorption.

  10. Directed assembly of functional light harvesting antenna complexes onto chemically patterned surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Escalante, Maryana [Biophysical Engineering Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Maury, Pascale [Molecular Nanofabrication Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Bruinink, Christiaan M [Molecular Nanofabrication Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Werf, Kees van der [Biophysical Engineering Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Olsen, John D [Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN (United Kingdom); Timney, John A [Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN (United Kingdom); Huskens, Jurriaan [Molecular Nanofabrication Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Hunter, C Neil [Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN (United Kingdom); Subramaniam, Vinod [Biophysical Engineering Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Otto, Cees [Biophysical Engineering Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands)

    2008-01-16

    We report the directed assembly of the photosynthetic membrane proteins LH1 and LH2 isolated from the purple bacterium Rhodobacter sphaeroides onto chemically patterned substrates. Nanoimprint lithography was used to pattern discrete regions of amino- and fluoro-terminated or poly(ethylene glycol) self-assembled monolayers onto a glass substrate. Densely packed layers of assembled protein complexes were observed with atomic force microscopy. The protein complexes attached selectively to the amino-terminated regions by electrostatic interactions. Spectral images generated with a hybrid scanning probe and fluorescence microscope confirmed that the patterned proteins retained their native optical signatures.

  11. Directed assembly of functional light harvesting antenna complexes onto chemically patterned surfaces

    International Nuclear Information System (INIS)

    Escalante, Maryana; Maury, Pascale; Bruinink, Christiaan M; Werf, Kees van der; Olsen, John D; Timney, John A; Huskens, Jurriaan; Hunter, C Neil; Subramaniam, Vinod; Otto, Cees

    2008-01-01

    We report the directed assembly of the photosynthetic membrane proteins LH1 and LH2 isolated from the purple bacterium Rhodobacter sphaeroides onto chemically patterned substrates. Nanoimprint lithography was used to pattern discrete regions of amino- and fluoro-terminated or poly(ethylene glycol) self-assembled monolayers onto a glass substrate. Densely packed layers of assembled protein complexes were observed with atomic force microscopy. The protein complexes attached selectively to the amino-terminated regions by electrostatic interactions. Spectral images generated with a hybrid scanning probe and fluorescence microscope confirmed that the patterned proteins retained their native optical signatures

  12. Examining the Impact of Question Surface Features on Students' Answers to Constructed-Response Questions on Photosynthesis

    Science.gov (United States)

    Weston, Michele; Haudek, Kevin C.; Prevost, Luanna; Urban-Lurain, Mark; Merrill, John

    2015-01-01

    One challenge in science education assessment is that students often focus on surface features of questions rather than the underlying scientific principles. We investigated how student written responses to constructed-response questions about photosynthesis vary based on two surface features of the question: the species of plant and the order of…

  13. Understanding the Asian summer monsoon response to greenhouse warming: the relative roles of direct radiative forcing and sea surface temperature change

    Science.gov (United States)

    Li, Xiaoqiong; Ting, Mingfang

    2017-10-01

    Future hydroclimate projections from state-of-the-art climate models show large uncertainty and model spread, particularly in the tropics and over the monsoon regions. The precipitation and circulation responses to rising greenhouse gases involve a fast component associated with direct radiative forcing and a slow component associated with sea surface temperature (SST) warming; the relative importance of the two may contribute to model discrepancies. In this study, regional hydroclimate responses to greenhouse warming are assessed using output from coupled general circulation models in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) and idealized atmospheric general circulation model experiments from the Atmosphere Model Intercomparison Project. The thermodynamic and dynamic mechanisms causing the rainfall changes are examined using moisture budget analysis. Results show that direct radiative forcing and SST change exert significantly different responses both over land and ocean. For most part of the Asian monsoon region, the summertime rainfall changes are dominated by the direct CO2 radiative effect through enhanced monsoon circulation. The response to SST warming shows a larger model spread compared to direct radiative forcing, possibly due to the cancellation between the thermodynamical and dynamical components. While the thermodynamical response of the Asian monsoon is robust across the models, there is a lack of consensus for the dynamical response among the models and weak multi-model mean responses in the CMIP5 ensemble, which may be related to the multiple physical processes evolving on different time scales.

  14. Surface EEG-Transcranial Direct Current Stimulation (tDCS) Closed-Loop System.

    Science.gov (United States)

    Leite, Jorge; Morales-Quezada, Leon; Carvalho, Sandra; Thibaut, Aurore; Doruk, Deniz; Chen, Chiun-Fan; Schachter, Steven C; Rotenberg, Alexander; Fregni, Felipe

    2017-09-01

    Conventional transcranial direct current stimulation (tDCS) protocols rely on applying electrical current at a fixed intensity and duration without using surrogate markers to direct the interventions. This has led to some mixed results; especially because tDCS induced effects may vary depending on the ongoing level of brain activity. Therefore, the objective of this preliminary study was to assess the feasibility of an EEG-triggered tDCS system based on EEG online analysis of its frequency bands. Six healthy volunteers were randomized to participate in a double-blind sham-controlled crossover design to receive a single session of 10[Formula: see text]min 2[Formula: see text]mA cathodal and sham tDCS. tDCS trigger controller was based upon an algorithm designed to detect an increase in the relative beta power of more than 200%, accompanied by a decrease of 50% or more in the relative alpha power, based on baseline EEG recordings. EEG-tDCS closed-loop-system was able to detect the predefined EEG magnitude deviation and successfully triggered the stimulation in all participants. This preliminary study represents a proof-of-concept for the development of an EEG-tDCS closed-loop system in humans. We discuss and review here different methods of closed loop system that can be considered and potential clinical applications of such system.

  15. Proximal surface caries detection with direct-exposure and rare earth screen/film imaging

    International Nuclear Information System (INIS)

    Lundeen, R.C.; McDavid, W.D.; Barnwell, G.M.

    1988-01-01

    This laboratory study compared five imaging systems for their diagnostic accuracy in detection of proximal surface dental caries. Ten viewers provided data on radiographic detectability of carious lesions. The diagnostic accuracy of each system was determined with receiver operating characteristic (ROC) curves by comparing viewer data with the true state of the teeth as determined microscopically. D-speed film marginally outperformed the other four systems, but the three screen/film systems matched the diagnostic accuracy of E-speed film. Radiation reductions between 62% and 92% were achieved with the screen/film systems when compared to the two conventional dental films. The feasibility of designing a screen/film bite-wing cassette was shown, but the poor diagnostic accuracy of the present bite-wing system indicated a need for a new technology in caries detection

  16. JJ1017 committee report: image examination order codes--standardized codes for imaging modality, region, and direction with local expansion: an extension of DICOM.

    Science.gov (United States)

    Kimura, Michio; Kuranishi, Makoto; Sukenobu, Yoshiharu; Watanabe, Hiroki; Tani, Shigeki; Sakusabe, Takaya; Nakajima, Takashi; Morimura, Shinya; Kabata, Shun

    2002-06-01

    The digital imaging and communications in medicine (DICOM) standard includes parts regarding nonimage data information, such as image study ordering data and performed procedure data, and is used for sharing information between HIS/RIS and modality systems, which is essential for IHE. To bring such parts of the DICOM standard into force in Japan, a joint committee of JIRA and JAHIS established the JJ1017 management guideline, specifying, for example, which items are legally required in Japan, while remaining optional in the DICOM standard. In Japan, the contents of orders from referring physicians for radiographic examinations include details of the examination. Such details are not used typically by referring physicians requesting radiographic examinations in the United States, because radiologists in the United States often determine the examination protocol. The DICOM standard has code tables for examination type, region, and direction for image examination orders. However, this investigation found that it does not include items that are detailed sufficiently for use in Japan, because of the above-mentioned reason. To overcome these drawbacks, we have generated the JJ1017 code for these 3 codes for use based on the JJ1017 guidelines. This report introduces the JJ1017 code. These codes (the study type codes in particular) must be expandable to keep up with technical advances in equipment. Expansion has 2 directions: width for covering more categories and depth for specifying the information in more detail (finer categories). The JJ1017 code takes these requirements into consideration and clearly distinguishes between the stem part as the common term and the expansion. The stem part of the JJ1017 code partially utilizes the DICOM codes to remain in line with the DICOM standard. This work is an example of how local requirements can be met by using the DICOM standard and extending it.

  17. Direct Surface Analysis of Fungal Species by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, Nancy B.(BATTELLE (PACIFIC NW LAB)); Wahl, Jon H.(BATTELLE (PACIFIC NW LAB)); Kingsley, Mark T.(BATTELLE (PACIFIC NW LAB)); Wahl, Karen L.(BATTELLE (PACIFIC NW LAB))

    2001-12-01

    Intact spores and/or hyphae of Aspergillus niger, Rhizopus oryzae, Trichoderma reesei and Phanerochaete chrysosporium are analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). This study investigates various methods of sample preparation and matrices to determine optimum collection and analysis criteria for fungal analysis by MALDI-MS. Fungi are applied to the MALDI sample target as untreated, sonicated, acid/heat treated, or blotted directly from the fungal culture with double-stick tape. Ferulic acid or sinapinic acid matrix solution is layered over the dried samples and analyzed by MALDI-MS. Statistical analysis of the data show that simply using double stick tape to collect and transfer to a MALDI sample plate typically worked as well as the other preparation methods, but requires the least sample handling.

  18. A Study of an Optical Lunar Surface Communications Network with High Bandwidth Direct to Earth Link

    Science.gov (United States)

    Wilson, K.; Biswas, A.; Schoolcraft, J.

    2011-01-01

    Analyzed optical DTE (direct to earth) and lunar relay satellite link analyses, greater than 200 Mbps downlink to 1-m Earth receiver and greater than 1 Mbps uplink achieved with mobile 5-cm lunar transceiver, greater than 1Gbps downlink and greater than 10 Mpbs uplink achieved with 10-cm stationary lunar transceiver, MITLL (MIT Lincoln Laboratory) 2013 LLCD (Lunar Laser Communications Demonstration) plans to demonstrate 622 Mbps downlink with 20 Mbps uplink between lunar orbiter and ground station; Identified top five technology challenges to deploying lunar optical network, Performed preliminary experiments on two of challenges: (i) lunar dust removal and (ii)DTN over optical carrier, Exploring opportunities to evaluate DTN (delay-tolerant networking) over optical link in a multi-node network e.g. Desert RATS.

  19. Direct measurement of the adsorption kinetics of 2-Mercaptobenzothiazole on a microcrystalline copper surface

    Directory of Open Access Journals (Sweden)

    Ramírez-Cano, Jorge A.

    2016-03-01

    Full Text Available The adsorption on copper of 2-Mercaptobenzothiazole (2-MBT, a eterocyclic compound member of the tiazole family, has been investigated at different concentrations (1×10−1 to 1×10−6 M in water, employing the Electrochemical Quartz Crystal Microbalance (EQCM. The frequency response over time was obtained for each concentration, showing a defined exponential behavior at higher concentrations (1×10−1, 1×10−2 and 1×10−3 M, which was fitted to the Langmuir adsorption isotherm with a good correlation coefficients (R2=0.91 to 0.98. Surface coverage (θ was calculated and found to be in the order of 0.50 to 0.01 for 2-MBT high concentrations. The free energy of adsorption was ΔGads=−5.59 kJ mol−1, corresponding to physisorption process, probably of electrostatic nature of the interaction between 2-MBT and copper surface in aqueous solution.En el presente trabajo se ha investigado la adsorción del 2-Mercaptobenzotiazol (2-MBT en cobre, un compuesto heterocíclico miembro de la familia de los tiazoles, en solución acuosa a diferentes concentraciones (1×10−1 a 1×10−6 M, empleando la Balanza Electroquímica de Cristal de Cuarzo (BECC. Se midió y analizó el cambio de frecuencia con respecto al tiempo para cada concentración, mostrando un comportamiento exponencial definido en el rango de concentraciones altas (1×10−1, 1×10−2 y 1×10−3 M, los cambios de frecuencia registrados se ajustaron usando la isoterma de adsorción de Langmuir obteniendo buenos coeficientes de correlación (R2=0,91 a 0,98. Se calculó también la fracción de superficie recubierta y se halló que se encuentra en el orden de 0,50 a 0,01 para las concentraciones altas de 2-MBT. La energía libre de adsorción calculada fue de ΔGads=−5,59 kJ mol−1, lo cual corresponde a un proceso de fisisorción.

  20. The Influence of Electrolytic Concentration on the Electrochemical Deposition of Calcium Phosphate Coating on a Direct Laser Metal Forming Surface

    Directory of Open Access Journals (Sweden)

    Qianyue Sun

    2017-01-01

    Full Text Available A calcium phosphate (CaP coating on titanium surface enhances its biocompatibility, thus facilitating osteoconduction and osteoinduction with the inorganic phase of the human bone. Electrochemical deposition has been suggested as an effective means of fabricating CaP coatings on porous surface. The purpose of this study was to develop CaP coatings on a direct laser metal forming implant using electrochemical deposition and to investigate the effect of electrolytic concentration on the coating’s morphology and structure by X-ray diffraction, scanning electron microscopy, water contact angle analysis, and Fourier transform infrared spectroscopy. In group 10−2, coatings were rich in dicalcium phosphate, characterized to be thick, layered, and disordered plates. In contrast, in groups 10−3 and 10−4, the relatively thin and well-ordered coatings predominantly consisted of granular hydroxyapatite. Further, the hydrophilicity and cell affinity were improved as electrolytic concentration increased. In particular, the cells cultured in group 10−3 appeared to have spindle morphology with thick pseudopodia on CaP coatings; these spindles and pseudopodia strongly adhered to the rough and porous surface. By analyzing and evaluating the surface properties, we provided further knowledge on the electrolytic concentration effect, which will be critical for improving CaP coated Ti implants in the future.

  1. Selected topics on surface effects in fusion devices: neutral-beam injectors and beam-direct converters

    International Nuclear Information System (INIS)

    Kaminsky, M.

    1978-01-01

    Neutral-beam injectors are being used for the heating and fueling of plasmas in existing devices such as PLT (Princeton), ISX (Oak Ridge) and 2XIIB (Lawrence Livermore Laboratory) and will be used in devices such as TFTR (Princeton), MX (Livermore) and Doublet III (Gulf Atomic). For example, TFTR has been designed to receive a total of 20 MW of 120-keV deuterium atoms in pulses of 0.5-sec duration from 12 neutral beam injectors; for the MX experiment it is planned to inject a total of 750A (equivalent) of deuterium atoms with a mean energy of 56 keV in 0.5-sec pulses. The interaction of energetic deuterium atoms with exposed surfaces of device components such as beam dumps, beam-direct-convertors collectors, beam calorimeters, and armor plates, cause a variety of surface effects which affect deleteriously the operation of such devices. Some of the major effects will be discussed

  2. Integrated modeling of groundwater-surface water interactions in a tile-drained agricultural field: The importance of directly measured flow route contributions

    NARCIS (Netherlands)

    Rozemeijer, J.C.; Velde, Y. van der; McLaren, R.G.; Geer, F.C. van; Broers, H.P.; Bierkens, M.F.P.

    2010-01-01

    Understanding the dynamics of groundwater-surface water interaction is needed to evaluate and simulate water and solute transport in catchments. However, direct measurements of the contributions of different flow routes from specific surfaces within a catchment toward the surface water are rarely

  3. DNA Origami Directed Au Nanostar Dimers for Single-Molecule Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Tanwar, Swati; Haldar, Krishna Kanta; Sen, Tapasi

    2017-12-06

    We demonstrate the synthesis of Au nanostar dimers with tunable interparticle gap and controlled stoichiometry assembled on DNA origami. Au nanostars with uniform and sharp tips were immobilized on rectangular DNA origami dimerized structures to create nanoantennas containing monomeric and dimeric Au nanostars. Single Texas red (TR) dye was specifically attached in the junction of the dimerized origami to act as a Raman reporter molecule. The SERS enhancement factors of single TR dye molecules located in the conjunction region in dimer structures having interparticle gaps of 7 and 13 nm are 2 × 10 10 and 8 × 10 9 , respectively, which are strong enough for single analyte detection. The highly enhanced electromagnetic field generated by the plasmon coupling between sharp tips and cores of two Au nanostars in the wide conjunction region allows the accommodation and specific detection of large biomolecules. Such DNA-directed assembled nanoantennas with controlled interparticle separation distance and stoichiometry, and well-defined geometry, can be used as excellent substrates in single-molecule SERS spectroscopy and will have potential applications as a reproducible platform in single-molecule sensing.

  4. Direct numerical simulation of turbulent pipe flow with nonuniform surface heat flux

    International Nuclear Information System (INIS)

    Satake, Shin-ichi; Kunugi, Tomoaki

    1998-01-01

    Turbulent transport computations of a scalar quantity for fully-developed turbulent pipe flow were carried out by means of a direct numerical simulation (DNS) procedure. In this paper, three wall-heating boundary conditions were considered as follows: Case-1) a uniform heat-flux condition along the wall, Case-2) a nonuniform wall-heating condition, that is, a cosine heat-flux distribution along the wall and Case-3) a nonuniform wall-heating condition with a constant temperature over a half of the pipe wall. The number of computational grids used in this paper is 256 x 128 x 128. Prandtl number of the working fluid is 0.71. The Nusselt number in case of Case-1 is in good agreement with the empirical correlation. In case of Case-3, the distributions of the turbulent quantity and the Nusselt number seem to be reasonable. However, as for Case-2, the distributions of the turbulent quantity and the Nusselt number seem to be unrealistic. Two numerical treatments of thermal boundary condition on the wall were applied and their results were discussed from the viewpoint of the turbulent transport feature. (author)

  5. The role of direct photolysis and indirect photochemistry in the environmental fate of ethylhexyl methoxy cinnamate (EHMC) in surface waters

    International Nuclear Information System (INIS)

    Vione, D.; Calza, P.; Galli, F.; Fabbri, D.; Santoro, V.; Medana, C.

    2015-01-01

    The aquatic environmental fate of ethylhexyl methoxy cinnamate (EHMC), one of the most used UVB filters worldwide, was studied by assessing its environmental persistence and photoinduced transformations. The role of direct and indirect photolysis was evaluated. Direct photolysis was shown to play a key role, and this process is expected to be the main attenuation route of EHMC in sunlit surface waters. In contrast, the reaction with ·OH radicals would be negligible and that with "3CDOM* would at most be a secondary process. The measurement of the quantum yield of direct photolysis and of the rate constants of reaction with photogenerated transient species (or, sometimes, the use of reasonable values for the latter) allowed the prediction of the EHMC half-life time in surface waters, by means of a validated photochemical model. The predicted EHMC lifetime is of the order of hours to a few days in fair-weather summertime, and the main factors controlling the EHMC phototransformation in sunlit surface waters would be the water depth and the dissolved organic carbon (DOC) content. The formation of transformation products (TPs) was followed as well via HPLC/HRMS. Three TPs were detected in the samples exposed to UVA radiation, while one additional TP was detected in the samples exposed to UVB radiation. The detected TPs comprised 4-methoxybenzaldehyde, a hydroxylated derivative and dimeric species. Through the use of heterogeneous photocatalysis with TiO_2, seven additional TPs were identified, most of them resulting from the further degradation of primary TPs formed through direct photolysis and that might be detected in aquatic systems as well. The photodegradation of EHMC in the presence of TiO_2 yielded more toxic TPs than the parent compound (as determined with the Vibrio fischeri Microtox assay). The increased toxicity is partially accounted for by the formation of 4-methoxybenzaldehyde. - Highlights: • Study of the photolytic and photocatalytic transformation

  6. The role of direct photolysis and indirect photochemistry in the environmental fate of ethylhexyl methoxy cinnamate (EHMC) in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Vione, D. [Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino (Italy); Calza, P., E-mail: paola.calza@unito.it [Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino (Italy); Galli, F.; Fabbri, D. [Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino (Italy); Santoro, V.; Medana, C. [Department of Molecular Biotechnology and Health Sciences, University of Torino, via P. Giuria 5, 10125 Torino (Italy)

    2015-12-15

    The aquatic environmental fate of ethylhexyl methoxy cinnamate (EHMC), one of the most used UVB filters worldwide, was studied by assessing its environmental persistence and photoinduced transformations. The role of direct and indirect photolysis was evaluated. Direct photolysis was shown to play a key role, and this process is expected to be the main attenuation route of EHMC in sunlit surface waters. In contrast, the reaction with ·OH radicals would be negligible and that with {sup 3}CDOM* would at most be a secondary process. The measurement of the quantum yield of direct photolysis and of the rate constants of reaction with photogenerated transient species (or, sometimes, the use of reasonable values for the latter) allowed the prediction of the EHMC half-life time in surface waters, by means of a validated photochemical model. The predicted EHMC lifetime is of the order of hours to a few days in fair-weather summertime, and the main factors controlling the EHMC phototransformation in sunlit surface waters would be the water depth and the dissolved organic carbon (DOC) content. The formation of transformation products (TPs) was followed as well via HPLC/HRMS. Three TPs were detected in the samples exposed to UVA radiation, while one additional TP was detected in the samples exposed to UVB radiation. The detected TPs comprised 4-methoxybenzaldehyde, a hydroxylated derivative and dimeric species. Through the use of heterogeneous photocatalysis with TiO{sub 2}, seven additional TPs were identified, most of them resulting from the further degradation of primary TPs formed through direct photolysis and that might be detected in aquatic systems as well. The photodegradation of EHMC in the presence of TiO{sub 2} yielded more toxic TPs than the parent compound (as determined with the Vibrio fischeri Microtox assay). The increased toxicity is partially accounted for by the formation of 4-methoxybenzaldehyde. - Highlights: • Study of the photolytic and photocatalytic

  7. Then and Now: Examining How Consumer Communication and Attitudes of Direct-to-Consumer Pharmaceutical Advertising Have Changed in the Last Decade.

    Science.gov (United States)

    Wood, Kelly S; Cronley, Maria L

    2014-09-01

    This study examines changes over a 10-year period in consumer reports of communication with health care providers about direct-to-consumer advertised (DTCA) medications. Two rounds of survey data were collected in 2003 and 2012 using repeated cross-sectional procedures to examine consumer willingness to discuss DTCA medications, content and tone of those conversations, and attitudes about the advertisements. In total, 472 surveys were analyzed. Generally, we found physician-patient conversations, attitudes, and behaviors regarding DTCA have changed. Consumers in 2012 reported talking significantly less about the names of the advertised drug, comparing the advertised drug with their current medication, and sharing general information than consumers in 2003. Attitudes toward the advertisements were significantly more negative in 2012 compared to 2003. Of those who specifically asked for a prescription, the proportion of patients who received the prescription was significantly lower in 2012, despite research suggesting increased rates of prescriptions. These results are interpreted in light of previous research about the lack of research examining the actual communication between physicians and patients on this topic. Limitations of the study are provided along with directions for future research about DTCA and physician-patient communication.

  8. Presence or absence of ocular surface inflammation directs clinical and therapeutic management of dry eye.

    Science.gov (United States)

    Sambursky, Robert

    2016-01-01

    The presence of clinically significant inflammation has been confirmed in the tears of 40%-65% of patients with symptoms of dry eye. Ocular surface inflammation may lead to tear film instability, epithelial cell irregularities, and permeability, resulting in chronic symptomatic pain and fluctuating vision as well as negative surgical outcomes. A retrospective single center medical chart review of 100 patients was conducted. All patients were tested with the InflammaDry test to determine if patients exhibited elevated levels of matrix metalloproteinase 9 (MMP-9). InflammaDry-positive patients were started on a combination of cyclosporine 0.05% twice daily, 2,000-4,000 mg oral omega-3 fatty acids, and frequent artificial tear replacement. InflammaDry-negative patients were started on 2,000-4,000 mg of oral omega-3 fatty acids and frequent artificial tear replacement. Each patient was retested at ~90 days. A symptom questionnaire was performed at the initial visit and at 90 days. 60% of the patients with dry eye symptoms tested positive for elevated MMP-9 at the initial visit. 78% of all patients returned for follow-up at ~90 days including 80% (48/60) of the previously InflammaDry-positive patients and 75% (30/40) of the previously InflammaDry-negative patients. A follow-up symptom questionnaire reported at least 75% symptomatic improvement in 65% (31/48) of the originally InflammaDry-positive patients and in 70% (21/30) of the initially InflammaDry-negative patients. Symptomatic improvement of at least 50% was reported in 85% (41/48) of previously InflammaDry-positive patients and 86% (26/30) of previously InflammaDry-negative patients. Following treatment, 54% (26/48) of previously InflammaDry-positive patients converted to a negative InflammaDry result. Identifying which symptomatic dry eye patients have underlying inflammation may predict patient responses to treatment and influence clinical management strategies.

  9. Double modulation pyrometry: A radiometric method to measure surface temperatures of directly irradiated samples

    Science.gov (United States)

    Potamias, Dimitrios; Alxneit, Ivo; Wokaun, Alexander

    2017-09-01

    The design, implementation, calibration, and assessment of double modulation pyrometry to measure surface temperatures of radiatively heated samples in our 1 kW imaging furnace is presented. The method requires that the intensity of the external radiation can be modulated. This was achieved by a rotating blade mounted parallel to the optical axis of the imaging furnace. Double modulation pyrometry independently measures the external radiation reflected by the sample as well as the sum of thermal and reflected radiation and extracts the thermal emission as the difference of these signals. Thus a two-step calibration is required: First, the relative gains of the measured signals are equalized and then a temperature calibration is performed. For the latter, we transfer the calibration from a calibrated solar blind pyrometer that operates at a different wavelength. We demonstrate that the worst case systematic error associated with this procedure is about 300 K but becomes negligible if a reasonable estimate of the sample's emissivity is used. An analysis of the influence of the uncertainties in the calibration coefficients reveals that one (out of the five) coefficient contributes almost 50% to the final temperature error. On a low emission sample like platinum, the lower detection limit is around 1700 K and the accuracy typically about 20 K. Note that these moderate specifications are specific for the use of double modulation pyrometry at the imaging furnace. It is mainly caused by the difficulty to achieve and maintain good overlap of the hot zone with a diameter of about 3 mm Full Width at Half Height and the measurement spot both of which are of similar size.

  10. Double modulation pyrometry: A radiometric method to measure surface temperatures of directly irradiated samples.

    Science.gov (United States)

    Potamias, Dimitrios; Alxneit, Ivo; Wokaun, Alexander

    2017-09-01

    The design, implementation, calibration, and assessment of double modulation pyrometry to measure surface temperatures of radiatively heated samples in our 1 kW imaging furnace is presented. The method requires that the intensity of the external radiation can be modulated. This was achieved by a rotating blade mounted parallel to the optical axis of the imaging furnace. Double modulation pyrometry independently measures the external radiation reflected by the sample as well as the sum of thermal and reflected radiation and extracts the thermal emission as the difference of these signals. Thus a two-step calibration is required: First, the relative gains of the measured signals are equalized and then a temperature calibration is performed. For the latter, we transfer the calibration from a calibrated solar blind pyrometer that operates at a different wavelength. We demonstrate that the worst case systematic error associated with this procedure is about 300 K but becomes negligible if a reasonable estimate of the sample's emissivity is used. An analysis of the influence of the uncertainties in the calibration coefficients reveals that one (out of the five) coefficient contributes almost 50% to the final temperature error. On a low emission sample like platinum, the lower detection limit is around 1700 K and the accuracy typically about 20 K. Note that these moderate specifications are specific for the use of double modulation pyrometry at the imaging furnace. It is mainly caused by the difficulty to achieve and maintain good overlap of the hot zone with a diameter of about 3 mm Full Width at Half Height and the measurement spot both of which are of similar size.

  11. Comparison of Direct and Indirect Methods of Teaching Breast Self-Examination – Influence on Knowledge and Attitudes of Iranian Nursing and Midwifery Personnel

    Science.gov (United States)

    Shahbazi, Sara; Heidari, Mohammad; Ghafourifard, Mansour

    2017-04-01

    Background: Breast cancer is the most common cancer in women. Monthly breast self-examination (BSE) has been presented as one of the best screening methods available. The aim of this study was to compare effects of both direct and indirect methods of teaching of BSE on knowledge and attitudes of nursing and midwifery personnel. Materials and Methods: The present study was performed on 89 nursing and midwifery personnel in Valiasr hospital of Borujen city. Participants were randomly divided into a direct and an indirect training group. Researcher-designed BSE knowledge and attitude and demographic information questionnaires were used for data collection. Results: Before the education intervention, the mean levels of knowledge and attitude were 9.82±2.79 and 56.5±6.21 in the direct training group and 9.59±2.71 and 54.5±4.51 in the indirect training group; after the intervention, they reached 19.2±0.96 and 62.9±4.21, and 11.0±2.58 and 59.0±3.44, respectively. The difference in the mean levels of knowledge and attitude were significantly higher in the direct training group post intervention (Pdirect training methods. Creative Commons Attribution License

  12. Exploring the direct impacts of particulate matter and surface ozone on global crop production

    Science.gov (United States)

    Schiferl, L. D.; Heald, C. L.

    2016-12-01

    The current era of rising food demand to feed an increasing population along with expansion of industrialization throughout the globe has been accompanied by deteriorating air quality and an enhancement in agricultural activity. Both air quality and the food supply are vitally important to sustaining human enterprise, and understanding the effects air quality may have on agricultural production is critical. Particulate matter (PM) in the atmosphere decreases the total photosynthetically available radiation (PAR) available to crops through the scattering and absorption of radiation while also increasing the diffuse fraction (DF) of this PAR. Since plants respond positively to a higher DF through the more even distribution of photons to all leaves, the net effect of PM on crop production depends on the magnitudes of these values and the response mechanisms of a specific crop. In contrast, atmospheric ozone always acts to decrease crop production through its phytotoxic properties. While the relationships between ozone and crop production have been readily studied, the effects of PM on crop production and their relative importance compared to ozone is much more uncertain. This study uses the GEOS-Chem chemical transport model linked to the RRTMG radiative transfer model and the DSSAT crop model to explore the impacts of PM and ozone on the globally distributed production of maize, rice, wheat and soybeans. First, we examine how air quality differentially affects total seasonal production by crop and region. Second, we investigate the dependence of simulated production on air quality over different timescales and under varying cloud conditions.

  13. Electrostatic and capillary force directed tunable 3D binary micro- and nanoparticle assemblies on surfaces

    International Nuclear Information System (INIS)

    Singh, G; Pillai, S; Arpanaei, A; Kingshott, P

    2011-01-01

    We report a simple, rapid and cost-effective method based on evaporation induced assembly to grow 3D binary colloidal assemblies on a hydrophobic/hydrophilic substrate by simple drop casting. The evaporation of a mixed colloidal drop results in ring-like or uniform area deposition depending on the concentration of particles, and thus assembly occurs at the periphery of a ring or uniformly all over the drop area. Binary colloidal assemblies of different crystal structure are successfully prepared over a wide range of size ratios (γ = small/large) from 0.06 to 0.30 by tuning the γ of the micro- and nanoparticles used during assembly. The growth mechanism of 3D binary colloidal assemblies is investigated and it is found that electrostatic forces facilitate assembly formation until the end of the evaporation process, with capillary forces also playing a role. In addition, the effects of solvent type, humidity, and salt concentration on crystal formation and ordering behaviour are also examined. Furthermore, long range, highly ordered binary colloidal assemblies can be fabricated by the choice of a low conducting solvent combined with evaporation induced assembly.

  14. Test plan for surface and subsurface examinations of K-east and K-west fuel elements

    International Nuclear Information System (INIS)

    Pitner, A.L.

    1997-01-01

    The test plan for subsurface examinations on damaged K East and K West Basin fuel elements is presented. The purpose of these examinations is to inspect damaged areas on the fuel elements for the presence of voids, sludge, or broken fuel, and to obtain samples from the damaged areas for subsequent characterization tests

  15. Examination of Direct Discharge Measurement Data and Historic Daily Data for Selected Gages on the Middle Mississippi River, 1861-2008

    Science.gov (United States)

    Huizinga, Richard J.

    2009-01-01

    An examination of data from two continuous stage and discharge streamgages and one continuous stage-only gage on the Middle Mississippi River was made to determine stage-discharge relation changes through time and to investigate cause-and-effect mechanisms through evaluation of hydraulic geometry, channel elevation and water-surface elevation data. Data from discrete, direct measurements at the streamgages at St. Louis, Missouri, and Chester, Illinois, during the period of operation by the U.S. Geological Survey from 1933 to 2008 were examined for changes with time. Daily stage values from the streamgages at St. Louis (1861-2008) and Chester (1891-2008) and the stage-only gage at Cape Girardeau, Missouri (1896-2008), throughout the historic period of record also were examined for changes with time. Stage and discharge from measurements and stage-discharge relations at the streamgages at St. Louis and Chester indicate that stage for a given discharge has changed with time at both locations. An apparent increase in stage for a given discharge at increased flows (greater than flood stage) likely is caused by the raising of levees on the flood plains, and a decrease in stage for a given discharge at low flows (less than one-half flood stage) likely is caused by a combination of dikes in the channel that deepen the channel thalweg at the end of the dikes, and reduced sediment flux into the Middle Mississippi River. Since the 1960s at St. Louis, Missouri, the stage-discharge relations indicated no change or a decrease in stage for a given discharge for all discharges, whereas at Chester, Illinois, the stage-discharge relations indicate increasing stage for a given discharge above bankfull because of sediment infilling of the overflow channel. Top width and average velocity from measurements at a given discharge for the streamgage at St. Louis, Missouri, were relatively constant through time, with the only substantial change in top width resulting from the change in

  16. Presence or absence of ocular surface inflammation directs clinical and therapeutic management of dry eye

    Directory of Open Access Journals (Sweden)

    Sambursky R

    2016-11-01

    Full Text Available Robert Sambursky Coastal Eye Institute, Cornea and Comprehensive Ophthalmology, Bradenton, FL, USA Background: The presence of clinically significant inflammation has been confirmed in the tears of 40%–65% of patients with symptoms of dry eye. Ocular surface inflammation may lead to tear film instability, epithelial cell irregularities, and permeability, resulting in chronic symptomatic pain and fluctuating vision as well as negative surgical outcomes.Patients and methods: A retrospective single center medical chart review of 100 patients was conducted. All patients were tested with the InflammaDry test to determine if patients exhibited elevated levels of matrix metalloproteinase 9 (MMP-9. InflammaDry-positive patients were started on a combination of cyclosporine 0.05% twice daily, 2,000–4,000 mg oral omega-3 fatty acids, and frequent artificial tear replacement. InflammaDry-negative patients were started on 2,000–4,000 mg of oral omega-3 fatty acids and frequent artificial tear replacement. Each patient was retested at ~90 days. A symptom questionnaire was performed at the initial visit and at 90 days.Results: 60% of the patients with dry eye symptoms tested positive for elevated MMP-9 at the initial visit. 78% of all patients returned for follow-up at ~90 days including 80% (48/60 of the previously InflammaDry-positive patients and 75% (30/40 of the previously InflammaDry-negative patients. A follow-up symptom questionnaire reported at least 75% symptomatic improvement in 65% (31/48 of the originally InflammaDry-positive patients and in 70% (21/30 of the initially InflammaDry-negative patients. Symptomatic improvement of at least 50% was reported in 85% (41/48 of previously InflammaDry-positive patients and 86% (26/30 of previously InflammaDry-negative patients. Following treatment, 54% (26/48 of previously InflammaDry-positive patients converted to a negative InflammaDry result.Conclusion: Identifying which symptomatic dry eye

  17. Hydrolysis of VX on concrete: rate of degradation by direct surface interrogation using an ion trap secondary ion mass spectrometer.

    Science.gov (United States)

    Groenewold, Gary S; Williams, John M; Appelhans, Anthony D; Gresham, Garold L; Olson, John E; Jeffery, Mark T; Rowland, Brad

    2002-11-15

    The nerve agent VX (O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate) is lethal at very low levels of exposure, which can occur by dermal contact with contaminated surfaces. Hence, behavior of VX in contact with common urban or industrial surfaces is a subject of acute interest. In the present study, VX was found to undergo complete degradation when in contact with concrete surfaces. The degradation was directly interrogated at submonolayer concentrations by periodically performing secondary ion mass spectrometry (SIMS) analyses after exposure of the concrete to VX. The abundance of the [VX + H]+ ion in the SIMS spectra was observed to decrease in an exponential fashion, consistent with first-order or pseudo-first-order behavior. This phenomenon enabled the rate constant to be determined at 0.005 min(-1) at 25 degrees C, which corresponds to a half-life of about 3 h on the concrete surface. The decrease in [VX + H]+ was accompanied by an increase in the abundance of the principal degradation product diisopropylaminoethanethiol (DESH), which arises by cleavage of the P-S bond. Degradation to form DESH is accompanied by the formation of ethyl methylphosphonic acid, which is observable only in the negative ion spectrum. A second degradation product was also implicated, which corresponded to a diisopropylvinylamine isomer (perhaps N,N-diisopropyl aziridinium) that arose via cleavage of the S-C bond. No evidence was observed for the formation of the toxic S-2-diisopropylaminoethyl methylphosphonothioic acid. The degradation rate constants were measured at four different temperatures (24-50 degrees C), which resulted in a linear Arrhenius relationship and an activation energy of 52 kJ mol(-1). This value agrees with previous values observed for VX hydrolysis in alkaline solutions, which suggests that the degradation of submonolayer VX is dominated by alkaline hydrolysis within the adventitious water film on the concrete surface.

  18. Metrological issues related to BRDF measurements around the specular direction in the particular case of glossy surfaces

    Science.gov (United States)

    Obein, Gaël.; Audenaert, Jan; Ged, Guillaume; Leloup, Frédéric B.

    2015-03-01

    Among the complete bidirectional reflectance distribution function (BRDF), visual gloss is principally related to physical reflection characteristics located around the specular reflection direction. This particular part of the BRDF is usually referred to as the specular peak. A good starting point for the physical description of gloss could be to measure the reflection properties around this specular peak. Unfortunately, such a characterization is not trivial, since for glossy surfaces the width of the specular peak can become very narrow (typically a full width at half maximum inferior to 0.5° is encountered). In result, new BRDF measurement devices with a very small solid angle of detection are being introduced. Yet, differences in the optical design of BRDF measurement instruments engender different measurement results for the same specimen, complicating direct comparison of the measurement results. This issue is addressed in this paper. By way of example, BRDF measurement results of two samples, one being matte and the other one glossy, obtained by use of two high level goniospectrophotometers with a different optical design, are described. Important discrepancies in the results of the glossy sample are discussed. Finally, luminance maps obtained from renderings with the acquired BRDF data are presented, exemplifying the large visual differences that might be obtained. This stresses the metrological aspects that must be known for using BRDF data. Indeed, the comprehension of parameters affecting the measurement results is an inevitable step towards progress in the metrology of surface gloss, and thus towards a better metrology of appearance in general.

  19. MALDI-TOF MS performance compared to direct examination, culture, and 16S rDNA PCR for the rapid diagnosis of bone and joint infections.

    Science.gov (United States)

    Lallemand, E; Coiffier, G; Arvieux, C; Brillet, E; Guggenbuhl, P; Jolivet-Gougeon, A

    2016-05-01

    The rapid identification of bacterial species involved in bone and joint infections (BJI) is an important element to optimize the diagnosis and care of patients. The aim of this study was to evaluate the usefulness of matrix-assisted laser desorption ionization mass spectrometry (MALDI-TOF MS) for the rapid diagnosis of bone infections, directly on synovial fluid (SF) or on crushed osteoarticular samples (CS). From January to October 2013, we prospectively analyzed 111 osteoarticular samples (bone and joint samples, BJS) from 78 patients in care at the University Hospital of Rennes, France. The diagnosis procedure leading to the sample collection was linked to a suspicion of infection, inflammatory disease, arthritis, or for any bone or joint abnormalities. Standard bacteriological diagnosis and molecular biology analysis [16S rRNA polymerase chain reaction (PCR) and sequencing] were conducted. In addition, analysis by MALDI-TOF MS was performed directly on the osteoarticular samples, as soon as the amount allowed. Culture, which remains the gold standard for the diagnosis of BJI, has the highest sensitivity (85.9 %) and remains necessary to test antimicrobial susceptibility. The 16S rDNA PCR results were positive in the group with positive BJI (28.6 %) and negative in the group without infection. Direct examination remains insensitive (31.7 %) but more effective than MALDI-TOF MS directly on the sample (6.3 %). The specificity was 100 % in all cases, except for culture (74.5 %). Bacterial culture remains the gold standard, especially enrichment in blood bottles. Direct analysis of bone samples with MALDI-TOF MS is not useful, possibly due to the low inoculum of BJS.

  20. Direct observation of electrothermal instability structures on intensely Ohmically heated aluminum with current flowing in a surface skin layer

    Science.gov (United States)

    Awe, Thomas

    2017-10-01

    Implosions on the Z Facility assemble high-energy-density plasmas for radiation effects and ICF experiments, but achievable stagnation pressures and temperatures are degraded by the Magneto-Rayleigh-Taylor (MRT) instability. While the beryllium liners (tubes) used in Magnetized Liner Inertial Fusion (MagLIF) experiments are astonishingly smooth (10 to 50 nm RMS roughness), they also contain distributed micron-scale resistive inclusions, and large MRT amplitudes are observed. Early in the implosion, an electrothermal instability (ETI) may provide a perturbation which greatly exceeds the initial surface roughness of the liner. Resistive inhomogeneities drive nonuniform current density and Joule heating, resulting in locally higher temperature, and thus still higher resistivity. Such unstable temperature and pressure growth produce density perturbations which seed MRT. For MagLIF liners, ETI seeding of MRT has been inferred by evaluating late-time MRT, but a direct observation of ETI is not made. ETI is directly observed on the surface of 1.0-mm-diameter solid Al rods pulsed to 1 MA in 100 ns via high resolution gated optical imaging (2 ns temporal and 3 micron spatial resolution). Aluminum 6061 alloy rods, with micron-scale resistive inclusions, consistently first demonstrate overheating from distinct, 10-micron-scale, sub-eV spots, which 5-10 ns later merge into azimuthally stretched elliptical spots and discrete strata (40-100 microns wide by 10 microns tall). Axial plasma filaments form shortly thereafter. Surface plasma can be suppressed for rods coated with dielectric, enabling extended study of the evolution of stratified ETI structures, and experimental inference of ETI growth rates. This fundamentally new and highly 3-dimensional dataset informs ETI physics, including when the ETI seed of MRT may be initiated.

  1. Near Surface Geophysical Investigations of Potential Direct Recharge Zones in the Biscayne Aquifer within Everglades National Park, Florida.

    Science.gov (United States)

    Mount, G.; Comas, X.

    2017-12-01

    The karstic Miami Limestone of the Biscayne aquifer is characterized as having water flow that is controlled by the presence of dissolution enhanced porosity and mega-porous features. The dissolution features and other high porosity areas create horizontal preferential flow paths and high rates of ground water velocity, which may not be accurately conceptualized in groundwater flow models. In addition, recent research suggests the presence of numerous vertical dissolution features across Everglades National Park at Long Pine Key Trail, that may act as areas of direct recharge to the aquifer. These vertical features have been identified through ground penetrating radar (GPR) surveys as areas of velocity pull-down which have been modeled to have porosity values higher than the surrounding Miami Limestone. As climate change may induce larger and longer temporal variability between wet and dry times in the Everglades, a more comprehensive understanding of preferential flow pathways from the surface to the aquifer would be a great benefit to modelers and planners. This research utilizes near surface geophysical techniques, such as GPR, to identify these vertical dissolution features and then estimate the spatial variability of porosity using petrophysical models. GPR transects that were collected for several kilometers along the Long Pine Key Trail, show numerous pull down areas that correspond to dissolution enhanced porosity zones within the Miami Limestone. Additional 3D GPR surveys have attempted to delineate the boundaries of these features to elucidate their geometry for future modelling studies. We demonstrate the ability of near surface geophysics and petrophysical models to identify dissolution enhanced porosity in shallow karstic limestones to better understand areas that may act as zones of direct recharge into the Biscayne Aquifer.

  2. Experimental study of the response functions of direct-reading instruments measuring surface-area concentration of airborne nanostructured particles

    International Nuclear Information System (INIS)

    Bau, Sebastien; Witschger, Olivier; Gensdarmes, Francois; Thomas, Dominique

    2009-01-01

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment to move forward our understanding of the hazards, the actual exposures in the workplace, and the limits of engineering controls and personal protective equipment with regard to NP. As a consequence, generating airborne NP with controlled properties constitutes an important challenge. In parallel, toxicological studies have been carried out, and most of them support the concept that surface-area could be a relevant metric for characterizing exposure to airborne NP. To provide NP surface-area concentration measurements, some direct-reading instruments have been designed, based on attachment rate of unipolar ions to NP by diffusion. However, very few information is available concerning the performances of these instruments and the parameters that could affect their responses. In this context, our work aims at characterizing the actual available instruments providing airborne NP surface-area concentration. The instruments (a- LQ1-DC, Matter Engineering; b-AeroTrak x2122 9000, TSI; c- NSAM, TSI model 3550;) are thought to be relevant for further workplace exposure characterization and monitoring. To achieve our work, an experimental facility (named CAIMAN) was specially designed, built and characterized.

  3. Phospholipids as an alternative to direct covalent coupling: surface functionalization of nanoporous alumina for protein recognition and purification.

    Science.gov (United States)

    Lazzara, Thomas D; Behn, Daniela; Kliesch, Torben-Tobias; Janshoff, Andreas; Steinem, Claudia

    2012-01-15

    Anodic aluminum oxide (AAO) substrates with aligned, cylindrical, non-intersecting pores with diameters of 75 nm and depths of 3.5 or 10 μm were functionalized with lipid monolayers harboring different receptor lipids. AAO was first functionalized with dodecyl-trichlorosilane, followed by fusion of small unilamellar vesicles (SUVs) forming a lipid monolayer. The SUVs' lipid composition was transferred onto the AAO surface, allowing us to control the surface receptor density. Owing to the optical transparency of the AAO, the overall vesicle spreading process and subsequent protein binding to the receptor-doped lipid monolayers could be investigated in situ by optical waveguide spectroscopy (OWS). SUV spreading occurred at the pore-rim interface, followed by lateral diffusion of lipids within the pore-interior surface until homogeneous coverage was achieved with a lipid monolayer. The functionality of the system was demonstrated through streptavidin binding onto a biotin-DOPE containing POPC membrane, showing maximum protein coverage at 10 mol% of biotin-DOPE. The system enabled us to monitor in real-time the selective extraction of two histidine-tagged proteins, PIGEA14 (14 kDa) and ezrin (70 kDa), directly from cell lysate solutions using a DOGS-NTA(Ni)/DOPC (1:9) membrane. The purification process including protein binding and elution was monitored by OWS and confirmed by SDS-PAGE. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Experimental study of the response functions of direct-reading instruments measuring surface-area concentration of airborne nanostructured particles

    Energy Technology Data Exchange (ETDEWEB)

    Bau, Sebastien; Witschger, Olivier [Institut National de Recherche et de Securite, INRS, Laboratoire de Metrologie des Aerosols, Rue du Morvan, CS 60027, 54519 Vandoeuvre Cedex (France); Gensdarmes, Francois [Institut de Radioprotection et de Surete Nucleaire, IRSN, Laboratoire de Physique et de Metrologie des Aerosols, BP 68, 91192 Gif-sur-Yvette Cedex (France); Thomas, Dominique [Laboratoire des Sciences du Genie Chimique, LSGC/CNRS, Nancy Universite, BP 2041, 54001 Nancy Cedex (France)], E-mail: sebastien.bau@inrs.fr

    2009-05-01

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment to move forward our understanding of the hazards, the actual exposures in the workplace, and the limits of engineering controls and personal protective equipment with regard to NP. As a consequence, generating airborne NP with controlled properties constitutes an important challenge. In parallel, toxicological studies have been carried out, and most of them support the concept that surface-area could be a relevant metric for characterizing exposure to airborne NP. To provide NP surface-area concentration measurements, some direct-reading instruments have been designed, based on attachment rate of unipolar ions to NP by diffusion. However, very few information is available concerning the performances of these instruments and the parameters that could affect their responses. In this context, our work aims at characterizing the actual available instruments providing airborne NP surface-area concentration. The instruments (a- LQ1-DC, Matter Engineering; b-AeroTrak{sup x2122} 9000, TSI; c- NSAM, TSI model 3550;) are thought to be relevant for further workplace exposure characterization and monitoring. To achieve our work, an experimental facility (named CAIMAN) was specially designed, built and characterized.

  5. Versatile Surface Functionalization of Metal-Organic Frameworks through Direct Metal Coordination with a Phenolic Lipid Enables Diverse Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wei [Univ. of New Mexico, Albuquerque, NM (United States); Xiang, Guolei [Univ. of Cambridge (United Kingdom); Shang, Jin [Univ. of Hong Kong (China); Guo, Jimin [Univ. of New Mexico, Albuquerque, NM (United States); Motevalli, Benyamin [Monash Univ., Clayton, VIC (Australia); Durfee, Paul [Univ. of New Mexico, Albuquerque, NM (United States); Agola, Jacob Ongudi [Univ. of New Mexico, Albuquerque, NM (United States); Coker, Eric N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brinker, C. Jeffrey [Univ. of New Mexico, Albuquerque, NM (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-22

    Here, a novel strategy for the versatile functionalization of the external surface of metal-organic frameworks (MOFs) has been developed based on the direct coordination of a phenolic-inspired lipid molecule DPGG (1,2-dipalmitoyl-sn-glycero-3-galloyl) with metal nodes/sites surrounding MOF surface. X-ray diffraction and Argon sorption analysis prove that the modified MOF particles retain their structural integrity and porosity after surface modification. Density functional theory calculations reveal that strong chelation strength between the metal sites and the galloyl head group of DPGG is the basic prerequisite for successful coating. Due to the pH-responsive nature of metal-phenol complexation, the modification process is reversible by simple washing in weak acidic water, showing an excellent regeneration ability for water-stable MOFs. Moreover, the colloidal stability of the modified MOFs in the nonpolar solvent allows them to be further organized into 2 dimensional MOF or MOF/polymer monolayers by evaporation-induced interfacial assembly conducted on an air/water interface. Lastly, the easy fusion of a second functional layer onto DPGG-modified MOF cores, enabled a series of MOF-based functional nanoarchitectures, such as MOFs encapsulated within hybrid supported lipid bilayers (so-called protocells), polyhedral core-shell structures, hybrid lipid-modified-plasmonic vesicles and multicomponent supraparticles with target functionalities, to be generated. for a wide range of applications.

  6. Directed surfaces structures and interfaces for enhanced electrocatalyst activity, selectivity, and stability for energy conversion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, Thomas F. [Stanford Univ., CA (United States). Dept. of Chemical Engineering. Shriram Center

    2016-04-20

    IrO3/IrOx catalyst significantly outperforms rutile IrO2 and RuO2, the only other OER catalysts to have reasonable stability and activity in acidic electrolyte, and in fact demonstrates the best activity for any known OER catalyst measured in either acidic or in alkaline electrolyte. For alkaline conditions we have demonstrated that the combined effect of cerium as a dopant and gold as a metal support, significantly enhances the OER activity of electrodeposited NiOx films. This NiCeOx-Au catalyst delivers high OER activity in alkaline media, and is among the most active OER electrocatalysts reported to date (Nature Energy, accepted 2016). These studies of new catalysts for the OER, both in acid and in base, are fundamental to enabling new technologies of interest for the DOE, including the production of sustainable fuels and chemicals. ORR: One method to significantly reduce the Pt loading in fuel cell devices is to increase the ORR activity of Pt based systems. To this end we have synthesized a high surface area supported meso-structured PtxNi alloy thin film with a double gyroid morphology that both exhibits high activity and stability for the ORR (submitted, 2016). We have furthermore developed a Ru-core, Pt-shell system that improves the per Pt site activity by more than a factor of 2 (ChemElectroChem, 2014). Further refinement, optimizing Pt-shell thickness and reducing particle sintering during processing, enabled us to obtain a mass activity that is 2 times higher than commercial Pt/C from TKK. These are important contributions to the DOE goal of reducing Pt loading since an improved understanding of how to increase mass activity and stability helps enable low Pt content fuel cells.

  7. Importance of the Direct Contact of Amorphous Solid Particles with the Surface of Monolayers for the Transepithelial Permeation of Curcumin.

    Science.gov (United States)

    Kimura, Shunsuke; Kasatani, Sachiha; Tanaka, Megumi; Araki, Kaeko; Enomura, Masakazu; Moriyama, Kei; Inoue, Daisuke; Furubayashi, Tomoyuki; Tanaka, Akiko; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2016-02-01

    The amorphization has been generally known to improve the absorption and permeation of poorly water-soluble drugs through the enhancement of the solubility. The present study focused on the direct contact of amorphous solid particles with the surface of the membrane using curcumin as a model for water-insoluble drugs. Amorphous nanoparticles of curcumin (ANC) were prepared with antisolvent crystallization method using a microreactor. The solubility of curcumin from ANC was two orders of magnitude higher than that of crystalline curcumin (CC). However, the permeation of curcumin from the saturated solution of ANC was negligible. The transepithelial permeation of curcumin from ANC suspension was significantly increased as compared to CC suspension, while the permeation was unlikely correlated with the solubility, and the increase in the permeation was dependent on the total concentration of curcumin in ANC suspension. The absorptive transport of curcumin (from apical to basal, A to B) from ANC suspension was much higher than the secretory transport (from basal to apical, B to A). In vitro transport of curcumin through air-interface monolayers is large from ANC but negligible from CC particles. These findings suggest that the direct contact of ANC with the absorptive membrane can play an important role in the transport of curcumin from ANC suspension. The results of the study suggest that amorphous particles may be directly involved in the transepithlial permeation of curcumin.

  8. Real-time measurement of plutonium in air by direct-inlet surface ionization mass spectrometry. Status report

    International Nuclear Information System (INIS)

    Stoffels, J.J.

    1980-04-01

    A new technique is being developed for monitoring low-level airborne plutonium on a real-time basis. The technique is based on surface ionization mass spectrometry of airborne particles. It will be capable of measuring plutonium concentrations below the maximum permissible concentration (MPC) level. A complete mass spectrometer was designed and constructed for this purpose. Major components which were developed and made operational for the instrument include an efficient inlet for directly sampling particles in air, a wide dynamic range ion detector and a minicomputer-based ion-burst measurement system. Calibration of the direct-inlet mass spectrometer (DIMS) was initiated to establish the instrument's response to plutonium dioxide as a function of concentration and particle size. This work revealed an important problem - bouncing of particles upon impact with the ionizing filament. Particle bounce results in a significant loss of measurement sensitivity. The feasibility of using an oven ionizer to overcome the particle bounce problem has been demonstrated. A rhenium oven ionizer was designed and constructed for the purpose of trapping particles which enter via the direct inlet. High-speed particles were trapped in the oven yielding a measurement sensitivity comparable to that for particles which are preloaded. Development of the Pu DIMS can now be completed by optimizing the oven design and calibrating the instrument's performance with UO 2 and CeO 2 particles as analogs to PuO 2 particles

  9. Concepts of fen and bog re-examined in relation to bryophyte cover and the acidity of surface waters

    OpenAIRE

    Eville Gorham; Jan A. Janssens

    2014-01-01

    Studies of surface-water pH and bryophyte assemblages in 440 plots from five peatland regions across northern North America reveal a very distinct, two-fold division into fens with a pH mode at 6.76-7.00, in which Amblystegiaceae are prominent, and bogs with a pH mode at 4.01-4.25, in which Sphagnaceae are dominant. The relevance of the data to past and current views on peatland classification is explored.

  10. Analysis of selected antibiotics in surface freshwater and seawater using direct injection in liquid chromatography electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Bayen, Stéphane; Yi, Xinzhu; Segovia, Elvagris; Zhou, Zhi; Kelly, Barry C

    2014-04-18

    Emerging contaminants such as antibiotics have received recent attention as they have been detected in natural waters and health concerns over potential antibiotic resistance. With the purpose to investigate fast and high-throughput analysis, and eventually the continuous on-line analysis of emerging contaminants, this study presents results on the analysis of seven selected antibiotics (sulfadiazine, sulfamethazine, sulfamerazine, sulfamethoxazole, chloramphenicol, lincomycin, tylosin) in surface freshwater and seawater using direct injection of a small sample volume (20μL) in liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Notably, direct injection of seawater in the LC-ESI-MS/MS was made possible on account of the post-column switch on the system, which allows diversion of salt-containing solutions flushed out of the column to the waste. Mean recoveries based on the isotope dilution method average 95±14% and 96±28% amongst the compounds for spiked freshwater and seawater, respectively. Linearity across six spiking levels was assessed and the response was linear (r(2)>0.99) for all compounds. Direct injection concentrations were compared for real samples to those obtained with the conventional SPE-based analysis and both techniques concurs on the presence/absence and levels of the compounds in real samples. These results suggest direct injection is a reliable method to detect antibiotics in both freshwater and seawater. Method detection limits for the direct injection technique (37pg/L to 226ng/L in freshwater, and from 16pg/to 26ng/L in seawater) are sufficient for a number of environmental applications, for example the fast screening of water samples for ecological risk assessments. In the present study of real samples, this new method allowed for example the positive detection of some compounds (e.g. lincomycin) down to the sub ng/L range. The direct injection method appears to be relatively cheaper and faster

  11. Concepts of fen and bog re-examined in relation to bryophyte cover and the acidity of surface waters

    Directory of Open Access Journals (Sweden)

    Eville Gorham

    2014-01-01

    Full Text Available Studies of surface-water pH and bryophyte assemblages in 440 plots from five peatland regions across northern North America reveal a very distinct, two-fold division into fens with a pH mode at 6.76-7.00, in which Amblystegiaceae are prominent, and bogs with a pH mode at 4.01-4.25, in which Sphagnaceae are dominant. The relevance of the data to past and current views on peatland classification is explored.

  12. Immobilization of Chlorosulfonyl-Calix[4]arene onto the surface of silica gel through the directly estrification

    Energy Technology Data Exchange (ETDEWEB)

    Taghvaei-Ganjali, Saeed, E-mail: S-taghvaei@IAU-tnb.ac.ir [Chemistry Department, Islamic Azad University, North Tehran Branch, Postal Code: 1913674711, Tehran (Iran, Islamic Republic of); Zadmard, Reza [Chemistry and Chemical Engineering Research Center of Iran, Postal Code: 1496813151, Tehran (Iran, Islamic Republic of); Saber-Tehrani, Mandana [Chemistry Department, Islamic Azad University, North Tehran Branch, Postal Code: 1913674711, Tehran (Iran, Islamic Republic of)

    2012-06-01

    For the first time Chlorosulfonyl-Calix[4]arene has been chemically bonded to silica gel through the directly estrification without silane coupling agent to prepare Chlorosulfonyl-Calix[4]arene-bonded silica gel. Sample characterization was performed by various techniques such as elemental analysis, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), powder X-ray diffraction (XRD), N{sub 2} adsorption-desorption, thermal gravimetric analysis (TGA), {sup 29}Si CP/MAS spectroscopy and acid-base titration. All data approve the successful incorporation of organic group via covalent bond. From the comparison between sulfur content determined by elemental analysis and the number of H{sup +} determined by acid-base titration, it was shown that two ester units took place onto the new synthesized sample and two acidic sites exist on the surface.

  13. Immobilization of Chlorosulfonyl-Calix[4]arene onto the surface of silica gel through the directly estrification

    Science.gov (United States)

    Taghvaei-Ganjali, Saeed; Zadmard, Reza; Saber-Tehrani, Mandana

    2012-06-01

    For the first time Chlorosulfonyl-Calix[4]arene has been chemically bonded to silica gel through the directly estrification without silane coupling agent to prepare Chlorosulfonyl-Calix[4]arene-bonded silica gel. Sample characterization was performed by various techniques such as elemental analysis, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), powder X-ray diffraction (XRD), N2 adsorption-desorption, thermal gravimetric analysis (TGA), 29Si CP/MAS spectroscopy and acid-base titration. All data approve the successful incorporation of organic group via covalent bond. From the comparison between sulfur content determined by elemental analysis and the number of H+ determined by acid-base titration, it was shown that two ester units took place onto the new synthesized sample and two acidic sites exist on the surface.

  14. Examining the temperature behavior of stainless steel surfaces exposed to hydrogen plasmas in the Lithium Tokamak eXperiment (LTX)

    Science.gov (United States)

    Bedoya, Felipe; Allain, Jean Paul; Kaita, Robert; Lucia, Matthew; St-Onge, Denis; Ellis, Robert; Majeski, Richard

    2014-10-01

    The Materials Analysis Particle Probe (MAPP) is an in-situ diagnostic designed to characterize plasma-facing components (PFCs) in tokamak devices. MAPP is installed in LTX at Princeton Plasma Physics Laboratory. MAPP's capabilities include remotely operated XPS acquisition and temperature control of four samples. The recent addition of a focused ion beam allows XPS depth profiling analysis. Recent published results show an apparent correlation between hydrogen retention and temperature of Li coated stainless steel (SS) PFCs exposed to plasmas like those of LTX. According to XPS data, the retention of hydrogen by the coated surfaces decreases at above 180 °C. In the present study MAPP will be used to study the oxidation of Li coatings as a function of time and temperature of the walls when Li coatings are applied. Experiments in the ion-surface interaction experiment (IIAX) varying the hydrogen fluence on the SS samples will be also performed. Conclusions resulting from this study will be key to explain the PFC temperature-dependent variation of plasma performance observed in LTX. This work was supported by U.S. DOE Contracts DE-AC02-09CH11466, DE-AC52-07NA27344 and DE-SC0010717.

  15. Examining the Impact of Question Surface Features on Students’ Answers to Constructed-Response Questions on Photosynthesis

    Science.gov (United States)

    Weston, Michele; Haudek, Kevin C.; Prevost, Luanna; Urban-Lurain, Mark; Merrill, John

    2015-01-01

    One challenge in science education assessment is that students often focus on surface features of questions rather than the underlying scientific principles. We investigated how student written responses to constructed-response questions about photosynthesis vary based on two surface features of the question: the species of plant and the order of two question prompts. We asked four versions of the question with different combinations of the two plant species and order of prompts in an introductory cell biology course. We found that there was not a significant difference in the content of student responses to versions of the question stem with different species or order of prompts, using both computerized lexical analysis and expert scoring. We conducted 20 face-to-face interviews with students to further probe the effects of question wording on student responses. During the interviews, we found that students thought that the plant species was neither relevant nor confusing when answering the question. Students identified the prompts as both relevant and confusing. However, this confusion was not specific to a single version. PMID:25999312

  16. Magnetic resonance imaging in ophthalmic diagnosis. Results of examinations using a small field-of-view surface coil

    International Nuclear Information System (INIS)

    Kato, Yuji; Yoshida, Akitoshi; Kanno, Harumi; Ogasawara, Hironobu; Murakami, Noboru; Cheng, Hong-Ming.

    1997-01-01

    We obtained T 1 -and T 2 -weighted magnetic resonance (MR) images in 3 patients with vitreoretinal disorders using a recently developed surface coil that was inductively coupled and had a small field of view. On both T 1 -and T 2 -weighted images, tractional retinal detachment was clearly detected in the first patient, who had proliferative diabetic retinopathy. T 1 - and T 2 -weighted images of the second patient, who had total retinal detachment with proliferative vitreous retinopathy, revealed a funnel-shaped thickened retina. The third patient had postoperative rhegmatogenous retinal detachment with opacity due to postoperative cataract and intravitreous injection of gas; on this patient's MR images we could clearly differentiate the reattached retina, silicone used for scleral buckling, and intravitreous gas, even though these differentiations were not possible with ophthalmoscopy or B-scan ultrasonography. High resolution MR imaging with our technique can be performed in a short time and regardless of the eye's condition. Our findings strongly indicate that MRI with a small field-of-view surface coil is a useful tool for diagnosing various vitreoretinal disorders and observing pathological changes. (author)

  17. Shadow analysis of soil surface roughness compared to the chain set method and direct measurement of micro-relief

    Directory of Open Access Journals (Sweden)

    R. García Moreno

    2010-08-01

    Full Text Available Soil surface roughness (SSR expresses soil susceptibility to wind and water erosion and plays an important role in the development and the maintenance of soil biota. Several methods have been developed to characterise SSR based on different methods of acquiring data. Because the main problems related to these methods involve the use and handling of equipment in the field, the present study aims to fill the need for a method for measuring SSR that is more reliable, low-cost and convenient in the field than traditional field methods. Shadow analysis, which interprets micro-topographic shadows, is based on the principle that there is a direct relationship between the soil surface roughness and the shadows cast by soil structures under fixed sunlight conditions. SSR was calculated with shadows analysis in the laboratory using hemispheres of different diameter with a diverse distribution of known altitudes and a surface area of 1 m2.

    Data obtained from the shadow analysis were compared to data obtained with the chain method and simulation of the micro-relief. The results show a relationship among the SSR calculated using the different methods. To further improve the method, shadow analysis was used to measure the SSR in a sandy clay loam field using different tillage tools (chisel, tiller and roller and in a control of 4 m2 surface plots divided into subplots of 1 m2. The measurements were compared to the data obtained using the chain set and pin meter methods. The SSR measured was the highest when the chisel was used, followed by the tiller and the roller, and finally the control, for each of the three methods. Shadow analysis is shown to be a reliable method that does not disturb the measured surface, is easy to handle and analyse, and shortens the time involved in field operations by a factor ranging from 4 to 20 compared to well known techniques such as the chain set and pin meter methods.

  18. Evaluating the Use of Tree Shelters for Direct Seeding of Castanea on a Surface Mine in Appalachia

    Directory of Open Access Journals (Sweden)

    Christopher Barton

    2015-10-01

    Full Text Available American chestnut (Castanea dentata, once a primary constituent of the eastern hardwood forest ecosystem, was nearly extirpated from the forest canopy by the accidental introduction of chestnut blight (Cryphonectria parasitica. An intensive breeding program has sought to breed blight resistance from Chinese chestnut into American chestnuts, while maintaining as much of the desirable American chestnut phenotypes as possible. Previous studies suggest that these blight resistant American chestnuts, termed “restoration chestnuts”, are capable of thriving on reclaimed surface mines. We direct seeded pure Chinese, pure American, and three backcross lines into brown sandstone minesoil on a mine site in Pike County, KY. To investigate the effects of tree sheltering on survival and growth, we installed tree shelters on half the plots, and left the rest of the plots unsheltered. Results indicated that shelters were highly effective at reducing initial mortality. In addition, while pure Chinese chestnut survival was highest, the three backcross lines have also survived well on this site. Our study demonstrates that American, Chinese, and backcrossed chestnuts can survive through five growing seasons on reclaimed surface mines with the use of tree shelters.

  19. In situ STM imaging and direct electrochemistry of Pyrococcus furiosus ferredoxin assembled on thiolate-modified Au(111) surfaces

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Christensen, Hans Erik Mølager; Ooi, Bee Lean

    2004-01-01

    We have addressed here electron transfer (ET) of Pyrococcus furiosus ferredoxin (PfFd, 7.5 kDa) in both homogeneous solution using edge plane graphite (EPG) electrodes and in the adsorbed state by electrochemistry on surface-modified single-crystal Au(111) electrodes, This has been supported...... by surface microscopic structures of PfFd monolayers, as revealed by scanning tunneling microscopy under potential control (in situ STM). Direct ET between PfFd in phosphate buffer solution, pH 7.9, and EPG electrodes is observed in the presence of promoters. Neomycin gives rise to a pair of redox peaks...... with a formal potential of ca -430 mV (vs SCE), corresponding to [3Fe-4S](1+/0). The presence of an additional promoter, which can be propionic acid, alanine, or cysteine, induces a second pair of redox peaks at similar to-900 mV (vs SCE) arising from [3Fe-4S](0/1-). A robust neomycin-PfFd complex was detected...

  20. Top-Down Proteomics and Direct Surface Sampling of Neonatal Dried Blood Spots: Diagnosis of Unknown Hemoglobin Variants

    Science.gov (United States)

    Edwards, Rebecca L.; Griffiths, Paul; Bunch, Josephine; Cooper, Helen J.

    2012-11-01

    We have previously shown that liquid microjunction surface sampling of dried blood spots coupled with high resolution top-down mass spectrometry may be used for screening of common hemoglobin variants HbS, HbC, and HbD. In order to test the robustness of the approach, we have applied the approach to unknown hemoglobin variants. Six neonatal dried blood spot samples that had been identified as variants, but which could not be diagnosed by current screening methods, were analyzed by direct surface sampling top-down mass spectrometry. Both collision-induced dissociation and electron transfer dissociation mass spectrometry were employed. Four of the samples were identified as β-chain variants: two were heterozygous Hb D-Iran, one was heterozygous Hb Headington, and one was heterozygous Hb J-Baltimore. The fifth sample was identified as the α-chain variant heterozygous Hb Phnom Penh. Analysis of the sixth sample suggested that it did not in fact contain a variant. Adoption of the approach in the clinic would require speed in both data collection and interpretation. To address that issue, we have compared manual data analysis with freely available data analysis software (ProsightPTM). The results demonstrate the power of top-down proteomics for hemoglobin variant analysis in newborn samples.

  1. Carbon Papers and Aerogels Based on Graphene Layers and Chitosan: Direct Preparation from High Surface Area Graphite.

    Science.gov (United States)

    Barbera, Vincenzina; Guerra, Silvia; Brambilla, Luigi; Maggio, Mario; Serafini, Andrea; Conzatti, Lucia; Vitale, Alessandra; Galimberti, Maurizio

    2017-12-11

    In this work, carbon papers and aerogels based on graphene layers and chitosan were prepared. They were obtained by mixing chitosan (CS) and a high surface area nanosized graphite (HSAG) in water in the presence of acetic acid. HSAG/CS water dispersions were stable for months. High resolution transmission electron microscopy revealed the presence of few graphene layers in water suspensions. Casting or lyophilization of such suspensions led to the preparation of carbon paper and aerogel, respectively. In X-ray spectra of both aerogels and carbon paper, peaks due to regular stacks of graphene layers were not detected: graphene with unaltered sp 2 structure was obtained directly from graphite without the use of any chemical reaction. The composites were demonstrated to be electrically conductive thanks to the graphene. Chitosan thus makes it possible to obtain monolithic carbon aerogels and flexible and free-standing graphene papers directly from a nanosized graphite by avoiding oxidation to graphite oxide and successive reduction. Strong interaction between polycationic chitosan and the aromatic substrate appears to be at the origin of the stability of HSAG/CS adducts. Cation-π interaction is hypothesized, also on the basis of X-ray photoelectron spectroscopy findings. This work paves the way for the easy large-scale preparation of carbon papers through a method that has a low environmental impact and is based on a biosourced polymer, graphene, and water.

  2. Direct Quantum Dynamics Using Grid-Based Wave Function Propagation and Machine-Learned Potential Energy Surfaces.

    Science.gov (United States)

    Richings, Gareth W; Habershon, Scott

    2017-09-12

    We describe a method for performing nuclear quantum dynamics calculations using standard, grid-based algorithms, including the multiconfiguration time-dependent Hartree (MCTDH) method, where the potential energy surface (PES) is calculated "on-the-fly". The method of Gaussian process regression (GPR) is used to construct a global representation of the PES using values of the energy at points distributed in molecular configuration space during the course of the wavepacket propagation. We demonstrate this direct dynamics approach for both an analytical PES function describing 3-dimensional proton transfer dynamics in malonaldehyde and for 2- and 6-dimensional quantum dynamics simulations of proton transfer in salicylaldimine. In the case of salicylaldimine we also perform calculations in which the PES is constructed using Hartree-Fock calculations through an interface to an ab initio electronic structure code. In all cases, the results of the quantum dynamics simulations are in excellent agreement with previous simulations of both systems yet do not require prior fitting of a PES at any stage. Our approach (implemented in a development version of the Quantics package) opens a route to performing accurate quantum dynamics simulations via wave function propagation of many-dimensional molecular systems in a direct and efficient manner.

  3. Microbial surface displayed enzymes based biofuel cell utilizing degradation products of lignocellulosic biomass for direct electrical energy.

    Science.gov (United States)

    Fan, Shuqin; Hou, Chuantao; Liang, Bo; Feng, Ruirui; Liu, Aihua

    2015-09-01

    In this work, a bacterial surface displaying enzyme based two-compartment biofuel cell for the direct electrical energy conversion from degradation products of lignocellulosic biomass is reported. Considering that the main degradation products of the lignocellulose are glucose and xylose, xylose dehydrogenase (XDH) displayed bacteria (XDH-bacteria) and glucose dehydrogenase (GDH) displayed bacteria (GDH-bacteria) were used as anode catalysts in anode chamber with methylene blue as electron transfer mediator. While the cathode chamber was constructed with laccase/multi-walled-carbon nanotube/glassy-carbon-electrode. XDH-bacteria exhibited 1.75 times higher catalytic efficiency than GDH-bacteria. This assembled enzymatic fuel cell exhibited a high open-circuit potential of 0.80 V, acceptable stability and energy conversion efficiency. Moreover, the maximum power density of the cell could reach 53 μW cm(-2) when fueled with degradation products of corn stalk. Thus, this finding holds great potential to directly convert degradation products of biomass into electrical energy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. UHV-compatible sputtering additive for surface physics examination of large area HTSL/isolator thin film. Final report

    International Nuclear Information System (INIS)

    Koch, H.; Beyer, J.; Knappe, S.; Ludwig, F.; Menkel, S.; Quan, Z.; Schurig, T.

    1996-06-01

    In the course of the project, a manufacturing technique for the production of cryo-electronic high temperature superconductor (HTSL) components is to be developed, which includes the thin film separation process and the structuring technique. A special sputtering process using a linear hollow cathode is to be applied as the thin film separation process for the HTSL YBa 2 Cu 3 O 7-δ . The sputtering plant which was to be built up by the UHV method in advance, should be connected to an existing UHV multi-chamber plant for the manufacture and surface analysis of thin films, in order to be able to connect precise reproducible sample production conditions with a controlled sample transfer and informative in-situ analysis. (orig./MM) [de

  5. Disease-specific direct-to-consumer advertising of pharmaceuticals: An examination of endorser type and gender effects on consumers' attitudes and behaviors.

    Science.gov (United States)

    Bhutada, Nilesh S; Rollins, Brent L

    2015-01-01

    Direct-to-consumer (DTC) advertising is still a controversial topic for pharmaceutical manufacturers' and researchers, and while numerous studies have examined the DTC phenomenon, little research has examined the effect of gender, particularly gender of the endorser and consumer. The objective of this research was to assess the impact of the endorser (celebrity vs. expert vs. non-celebrity) and gender - both gender of the endorser and gender of the consumer - on consumers' attitudes and behaviors in response to a print disease-specific direct-to-consumer advertisement. Using Qualtrics consumer panel, data were obtained for 514 US adults (age 18 years and above) who demonstrated at least minimal symptoms of depression and need for monitoring based on the Patient Health Questionnaire (PHQ) score. Data were analyzed using a 3 (Endorser Type: Celebrity/Expert/Non-Celebrity) × 2 (Endorser Gender: Male/Female) × 2 (Consumer Gender: Male/Female) full factorial between subjects multivariate analysis of variance (MANOVA) and necessary univariate analysis. Only the type of the endorser (celebrity vs. expert vs. non-celebrity) used in the ad had a significant main effect on the dependent variables. Further univariate analyses revealed that, of the several dependent variables, endorser type had a significant influence only on attitude towards the ad, attention paid to the ad, and endorser credibility, with gender being non-significant in all cases. Expert endorser generated significantly more favorable levels of attitude towards the ad, and endorser credibility compared to the non-celebrity endorser. Celebrity endorser attracted more consumer attention towards the ad and generated favorable endorser credibility perceptions compared to the non-celebrity endorser. However, celebrity and expert endorsers did not significantly differ from each other on the abovementioned ad effectiveness variables. Lastly, endorser gender and consumer gender did not have a significant influence

  6. Re-examining data-intensive surface water models with high-resolution topography derived from unmanned aerial system photogrammetry

    Science.gov (United States)

    Pai, H.; Tyler, S.

    2017-12-01

    Small, unmanned aerial systems (sUAS) are quickly becoming a cost-effective and easily deployable tool for high spatial resolution environmental sensing. Land surface studies from sUAS imagery have largely focused on accurate topographic mapping, quantifying geomorphologic changes, and classification/identification of vegetation, sediment, and water quality tracers. In this work, we explore a further application of sUAS-derived topographic mapping to a two-dimensional (2-d), depth-averaged river hydraulic model (Flow and Sediment Transport with Morphological Evolution of Channels, FaSTMECH) along a short, meandering reach of East River, Colorado. On August 8, 2016, we flew a sUAS as part of the Center for Transformative Environmental Monitoring Programs with a consumer-grade visible camera and created a digital elevation map ( 1.5 cm resolution; 5 cm accuracy; 500 m long river corridor) with Agisoft Photoscan software. With the elevation map, we created a longitudinal water surface elevation (WSE) profile by manually delineating the bank-water interface and river bathymetry by applying refraction corrections for more accurate water depth estimates, an area of ongoing research for shallow and clear river systems. We tested both uncorrected and refraction-corrected bathymetries with the steady-state, 2-d model, applying sensitivities for dissipation parameters (bed roughness and eddy characteristics). Model performance was judged from the WSE data and measured stream velocities. While the models converged, performance and insights from model output could be improved with better bed roughness characterization and additional water depth cross-validation for refraction corrections. Overall, this work shows the applicability of sUAS-derived products to a multidimensional river model, where bathymetric data of high resolution and accuracy are key model input requirements.

  7. An immunoassay for dibutyl phthalate based on direct hapten linkage to the polystyrene surface of microtiter plates.

    Directory of Open Access Journals (Sweden)

    Chenxi Wei

    Full Text Available BACKGROUND: Dibutyl phthalate (DBP is predominantly used as a plasticizer inplastics to make them flexible. Extensive use of phthalates in both industrial processes and other consumer products has resulted in the ubiquitous presence of phthalates in the environment. In order to better determine the level of pollution in the environment and evaluate the potential adverse effects of exposure to DBP, immunoassay for DBP was developed. METHODOLOGY/PRINCIPAL FINDINGS: A monoclonal antibody specific to DBP was produced from a stable hybridoma cell line generated by lymphocyte hybridoma technique. An indirect competitive enzyme-linked immunosorbent assay (icELISA employing direct coating of hapten on polystyrene microtiter plates was established for the detection of DBP. Polystyrene surface was first oxidized by permanganate in dilute sulfuric acid to generate carboxyl groups. Then dibutyl 4-aminophthalate, which is an analogue of DBP, was covalently linked to the carboxyl groups of polystyrene surface with 1-ethyl-3-(3-dimethylaminopropyl carbodiimide hydrochloride (EDC. Compared with conjugate coated format (IC(50=106 ng/mL, the direct hapten coated format (IC(50=14.6 ng/mL improved assay sensitivity after careful optimization of assay conditions. The average recovery of DBP from spiked water sample was 104.4% and the average coefficient of variation was 9.95%. Good agreement of the results obtained by the hapten coated icELISA and gas chromatography-mass spectrometry further confirmed the reliability and accuracy of the icELISA for the detection of DBP in certain plastic and cosmetic samples. CONCLUSIONS/SIGNIFICANCE: The stable and efficient hybridoma cell line obtained is an unlimited source of sensitive and specific antibody to DBP. The hapten coated format is proposed as generally applicable because the carboxyl groups on modified microtiter plate surface enables stable immobilization of aminated or hydroxylated hapten with EDC. The developed

  8. Techniques in gas-phase thermolyses - Part 7. Direct surface participation in gas-phase Curie-point pyrolysis: The pyrolysis of phenyl azide

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Carlsen, Lars

    1986-01-01

    The possible direct participation of the hot reactor surface in the formation of pyrolysis products was elucidated through the pyrolytic decomposition of phenyl azide. It is demonstrated that the intermediate phenyl nitrene generated reacts with elemental carbon at the filament surface, leading...

  9. Kerma in the air at entry surface in thorax pediatric examinations at public hospital in Parana, Brazil

    International Nuclear Information System (INIS)

    Santos, Amanda; Porto, Lorena; Bunick, Ana; Paschuk, Sergei; Denyak, Valeriy; Schelin, Hugo; Tilly, Joao; Khoury, Helen

    2011-01-01

    This work consisted in the evaluation of the entrance skin air kerma (ESAK) in pediatric chest x-ray examinations. A study of 186 exams in anterior-posterior, posterior-anterior and lateral projections was carried out for patients with ages ranging from 0 to 15 years. The ESAK was measured with the DoseCal software and Li-Fl thermoluminescent dosimeters. The results were compared with measurements done recently at the same place and with the reference dose values established by the European Community. It was observed that the optimization of the technique and the routine changes suggested in the previous study were not maintained. The charge (mAs) and the ESAK values found in the present study were much higher than the previous one, and the voltage (kVp) values found was lower. The results suggest that the implementation of the Quality Assurance Program could adequate these parameters to the established levels and keep the pediatric examinations more uniform. (author)

  10. An Examination of the Hadley Sea-Surface Temperature Time Series for the Nino 3.4 Region

    Science.gov (United States)

    Wilson, Robert M.

    2010-01-01

    The Hadley sea-surface temperature (HadSST) dataset is investigated for the interval 1871-2008. The purpose of this investigation is to determine the degree of success in identifying and characterizing El Nino (EN) southern (ENSO) extreme events, both EN and La Nina (LN) events. Comparisons are made against both the Southern Oscillation Index for the same time interval and with published values of the Oceanic Nino Index for the interval since 1950. Some 60 ENSO extreme events are identified in the HadSST dataset, consisting of 33 EN and 27 LN events. Also, preferential associations are found to exist between the duration of ENSO extreme events and their maximum anomalous excursion temperatures and between the recurrence rate for an EN event and the duration of the last known EN event. Because the present ongoing EN is a strong event, it should persist 11 months or longer, inferring that the next EN event should not be expected until June 2012 or later. Furthermore, the decadal sum of EN-related months is found to have increased somewhat steadily since the decade of 1920-1929, suggesting that the present decade (2010-2019) possibly will see about 3-4 EN events, totaling about 37 +/- 3 EN-related months (i.e., months that meet the definition for the occurrence of an EN event).

  11. Direct imaging by atomic force microscopy of surface-localized self-assembled monolayers on a cuprate superconductor and surface X-ray scattering analysis of analogous monolayers on the surface of water

    DEFF Research Database (Denmark)

    Schougaard, Steen B.; Reitzel, Niels; Bjørnholm, Thomas

    2007-01-01

    A self-assembled monolayer of CF3(CF2)(3)(CH2)(11)NH2 atop the (001) surface of the high-temperature superconductor YBa2Cu3O7-x was imaged by atomic force microscopy (AFM). The AFM images provide direct 2D-structural evidence for the epitaxial 5.5 angstrom square root 2 x root 2R45 degrees unit...... was studied by grazing-incidence X-ray diffraction and specular X-ray reflectivity. Structural differences and similarities between the water-supported and superconductor-localized monolayers are discussed....

  12. Citrate-Induced Nanocubes: A Re-Examination of the Role of Citrate as a Shape-Directing Capping Agent for Ag-Based Nanostructures.

    Science.gov (United States)

    Hajfathalian, Maryam; Gilroy, Kyle D; Hughes, Robert A; Neretina, Svetlana

    2016-07-01

    Seed-mediated syntheses utilizing facet-selective surface passivation provide the necessary chemical controls to direct noble metal nanostructure formation to a predetermined geometry. The foremost protocol for the synthesis of (111)-faceted Ag octahedra involves the reduction of metal ions onto pre-existing seeds in the presence of citrate and ascorbic acid. It is generally accepted that the capping of (111) facets with citrate dictates the shape while ascorbic acid acts solely as the reducing agent. Herein, a citrate-based synthesis is demonstrated in which the presence or absence of ascorbic acid is the shape-determining factor. Reactions are carried out in which Ag(+) ions are reduced onto substrate-immobilized Ag, Au, Pd, and Pt seeds. Syntheses lacking ascorbic acid, in which citrate acts as both the capping and the reducing agent, result in a robust nanocube growth mode able to withstand wide variations in the concentration of reactants, reaction rates, seed material, seed orientation and faceting, pH, and substrate material. If, however, ascorbic acid is included in these syntheses, then the growth mode reverts to one that advances the octahedral geometry. The implication of these results is that citrate, or one of its oxidation products, selectively caps (100) facets, but where this capability is compromised by ascorbic acid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Surface studies on benzophenone doped PDMS microstructures fabricated using KrF excimer laser direct write lithography

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Madhushree Bute; Shinde, Shashikant D. [Department of Physics, University of Pune, Pune 411007 (India); Bodas, Dhananjay [Centre for Nanobioscience, Agharkar Research Institute, Agharkar road, Pune 411004 (India); Patil, K.R. [Center for Materials Characterization, National Chemical Laboratories, Pune 411008 (India); Sathe, V.G. [UGC DAE Inter University Consortium, Indore 452017 (India); Adhi, K.P. [Department of Physics, University of Pune, Pune 411007 (India); Gosavi, S.W., E-mail: swg@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411007 (India)

    2014-09-30

    Graphical abstract: - Highlights: • Use of KrF Laser micromachining for Lab-On-Chip applications at lower fluence. • Addition of Benzophenone in PDMS enhances its self development sensitivity. • Benzophenone helps efficient energy transfer for equal density of bond scissioning. • Correlation of chemical composition with laser dose and microstructure. • Microstructures with well defined clean sidewalls. - Abstract: This paper discusses microfabrication process for benzophenone doped polydimethylsiloxane (PDMS) using laser lithography. KrF excimer laser of 248 nm with 20 ns pulse width at repetition rate of 1 Hz was used for microfabrication of undoped and benzophenone doped PDMS. The doped-PDMS shows sensitivity below 365 nm, permitting processing under ambient light. The analysis of etch depth revealed that doped PDMS shows self developable sensitivity at lower fluence of ∼250 mJ/cm{sup 2}. The unexposed and exposed surface was studied using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and Scanning electron microscopy (SEM). Spectrocopic analysis indicated increase in C-O, C=O, Si-O{sub 3} and Si-O{sub 4} bonding at the expense of Si-C and Si-O{sub 2} bonds of PDMS. In case of laser exposed doped-PDMS, removal of benzophenone from probe depth of spectroscopy was observed. Whereas the surface morphology of exposed and unexposed doped-PDMS was observed to be same, indicating clean development of PDMS micropatterns. The present study indicates that addition of 3.0 wt.% benzophenone in PDMS enhance self development sensitivity of PDMS. The self developable results on doped-PDMS are quite encouraging for its potential use in point of care Lab-On-Chip applications, for fabricating micropatterns using direct write laser lithography technology.

  14. Cellobiose Dehydrogenase Aryl Diazonium Modified Single Walled Carbon Nanotubes: Enhanced Direct Electron Transfer through a Positively Charged Surface

    Science.gov (United States)

    2011-01-01

    One of the challenges in the field of biosensors and biofuel cells is to establish a highly efficient electron transfer rate between the active site of redox enzymes and electrodes to fully access the catalytic potential of the biocatalyst and achieve high current densities. We report on very efficient direct electron transfer (DET) between cellobiose dehydrogenase (CDH) from Phanerochaete sordida (PsCDH) and surface modified single walled carbon nanotubes (SWCNT). Sonicated SWCNTs were adsorbed on the top of glassy carbon electrodes and modified with aryl diazonium salts generated in situ from p-aminobenzoic acid and p-phenylenediamine, thus featuring at acidic pH (3.5 and 4.5) negative or positive surface charges. After adsorption of PsCDH, both electrode types showed excellent long-term stability and very efficient DET. The modified electrode presenting p-aminophenyl groups produced a DET current density of 500 μA cm−2 at 200 mV vs normal hydrogen reference electrode (NHE) in a 5 mM lactose solution buffered at pH 3.5. This is the highest reported DET value so far using a CDH modified electrode and comes close to electrodes using mediated electron transfer. Moreover, the onset of the electrocatalytic current for lactose oxidation started at 70 mV vs NHE, a potential which is 50 mV lower compared to when unmodified SWCNTs were used. This effect potentially reduces the interference by oxidizable matrix components in biosensors and increases the open circuit potential in biofuel cells. The stability of the electrode was greatly increased compared with unmodified but cross-linked SWCNTs electrodes and lost only 15% of the initial current after 50 h of constant potential scanning. PMID:21417322

  15. Surface studies on benzophenone doped PDMS microstructures fabricated using KrF excimer laser direct write lithography

    International Nuclear Information System (INIS)

    Kant, Madhushree Bute; Shinde, Shashikant D.; Bodas, Dhananjay; Patil, K.R.; Sathe, V.G.; Adhi, K.P.; Gosavi, S.W.

    2014-01-01

    Graphical abstract: - Highlights: • Use of KrF Laser micromachining for Lab-On-Chip applications at lower fluence. • Addition of Benzophenone in PDMS enhances its self development sensitivity. • Benzophenone helps efficient energy transfer for equal density of bond scissioning. • Correlation of chemical composition with laser dose and microstructure. • Microstructures with well defined clean sidewalls. - Abstract: This paper discusses microfabrication process for benzophenone doped polydimethylsiloxane (PDMS) using laser lithography. KrF excimer laser of 248 nm with 20 ns pulse width at repetition rate of 1 Hz was used for microfabrication of undoped and benzophenone doped PDMS. The doped-PDMS shows sensitivity below 365 nm, permitting processing under ambient light. The analysis of etch depth revealed that doped PDMS shows self developable sensitivity at lower fluence of ∼250 mJ/cm 2 . The unexposed and exposed surface was studied using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and Scanning electron microscopy (SEM). Spectrocopic analysis indicated increase in C-O, C=O, Si-O 3 and Si-O 4 bonding at the expense of Si-C and Si-O 2 bonds of PDMS. In case of laser exposed doped-PDMS, removal of benzophenone from probe depth of spectroscopy was observed. Whereas the surface morphology of exposed and unexposed doped-PDMS was observed to be same, indicating clean development of PDMS micropatterns. The present study indicates that addition of 3.0 wt.% benzophenone in PDMS enhance self development sensitivity of PDMS. The self developable results on doped-PDMS are quite encouraging for its potential use in point of care Lab-On-Chip applications, for fabricating micropatterns using direct write laser lithography technology

  16. Neural correlates of face and object perception in an awake chimpanzee (Pan troglodytes examined by scalp-surface event-related potentials.

    Directory of Open Access Journals (Sweden)

    Hirokata Fukushima

    Full Text Available BACKGROUND: The neural system of our closest living relative, the chimpanzee, is a topic of increasing research interest. However, electrophysiological examinations of neural activity during visual processing in awake chimpanzees are currently lacking. METHODOLOGY/PRINCIPAL FINDINGS: In the present report, skin-surface event-related brain potentials (ERPs were measured while a fully awake chimpanzee observed photographs of faces and objects in two experiments. In Experiment 1, human faces and stimuli composed of scrambled face images were displayed. In Experiment 2, three types of pictures (faces, flowers, and cars were presented. The waveforms evoked by face stimuli were distinguished from other stimulus types, as reflected by an enhanced early positivity appearing before 200 ms post stimulus, and an enhanced late negativity after 200 ms, around posterior and occipito-temporal sites. Face-sensitive activity was clearly observed in both experiments. However, in contrast to the robustly observed face-evoked N170 component in humans, we found that faces did not elicit a peak in the latency range of 150-200 ms in either experiment. CONCLUSIONS/SIGNIFICANCE: Although this pilot study examined a single subject and requires further examination, the observed scalp voltage patterns suggest that selective processing of faces in the chimpanzee brain can be detected by recording surface ERPs. In addition, this non-invasive method for examining an awake chimpanzee can be used to extend our knowledge of the characteristics of visual cognition in other primate species.

  17. Aerosol Direct Radiative Forcing and Forcing Efficiencies at Surface from the shortwave Irradiance Measurements in Abu Dhabi, UAE

    Science.gov (United States)

    Beegum S, N.; Ben Romdhane, H.; Ghedira, H.

    2013-12-01

    Atmospheric aerosols are known to affect the radiation balance of the Earth-Atmospheric system directly by scattering and absorbing the solar and terrestrial radiation, and indirectly by affecting the lifetime and albedo of the clouds. Continuous and simultaneous measurements of short wave global irradiance in combination with synchronous spectral aerosol optical depth (AOD) measurements (from 340 nm to 1640 nm in 8 channels), for a period of 1 year from June 2012 to May 2013, were used for the determination of the surface direct aerosol radiative forcing and forcing efficiencies under cloud free conditions in Abu Dhabi (24.42°N, 54.61o E, 7m MSL), a coastal location in United Arab Emirates (UAE) in the Arabian Peninsula. The Rotating Shadow band Pyranometer (RSP, LI-COR) was used for the irradiance measurements (in the spectral region 400-1100 nm), whereas the AOD measurements were carried out using CIMEL Sunphotometer (CE 318-2, under AERONET program). The differential method, which is neither sensitive to calibration uncertainties nor model assumptions, has been employed for estimating forcing efficiencies from the changes in the measured fluxes. The forcing efficiency, which quantifies the net change in irradiance per unit change in AOD, is an appropriate parameter for the characterization of the aerosol radiative effects even if the microphysical and optical properties of the aerosols are not completely understood. The corresponding forcing values were estimated from the forcing efficiencies. The estimated radiative forcing and forcing efficiencies exhibited strong monthly variations. The forcing efficiencies (absolute magnitudes) were highest during March, and showed continuous decrease thereafter to reach the lowest value during September. In contrast, the forcing followed a slightly different pattern of variability, with the highest solar dimming during April ( -60 W m-2) and the minimum during February ( -20 W m-2). The results indicate that the aerosol

  18. A comparison of cone-beam computed tomography and direct measurement in the examination of the mandibular canal and adjacent structures.

    Science.gov (United States)

    Kim, Thomas S; Caruso, Joseph M; Christensen, Heidi; Torabinejad, Mahmoud

    2010-07-01

    The purpose of this investigation was to assess the ability of cone-beam computed tomography (CBCT) scanning to measure distances from the apices of selected posterior teeth to the mandibular canal. Measurements were taken from the apices of all posterior teeth that were superior to the mandibular canal. A pilot study was performed to determine the scanning parameters that produced the most diagnostic image and the best dissection technique. Twelve human hemimandibles with posterior teeth were scanned at .20 voxels on an I-CAT Classic CBCT device (Imaging Sciences International, Hatfield, PA), and the scans were exported in Digital Imaging and Communications in Medicine (DICOM) format. The scans were examined in InVivo Dental software (Anatomage, San Jose, CA), and measurements were taken from the apex of each root along its long axis to the upper portion of the mandibular canal. The specimens were dissected under a dental operating microscope, and analogous direct measurements were taken with a Boley gauge. All measurements were taken in triplicate at least 1 week apart by one individual (TSK). The results were averaged and the data separated into matching pairs for statistical analysis. There was no statistical difference (alpha = .05) between the methods of measurement according to the Wilcoxon matched pairs test (p = 0.676). For the anatomic measurements, the intra-rater correlation coefficient (ICC) was .980 and for the CBCT it was .949, indicating that both methods were highly reproducible. Both measurement methods were highly predictive of and highly correlated to each other according to regression and correlation analysis, respectively. Based on the results of this study, the I-CAT Classic can be used to measure distances from the apices of the posterior teeth to the mandibular canal as accurately as direct anatomic dissection. Copyright 2010 American Association of Endodontists. All rights reserved.

  19. A Novel Method making direct use of AIRS and IASI Calibrated Radiances for Measuring Trends in Surface Temperatures

    Science.gov (United States)

    Aumann, H. H.; Ruzmaikin, A.

    2014-12-01

    Making unbiased measurements of trends in the surface temperatures, particularly on a gobal scale, is challenging: While the non-frozen oceans temperature measurements are plentiful and accurate, land and polar areas are much less accurately or fairly sampled. Surface temperature deduced from infrared radiometers on polar orbiting satellites (e.g. the Atmospheric Infrared Sounder (AIRS) at 1:30PM, the Interferometer Atmosphere Sounding Interferometer (IASI) at 9:30 AM and the MODerate resolution Imaging Spectro-radiometer (MODIS) at 1:30PM), can produce what appear to be well sampled data, but dealing with clouds either by cloud filtering (MODIS, IASI) or cloud-clearing (AIRS) can create sampling bias. We use a novel method: Random Nadir Sampling (RNS) combined with Probability Density Function (PDF) analysis. We analyze the trend in the PDF of st1231, the water vapor absorption corrected brightness temperatures measured in the 1231 cm-1 atmospheric window channel. The advantage of this method is that trends can be directly traced to the known, less than 3 mK/yr trend for AIRS, in st1231. For this study we created PDFs from 22,000 daily RNS from the AIRS and IASI data. We characterized the PDFs by its daily 90%tile value, st1231p90, and analysed the statistical properties of the this time series between 2002 and 2014. The method was validated using the daily NOAA SST (RTGSST) from the non-frozen oceans: The mean, seasonal variability and anomaly trend of st1231p90 agree with the corrsponding values from the RTGSST and the anomaly correlation is larger than 0.9. Preliminary results (August 2014) confirm the global hiatus in the increase of the globally averaged surface temperatures between 2002 and 2014, with a change of less than 10 mK/yr. This uncertainty is dominated by the large interannual variability related to El Niño events. Further insite is gained by analyzing land/ocean, day/night, artic and antarctic trends. We observe a massive warming trend in the

  20. Effect of spectrally varying albedo of vegetation surfaces on shortwave radiation fluxes and aerosol direct radiative forcing

    Directory of Open Access Journals (Sweden)

    L. Zhu

    2012-12-01

    Full Text Available This study develops an algorithm for representing detailed spectral features of vegetation albedo based on Moderate Resolution Imaging Spectrometer (MODIS observations at 7 discrete channels, referred to as the MODIS Enhanced Vegetation Albedo (MEVA algorithm. The MEVA algorithm empirically fills spectral gaps around the vegetation red edge near 0.7 μm and vegetation water absorption features at 1.48 and 1.92 μm which cannot be adequately captured by the MODIS 7 channels. We then assess the effects of applying MEVA in comparison to four other traditional approaches to calculate solar fluxes and aerosol direct radiative forcing (DRF at the top of atmosphere (TOA based on the MODIS discrete reflectance bands. By comparing the DRF results obtained through the MEVA method with the results obtained through the other four traditional approaches, we show that filling the spectral gap of the MODIS measurements around 0.7 μm based on the general spectral behavior of healthy green vegetation leads to significant improvement in the instantaneous aerosol DRF at TOA (up to 3.02 W m−2 difference or 48% fraction of the aerosol DRF, −6.28 W m−2, calculated for high spectral resolution surface reflectance from 0.3 to 2.5 μm for deciduous vegetation surface. The corrections of the spectral gaps in the vegetation spectrum in the near infrared, again missed by the MODIS reflectances, also contributes to improving TOA DRF calculations but to a much lower extent (less than 0.27 W m−2, or about 4% of the instantaneous DRF.

    Compared to traditional approaches, MEVA also improves the accuracy of the outgoing solar flux between 0.3 to 2.5 μm at TOA by over 60 W m−2 (for aspen 3 surface and aerosol DRF by over 10 W m−2 (for dry grass. Specifically, for Amazon vegetation types, MEVA can improve the accuracy of daily averaged aerosol radiative forcing in the spectral range of 0.3 to 2.5 μm at

  1. SENSEI: First Direct-Detection Constraints on sub-GeV Dark Matter from a Surface Run

    Energy Technology Data Exchange (ETDEWEB)

    Crisler, Michael [Fermilab; Essig, Rouven [YITP, Stony Brook; Estrada, Juan [Fermilab; Fernandez, Guillermo [Fermilab; Tiffenberg, Javier [Fermilab; Sofo haro, Miguel [Fermilab; Volansky, Tomer [Tel Aviv U.; Yu, Tien-Tien [CERN

    2018-03-30

    The Sub-Electron-Noise Skipper CCD Experimental Instrument (SENSEI) uses the recently developed Skipper-CCD technology to search for electron recoils from the interaction of sub-GeV dark matter particles with electrons in silicon. We report first results from a prototype SENSEI detector, which collected 0.019 gram-days of commissioning data above ground at Fermi National Accelerator Laboratory. These commissioning data are sufficient to set new direct-detection constraints for dark matter particles with masses between ~500 keV and 4 MeV. Moreover, since these data were taken on the surface, they disfavor previously allowed strongly interacting dark matter particles with masses between ~500 keV and a few hundred MeV. We discuss the implications of these data for several dark matter candidates, including one model proposed to explain the anomalously large 21-cm signal observed by the EDGES Collaboration. SENSEI is the first experiment dedicated to the search for electron recoils from dark matter, and these results demonstrate the power of the Skipper-CCD technology for dark matter searches.

  2. Silica/Perfluoropolymer nanocomposites fabricated by direct melt-compounding: a novel method without surface modification on nano-silica.

    Science.gov (United States)

    Tanahashi, Mitsuru; Hirose, Masaki; Watanabe, Yusuke; Lee, Jeong-Chang; Takeda, Kunihiko

    2007-07-01

    A novel method for the fabrication of silica/perfluoropolymer nanocomposites was investigated, whereby nano-sized silica particles without surface modification were dispersed uniformly through mechanical breakdown of loosely packed agglomerates of silica nanoparticles with low fracture strength in a polymer melt during direct melt-compounding. The method consists of two stages. The first stage involves preparation of the loose silica agglomerate, and the second stage involves melt-compounding of a completely hydrophobic perfluoropolymer, poly(tetrafluoroethyleneco-perfluoropropylvinylether), with the loose silica agglomerates prepared in the first stage. In the first stage, the packing structure and the fracture strength of the silica agglomerate were controlled by destabilizing an aqueous colloidal silica solution with a mean primary diameter of 190 nm via pH control and salt addition. In the next stage, the silica/perfluoropolymer nanocomposite was fabricated by breaking down the prepared loose silica agglomerates with low fracture strength by means of a shear force inside the polymer melt during melt-compounding.

  3. Entrance surface dose and image quality: Comparison of adult chest and abdominal X-ray examinations in general practitioner clinics, public and private hospitals in Malaysia

    International Nuclear Information System (INIS)

    Hambali, A. S.; Ng, K. H.; Abdullah, B. J. J.; Wang, H. B.; Jamal, N.; Spelic, D. C.; Suleiman, O. H.

    2009-01-01

    This study was undertaken to compare the entrance surface dose (ESD) and image quality of adult chest and abdominal X-ray examinations conducted at general practitioner (GP) clinics, and public and private hospitals in Malaysia. The surveyed facilities were randomly selected within a given category (28 GP clinics, 20 public hospitals and 15 private hospitals). Only departmental X-ray units were involved in the survey. Chest examinations were done at all facilities, while only hospitals performed abdominal examinations. This study used the x-ray attenuation phantoms and protocols developed for the Nationwide Evaluation of X-ray Trends (NEXT) survey program in the United States. The ESD was calculated from measurements of exposure and clinical geometry. An image quality test tool was used to evaluate the low-contrast detectability and high-contrast detail performance under typical clinical conditions. The median ESD value for the adult chest X-ray examination was the highest (0.25 mGy) at GP clinics, followed by private hospitals (0.22 mGy) and public hospitals (0.17 mGy). The median ESD for the adult abdominal X-ray examination at public hospitals (3.35 mGy) was higher than that for private hospitals (2.81 mGy). Results of image quality assessment for the chest X-ray examination show that all facility types have a similar median spatial resolution and low-contrast detectability. For the abdominal X-ray examination, public hospitals have a similar median spatial resolution but larger low-contrast detectability compared with private hospitals. The results of this survey clearly show that there is room for further improvement in performing chest and abdominal X-ray examinations in Malaysia. (authors)

  4. SURFACE WATER POLLUTION WITH HEAVY METALS IN THE LOWER CATCHMENT OF JIU RIVER BASIN, ACCORDING TO THE WATER FRAMEWORK DIRECTIVE (2000/60/EC

    Directory of Open Access Journals (Sweden)

    ADINA SANDA ŞERBAN

    2011-03-01

    Full Text Available Surface water pollution with heavy metals in the lower catchment of Jiu river basin, according to the Water Framework Directive (2000/60/EC. The Water Framework Directive establishes a single transparent, effective and coherent water policy by defining a strategy to combat pollution by requiring specific action programs.Chemical pollution of surface water presents a threat to the aquatic environment with acute and chronic toxicity to aquatic organisms, accumulation in the ecosystem and losses of habitats and biodiversity, as well as a threat to human health (art.1 from Directive 2008/105/EC regarding the environmental quality standards for water policy.The purpose of this study is to evaluate the chemical status for surface water bodies in the lower catchment of Jiu river basin. The assessment was made taking into account the water impact of four heavy metals: cadmium (Cd, nickel (Ni, mercury (Hg and lead (Pb.

  5. Toward three-dimensional microelectronic systems: directed self-assembly of silicon microcubes via DNA surface functionalization.

    Science.gov (United States)

    Lämmerhardt, Nico; Merzsch, Stephan; Ledig, Johannes; Bora, Achyut; Waag, Andreas; Tornow, Marc; Mischnick, Petra

    2013-07-02

    The huge and intelligent processing power of three-dimensional (3D) biological "processors" like the human brain with clock speeds of only 0.1 kHz is an extremely fascinating property, which is based on a massively parallel interconnect strategy. Artificial silicon microprocessors are 7 orders of magnitude faster. Nevertheless, they do not show any indication of intelligent processing power, mostly due to their very limited interconnectivity. Massively parallel interconnectivity can only be realized in three dimensions. Three-dimensional artificial processors would therefore be at the root of fabricating artificially intelligent systems. A first step in this direction would be the self-assembly of silicon based building blocks into 3D structures. We report on the self-assembly of such building blocks by molecular recognition, and on the electrical characterization of the formed assemblies. First, planar silicon substrates were functionalized with self-assembling monolayers of 3-aminopropyltrimethoxysilane for coupling of oligonucleotides (single stranded DNA) with glutaric aldehyde. The oligonucleotide immobilization was confirmed and quantified by hybridization with fluorescence-labeled complementary oligonucleotides. After the individual processing steps, the samples were analyzed by contact angle measurements, ellipsometry, atomic force microscopy, and fluorescence microscopy. Patterned DNA-functionalized layers were fabricated by microcontact printing (μCP) and photolithography. Silicon microcubes of 3 μm edge length as model objects for first 3D self-assembly experiments were fabricated out of silicon-on-insulator (SOI) wafers by a combination of reactive ion etching (RIE) and selective wet etching. The microcubes were then surface-functionalized using the same protocol as on planar substrates, and their self-assembly was demonstrated both on patterned silicon surfaces (88% correctly placed cubes), and to cube aggregates by complementary DNA

  6. The role of surface charging during the coadsorption of mercaptohexanol to DNA layers on gold: direct observation of desorption and layer reorientation.

    Science.gov (United States)

    Arinaga, K; Rant, U; Tornow, M; Fujita, S; Abstreiter, G; Yokoyama, N

    2006-06-20

    We study the coadsorption of mercaptohexanol onto preimmobilized oligonucleotide layers on gold. Monitoring the position of the DNA relative to the surface by optical means directly shows the mercaptohexanol-induced desorption of DNA and the reorientation of surface-tethered strands in situ and in real time. By simultaneously recording the electrochemical electrode potential, we are able to demonstrate that changes in the layer conformation are predominantly of electrostatic origin and can be reversed by applying external bias to the substrate.

  7. A novel sample preparation procedure for effect-directed analysis of micro-contaminants of emerging concern in surface waters.

    Science.gov (United States)

    Osorio, Victoria; Schriks, Merijn; Vughs, Dennis; de Voogt, Pim; Kolkman, Annemieke

    2018-08-15

    A novel sample preparation procedure relying on Solid Phase Extraction (SPE) combining different sorbent materials on a sequential-based cartridge was optimized and validated for the enrichment of 117 widely diverse contaminants of emerging concern (CECs) from surface waters (SW) and further combined chemical and biological analysis on subsequent extracts. A liquid chromatography coupled to high resolution tandem mass spectrometry LC-(HR)MS/MS protocol was optimized and validated for the quantitative analysis of organic CECs in SW extracts. A battery of in vitro CALUX bioassays for the assessment of endocrine, metabolic and genotoxic interference and oxidative stress were performed on the same SW extracts. Satisfactory recoveries ([70-130]%) and precision ( 0.99) over three orders of magnitude. Instrumental limits of detection and method limits of quantification were of [1-96] pg injected and [0.1-58] ng/L, respectively; while corresponding intra-day and inter-day precision did not exceed 11% and 20%. The developed procedure was successfully applied for the combined chemical and toxicological assessment of SW intended for drinking water supply. Levels of compounds varied from < 10 ng/L to < 500 ng/L. Endocrine (i.e. estrogenic and anti-androgenic) and metabolic interference responses were observed. Given the demonstrated reliability of the validated sample preparation method, the authors propose its integration in an effect-directed analysis procedure for a proper evaluation of SW quality and hazard assessment of CECs. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Construction and expression of hepatitis B surface antigen escape variants within the "a" determinant by site directed mutagenesis.

    Science.gov (United States)

    Golsaz Shirazi, Forough; Amiri, Mohammad Mehdi; Mohammadi, Hamed; Bayat, Ali Ahmad; Roohi, Azam; Khoshnoodi, Jalal; Zarnani, Amir Hassan; Jeddi-Tehrani, Mahmood; Kardar, Gholam Ali; Shokri, Fazel

    2013-09-01

    The antibody response to hepatitis B surface antigen (HBsAg) controls hepatitis B virus infection. The "a" determinant of HBsAg is the most important target for protective antibody response, diagnosis and immunoprophylaxis. Mutations in this area may induce immune escape mutants and affect the performance of HBsAg assays. To construct clinically relevant recombinant mutant forms of HBsAg and assessment of their reactivity with anti-HBs monoclonal antibodies (MAbs). Wild type (wt) and mutant (mt) HBsAg genes were constructed by site directed mutagenesis and SEOing PCR. The amplified genes were inserted into pCMV6-neo plasmid and transfected in CHO cell line. The expression of wt- and mtHBsAg was assessed by commercial ELISA assays and stable cells were established and cloned by limiting dilution. The recombinant mutants were further characterized using a panel of anti-HBs monoclonal antibodies (MAbs) and the pattern of their reactivity was assessed by ELISA. Ten HBsAg mutants having single mutation within the "a" determinant including P120E, T123N, Q129H, M133L, K141E, P142S, D144A, G145R, N146S and C147S together with a wt form were successfully constructed and expressed in CHO cells. Reactivity of anti-HBs MAbs with mtHBsAgs displayed different patterns. The effect of mutations on antibody binding differed depending on the amino acid involved and its location within the ''a'' determinant. Mutation at amino acids 123 and 145 resulted in either complete loss or significant reduction of binding to all anti-HBs MAbs. Our panel of mtHBsAgs is a valuable tool for assessment of the antibody response to HBV escape mutants and may have substantial implications in HBV immunological diagnostics.

  9. Real-time monitoring of methanol concentration using a shear horizontal surface acoustic wave sensor for direct methanol fuel cell without reference liquid measurement

    Science.gov (United States)

    Tada, Kyosuke; Nozawa, Takuya; Kondoh, Jun

    2017-07-01

    In recent years, there has been an increasing demand for sensors that continuously measure liquid concentrations and detect abnormalities in liquid environments. In this study, a shear horizontal surface acoustic wave (SH-SAW) sensor is applied for the continuous monitoring of liquid concentrations. As the SH-SAW sensor functions using the relative measurement method, it normally needs a reference at each measurement. However, if the sensor is installed in a liquid flow cell, it is difficult to measure a reference liquid. Therefore, it is important to establish an estimation method for liquid concentrations using the SH-SAW sensor without requiring a reference measurement. In this study, the SH-SAW sensor is installed in a direct methanol fuel cell to monitor the methanol concentration. The estimated concentration is compared with a conventional density meter. Moreover, the effect of formic acid is examined. When the fuel temperature is higher than 70 °C, it is necessary to consider the influence of liquid conductivity. Here, an estimation method for these cases is also proposed.

  10. Autocorrelation studies of the arrival directions of UHECRs measured by the surface detector of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Stephan

    2011-07-11

    The history of cosmic rays started in the beginning of the 20th century. Since then one of the main questions is their origin. Due to the very low flux at the highest energies huge areas have to be instrumented to answer this question. For this purpose the distribution of the arrival directions of cosmic rays is studied. The largest experiment so far is the Pierre Auger Observatory, located in the Pampa in western Argentina with an area of about 3000 km{sup 2}. In recent years it provided many major contributions to the field of cosmic ray physics and its data is the basis of this work. Among other things a correlation analysis of Ultra High Energy Cosmic Rays (UHECRs) with Active Galactic Nuclei (AGN) was performed leading to the first evidence that UHECRs are not isotropically distributed. Here the distribution of arrival directions of cosmic rays at the highest energies (>50 EeV) is examined by using autocorrelation methods to check whether it is compatible with the isotropic expectation or not.This thesis is organised as follows: in the first two chapters a short introduction to the topic is given, followed by a more general discussion on cosmic rays including models of acceleration, possible sources and the propagation of UHECRs in the third chapter. The fourth chapter focuses on the detector design of the Pierre Auger Observatory and event reconstruction at highest energies. Special attention is paid to the monitoring of the High Elevation Auger Telescopes (HEAT). It is a low energy enhancement of the observatory consisting of three tiltable fluorescence telescopes. The calibration of the new sensor setups is described as well as the installation in each HEAT shelter. The next chapter starts with a detailed description of the underlying ideas and motivations of autocorrelation methods: a representation of the 2pt-Correlation Function and its extension, a Minimum Spanning Tree and a Cluster Algorithm with different weighting procedures. The principle of each

  11. Autocorrelation studies of the arrival directions of UHECRs measured by the surface detector of the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Schulte, Stephan

    2011-01-01

    The history of cosmic rays started in the beginning of the 20th century. Since then one of the main questions is their origin. Due to the very low flux at the highest energies huge areas have to be instrumented to answer this question. For this purpose the distribution of the arrival directions of cosmic rays is studied. The largest experiment so far is the Pierre Auger Observatory, located in the Pampa in western Argentina with an area of about 3000 km 2 . In recent years it provided many major contributions to the field of cosmic ray physics and its data is the basis of this work. Among other things a correlation analysis of Ultra High Energy Cosmic Rays (UHECRs) with Active Galactic Nuclei (AGN) was performed leading to the first evidence that UHECRs are not isotropically distributed. Here the distribution of arrival directions of cosmic rays at the highest energies (>50 EeV) is examined by using autocorrelation methods to check whether it is compatible with the isotropic expectation or not.This thesis is organised as follows: in the first two chapters a short introduction to the topic is given, followed by a more general discussion on cosmic rays including models of acceleration, possible sources and the propagation of UHECRs in the third chapter. The fourth chapter focuses on the detector design of the Pierre Auger Observatory and event reconstruction at highest energies. Special attention is paid to the monitoring of the High Elevation Auger Telescopes (HEAT). It is a low energy enhancement of the observatory consisting of three tiltable fluorescence telescopes. The calibration of the new sensor setups is described as well as the installation in each HEAT shelter. The next chapter starts with a detailed description of the underlying ideas and motivations of autocorrelation methods: a representation of the 2pt-Correlation Function and its extension, a Minimum Spanning Tree and a Cluster Algorithm with different weighting procedures. The principle of each

  12. Modeling electrochemical resistance with coal surface properties in a direct carbon fuel cell based on molten carbonate

    Science.gov (United States)

    Eom, Seongyong; Ahn, Seongyool; Kang, Kijoong; Choi, Gyungmin

    2017-12-01

    In this study, a numerical model of activation and ohmic polarization is modified, taking into account the correlation function between surface properties and inner resistance. To investigate the correlation function, the surface properties of coal are changed by acid treatment, and the correlations between the inner resistance measured by half-cell tests and the surface characteristics are analyzed. A comparison between the model and experimental results demonstrates that the absolute average deviations for each fuel are less than 10%. The numerical results show that the sensitivities of the coal surface properties affecting polarization losses change depending on the operating temperature. The surface oxygen concentrations affect the activation polarization and the sensitivity decreased with increasing temperature. The surface ash of coal is an additional index to be considered along with ohmic polarization and it has the greatest effect on the surface properties at 973 K.

  13. QM/MM Geometry Optimization on Extensive Free-Energy Surfaces for Examination of Enzymatic Reactions and Design of Novel Functional Properties of Proteins.

    Science.gov (United States)

    Hayashi, Shigehiko; Uchida, Yoshihiro; Hasegawa, Taisuke; Higashi, Masahiro; Kosugi, Takahiro; Kamiya, Motoshi

    2017-05-05

    Many remarkable molecular functions of proteins use their characteristic global and slow conformational dynamics through coupling of local chemical states in reaction centers with global conformational changes of proteins. To theoretically examine the functional processes of proteins in atomic detail, a methodology of quantum mechanical/molecular mechanical (QM/MM) free-energy geometry optimization is introduced. In the methodology, a geometry optimization of a local reaction center is performed with a quantum mechanical calculation on a free-energy surface constructed with conformational samples of the surrounding protein environment obtained by a molecular dynamics simulation with a molecular mechanics force field. Geometry optimizations on extensive free-energy surfaces by a QM/MM reweighting free-energy self-consistent field method designed to be variationally consistent and computationally efficient have enabled examinations of the multiscale molecular coupling of local chemical states with global protein conformational changes in functional processes and analysis and design of protein mutants with novel functional properties.

  14. Self-assembling siloxane bilayer directly on SiO2 surface of micro-cantilevers for long-term highly repeatable sensing to trace explosives.

    Science.gov (United States)

    Chen, Ying; Xu, Pengcheng; Li, Xinxin

    2010-07-02

    This paper presents a novel sensing layer modification technique for static micro-cantilever sensors that detect trace explosives by measuring specific adsorption-induced surface stress. For the first time, a method of directly modifying a siloxane sensing bilayer on an SiO(2) surface is proposed to replace the conventional self-assembled monolayers (SAMs) of thiols on Au to avoid the trouble from long-term unstable Au-S bonds. For modifying the long-term reliable sensing bilayer on the piezoresistor-integrated micro-cantilevers, a siloxane-head bottom layer is self-assembled directly on the SiO(2) cantilever surface, which is followed by grafting another explosive-sensing-group functionalized molecule layer on top of the siloxane layer. The siloxane-modified sensor has experimentally exhibited a highly resoluble response to 0.1 ppb TNT vapor. More importantly, the repeated detection results after 140 days show no obvious attenuation in sensing signal. Also observed experimentally, the specific adsorption of the siloxane sensing bilayer to TNT molecules causes a tensile surface stress on the cantilever. Herein the measured tensile surface stress is in contrast to the compressive surface stress normally measured from conventional cantilever sensors where the sensitive thiol-SAMs are modified on an Au surface. The reason for this newly observed phenomenon is discussed and preliminarily analyzed.

  15. Self-assembling siloxane bilayer directly on SiO{sub 2} surface of micro-cantilevers for long-term highly repeatable sensing to trace explosives

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ying; Xu Pengcheng; Li Xinxin, E-mail: xxli@mail.sim.ac.cn [State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2010-07-02

    This paper presents a novel sensing layer modification technique for static micro-cantilever sensors that detect trace explosives by measuring specific adsorption-induced surface stress. For the first time, a method of directly modifying a siloxane sensing bilayer on an SiO{sub 2} surface is proposed to replace the conventional self-assembled monolayers (SAMs) of thiols on Au to avoid the trouble from long-term unstable Au-S bonds. For modifying the long-term reliable sensing bilayer on the piezoresistor-integrated micro-cantilevers, a siloxane-head bottom layer is self-assembled directly on the SiO{sub 2} cantilever surface, which is followed by grafting another explosive-sensing-group functionalized molecule layer on top of the siloxane layer. The siloxane-modified sensor has experimentally exhibited a highly resoluble response to 0.1 ppb TNT vapor. More importantly, the repeated detection results after 140 days show no obvious attenuation in sensing signal. Also observed experimentally, the specific adsorption of the siloxane sensing bilayer to TNT molecules causes a tensile surface stress on the cantilever. Herein the measured tensile surface stress is in contrast to the compressive surface stress normally measured from conventional cantilever sensors where the sensitive thiol-SAMs are modified on an Au surface. The reason for this newly observed phenomenon is discussed and preliminarily analyzed.

  16. Self-assembling siloxane bilayer directly on SiO2 surface of micro-cantilevers for long-term highly repeatable sensing to trace explosives

    International Nuclear Information System (INIS)

    Chen Ying; Xu Pengcheng; Li Xinxin

    2010-01-01

    This paper presents a novel sensing layer modification technique for static micro-cantilever sensors that detect trace explosives by measuring specific adsorption-induced surface stress. For the first time, a method of directly modifying a siloxane sensing bilayer on an SiO 2 surface is proposed to replace the conventional self-assembled monolayers (SAMs) of thiols on Au to avoid the trouble from long-term unstable Au-S bonds. For modifying the long-term reliable sensing bilayer on the piezoresistor-integrated micro-cantilevers, a siloxane-head bottom layer is self-assembled directly on the SiO 2 cantilever surface, which is followed by grafting another explosive-sensing-group functionalized molecule layer on top of the siloxane layer. The siloxane-modified sensor has experimentally exhibited a highly resoluble response to 0.1 ppb TNT vapor. More importantly, the repeated detection results after 140 days show no obvious attenuation in sensing signal. Also observed experimentally, the specific adsorption of the siloxane sensing bilayer to TNT molecules causes a tensile surface stress on the cantilever. Herein the measured tensile surface stress is in contrast to the compressive surface stress normally measured from conventional cantilever sensors where the sensitive thiol-SAMs are modified on an Au surface. The reason for this newly observed phenomenon is discussed and preliminarily analyzed.

  17. Atomistic modeling of metal surfaces under electric fields: direct coupling of electric fields to a molecular dynamics algorithm

    CERN Document Server

    Djurabekova, Flyura; Pohjonen, Aarne; Nordlund, Kai

    2011-01-01

    The effect of electric fields on metal surfaces is fairly well studied, resulting in numerous analytical models developed to understand the mechanisms of ionization of surface atoms observed at very high electric fields, as well as the general behavior of a metal surface in this condition. However, the derivation of analytical models does not include explicitly the structural properties of metals, missing the link between the instantaneous effects owing to the applied field and the consequent response observed in the metal surface as a result of an extended application of an electric field. In the present work, we have developed a concurrent electrodynamic–molecular dynamic model for the dynamical simulation of an electric-field effect and subsequent modification of a metal surface in the framework of an atomistic molecular dynamics (MD) approach. The partial charge induced on the surface atoms by the electric field is assessed by applying the classical Gauss law. The electric forces acting on the partially...

  18. Examining Motivational Orientation and Learning Strategies in Computer-Supported Self-Directed Learning (CS-SDL) for Mathematics: The Perspective of Intrinsic and Extrinsic Goals

    Science.gov (United States)

    Lao, Andrew Chan-Chio; Cheng, Hercy N. H.; Huang, Mark C. L.; Ku, Oskar; Chan, Tak-Wai

    2017-01-01

    One-to-one technology, which allows every student to receive equal access to learning tasks through a personal computing device, has shown increasing potential for self-directed learning in elementary schools. With computer-supported self-directed learning (CS-SDL), students may set their own learning goals through the suggestions of the system…

  19. Compact and broadband directional coupling and demultiplexing in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect

    DEFF Research Database (Denmark)

    Zhu, Zhihong; García Ortíz, César Eduardo; Han, Zhanghua

    2013-01-01

    We theoretically, numerically, and experimentally demonstrate that a directional coupling function can be realized with a wide bandwidth (greater than 200 nm) in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect. The functional size of the structure...

  20. Separation followed by direct SERS detection of explosives on a novel black silicon multifunctional nanostructured surface prepared in a microfluidic channel

    DEFF Research Database (Denmark)

    Talian, Ivan; Hübner, Jörg

    2013-01-01

    The article describes the multifunctionality of a novel black silicon (BS) nanostructured surface covered with a thin layer of noble metal prepared in the a microfluidic channel. It is focused on the separation properties of the BS substrate with direct detection of the separated analytes utilizing...

  1. INVESTIGATION OF POLYMER SURFACES USING SCANNING FORCE MICROSCOPY (SFM) - A NEW DIRECT LOOK ON OLD POLYMER PROBLEMS

    NARCIS (Netherlands)

    GRIM, PCM; BROUWER, HJ; SEYGER, RM; OOSTERGETEL, GT; BERGSMASCHUTTER, WG; ARNBERG, AC; GUTHNER, P; DRANSFELD, K; HADZIIOANNOU, G

    In this contribution, the general concepts of force microscopy will be presented together with its application to polymer surfaces (Ref.1). Several examples will be presented to illustrate that force microscopy is a powerful and promising tool for investigation of (polymer) surfaces, such as the

  2. Low-temperature wafer direct bonding of silicon and quartz glass by a two-step wet chemical surface cleaning

    Science.gov (United States)

    Wang, Chenxi; Xu, Jikai; Zeng, Xiaorun; Tian, Yanhong; Wang, Chunqing; Suga, Tadatomo

    2018-02-01

    We demonstrate a facile bonding process for combining silicon and quartz glass wafers by a two-step wet chemical surface cleaning. After a post-annealing at 200 °C, strong bonding interfaces with no defects or microcracks were obtained. On the basis of the detailed surface and bonding interface characterizations, the bonding mechanism was explored and discussed. The amino groups terminated on the cleaned surfaces might contribute to the bonding strength enhancement during the annealing. This cost-effective bonding process has great potentials for silicon- and glass-based heterogeneous integrations without requiring a vacuum system.

  3. Three-dimensional stereotactic surface projections of rCBF analysis on the forgetfulness of patients using Mini-Mental State Examination results

    International Nuclear Information System (INIS)

    Nakatsuka, Hiroki; Matsubara, Ichirou; Ohtani, Haruhiko

    2003-01-01

    The aim of this single photon emission computed tomography (SPECT) study was to determine the abnormality of the regional cerebral blood flow (rCBF), using a three-dimensional stereotactic surface projection (3D-SSP), in 18 patients referred to the hospital due to forgetfulness. An intergroup comparison, by 3D-SSP analysis, was conducted based on Mini-Mental State Examination (MMSE) results of the total score, time orientation, place orientation, recall, serial sevens and figure copy. In each abnormal group, rCBF was partially decreased in the temporo-parietal cortex, medial temporal structure and posterior cingulate gyrus; these areas with decreased rCBF are similar to the pattern found in Alzheimer's disease. In the abnormal group, at the time of orientation and figure copy, rCBF was decreased in the right parieto-occipital area. (author)

  4. System for Monitoring, Determining, and Reporting Directional Spectra of Ocean Surface Waves in Near Realtime from a Moored Buoy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A moored buoy floating at the ocean surface and anchored to the seafloor precisely measures acceleration, pitch, roll, and Earth's magnetic flux field of the buoy...

  5. Phenol by direct hydroxylation of benzene with nitrous oxide - role of surface oxygen species in the reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Reitzmann, A.; Klemm, E.; Emig, G. [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Technische Chemie 1; Buchholz, S.A.; Zanthoff, H.W. [Bochum Univ. (Germany). Inst. of Technical Chemistry

    1998-12-31

    Transient experiments in a Temporal Analysis of Products (TAP) Reactor were performed to elucidate the role of surface oyxgen species in the oxidation of benzene to phenol on ZSM-5 type zeolites with nitrous oxide as a selective oxidant. It was shown by puls experiments with nitrous oxide that the mean lifetime of the generated surface oxygen species is between 0.2s at 500 C and about 4.2 s at 400 C. Afterwards the surface oxygen species desorb as molecular oxygen into the gas phase where total oxidation will take place if hydrocarbons are present. Dual puls experiments consisting of a nitrous oxide puls followed by a benzene puls allowed studying the reactivity of the surface oxygen species formed during the first puls. The observation of the phenol formation was impeded due to the strong sorption of phenol. Multipulse experiments were necessary to reach a pseudo steady state phenol yield. (orig.)

  6. Biometric correspondence between reface computerized facial approximations and CT-derived ground truth skin surface models objectively examined using an automated facial recognition system.

    Science.gov (United States)

    Parks, Connie L; Monson, Keith L

    2018-05-01

    This study employed an automated facial recognition system as a means of objectively evaluating biometric correspondence between a ReFace facial approximation and the computed tomography (CT) derived ground truth skin surface of the same individual. High rates of biometric correspondence were observed, irrespective of rank class (R k ) or demographic cohort examined. Overall, 48% of the test subjects' ReFace approximation probes (n=96) were matched to his or her corresponding ground truth skin surface image at R 1 , a rank indicating a high degree of biometric correspondence and a potential positive identification. Identification rates improved with each successively broader rank class (R 10 =85%, R 25 =96%, and R 50 =99%), with 100% identification by R 57 . A sharp increase (39% mean increase) in identification rates was observed between R 1 and R 10 across most rank classes and demographic cohorts. In contrast, significantly lower (p0.05) performance differences were observed across demographic cohorts or CT scan protocols. Performance measures observed in this research suggest that ReFace approximations are biometrically similar to the actual faces of the approximated individuals and, therefore, may have potential operational utility in contexts in which computerized approximations are utilized as probes in automated facial recognition systems. Copyright © 2018. Published by Elsevier B.V.

  7. Relationships between response surfaces for tablet characteristics of placebo and API-containing tablets manufactured by direct compression method.

    Science.gov (United States)

    Hayashi, Yoshihiro; Tsuji, Takahiro; Shirotori, Kaede; Oishi, Takuya; Kosugi, Atsushi; Kumada, Shungo; Hirai, Daijiro; Takayama, Kozo; Onuki, Yoshinori

    2017-10-30

    In this study, we evaluated the correlation between the response surfaces for the tablet characteristics of placebo and active pharmaceutical ingredient (API)-containing tablets. The quantities of lactose, cornstarch, and microcrystalline cellulose were chosen as the formulation factors. Ten tablet formulations were prepared. The tensile strength (TS) and disintegration time (DT) of tablets were measured as tablet characteristics. The response surfaces for TS and DT were estimated using a nonlinear response surface method incorporating multivariate spline interpolation, and were then compared with those of placebo tablets. A correlation was clearly observed for TS and DT of all APIs, although the value of the response surfaces for TS and DT was highly dependent on the type of API used. Based on this knowledge, the response surfaces for TS and DT of API-containing tablets were predicted from only two and four formulations using regression expression and placebo tablet data, respectively. The results from the evaluation of prediction accuracy showed that this method accurately predicted TS and DT, suggesting that it could construct a reliable response surface for TS and DT with a small number of samples. This technique assists in the effective estimation of the relationships between design variables and pharmaceutical responses during pharmaceutical development. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A directional entrapment modification on the polyethylene surface by the amphiphilic modifier of stearyl-alcohol poly(ethylene oxide) ether

    Science.gov (United States)

    Lu, Qiang; Chen, Yi; Huang, Juexin; Huang, Jian; Wang, Xiaolin; Yao, Jiaying

    2018-05-01

    A novel entrapment modification method involving directional implantation of the amphiphilic modifier of stearyl-alcohol poly(ethylene oxide) ether (AEO) into the high-density polyethylene (HDPE) surface is proposed. This modification technique allows the AEO modifier to be able to spontaneously attain and subsequently penetrate into the swollen HDPE surface with its hydrophobic stearyl segment, while its hydrophilic poly(ethylene oxide) (PEO) segment spontaneously points to water. The AEO modifier with a HLB number below 8.7 was proved appropriate for the directional entrapment, Nevertheless, AEOs with larger HLB numbers were also effective modifiers in the presence of salt additives. In addition, a larger and hydrophobic micelle, induced respectively by the AEO concentration above 1.3 × 10-2 mol/L and the entrapping temperature above the cloud point of AEO, could lead to a sharp contact angle decline of the modified surface. Finally, a hydrophilic HDPE surface with the modifier coverage of 38.9% was reached by the directional entrapment method, which is far larger than that of 19.2% by the traditional entrapment method.

  9. The reliability and accuracy of two methods for proximal caries detection and depth on directly visible proximal surfaces: an in vitro study

    DEFF Research Database (Denmark)

    Ekstrand, K R; Alloza, Alvaro Luna; Promisiero, L

    2011-01-01

    This study aimed to determine the reliability and accuracy of the ICDAS and radiographs in detecting and estimating the depth of proximal lesions on extracted teeth. The lesions were visible to the naked eye. Three trained examiners scored a total of 132 sound/carious proximal surfaces from 106 p...

  10. Wetting-layer formation mechanisms of surface-directed phase separation under different quench depths with off-critical compositions in polymer binary mixture

    Science.gov (United States)

    Yan, Li-Tang; Xie, Xu-Ming

    2007-02-01

    Focusing on the off-critical condition, the quench depth dependence of surface-directed phase separation in the polymer binary mixture is numerically investigated by combination of the Cahn-Hilliard-Cook theory and the Flory-Huggins-de Gennes theory. Two distinct situations, i.e., for the wetting, the minority component is preferred by the surface and the majority component is preferred by the surface, are discussed in detail. The simulated results show that the formation mechanism of the wetting layer is affected by both the quench depth and the off-critical extent. Moreover, a diagram, illustrating the formation mechanisms of the wetting layer with various quench depths and compositions, is obtained on the basis of the simulated results. It is found that, when the minority component is preferred by the surface, the growth of the wetting layer can exhibit pure diffusion limited growth law, logarithmic growth law, and Lifshitz-Slyozov growth law. However, when the majority component is preferred by the surface, the wetting layer always grows logarithmically, regardless of the quench depth and the off-critical extent. It is interesting that the surface-induced nucleation can be observed in this case. The simulated results demonstrate that the surface-induced nucleation only occurs below a certain value of the quench depth, and a detailed range about it is calculated and indicated. Furthermore, the formation mechanisms of the wetting layer are theoretically analyzed in depth by the chemical potential gradient.

  11. When lithography meets self-assembly: a review of recent advances in the directed assembly of complex metal nanostructures on planar and textured surfaces

    Science.gov (United States)

    Hughes, Robert A.; Menumerov, Eredzhep; Neretina, Svetlana

    2017-07-01

    One of the foremost challenges in nanofabrication is the establishment of a processing science that integrates wafer-based materials, techniques, and devices with the extraordinary physicochemical properties accessible when materials are reduced to nanoscale dimensions. Such a merger would allow for exacting controls on nanostructure positioning, promote cooperative phenomenon between adjacent nanostructures and/or substrate materials, and allow for electrical contact to individual or groups of nanostructures. With neither self-assembly nor top-down lithographic processes being able to adequately meet this challenge, advancements have often relied on a hybrid strategy that utilizes lithographically-defined features to direct the assembly of nanostructures into organized patterns. While these so-called directed assembly techniques have proven viable, much of this effort has focused on the assembly of periodic arrays of spherical or near-spherical nanostructures comprised of a single element. Work directed toward the fabrication of more complex nanostructures, while still at a nascent stage, has nevertheless demonstrated the possibility of forming arrays of nanocubes, nanorods, nanoprisms, nanoshells, nanocages, nanoframes, core-shell structures, Janus structures, and various alloys on the substrate surface. In this topical review, we describe the progress made in the directed assembly of periodic arrays of these complex metal nanostructures on planar and textured substrates. The review is divided into three broad strategies reliant on: (i) the deterministic positioning of colloidal structures, (ii) the reorganization of deposited metal films at elevated temperatures, and (iii) liquid-phase chemistry practiced directly on the substrate surface. These strategies collectively utilize a broad range of techniques including capillary assembly, microcontact printing, chemical surface modulation, templated dewetting, nanoimprint lithography, and dip-pen nanolithography and

  12. Congruence and Incongruence in Adolescents' and Parents' Perceptions of the Family: Using Response Surface Analysis to Examine Links with Adolescents' Psychological Adjustment.

    Science.gov (United States)

    Human, Lauren J; Dirks, Melanie A; DeLongis, Anita; Chen, Edith

    2016-10-01

    Parents and adolescents often hold discrepant views about the family environment and these discrepancies may in turn influence adolescents' psychological adjustment. The current study examined how adolescent-parent perceptions of family routines and chaos, and their congruence and incongruence, relate to adolescents' self-reported psychological adjustment (depressive symptoms and perceived stress), both concurrently (N dyads = 261; 53 % female) and 2 years later (N dyads = 118; 50 % female). Using polynomial regression and response surface analysis, results indicated that adolescents' perceptions of the family environment were a stronger predictor of adolescents' adjustment than parents' perceptions (76 % mothers), concurrently and over time. However, both congruence and incongruence in adolescent-parent perceptions were also related to adolescents' adjustment. Specifically, congruently negative adolescent-parent perceptions were associated with worse concurrent adolescent adjustment. Further, incongruence defined by more negativity in adolescents' versus parents' perceptions was associated with worse adolescent psychological adjustment, concurrently and over time. In sum, in addition to the strong links between adolescents' perceptions of the family and their own psychological adjustment, examining how congruent and incongruent adolescents' perceptions are with parents' perceptions may shed additional light on how the family environment relates to adolescent adjustment.

  13. A novel electrode surface fabricated by directly attaching gold nanoparticles onto NH2+ ions implanted-indium tin oxide substrate

    International Nuclear Information System (INIS)

    Liu Chenyao; Jiao Jiao; Chen Qunxia; Xia Ji; Li Shuoqi; Hu Jingbo; Li Qilong

    2010-01-01

    A new type of gold nanoparticle attached to a NH 2 + ion implanted-indium tin oxide surface was fabricated without using peculiar binder molecules, such as 3-(aminopropyl)-trimethoxysilane. A NH 2 /indium tin oxide film was obtained by implantation at an energy of 80 keV with a fluence of 5 x 10 15 ions/cm 2 . The gold nanoparticle-modified film was characterized by X-ray photoelectron spectroscopy, scanning electron microscopy and electrochemical techniques and compared with a modified bare indium tin oxide surface and 3-(aminopropyl)-trimethoxysilane linked surface, which exhibited a relatively low electron transfer resistance and high electrocatalytic activity. The results demonstrate that NH 2 + ion implanted-indium tin oxide films can provide an important route to immobilize nanoparticles, which is attractive in developing new biomaterials.

  14. Development of Surface Modification Techniques for Enhanced Safety of Light Water Reactors: Recent Progress and Future Direction at THLAB

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Gwang Hyeok; Jeong, Ui Ju; Son, Hong Hyun; Jeun, Gyoo Dong; Kim, Sung Joong [Hanyang University, Daejeon (Korea, Republic of)

    2016-05-15

    They concluded that the CHF enhancement in nanofluid boiling was mainly affected by the surface characteristics of the developed layer. Furthermore, an introduction of surface modification can be utilized to secure the safety of nuclear reactor systems. At many components of the reactor systems, energetic boiling heat transfer occurs, and potential thermal attack to the systems is expected under normal or accident environments. In particular, during a reactor operation, fission energy is deposited in the fuel assemblies in a core. Also, under severe conditions, failure of a reactor vessel may occur by high temperature molten materials. In this article, we introduce the surface modification techniques and recent achievements. After a brief description of each deposition mechanism, an assessment of thermal margin for both the technologies is discussed based on pool boiling experiments conducted at THLAB. Moreover, in the latter part of each chapter, experimental facilities for applied heat transfer tests to consider reactor environments are presented.

  15. Solvent Composition Directing Click-Functionalization at the Surface or in the Bulk of Azide-Modified PEDOT

    DEFF Research Database (Denmark)

    Lind, Johan Ulrik; Hansen, Thomas Steen; Daugaard, Anders Egede

    2011-01-01

    Thin films of the conducting polymer poly(3,4-(1-azidomethylethylene)dioxythiophene) tosylate (PEDOT−N3) can be functionalized by reaction with alkynated reagents in aqueous solutions. Reaction in pure water resulted in surface specific modification of PEDOT−N3 films, whereas both surface and bulk...... studies showed increasing film thickness with increasing DMSO content, with the measured thickness in pure DMSO being >250% of the thickness in pure water. A similar, but less pronounced, behavior was observed for unmodified poly(3,4-ethylenedioxythiophene) tosylate (PEDOT). High-density grafting...

  16. Direct visual evidence of end-on adsorption geometry of pyridine on silver surface investigated by surface enhanced Raman scattering and density functional theory calculations.

    Science.gov (United States)

    Bhunia, Snehasis; Forster, Stefan; Vyas, Nidhi; Schmitt, Hans-Christian; Ojha, Animesh K

    2015-12-05

    Fourier transform Raman (FT-Raman) spectra of neat pyridine (Py) and surface enhanced Raman scattering (SERS) spectra of Py with silver nanoparticles (AgNPs) solution at different molar concentrations (X=1.5M, 1.0M, 0.50 M, 0.25 M, and 0.125 M) were recorded using 1064 nm excitation wavelength. The intensity of Raman bands at ∼1003 (ν11) and ∼1035 (ν21) cm(-1) of Py is enhanced in the SERS spectra. Two new Raman bands were observed at ∼1009 (ν12) and ∼1038 (ν22) cm(-1) in the SERS spectra. These bands correspond to the ring breathing vibrations of Py molecules adsorbed at the AgNPs surface. The value of intensity ratios (I12/I11) and (I21/I22) is increased with dilution and attains a maximum value at X=0.5M and upon further dilution (0.25 and 0.125 M) it drops gradually. The theoretically calculated Raman spectra were found to be in good agreement with experimentally observed Raman spectra. Both, experimental and theoretical investigations have confirmed that the Py interacts with AgNPs via the end-on geometry. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Estimates of oceanic surface wind speed and direction using orthogonal beam scatterometer measurements and comparison of recent sea scattering theories

    Science.gov (United States)

    Moore, R. K.; Fung, A. K.; Dome, G. J.; Birrer, I. J.

    1978-01-01

    The wind direction properties of radar backscatter from the sea were empirically modelled using a cosine Fourier series through the 4th harmonic in wind direction (referenced to upwind). A comparison with 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data, at incidence angles of 40 and 65, indicates that effects to third and fourth harmonics are negligible. Another important result is that the Fourier coefficients through the second harmonic are related to wind speed by a power law expression. A technique is also proposed to estimate the wind speed and direction over the ocean from two orthogonal scattering measurements. A comparison between two different types of sea scatter theories, one type presented by the work of Wright and the other by that of Chan and Fung, was made with recent scatterometer measurements. It demonstrates that a complete scattering model must include some provisions for the anisotropic characteristics of the sea scatter, and use a sea spectrum which depends upon wind speed.

  18. Surface plasmon resonance sensor with dispersionless microfluidics for direct detection of nucleic acids at the low femtomole level

    Czech Academy of Sciences Publication Activity Database

    Špringer, Tomáš; Piliarik, Marek; Homola, Jiří

    2010-01-01

    Roč. 145, č. 1 (2010), s. 588-591 ISSN 0925-4005 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : microfluidics * surface plasmon resonance * DNA detection Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.368, year: 2010

  19. Surface noble metal modified PdM/C (M = Ru, Pt, Au) as anode catalysts for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Mao, Han; Huang, Tao; Yu, Aishui

    2016-01-01

    In this article, we studied the surface noble metal modification on Pd nanoparticles, other than the homogeneous or core-shell structure. The surface modification will lead to the uneven constitution within the nanoparticles and thus more obvious optimization effect toward the catalyst brought by the lattice deformation. The surface of the as-prepared Pd nanoparticles was modified with Ru, Pt or Au by a moderate and green approach, respectively. XPS results confirm the interactive electron effects between Pd and the modified noble metal. Electrochemical measurements show that the surface noble metal modified catalysts not only show higher catalytic activity, but also better stability and durability. The PdM/C catalysts all exhibit good dispersion and very little agglomeration after long-term potential cycles toward ethanol oxidation. With only 10% metallic atomic ratio of Au, PdAu/C catalyst shows extraordinary catalytic activity and stability, the peak current reaches 1700 mA mg"−"1 Pd, about 2.5 times that of Pd/C. Moreover, the PdAu/C maintains 40% of the catalytic activity after 4500 potential cycles. - Highlights: • Pd-based catalysts with complicated exposed facets. • Much enhanced electrocatalytic activity and stability with about 10% noble metal M (M = Ru, Pt, Au) on Pd nanoparticles. • The outstanding electrocatalytic performance of PdAu/C towards ethanol oxidation after the Au modification.

  20. Surface noble metal modified PdM/C (M = Ru, Pt, Au) as anode catalysts for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Han; Huang, Tao, E-mail: huangt@fudan.edu.cn; Yu, Aishui, E-mail: asyu@fudan.edu.cn

    2016-08-15

    In this article, we studied the surface noble metal modification on Pd nanoparticles, other than the homogeneous or core-shell structure. The surface modification will lead to the uneven constitution within the nanoparticles and thus more obvious optimization effect toward the catalyst brought by the lattice deformation. The surface of the as-prepared Pd nanoparticles was modified with Ru, Pt or Au by a moderate and green approach, respectively. XPS results confirm the interactive electron effects between Pd and the modified noble metal. Electrochemical measurements show that the surface noble metal modified catalysts not only show higher catalytic activity, but also better stability and durability. The PdM/C catalysts all exhibit good dispersion and very little agglomeration after long-term potential cycles toward ethanol oxidation. With only 10% metallic atomic ratio of Au, PdAu/C catalyst shows extraordinary catalytic activity and stability, the peak current reaches 1700 mA mg{sup −1} Pd, about 2.5 times that of Pd/C. Moreover, the PdAu/C maintains 40% of the catalytic activity after 4500 potential cycles. - Highlights: • Pd-based catalysts with complicated exposed facets. • Much enhanced electrocatalytic activity and stability with about 10% noble metal M (M = Ru, Pt, Au) on Pd nanoparticles. • The outstanding electrocatalytic performance of PdAu/C towards ethanol oxidation after the Au modification.

  1. Surface plasmon resonance biosensor based on engineered proteins for direct detection of interferon-gamma in diluted blood plasma

    Czech Academy of Sciences Publication Activity Database

    Šípová, Hana; Ševců, Veronika; Kuchař, Milan; Ahmad, Jawid Nazir; Mikulecký, Pavel; Osičková, Adriana; Malý, Petr; Homola, Jiří

    2012-01-01

    Roč. 174, č. 11 (2012), s. 306-311 ISSN 0925-4005 R&D Projects: GA AV ČR KAN200670701 Institutional support: RVO:67985882 ; RVO:61388971 ; RVO:86652036 Keywords : Interferon gamma * Surface plasmon resonance * Biosensor Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.535, year: 2012

  2. Direct generation of titanium dioxide nanoparticles dispersion under supercritical conditions for photocatalytic active thermoplastic surfaces for microbiological inactivation

    International Nuclear Information System (INIS)

    Zydziak, Nicolas; Zanin, Maria-Helena Ambrosio; Trick, Iris; Hübner, Christof

    2015-01-01

    Thermoplastic poly(propylene) (PP) and acrylonitrile-butadiene-styrene (ABS) surfaces were coated with silica based films via the sol–gel process, containing titanium dioxide (TiO 2 ) as photocatalyst. TiO 2 was previously synthesized via sol–gel and treated under supercritical conditions in water dispersions. The characterization of the TiO 2 dispersions was performed via disc centrifuge to determine the particle size and via Raman spectroscopy and X-Ray Diffraction (XRD) to characterize the crystallinity of TiO 2 . The synthesized TiO 2 dispersions and commercially available TiO 2 particles were incorporated in silica based films which were synthesized under acidic or basic conditions, leading to dense or porous films respectively. The morphology of the films was characterized via Scanning Electron Microscopy (SEM). The incorporation of synthesized TiO 2 in the coating led to photocatalytically more active thermoplastic surfaces than films formulated with commercially available TiO 2 as determined via dye discoloration test. A microbiological test performed with Sarcina lutea confirmed this result and showed an inactivation factor of 6 (99.9999%) after 24 h UV irradiation, for synthesized TiO 2 incorporated in acidic formulated silica layer on ABS surfaces. - Highlights: • We report about photocatalytic layers formulated on thermoplastic surfaces. • We synthesized silica layer and TiO 2 via sol–gel and supercritical treatment. • Amorphous, crystalline and commercial dispersions were generated and characterized. • The morphology of dense and porous photocatalytic layers is observed via SEM. • Discoloration and microbiological tests correlate activity and surface morphology

  3. Direct generation of titanium dioxide nanoparticles dispersion under supercritical conditions for photocatalytic active thermoplastic surfaces for microbiological inactivation

    Energy Technology Data Exchange (ETDEWEB)

    Zydziak, Nicolas, E-mail: nicolas.zydziak@kit.edu [Polymer Engineering Department, Fraunhofer Institute of Chemical Technology, Joseph-von-Fraunhofer-Str. 7, 76327 Pfinztal (Germany); Zanin, Maria-Helena Ambrosio [Laboratory of Chemical Processes and Particle Technology Bionanomanufacturing, Institute for Technological Research of the State of São Paulo – IPT, Av. Prof. Almeida Prado 532, Cidade Universitária, CEP 05508-901 São Paulo, SP (Brazil); Trick, Iris [Environmental Biotechnology and Bioprocess Engineering Department, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstrasse 12, 70569 Stuttgart (Germany); Hübner, Christof [Polymer Engineering Department, Fraunhofer Institute of Chemical Technology, Joseph-von-Fraunhofer-Str. 7, 76327 Pfinztal (Germany)

    2015-03-01

    Thermoplastic poly(propylene) (PP) and acrylonitrile-butadiene-styrene (ABS) surfaces were coated with silica based films via the sol–gel process, containing titanium dioxide (TiO{sub 2}) as photocatalyst. TiO{sub 2} was previously synthesized via sol–gel and treated under supercritical conditions in water dispersions. The characterization of the TiO{sub 2} dispersions was performed via disc centrifuge to determine the particle size and via Raman spectroscopy and X-Ray Diffraction (XRD) to characterize the crystallinity of TiO{sub 2}. The synthesized TiO{sub 2} dispersions and commercially available TiO{sub 2} particles were incorporated in silica based films which were synthesized under acidic or basic conditions, leading to dense or porous films respectively. The morphology of the films was characterized via Scanning Electron Microscopy (SEM). The incorporation of synthesized TiO{sub 2} in the coating led to photocatalytically more active thermoplastic surfaces than films formulated with commercially available TiO{sub 2} as determined via dye discoloration test. A microbiological test performed with Sarcina lutea confirmed this result and showed an inactivation factor of 6 (99.9999%) after 24 h UV irradiation, for synthesized TiO{sub 2} incorporated in acidic formulated silica layer on ABS surfaces. - Highlights: • We report about photocatalytic layers formulated on thermoplastic surfaces. • We synthesized silica layer and TiO{sub 2} via sol–gel and supercritical treatment. • Amorphous, crystalline and commercial dispersions were generated and characterized. • The morphology of dense and porous photocatalytic layers is observed via SEM. • Discoloration and microbiological tests correlate activity and surface morphology.

  4. Automation of technological processes at surface mines in the GDR as one of the main directions of increased coal extraction effectiveness by surface mining

    Energy Technology Data Exchange (ETDEWEB)

    Jona, U.

    1987-12-01

    In the GDR, about 53% of brown coal is mined with the use of overburden conveyor bridges, 27% with the use of belt conveyors, and 20% with the use of rail transport. Compares efficiency and cost per 1 m/sup 3/ of these transport methods. The overburden conveyor bridges, their specifications and microcomputer control are described. Describes utilization of microcomputer techniques, especially the stereochart system of Carl Zeiss Jena, for automated processing of data on surface mine geometry. Other computer applications are also presented, e.g. for surveying, slope stability calculation, and conveyor bridge control. Maintains that application of the KED/KEM microcomputer system for overburden conveyor bridge control increases its effectiveness by 10%, i.e. by 8 million m/sup 3//a.

  5. Can cycling safety be improved by opening all unidirectional cycle paths for cycle traffic in both directions? A theoretical examination of available literature and data.

    Science.gov (United States)

    Methorst, Rob; Schepers, Paul; Kamminga, Jaap; Zeegers, Theo; Fishman, Elliot

    2017-08-01

    Many studies have found bicycle-motor vehicle crashes to be more likely on bidirectional cycle paths than on unidirectional cycle paths because drivers do not expect cyclists riding at the right side of the road. In this paper we discuss the hypothesis that opening all unidirectional cycle paths for cycle traffic in both directions prevent this lack of expectancy and accordingly improves cycling safety. A new national standard requires careful consideration because a reversal is difficult once cyclists are used to their new freedom of route choice. We therefore explored the hypothesis using available data, research, and theories. The results show that of the length of cycle paths along distributor roads in the Netherlands, 72% is bidirectional. If drivers would become used to cyclists riding at the left side of the road, this result raises the question of why bidirectional cycle paths in the Netherlands still have a poor safety record compared to unidirectional cycle paths. Moreover, our exploration suggested that bidirectional cycle paths have additional safety problems. It increases the complexity of unsignalized intersections because drivers have to scan more directions in a short period of time. Moreover, there are some indications that the likelihood of frontal crashes between cyclists increases. We reject the hypothesis that opening all unidirectional cycle paths for cycle traffic in both directions will improve cycle safety. We recommend more attention for mitigating measures given the widespread application of bidirectional cycle paths in the Netherlands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. You've got mail! An examination of a statewide direct-mail marketing campaign to promote deceased organ donor registrations.

    Science.gov (United States)

    Quick, Brian L; LaVoie, Nicole R; Morgan, Susan E; Bosch, Dave

    2015-11-01

    This study extends previous direct-mail campaigns by evaluating the effectiveness of a marketing campaign promoting organ donation message strategies from the vantage point of organ donors, organ recipients, individuals on the waiting list, or a combination of these three frames. Illinois residents were randomly assigned to one of four organ donation brochures disseminated via U.S. postal mail. Registrations occurred via the Internet and U.S. postal mail. Individuals register at a greater rate following exposure to the combination framed message compared to organ donor, organ recipient, and waiting list narratives. The campaign revealed that individuals are more likely to register via U.S. postal mail than the Internet. Direct-mail marketing efforts were shown to be an effective approach to promote organ and tissue donation registrations. The results demonstrated a preference for the combination framed brochure. The results are discussed with an emphasis on the practical implications of utilizing direct-mail marketing efforts to promote organ donation among young adults. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Isolation and Characterization of Surface and Subsurface Bacteria in Seawater of Mantanani Island, Kota Belud, Sabah by Direct and Enrichment Techniques

    International Nuclear Information System (INIS)

    Benard, L D; Tuah, P M; Suadin, E G; Jamian, N

    2015-01-01

    The distribution of hydrocarbon-utilizing bacterial may vary between surface and subsurface of the seawater. One of the identified contributors is the Total Petroleum Hydrocarbon. The isolation and characterization of bacteria using Direct and Enrichment techniques helps in identifying dominant bacterial populations in seawater of Mantanani Island, Kota Belud, Sabah, potential of further investigation as hydrocarbon degrader. Crude oil (5% v/v) was added as the carbon source for bacteria in Enrichment technique. For surface seawater, the highest population of bacteria identified for both Direct and Enrichment technique were 2.60 × 10 7 CFU/mL and 3.84 × 10 6 CFU/mL respectively. Meanwhile, for subsurface seawater, the highest population of bacteria identified for both Direct and Enrichment technique were 5.21 × 10 6 CFU/mL and 8.99 × 10 7 CFU/mL respectively. Dominant species in surface seawater were characterized as Marinobacter hydrocarbonoclasticus-RMSF-C1 and RMSF-C2 and Alcanivorax borkumensis-RMSF-C3, RMSF-C4 and RMSF-C5. As for subsurface seawater, dominant species were characterized as Pseudomonas luteola-SSBR-W1, Burkholderia cepacia-SSBR-C1, Rhizobium radiobacter- SSBR-C3 and Leuconostoc-cremois -SSBR-C4. (paper)

  8. Surface directed phase separation of semiconductor ferroelectric polymer blends and their use in non-volatile memories

    NARCIS (Netherlands)

    Breemen, A.J.J.M. van; Zaba, T.; Khikhlovskyi, V.; Michels, J.; Janssen, R.; Kemerink, M.; Gelinck, G.

    2015-01-01

    The polymer phase separation of P(VDF-TrFE):F8BT blends is studied in detail. Its morphology is key to the operation and performance of memory diodes. In this study, it is demonstrated that it is possible to direct the semiconducting domains of a phase-separating mixture of P(VDF-TrFE) and F8BT in a

  9. ROLE OF LEAF SURFACE WATER IN THE BI-DIRECTIONAL AMMONIA EXCHANGE BETWEEN THE ATMOSPHERE AND TERRESTRIAL BIOSPHERE

    Science.gov (United States)

    A field experiment was conducted to study the ammonia exchange between plants and the atmosphere in a soybean field in Duplin County, North Carolina during the summer of 2002. Measurements indicate that the net canopy-scale ammonia exchange is bi-directional and has a significant...

  10. Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity

    Science.gov (United States)

    Soetaert, Karline; Mohn, Christian; Rengstorf, Anna; Grehan, Anthony; van Oevelen, Dick

    2016-10-01

    Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces downwelling events of surface water that brings organic matter to 600-m deep CWCs. This positive feedback between CWC growth on carbonate mounds and enhanced food supply is essential for their sustenance in the deep sea and represents an example of ecosystem engineering of unparalleled magnitude. This ’topographically-enhanced carbon pump’ leaks organic matter that settles at greater depths. The ubiquitous presence of biogenic and geological topographies along ocean margins suggests that carbon sequestration through this pump is of global importance. These results indicate that enhanced stratification and lower surface productivity, both expected consequences of climate change, may negatively impact the energy balance of CWCs.

  11. Monitoring of petroleum hydrocarbon pollution in surface waters by a direct comparison of fluorescence spectroscopy and remote sensing techniques

    Energy Technology Data Exchange (ETDEWEB)

    De Domenico, L.; Crisafi, E. (Consiglio Nazionale delle Ricerche, Messina (Italy). Thalassografic Inst.); Magazzu, G. (Lecce Univ. (Italy). Dept. of Biology); Puglisi, A. (Mediterranean Oceanological Centre (CEOM), Palermo (Italy)); La Rosa, A. (Air-Survey, Italy s.r.l., Catania (Italy))

    1994-10-01

    Oil pollution levels were estimated using simultaneous acquisition of data from remote sensing by helicopter and fluorescence spectroscopy on surface samples. Laboratory quantitative analysis of hydrocarbons was used to calibrate remotely sensed data. The data were treated using a computer to generate a colour-coded map not attainable with conventional methods representing seawater pollution. Results were in good agreement and indicated that remotely sensed data together with those achieved by fluorescence spectroscopy are applicable for monitoring hydrocarbon pollution. (author)

  12. Monitoring of petroleum hydrocarbon pollution in surface waters by a direct comparison of fluorescence spectroscopy and remote sensing techniques

    International Nuclear Information System (INIS)

    De Domenico, L.; Crisafi, E.; La Rosa, A.

    1994-01-01

    Oil pollution levels were estimated using simultaneous acquisition of data from remote sensing by helicopter and fluorescence spectroscopy on surface samples. Laboratory quantitative analysis of hydrocarbons was used to calibrate remotely sensed data. The data were treated using a computer to generate a colour-coded map not attainable with conventional methods representing seawater pollution. Results were in good agreement and indicated that remotely sensed data together with those achieved by fluorescence spectroscopy are applicable for monitoring hydrocarbon pollution. (author)

  13. Thermoelectric properties of 3D topological insulator: Direct observation of topological surface and its gap opened states

    Science.gov (United States)

    Matsushita, Stephane Yu; Huynh, Khuong Kim; Yoshino, Harukazu; Tu, Ngoc Han; Tanabe, Yoichi; Tanigaki, Katsumi

    2017-10-01

    We report thermoelectric (TE) properties of topological surface Dirac states (TSDS) in three-dimensional topological insulators (3D-TIs) purely isolated from the bulk by employing single-crystal B i2 -xS bxT e3 -yS ey films epitaxially grown in the ultrathin limit. Two intrinsic nontrivial topological surface states, a metallic TSDS (m-TSDS) and a gap-opened semiconducting topological state (g-TSDS), are successfully observed by electrical transport, and important TE parameters [electrical conductivity (σ), thermal conductivity (κ), and thermopower (S )] are accurately determined. Pure m-TSDS gives S =-44 μ V K-1 , which is an order of magnitude higher than those of the conventional metals and the value is enhanced to -212 μ V K-1 for g-TSDS. It is clearly shown that the semiclassical Boltzmann transport equation (SBTE) in the framework of constant relaxation time (τ) most frequently used for conventional analysis cannot be valid in 3D-TIs and strong energy dependent relaxation time τ(E ) beyond the Born approximation is essential for making intrinsic interpretations. Although σ is protected on the m-TSDS, κ is greatly influenced by the disorder on the topological surface, giving a dissimilar effect between topologically protected electronic conduction and phonon transport.

  14. Guide to correct use of medical imagery examinations. Recommendations for health personnel. Transposition of the 97/43 Euratom European directive

    International Nuclear Information System (INIS)

    Frija, Guy; Grenier, Philippe; Grellet, Jacques; Amiel, Michel; Cordoliani, Yves-Sebastien; Frija, Guy; Sirinelli, Dominique; Talbot, Jean-Noel; Bourguignon, Michel; Aucant, Denis; Silberman, Bruno; Verzaux, Laurent; Chagnon, Sophie; Dacher, Jean-Nicolas; Helenon, Olivier; Dosquet, Patrice; Hittinger, Marie-Claude; Xerri, Bertrand; Herrmann, Theodore; Pruvo, Jean-Pierre; Steinling, Marc; Brochet, Bruno; Depriester, Claude; Dousset, Vincent; Dormont, Didier; Dubois, Francois; Gauvrit, Jean-Yves; Mas, Jean-Louis; Meder, Jean-Francois; Moulin, Guy; Sulman, Charles; Gauthier, Helene; Martin-Duverneuil, Nadine; Bossard, Denis; Elmaleh, Monique; Treil, Jacques; Zanaret, Michel; Morvan, Gerard; Paycha, Frederic; Chastanet, Patrick; Dosch, Jean-Claude; Drape, Jean-Luc; Feydy, Antoine; Guilbeau, Jean-Charles; Sans, Nicolas; Beregi, Jean-Paul; Laissy, Jean-Pierre; Cassin, Patrice de; Heautot, Jean-Francois; Laroche, Jean-Pierre; Brauner, Michel; Bok, Bernard; Carette, Marie-France; Ferretti, Gilbert; Abehsera, Marc; Menu, Yves; Zerbib, Eric; Denys, Alban; Agostini, Serge; Sagui, Michel; Valette, Pierre-Jean; Djabban, Marjan; Drahi, Gilles; Tiah, Djamel; Roy, Catherine; Bellin, Marie-France; Prigent, Alain; Lemaitre, Laurent; Andre, Marc; Grenier, Nicolas; Robert, Yann; Kerrou, Khaldoun; Delattre, Christian; Garel, Catherine; Taieb, Sophie; Subtil, Damien; Stines, Joseph; Soler, Claude; Cambier, Luc; Digabel, Christine; Hagay, Charley; Tardivon, Anne; Le Dosseur, Patrick; Bonnin, Francois; Schmit, Pierre; Kalifa, Gabriel; Geoffray, Anne; Panuel, Michel; Guibaud, Laurent; Chateil, Jean-Francois; Clerc, Jerome; Tramalloni, Jean; Ernst, Olivier; Rocher, Laurence; Young, Jacques; Munera, Yves; Muller, Philippe; Stines, Joseph; Lumbroso, Jean; Frija, Jacques; Haioun, Corinne; Rahmouni, Alain; Menu, Yves; Dosch, Jean-Claude; Ducou le Pointe, Hubert; Taourel, Patrice; Schmutz, Gerard; Portier, Francois; Lopez, Francois-Michel; Guludec, Dominique le; Machecourt, Jacques; Chevalier, Bernard; Derumeaux, Genevieve; Py, Marie; Carrie, Didier; Revel, Didier

    2005-01-01

    This guide aims at indicating to the requesting physician the most appropriate imagery examination with respect to the explored pathology, by using either irradiation or non-irradiating techniques. This guide has several objectives: the radiation protection of patients, a practice rationalisation, interdisciplinary exchanges, and the organisation of clinical audits. After a description of the methodology adopted to elaborate this guide, the guide is made of a table of five columns which respectively indicate: the symptoms or pathology for which a medical imagery is required, the imagery modality, some indications related to the examination (diagnosis, peculiar cases, specialised or non-indicated), its grade of recommendation for the concerned clinical situation, comments regarding the usefulness of the examination, and the induced exposure level (from 0 to IV). Symptoms and pathologies are herein classified with respect to the concerned part of the body (head, neck, skeleton, musculoskeletal system, cardiovascular system, thorax, digestive tract, urogenital and adrenals, obstetrics and gynaecology), diseases (breast diseases, traumas, cancers) or practice (paediatrics, interventional radiology)

  15. Impurities or a neutral Fermi surface? A further examination of the low-energy ac optical conductivity of SmB6

    Science.gov (United States)

    Laurita, N. J.; Morris, C. M.; Koohpayeh, S. M.; Phelan, W. A.; McQueen, T. M.; Armitage, N. P.

    2018-05-01

    Recent experiments have uncovered evidence of low energy excitations in the bulk of SmB6 that are perhaps associated with unconventional quasiparticles, bringing into question whether this Kondo "insulator" is truly insulating in the bulk. Recently, we demonstrated that SmB6 possesses significant in-gap bulk ac conduction far in excess of typical disordered semiconductors. Whether such conduction is an intrinsic feature of SmB6, suggesting the formation of an exotic state, or residual conduction from impurities continues to be a topic of debate. Here, we further examine the origin of the ac optical conductivity of SmB6 in light of recent experimental and theoretical developments. The optical conductivity of SmB6 is shown to possess distinct regimes of either dominant free carrier or localized response contributions. The free carrier response is found to be in good qualitative agreement with previous literature, although quantitative differences are revealed and discussed. The localized response, which dominates at the lowest temperatures, is analyzed in the context of models of either in-gap impurity states or an exotic neutral Fermi surface. The charge density or effective mass of this low temperature in-gap conductivity is extracted through a conductivity sum rule analysis and found to be in general alignment with both models in the appropriate limits. Our results shed further light on the nature of the in-gap states of SmB6.

  16. Modelling and Analysis of Radial Flux Surface Mounted Direct-Driven PMSG in Small Scale Wind Turbine

    Directory of Open Access Journals (Sweden)

    Theint Zar Htet

    2017-11-01

    Full Text Available This paper presents the modelling and analysis of permanent magnet synchronous generator (PMSG which are used in direct driven small scale wind turbines. The 3 kW PM generator which is driven directly without gear system is analyzed by Ansoft Maxwell 2D RMxprt. The performance analysis of generator includes the cogging torque in two teeth, induced coil voltages under load, winding current under load, airgap flux density distribution and so on. The modelling analysis is based on the 2D finite element techniques. In an electrical machine, an accurate determination of the geometry parameters is a vital role. The proper performance results of 3kW PMSG in small scale wind turbine can be seen in this paper.

  17. Atomic layer deposition of ruthenium surface-coating on porous platinum catalysts for high-performance direct ethanol solid oxide fuel cells

    Science.gov (United States)

    Jeong, Heon Jae; Kim, Jun Woo; Jang, Dong Young; Shim, Joon Hyung

    2015-09-01

    Pt-Ru bi-metallic catalysts are synthesized by atomic layer deposition (ALD) of Ru surface-coating on sputtered Pt mesh. The catalysts are evaluated in direct ethanol solid oxide fuel cells (DESOFCs) in the temperature range of 300-500 °C. Island-growth of the ALD Ru coating is confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy (XPS) analyses. The performance of the DESOFCs is evaluated based on the current-voltage output and electrochemical impedance spectroscopy. Genuine reduction of the polarization impedance, and enhanced power output with improved surface kinetics are achieved with the optimized ALD Ru surface-coating compared to bare Pt. The chemical composition of the Pt/ALD Ru electrode surface after fuel cell operation is analyzed via XPS. Enhanced cell performance is clearly achieved, attributed to the effective Pt/ALD Ru bi-metallic catalysis, including oxidation of Cdbnd O by Ru, and de-protonation of ethanol and cleavage of C-C bonds by Pt, as supported by surface morphology analysis which confirms formation of a large amount of carbon on bare Pt after the ethanol-fuel-cell test.

  18. The Effect of Muscle Fiber Direction on the Cut Surface Angle of Frozen Fish Muscular Tissue Cut by Bending Force

    OpenAIRE

    岡本, 清; 羽倉, 義雄; 鈴木, 寛一; 久保田, 清

    1996-01-01

    We have proposed a new cutting method named "Cryo-cutting" for frozen foodstuffs by applying a bending force instead of conventional cutting methods with band saw. This paper investigated the effect of muscle fiber angle (θf) to cut surface angle (θs) of frozen tuna muscular tissue at -70, -100 and -130°C for the purpose of evaluating the applicability of the cryo-cutting method to frozen fishes. The results were as follows : (1) There were two typical cutting patterns ("across the muscle fib...

  19. Direct Surface and Droplet Microsampling for Electrospray Ionization Mass Spectrometry Analysis with an Integrated Dual-Probe Microfluidic Chip

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cong-Min [Institute of Microanalytical; Zhu, Ying [Institute of Microanalytical; Jin, Di-Qiong [Institute of Microanalytical; Kelly, Ryan T. [Environmental; Fang, Qun [Institute of Microanalytical

    2017-08-15

    Ambient mass spectrometry (MS) has revolutionized the way of MS analysis and broadened its application in various fields. This paper describes the use of microfluidic techniques to simplify the setup and improve the functions of ambient MS by integrating the sampling probe, electrospray emitter probe, and online mixer on a single glass microchip. Two types of sampling probes, including a parallel-channel probe and a U-shaped channel probe, were designed for dryspot and liquid-phase droplet samples, respectively. We demonstrated that the microfabrication techniques not only enhanced the capability of ambient MS methods in analysis of dry-spot samples on various surfaces, but also enabled new applications in the analysis of nanoliter-scale chemical reactions in an array of droplets. The versatility of the microchip-based ambient MS method was demonstrated in multiple different applications including evaluation of residual pesticide on fruit surfaces, sensitive analysis of low-ionizable analytes using postsampling derivatization, and high-throughput screening of Ugi-type multicomponent reactions.

  20. Hirshfeld surface analyses and crystal structures of supramolecular self-assembly thiourea derivatives directed by non-covalent interactions

    Science.gov (United States)

    Gumus, Ilkay; Solmaz, Ummuhan; Binzet, Gun; Keskin, Ebru; Arslan, Birdal; Arslan, Hakan

    2018-04-01

    The novel N-(bis(3,5-dimethoxybenzyl)carbamothioyl)-4-R-benzamide (R: H, Cl, CH3 and OCH3) compounds have been synthesized and characterized by FT-IR, 1H NMR and 13C NMR spectroscopy. Their crystal structures were also determined by single-crystal X-ray diffraction studies. Hirshfeld surfaces analysis and their associated two dimensional fingerprint plots of compounds were used as theoretical approach to assess driving force for crystal structure formation via the intermolecular interactions in the crystal lattices of synthesized compounds. The study of X-ray single crystal diffraction and Hirshfeld surfaces analysis of the prepared compounds shows that hydrogen bonding and other weaker interactions such as Nsbnd H⋯S, weak Csbnd H⋯S, Csbnd H⋯O, Csbnd H⋯N and Csbnd H···π intermolecular interactions and π-π stacking, among molecules of synthesized compounds participate in a cooperative way to stabilize the supramolecular structures.

  1. A polygon-surface reference Korean male phantom (PSRK-Man) and its direct implementation in Geant4 Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Hyeong; Jeong, Jong Hwi [Department of Nuclear Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Bolch, Wesley E [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Cho, Kun-Woo [Korea Institute of Nuclear Safety, 19 Guseong-dong, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Hwang, Sung Bae, E-mail: chkim@hanyang.ac.kr [Department of Physical Therapy, Kyungbuk College, Hyucheon 2-dong, Yeongju-si, Gyeongbuk 750-712 (Korea, Republic of)

    2011-05-21

    Even though the hybrid phantom embodies both the anatomic reality of voxel phantoms and the deformability of stylized phantoms, it must be voxelized to be used in a Monte Carlo code for dose calculation or some imaging simulation, which incurs the inherent limitations of voxel phantoms. In the present study, a voxel phantom named VKH-Man (Visible Korean Human-Man), was converted to a polygon-surface phantom (PSRK-Man, Polygon-Surface Reference Korean-Man), which was then adjusted to the Reference Korean data. Subsequently, the PSRK-Man polygon phantom was directly, without any voxelization process, implemented in the Geant4 Monte Carlo code for dose calculations. The calculated dose values and computation time were then compared with those of HDRK-Man (High Definition Reference Korean-Man), a corresponding voxel phantom adjusted to the same Reference Korean data from the same VKH-Man voxel phantom. Our results showed that the calculated dose values of the PSRK-Man surface phantom agreed well with those of the HDRK-Man voxel phantom. The calculation speed for the PSRK-Man polygon phantom though was 70-150 times slower than that of the HDRK-Man voxel phantom; that speed, however, could be acceptable in some applications, in that direct use of the surface phantom PSRK-Man in Geant4 does not require a separate voxelization process. Computing speed can be enhanced, in future, either by optimizing the Monte Carlo transport kernel for the polygon surfaces or by using modern computing technologies such as grid computing and general-purpose computing on graphics processing units programming.

  2. A polygon-surface reference Korean male phantom (PSRK-Man) and its direct implementation in Geant4 Monte Carlo simulation

    International Nuclear Information System (INIS)

    Kim, Chan Hyeong; Jeong, Jong Hwi; Bolch, Wesley E; Cho, Kun-Woo; Hwang, Sung Bae

    2011-01-01

    Even though the hybrid phantom embodies both the anatomic reality of voxel phantoms and the deformability of stylized phantoms, it must be voxelized to be used in a Monte Carlo code for dose calculation or some imaging simulation, which incurs the inherent limitations of voxel phantoms. In the present study, a voxel phantom named VKH-Man (Visible Korean Human-Man), was converted to a polygon-surface phantom (PSRK-Man, Polygon-Surface Reference Korean-Man), which was then adjusted to the Reference Korean data. Subsequently, the PSRK-Man polygon phantom was directly, without any voxelization process, implemented in the Geant4 Monte Carlo code for dose calculations. The calculated dose values and computation time were then compared with those of HDRK-Man (High Definition Reference Korean-Man), a corresponding voxel phantom adjusted to the same Reference Korean data from the same VKH-Man voxel phantom. Our results showed that the calculated dose values of the PSRK-Man surface phantom agreed well with those of the HDRK-Man voxel phantom. The calculation speed for the PSRK-Man polygon phantom though was 70-150 times slower than that of the HDRK-Man voxel phantom; that speed, however, could be acceptable in some applications, in that direct use of the surface phantom PSRK-Man in Geant4 does not require a separate voxelization process. Computing speed can be enhanced, in future, either by optimizing the Monte Carlo transport kernel for the polygon surfaces or by using modern computing technologies such as grid computing and general-purpose computing on graphics processing units programming.

  3. Prospective Qualitative and Quantitative Analysis of Real-Time Peer Review Quality Assurance Rounds Incorporating Direct Physical Examination for Head and Neck Cancer Radiation Therapy.

    Science.gov (United States)

    Cardenas, Carlos E; Mohamed, Abdallah S R; Tao, Randa; Wong, Andrew J R; Awan, Mussadiq J; Kuruvila, Shirly; Aristophanous, Michalis; Gunn, G Brandon; Phan, Jack; Beadle, Beth M; Frank, Steven J; Garden, Adam S; Morrison, William H; Fuller, Clifton D; Rosenthal, David I

    2017-07-01

    Our department has a long-established comprehensive quality assurance (QA) planning clinic for patients undergoing radiation therapy (RT) for head and neck cancer. Our aim is to assess the impact of a real-time peer review QA process on the quantitative and qualitative radiation therapy plan changes in the era of intensity modulated RT (IMRT). Prospective data for 85 patients undergoing head and neck IMRT who presented at a biweekly QA clinic after simulation and contouring were collected. A standard data collection form was used to document alterations made during this process. The original pre-QA clinical target volumes (CTVs) approved by the treating-attending physicians were saved before QA and compared with post-QA consensus CTVs. Qualitative assessment was done according to predefined criteria. Dice similarity coefficients (DSC) and other volume overlap metrics were calculated for each CTV level and were used for quantitative comparison. Changes are categorized as major, minor, and trivial according to the degree of overlap. Patterns of failure were analyzed and correlated to plan changes. All 85 patients were examined by at least 1 head and neck subspecialist radiation oncologist who was not the treating-attending physician; 80 (94%) were examined by ≥3 faculty members. New clinical findings on physical examination were found in 12 patients (14%) leading to major plan changes. Quantitative DSC analysis revealed significantly better agreement in CTV1 (0.94 ± 0.10) contours than in CTV2 (0.82 ± 0.25) and CTV3 (0.86 ± 0.2) contours (P=.0002 and P=.03, respectively; matched-pair Wilcoxon test). The experience of the treating-attending radiation oncologist significantly affected DSC values when all CTV levels were considered (P=.012; matched-pair Wilcoxon text). After a median follow-up time of 38 months, only 10 patients (12%) had local recurrence, regional recurrence, or both, mostly in central high-dose areas. Comprehensive peer review planning

  4. Covalent co-immobilization of heparin/laminin complex that with different concentration ratio on titanium surface for selectively direction of platelets and vascular cells behavior

    International Nuclear Information System (INIS)

    Wang, Jian; Chen, Yuan; Liu, Tao; Wang, Xue; Liu, Yang; Wang, Yuan; Chen, Junying; Huang, Nan

    2014-01-01

    , the biological behavior of platelets, ECs, EPCs and SMCs could be selectively directed. We suggested that this article provided a potential method to construct an adequate platform on a stent surface for accelerate endothelialization with low side effects

  5. Research on the Effects of Process Parameters on Surface Roughness in Wet-Activated Silicon Direct Bonding Base on Orthogonal Experiments

    Directory of Open Access Journals (Sweden)

    Lei NIE

    2015-11-01

    Full Text Available Surface roughness is a very important index in silicon direct bonding and it is affected by processing parameters in the wet-activated process. These parameters include the concentration of activation solution, holding time and treatment temperature. The effects of these parameters were investigated by means of orthogonal experiments. In order to analyze the wafer roughness more accurately, the bear ratio of the surface was used as the evaluation index. From the results of the experiments, it could be concluded that the concentration of the activation solution affected the roughness directly and the higher the concentration, the lower the roughness. Holding time did not affect the roughness as acutely as that of the concentration, but a reduced activation time decreased the roughness perceptibly. It was also discovered that the treatment temperature had a weak correlation with the surface roughness. Based on these conclusions, the parameters of concentration, temperature and holding time were optimized respectively as NH4OH:H2O2=1:1 (without water, 70 °C and 5 min. The results of bonding experiments proved the validity of the conclusions of orthogonal experiments.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9711

  6. Evaluation of turbulent transport and flame surface dissipation using direct numerical simulation of turbulent combustion; Evaluation des termes de transport et de dissipation de surface de flamme par simulation numerique directe de la combustion turbulente

    Energy Technology Data Exchange (ETDEWEB)

    Boughanem, H.

    1998-03-24

    The assumption of gradient transport for the mean reaction progress variable has a limited domain of validity in premixed turbulent combustion. The existence of two turbulent transport regimes, gradient and counter-gradient, is demonstrated in the present work using Direct Numerical Simulations (DNS) of plane flame configurations. The DNS data base describes the influence of the heat release factor, of the turbulence-to-flame velocity ratio, and of an external pressure gradient. The simulations reveal a strong correlation between the regime of turbulent transport and the turbulent flame speed and turbulent flame thickness. These effects re not well described by current turbulent combustion models. A conditional approach `fresh gases / burnt gases` is proposed to overcome these difficulties. Furthermore, he development of flame instabilities in turbulent configurations is also observed in the simulations. A criterion is derived that determines the domain of occurrence of these instabilities (Darrieus- Landau instabilities, Rayleigh- Taylor instabilities, thermo-diffusive instabilities). This criterion suggests that the domain of occurrence of flame instabilities is not limited to small Reynolds numbers. (author) 98 refs.

  7. Application of Fourier elastodynamics to direct and inverse problems for the scattering of elastic waves from flaws near surfaces

    International Nuclear Information System (INIS)

    Richardson, J.M.; Fertig, K.W. Jr.

    1983-01-01

    In order to inspect flaws which lie too close to the surface a Fourier elastodynamic formalism is proposed which enables one to decompose the elastodynamic system into separately charterizable parts by means of planes perpendicular to the z-axis. The process can be represented by a generalized transfer function relating the near-field scattered waves to the waves incident on a slab of material containing the flaw. The Fourier elastodynamics are applied to the characterization of the total scattering process involving a flaw at various distances from a plastic-water interface. An abbreviated discussion of Fourier elastodynamics is presented, and the results specialized to the case of spherical voids and inclusions bear an interface. Finally, the computational results for several ranges of temporal frequency and for a sequence of values of the distance from the flaw center to the interface are discussed

  8. Direct identification of on-bead peptides using surface-enhanced Raman spectroscopic barcoding system for high-throughput bioanalysis.

    Science.gov (United States)

    Kang, Homan; Jeong, Sinyoung; Koh, Yul; Geun Cha, Myeong; Yang, Jin-Kyoung; Kyeong, San; Kim, Jaehi; Kwak, Seon-Yeong; Chang, Hye-Jin; Lee, Hyunmi; Jeong, Cheolhwan; Kim, Jong-Ho; Jun, Bong-Hyun; Kim, Yong-Kweon; Hong Jeong, Dae; Lee, Yoon-Sik

    2015-05-28

    Recently, preparation and screening of compound libraries remain one of the most challenging tasks in drug discovery, biomarker detection, and biomolecular profiling processes. So far, several distinct encoding/decoding methods such as chemical encoding, graphical encoding, and optical encoding have been reported to identify those libraries. In this paper, a simple and efficient surface-enhanced Raman spectroscopic (SERS) barcoding method using highly sensitive SERS nanoparticles (SERS ID) is presented. The 44 kinds of SERS IDs were able to generate simple codes and could possibly generate more than one million kinds of codes by incorporating combinations of different SERS IDs. The barcoding method exhibited high stability and reliability under bioassay conditions. The SERS ID encoding based screening platform can identify the peptide ligand on the bead and also quantify its binding affinity for specific protein. We believe that our SERS barcoding technology is a promising method in the screening of one-bead-one-compound (OBOC) libraries for drug discovery.

  9. Examining acute bi-directional relationships between affect, physical feeling states, and physical activity in free-living situations using electronic ecological momentary assessment.

    Science.gov (United States)

    Liao, Yue; Chou, Chih-Ping; Huh, Jimi; Leventhal, Adam; Dunton, Genevieve

    2017-06-01

    Current knowledge about the relationship of physical activity with acute affective and physical feeling states is informed largely by lab-based studies, which have limited generalizability to the natural ecology. This study used ecological momentary assessment to assess subjective affective and physical feeling states in free-living settings across 4 days from 110 non-physically active adults (Age M = 40.4, SD = 9.7). Light physical activity (LPA) and moderate-to-vigorous physical activity (MVPA) were measured objectively by an accelerometer. Multilevel modeling was used to test the bi-directional associations between affective and physical feeling states and LPA/MVPA minutes. Higher positive affect, lower negative affect and fatigue were associated with more MVPA over the subsequent 15 min, while higher negative affect and energy were associated with more LPA over the subsequent 15 and 30 min. Additionally, more LPA and MVPA were associated with feeling more energetic over the subsequent 15 and 30 min, and more LPA was additionally associated with feeling more negative and less tired over the subsequent 15 and 30 min. Positive and negative affective states might serve as antecedents to but not consequences of MVPA in adults' daily lives. Changes in LPA may be predicted and followed by negative affective states. Physical feeling states appear to lead up to and follow changes in both LPA and MVPA.

  10. The effect of insulated combustion chamber surfaces on direct-injected diesel engine performance, emissions, and combustion

    Science.gov (United States)

    Dickey, Daniel W.; Vinyard, Shannon; Keribar, Rifat

    1988-01-01

    The combustion chamber of a single-cylinder, direct-injected diesel engine was insulated with ceramic coatings to determine the effect of low heat rejection (LHR) operation on engine performance, emissions, and combustion. In comparison to the baseline cooled engine, the LHR engine had lower thermal efficiency, with higher smoke, particulate, and full load carbon monoxide emissions. The unburned hydrocarbon emissions were reduced across the load range. The nitrous oxide emissions increased at some part-load conditions and were reduced slightly at full loads. The poor LHR engine performance was attributed to degraded combustion characterized by less premixed burning, lower heat release rates, and longer combustion duration compared to the baseline cooled engine.

  11. Ultrasensitive Direct Quantification of Nucleobase Modifications in DNA by Surface-Enhanced Raman Scattering: The Case of Cytosine.

    Science.gov (United States)

    Morla-Folch, Judit; Xie, Hai-nan; Gisbert-Quilis, Patricia; Gómez-de Pedro, Sara; Pazos-Perez, Nicolas; Alvarez-Puebla, Ramon A; Guerrini, Luca

    2015-11-09

    Recognition of chemical modifications in canonical nucleobases of nucleic acids is of key importance since such modified variants act as different genetic encoders, introducing variability in the biological information contained in DNA. Herein, we demonstrate the feasibility of direct SERS in combination with chemometrics and microfluidics for the identification and relative quantification of 4 different cytosine modifications in both single- and double-stranded DNA. The minute amount of DNA required per measurement, in the sub-nanogram regime, removes the necessity of pre-amplification or enrichment steps (which are also potential sources of artificial DNA damages). These findings show great potentials for the development of fast, low-cost and high-throughput screening analytical devices capable of detecting known and unknown modifications in nucleic acids (DNA and RNA) opening new windows of activity in several fields such as biology, medicine and forensic sciences. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Full-Scale Fatigue Testing of a Wind Turbine Blade in Flapwise Direction and Examining the Effect of Crack Propagation on the Blade Performance

    Directory of Open Access Journals (Sweden)

    Othman Al-Khudairi

    2017-10-01

    Full Text Available In this paper, the sensitivity of the structural integrity of wind turbine blades to debonding of the shear web from the spar cap was investigated. In this regard, modal analysis, static and fatigue testing were performed on a 45.7 m blade for three states of the blade: (i as received blade (ii when a crack of 200 mm was introduced between the web and the spar cap and (iii when the crack was extended to 1000 mm. Calibration pull-tests for all three states of the blade were performed to obtain the strain-bending moment relationship of the blade according to the estimated target bending moment (BM which the blade is expected to experience in its service life. The resultant data was used to apply appropriate load in the fatigue tests. The blade natural frequencies in flapwise and edgewise directions over a range of frequency domain were found by modal testing for all three states of the blade. The blade first natural frequency for each state was used for the flapwise fatigue tests. These were performed in accordance with technical specification IEC TS 61400-23. The fatigue results showed that, for a 200 mm crack between the web and spar cap at 9 m from the blade root, the crack did not propagate at 50% of the target BM up to 62,110 cycles. However, when the load was increased to 70% of target BM, some damages were detected on the pressure side of the blade. When the 200 mm crack was extended to 1000 mm, the crack began to propagate when the applied load exceeded 100% of target BM and the blade experienced delaminations, adhesive joint failure, compression failure and sandwich core failure.

  13. An Examination of the Self-directed Online Leadership Learning Choices of Public Health Professionals: The Maternal and Child Health Public Health Leadership Institute Experience.

    Science.gov (United States)

    Fernandez, Claudia S P; Noble, Cheryl C; Jensen, Elizabeth T

    To assess the self-selected asynchronous leadership module-based learning choices of public health professionals participating in the Maternal and Child Health Public Health Leadership Institute (MCH PHLI). Online module completion and evaluation data were used to determine the topics most utilized by the Fellows; whether the topics and mode of training were acceptable, relevant, and practical; and whether participant characteristics explained any usage patterns. A total of 109 enrolled Fellows in the MCH PHLI program. Module frequency of selection by Fellows; Fellows' rating scores in regard to relevance, practicality, and acceptability of module topics. All program titles were highly rated. The 5 most frequently selected module topics were employee engagement (87.2%), talent acquisition strategies (84.4%), employee motivation (79.8%), emotional intelligence (78.9%), and workforce development strategies (68.8%). The least accessed topics focused on cultural competence (15.6%), social marketing (25.7%), effective communication and advocacy (25.7%), family partnerships (25.9%), and creating learning organizations (31.2%). All module topics provided were rated as relevant, practical, and acceptable to these public health leaders. Self-directed computer-based learning was rated strongly by the MCH public health leaders in this study. Such an approach can be used to customize training to individual needs and interests. These findings suggest that inclusion of skills that enable public health leaders to effectively work with and through others was of core interest in the MCH PHLI. The finding of higher usage of topics related to workforce management can provide guidance for those developing leadership development programs for maternal and child health professionals. In addition, leadership needs and interests should be assessed regularly to ensure that competency-based leadership development guidelines are adapting to the evolving and complex challenges faced by leaders

  14. Full-Scale Fatigue Testing of a Wind Turbine Blade in Flapwise Direction and Examining the Effect of Crack Propagation on the Blade Performance.

    Science.gov (United States)

    Al-Khudairi, Othman; Hadavinia, Homayoun; Little, Christian; Gillmore, Gavin; Greaves, Peter; Dyer, Kirsten

    2017-10-03

    In this paper, the sensitivity of the structural integrity of wind turbine blades to debonding of the shear web from the spar cap was investigated. In this regard, modal analysis, static and fatigue testing were performed on a 45.7 m blade for three states of the blade: (i) as received blade (ii) when a crack of 200 mm was introduced between the web and the spar cap and (iii) when the crack was extended to 1000 mm. Calibration pull-tests for all three states of the blade were performed to obtain the strain-bending moment relationship of the blade according to the estimated target bending moment (BM) which the blade is expected to experience in its service life. The resultant data was used to apply appropriate load in the fatigue tests. The blade natural frequencies in flapwise and edgewise directions over a range of frequency domain were found by modal testing for all three states of the blade. The blade first natural frequency for each state was used for the flapwise fatigue tests. These were performed in accordance with technical specification IEC TS 61400-23. The fatigue results showed that, for a 200 mm crack between the web and spar cap at 9 m from the blade root, the crack did not propagate at 50% of the target BM up to 62,110 cycles. However, when the load was increased to 70% of target BM, some damages were detected on the pressure side of the blade. When the 200 mm crack was extended to 1000 mm, the crack began to propagate when the applied load exceeded 100% of target BM and the blade experienced delaminations, adhesive joint failure, compression failure and sandwich core failure.

  15. Defining the Magnitude: Patterns, Regularities and Direct TOA-Surface Flux Relationships in the 15-Year Long CERES Satellite Data — Observations, Model and Theory

    Science.gov (United States)

    Zagoni, M.

    2017-12-01

    Over the past fifteen years, the NASA Clouds and the Earth's Radiant Energy System (CERES) satellite mission has provided the scientific community with the most reliable Earth radiation budget data. This presentation offers quantitative assessment of the published CERES Energy Balanced and Filled (EBAF) Edition 2.8 and Edition 4.0 data products, and reveals several internal patterns, ratios and regularities within the annual global mean flux components of the all-sky and clear-sky surface and atmospheric energy budgets. The found patterns, among others, include: (i) direct relationships between the top-of-atmosphere (TOA) radiative and surface radiative and non-radiative fluxes (contradicting the expectation that TOA and surface fluxes are physically decoupled); (ii) integer ratios and relationships between the absorbed and emitted surface and atmospheric energy flow elements; and (iii) definite connections among the clear-sky and the all-sky shortwave, longwave and non-radiative (turbulent) flux elements and the corresponding greenhouse effect. Comparison between the EBAF Ed2.8 and Ed4.0 SFC and TOA data products and trend analyses of the normalized clear-sky and all-sky greenhouse factors are presented. Longwave cloud radiative effect (LW CRE) proved to be playing a principal role in organizing the found numerical patterns in the surface and atmospheric energy flow components. All of the revealed structures are quantitatively valid within the one-sigma range of uncertainty of the involved individual flux elements. This presentation offers a conceptual framework to interpret the found relationships and shows how the observed CERES fluxes can be deduced from this proposed physical model. An important conclusion drawn from our analysis is that the internal atmospheric and surface energy flow system forms a definite structure and seems to be more constrained to the incoming solar energy than previously thought.

  16. Effects of focused ion beam milling on the compressive behavior of directionally solidified micro-pillars and the nanoindentation response of an electro-polished surface

    International Nuclear Information System (INIS)

    Shim, Sang Hoon; Bei, Hongbin; Miller, Michael K; Pharr, George Mathews; George, Easo P

    2009-01-01

    Focused ion beam (FIB) milling is the typical way in which micro-pillars are fabricated to study small-scale plasticity and size effects in uniaxial compression. However, FIB milling can introduce defects into the milled pillars. To investigate the effects of FIB damage on mechanical behavior, we tested Mo-alloy micro-pillars that were FIB milled following directional solidification, and compared their compressive response to pillars that were not FIB milled. We also FIB milled at glancing incidence a Mo-alloy single-crystal surface, and compared its nanoindentation response to an electro-polished surface of the same crystal. Consequences for the interpretation of data obtained from FIB milled micro-pillars are discussed

  17. Scanning electron microscopy (SEM) and X-ray dispersive spectrometry evaluation of direct laser metal sintering surface and human bone interface: a case series.

    Science.gov (United States)

    Mangano, Carlo; Piattelli, Adriano; Raspanti, Mario; Mangano, Francesco; Cassoni, Alessandra; Iezzi, Giovanna; Shibli, Jamil Awad

    2011-01-01

    Recent studies have shown that direct laser metal sintering (DLMS) produces structures with complex geometry and consequently that allow better osteoconductive properties. The aim of this patient report was to evaluate the early bone response to DLMS implant surface retrieved from human jaws. Four experimental DLMS implants were inserted in the posterior mandible of four patients during conventional dental implant surgery. After 8 weeks, the micro-implants and the surrounding tissue were removed and prepared for scanning electron microscopy (SEM) and histomorphometric analysis to evaluate the bone-implant interface. The SEM and EDX evaluations showed a newly formed tissue composed of calcium and phosphorus. The bone-to-implant contact presented a mean of 60.5 ± 11.6%. Within the limits of this patient report, data suggest that the DLMS surfaces presented a close contact with the human bone after a healing period of 8 weeks.

  18. An examination of the effects of subthalamic nucleus inhibition or μ-opioid receptor stimulation on food-directed motivation in the non-deprived rat

    Science.gov (United States)

    Pratt, Wayne E.; Choi, Eugene; Guy, Elizabeth G.

    2012-01-01

    The subthalamic nucleus (STN) serves important functions in regulating movement, cognition, and motivation and is connected with cortical and basal ganglia circuits that process reward and reinforcement. In order to further examine the role of the STN on motivation toward food in non-deprived rats, these experiments studied the effects of pharmacological inhibition or μ-opioid receptor stimulation of the STN on the 2-hr intake of a sweetened fat diet, the amount of work exerted to earn sucrose on a progressive ratio 2 (PR-2) schedule of reinforcement, and performance on a differential reinforcement of low-rate responding (DRL) schedule for sucrose reward. Separate behavioral groups (N = 6–9) were tested following bilateral inhibition of the STN with the GABAA receptor agonist muscimol (at 0–5 ng/0.5 μl/side) or following μ-opioid receptor stimulation with the agonist D-Ala2, N-MePhe4, Gly-ol-enkephalin (DAMGO; at 0, 0.025 or 0.25 μg/0.5 μl/side). Although STN inhibition increased ambulatory behavior during 2-hr feeding sessions, it did not significantly alter intake of the sweetened fat diet. STN inhibition also did not affect the breakpoint for sucrose pellets during a 1-hr PR-2 reinforcement schedule or impact the number of reinforcers earned on a 1-hr DRL-20 sec reinforcement schedule in non-deprived rats. In contrast, STN μ-opioid receptor stimulation significantly increased feeding on the palatable diet and reduced the reinforcers earned on a DRL-20 schedule, although DAMGO microinfusions had no effect on PR-2 performance. These data suggest that STN inhibition does not enhance incentive motivation for food in the absence of food restriction and that STN μ-opioid receptors play an important and unique role in motivational processes. PMID:22391117

  19. High-resolution computer-generated reflection holograms with three-dimensional effects written directly on a silicon surface by a femtosecond laser.

    Science.gov (United States)

    Wædegaard, Kristian J; Balling, Peter

    2011-02-14

    An infrared femtosecond laser has been used to write computer-generated holograms directly on a silicon surface. The high resolution offered by short-pulse laser ablation is employed to write highly detailed holograms with resolution up to 111 kpixels/mm2. It is demonstrated how three-dimensional effects can be realized in computer-generated holograms. Three-dimensional effects are visualized as a relative motion between different parts of the holographic reconstruction, when the hologram is moved relative to the reconstructing laser beam. Potential security applications are briefly discussed.

  20. X-ray photoelectron spectroscopy studies of nitridation on 4H-SiC (0001) surface by direct nitrogen atomic source

    International Nuclear Information System (INIS)

    Chai, J. W.; Pan, J. S.; Zhang, Z.; Wang, S. J.; Chen, Q.; Huan, C. H. A.

    2008-01-01

    A Si 3 N 4 passivation layer has been successfully grown on the 4H-SiC (0001) surface by direct atomic source nitridation at various substrate temperatures. In situ x-ray photoelectron spectroscopy measurements show that higher substrate temperature leads to higher nitridation rate and good crystallinity of the passivation layer. A thin oxynitride layer on the top of the Si 3 N 4 was observed due to the residual O in the vacuum system, but was decomposed during annealing. In the meantime, excess C was found to be effectively removed by the reactive atomic N source

  1. Recovery of Vanadium from Magnetite Ore Using Direct Acid Leaching: Optimization of Parameters by Plackett-Burman and Response Surface Methodologies

    Science.gov (United States)

    Nejad, Davood Ghoddocy; Khanchi, Ali Reza; Taghizadeh, Majid

    2018-06-01

    Recovery of vanadium from magnetite ore by direct acid leaching is discussed. The proposed process, which employs a mixture of nitric and sulfuric acids, avoids pyrometallurgical treatments since such treatment consumes a high amount of energy. To determine the optimum conditions of vanadium recovery, the leaching process is optimized through Plackett-Burman (P-B) design and response surface methodology (RSM). In this respect, temperature (80-95°C), liquid to solid ratio (L/S) (3-10 mL g-1), sulfuric acid concentration (3-6 M), nitric acid concentration (5-10 vol.%) and time (4-8 h) are considered as the independent variables. According to the P-B approach, temperature and acid concentrations are, respectively, the most effective parameters in the leaching process. These parameters are optimized using RSM to maximize recovery of vanadium by direct acid leaching. In this way, 86.7% of vanadium can be extracted from magnetic ore.

  2. Analysis of Chloroquine and Metabolites Directly from Whole-body Animal Tissue Sections by Liquid Extraction Surface Analysis (LESA) and Tandem Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Parson, Whitney B [ORNL; Koeniger, Stormy L [Abbott Laboratories; Johnson, Robert W [Abbott Laboratories; Erickson, Jamie [Abbott Laboratories; Tian, Yu [Abbott Laboratories; Stedman, Christopher A. [Abbott Laboratories; Schwartz, Annette [Abbott Laboratories; Tarcsa, Edit [Abbott Laboratories; Cole, Roderic [ORNL; Van Berkel, Gary J [ORNL

    2012-01-01

    The rapid and direct analysis of the amount and spatial distribution of exogenous chloroquine and chloroquine metabolites from tissue sections by liquid extraction surface sampling analysis coupled with tandem mass spectrometry (LESA-MS) was demonstrated. LESA-MS results compared well with previously published chloroquine quantification data collected by organ excision, extraction and fluorescent detection. The ability to directly sample and analyze spatially-resolved exogenous molecules from tissue sections with minimal sample preparation and analytical method development has the potential to facilitate the assessment of target tissue penetration of pharmaceutical compounds, to establish pharmacokinetic/pharmacodynamic (PK/PD) relationships, and to complement established pharmacokinetic methods used in the drug discovery process during tissue distribution assessment.

  3. Direct measurements of mean Reynolds stress and ripple roughness in the presence of energetic forcing by surface waves

    Science.gov (United States)

    Scully, Malcolm; Trowbridge, John; Sherwood, Christopher R.; Jones, Katie R.; Traykovski, Peter A.

    2018-01-01

    Direct covariance observations of the mean flow Reynolds stress and sonar images of the seafloor collected on a wave‐exposed inner continental shelf demonstrate that the drag exerted by the seabed on the overlying flow is consistent with boundary layer models for wave‐current interaction, provided that the orientation and anisotropy of the bed roughness are appropriately quantified. Large spatial and temporal variations in drag result from nonequilibrium ripple dynamics, ripple anisotropy, and the orientation of the ripples relative to the current. At a location in coarse sand characterized by large two‐dimensional orbital ripples, the observed drag shows a strong dependence on the relative orientation of the mean current to the ripple crests. At a contrasting location in fine sand, where more isotropic sub‐orbital ripples are observed, the sensitivity of the current to the orientation of the ripples is reduced. Further, at the coarse site under conditions when the currents are parallel to the ripple crests and the wave orbital diameter is smaller than the wavelength of the relic orbital ripples, the flow becomes hydraulically smooth. This transition is not observed at the fine site, where the observed wave orbital diameter is always greater than the wavelength of the observed sub‐orbital ripples. Paradoxically, the dominant along‐shelf flows often experience lower drag at the coarse site than at the fine site, despite the larger ripples, highlighting the complex dynamics controlling drag in wave‐exposed environments with heterogeneous roughness.

  4. Critical Intermediate Structure That Directs the Crystalline Texture and Surface Morphology of Organo-Lead Trihalide Perovskite.

    Science.gov (United States)

    Chia, Hao-Chung; Sheu, Hwo-Shuenn; Hsiao, Yu-Yun; Li, Shao-Sian; Lan, Yi-Kang; Lin, Chung-Yao; Chang, Je-Wei; Kuo, Yen-Chien; Chen, Chia-Hao; Weng, Shih-Chang; Su, Chun-Jen; Su, An-Chung; Chen, Chun-Wei; Jeng, U-Ser

    2017-10-25

    We have identified an often observed yet unresolved intermediate structure in a popular processing with dimethylformamide solutions of lead chloride and methylammonium iodide for perovskite solar cells. With subsecond time-resolved grazing-incidence X-ray scattering and X-ray photoemission spectroscopy, supplemental with ab initio calculation, the resolved intermediate structure (CH 3 NH 3 ) 2 PbI 2 Cl 2 ·CH 3 NH 3 I features two-dimensional (2D) perovskite bilayers of zigzagged lead-halide octahedra and sandwiched CH 3 NH 3 I layers. Such intermediate structure reveals a hidden correlation between the intermediate phase and the composition of the processing solution. Most importantly, the 2D perovskite lattice of the intermediate phase is largely crystallographically aligned with the [110] planes of the three-dimensional perovskite cubic phase; consequently, with sublimation of Cl ions from the organo-lead octahedral terminal corners in prolonged annealing, the zigzagged octahedral layers of the intermediate phase can merge with the intercalated methylammonium iodide layers for templated growth of perovskite crystals. Regulated by annealing temperature and the activation energies of the intermediate and perovskite, deduced from analysis of temperature-dependent structural kinetics, the intermediate phase is found to selectively mature first and then melt along the layering direction for epitaxial conversion into perovskite crystals. The unveiled epitaxial conversion under growth kinetics controls might be general for solution-processed and intermediate-templated perovskite formation.

  5. Catalytic surface radical in dye-decolorizing peroxidase: a computational, spectroscopic and site-directed mutagenesis study

    Science.gov (United States)

    Linde, Dolores; Pogni, Rebecca; Cañellas, Marina; Lucas, Fátima; Guallar, Victor; Baratto, Maria Camilla; Sinicropi, Adalgisa; Sáez-Jiménez, Verónica; Coscolín, Cristina; Romero, Antonio; Medrano, Francisco Javier; Ruiz-Dueñas, Francisco J.; Martínez, Angel T.

    2014-01-01

    Dye-decolorizing peroxidase (DyP) of Auricularia auricula-judae has been expressed in Escherichia coli as a representative of a new DyP family, and subjected to mutagenic, spectroscopic, crystallographic and computational studies. The crystal structure of DyP shows a buried haem cofactor, and surface tryptophan and tyrosine residues potentially involved in long-range electron transfer from bulky dyes. Simulations using PELE (Protein Energy Landscape Exploration) software provided several binding-energy optima for the anthraquinone-type RB19 (Reactive Blue 19) near the above aromatic residues and the haem access-channel. Subsequent QM/MM (quantum mechanics/molecular mechanics) calculations showed a higher tendency of Trp-377 than other exposed haem-neighbouring residues to harbour a catalytic protein radical, and identified the electron-transfer pathway. The existence of such a radical in H2O2-activated DyP was shown by low-temperature EPR, being identified as a mixed tryptophanyl/tyrosyl radical in multifrequency experiments. The signal was dominated by the Trp-377 neutral radical contribution, which disappeared in the W377S variant, and included a tyrosyl contribution assigned to Tyr-337 after analysing the W377S spectra. Kinetics of substrate oxidation by DyP suggests the existence of high- and low-turnover sites. The high-turnover site for oxidation of RB19 (kcat> 200 s−1) and other DyP substrates was assigned to Trp-377 since it was absent from the W377S variant. The low-turnover site/s (RB19 kcat ~20 s−1) could correspond to the haem access-channel, since activity was decreased when the haem channel was occluded by the G169L mutation. If a tyrosine residue is also involved, it will be different from Tyr-337 since all activities are largely unaffected in the Y337S variant. PMID:25495127

  6. Direct numerical simulation of flow over dissimilar, randomly distributed roughness elements: A systematic study on the effect of surface morphology on turbulence

    Science.gov (United States)

    Forooghi, Pourya; Stroh, Alexander; Schlatter, Philipp; Frohnapfel, Bettina

    2018-04-01

    Direct numerical simulations are used to investigate turbulent flow in rough channels, in which topographical parameters of the rough wall are systematically varied at a fixed friction Reynolds number of 500, based on a mean channel half-height h and friction velocity. The utilized roughness generation approach allows independent variation of moments of the surface height probability distribution function [thus root-mean-square (rms) surface height, skewness, and kurtosis], surface mean slope, and standard deviation of the roughness peak sizes. Particular attention is paid to the effect of the parameter Δ defined as the normalized height difference between the highest and lowest roughness peaks. This parameter is used to understand the trends of the investigated flow variables with departure from the idealized case where all roughness elements have the same height (Δ =0 ). All calculations are done in the fully rough regime and for surfaces with high slope (effective slope equal to 0.6-0.9). The rms roughness height is fixed for all cases at 0.045 h and the skewness and kurtosis of the surface height probability density function vary in the ranges -0.33 to 0.67 and 1.9 to 2.6, respectively. The goal of the paper is twofold: first, to investigate the possible effect of topographical parameters on the mean turbulent flow, Reynolds, and dispersive stresses particularly in the vicinity of the roughness crest, and second, to investigate the possibility of using the wall-normal turbulence intensity as a physical parameter for parametrization of the flow. Such a possibility, already suggested for regular roughness in the literature, is here extended to irregular roughness.

  7. Optimizing the conditions for the microwave-assisted direct liquefaction of Ulva prolifera for bio-oil production using response surface methodology

    International Nuclear Information System (INIS)

    Liu, Junhai; Zhuang, Yingbin; Li, Yan; Chen, Limei; Guo, Jingxue; Li, Demao; Ye, Naihao

    2013-01-01

    Microwave-assisted direct liquefaction (MADL) of Ulva prolifera was performed in ethylene glycol (EG) using sulfuric acid (H 2 SO 4 ) as a catalyst. Response Surface Methodology (RSM) based on central composite rotatable design (CCRD) was employed to optimize the conditions of three independent variables (catalyst content, solvent-to-feedstock ratio and temperature) for the liquefaction yield. And the bio-oil was analyzed by elementary analysis, Fourier transform infrared spectroscopic analysis (FT-IR) and gas chromatography–mass spectrometry (GC–MS). The maximum liquefaction yield was 93.17%, which was obtained under a microwave power of 600 W for 30 min at 165 °C with a solvent-to-feedstock ratio of 18.87:1 and 4.93% sulfuric acid. The bio-oil was mainly composed of phthalic acid esters, alkenes and a fatty acid methyl ester with a long chain from C 16 to C 20 . - Highlights: • Ulva prolifera was converted to bio-oil through microwave-assisted direct liquefaction. • Response surface methodology was used to optimize the liquefaction technology. • A maximum liquefaction rate of 93.17 wt% bio-oil was obtained. • The bio-oil was composed of carboxylic acids and esters

  8. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and {beta}-glucosidase

    Energy Technology Data Exchange (ETDEWEB)

    Apiwatanapiwat, Waraporn; Rugthaworn, Prapassorn [Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki (Japan). Post-Harvest Science and Technology Div.; Kasetsart Univ., Bangkok (Thailand). Nanotechnology and Biotechnology Div.; Murata, Yoshinori; Kosugi, Akihiko; Arai, Takamitsu; Mori, Yutaka [Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki (Japan). Post-Harvest Science and Technology Div.; Yamada, Ryosuke; Kondo, Akihiko [Kobe Univ. (Japan). Dept. of Chemical Science and Engineering

    2011-04-15

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying {alpha}-amylase ({alpha}-AM), glucoamylase, endoglucanase, cellobiohydrase, and {beta}-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley {beta}-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes. (orig.)

  9. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase.

    Science.gov (United States)

    Apiwatanapiwat, Waraporn; Murata, Yoshinori; Kosugi, Akihiko; Yamada, Ryosuke; Kondo, Akihiko; Arai, Takamitsu; Rugthaworn, Prapassorn; Mori, Yutaka

    2011-04-01

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying α-amylase (α-AM), glucoamylase, endoglucanase, cellobiohydrase, and β-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley β-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes.

  10. The role of the northward-directed (sub)surface limb of the Atlantic Meridional Overturning Circulation during the 8.2 ka Event

    Science.gov (United States)

    Tegzes, A. D.; Jansen, E.; Telford, R. J.

    2014-02-01

    The so-called "8.2 ka Event" has been widely regarded as a major climate perturbation over the Holocene. It is most readily identifiable in the oxygen-isotope records from Greenland ice cores as an approximately 160 yr-long cold interval between 8250-8090 yr BP. The prevailing view has been that the cooling over Greenland, and potentially over the northern North Atlantic at least, was triggered by the catastrophic final drainage of the Agassiz-Ojibway proglacial lake as part of the remnant Laurentide Ice Sheet collapsed over Hudson Bay at around 8420 ± 80 yr BP. The consequent freshening of surface waters in the northern North Atlantic Ocean and the Nordic Seas resulted in weaker overturning, hence reduced northward heat transport. Here we present proxy records from site JM97-MD95-2011 on the mid-Norwegian Margin indicating a (sharp) decline in the strength of the eastern branch of the Atlantic Inflow into the Nordic Seas immediately following a uniquely large drop in (sub)surface ocean temperatures coeval with the lake outbursts. We propose that the final drainage of Lake Agassiz-Ojibway was accompanied by a major iceberg discharge from Hudson Bay, which resulted in the cooling of the northward-directed northern Gulf Stream-North Atlantic Drift-Norwegian Atlantic Current system. Since our current-strength proxy records from the mid-Norwegian Margin do not evidence an exceptionally strong reduction in the main branch of the Atlantic Inflow into the Nordic Seas at the time, we argue that a chilled northward-directed (sub)surface-current system and an already colder background climate state could be the main factors responsible for the 8.2 ka climate perturbation.

  11. Core-shell magnetite-silica dithiocarbamate-derivatised particles achieve the Water Framework Directive quality criteria for mercury in surface waters.

    Science.gov (United States)

    Lopes, C B; Figueira, P; Tavares, D S; Lin, Z; Daniel-da-Silva, A L; Duarte, A C; Rocha, J; Trindade, T; Pereira, E

    2013-09-01

    The sorption capacity of nanoporous titanosilicate Engelhard titanosilicate number 4 (ETS-4) and silica-coated magnetite particles derivatised with dithiocarbamate groups towards Hg(II) was evaluated and compared in spiked ultra-pure and spiked surface-river water, for different batch factors. In the former, and using a batch factor of 100 m(3)/kg and an initial Hg(II) concentrations matching the maximum allowed concentration in an effluent discharge, both materials achieve Hg(II) uptake efficiencies in excess of 99 % and a residual metal concentration lower than the guideline value for drinking water quality. For the surface-river water and the same initial concentration, the Hg(II) uptake efficiency of magnetite particles is outstanding, achieving the quality criteria established by the Water Framework Directive (concerning Hg concentration in surface waters) using a batch factor of 50 m(3)/kg, while the efficiency of ETS-4 is significantly inferior. The dissimilar sorbents' Hg(II) removal efficiency is attributed to different uptake mechanisms. This study also highlights the importance of assessing the effective capacity of the sorbents under realistic conditions in order to achieve trustable results.

  12. Development of the apparatus for measuring magnetic properties of electrical steel sheets in arbitrary directions under compressive stress normal to their surface

    Directory of Open Access Journals (Sweden)