WorldWideScience

Sample records for direct solar lyman-alpha

  1. Lyman-alpha detector designed for rocket measurements of the direct solar radiation at 121.5 nm

    International Nuclear Information System (INIS)

    Guineva, V.; Tashev, V.; Witt, G.; Gumbel, J.; Khaplanov, M.

    2007-01-01

    Rocket measurements of the direct Lyman-alpha radiation penetrating in the atmosphere were planned during the HotPay I rocket experiment, June 2006, Project ASLAF (Attenuation of the Solar Lyman-Alpha Flux), Andoya Rocket Range (ARR), Norway. The basic goal of ASLAF project was the study of the processes in the summer mesosphere and thermosphere (up to 110 km), at high latitudes using the Lyman-alpha measurements. The resonance transition 2 P- 2 S of the atomic hydrogen (Lyman-alpha emission) is the strongest and most conspicuous feature in the solar EUV spectrum. Due to the favourable circumstance, that the Lyman-alpha wavelength (121.5 nm) coincides with a minimum of the O 2 absorption spectrum, the direct Lyman-alpha radiation penetrates well in the mesosphere. The Lyman-alpha radiation is the basic agent of the NO molecules ionization, thus generating the ionospheric D-layer, and of the water vapour photolysis, being one of the main H 2 O loss processes. The Lyman-alpha radiation transfer depends on the resonance scattering from the hydrogen atoms in the atmosphere and on the O 2 absorption. Since the Lyman-alpha extinction in the atmosphere is a measure for the column density of the oxygen molecules, the atmospheric temperature profile can be calculated thereof. The detector of solar Lyman-alpha radiation was manufactured in the Stara Zagora Department of the Solar-Terrestrial Influences Laboratory (STIL). Its basic part is an ionization chamber, filled in with NO. A 60 V power supply is applied to the chamber. The produced photoelectric current from the sensor is fed to a 2-channels amplifier, providing an analogue signal. The characteristics of the Lyman-alpha detector were studied. It passed successfully all tests and the results showed that the instrument could be used in rocket experiments to measure the Lyman-alpha flux. From the measurements of the detector, the Lyman-alpha vertical profile can be obtained. The forthcoming scientific data analysis will

  2. Variability of the Lyman alpha flux with solar activity

    International Nuclear Information System (INIS)

    Lean, J.L.; Skumanich, A.

    1983-01-01

    A three-component model of the solar chromosphere, developed from ground based observations of the Ca II K chromospheric emission, is used to calculate the variability of the Lyman alpha flux between 1969 and 1980. The Lyman alpha flux at solar minimum is required in the model and is taken as 2.32 x 10 11 photons/cm 2 /s. This value occurred during 1975 as well as in 1976 near the commencement of solar cycle 21. The model predicts that the Lyman alpha flux increases to as much as 5 x 10 11 photons/cm 2 /s at the maximum of the solar cycle. The ratio of the average fluxes for December 1979 (cycle maximum) and July 1976 (cycle minimum) is 1.9. During solar maximum the 27-day solar rotation is shown to cause the Lyman alpha flux to vary by as much as 40% or as little as 5%. The model also shows that the Lyman alpha flux varies over intermediate time periods of 2 to 3 years, as well as over the 11-year sunspot cycle. We conclude that, unlike the sunspot number and the 10.7-cm radio flux, the Lyman alpha flux had a variability that was approximately the same during each of the past three cycles. Lyman alpha fluxes calculated by the model are consistent with measurements of the Lyman alpha flux made by 11 of a total of 14 rocket experiments conducted during the period 1969--1980. The model explains satisfactorily the absolute magnitude, long-term trends, and the cycle variability seen in the Lyman alpha irradiances by the OSO 5 satellite experiment. The 27-day variability observed by the AE-E satellite experiment is well reproduced. However, the magntidue of the AE-E 1 Lyman alpha irradiances are higher than the model calculations by between 40% and 80%. We suggest that the assumed calibration of the AE-E irradiances is in error

  3. Solar minimum Lyman alpha sky background observations from Pioneer Venus orbiter ultraviolet spectrometer - Solar wind latitude variation

    Science.gov (United States)

    Ajello, J. M.

    1990-01-01

    Measurements of interplanetary H I Lyman alpha over a large portion of the celestial sphere were made at the recent solar minimum by the Pioneer Venus orbiter ultraviolet spectrometer. These measurements were performed during a series of spacecraft maneuvers conducted to observe Halley's comet in early 1986. Analysis of these data using a model of the passage of interstellar wind hydrogen through the solar system shows that the rate of charge exchange with solar wind protons is 30 percent less over the solar poles than in the ecliptic. This result is in agreement with a similar experiment performed with Mariner 10 at the previous solar minimum.

  4. An intensity monitor for solar hydrogen Lyman-alpha radiation (TAIYO SXU)

    International Nuclear Information System (INIS)

    Oshio, Takanori; Masuoka, Toshio; Higashino, Ichiro; Watanabe, Norihiko.

    1975-01-01

    The absolute intensity of hydrogen Lyman-alpha (1216A) from the total solar disk is currently monitored by an ion chamber as a part of the satellite mission of TAIYO. The apparatus consists of an ion chamber with a special input control mask and associated electronics. The ion chamber with an MgF 2 window and filled with NO gas is sensitive to a narrow spectral band including the Lα. The special mask serves to keep the angular response of the detector constant at the elevation angle of the sun relative to the plane perpendicular to the spinning axis of the satellite within an error of the order of one percent, when the angle is within +-30 0 . A flux reducer attenuates the incident radiation upon the detector by a factor of 20 to lengthen the life of detector. The associated electronics measures the output current of the ion chamber, holds the maximum value of the output every four-second period and sends it to the telemeter. From the currently observed data, the absolute intensity of the solar Lα is 3.2 x 10 11 photons/cm 2 sec and constant within +-4.2% during the period from 24 February to 31 May, 1975. (auth.)

  5. Clasp/SJ Observation of Time Variations of Lyman-Alpha Emissions in a Solar Active Region

    Science.gov (United States)

    Ishikawa, S.; Kubo, M.; Katsukawa, Y.; Kano, R.; Narukage, N.; Ishikawa, R.; Bando, T.; Winebarger, A.; Kobayashi, K.; Trujillo Bueno, J.; hide

    2016-01-01

    The Chromospheric Lyman-alpha SpectroPolarimeter (CLASP) is a sounding rocket experiment launched on September 3, 2015 to investigate the solar chromosphere, and the slit-jaw (SJ) optical system took Lya images with the high time cadence of 0.6 s. By the CLASP/SJ observation, many time variations in the solar chromosphere with the time scale of region and investigated the short (regions. As the result, we found the regions. On the other hand, the <30 s time variations had no dependency on the temperature of the loop.

  6. Detection of 3-Minute Oscillations in Full-Disk Lyman-alpha Emission During A Solar Flare

    Science.gov (United States)

    Milligan, R. O.; Ireland, J.; Fleck, B.; Hudson, H. S.; Fletcher, L.; Dennis, B. R.

    2017-12-01

    We report the detection of chromospheric 3-minute oscillations in disk-integrated EUV irradiance observations during a solar flare. A wavelet analysis of detrended Lyman-alpha (from GOES/EUVS) and Lyman continuum (from SDO/EVE) emission from the 2011 February 15 X-class flare revealed a 3-minute period present during the flare's main phase. The formation temperature of this emission locates this radiation to the flare's chromospheric footpoints, and similar behaviour is found in the SDO/AIA 1600A and 1700A channels, which are dominated by chromospheric continuum. The implication is that the chromosphere responds dynamically at its acoustic cutoff frequency to an impulsive injection of energy. Since the 3-minute period was not found at hard X-ray energies (50-100 keV) in RHESSI data we can state that this 3-minute oscillation does not depend on the rate of energization of, or energy deposition by, non-thermal electrons. However, a second period of 120 s found in both hard X-ray and chromospheric emission is consistent with episodic electron energization on 2-minute timescales. Our finding on the 3-minute oscillation suggests that chromospheric mechanical energy should be included in the flare energy budget, and the fluctuations in the Lyman-alpha line may influence the composition and dynamics of planetary atmospheres during periods of high activity.

  7. Lyman Alpha Control

    CERN Document Server

    Nielsen, Daniel Stefaniak

    2015-01-01

    This document gives an overview of how to operate the Lyman Alpha Control application written in LabVIEW along with things to watch out for. Overview of the LabVIEW code itself as well as the physical wiring of and connections from/to the NI PCI-6229 DAQ box is also included. The Lyman Alpha Control application is the interface between the ALPHA sequencer and the HighFinesse Wavelength Meter as well as the Lyman Alpha laser setup. The application measures the wavelength of the output light from the Lyman Alpha cavity through the Wavelength Meter. The application can use the Wavelength Meter’s PID capabilities to stabilize the Lyman Alpha laser output as well as switch between up to three frequencies.

  8. Lyman alpha SMM/UVSP absolute calibration and geocoronal correction

    Science.gov (United States)

    Fontenla, Juan M.; Reichmann, Edwin J.

    1987-01-01

    Lyman alpha observations from the Ultraviolet Spectrometer Polarimeter (UVSP) instrument of the Solar Maximum Mission (SMM) spacecraft were analyzed and provide instrumental calibration details. Specific values of the instrument quantum efficiency, Lyman alpha absolute intensity, and correction for geocoronal absorption are presented.

  9. Solar Lyman-Alpha Polarization Observation of the Chromosphere and Transition Region by the Sounding Rocket Experiment CLASP

    Science.gov (United States)

    Narukage, Noriyuki; Kano, Ryohei; Bando, Takamasa; Ishikawa, Ryoko; Kubo, Masahito; Katsukawa, Yukio; Ishikawa, Shinnosuke; Hara, Hiroshi; Suematsu, Yoshinori; Giono, Gabriel; hide

    2015-01-01

    We are planning an international rocket experiment Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is (2015 planned) that Lyman a line (Ly(alpha) line) polarization spectroscopic observations from the sun. The purpose of this experiment, detected with high accuracy of the linear polarization of the Ly(alpha) lines to 0.1% by using a Hanle effect is to measure the magnetic field of the chromosphere-transition layer directly. For polarization photometric accuracy achieved that approx. 0.1% required for CLASP, it is necessary to realize the monitoring device with a high throughput. On the other hand, Ly(alpha) line (vacuum ultraviolet rays) have a sensitive characteristics that is absorbed by the material. We therefore set the optical system of the reflection system (transmission only the wavelength plate), each of the mirrors, subjected to high efficiency of the multilayer coating in accordance with the role. Primary mirror diameter of CLASP is about 30 cm, the amount of heat about 30,000 J is about 5 minutes of observation time is coming mainly in the visible light to the telescope. In addition, total flux of the sun visible light overwhelmingly large and about 200 000 times the Ly(alpha) line wavelength region. Therefore, in terms of thermal management and 0.1% of the photometric measurement accuracy achieved telescope, elimination of the visible light is essential. We therefore, has a high reflectivity (> 50%) in Lya line, visible light is a multilayer coating be kept to a low reflectance (Science was achieved a high throughput as a device for a vacuum ultraviolet ray of the entire system less than 5% (CCD of QE is not included).

  10. Development of Flight Slit-Jaw Optics for Chromospheric Lyman-Alpha SpectroPolarimeter

    Science.gov (United States)

    Kubo, Masahito; Suematsu, Yoshinori; Kano, Ryohei; Bando, Takamasa; Hara, Hirohisa; Narukage, Noriyuki; Katsukawa, Yukio; Ishikawa, Ryoko; Ishikawa, Shin-nosuke; Kobiki, Toshihiko; hide

    2015-01-01

    In sounding rocket experiment CLASP, I have placed a slit a mirror-finished around the focal point of the telescope. The light reflected by the mirror surface surrounding the slit is then imaged in Slit-jaw optical system, to obtain the alpha-ray Lyman secondary image. This image, not only to use the real-time image in rocket flight rocket oriented direction selection, and also used as a scientific data showing the spatial structure of the Lyman alpha emission line intensity distribution and solar chromosphere around the observation area of the polarimetric spectroscope. Slit-jaw optical system is a two off-axis mirror unit part including a parabolic mirror and folding mirror, Lyman alpha transmission filter, the optical system magnification 1x consisting camera. The camera is supplied from the United States, and the other was carried out fabrication and testing in all the Japanese side. Slit-jaw optical system, it is difficult to access the structure, it is necessary to install the low place clearance. Therefore, influence the optical performance, the fine adjustment is necessary optical elements are collectively in the form of the mirror unit. On the other hand, due to the alignment of the solar sensor in the US launch site, must be removed once the Lyman alpha transmission filter holder including a filter has a different part from the mirror unit. In order to make the structure simple, stray light measures Aru to concentrate around Lyman alpha transmission filter. To overcome the difficulties of performing optical alignment in Lyman alpha wavelength absorbed by the atmosphere, it was planned following four steps in order to reduce standing time alignment me. 1: is measured in advance refractive index at Lyman alpha wavelength of Lyman alpha transmission filter (121.567nm), to prepare a visible light Firuwo having the same optical path length in the visible light (630nm). 2: The mirror structure CLASP before mounting unit standing, dummy slit and camera standing

  11. The Lyman alpha reference sample

    DEFF Research Database (Denmark)

    Hayes, M.; Östlin, G.; Schaerer, D.

    2013-01-01

    We report on new imaging observations of the Lyman alpha emission line (Lyα), performed with the Hubble Space Telescope, that comprise the backbone of the Lyman alpha Reference Sample. We present images of 14 starburst galaxies at redshifts 0.028

  12. The solar ionisation rate deduced from Ulysses measurements and its implications to interplanetary Lyman alpha-intensity

    Science.gov (United States)

    Summanen, T.; Kyroelae, E.

    1995-01-01

    We have developed a computer code which can be used to study 3-dimensional and time-dependent effects of the solar cycle on the interplanetary (IP) hydrogen distribution. The code is based on the inverted Monte Carlo simulation. In this work we have modelled the temporal behaviour of the solar ionisation rate. We have assumed that during the most of the time of the solar cycle there is an anisotopic latitudinal structure but right at the solar maximum the anisotropy disappears. The effects of this behaviour will be discussed both in regard to the IP hydrogen distribution and IP Lyman a a-intensity.

  13. Chromospheric Lyman-alpha spectro-polarimeter (CLASP)

    Science.gov (United States)

    Kano, Ryouhei; Bando, Takamasa; Narukage, Noriyuki; Ishikawa, Ryoko; Tsuneta, Saku; Katsukawa, Yukio; Kubo, Masahito; Ishikawa, Shin-nosuke; Hara, Hirohisa; Shimizu, Toshifumi; Suematsu, Yoshinori; Ichimoto, Kiyoshi; Sakao, Taro; Goto, Motoshi; Kato, Yoshiaki; Imada, Shinsuke; Kobayashi, Ken; Holloway, Todd; Winebarger, Amy; Cirtain, Jonathan; De Pontieu, Bart; Casini, Roberto; Trujillo Bueno, Javier; Štepán, Jiří; Manso Sainz, Rafael; Belluzzi, Luca; Asensio Ramos, Andres; Auchère, Frédéric; Carlsson, Mats

    2012-09-01

    One of the biggest challenges in heliophysics is to decipher the magnetic structure of the solar chromosphere. The importance of measuring the chromospheric magnetic field is due to both the key role the chromosphere plays in energizing and structuring the outer solar atmosphere and the inability of extrapolation of photospheric fields to adequately describe this key boundary region. Over the last few years, significant progress has been made in the spectral line formation of UV lines as well as the MHD modeling of the solar atmosphere. It is found that the Hanle effect in the Lyman-alpha line (121.567 nm) is a most promising diagnostic tool for weaker magnetic fields in the chromosphere and transition region. Based on this groundbreaking research, we propose the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) to NASA as a sounding rocket experiment, for making the first measurement of the linear polarization produced by scattering processes and the Hanle effect in the Lyman-alpha line (121.567 nm), and making the first exploration of the magnetic field in the upper chromosphere and transition region of the Sun. The CLASP instrument consists of a Cassegrain telescope, a rotating 1/2-wave plate, a dual-beam spectrograph assembly with a grating working as a beam splitter, and an identical pair of reflective polarization analyzers each equipped with a CCD camera. We propose to launch CLASP in December 2014.

  14. A Sounding Rocket Experiment for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP)

    Science.gov (United States)

    Kubo, M.; Kano, R.; Kobayashi, K.; Bando, T.; Narukage, N.; Ishikawa, R.; Tsuneta, S.; Katsukawa, Y.; Ishikawa, S.; Suematsu, Y.; Hara, H.; Shimizu, T.; Sakao, T.; Ichimoto, K.; Goto, M.; Holloway, T.; Winebarger, A.; Cirtain, J.; De Pontieu, B.; Casini, R.; Auchère, F.; Trujillo Bueno, J.; Manso Sainz, R.; Belluzzi, L.; Asensio Ramos, A.; Štěpán, J.; Carlsson, M.

    2014-10-01

    A sounding-rocket experiment called the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is presently under development to measure the linear polarization profiles in the hydrogen Lyman-alpha (Lyα) line at 121.567 nm. CLASP is a vacuum-UV (VUV) spectropolarimeter to aim for first detection of the linear polarizations caused by scattering processes and the Hanle effect in the Lyα line with high accuracy (0.1%). This is a fist step for exploration of magnetic fields in the upper chromosphere and transition region of the Sun. Accurate measurements of the linear polarization signals caused by scattering processes and the Hanle effect in strong UV lines like Lyα are essential to explore with future solar telescopes the strength and structures of the magnetic field in the upper chromosphere and transition region of the Sun. The CLASP proposal has been accepted by NASA in 2012, and the flight is planned in 2015.

  15. The Lyman Alpha Imaging-Monitor Experiment (LAIME) for TESIS/CORONAS-PHOTON

    Science.gov (United States)

    Damé, L.; Koutchmy, S.; Kuzin, S.; Lamy, P.; Malherbe, J.-M.; Noëns, J.-C.

    LAIME the Lyman Alpha Imaging-Monitor Experiment is a remarkably simple no mechanisms and compact 100x100x400 mm full Sun imager to be flown with TESIS on the CORONAS-PHOTON mission launch expected before mid-2008 As such it will be the only true chromospheric imager to be flown in the next years supporting TESIS EUV-XUV imaging SDO and the Belgian LYRA Lyman Alpha flux monitor on the ESA PROBA-2 microsatellite launch expected in September 2007 We will give a short description of this unique O60 mm aperture imaging telescope dedicated to the investigating of the magnetic sources of solar variability in the UV and chromospheric and coronal disruptive events rapid waves Moreton waves disparitions brusques of prominences filaments eruptions and CMEs onset The resolution pixel is 2 7 arcsec the field of view 1 4 solar radius and the acquisition cadence could be as high as 1 image minute The back thinned E2V CCD in the focal plane is using frame transfer to avoid shutter and mechanisms Further more the double Lyman Alpha filtering allows a 40 AA FWHM bandwidth and excellent rejection yet providing a vacuum seal design of the telescope MgF2 entrance window Structural stability of the telescope focal length 1 m is preserved by a 4-INVAR bars design with Aluminium compensation in a large pm 10 o around 20 o

  16. THE LYMAN ALPHA REFERENCE SAMPLE: EXTENDED LYMAN ALPHA HALOS PRODUCED AT LOW DUST CONTENT

    International Nuclear Information System (INIS)

    Hayes, Matthew; Östlin, Göran; Duval, Florent; Guaita, Lucia; Melinder, Jens; Sandberg, Andreas; Schaerer, Daniel; Verhamme, Anne; Orlitová, Ivana; Mas-Hesse, J. Miguel; Otí-Floranes, Héctor; Adamo, Angela; Atek, Hakim; Cannon, John M.; Herenz, E. Christian; Kunth, Daniel; Laursen, Peter

    2013-01-01

    We report on new imaging observations of the Lyman alpha emission line (Lyα), performed with the Hubble Space Telescope, that comprise the backbone of the Lyman alpha Reference Sample. We present images of 14 starburst galaxies at redshifts 0.028 P20 , Lyα radii are larger than those of Hα by factors ranging from 1 to 3.6, with an average of 2.4. The average ratio of Lyα-to-FUV radii is 2.9. This suggests that much of the Lyα light is pushed to large radii by resonance scattering. Defining the Relative Petrosian Extension of Lyα compared to Hα, ξ Lyα = R Lyα P20 /R Hα P20 , we find ξ Lyα to be uncorrelated with total Lyα luminosity. However, ξ Lyα is strongly correlated with quantities that scale with dust content, in the sense that a low dust abundance is a necessary requirement (although not the only one) in order to spread Lyα photons throughout the interstellar medium and drive a large extended Lyα halo.

  17. THE LYMAN ALPHA REFERENCE SAMPLE: EXTENDED LYMAN ALPHA HALOS PRODUCED AT LOW DUST CONTENT

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Matthew [Universite de Toulouse, UPS-OMP, IRAP, Toulouse (France); Oestlin, Goeran; Duval, Florent; Guaita, Lucia; Melinder, Jens; Sandberg, Andreas [Department of Astronomy, Oskar Klein Centre, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden); Schaerer, Daniel [CNRS, IRAP, 14, avenue Edouard Belin, F-31400 Toulouse (France); Verhamme, Anne; Orlitova, Ivana [Geneva Observatory, University of Geneva, 51 Chemin des Maillettes, CH-1290 Versoix (Switzerland); Mas-Hesse, J. Miguel; Oti-Floranes, Hector [Centro de Astrobiologia (CSIC-INTA), Departamento de Astrofisica, POB 78, 28691 Villanueva de la Canada (Spain); Adamo, Angela [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Atek, Hakim [Laboratoire d' Astrophysique, Ecole Polytechnique Federale de Lausanne (EPFL), Observatoire, CH-1290 Sauverny (Switzerland); Cannon, John M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Herenz, E. Christian [Leibniz-Institut fuer Astrophysik (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Kunth, Daniel [Institut d' Astrophysique de Paris, UMR 7095 CNRS and UPMC, 98 bis Bd Arago, F-75014 Paris (France); Laursen, Peter, E-mail: matthew@astro.su.se [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark)

    2013-03-10

    We report on new imaging observations of the Lyman alpha emission line (Ly{alpha}), performed with the Hubble Space Telescope, that comprise the backbone of the Lyman alpha Reference Sample. We present images of 14 starburst galaxies at redshifts 0.028 < z < 0.18 in continuum-subtracted Ly{alpha}, H{alpha}, and the far ultraviolet continuum. We show that Ly{alpha} is emitted on scales that systematically exceed those of the massive stellar population and recombination nebulae: as measured by the Petrosian 20% radius, R{sub P20}, Ly{alpha} radii are larger than those of H{alpha} by factors ranging from 1 to 3.6, with an average of 2.4. The average ratio of Ly{alpha}-to-FUV radii is 2.9. This suggests that much of the Ly{alpha} light is pushed to large radii by resonance scattering. Defining the Relative Petrosian Extension of Ly{alpha} compared to H{alpha}, {xi}{sub Ly{alpha}} = R {sup Ly{alpha}}{sub P20}/R {sup H{alpha}}{sub P20}, we find {xi}{sub Ly{alpha}} to be uncorrelated with total Ly{alpha} luminosity. However, {xi}{sub Ly{alpha}} is strongly correlated with quantities that scale with dust content, in the sense that a low dust abundance is a necessary requirement (although not the only one) in order to spread Ly{alpha} photons throughout the interstellar medium and drive a large extended Ly{alpha} halo.

  18. The Lyman-alpha signature of the first galaxies

    Science.gov (United States)

    Smith, Aaron

    2018-01-01

    Radiation from the first stars and galaxies initiated the dramatic phase transition marking an end to the cosmic dark ages. The emission and absorption signatures from the Lyman-alpha (Lyα) transition of neutral hydrogen have been indispensable in extending the observational frontier for high-redshift galaxies into the epoch of reionization. Lyα radiative transfer provides clues about the processes leading to Lyα escape from individual galaxies and the subsequent transmission through the intergalactic medium. Cosmological simulations incorporating Lyα radiative transfer enhance our understanding of fundamental physics by supplying the inferred spectra and feedback on the gas. In this talk, I will discuss the dynamical impact of Lyα radiation pressure on galaxy formation throughout cosmic reionization with the first fully coupled Lyα radiation-hydrodynamics simulations. Based on a suite of spherically symmetric models and high-resolution ab initio cosmological simulations we find that Lyα radiation pressure is dynamically important during the assembly of direct collapse black holes (DCBHs), which may be the seeds of the first supermassive black holes in the universe. Finally, I will discuss recent advances in Lyα modeling based on current state-of-the-art simulations and observational insights.

  19. Analysis of coronal H I Lyman alpha measurements from a rocket flight on 1979 April 13

    Science.gov (United States)

    Withbroe, G. L.; Kohl, J. L.; Weiser, H.; Noci, G.; Munro, R. H.

    1982-01-01

    It is noted that measurements of the profiles of resonantly scattered hydrogen Lyman-alpha coronal radiation have been used in determining hydrogen kinetic temperatures from 1.5 to 4 solar radii from sun center in a quiet region of the corona. Proton temperatures derived using the line widths decrease with height from 2.6 x 10 to the 6th K at 1.5 solar radii to 1.2 x 10 to the 6th K at 4 solar radii. These measurements, together with temperatures for lower heights determined from earlier Skylab and eclipse data, suggest that there is a maximum in the quiet coronal proton temperature at about 1.5 solar radii. Comparison of measured Lyman-alpha intensities with those calculated using a representative model for the radial variation of the coronal electron density yields information on the magnitude of the electron temperature gradient and suggests that the solar wind flow was subsonic for distances less than 4 solar radii.

  20. Comparison of Lyman-alpha and LI-COR infrared hygrometers for airborne measurement of turbulent fluctuations of water vapour

    Science.gov (United States)

    Lampert, Astrid; Hartmann, Jörg; Pätzold, Falk; Lobitz, Lennart; Hecker, Peter; Kohnert, Katrin; Larmanou, Eric; Serafimovich, Andrei; Sachs, Torsten

    2018-05-01

    To investigate if the LI-COR humidity sensor can be used as a replacement of the Lyman-alpha sensor for airborne applications, the measurement data of the Lyman-alpha and several LI-COR sensors are analysed in direct intercomparison flights on different airborne platforms. One vibration isolated closed-path and two non-isolated open-path LI-COR sensors were installed on a Dornier 128 twin engine turbo-prop aircraft. The closed-path sensor provided absolute values and fluctuations of the water vapour mixing ratio in good agreement with the Lyman-alpha. The signals of the two open-path sensors showed considerable high-frequency noise, and the absolute value of the mixing ratio was observed to drift with time in this vibrational environment. On the helicopter-towed sensor system Helipod, with very low vibration levels, the open-path LI-COR sensor agreed very well with the Lyman-alpha sensor over the entire frequency range up to 3 Hz. The results show that the LI-COR sensors are well suited for airborne measurements of humidity fluctuations, provided that a vibrationless environment is given, and this turns out to be more important than close sensor spacing.

  1. Study of interplanetary hydrogen from Lyman alpha emission and absorption determination

    International Nuclear Information System (INIS)

    Cazes, Serge.

    1979-09-01

    The purpose of the work submitted in this paper is to contribute to the study of interplanetary hydrogen from Lyman alpha emission and absorption measurements, carried out on board the D2A, OSO-8 and Copernicus satellites. This study, which was undertaken from the D2A satellite, moved us to study the interplanetary environment as from observations made from the following experiments placed on board the OSO-8 and Copernicus satellites. The experiment set up on board the OSO-8 satellite made it possible to obtain the profile of the solar alpha Lyman emission. An absorption profile was observed for the first time on these profiles and this made it possible to attribute them to interplanetary hydrogen and enabled us to make a direct and local determination of the solar ionization rate. - The spectrometer set up on board Copernicus made it possible to obtain the emission spectrum of the interplanetary environment at the same time as the geocorona. The overall velocity of the interplanetary environment was deduced from the Doppler shift between the two spectra. In the first part, the principle of the REA and POLAR experiments is recalled but only the REA experiment is described in detail, particularly the problems arising from the construction and calibration of the cell. In the second part, a study of the interplanetary environment made from the D2A determinations is presented in synthesized form. On the other hand, the study to which theses initial results led us is presented in detail. Finally, in the third part, the results obtained by means of the OSO-8 and Copernicus satellites are given [fr

  2. Lenses in the forest: cross correlation of the Lyman-alpha flux with cosmic microwave background lensing.

    Science.gov (United States)

    Vallinotto, Alberto; Das, Sudeep; Spergel, David N; Viel, Matteo

    2009-08-28

    We present a theoretical estimate for a new observable: the cross correlation between the Lyman-alpha flux fluctuations in quasar spectra and the convergence of the cosmic microwave background as measured along the same line of sight. As a first step toward the assessment of its detectability, we estimate the signal-to-noise ratio using linear theory. Although the signal-to-noise is small for a single line of sight and peaks at somewhat smaller redshifts than those probed by the Lyman-alpha forest, we estimate a total signal-to-noise of 9 for cross correlating quasar spectra of SDSS-III with Planck and 20 for cross correlating with a future polarization based cosmic microwave background experiment. The detection of this effect would be a direct measure of the neutral hydrogen-matter cross correlation and could provide important information on the growth of structures at large scales in a redshift range which is still poorly probed.

  3. Recovering the systemic redshift of galaxies from their Lyman-alpha line profile

    Science.gov (United States)

    Verhamme, A.; Garel, T.; Ventou, E.; Contini, T.; Bouché, N.; Herenz, E. C.; Richard, J.; Bacon, R.; Schmidt, K. B.; Maseda, M.; Marino, R. A.; Brinchmann, J.; Cantalupo, S.; Caruana, J.; Clément, B.; Diener, C.; Drake, A. B.; Hashimoto, T.; Inami, H.; Kerutt, J.; Kollatschny, W.; Leclercq, F.; Patrício, V.; Schaye, J.; Wisotzki, L.; Zabl, J.

    2018-04-01

    The Lyman alpha (Lyα) line of Hydrogen is a prominent feature in the spectra of star-forming galaxies, usually redshifted by a few hundreds of km s-1 compared to the systemic redshift. This large offset hampers follow-up surveys, galaxy pair statistics and correlations with quasar absorption lines when only Lyα is available. We propose diagnostics that can be used to recover the systemic redshift directly from the properties of the Lyα line profile. We use spectroscopic observations of Lyman-Alpha Emitters (LAEs) for which a precise measurement of the systemic redshift is available. Our sample contains 13 sources detected between z ≈ 3 and z ≈ 6 as part of various Multi Unit Spectroscopic Explorer (MUSE) Guaranteed Time Observations (GTO). We also include a compilation of spectroscopic Lyα data from the literature spanning a wide redshift range (z ≈ 0 - 8). First, restricting our analysis to double-peaked Lyα spectra, we find a tight correlation between the velocity offset of the red peak with respect to the systemic redshift, V_peak^red, and the separation of the peaks. Secondly, we find a correlation between V_peak^red and the full width at half maximum of the Lyα line. Fitting formulas, to estimate systemic redshifts of galaxies with an accuracy of ≤100 km s-1 when only the Lyα emission line is available, are given for the two methods.

  4. Weighing the Low-Redshift Lyman-alpha Forest

    Science.gov (United States)

    Shull, Mike

    2005-01-01

    In 2003-2004, our FUSE research group prepared several major surveys of the amount of baryonic matter in the intergalactic medium (IGM), using the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. These surveys include measurements of the Lyman-alpha absorption line of neutral hydrogen (H I), the far-ultraviolet (1032,1038 Angstrom) doublet of highly ionized oxygen ( O VI), the higher Lyman-series lines (Ly-beta, Ly-gamma, etc) of H I, and the 977 Angstrom line of c III. As an overview, our FUSE spectroscopic studies, taken together with data from the Hubble Space Telescope, show that approximately 30% of the normal matter is contained in intergalactic hydrogen gas clouds (the Lyman-alpha forest). Another 5-10% resides in hotter gas at temperatures of 10(exp 5) to 10(exp 6) K, visible in 0 VI and C III absorption. Along with the matter attributed to galaxies, we have now accounted for approximately HALF of all the baryonic matter in the universe. Where is the other half? That matter my exist in even hotter gas, invisible through the ultraviolet absorption lines, but perhaps detectable through X-ray absorption lines of more highly ionized oxygen and neon.

  5. A reliable cw Lyman-{alpha} laser source for future cooling of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kolbe, Daniel, E-mail: kolbed@uni-mainz.de; Beczkowiak, Anna; Diehl, Thomas; Koglbauer, Andreas; Sattler, Matthias; Stappel, Matthias; Steinborn, Ruth; Walz, Jochen [Johannes Gutenberg-Universitaet, Institut fuer Physik (Germany)

    2012-12-15

    We demonstrate a reliable continuous-wave (cw) laser source at the 1 S-2 P transition in (anti)hydrogen at 121.56 nm (Lyman-{alpha}) based on four-wave sum-frequency mixing in mercury. A two-photon resonance in the four-wave mixing scheme is essential for a powerful cw Lyman-{alpha} source and is well investigated.

  6. Lyman Alpha Camera for Io's SO2 atmosphere and Europa's water plumes

    Science.gov (United States)

    McEwen, Alfred S.; Sandel, Bill; Schneider, Nick

    2014-05-01

    The Student Lyman-Alpha Mapper (SLAM) was conceived for the Io Volcano Observer (IVO) mission proposal (McEwen et al., 2014) to determine the spatial and temporal variations in Io's SO2 atmosphere by recording the H Ly-α reflection over the disk (Feldman et al., 2000; Feaga et al., 2009). SO2 absorbs at H Ly-α, thereby modulating the brightness of sunlight reflected by the surface, and measures the density of the SO2 atmosphere and its variability with volcanic activity and time of day. Recently, enhancements at the Ly-α wavelength (121.57 nm) were seen near the limb of Europa and interpreted as active water plumes ~200 km high (Roth et al., 2014). We have a preliminary design for a very simple camera to image in a single bandpass at Ly-α, analogous to a simplified version of IMAGE EUV (Sandel et al. 2000). Our goal is at least 50 resolution elements across Io and/or Europa (~75 km/pixel), ~3x better than HST STIS, to be acquired at a range where the radiation noise is below 1E-4 hits/pixel/s. This goal is achieved with a Cassegrain-like telescope with a 10-cm aperture. The wavelength selection is achieved using a simple self-filtering mirror in combination with a solar-blind photocathode. A photon-counting detector based on a sealed image intensifier preserves the poisson statistics of the incoming photon flux. The intensifier window is coated with a solar-blind photocathode material (CsI). The location of each photon event is recorded by a position-sensitive anode based on crossed delay-line or wedge-and-strip technology. The sensitivity is 0.01 counts/pixel/sec/R, sufficient to estimate SO2 column abundances ranging from 1E15 to 1E17 per cm2 in a 5 min (300 sec) exposure. Sensitivity requirements to search for and image Europa plumes may be similar. Io's Ly-α brightness of ~3 kR exceeds the 0.8 kR brightness of Europa's plume reported by Roth et al. (2014), but the plume brightness is a direct measurement rather than inferring column abundance from

  7. Optical Alignment of the Chromospheric Lyman-Alpha SpectroPolarimeter using Sophisticated Methods to Minimize Activities under Vacuum

    Science.gov (United States)

    Giono, G.; Katsukawa, Y.; Ishikawa, R.; Narukage, N.; Kano, R.; Kubo, M.; Ishikawa, S.; Bando, T.; Hara, H.; Suematsu, Y.; hide

    2016-01-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding-rocket instrument developed at the National Astronomical Observatory of Japan (NAOJ) as a part of an international collaboration. The in- strument main scientific goal is to achieve polarization measurement of the Lyman-alpha line at 121.56 nm emitted from the solar upper-chromosphere and transition region with an unprecedented 0.1% accuracy. For this purpose, the optics are composed of a Cassegrain telescope coated with a "cold mirror" coating optimized for UV reflection and a dual-channel spectrograph allowing for simultaneous observation of the two orthogonal states of polarization. Although the polarization sensitivity is the most important aspect of the instrument, the spatial and spectral resolutions of the instrument are also crucial to observe the chromospheric features and resolve the Ly- pro les. A precise alignment of the optics is required to ensure the resolutions, but experiments under vacuum conditions are needed since Ly-alpha is absorbed by air, making the alignment experiments difficult. To bypass this issue, we developed methods to align the telescope and the spectrograph separately in visible light. We will explain these methods and present the results for the optical alignment of the CLASP telescope and spectrograph. We will then discuss the combined performances of both parts to derive the expected resolutions of the instrument, and compare them with the flight observations performed on September 3rd 2015.

  8. Galex Lyman-alpha Emitters: Physical Properties, Luminosity Bimodality, And Morphologies.

    Science.gov (United States)

    Mallery, Ryan P.

    2010-01-01

    The Galaxy Evolution Explorer spectroscopic survey has uncovered a large statistically significant sample of Lyman-alpha emitters at z sim0.3. ACS imaging of these sources in the COSMOS and AEGIS deep fields reveals that these Lyman-alpha emitters consist of two distinct galaxy morphologies, face on spiral galaxies and compact starburst/merging systems. The morphology bimodality also results in a bimodal distribution of optical luminosity. A comparison between the UV photometry and MIPS 24 micron detections of these sources indicates that they are bluer, and have less dust extinction than similar star forming galaxies that lack Lyman-alpha detection. Our findings show how the global gas and dust distribution of star forming galaxies inhibits Lyman-alpha emission in star forming galaxies. GALEX is a NASA Small Explorer, launched in April 2003. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission, developed in cooperation with the CNES of France and the Korean Ministry of Science and Technology.

  9. Are the brightest Lyman Alpha Emitters at z=5.7 primeval galaxies?

    Science.gov (United States)

    Lidman, Christopher; Jones, Heath; Meisenheimer, Klaus; Pompei, Emanuela; Tapken, Christian; Vanzi, Leonardo; Westra, Eduard

    2008-03-01

    Wide-field, narrow-band surveys have proven to be effective at finding very high redshift galaxies that emit brightly in the Lyman alpha line, the so-called Lyman alpha emitters (LAEs). It was through this technique that the most distant spectroscopically confirmed galaxy, a galaxy at z=6.96, was discovered. Considerable effort is currently being spent on discovering these galaxies at ever higher redshifts by extending this technique into the near-IR. In contrast to this effort, there has been relatively little work on understanding these galaxies. In particular, how do LAEs relate to other high redshift galaxies, such as the galaxies discovered through broad band drop out techniques, and, perhaps, more importantly, what role do LAEs play in re-ionising the universe. We recently discovered two extremely luminous LAEs at z=5.7. These LAEs are among the brightest LAEs ever discovered at this redshift. In a recent paper by Mao et al. the brightest LAEs are associated to the most massive halos. We propose to use the IRAC 3.6 micron imager on Spitzer to measure the rest-frame optical flux of the these LAEs. With additional data from the near-IR (rest-frame UV) and very deep optical spectra around the Lyman alpha line, we propose to make a detailed study of the spectral energy distribution from the Lyman alpha line to the rest frame optical of these exceptional LAEs. These data will enable us to estimate the age and mass of the stellar burst that produces the Lyman alpha line, to estimate the contribution from an older stellar population, if any, and to estimate the fraction of Lyman continuum photons that can escape the galaxy and are thus available to reionise the universe.

  10. The non-linear power spectrum of the Lyman alpha forest

    International Nuclear Information System (INIS)

    Arinyo-i-Prats, Andreu; Miralda-Escudé, Jordi; Viel, Matteo; Cen, Renyue

    2015-01-01

    The Lyman alpha forest power spectrum has been measured on large scales by the BOSS survey in SDSS-III at z∼ 2.3, has been shown to agree well with linear theory predictions, and has provided the first measurement of Baryon Acoustic Oscillations at this redshift. However, the power at small scales, affected by non-linearities, has not been well examined so far. We present results from a variety of hydrodynamic simulations to predict the redshift space non-linear power spectrum of the Lyα transmission for several models, testing the dependence on resolution and box size. A new fitting formula is introduced to facilitate the comparison of our simulation results with observations and other simulations. The non-linear power spectrum has a generic shape determined by a transition scale from linear to non-linear anisotropy, and a Jeans scale below which the power drops rapidly. In addition, we predict the two linear bias factors of the Lyα forest and provide a better physical interpretation of their values and redshift evolution. The dependence of these bias factors and the non-linear power on the amplitude and slope of the primordial fluctuations power spectrum, the temperature-density relation of the intergalactic medium, and the mean Lyα transmission, as well as the redshift evolution, is investigated and discussed in detail. A preliminary comparison to the observations shows that the predicted redshift distortion parameter is in good agreement with the recent determination of Blomqvist et al., but the density bias factor is lower than observed. We make all our results publicly available in the form of tables of the non-linear power spectrum that is directly obtained from all our simulations, and parameters of our fitting formula

  11. Performance Characterization of UV Science Cameras Developed for the Chromospheric Lyman-Alpha Spectro-Polarimeter

    Science.gov (United States)

    Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, D.; Beabout, B.; Stewart, M.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-alpha and to detect the Hanle effect in the line core. Due to the nature of Lyman-alpha polarization in the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1 percent in the line core. CLASP is a dual-beam spectro-polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1 percent polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. Coating the e2v CCD57-10 512x512 detectors with Lumogen-E coating allows for a relatively high (30 percent) quantum efficiency at the Lyman-alpha line. The CLASP cameras were designed to operate with 10 e-/pixel/second dark current, 25 e- read noise, a gain of 2.0 +/- 0.5 and 1.0 percent residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; dark current, read noise, camera gain and residual non-linearity.

  12. Lyman alpha emission in nearby star-forming galaxies with the lowest metallicities and the highest [OIII]/[OII] ratios

    Science.gov (United States)

    Izotov, Yuri

    2017-08-01

    The Lyman alpha line of hydrogen is the strongest emission line in galaxies and the tool of predilection for identifying and studying star-forming galaxies over a wide range of redshifts, especially in the early universe. However, it has become clear over the years that not all of the Lyman alpha radiation escapes, due to its resonant scattering on the interstellar and intergalactic medium, and absorption by dust. Although our knowledge of the high-z universe depends crucially on that line, we still do not have a complete understanding of the mechanisms behind the production, radiative transfer and escape of Lyman alpha in galaxies. We wish here to investigate these mechanisms by studying the properties of the ISM in a unique sample of 8 extreme star-forming galaxies (SFGs) that have the highest excitation in the SDSS spectral data base. These dwarf SFGs have considerably lower stellar masses and metallicities, and higher equivalent widths and [OIII]5007/[OII]3727 ratios compared to all nearby SFGs with Lyman alpha emission studied so far with COS. They are, however, very similar to the dwarf Lyman alpha emitters at redshifts 3-6, which are thought to be the main sources of reionization in the early Universe. By combining the HST/COS UV data with data in the optical range, and using photoionization and radiative transfer codes, we will be able to study the properties of the Lyman alpha in these unique objects, derive column densities of the neutral hydrogen N(HI) and compare them with N(HI) obtained from the HeI emission-line ratios in the optical spectra. We will derive Lyman alpha escape fractions and indirectly Lyman continuum escape fractions.

  13. Are the brightest Lyman Alpha Emitters at zD5.7 primeval galaxies?

    Science.gov (United States)

    Lidman, Christopher; Hayes, Matthew; Jones, Heath; Meisenheimer, Klaus; Tapken, Christian; Westra, Eduard

    2009-04-01

    Wide-field, narrow-band surveys have proven to be effective at finding very high redshift galaxies that emit brightly in the Lyman alpha line - the so-called Lyman alpha emitters (LAEs). It was through this technique that the most distant spectroscopically confirmed galaxy, a galaxy at zD6.96 (Iye et al. 2006), was discovered. Considerable effort is currently being spent on discovering these galaxies at ever higher redshifts by extending this technique into the near-IR. In contrast to this effort, there has been relatively little work on understanding these galaxies. In particular, how do LAEs relate to other high redshift galaxies, such as those discovered through drop out techniques, and, more importantly, what role LAEs play in re-ionising the universe, if any. We recently discovered two extremely luminous LAEs at zD5.7. These LAEs are among the brightest LAEs ever discovered at this redshift. In a recent paper by Mao et al. (2007), the brightest LAEs are associated to the most massive halos. One of these targets was successfully observed with the IRAC 3.6 micron imager on Spitzer during cycle 5. These data, when combined with constraints that we derive from our deep ground-based spectroscopic data, indicate that the bulk of the flux at 3.6 microns comes from a stellar population that is considserably older than the stars that dominate the flux in the UV. We propose to complete the project and image the second target. These data will enable us to estimate the age and mass of the stellar burst that produces the Lyman alpha line, to estimate the contribution from an older stellar population and to estimate the fraction of Lyman continuum photons that escape the galaxy and are thus available to re-ionise the universe.

  14. Correlations in the three-dimensional Lyman-alpha forest contaminated by high column density absorbers

    Science.gov (United States)

    Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris

    2018-05-01

    Correlations measured in three dimensions in the Lyman-alpha forest are contaminated by the presence of the damping wings of high column density (HCD) absorbing systems of neutral hydrogen (H I; having column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}), which extend significantly beyond the redshift-space location of the absorber. We measure this effect as a function of the column density of the HCD absorbers and redshift by measuring three-dimensional (3D) flux power spectra in cosmological hydrodynamical simulations from the Illustris project. Survey pipelines exclude regions containing the largest damping wings. We find that, even after this procedure, there is a scale-dependent correction to the 3D Lyman-alpha forest flux power spectrum from residual contamination. We model this residual using a simple physical model of the HCD absorbers as linearly biased tracers of the matter density distribution, convolved with their Voigt profiles and integrated over the column density distribution function. We recommend the use of this model over existing models used in data analysis, which approximate the damping wings as top-hats and so miss shape information in the extended wings. The simple `linear Voigt model' is statistically consistent with our simulation results for a mock residual contamination up to small scales (|k| account for the effect of the highest column density absorbers on the smallest scales (e.g. |k| > 0.4 h Mpc^{-1} for small damped Lyman-alpha absorbers; HCD absorbers with N(H I) ˜ 10^{21} atoms cm^{-2}). However, these systems are in any case preferentially removed from survey data. Our model is appropriate for an accurate analysis of the baryon acoustic oscillations feature. It is additionally essential for reconstructing the full shape of the 3D flux power spectrum.

  15. High-resolution Lyman-alpha filtergrams of the sun

    Science.gov (United States)

    Bonnet, R. M.; Decaudin, M.; Bruner, E. C., Jr.; Acton, L. W.; Brown, W. A.

    1980-01-01

    The results of an experiment, conducted jointly by the Lockheed Palo Alto Research Laboratory and the Laboratoire de Physique Stellaire et Planetaire du CNRS, which investigated the transition-region plasma and the geometry of coronal active regions, in relation to models of the high-temperature layers, are presented. A Black Brant rocket was used to obtain 1-arc sec resolution L-alpha pictures of the sun, which revealed small scale features not seen previously at this wavelength, that delineate the geometry of the magnetic field in the chromosphere and in the corona. It is concluded that these observations might provide a new way of observing the upper chromosphere and corona, and that they provide direct evidence of the inhomogeneous character of the chromosphere and of the dominant role of the magnetic field

  16. Performance Characterization of the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) CCD Cameras

    Science.gov (United States)

    Joiner, R. K.; Kobayashi, K.; Winebarger, A. R.; Champey, P. R.

    2014-12-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding rocket instrument which is currently being developed by NASA's Marshall Space Flight Center (MSFC) and the National Astronomical Observatory of Japan (NAOJ). The goal of this instrument is to observe and detect the Hanle effect in the scattered Lyman-Alpha UV (121.6nm) light emitted by the Sun's Chromosphere to make measurements of the magnetic field in this region. In order to make accurate measurements of this effect, the performance characteristics of the three on-board charge-coupled devices (CCDs) must meet certain requirements. These characteristics include: quantum efficiency, gain, dark current, noise, and linearity. Each of these must meet predetermined requirements in order to achieve satisfactory performance for the mission. The cameras must be able to operate with a gain of no greater than 2 e-/DN, a noise level less than 25e-, a dark current level which is less than 10e-/pixel/s, and a residual non-linearity of less than 1%. Determining these characteristics involves performing a series of tests with each of the cameras in a high vacuum environment. Here we present the methods and results of each of these performance tests for the CLASP flight cameras.

  17. Lyman-alpha clouds as a relic of primordial density fluctuations

    International Nuclear Information System (INIS)

    Bond, J.R.; Szalay, A.S.; Silk, J.

    1988-01-01

    Primordial density fluctuations are studied using a CDM model and primordial clouds some of which are expanding, driven by pressure gradients created when the medium is photionized, and some of which are massive enough to continue collapsing in spite of the pressure. Normalization of CDM models to the clustering properties on large scales are used to predict the parameters of collapsing clouds of subgalactic mass at early epochs. It is shown that the abundance and dimensions of these clouds are comparable to those of the Lyman-alpha systems. The evolutionary history of the clouds is computed, utilizing a spherically symmetric hydrodynamics code with the dark matter treated as a collisionless fluid, and the H I column density distribution is evaluated as a function of N(H I) and redshift. The observed cloud parameters come out naturally in the CDM model and suggest that Lyman-alpha clouds are the missing link between primordial density fluctuations and the formation of galaxies. 31 references

  18. The Faint End of the Lyman Alpha Luminosity Function at 2 < z < 3.8

    Science.gov (United States)

    Devarakonda, Yaswant; Livermore, Rachael; Indahl, Briana; Wold, Isak; Davis, Dustin; Finkelstein, Steven

    2018-01-01

    Most current models predict that our universe is mostly composed of small, dim galaxies. Due to these galaxies being so faint, it is very difficult to study these types of galaxies outside of our local universe. This is particularly an issue for studying how these small galaxies evolved over their lifetimes. With the benefit of gravitational lensing, however, we are able to observe galaxies that are farther and fainter than ever before possible. In this particular study, we focus on Lyman-Alpha emitting galaxies between the redshifts of 2-3.8, so that we may study these galaxies during the epoch of peak star formation in the universe. We use the McDonald Observatory 2.7, Harlan Smith telescope with the VIRUS-P IFU spectrograph to observe several Hubble Frontier Field lensing clusters to spectroscopically discover faint galaxies over this redshift range. In addition to providing insight into the faint-end slope of the Lyman alpha luminosity function, the spectroscopic redshifts will allow us to better constrain the mass models of the foreground clusters, such as Abell 370, so that we may better understand lensing effects for this and future studies.

  19. Linearity Analysis and Efficiency Testing of The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) Science Cameras for Flight

    Science.gov (United States)

    Walker, Salma C.; Rachmeler, Laurel; Winebarger, Amy; Champey, Patrick; Bethge, Christian

    2018-01-01

    To unveil the complexity of the solar atmosphere, measurement of the magnetic field in the upper chromosphere and transition region is fundamentally important, as this is where the forces transition from plasma to magnetic field dominated. Measurements of the field are also needed to elucidate the energy transport from the lower atmospheric regions to the corona beyond. Such an advance in heliospheric knowledge became possible with the first flight of the international solar sounding rocket mission, CLASP. For the first time, linear polarization was measured in Hydrogen Lyman-Alpha at 121.60 nm in September 2015. For linear polarization measurements in this emission line, high sensitivity is required due to the relatively weak polarization signal compared to the intensity. To achieve this high sensitivity, a low-noise sensor is required with good knowledge of its characterization, including linearity. This work presents further refinement of the linearity characterization of the cameras flown in 2015. We compared the current from a photodiode in the light path to the digital response of the detectors. Pre-flight CCD linearity measurements were taken for all three flight cameras and calculations of the linear fits and residuals were performed. However, the previous calculations included a smearing pattern and a digital saturation region on the detectors which were not properly taken into account. The calculations have been adjusted and were repeated for manually chosen sub-regions on the detectors that were found not to be affected. We present a brief overview of the instrument, the calibration data and procedures, and a comparison of the old and new linearity results. The CLASP cameras will be reused for the successor mission, CLASP2, which will measure the Magnesium II h & k emission lines between 279.45 nm and 280.35 nm. The new approach will help to better prepare for and to improve the camera characterization for CLASP2.

  20. Linearity Analysis and Efficiency Testing of The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) Science Cameras for Flight

    Science.gov (United States)

    Walker, S. C.; Rachmeler, L.; Winebarger, A. R.; Champey, P. R.; Bethge, C.

    2017-12-01

    To unveil the complexity of the solar atmosphere, measurement of the magnetic field in the upper chromosphere and transition region is fundamentally important, as this is where the forces transition from plasma to magnetic field dominated. Measurements of the field are also needed to shed light on the energy transport from the lower atmospheric regions to the corona beyond. Such an advance in heliospheric knowledge became possible with the first flight of the international solar sounding rocket mission, CLASP. For the first time, linear polarization was measured in H Lyman-Alpha at 121.60 nm in September 2015. For linear polarization measurements in this line, high sensitivity is required due to the relatively weak polarization signal compared to the intensity. To achieve this high sensitivity, a low-noise sensor is required with good knowledge of its characterization, including linearity. This work presents further refinement of the linearity characterization of the cameras flown in 2015. We compared the current from a photodiode in the light path to the digital response of the detectors. Pre-flight CCD linearity measurements were taken for all three flight cameras and calculations of the linear fits and residuals were performed. However, the previous calculations included a smearing pattern and a digital saturation region on the detectors which were not properly taken into account. The calculations have been adjusted and were repeated for manually chosen sub-regions on the detectors that were found not to be affected. We present a brief overview of the instrument, the calibration data and procedures, and a comparison of the old and new linearity results. The CLASP cameras will be reused for the successor mission, CLASP2, which will measure the Mg II h & k lines between 279.45 nm and 280.35 nm. The new approach will help to better prepare for and to improve the camera characterization for CLASP2.

  1. Generation of continuous coherent radiation at Lyman-alpha and 1S-2P Spectroscopy of atomic hydrogen

    NARCIS (Netherlands)

    Pahl, A.; Fendel, P.; Henrich, B.R.; Walz, J.; Hansch, T.W.; Eikema, K.S.E.

    2005-01-01

    Continuous coherent radiation from wavelengths from 121 to 123 nm in the vacuum ultraviolet (VUV) was generated by four-wave sum-frequency mixing in mercury vapor. A yield of 20 nW at Lyman-alpha (121.57 nm) was achieved. We describe the experimental setup in detail and present a calculation of the

  2. Resonance-enhanced two-photon ionization of ions by Lyman alpha radiation in gaseous nebulae.

    Science.gov (United States)

    Johansson, S; Letokhov, V

    2001-01-26

    One of the mysteries of nebulae in the vicinity of bright stars is the appearance of bright emission spectral lines of ions, which imply fairly high excitation temperatures. We suggest that an ion formation mechanism, based on resonance-enhanced two-photon ionization (RETPI) by intense H Lyman alpha radiation (wavelength of 1215 angstroms) trapped inside optically thick nebulae, can produce these spectral lines. The rate of such an ionization process is high enough for rarefied gaseous media where the recombination rate of the ions formed can be 10(-6) to 10(-8) per second for an electron density of 10(3) to 10(5) per cubic centimeter in the nebula. Under such conditions, the photo-ions formed may subsequently undergo further RETPI, catalyzed by intense He i and He ii radiation, which also gets enhanced in optically thick nebulae that contain enough helium.

  3. Wandering in the Lyman-alpha forest: a study of dark matter-dark radiation interactions

    Energy Technology Data Exchange (ETDEWEB)

    Krall, Rebecca; Cyr-Racine, Francis-Yan; Dvorkin, Cora, E-mail: rkrall@physics.harvard.edu, E-mail: fcyrraci@physics.harvard.edu, E-mail: dvorkin@physics.harvard.edu [Harvard University, Department of Physics, Cambridge, MA 02138 (United States)

    2017-09-01

    The amplitude of large-scale matter fluctuations inferred from the observed Sunyaev-Zeldovich (SZ) cluster mass function and from weak gravitational lensing studies, when taken at face value, is in tension with measurements of the cosmic microwave background (CMB) and baryon acoustic oscillation (BAO). In this work, we revisit whether this possible discrepancy can be attributed to new interactions in the dark matter sector. Focusing on a cosmological model where dark matter interacts with a dark radiation species until the epoch of matter-radiation equality, we find that measurements of the Lyman-alpha flux power spectrum from the Sloan Digital Sky Survey provide no support to the hypothesis that new dark matter interactions can resolve the possible tension between CMB and large-scale structure (LSS). Indeed, while the addition of dark matter-dark radiation interactions leads to an improvement of 2ΔlnL=12 with respect to the standard Λ cold dark matter (ΛCDM) model when only CMB, BAO, and LSS data are considered, the inclusion of Lyman-alpha data reduces the improvement of the fit to 2ΔlnL=6 relative to ΛCDM . We thus conclude that the statistical evidence for new dark matter interactions (largely driven by the Planck SZ dataset) is marginal at best, and likely caused by systematics in the data. We also perform a Fisher forecast analysis for the reach of a future dataset composed of a CMB-S4 experiment combined with the Large Synoptic Survey Telescope galaxy survey. We find that the constraint on the effective number of fluid-like dark radiation species, Δ N {sub fluid}, will be improved by an order of magnitude compared to current bounds.

  4. Wandering in the Lyman-alpha forest: a study of dark matter-dark radiation interactions

    International Nuclear Information System (INIS)

    Krall, Rebecca; Cyr-Racine, Francis-Yan; Dvorkin, Cora

    2017-01-01

    The amplitude of large-scale matter fluctuations inferred from the observed Sunyaev-Zeldovich (SZ) cluster mass function and from weak gravitational lensing studies, when taken at face value, is in tension with measurements of the cosmic microwave background (CMB) and baryon acoustic oscillation (BAO). In this work, we revisit whether this possible discrepancy can be attributed to new interactions in the dark matter sector. Focusing on a cosmological model where dark matter interacts with a dark radiation species until the epoch of matter-radiation equality, we find that measurements of the Lyman-alpha flux power spectrum from the Sloan Digital Sky Survey provide no support to the hypothesis that new dark matter interactions can resolve the possible tension between CMB and large-scale structure (LSS). Indeed, while the addition of dark matter-dark radiation interactions leads to an improvement of 2ΔlnL=12 with respect to the standard Λ cold dark matter (ΛCDM) model when only CMB, BAO, and LSS data are considered, the inclusion of Lyman-alpha data reduces the improvement of the fit to 2ΔlnL=6 relative to ΛCDM . We thus conclude that the statistical evidence for new dark matter interactions (largely driven by the Planck SZ dataset) is marginal at best, and likely caused by systematics in the data. We also perform a Fisher forecast analysis for the reach of a future dataset composed of a CMB-S4 experiment combined with the Large Synoptic Survey Telescope galaxy survey. We find that the constraint on the effective number of fluid-like dark radiation species, Δ N fluid , will be improved by an order of magnitude compared to current bounds.

  5. LRO Lyman Alpha Mapping Project (LAMP) Far-UV Investigations of Lunar Composition, Porosity, and Space Weathering

    Science.gov (United States)

    Retherford, K. D.; Greathouse, T. K.; Mandt, K. E.; Gladstone, R.; Hendrix, A.; Cahill, J. T.; Liu, Y.; Grava, C.; Hurley, D.; Egan, A.; Kaufmann, D. E.; Raut, U.; Byron, B. D.; Magana, L. O.; Stickle, A. M.; Wyrick, D. Y.; Pryor, W. R.

    2017-12-01

    Far ultraviolet reflectance measurements of the Moon, icy satellites, comets, and asteroids have proven surprisingly useful for advancing our understanding of planetary surfaces. This new appreciation for planetary far-UV imaging spectroscopy is provided in large part thanks to nearly a decade of investigations with the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP). LAMP has demonstrated an innovative nightside observing technique, putting a new light on permanently shadowed regions (PSRs) and other features on the Moon. Dayside far-UV albedo maps complement the nightside data, enabling comparisons of direct and hemispheric (diffuse) illumination derived albedos. We'll discuss the strengths of the far-UV reflectance imaging spectroscopy technique with respect to several new LAMP results. Detections of water frost and hydration signatures near 165 nm, for example, provide constraints on composition that complement infrared spectroscopy, visible imaging, neutron spectroscopy, radar, and other techniques. LRO's polar orbit and high data downlink capabilities enable searches for diurnal variations in spectral signals. At far-UV wavelengths a relatively blue spectral slope is diagnostic of space weathering, which is opposite of the spectral reddening indicator of maturity at wavelengths longward of 180 nm. By utilizing natural diffuse illumination sources on the nightside the far-UV technique is able to identify relative increases in porosity within the PSRs, and provides an additional tool for determining relative surface ages. On October 6, 2016 LAMP enacted a new, more sensitive dayside operating mode that expands its ability to search for diurnally varying hydration signals associated with different regions and features.

  6. Performance Characterization of UV Science Cameras Developed for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP)

    Science.gov (United States)

    Champey, Patrick; Kobayashi, Ken; Winebarger, Amy; Cirtin, Jonathan; Hyde, David; Robertson, Bryan; Beabout, Brent; Beabout, Dyana; Stewart, Mike

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-alpha and to detect the Hanle effect in the line core. Due to the nature of Lyman-alpha polarization in the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1% in the line core. CLASP is a dual-beam spectro-polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1% polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. Coating the e2v CCD57-10 512x512 detectors with Lumogen-E coating allows for a relatively high (30%) quantum efficiency at the Lyman-$\\alpha$ line. The CLASP cameras were designed to operate with =10 e- /pixel/second dark current, = 25 e- read noise, a gain of 2.0 and =0.1% residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; dark current, read noise, camera gain and residual non-linearity.

  7. Discovery of Ubiquitous Fast-Propagating Intensity Disturbances by the Chromospheric Lyman Alpha Spectropolarimeter (CLASP)

    Science.gov (United States)

    Kubo, M.; Katsukawa, Y.; Suematsu, Y.; Kano, R.; Bando, T.; Narukage, N.; Ishikawa, R.; Hara, H.; Giono, G.; Tsuneta, S.; Ishikawa, S.; Shimizu, T.; Sakao, T.; Winebarger, A.; Kobayashi, K.; Cirtain, J.; Champey, P.; Auchère, F.; Trujillo Bueno, J.; Asensio Ramos, A.; Štěpán, J.; Belluzzi, L.; Manso Sainz, R.; De Pontieu, B.; Ichimoto, K.; Carlsson, M.; Casini, R.; Goto, M.

    2016-12-01

    High-cadence observations by the slit-jaw (SJ) optics system of the sounding rocket experiment known as the Chromospheric Lyman Alpha Spectropolarimeter (CLASP) reveal ubiquitous intensity disturbances that recurrently propagate in either the chromosphere or the transition region or both at a speed much higher than the speed of sound. The CLASP/SJ instrument provides a time series of two-dimensional images taken with broadband filters centered on the Lyα line at a 0.6 s cadence. The multiple fast-propagating intensity disturbances appear in the quiet Sun and in an active region, and they are clearly detected in at least 20 areas in a field of view of 527″ × 527″ during the 5 minute observing time. The apparent speeds of the intensity disturbances range from 150 to 350 km s-1, and they are comparable to the local Alfvén speed in the transition region. The intensity disturbances tend to propagate along bright elongated structures away from areas with strong photospheric magnetic fields. This suggests that the observed fast-propagating intensity disturbances are related to the magnetic canopy structures. The maximum distance traveled by the intensity disturbances is about 10″, and the widths are a few arcseconds, which are almost determined by a pixel size of 1.″03. The timescale of each intensity pulse is shorter than 30 s. One possible explanation for the fast-propagating intensity disturbances observed by CLASP is magnetohydrodynamic fast-mode waves.

  8. Constraining the Intergalactic and Circumgalactic Media with Lyman-Alpha Absorption

    Science.gov (United States)

    Sorini, Daniele; Onorbe, Jose; Hennawi, Joseph F.; Lukic, Zarija

    2018-01-01

    Lyman-alpha (Ly-a) absorption features detected in quasar spectra in the redshift range 02Mpc, the simulations asymptotically match the observations, because the ΛCDM model successfully describes the ambient IGM. This represents a critical advantage of studying the mean absorption profile. However, significant differences between the simulations, and between simulations and observations are present on scales 20kpc-2Mpc, illustrating the challenges of accurately modeling and resolving galaxy formation physics. It is noteworthy that these differences are observed as far out as ~2Mpc, indicating that the `sphere-of-influence' of galaxies could extend to approximately ~20 times the halo virial radius (~100kpc). Current observations are very precise on these scales and can thus strongly discriminate between different galaxy formation models. I demonstrate that the Ly-a absorption profile is primarily sensitive to the underlying temperature-density relationship of diffuse gas around galaxies, and argue that it thus provides a fundamental test of galaxy formation models. With near-future high-precision observations of Ly-a absorption, the tools developed in my thesis set the stage for even stronger constraints on models of galaxy formation and cosmology.

  9. Characterizing the Lyman-alpha forest flux probability distribution function using Legendre polynomials

    Science.gov (United States)

    Cieplak, Agnieszka; Slosar, Anze

    2018-01-01

    The Lyman-alpha forest has become a powerful cosmological probe at intermediate redshift. It is a highly non-linear field with much information present beyond the power spectrum. The flux probability flux distribution (PDF) in particular has been a successful probe of small scale physics. However, it is also sensitive to pixel noise, spectrum resolution, and continuum fitting, all of which lead to possible biased estimators. Here we argue that measuring the coefficients of the Legendre polynomial expansion of the PDF offers several advantages over measuring the binned values as is commonly done. Since the n-th Legendre coefficient can be expressed as a linear combination of the first n moments of the field, this allows for the coefficients to be measured in the presence of noise and allows for a clear route towards marginalization over the mean flux. Additionally, in the presence of noise, a finite number of these coefficients are well measured with a very sharp transition into noise dominance. This compresses the information into a small amount of well-measured quantities. Finally, we find that measuring fewer quasars with high signal-to-noise produces a higher amount of recoverable information.

  10. Ultraviolet photometry from the orbiting astronomical observatory. XVI - The stellar Lyman-alpha absorption line

    Science.gov (United States)

    Savage, B. D.; Panek, R. J.

    1974-01-01

    The stellar Lyman-alpha line at 1216 A was observed in 29 lightly reddened stars of spectral type B2.5 to B9 by a far-UV spectrophotometer on OAO-2. The equivalent widths obtained range from 15 A at type B2.5 to 65 A at type B8; in the late-B stars, the L-alpha line removes 2 to 3% of the total stellar flux. In this sampling, the strength of the L-alpha line correlates well with measures of the Balmer discontinuity and Balmer line strengths; luminosity classification does not seem to affect the line strength. The observed line widths also agree with the predictions of Mihala's grid of non-LTE model atmospheres. In some cases, the L-alpha line influences the interstellar column densities reported in the interstellar OAO-2 L-alpha survey. Hence, these data toward lightly reddened B2 and B1.5 stars should be regarded as upper limits only.

  11. Fluorescence Lyman-Alpha Stratospheric Hygrometer (FLASH): application on meteorological balloons, long duration balloons and unmanned aerial vehicles.

    Science.gov (United States)

    Lykov, Alexey; Khaykin, Sergey; Yushkov, Vladimir; Efremov, Denis; Formanyuk, Ivan; Astakhov, Valeriy

    The FLASH instrument is based on the fluorescent method, which uses H2O molecules photodissociation at a wavelength lambda=121.6 nm (Lalpha - hydrogen emission) followed by the measurement of the fluorescence of excited OH radicals. The source of Lyman-alpha radiation is a hydrogen discharge lamp while the detector of OH fluorescence at 308 -316 nm is a photomultiplier run in photon counting mode. The intensity of the fluorescent light as well as the instrument readings is directly proportional to the water vapor mixing ratio under stratospheric conditions with negligible oxygen absorption. Initially designed for rocket-borne application, FLASH has evolved into a light-weight balloon sonde (FLASH-B) for measurements in the upper troposphere and stratosphere on board meteorological and small plastic balloons. This configuration has been used in over 100 soundings at numerous tropical mid-latitude and polar locations within various international field campaigns. An airborne version of FLASH instrument is successfully utilized onboard stratospheric M55-Geophysica aircraft and tropospheric airborne laboratory YAK42-Roshydromet. The hygrometer was modified for application onboard stratospheric long-duration balloons (FLASH-LDB version). This version was successfully used onboard CNES super-pressure balloon launched from SSC Esrange in March 2007 and flown during 10 days. Special design for polar long duration balloon PoGOLite was created for testing work during polar day in June 2013. Installation and measurement peculiarities as well as observational results are presented. Observations of water vapour using FLASH-B instrument, being of high quality are rather costly as the payload recovery is often complicated and most of the time impossible. Following the goal to find a cost-efficient solution, FLASH was adapted for use onboard Unmanned Aerial Vehicles (UAV). This solution was only possible thanks to compactness and light-weight (0.5 kg) of FLASH instrument. The

  12. DISCOVERY OF UBIQUITOUS FAST-PROPAGATING INTENSITY DISTURBANCES BY THE CHROMOSPHERIC LYMAN ALPHA SPECTROPOLARIMETER (CLASP)

    International Nuclear Information System (INIS)

    Kubo, M.; Katsukawa, Y.; Suematsu, Y.; Kano, R.; Bando, T.; Narukage, N.; Ishikawa, R.; Hara, H.; Giono, G.; Tsuneta, S.; Ishikawa, S.; Shimizu, T.; Sakao, T.; Winebarger, A.; Kobayashi, K.; Cirtain, J.; Champey, P.; Auchère, F.; Bueno, J. Trujillo; Ramos, A. Asensio

    2016-01-01

    High-cadence observations by the slit-jaw (SJ) optics system of the sounding rocket experiment known as the Chromospheric Lyman Alpha Spectropolarimeter (CLASP) reveal ubiquitous intensity disturbances that recurrently propagate in either the chromosphere or the transition region or both at a speed much higher than the speed of sound. The CLASP/SJ instrument provides a time series of two-dimensional images taken with broadband filters centered on the Ly α line at a 0.6 s cadence. The multiple fast-propagating intensity disturbances appear in the quiet Sun and in an active region, and they are clearly detected in at least 20 areas in a field of view of 527″ × 527″ during the 5 minute observing time. The apparent speeds of the intensity disturbances range from 150 to 350 km s −1 , and they are comparable to the local Alfvén speed in the transition region. The intensity disturbances tend to propagate along bright elongated structures away from areas with strong photospheric magnetic fields. This suggests that the observed fast-propagating intensity disturbances are related to the magnetic canopy structures. The maximum distance traveled by the intensity disturbances is about 10″, and the widths are a few arcseconds, which are almost determined by a pixel size of 1.″03. The timescale of each intensity pulse is shorter than 30 s. One possible explanation for the fast-propagating intensity disturbances observed by CLASP is magnetohydrodynamic fast-mode waves.

  13. The Lyman alpha reference sample. II. Hubble space telescope imaging results, integrated properties, and trends

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Matthew; Östlin, Göran; Duval, Florent; Sandberg, Andreas; Guaita, Lucia; Melinder, Jens; Rivera-Thorsen, Thøger [Department of Astronomy, Oskar Klein Centre, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden); Adamo, Angela [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Schaerer, Daniel [Université de Toulouse, UPS-OMP, IRAP, F-31000 Toulouse (France); Verhamme, Anne; Orlitová, Ivana [Geneva Observatory, University of Geneva, 51 Chemin des Maillettes, CH-1290 Versoix (Switzerland); Mas-Hesse, J. Miguel; Otí-Floranes, Héctor [Centro de Astrobiología (CSIC-INTA), Departamento de Astrofísica, P.O. Box 78, E-28691 Villanueva de la Cañada (Spain); Cannon, John M.; Pardy, Stephen [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Atek, Hakim [Laboratoire dAstrophysique, École Polytechnique Fédérale de Lausanne (EPFL), Observatoire, CH-1290 Sauverny (Switzerland); Kunth, Daniel [Institut d' Astrophysique de Paris, UMR 7095, CNRS and UPMC, 98 bis Bd Arago, F-75014 Paris (France); Laursen, Peter [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Herenz, E. Christian, E-mail: matthew@astro.su.se [Leibniz-Institut für Astrophysik (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)

    2014-02-10

    We report new results regarding the Lyα output of galaxies, derived from the Lyman Alpha Reference Sample, and focused on Hubble Space Telescope imaging. For 14 galaxies we present intensity images in Lyα, Hα, and UV, and maps of Hα/Hβ, Lyα equivalent width (EW), and Lyα/Hα. We present Lyα and UV radial light profiles and show they are well-fitted by Sérsic profiles, but Lyα profiles show indices systematically lower than those of the UV (n ≈ 1-2 instead of ≳ 4). This reveals a general lack of the central concentration in Lyα that is ubiquitous in the UV. Photometric growth curves increase more slowly for Lyα than the far ultraviolet, showing that small apertures may underestimate the EW. For most galaxies, however, flux and EW curves flatten by radii ≈10 kpc, suggesting that if placed at high-z only a few of our galaxies would suffer from large flux losses. We compute global properties of the sample in large apertures, and show total Lyα luminosities to be independent of all other quantities. Normalized Lyα throughput, however, shows significant correlations: escape is found to be higher in galaxies of lower star formation rate, dust content, mass, and nebular quantities that suggest harder ionizing continuum and lower metallicity. Six galaxies would be selected as high-z Lyα emitters, based upon their luminosity and EW. We discuss the results in the context of high-z Lyα and UV samples. A few galaxies have EWs above 50 Å, and one shows f{sub esc}{sup Lyα} of 80%; such objects have not previously been reported at low-z.

  14. DISCOVERY OF UBIQUITOUS FAST-PROPAGATING INTENSITY DISTURBANCES BY THE CHROMOSPHERIC LYMAN ALPHA SPECTROPOLARIMETER (CLASP)

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, M.; Katsukawa, Y.; Suematsu, Y.; Kano, R.; Bando, T.; Narukage, N.; Ishikawa, R.; Hara, H.; Giono, G. [National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Tsuneta, S.; Ishikawa, S.; Shimizu, T.; Sakao, T. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Winebarger, A.; Kobayashi, K.; Cirtain, J. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Champey, P. [University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899 (United States); Auchère, F. [Institut d’Astrophysique Spatiale, CNRS/Univ. Paris-Sud 11, Bâtiment 121, F-91405 Orsay (France); Bueno, J. Trujillo; Ramos, A. Asensio, E-mail: masahito.kubo@nao.ac.jp [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); and others

    2016-12-01

    High-cadence observations by the slit-jaw (SJ) optics system of the sounding rocket experiment known as the Chromospheric Lyman Alpha Spectropolarimeter (CLASP) reveal ubiquitous intensity disturbances that recurrently propagate in either the chromosphere or the transition region or both at a speed much higher than the speed of sound. The CLASP/SJ instrument provides a time series of two-dimensional images taken with broadband filters centered on the Ly α line at a 0.6 s cadence. The multiple fast-propagating intensity disturbances appear in the quiet Sun and in an active region, and they are clearly detected in at least 20 areas in a field of view of 527″ × 527″ during the 5 minute observing time. The apparent speeds of the intensity disturbances range from 150 to 350 km s{sup −1}, and they are comparable to the local Alfvén speed in the transition region. The intensity disturbances tend to propagate along bright elongated structures away from areas with strong photospheric magnetic fields. This suggests that the observed fast-propagating intensity disturbances are related to the magnetic canopy structures. The maximum distance traveled by the intensity disturbances is about 10″, and the widths are a few arcseconds, which are almost determined by a pixel size of 1.″03. The timescale of each intensity pulse is shorter than 30 s. One possible explanation for the fast-propagating intensity disturbances observed by CLASP is magnetohydrodynamic fast-mode waves.

  15. The Lyman alpha reference sample. II. Hubble space telescope imaging results, integrated properties, and trends

    International Nuclear Information System (INIS)

    Hayes, Matthew; Östlin, Göran; Duval, Florent; Sandberg, Andreas; Guaita, Lucia; Melinder, Jens; Rivera-Thorsen, Thøger; Adamo, Angela; Schaerer, Daniel; Verhamme, Anne; Orlitová, Ivana; Mas-Hesse, J. Miguel; Otí-Floranes, Héctor; Cannon, John M.; Pardy, Stephen; Atek, Hakim; Kunth, Daniel; Laursen, Peter; Herenz, E. Christian

    2014-01-01

    We report new results regarding the Lyα output of galaxies, derived from the Lyman Alpha Reference Sample, and focused on Hubble Space Telescope imaging. For 14 galaxies we present intensity images in Lyα, Hα, and UV, and maps of Hα/Hβ, Lyα equivalent width (EW), and Lyα/Hα. We present Lyα and UV radial light profiles and show they are well-fitted by Sérsic profiles, but Lyα profiles show indices systematically lower than those of the UV (n ≈ 1-2 instead of ≳ 4). This reveals a general lack of the central concentration in Lyα that is ubiquitous in the UV. Photometric growth curves increase more slowly for Lyα than the far ultraviolet, showing that small apertures may underestimate the EW. For most galaxies, however, flux and EW curves flatten by radii ≈10 kpc, suggesting that if placed at high-z only a few of our galaxies would suffer from large flux losses. We compute global properties of the sample in large apertures, and show total Lyα luminosities to be independent of all other quantities. Normalized Lyα throughput, however, shows significant correlations: escape is found to be higher in galaxies of lower star formation rate, dust content, mass, and nebular quantities that suggest harder ionizing continuum and lower metallicity. Six galaxies would be selected as high-z Lyα emitters, based upon their luminosity and EW. We discuss the results in the context of high-z Lyα and UV samples. A few galaxies have EWs above 50 Å, and one shows f esc Lyα of 80%; such objects have not previously been reported at low-z.

  16. Solar activity influence on climatic variations of stratosphere and mesosphere in mid-latitudes

    International Nuclear Information System (INIS)

    Taubenheim, J.; Entzian, G.; Voncossart, G.

    1989-01-01

    The direct modulation of temperature of the mid-latitude mesosphere by the solar-cycle EUV variation, which leads to greater heat input at higher solar activity, is well established. Middle atmosphere temperature modulation by the solar cycle is independently confirmed by the variation of reflection heights of low frequency radio waves in the lower ionosphere, which are regularly monitored over about 30 years. As explained elsewhere in detail, these reflection heights depend on the geometric altitude of a certain isobaric surface (near 80 k), and on the solar ionizing Lyman-alpha radiation flux. Knowing the solar cycle variation of Lyman-alpha how much the measured reflection heights would be lowered with the transition from solar minimum to maximum can be calculated, if the vertical baric structure of the neutral atmosphere would remain unchanged. Any discrepancy between expected and observed height change must be explained by an uplifting of the isobaric level from solar minimum to maximum, caused by the temperature rise in the mesosphere. By integrating the solar cycle temperature changes over the height region of the middle atmosphere, and assuming that the lower boundary (tropopause) has no solar cycle variation, the magnitude of this uplifting can be estimated. It is given for the Lidar-derived and for the rocket-measured temperature variations. Comparison suggests that the real amplitude of the solar cycle temperature variation in the mesosphere is underestimated when using the rocket data, but probably overestimated with the Lidar data

  17. Isotope effect in the photochemical decomposition of CO{sub 2} (ice) by Lyman-{alpha} radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Chunqing; Yates, John T. Jr. [Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2013-04-21

    The photochemical decomposition of CO{sub 2}(ice) at 75 K by Lyman-{alpha} radiation (10.2 eV) has been studied using transmission infrared spectroscopy. An isotope effect in the decomposition of the CO{sub 2} molecule in the ice has been discovered, favoring {sup 12}CO{sub 2} photodecomposition over {sup 13}CO{sub 2} by about 10%. The effect is caused by electronic energy transfer from the excited CO{sub 2} molecule to the ice matrix, which favors quenching of the heavier electronically-excited {sup 13}CO{sub 2} molecule over {sup 12}CO{sub 2}. The effect is similar to the Menzel-Gomer-Redhead isotope effect in desorption from adsorbed molecules on surfaces when electronically excited. An enhancement of the rate of formation of lattice-trapped CO and CO{sub 3} species is observed for the photolysis of the {sup 12}CO{sub 2} molecule compared to the {sup 13}CO{sub 2} molecule in the ice. Only 0.5% of the primary photoexcitation results in O-CO bond dissociation to produce trapped-CO and trapped-CO{sub 3} product molecules and the majority of the electronically-excited CO{sub 2} molecules return to the ground state. Here either vibrational relaxation occurs (majority process) or desorption of CO{sub 2} occurs (minority process) from highly vibrationally-excited CO{sub 2} molecules in the ice. The observation of the {sup 12}C/{sup 13}C isotope effect in the Lyman-{alpha} induced photodecomposition of CO{sub 2} (ice) suggests that over astronomical time scales the isotope enrichment effect may distort historical information derived from isotope ratios in space wherever photochemistry can occur.

  18. Probing HeII Reionization at z>3.5 with Resolved HeII Lyman Alpha Forest Spectra

    Science.gov (United States)

    Worseck, Gabor

    2017-08-01

    The advent of GALEX and COS have revolutionized our view of HeII reionization, the final major phase transition of the intergalactic medium. COS spectra of the HeII Lyman alpha forest have confirmed with high confidence the high HeII transmission that signifies the completion of HeII reionization at z 2.7. However, the handful of z>3.5 quasars observed to date show a set of HeII transmission 'spikes' and larger regions with non-zero transmission that suggest HeII reionization was well underway by z=4. This is in striking conflict with predictions from state-of-the-art radiative transfer simulations of a HeII reionization driven by bright quasars. Explaining these measurements may require either faint quasars or more exotic sources of hard photons at z>4, with concomitant implications for HI reionization. However, many of the observed spikes are unresolved in G140L spectra and are significantly impacted by Poisson noise. Current data cannot reliably probe the ionization state of helium at z>3.5.We request 41 orbits to obtain science-grade G130M spectra of the two UV-brightest HeII-transmitting QSOs at z>3.5 to confirm and resolve their HeII transmission spikes as an unequivocal test of early HeII reionization. These spectra are complemented by recently obtained data from 8m telescopes: (1) Echelle spectra of the coeval HI Lya forest to map the underlying density field that modulates the HeII absorption, and (2) Our dedicated survey for foreground QSOs that may source the HeII transmission. Our recent HST programs revealed the only two viable targets to resolve the z>3.5 HeII Lyman alpha forest, and to conclusively solve this riddle.

  19. [O III] EMISSION AND GAS KINEMATICS IN A LYMAN-ALPHA BLOB AT z {approx} 3.1

    Energy Technology Data Exchange (ETDEWEB)

    McLinden, Emily M. [McDonald Observatory, University of Texas at Austin, Austin, TX 78712 (United States); Malhotra, Sangeeta; Rhoads, James E. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Hibon, Pascale [Gemini Observatory, La Serena (Chile); Weijmans, Anne-Marie [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Tilvi, Vithal [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States)

    2013-04-10

    We present spectroscopic measurements of the [O III] emission line from two subregions of strong Ly{alpha} emission in a radio-quiet Lyman-alpha blob (LAB). The blob under study is LAB1 at z {approx} 3.1, and the [O III] detections are from the two Lyman break galaxies (LBGs) embedded in the blob halo. The [O III] measurements were made with LUCIFER on the 8.4 m Large Binocular Telescope and NIRSPEC on 10 m Keck Telescope. Comparing the redshift of the [O III] measurements to Ly{alpha} redshifts from SAURON allows us to take a step toward understanding the kinematics of the gas in the blob. Using both LUCIFER and NIRSPEC we find velocity offsets between the [O III] and Ly{alpha} redshifts that are modestly negative or consistent with 0 km s{sup -1} in both subregions studied (ranging from -72 {+-} 42- + 6 {+-} 33 km s{sup -1}). A negative offset means Ly{alpha} is blueshifted with respect to [O III] a positive offset then implies Ly{alpha} is redshifted with respect to [O III]. These results may imply that outflows are not primarily responsible for Lyman alpha escape in this LAB, since outflows are generally expected to produce a positive velocity offset. In addition, we present an [O III] line flux upper limit on a third region of LAB1, a region that is unassociated with any underlying galaxy. We find that the [O III] upper limit from the galaxy-unassociated region of the blob is at least 1.4-2.5 times fainter than the [O III] flux from one of the LBG-associated regions and has an [O III] to Ly{alpha} ratio measured at least 1.9-3.4 times smaller than the same ratio measured from one of the LBGs.

  20. Predicting Atmospheric Ionization and Excitation by Precipitating SEP and Solar Wind Protons Measured By MAVEN

    Science.gov (United States)

    Jolitz, Rebecca; Dong, Chuanfei; Lee, Christina; Lillis, Rob; Brain, David; Curry, Shannon; Halekas, Jasper; Bougher, Stephen W.; Jakosky, Bruce

    2017-10-01

    Precipitating energetic particles ionize and excite planetary atmospheres, increasing electron content and producing aurora. At Mars, the solar wind and solar energetic particles (SEPs) can precipitate directly into the atmosphere because solar wind protons can charge exchange to become neutral and pass the magnetosheath, and SEPs are sufficiently energetic to cross the magnetosheath unchanged. We will compare ionization and Lyman alpha emission rates for solar wind and SEP protons during nominal solar activity and a CME shock front impact event on May 16 2016. We will use the Atmospheric Scattering of Protons and Energetic Neutrals (ASPEN) model to compare excitation and ionization rates by SEPs and solar wind protons currently measured by the SWIA (Solar Wind Ion Analyzer) and SEP instruments aboard the MAVEN spacecraft. Results will help quantify how SEP and solar wind protons influence atmospheric energy deposition during solar minimum.

  1. Interpreting HST observations with simulations of reionization: the ionizing photon budget and the decline of Lyman-alpha emission in z>6 dropouts

    Science.gov (United States)

    D'Aloisio, Anson

    2017-08-01

    In recent years, HST surveys such as CANDELS, HUDF, BoRG/HIPPIES, ERS, and the Frontier Fields, have made possible the first robust measurements of the rest-frame UV luminosity function of z =6-10 galaxies, spanning much of the redshift range over which reionization likely occurred. These measurements provide an estimate of the galactic ionizing photon output, addressing the critical question of whether these galaxies could have reionized the Universe. In addition, follow-up spectroscopy has measured the fraction of these galaxies that show Lyman-alpha emission. Interestingly, a dramatic decrease in this fraction above z 6 has been observed, and this evolution has (controversially) been interpreted as evidence that much of reionization happened over z=6-8 (as intergalactic neutral gas leads to large damping wings that scatter the Lyman-alpha line). The clumpiness of the IGM and how it self shields to ionizing photons impacts whether the observed population of galaxies can reionize the Universe, as well as the interpretation of the evolving Lyman-alpha emitter fraction. We propose to run fully coupled radiative-hydrodynamics simulations that are the first to resolve the evaporation of small structures by passing ionization fronts and, hence, to accurately assess the level of clumpiness and self-shielding from the IGM. Our study will nail down the clumping factor used to assess whether the observed population of galaxies can drive reionization, and it will address whether neutral self-shielding clumps in recently reionized regions can scatter galaxies' Lyman-alpha lines.

  2. NO OVERDENSITY OF LYMAN-ALPHA EMITTING GALAXIES AROUND A QUASAR AT z  ∼ 5.7

    International Nuclear Information System (INIS)

    Mazzucchelli, C.; Bañados, E.; Decarli, R.; Farina, E. P.; Venemans, B. P.; Walter, F.; Overzier, R.

    2017-01-01

    Bright quasars, observed when the universe was less than one billion years old ( z  > 5.5), are known to host massive black holes (∼10 9 M ⊙ ) and are thought to reside in the center of massive dark matter overdensities. In this picture, overdensities of galaxies are expected around high-redshift quasars. However, observations based on the detection of Lyman-break galaxies (LBGs) around these quasars do not offer a clear picture: this may be due to the uncertain redshift constraints of LBGs, which are solely selected through broadband filters. To circumvent such uncertainties, we here perform a search for Lyman-alpha emitting galaxies (LAEs) in the field of the quasar PSO J215.1512–16.0417 at z  ∼ 5.73, through narrowband deep imaging with FORS2 at the Very Large Telescope. We study an area of 37 arcmin 2 , i.e., ∼206 comoving Mpc 2 at the redshift of the quasar. We find no evidence of an overdensity of LAEs in the quasar field with respect to blank-field studies. Possible explanations for these findings may be that our survey volume is too small, or that the strong ionizing radiation from the quasar hinders galaxy formation in its immediate proximity. Another possibility is that these quasars are not situated in the dense environments predicted by some simulations.

  3. NO OVERDENSITY OF LYMAN-ALPHA EMITTING GALAXIES AROUND A QUASAR AT z  ∼ 5.7

    Energy Technology Data Exchange (ETDEWEB)

    Mazzucchelli, C.; Bañados, E.; Decarli, R.; Farina, E. P.; Venemans, B. P.; Walter, F. [Max Planck Institute für Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Overzier, R. [Observatório Nacional, Rua José Cristino, 77. CEP 20921-400, São Cristóvão, Rio de Janeiro-RJ (Brazil)

    2017-01-01

    Bright quasars, observed when the universe was less than one billion years old ( z  > 5.5), are known to host massive black holes (∼10{sup 9} M {sub ⊙}) and are thought to reside in the center of massive dark matter overdensities. In this picture, overdensities of galaxies are expected around high-redshift quasars. However, observations based on the detection of Lyman-break galaxies (LBGs) around these quasars do not offer a clear picture: this may be due to the uncertain redshift constraints of LBGs, which are solely selected through broadband filters. To circumvent such uncertainties, we here perform a search for Lyman-alpha emitting galaxies (LAEs) in the field of the quasar PSO J215.1512–16.0417 at z  ∼ 5.73, through narrowband deep imaging with FORS2 at the Very Large Telescope. We study an area of 37 arcmin{sup 2}, i.e., ∼206 comoving Mpc{sup 2} at the redshift of the quasar. We find no evidence of an overdensity of LAEs in the quasar field with respect to blank-field studies. Possible explanations for these findings may be that our survey volume is too small, or that the strong ionizing radiation from the quasar hinders galaxy formation in its immediate proximity. Another possibility is that these quasars are not situated in the dense environments predicted by some simulations.

  4. Far-UV Spectral Mapping of Lunar Composition, Porosity, and Space Weathering: LRO Lyman Alpha Mapping Project (LAMP)

    Science.gov (United States)

    Retherford, K. D.; Greathouse, T. K.; Mandt, K.; Gladstone, R.; Liu, Y.; Hendrix, A. R.; Hurley, D.; Cahill, J. T.; Stickle, A. M.; Egan, A.; Kaufmann, D. E.; Grava, C.; Pryor, W. R.

    2016-12-01

    Far ultraviolet reflectance measurements of the Moon, icy satellites, comets, and asteroids obtained within the last decade have ushered in a new era of scientific advancement for UV surface investigations. The Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) has demonstrated an innovative nightside observing technique, putting a new light on permanently shadowed regions (PSRs) and other features on the Moon. Dayside far-UV albedo maps complement the nightside data, and LRO's polar orbit and high data downlink capabilities enable searches for diurnal variations in spectral signals. We'll discuss the strengths of the far-UV reflectance imaging spectroscopy technique with respect to several new LAMP results. Detections of water frost and hydration signatures near 165 nm, for example, provide constraints on composition that complement infrared spectroscopy, visible imaging, neutron spectroscopy, radar, and other techniques. At far-UV wavelengths a relatively blue spectral slope is diagnostic of space weathering, which is opposite of the spectral reddening indicator of maturity at wavelengths longward of 180 nm. By utilizing natural diffuse illumination sources on the nightside the far-UV technique is able to identify relative increases in porosity within the PSRs, and provides an additional tool for determining relative surface ages. Prospects for future studies are further enabled by a new, more sensitive dayside operating mode enacted during the present LRO mission extension.

  5. First Results from the Lyman Alpha Galaxies in the Epoch of Reionization (LAGER) Survey: Cosmological Reionization at z ∼ 7

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhen-Ya; Jiang, Chunyan [CAS Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Shanghai 200030 (China); Wang, Junxian; Hu, Weida; Kong, Xu [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Rhoads, James; Malhotra, Sangeeta; Gonzalez, Alicia [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Infante, Leopoldo; Galaz, Gaspar; Barrientos, L. Felipe [Institute of Astrophysics and Center for Astroengineering, Pontificia Universidad Catolica de Chile, Santiago 7820436 (Chile); Walker, Alistair R. [Cerro Tololo Inter-American Observatory, Casilla 603, La Serena (Chile); Jiang, Linhua [The Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Hibon, Pascale [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Santiago (Chile); Zheng, XianZhong, E-mail: zhengzy@shao.ac.cn, E-mail: linfante@astro.puc.cl, E-mail: jxw@ustc.edu.cn, E-mail: Sangeeta.Malhotra@asu.edu, E-mail: James.Rhoads@asu.edu [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2017-06-20

    We present the first results from the ongoing Lyman Alpha Galaxies in the Epoch of Reionization (LAGER) project, which is the largest narrowband survey for z ∼ 7 galaxies to date. Using a specially built narrowband filter NB964 for the superb large-area Dark Energy Camera (DECam) on the NOAO/CTIO 4 m Blanco telescope, LAGER has collected 34 hr NB964 narrowband imaging data in the 3 deg{sup 2} COSMOS field. We have identified 23 Ly α Emitter candidates at z = 6.9 in the central 2-deg{sup 2} region, where DECam and public COSMOS multi-band images exist. The resulting luminosity function (LF) can be described as a Schechter function modified by a significant excess at the bright end (four galaxies with L {sub Lyα∼} 10{sup 43.4±0.2} erg s{sup −1}). The number density at L {sub Ly} {sub α} ∼ 10{sup 43.4±0.2} erg s{sup −1} is little changed from z = 6.6, while at fainter L {sub Lyα} it is substantially reduced. Overall, we see a fourfold reduction in Ly α luminosity density from z = 5.7 to z = 6.9. Combined with a more modest evolution of the continuum UV luminosity density, this suggests a factor of ∼3 suppression of Ly α by radiative transfer through the z ∼ 7 intergalactic medium (IGM). It indicates an IGM neutral fraction of x {sub Hi} ∼ 0.4–0.6 (assuming Ly α velocity offsets of 100–200 km s{sup −1}). The changing shape of the Ly α LF between z ≲ 6.6 and z = 6.9 supports the hypothesis of ionized bubbles in a patchy reionization at z ∼ 7.

  6. Performance characterization of UV science cameras developed for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP)

    Science.gov (United States)

    Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, D.; Beabout, B.; Stewart, M.

    2014-07-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-α and to detect the Hanle effect in the line core. Due to the nature of Lyman-α polarizationin the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1% in the line core. CLASP is a dual-beam spectro-polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1% polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. The CLASP cameras were designed to operate with ≤ 10 e-/pixel/second dark current, ≤ 25 e- read noise, a gain of 2.0 +- 0.5 and ≤ 1.0% residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; dark current, read noise, camera gain and residual non-linearity.

  7. Analysis of coronal H I Lyman alpha measurements from a rocket flight on 1979 April 13

    International Nuclear Information System (INIS)

    Withbroe, G.L.; Kohl, J.L.; Weiser, H.; Noci, G.; Munro, R.H.

    1982-01-01

    Measurements of the profiles of resonantly scattered hydrogen Lyman-α coronal radiation have been used to determine hydrogen kinetic temperatures from 1.5 to 4 R/sub sun/ from Sun center in a quiet region of the corona. Proton temperatures derived from the line widths decrease with height from 2.6 x 10 6 K at r = 1.5 R/sub sun/ to 1.2 x 10 6 K at r = 4 R/sub sun/. These measurements combined with temperatures for lower heights determined from earlier Skylab and eclipse data suggest that there is a maximum in the quiet coronal proton temperature at about 1.5 R/sub sun/. Comparison of measured Lyman-α intensities with those calculated using a representative model for the radial variation of the coronal electron density provides information on the magnitude of the electron temperature gradient and suggests that the solar wind flow was subsonic for r<4 R/sub sun/ in the observed region. Comparison of the measured kinetic temperatures to the predictions of a simple two fluid model suggests that there is a small amount of proton heating and/or a nonthermal contribution to the motions of coronal protons between 1.5 and 4 R/sub sun/

  8. Lyman-alpha transit observations of the warm rocky exoplanet GJ1132b

    Science.gov (United States)

    Waalkes, William; Berta-Thompson, Zachory K.; Charbonneau, David; Irwin, Jonathan; Newton, Elisabeth; Dittmann, Jason; Bourrier, Vincent; Ehrenreich, David; Kempton, Eliza; Will

    2018-06-01

    GJ1132b is one of the few known Earth-sized planets, and at 12pc away it is also one of the closest known transiting planets. With an equilibrium temperature of 500 K, this planet is too hot to be habitable but we can use it to learn about the presence and volatile content of rocky planet atmospheres around M dwarf stars. Using Hubble STIS spectra obtained during primary transit, we search for a Lyman-α transit. If we were to observe a deep Lyman-α transit, that would indicate the presence of a neutral hydrogen envelope flowing from GJ1132b. On the other hand, ruling out deep absorption from neutral hydrogen may indicate that this planet has either retained its volatiles or lost them very early in the star’s life. We carry out this analysis by extracting 1D spectra from the STIS pipeline, splitting the time-tagged spectra into higher resolution samples, and producing light curves of the red and blue wings of the Lyman-α line. We fit for the baseline stellar flux and transit depths in order to constrain the characteristics of the cloud of neutral hydrogen gas that may surround the planet. We do not conclusively detect a transit but the results provide an upper limit for the transit depth. We also analyze the stellar variability and Lyman-α spectrum of GJ1132, a slowly-rotating 0.18 solar mass M dwarf with previously uncharacterized UV activity. Understanding the role that UV variability plays in planetary atmospheres and volatile retention is crucial to assess atmospheric evolution and the habitability of cooler rocky planets.

  9. Direct solar-pumped lasers

    Science.gov (United States)

    Lee, J. H.; Shiu, Y. J.; Weaver, W. R.

    1980-01-01

    The feasibility of direct solar pumping of an iodine photodissociation laser at lambda = 1.315 microns was investigated. Threshold inversion density and effect of elevated temperature (up to 670 K) on the laser output were measured. These results and the concentration of solar radiation required for the solar pumped iodine laser are discussed.

  10. Energy balance in solar and stellar chromospheres

    Science.gov (United States)

    Avrett, E. H.

    1981-01-01

    Net radiative cooling rates for quiet and active regions of the solar chromosphere and for two stellar chromospheres are calculated from corresponding atmospheric models. Models of chromospheric temperature and microvelocity distributions are derived from observed spectra of a dark point within a cell, the average sun and a very bright network element on the quiet sun, a solar plage and flare, and the stars Alpha Boo and Lambda And. Net radiative cooling rates due to the transitions of various atoms and ions are then calculated from the models as a function of depth. Large values of the net radiative cooling rate are found at the base of the chromosphere-corona transition region which are due primarily to Lyman alpha emission, and a temperature plateau is obtained in the transition region itself. In the chromospheric regions, the calculated cooling rate is equal to the mechanical energy input as a function of height and thus provides a direct constraint on theories of chromospheric heating.

  11. The Development of Replicated Optical Integral Field Spectrographs and their Application to the Study of Lyman-alpha Emission at Moderate Redshifts

    Science.gov (United States)

    Chonis, Taylor Steven

    In the upcoming era of extremely large ground-based astronomical telescopes, the design of wide-field spectroscopic survey instrumentation has become increasingly complex due to the linear growth of instrument pupil size with telescope diameter for a constant spectral resolving power. The upcoming Visible Integral field Replicable Unit Spectrograph (VIRUS), a baseline array of 150 copies of a simple integral field spectrograph that will be fed by 3:36 x 104 optical fibers on the upgraded Hobby-Eberly Telescope (HET) at McDonald Observatory, represents one of the first uses of large-scale replication to break the relationship between instrument pupil size and telescope diameter. By dividing the telescope's field of view between a large number of smaller and more manageable instruments, the total information grasp of a traditional monolithic survey spectrograph can be achieved at a fraction of the cost and engineering complexity. To highlight the power of this method, VIRUS will execute the HET Dark Energy Experiment (HETDEX) and survey & 420 degrees2 of sky to an emission line flux limit of ˜ 10-17 erg s-1 cm -2 to detect ˜ 106 Lyman-alpha emitting galaxies (LAEs) as probes of large-scale structure at redshifts of 1:9 production of the suite of volume phase holographic (VPH) diffraction gratings for VIRUS is presented, which highlights the challenge and success associated with producing of a very large number of highly customized optical elements whose performance is crucial to meeting the efficiency requirements of the spectrograph system. To accommodate VIRUS, the HET is undergoing a substantial wide-field upgrade to increase its field of view to 22' in diameter. The previous HET facility Low Resolution Spectrograph (LRS), which was directly fed by the telescope's previous spherical aberration corrector, must be removed from the prime focus instrument package as a result of the telescope upgrades and instead be fiber-coupled to the telescope focal plane. For a

  12. Mechanism and computational model for Lyman-{alpha}-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas

    Energy Technology Data Exchange (ETDEWEB)

    Louchev, Oleg A.; Saito, Norihito; Wada, Satoshi [Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Bakule, Pavel [STFC, ISIS Facility, Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX (United Kingdom); Yokoyama, Koji [Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Advanced Meson Science Laboratory, RIKEN Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan); Ishida, Katsuhiko; Iwasaki, Masahiko [Advanced Meson Science Laboratory, RIKEN Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan)

    2011-09-15

    We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-{alpha} (Ly-{alpha}) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-{alpha} generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-{alpha} radiation generation can achieve a value of {approx}5x10{sup -4} which is restricted by the total combined absorption of the fundamental and generated radiation.

  13. Response of noctilucent cloud brightness to daily solar variations

    Science.gov (United States)

    Dalin, P.; Pertsev, N.; Perminov, V.; Dubietis, A.; Zadorozhny, A.; Zalcik, M.; McEachran, I.; McEwan, T.; Černis, K.; Grønne, J.; Taustrup, T.; Hansen, O.; Andersen, H.; Melnikov, D.; Manevich, A.; Romejko, V.; Lifatova, D.

    2018-04-01

    For the first time, long-term data sets of ground-based observations of noctilucent clouds (NLC) around the globe have been analyzed in order to investigate a response of NLC to solar UV irradiance variability on a day-to-day scale. NLC brightness has been considered versus variations of solar Lyman-alpha flux. We have found that day-to-day solar variability, whose effect is generally masked in the natural NLC variability, has a statistically significant effect when considering large statistics for more than ten years. Average increase in day-to-day solar Lyman-α flux results in average decrease in day-to-day NLC brightness that can be explained by robust physical mechanisms taking place in the summer mesosphere. Average time lags between variations of Lyman-α flux and NLC brightness are short (0-3 days), suggesting a dominant role of direct solar heating and of the dynamical mechanism compared to photodissociation of water vapor by solar Lyman-α flux. All found regularities are consistent between various ground-based NLC data sets collected at different locations around the globe and for various time intervals. Signatures of a 27-day periodicity seem to be present in the NLC brightness for individual summertime intervals; however, this oscillation cannot be unambiguously retrieved due to inevitable periods of tropospheric cloudiness.

  14. Direct solar energy and its applications

    International Nuclear Information System (INIS)

    Hamdani, A.J.

    1997-01-01

    Solar energy, which was a utopian dream forty years ago, is today already on the market, particularly for specialized uses and in remote areas. Even solar cells are now on the eve of becoming economically competitive. After a brief account of solar-cell theory, this paper gives the essential details of Photovoltaic Module Manufacturing Technologies, Single Crystal Technology, Fabrication of Wafers, Fabrication of Solar Cell, Photovoltaic Module, Multi Crystalline Silicon, Amorphous Silicon Cell. Semi-conductor based Thin-Film Technology (other than silicon), Copper-Indium Di selenide (IS), Gallium Arsenide, Multi-Junction Devices, as well as Technologies for Improving Conversion Efficiencies, Criteria for high-efficiency Cells and Module Fabrication. It concludes with a section on Direct Utilisation of solar energy, in which a brief description is presented on Solar Thermal Devices, Solar Water Heaters, Calculating hot-water requirements, Solar Stills, Solar Drying, Concentrator Collectors and, finally Measurement of the Solar Resource. At the end, there is a useful Appendix on World-Wide Photovoltaic Cell/Module Manufacturing Capacity Expansion Profile. (author)

  15. A comparison of photospheric electric current and ultraviolet and X-ray emission in a solar active region

    Science.gov (United States)

    Haisch, B. M.; Bruner, M. E.; Hagyard, M. J.; Bonnet, R. M.

    1986-01-01

    This paper presents an extensive set of coordinated observations of a solar active region, taking into account spectroheliograms obtained with the aid of the Solar Maximum Mission (SMM) Ultraviolet Spectrometer Polarimeter (UVSP) instrument, SMM soft X-ray polychromator (XRP) raster maps, and high spatial resolution ultraviolet images of the sun in Lyman-alpha and in the 1600 A continuum. These data span together the upper solar atmosphere from the temperature minimum to the corona. The data are compared to maps of the inferred photospheric electric current derived from the Marshall Space Flight Center (MSFC) vector magnetograph observations. Some empirical correlation is found between regions of inferred electric current density and the brightest features in the ultraviolet continuum and to a lesser extent those seen in Lyman-alpha within an active region.

  16. Comparison of photospheric electric current and ultraviolet and x-ray emission in a solar active region

    International Nuclear Information System (INIS)

    Haisch, B.M.; Bruner, M.E.; Hagyard, M.J.; Bonnet, R.M.; NASA, Marshall Space Flight Center, Huntsville, AL; ESA, Paris, France)

    1986-01-01

    This paper presents an extensive set of coordinated observations of a solar active region, taking into account spectroheliograms obtained with the aid of the Solar Maximum Mission (SMM) Ultraviolet Spectrometer Polarimeter (UVSP) instrument, SMM soft x-ray polychromator (XRP) raster maps, and high spatial resolution ultraviolet images of the sun in Lyman-alpha and in the 1600 A continuum. These data span together the upper solar atmosphere from the temperature minimum to the corona. The data are compared to maps of the inferred photospheric electric current derived from the Marshall Space Flight Center (MSFC) vector magnetograph observations. Some empirical correlation is found between regions of inferred electric current density and the brightest features in the ultraviolet continuum and to a lesser extent those seen in Lyman-alpha within an active region. 29 references

  17. Direct solar-pumped iodine laser amplifier

    Science.gov (United States)

    Han, Kwang S.

    1987-01-01

    This semiannual progress report covers the period from March 1, 1987 to September 30, 1987 under NASA grant NAG1-441 entitled 'Direct solar-pumped iodine laser amplifier'. During this period Nd:YAG and Nd:Cr:GSGG crystals have been tested for the solar-simulator pumped cw laser, and loss mechanisms of the laser output power in a flashlamp-pumped iodine laser also have been identified theoretically. It was observed that the threshold pump-beam intensities for both Nd:YAG and Nd:Cr:GSGG crystals were about 1000 solar constants, and the cw laser operation of the Nd:Cr:GSGG crystal was more difficult than that of the Nd:YAG crystal under the solar-simulator pumping. The possibility of the Nd:Cr:GSGG laser operation with a fast continuously chopped pumping was also observed. In addition, good agreement between the theoretical calculations and the experimental data on the loss mechanisms of a flashlamp-pumped iodine laser at various fill pressures and various lasants was achieved.

  18. Signature of open magnetic field lines in the extended solar corona and of solar wind acceleration

    Science.gov (United States)

    Antonucci, E.; Giordano, S.; Benna, C.; Kohl, J. L.; Noci, G.; Michels, J.; Fineschi, S.

    1997-01-01

    The observations carried out with the ultraviolet coronagraph spectrometer onboard the Solar and Heliospheric Observatory (SOHO) are discussed. The purpose of the observations was to determine the line of sight and radial velocity fields in coronal regions with different magnetic topology. The results showed that the regions where the high speed solar wind flows along open field lines are characterized by O VI 1032 and HI Lyman alpha 1216 lines. The global coronal maps of the line of sight velocity were reconstructed. The corona height, where the solar wind reaches 100 km/s, was determined.

  19. Polarization Calibration of the Chromospheric Lyman-Alpha SpectroPolarimeter for a 0.1% Polarization Sensitivity in the VUV Range. Part II: In-Flight Calibration

    Czech Academy of Sciences Publication Activity Database

    Giono, G.; Ishikawa, R.; Narukage, N.; Kano, R.; Katsukawa, Y.; Kubo, M.; Ishikawa, S.; Bando, T.; Hara, H.; Suematsu, Y.; Winebarger, A.; Kobayashi, K.; Auchere, F.; Trujillo Bueno, J.; Tsuneta, S.; Shimizu, T.; Sakao, T.; Cirtain, J.; Champey, P.; Asensio Ramos, A.; Štěpán, Jiří; Belluzzi, L.; Sainz, R.M.; de Pontieu, B.; Ichimoto, K.; Carlsson, M.; Casini, R.; Goto, M.

    2017-01-01

    Roč. 292, č. 4 (2017), 57/1-57/19 ISSN 0038-0938 R&D Projects: GA ČR(CZ) GA16-16861S Institutional support: RVO:67985815 Keywords : solar transition region * ly-alpha * magnetohydrodynamic model Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 2.682, year: 2016

  20. A New Population of High-z, Dusty Lyman-alpha Emitters and Blobs Discovered by WISE: Feedback Caught in the Act?

    Science.gov (United States)

    Bridge, Carrie R.; Blain, Andrew; Borys, Colin J. K.; Petty, Sara; Benford, Dominic; Eisenhardt, Peter; Farrah, Duncan; Griffith, Roger, L.; Jarrett, Tom; Lonsdale, Carol; hide

    2013-01-01

    By combining data from the NASA Wide-field Infrared Survey Explorer (WISE) mission with optical spectroscopy from the W. M. Keck telescope, we discover a mid-IR color criterion that yields a 78% success rate in identifying rare, typically radio-quiet, 1.6 approx. 10(exp 13)-10(exp 14) Solar L) and have warm colors. They are typically more luminous and warmer than other dusty, z approx.. 2 populations such as submillimeter-selected galaxies and dust-obscured galaxies. These traits are commonly associated with the dust being illuminated by intense active galactic nucleus activity. We hypothesize that the combination of spatially extended Ly-alpha, large amounts of warm IR-luminous dust, and rarity (implying a short-lived phase) can be explained if the galaxies are undergoing brief, intense "feedback" transforming them from an extreme dusty starburst/QSO into a mature galaxy.

  1. Series-parallel method of direct solar array regulation

    Science.gov (United States)

    Gooder, S. T.

    1976-01-01

    A 40 watt experimental solar array was directly regulated by shorting out appropriate combinations of series and parallel segments of a solar array. Regulation switches were employed to control the array at various set-point voltages between 25 and 40 volts. Regulation to within + or - 0.5 volt was obtained over a range of solar array temperatures and illumination levels as an active load was varied from open circuit to maximum available power. A fourfold reduction in regulation switch power dissipation was achieved with series-parallel regulation as compared to the usual series-only switching for direct solar array regulation.

  2. Direct solar-pumped iodine laser amplifier

    Science.gov (United States)

    Han, Kwang S.; Hwang, In Heon

    1990-01-01

    The optimum conditions of a solar pumped iodine laser are found in this research for the case of a continuous wave operation and a pulsed operation. The optimum product of the pressure(p) inside the laser tube and the tube diameter(d) was pd=40 approx. 50 torr-cm on the contrary to the case of a high intensity flashlamp pumped iodine laser where the optimum value of the product is known to be pd=150 torr-cm. The pressure-diameter product is less than 1/3 of that of the high power iodine laser. During the research period, various laser materials were also studied for solar pumping. Among the laser materials, Nd:YAG is found to have the lowest laser threshold pumping intensity of about 200 solar constant. The Rhodamine 6G was also tested as the solar pumped laser material. The threshold pumping power was measured to be about 20,000 solar constant. The amplification experiment for a continuously pumped iodine laser amplifier was performed using Vortek solar simulator and the amplification factors were measured for single pass amplification and triple pass amplification of the 15 cm long amplifier tube. The amplification of 5 was obtained for the triple pass amplification.

  3. Approach to interior design for passive direct gain solar homes

    Energy Technology Data Exchange (ETDEWEB)

    Kachadorian, C.C.

    1980-01-01

    In response to requests from buyers and builders of direct gain passive solar homes interior design criteria either specific to, or emphasized by, passive solar buildings are investigated. Problems of high sunlight penetration, secondary illumination, material selection, sound control and psychology are approached. Material deterioration, fading, glare, noise, and a sense of spacial confinement can be minimized, contributing to the appeal and saleability of passive solar homes.

  4. Heat Pumps With Direct Expansion Solar Collectors

    Science.gov (United States)

    Ito, Sadasuke

    In this paper, the studies of heat pump systems using solar collectors as the evaporators, which have been done so far by reserchers, are reviwed. Usually, a solar collector without any cover is preferable to one with ac over because of the necessity of absorbing heat from the ambient air when the intensity of the solar energy on the collector is not enough. The performance of the collector depends on its area and the intensity of the convective heat transfer on the surface. Fins are fixed on the backside of the collector-surface or on the tube in which the refrigerant flows in order to increase the convective heat transfer. For the purpose of using a heat pump efficiently throughout year, a compressor with variable capacity is applied. The solar assisted heat pump can be used for air conditioning at night during the summer. Only a few groups of people have studied cooling by using solar assisted heat pump systems. In Japan, a kind of system for hot water supply has been produced commercially in a company and a kind of system for air conditioning has been installed in buildings commercially by another company.

  5. Isolating the Lyman alpha forest BAO anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Evslin, Jarah, E-mail: jarah@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, NanChangLu 509, Lanzhou 730000 (China)

    2017-04-01

    A 2.5-3σ discrepancy has been reported between the baryonic acoustic oscillation peak (BAO) in the Lyman α forest at z ∼ 2.34 and the best fit Planck ΛCDM cosmology. To isolate the origin of the tension, we consider unanchored BAO, in which the standard BAO ruler is not calibrated, eliminating any dependence on cosmology before redshift z ∼ 2.34. We consider BOSS BAO measurements at z ∼ 0.32, 0.57 and 2.34, using the full 2-dimensional constraints on the angular and line of sight BAO scale, as well as isotropic BAO measurements by 6dF and SDSS at z ∼ 0.106 and z ∼ 0.15. We find that the z >0.43 data alone is in 2.9σ of tension with ΛCDM with or without the Planck best fit values of the mass fraction Ω {sub m} and the BAO scale r {sub d} H {sub 0}, indicating that the tension arises not from the ΛCDM parameters but from the dark energy evolution itself at 0.57< z <2.34. This conclusion is supported when the acoustic scale measured by the CMB is included, which further increases the tension and excludes a solution with a constant dark energy equation of state. Including the low z BAO data, which is itself consistent with ΛCDM, reduces the tension to just over 2σ, however in this case a CPL parametrization of the dark energy evolution yields only a modest improvement.

  6. Lyman Alpha Searches at Redshift Z>7

    Science.gov (United States)

    Willis, Jon

    2007-05-01

    The ZEN survey is a narrow J-band survey for Ly-alpha emitting galaxies at z > 7. I will briefly review the pros and cons of narrow band observations before summarising the ZEN1 and ZEN2 searches based upon deep ISAAC pointings. I will then present ZEN3, consisting of wide field, narrow band observations of two fields using the CFHT WIRCam facility. I will conclude by reviewing the current sample of candidates and what we have learned about the z > 7 Ly-alpha emitting population.

  7. New directions for space solar power

    Science.gov (United States)

    Mankins, John C.

    2009-07-01

    Several of the central issues associated with the eventual realization of the vision of solar power from space for terrestrial markets resolve around the expect costs associated with the assembly, inspection, maintenance and repair of future solar power satellite (SPS) stations. In past studies (for example, NASA's "Fresh Look Study", c. 1995-1997) efforts were made to reduce both the scale and mass of large, systems-level interfaces (e.g., the power management and distribution (PMAD) system) and on-orbit fixed infrastructures through the use of modular systems strategies. These efforts have had mixed success (as reflected in the projected on-orbit mass of various systems concepts. However, the author remains convinced of the importance of modular strategies for exceptionally large space systems in eventually realizing the vision of power from space. This paper will introduce some of the key issues associated with cost-competitive space solar power in terrestrial markets. It will examine some of the relevant SPS concepts and will assess the 'pros and cons' of each in terms of space assembly, maintenance and servicing (SAMS) requirements. The paper discusses at a high level some relevant concepts and technologies that may play r role in the eventual, successful resolution of these challenges. The paper concludes with an example of the kind of novel architectural approach for space solar power that is needed.

  8. Direct solar-pumped iodine laser amplifier

    Science.gov (United States)

    Han, Kwang S.; Hwang, In Heon; Kim, Khong Hon; Stock, Larry V.

    1988-01-01

    A XeCl laser pumped iodine laser oscillator was developed which will be incorporated into the Master Oscillator Power Amplifier (MOPA) system. The developed XeCl laser produces output energy of about 60 mJ per pulse. The pulse duration was about 10 nsec. The kinetic model for the solar-pumped laser was refined and the algorithm for the calculation of a set of rate equations was improved to increase the accuracy and the efficiency of the calculation. The improved algorithm was applied to explain the existing experimental data taken from a flashlamp pumped iodine laser for three kinds of lasants, i-C3F7I, n-C4F9I, and t-C4F9I. Various solid laser materials were evaluated for solar-pumping. The materials studied were Nd:YAG, Nd:YLF, and Cr:Nd:GSGG crystals. The slope efficiency of 0.17 percent was measured for the Nd:YLF near the threshold pump intensity which was 211 solar constants (29W/sq cm). The threshold pump intensity of the Nd:YAG was measured to be 236 solar constants (32W/sq cm) and the near-threshold slope efficiency was 0.12 percent. True CW laser operation of Cr:Nd:GSGG was possible only at pump intensities less than or equal to 1,500 solar constants (203 W/sq cm). This fact was attributed to the high thermal focusing effect of the Cr:Nd:GSGG rod.

  9. Correlation of total, diffuse, and direct solar radiation

    Science.gov (United States)

    Buyco, E. H.; Namkoong, D.

    1977-01-01

    Present requirements for realistic solar energy system evaluations necessitate a comprehensive body of solar-radition data. The data should include both diffuse and direct solar radiation as well as their total on an hourly (or shorter) basis. In general, however, only the total solar radiation values were recorded. This report presents a correlation that relates the diffuse component of an hourly total solar radiation value to the total radiation ratio of the maximum value attainable. The data used were taken at the Blue Hill Observatory in Milton, Massachusetts, for the period 1952. The relation - in the form of the data plots - can be used in situations in which only the hourly total radiation data are available but the diffuse component is desired.

  10. Accurate measurement of directional emittance of solar energy materials

    NARCIS (Netherlands)

    Nijnatten, van P.A.; Hugo-Le Gof, A.; Granqvist, C.-G.; Lampert, C.M.

    1992-01-01

    Directional emittance plays an important role in the calculation of radiative heat exchange. It partly determines the thermal insulation of single and multiple glazing and the efficiency of solar collectors. An emissiometer has been designed and built, capable for measurements of the directional

  11. Design of direct solar PV driven air conditioner

    KAUST Repository

    Huang, Bin-Juine

    2015-12-05

    © 2015 Elsevier Ltd. Solar air conditioning system directly driven by stand-alone solar PV is studied. The air conditioning system will suffer from loss of power if the solar PV power generation is not high enough. It requires a proper system design to match the power consumption of air conditioning system with a proper PV size. Six solar air conditioners with different sizes of PV panel and air conditioners were built and tested outdoors to experimentally investigate the running probabilities of air conditioning at various solar irradiations. It is shown that the instantaneous operation probability (OPB) and the runtime fraction (RF) of the air conditioner are mainly affected by the design parameter rpL (ratio of maximum PV power to load power). The measured OPB is found to be greater than 0.98 at instantaneous solar irradiation IT > 600 W m-2 if rpL > 1.71 RF approaches 1.0 (the air conditioner is run in 100% with solar power) at daily-total solar radiation higher than 13 MJ m-2 day-1, if rpL > 3.

  12. A comparative study of direct and indirect solar drying of mango ...

    African Journals Online (AJOL)

    A comparative study of direct and indirect solar drying of mango. ... Thus, indirect solar dryer was found to be suitable for industrial or semi industrial mango drying, whereas direct solar dryer was appropriate to a family ... HOW TO USE AJOL.

  13. Estimating hourly direct and diffuse solar radiation for the compilation of solar radiation distribution maps

    International Nuclear Information System (INIS)

    Ueyama, H.

    2005-01-01

    This paper presents a new method for estimating hourly direct and diffuse solar radiation. The essence of the method is the estimation of two important factors related to solar radiation, atmospheric transmittance and a dimensionless parameter, using empirical and physical equations and data from general meteorological observation stations. An equation for atmospheric transmittance of direct solar radiation and a dimensionless parameter representing diffuse solar radiation are developed. The equation is based on multiple regression analysis and uses three parameters as explanatory variates: calculated hourly extraterrestrial solar radiation on a horizontal plane, observed hourly sunshine duration and hourly precipitation as observed at a local meteorological observatory. The dimensionless parameter for estimating a diffuse solar radiation is then determined by linear least squares using observed hourly solar radiation at a local meteorological observatory. The estimated root mean square error (RMSE) of hourly direct and diffuse solar radiation is about 0.0-0.2 MJ¥m(-2)¥h(-1) in each mean period. The RMSE of the ten-day and monthly means of these quantities is about 0.0-0.2 MJ¥m(-2)¥h(-1), based on comparisons with AMeDAS station data, located at a distance of 6 km

  14. Near-term Forecasting of Solar Total and Direct Irradiance for Solar Energy Applications

    Science.gov (United States)

    Long, C. N.; Riihimaki, L. D.; Berg, L. K.

    2012-12-01

    Integration of solar renewable energy into the power grid, like wind energy, is hindered by the variable nature of the solar resource. One challenge of the integration problem for shorter time periods is the phenomenon of "ramping events" where the electrical output of the solar power system increases or decreases significantly and rapidly over periods of minutes or less. Advance warning, of even just a few minutes, allows power system operators to compensate for the ramping. However, the ability for short-term prediction on such local "point" scales is beyond the abilities of typical model-based weather forecasting. Use of surface-based solar radiation measurements has been recognized as a likely solution for providing input for near-term (5 to 30 minute) forecasts of solar energy availability and variability. However, it must be noted that while fixed-orientation photovoltaic panel systems use the total (global) downwelling solar radiation, tracking photovoltaic and solar concentrator systems use only the direct normal component of the solar radiation. Thus even accurate near-term forecasts of total solar radiation will under many circumstances include inherent inaccuracies with respect to tracking systems due to lack of information of the direct component of the solar radiation. We will present examples and statistical analyses of solar radiation partitioning showing the differences in the behavior of the total/direct radiation with respect to the near-term forecast issue. We will present an overview of the possibility of using a network of unique new commercially available total/diffuse radiometers in conjunction with a near-real-time adaptation of the Shortwave Radiative Flux Analysis methodology (Long and Ackerman, 2000; Long et al., 2006). The results are used, in conjunction with persistence and tendency forecast techniques, to provide more accurate near-term forecasts of cloudiness, and both total and direct normal solar irradiance availability and

  15. Rocket photographs of fine structure and wave patterns in the solar temperature minimum

    Science.gov (United States)

    Bonnet, R. M.; Decaudin, M.; Foing, B.; Bruner, M.; Acton, L. W.; Brown, W. A.

    1982-01-01

    A new series of high resolution pictures of the sun has been obtained during the second flight of the Transition Region Camera which occurred on September 23, 1980. The qualitative analysis of the results indicates that a substantial portion of the solar surface at the temperature minimum radiates in non-magnetic regions and from features below 1 arcsec in size. Wave patterns are observed on the 160 nm temperature minimum pictures. They are absent on the Lyman alpha pictures. Their physical characteristics are compatible with those of gravitational and acoustic waves generated by exploding granules.

  16. Direct solar pumping of semiconductor lasers: A feasibility study

    Science.gov (United States)

    Anderson, Neal G.

    1992-01-01

    This report describes results of NASA Grant NAG-1-1148, entitled Direct Solar Pumping of Semiconductor Lasers: A Feasibility Study. The goals of this study were to provide a preliminary assessment of the feasibility of pumping semiconductor lasers in space with directly focused sunlight and to identify semiconductor laser structures expected to operate at the lowest possible focusing intensities. It should be emphasized that the structures under consideration would provide direct optical-to-optical conversion of sunlight into laser light in a single crystal, in contrast to a configuration consisting of a solar cell or storage battery electrically pumping a current injection laser. With external modulation, such lasers could perhaps be efficient sources for intersatellite communications. We proposed specifically to develop a theoretical model of semiconductor quantum-well lasers photopumped by a broadband source, test it against existing experimental data where possible, and apply it to estimating solar pumping requirements and identifying optimum structures for operation at low pump intensities. These tasks have been accomplished, as described in this report of our completed project. The report is organized as follows: Some general considerations relevant to the solar-pumped semiconductor laser problem are discussed in Section 2, and the types of structures chosen for specific investigation are described. The details of the laser model we developed for this work are then outlined in Section 3. In Section 4, results of our study are presented, including designs for optimum lattice-matched and strained-layer solar-pumped quantum-well lasers and threshold pumping estimates for these structures. It was hoped at the outset of this work that structures could be identified which could be expected to operate continuously at solar photoexcitation intensities of several thousand suns, and this indeed turned out to be the case as described in this section. Our project is

  17. The Lyman Alpha Reference Sample: Extended Lyman Alpha Halos Produced at Low Dust Content

    Czech Academy of Sciences Publication Activity Database

    Hayes, M.; Oestlin, G.; Schaerer, D.; Verhamme, A.; Mas-Hesse, J. M.; Adamo, A.; Atek, H.; Cannon, J.M.; Duval, F.; Guaita, L.; Herenz, E.Ch.; Kunth, D.; Laursen, P.; Melinder, J.; Orlitová, Ivana; Oti-Floranes, H.; Sandberg, A.

    2013-01-01

    Roč. 765, č. 2 (2013), L27/1-L27/6 ISSN 2041-8205 Institutional support: RVO:67985815 Keywords : cosmology observations * galaxies * evolution Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.602, year: 2013

  18. Performance of direct absorption solar collector with nanofluid mixture

    International Nuclear Information System (INIS)

    Turkyilmazoglu, Mustafa

    2016-01-01

    Highlights: • Neat approximations for temperature and solar collector efficiency are presented. • The non-adiabatic and isothermal base mechanisms optimize the surface absorption. • Heat transferring material at the bottom panel enhances the thermal efficiency. • Isothermal base panel leads to maximum thermal efficiency of the solar receiver. - Abstract: The enhancement of performance by increasing the thermal efficiency of a direct absorption solar collector based on an alumina–water nanofluid is the prime target of the present research. The base panel of the collector channel is subject to either a non adiabatic or an isothermal wall condition both of which introduce two new physical parameters. Analytical solutions for the temperature field are worked out in both cases for a two dimensional steady-state model recently outlined in the literature. The desired increase in the temperature of the heat transferring nanofluid is achieved either by slightly rising the heat transfer coefficient of the bottom panel coating or by prescribing a bottom surface temperature. As a consequence of the increase in the final outlet mean temperature, the solar collector thermal efficiency is found to be enhanced via increasing the new physical parameters as compared to the traditional adiabatic wall case. For instance, 85.63% thermal efficiency of solar collector is achievable for non adiabatic bottom panel by adding suspended aluminum nanoparticles into the pure water. Even better than this, considering isothermal base panels, 100% efficiency is attained more rapidly with lesser base temperatures in the presence of higher nanoparticle volume fractions.

  19. Anode catalysts for direct ethanol fuel cells utilizing directly solar light illumination.

    Science.gov (United States)

    Chu, Daobao; Wang, Shuxi; Zheng, Peng; Wang, Jian; Zha, Longwu; Hou, Yuanyuan; He, Jianguo; Xiao, Ying; Lin, Huashui; Tian, Zhaowu

    2009-01-01

    Shine a light: A PtNiRu/TiO(2) anode catalyst for direct ethanol fuel cells shows photocatalytic activity. The peak current density for ethanol oxidation under solar light illumination is 2-3 times greater than that in the absence of solar light. Ethanol is oxidized by light-generated holes, and the electrons are collected by the TiO(2) support to generate the oxidation current.Novel PtNiRu/TiO(2) anode catalysts for direct ethanol fuel cells (DEFCs) were prepared from PtNiRu nanoparticles (1:1:1 atomic ratios) and a nanoporous TiO(2) film by a sol-gel and electrodeposition method. The performances of the catalysts for ethanol oxidation were investigated by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The results indicate a remarkable enhancement of activity for ethanol oxidation under solar light illumination. Under solar light illumination, the generated oxidation peak current density is 24.6 mA cm(-2), which is about 2.5 times higher than that observed without solar light (9.9 mA cm(-2)). The high catalytic activity of the PtNiRu/TiO(2) complex catalyst for the electrooxidation of ethanol may be attributed to the modified metal/nanoporous TiO(2) film, and the enhanced electrooxidation of ethanol under solar light may be due to the photogeneration of holes in the modified nanoporous TiO(2) film.

  20. Nanofluid optical property characterization: towards efficient direct absorption solar collectors

    Directory of Open Access Journals (Sweden)

    Otanicar Todd

    2011-01-01

    Full Text Available Abstract Suspensions of nanoparticles (i.e., particles with diameters < 100 nm in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm. A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power increase.

  1. Magnetosheath Propagation Time of Solar Wind Directional Discontinuities

    Science.gov (United States)

    Samsonov, A. A.; Sibeck, D. G.; Dmitrieva, N. P.; Semenov, V. S.; Slivka, K. Yu.; Å afránkova, J.; Němeček, Z.

    2018-05-01

    Observed delays in the ground response to solar wind directional discontinuities have been explained as the result of larger than expected magnetosheath propagation times. Recently, Samsonov et al. (2017, https://doi.org/10.1002/2017GL075020) showed that the typical time for a southward interplanetary magnetic field (IMF) turning to propagate across the magnetosheath is 14 min. Here by using a combination of magnetohydrodynamic simulations, spacecraft observations, and analytic calculations, we study the dependence of the propagation time on solar wind parameters and near-magnetopause cutoff speed. Increases in the solar wind speed result in greater magnetosheath plasma flow velocities, decreases in the magnetosheath thickness and, as a result, decreases in the propagation time. Increases in the IMF strength result in increases in the magnetosheath thickness and increases in the propagation time. Both magnetohydrodynamic simulations and observations suggest that propagation times are slightly smaller for northward IMF turnings. Magnetosheath flow deceleration must be taken into account when predicting the arrival times of solar wind structures at the dayside magnetopause.

  2. Direct coupling of a solar-hydrogen system in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Arriaga, L.G. [Gerencia de Energias No Convencionales, Instituto de Investigaciones Electricas (IIE), Av. Reforma 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico); Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., Parque tecnologico Queretaro Sanfandila, Pedro Escobedo, C.P. 76703 Queretaro (Mexico); Martinez, W. [Departamento de Materiales Solares, CIE-UNAM, Av. Xochicalco s/n, Col. Centro, 62580 Temixco, Morelos (Mexico); Cano, U.; Blud, H. [Gerencia de Energias No Convencionales, Instituto de Investigaciones Electricas (IIE), Av. Reforma 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico)

    2007-09-15

    The scope of this article is to show the initial results obtained in the interconnection of a 2.7 kW solar panel system with a solid polymer electrolyte (SPE) electrolyzer. The Non-Conventional Energies Department (ENC) at the Electrical Research Institute (IIE) considers that the storage of this intermittent energy by a chemical element such as hydrogen can be advantageous for certain applications. One of the arguments is that unlike traditional battery systems, hydrogen presents the great advantage of not discharging its energy content as long as it is not used. The solar-hydrogen (S-H) system proposed consists of a commercial electrolyzer stack by Proton Energy Systems and a photovoltaic (PV) solar system of 36 panels (75 W each) of monocrystalline silicon (Siemens) interconnected in a configuration for 2.7 kW power at 48V{sub DC}. The complete electrolyzer (stack plus auxiliaries) has a maximum capacity of 1000lN/h of hydrogen with a power energy consumption of 8 kVA (220V{sub AC}, 32 A) and uses a stack of 25 cells of SPE with an energy consumption of 5.6 kW. We present voltage, current and energy consumption of the electrolyzer as a whole system and of the stack alone, as well as hydrogen quantification for the Hogen 40 operating in laboratory. These results allowed us to estimate the possibilities of coupling the electrolyzer stack alone, i.e. no auxiliaries nor power conditioning, with the solar PV system. Results such as I-E curves of the solar PV system obtained at different irradiances and temperatures, as well as I-E curve of SPE electrolyzer stack, gave direction for confirming that PV system configuration was sufficiently good to have the electrolyzer stack working near the maximum power point at a good range of irradiances ({proportional_to}600-800W/m{sup 2}). (author)

  3. A solar simulator-pumped gas laser for the direct conversion of solar energy

    Science.gov (United States)

    Weaver, W. R.; Lee, J. H.

    1981-01-01

    Most proposed space power systems are comprised of three general stages, including the collection of the solar radiation, the conversion to a useful form, and the transmission to a receiver. The solar-pumped laser, however, effectively eliminates the middle stage and offers direct photon-to-photon conversion. The laser is especially suited for space-to-space power transmission and communication because of minimal beam spread, low power loss over large distances, and extreme energy densities. A description is presented of the first gas laser pumped by a solar simulator that is scalable to high power levels. The lasant is an iodide C3F7I that as a laser-fusion driver has produced terawatt peak power levels.

  4. Overview and future direction for blackbody solar-pumped lasers

    Science.gov (United States)

    Deyoung, R. J.

    1988-01-01

    A review of solar-pumped blackbody lasers is given which addresses their present status and suggests future research directions. The blackbody laser concept is one system proposed to scale to multimegawatt power levels for space-to-space power transmissions for such applications as onboard spacecraft electrical or propulsion needs. Among the critical technical issues are the scalability to high powers and the laser wavelength which impacts the transmission optics size as well as the laser-to-electric converter at the receiver. Because present blackbody solar-pumped lasers will have laser wavelengths longer than 4 microns, simple photovoltaic converters cannot be used, and transmission optics will be large. Thus, future blackbody laser systems should emphasize near visible laser wavelengths.

  5. Starting characteristics of direct current motors powered by solar cells

    Science.gov (United States)

    Singer, S.; Appelbaum, J.

    1989-01-01

    Direct current motors are used in photovoltaic systems. Important characteristics of electric motors are the starting to rated current and torque ratios. These ratios are dictated by the size of the solar cell array and are different for the various dc motor types. Discussed here is the calculation of the starting to rated current ratio and starting to rated torque ratio of the permanent magnet, and series and shunt excited motors when powered by solar cells for two cases: with and without a maximum-power-point-tracker (MPPT) included in the system. Comparing these two cases, one gets a torque magnification of about 3 for the permanent magnet motor and about 7 for other motor types. The calculation of the torques may assist the PV system designer to determine whether or not to include an MPPT in the system.

  6. Renewable water: Direct contact membrane distillation coupled with solar ponds

    International Nuclear Information System (INIS)

    Suárez, Francisco; Ruskowitz, Jeffrey A.; Tyler, Scott W.; Childress, Amy E.

    2015-01-01

    Highlights: • Experimental investigation of direct contact membrane distillation driven by solar ponds. • The DCMD/SGSP system treats ∼6 times the water flow treated by an AGMD/SGSP system. • Half of the energy extracted from the SGSP was used to transport water across the membrane. • Reducing heat losses through the DCMD/SGSP system would yield higher water fluxes. - Abstract: Desalination powered by renewable energy sources is an attractive solution to address the worldwide water-shortage problem without contributing significant to greenhouse gas emissions. A promising system for renewable energy desalination is the utilization of low-temperature direct contact membrane distillation (DCMD) driven by a thermal solar energy system, such as a salt-gradient solar pond (SGSP). This investigation presents the first experimental study of fresh water production in a coupled DCMD/SGSP system. The objectives of this work are to determine the experimental fresh water production rates and the energetic requirements of the different components of the system. From the laboratory results, it was found that the coupled DCMD/SGSP system treats approximately six times the water flow treated by a similar system that consisted of an air–gap membrane distillation unit driven by an SGSP. In terms of the energetic requirements, approximately 70% of the heat extracted from the SGSP was utilized to drive thermal desalination and the rest was lost in different locations of the system. In the membrane module, only half of the useful heat was actually used to transport water across the membrane and the remainder was lost by conduction in the membrane. It was also found that by reducing heat losses throughout the system would yield higher water fluxes, pointing out the need to improve the efficiency throughout the DCMD/SGSP coupled system. Therefore, further investigation of membrane properties, insulation of the system, or optimal design of the solar pond must be addressed in

  7. Photocatalytic hydrogen production under direct solar light in a CPC based solar reactor: Reactor design and preliminary results

    International Nuclear Information System (INIS)

    Jing Dengwei; Liu Huan; Zhang Xianghui; Zhao Liang; Guo Liejin

    2009-01-01

    In despite of so many types of solar reactors designed for solar detoxification purposes, few attempts have been made for photocatalytic hydrogen production, which in our option, is one of the most promising approaches for solar to chemical energy conversion. Addressing both the similarity and dissimilarity for these two processes and by fully considering the special requirements for the latter reaction, a Compound Parabolic Concentrator (CPC) based photocatalytic hydrogen production solar reactor has been designed for the first time. The design and optimization of this CPC based solar reactor has been discussed in detail. Preliminary results demonstrated that efficient photocatalytic hydrogen production under direct solar light can be accomplished by coupling tubular reactors with CPC concentrators. It is anticipated that this first demonstration of concentrator-based solar photocatalytic hydrogen production would draw attention for further studies in this promising direction.

  8. Leaf color is fine-tuned on the solar spectra to avoid strand direct solar radiation.

    Science.gov (United States)

    Kume, Atsushi; Akitsu, Tomoko; Nasahara, Kenlo Nishida

    2016-07-01

    The spectral distributions of light absorption rates by intact leaves are notably different from the incident solar radiation spectra, for reasons that remain elusive. Incident global radiation comprises two main components; direct radiation from the direction of the sun, and diffuse radiation, which is sunlight scattered by molecules, aerosols and clouds. Both irradiance and photon flux density spectra differ between direct and diffuse radiation in their magnitude and profile. However, most research has assumed that the spectra of photosynthetically active radiation (PAR) can be averaged, without considering the radiation classes. We used paired spectroradiometers to sample direct and diffuse solar radiation, and obtained relationships between the PAR spectra and the absorption spectra of photosynthetic pigments and organs. As monomers in solvent, the spectral absorbance of Chl a decreased with the increased spectral irradiance (W m(-2) nm(-1)) of global PAR at noon (R(2) = 0.76), and was suitable to avoid strong spectral irradiance (λmax = 480 nm) rather than absorb photon flux density (μmol m(-2) s(-1) nm(-1)) efficiently. The spectral absorption of photosystems and the intact thallus and leaves decreased linearly with the increased spectral irradiance of direct PAR at noon (I dir-max), where the wavelength was within the 450-650 nm range (R(2) = 0.81). The higher-order structure of photosystems systematically avoided the strong spectral irradiance of I dir-max. However, when whole leaves were considered, leaf anatomical structure and light scattering in leaf tissues made the leaves grey bodies for PAR and enabled high PAR use efficiency. Terrestrial green plants are fine-tuned to spectral dynamics of incident solar radiation and PAR absorption is increased in various structural hierarchies.

  9. Solar radiation and cooling load calculation for radiant systems: Definition and evaluation of the Direct Solar Load

    DEFF Research Database (Denmark)

    Causone, Francesco; Corgnati, Stefano P.; Filippi, Marco

    2010-01-01

    The study of the influence of solar radiation on the built environment is a basic issue in building physics and currently it is extremely important because glazed envelopes are widely used in contemporary architecture. In the present study, the removal of solar heat gains by radiant cooling systems...... is investigated. Particular attention is given to the portion of solar radiation converted to cooling load, without taking part in thermal absorption phenomena due to the thermal mass of the room. This specific component of the cooling load is defined as the Direct Solar Load. A simplified procedure to correctly...... calculate the magnitude of the Direct Solar Load in cooling load calculations is proposed and it is implemented with the Heat Balance method and the Radiant Time Series method. The F ratio of the solar heat gains directly converted to cooling load, in the case of a low thermal mass radiant ceiling...

  10. First direct detection of solar pp neutrinos by Borexino

    Energy Technology Data Exchange (ETDEWEB)

    Maneschg, Werner [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: Werner Maneschg on behalf of the Borexino collaboration

    2015-07-01

    According to the Standard Solar Model (SSM) the radiative energy of our Sun is produced by a series of nuclear reactions that convert hydrogen into helium. In 99% of cases these processes are supposed to start with a fusion of two protons and the emission of a positron and a low-energy neutrino. These so-called pp neutrinos vastly outnumber those emitted in other sub-reactions, but only the large volume organic liquid scintillator detector Borexino has recently succeeded to perform a spectroscopic and direct measurement of them. The present talk reviews the procedure adopted by the Borexino collaboration to detect pp neutrinos. The key requirements, i.e. unprecedented radiopurity levels at low energies and a precise spectral description of the main background arising from 14C decays, and their fulfillment are discussed. The measured pp neutrino flux is then compared with the predictions of the SSM including neutrino oscillation mechanisms, and with the solar luminosity constraint deduced from photospheric observations.

  11. Direct solar steam generation inside evacuated tube absorber

    Directory of Open Access Journals (Sweden)

    Khaled M. Bataineh

    2016-12-01

    Full Text Available Direct steam generation by solar radiation falling on absorber tube is studied in this paper. A system of single pipe covered by glass material in which the subcooled undergoes heating and evaporation process is analyzed. Mathematical equations are derived based on energy, momentum and mass balances for system components. A Matlab code is built to simulate the flow of water inside the absorber tube and determine properties of water along the pipe. Widely accepted empirical correlations and mathematical models of turbulent flow, pressure drop for single and multiphase flow, and heat transfer are used in the simulation. The influences of major parameters on the system performance are investigated. The pressure profiles obtained by present numerical solution for each operation condition (3 and 10 MPa matches very well experimental data from the DISS system of Plataforma Solar de Almería. Furthermore, results obtained by simulation model for pressure profiles are closer to the experimental data than those predicted by already existed other numerical model.

  12. Decontamination of drinking water by direct heating in solar panels.

    Science.gov (United States)

    Fjendbo Jørgensen, A J; Nøhr, K; Sørensen, H; Boisen, F

    1998-09-01

    A device was developed for direct heating of water by solar radiation in a flow-through system of copper pipes. An adjustable thermostat valve prevents water below the chosen temperature from being withdrawn. The results show that it is possible to eliminate coliform and thermotolerant coliform bacteria from naturally contaminated river water by heating to temperatures of 65 degrees C or above. Artificial additions of Salmonella typhimurium, Streptococcus faecalis and Escherichia coli to contaminated river water were also inactivated after heating to 65 degrees C and above. The total viable count could be reduced by a factor of 1000. The heat-resistant bacteria isolated from the Mlalakuva River (Tanzania) were spore-forming bacteria which exhibited greater heat resistance than commonly used test bacteria originating from countries with colder climates. To provide a good safety margin it is recommended that an outlet water temperature of 75 degrees C be used. At that temperature the daily production was about 501 of decontaminated water per m2 of solar panel, an amount that could be doubled by using a heat exchanger to recycle the heat.

  13. METIS: the visible and UV coronagraph for solar orbiter

    Science.gov (United States)

    Romoli, M.; Landini, F.; Antonucci, E.; Andretta, V.; Berlicki, A.; Fineschi, S.; Moses, J. D.; Naletto, G.; Nicolosi, P.; Nicolini, G.; Spadaro, D.; Teriaca, L.; Baccani, C.; Focardi, M.; Pancrazzi, M.; Pucci, S.; Abbo, L.; Bemporad, A.; Capobianco, G.; Massone, G.; Telloni, D.; Magli, E.; Da Deppo, V.; Frassetto, F.; Pelizzo, M. G.; Poletto, L.; Uslenghi, M.; Vives, S.; Malvezzi, M.

    2017-11-01

    METIS coronagraph is designed to observe the solar corona with an annular field of view from 1.5 to 2.9 degrees in the visible broadband (580-640 nm) and in the UV HI Lyman-alpha, during the Sun close approaching and high latitude tilting orbit of Solar Orbiter. The big challenge for a coronagraph is the stray light rejection. In this paper after a description of the present METIS optical design, the stray light rejection design is presented in detail together with METIS off-pointing strategies throughout the mission. Data shown in this paper derive from the optimization of the optical design performed with Zemax ray tracing and from laboratory breadboards of the occultation system and of the polarimeter.

  14. Design of direct solar PV driven air conditioner

    KAUST Repository

    Huang, Bin-Juine; Hou, Tung-Fu; Hsu, Po-Chien; Lin, Tse-Han; Chen, Yan-Tze; Chen, Chi-Wen; Li, Kang; Lee, K.Y.

    2015-01-01

    ). The measured OPB is found to be greater than 0.98 at instantaneous solar irradiation IT > 600 W m-2 if rpL > 1.71 RF approaches 1.0 (the air conditioner is run in 100% with solar power) at daily-total solar radiation higher than 13 MJ m-2 day-1, if rpL > 3.

  15. MASC: Magnetic Activity of the Solar Corona

    Science.gov (United States)

    Auchere, Frederic; Fineschi, Silvano; Gan, Weiqun; Peter, Hardi; Vial, Jean-Claude; Zhukov, Andrei; Parenti, Susanna; Li, Hui; Romoli, Marco

    orientation is primarily based on extrapolations from photospheric observations, not from direct measurements. These extrapolations require strong assumptions on critical but unobserved quantities and thus fail to accurately reproduce the complex topologies inferred from remote-sensing observations of coronal structures in white light, EUV, and X-rays. Direct measurements of the coronal magnetic field are also clearly identified by the international heliophysics community as a key element susceptible to lead to major breakthroughs in the understanding of our star. MASC is thus designed to answer the following top-level scientific questions: 1. What is the global magnetic field configuration in the corona? 2. What is the role of the magnetic field in the triggering of flares and CMEs? 3. What is the role of the magnetic field in the acceleration mechanisms of the solar winds? 4. What is the energy spectrum and in particular what are the highest energies to which charged particles can be accelerated in the solar corona? MASC will address these fundamental questions with a suite of instruments composed of an X-ray spectrometer, a UV / EUV imager, and a coronagraph working in the visible and at Lyman alpha. The spectrometer will provide information on the energetics of solar flares, in particular at very high energies of accelerated particles. The UV / EUV imager will provide constraints on the temperature of the flaring and non-flaring corona. The coronagraph will provide the number density of free electrons in the corona, maps of the outflow velocity of neutral hydrogen, and measurements of the coronal magnetic field, via the Hanle effect. These measurements will be performed at all steps of the flare-CME processes, thus providing a detailed picture of the solar coronal dynamics in the quiet and eruptive periods.

  16. Nonlinear techniques for forecasting solar activity directly from its time series

    Science.gov (United States)

    Ashrafi, S.; Roszman, L.; Cooley, J.

    1993-01-01

    This paper presents numerical techniques for constructing nonlinear predictive models to forecast solar flux directly from its time series. This approach makes it possible to extract dynamical in variants of our system without reference to any underlying solar physics. We consider the dynamical evolution of solar activity in a reconstructed phase space that captures the attractor (strange), give a procedure for constructing a predictor of future solar activity, and discuss extraction of dynamical invariants such as Lyapunov exponents and attractor dimension.

  17. Performance tests and efficiency analysis of Solar Invictus 53S - A parabolic dish solar collector for direct steam generation

    Science.gov (United States)

    Jamil, Umer; Ali, Wajahat

    2016-05-01

    This paper presents the results of performance tests conducted on Solar Invictus 53S `system'; an economically effective solar steam generation solution designed and developed by ZED Solar Ltd. The system consists of a dual axis tracking parabolic solar dish and bespoke cavity type receiver, which works as a Once Through Solar Steam Generator `OTSSG' mounted at the focal point of the dish. The overall performance and efficiency of the system depends primarily on the optical efficiency of the solar dish and thermal efficiency of the OTSSG. Optical testing performed include `on sun' tests using CCD camera images and `burn plate' testing to evaluate the sunspot for size and quality. The intercept factor was calculated using a colour look-back method to determine the percentage of solar rays focused into the receiver. Solar dish tracking stability tests were carried out at different times of day to account for varying dish elevation angles and positions, movement of the sunspot centroid was recorded and logged using a CCD camera. Finally the overall performance and net solar to steam efficiency of the system was calculated by experimentally measuring the output steam parameters at varying Direct Normal Insolation (DNI) levels at ZED Solar's test facility in Lahore, Pakistan. Thermal losses from OTSSG were calculated using the known optical efficiency and measured changes in output steam enthalpy.

  18. Comparison of Direct Solar Energy to Resistance Heating for Carbothermal Reduction of Regolith

    Science.gov (United States)

    Muscatello, Anthony C.; Gustafson, Robert J.

    2011-01-01

    A comparison of two methods of delivering thermal energy to regolith for the carbo thermal reduction process has been performed. The comparison concludes that electrical resistance heating is superior to direct solar energy via solar concentrators for the following reasons: (1) the resistance heating method can process approximately 12 times as much regolith using the same amount of thermal energy as the direct solar energy method because of superior thermal insulation; (2) the resistance heating method is more adaptable to nearer-term robotic exploration precursor missions because it does not require a solar concentrator system; (3) crucible-based methods are more easily adapted to separation of iron metal and glass by-products than direct solar energy because the melt can be poured directly after processing instead of being remelted; and (4) even with projected improvements in the mass of solar concentrators, projected photovoltaic system masses are expected to be even lower.

  19. Direct observations of low-energy solar electrons associated with a type 3 solar radio burst

    Science.gov (United States)

    Frank, L. A.; Gurnett, D. A.

    1972-01-01

    On 6 April 1971 a solar X-ray flare and a type 3 solar radio noise burst were observed with instrumentation on the eccentric-orbiting satellite IMP 6. The type 3 solar radio noise burst was detected down to a frequency of 31 kHz. A highly anisotropic packet of low-energy solar electron intensities arrived at the satellite approximately 6000 seconds after the onset of the solar flare. This packet of solar electron intensities was observed for 4200 seconds. Maximum differential intensities of the solar electrons were in the energy range of one to several keV. The frequency drift rate of the type 3 radio noise at frequencies below 178 kHz also indicated an average particle speed corresponding to that of a 3-keV electron. The simultaneous observations of these solar electron intensities and of the type 3 solar radio burst are presented, and their interrelationships are explored.

  20. Medium level of direct solar radiation and energetic potential of solar concentrator in Minas Gerais State, Brazil; Niveis medios de radiacao solar direta e potencial energetico dos concentradores solares em Minas Gerais

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-07-01

    Basic concepts of solar energy, technical description of solar concentrators, its orientation and methodology of direct solar radiation measurement are discussed. An comparison of different solar radiation measurements methods, its methodology and its calculation steps are reported. Calculus and tables of the electric and thermal energy generation potential, through solar concentrators, on the state of Minas Gerais are also presented. 18 figs., 90 tabs., 12 refs.

  1. a comparative study of direct and indirect solar drying of mango

    African Journals Online (AJOL)

    BARTH EKWUEME

    appropriate to a family scale traditional mango drying. ... before its marketing. Also, direct ..... measured using a digital probe thermohygrometer of ...... Comparison of direct and indirect solar drying kinetics Amelie and Brooks mango varieties.

  2. Human projected area factors for detailed direct and diffuse solar radiation analysis

    DEFF Research Database (Denmark)

    Kubaha, K.; Fiala, D.; Toftum, Jørn

    2004-01-01

    Projected area factors for individual segments of the standing and sedentary human body were modelled for both direct and diffuse solar radiation using detailed 3D geometry and radiation models. The local projected area factors with respect to direct short-wave radiation are a function of the solar...

  3. Solar Shading System Based on Daylight Directing Glass Lamellas

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Santos, Inês; Svendsen, Svend

    2008-01-01

    The overheating problems in office buildings must be solved with efficient solar shadings in order to reduce the energy demand for cooling and ventilation. At the same time the solar shading should not reduce the daylight level in the building on overcast days because it would result in a lower...

  4. First Evidence of pep Solar Neutrinos by Direct Detection in Borexino

    Science.gov (United States)

    Bellini, G.; Benziger, J.; Bick, D.; Bonetti, S.; Bonfini, G.; Bravo, D.; Buizza Avanzini, M.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Carraro, C.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; D'Angelo, D.; Davini, S.; Derbin, A.; Etenko, A.; Fomenko, K.; Franco, D.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Grandi, L.; Guardincerri, E.; Hardy, S.; Ianni, Aldo; Ianni, Andrea; Korablev, D.; Korga, G.; Koshio, Y.; Kryn, D.; Laubenstein, M.; Lewke, T.; Litvinovich, E.; Loer, B.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Machulin, I.; Manecki, S.; Maneschg, W.; Manuzio, G.; Meindl, Q.; Meroni, E.; Miramonti, L.; Misiaszek, M.; Montanari, D.; Mosteiro, P.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Papp, L.; Perasso, L.; Perasso, S.; Pocar, A.; Quirk, J.; Raghavan, R. S.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Sabelnikov, A.; Saldanha, R.; Salvo, C.; Schönert, S.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Vignaud, D.; Vogelaar, R. B.; von Feilitzsch, F.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Xu, J.; Zaimidoroga, O.; Zavatarelli, S.; Zuzel, G.

    2012-02-01

    We observed, for the first time, solar neutrinos in the 1.0-1.5 MeV energy range. We determined the rate of pep solar neutrino interactions in Borexino to be 3.1±0.6stat±0.3systcounts/(day·100ton). Assuming the pep neutrino flux predicted by the standard solar model, we obtained a constraint on the CNO solar neutrino interaction rate of Mikheyev-Smirnov-Wolfenstein large mixing angle solution to solar neutrino oscillations, these values correspond to solar neutrino fluxes of (1.6±0.3)×108cm-2s-1 and <7.7×108cm-2s-1 (95% C.L.), respectively, in agreement with both the high and low metallicity standard solar models. These results represent the first direct evidence of the pep neutrino signal and the strongest constraint of the CNO solar neutrino flux to date.

  5. New high-resolution rocket-ultraviolet filtergrams of the solar disc

    Science.gov (United States)

    Foing, B.; Bonnet, R.-M.; Bruner, M.

    1986-01-01

    A rocket-borne solar ultraviolet telescope named Transition Region Camera was launched successfully for the third on July 13, 1982. High quality calibrated photographic images of the sun were obtained at Lyman alpha and in the continuum at 160 nm and 220 nm. The angular resolution achieved is better than one arcsec. A flare, active regions, sunspots, the 8 Mm mesostructure, the chromospheric network, bright UV grains and coronal loops were observed during the flight. The results are presented and the evolution with height in the solar atmosphere of the various structures observed is followed from one wavelength to the other, showing distinct differences. The value of the field's intensity of magnetic flux tubes is deduced from the observations.

  6. Direct solar radiation on various slopes from 0 to 60 degrees north latitude.

    Science.gov (United States)

    John Buffo; Leo J. Fritschen; James L. Murphy

    1972-01-01

    Direct beam solar radiation is presented in graphical and tabular form for hourly, daily, and yearly values for seven slopes on each of 16 aspects from the Equator to 60 degrees north in 10-degree increments. Theoretical equations necessary for the calculations are given. Solar altitude and azimuth during the day and year are also presented for the same latitude.

  7. Nanofluid optical property characterization: towards efficient direct absorption solar collectors.

    Science.gov (United States)

    Taylor, Robert A; Phelan, Patrick E; Otanicar, Todd P; Adrian, Ronald; Prasher, Ravi

    2011-03-15

    Suspensions of nanoparticles (i.e., particles with diameters solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase.

  8. Visual damage following direct sighting of solar eclipse in Ghana ...

    African Journals Online (AJOL)

    education concerning the damaging effects of the solar eclipse. Advanced techniques, such as scanning laser Ophthalmoscopy and the multifocal electroretinography (ERG) offer the possibility of detailed examination of small retina lesions in Ghana after an eclipse of the sun. African Journal of Health Sciences Vol. 14 (3-4) ...

  9. A direct probe of dark energy interactions with a solar System laboratory

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a mission concept for direct detection of dark energy interactions with normal matter in a Solar System laboratory. Dark energy is the leading proposal to...

  10. Integration between direct steam generation in linear solar collectors and supercritical carbon dioxide Brayton power cycles

    OpenAIRE

    Coco Enríquez, Luis; Muñoz Antón, Javier; Martínez-Val Peñalosa, José María

    2015-01-01

    Direct Steam Generation in Parabolic Troughs or Linear Fresnel solar collectors is a technology under development since beginning of nineties (1990's) for replacing thermal oils and molten salts as heat transfer fluids in concentrated solar power plants, avoiding environmental impacts. In parallel to the direct steam generation technology development, supercritical Carbon Dioxide Brayton power cycles are maturing as an alternative to traditional Rankine cycles for increasing net plant efficie...

  11. Direct Measurement of the 7Be Solar Neutrino Flux with 192 Days of Borexino Data

    International Nuclear Information System (INIS)

    Arpesella, C.; Di Pietro, G.; Monzani, M. E.; Back, H. O.; Hardy, S.; Joyce, M.; Manecki, S.; Raghavan, R. S.; Rountree, D.; Vogelaar, R. B.; Balata, M.; Di Credico, A.; Gazzana, S.; Korga, G.; Laubenstein, M.; Orsini, M.; Papp, L.; Razeto, A.; Tartaglia, R.; Bellini, G.

    2008-01-01

    We report the direct measurement of the 7 Be solar neutrino signal rate performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso. The interaction rate of the 0.862 MeV 7 Be neutrinos is 49±3 stat ±4 syst counts/(day·100 ton). The hypothesis of no oscillation for 7 Be solar neutrinos is inconsistent with our measurement at the 4σ C.L. Our result is the first direct measurement of the survival probability for solar ν e in the transition region between matter-enhanced and vacuum-driven oscillations. The measurement improves the experimental determination of the flux of 7 Be, pp, and CNO solar ν e , and the limit on the effective neutrino magnetic moment using solar neutrinos

  12. Studies of diffuse and direct solar radiation over snow

    International Nuclear Information System (INIS)

    Wesely, M.L.; Everett, R.G.

    1976-01-01

    Two interesting questions can be addressed by examination of solar radiation records obtained while the surface is covered with snow. One concerns the extent to which airborne particulate matter affects solar radiation received at the surface during winter conditions that are typical of those in the northeastern quarter of the United States. The other relates to the importance of complicated light scatterng in the earth-atmosphere system when the surface albedo is large. With the snow surface reflecting 50% or more of the incident radiation, it is likely that a significant addition to diffuse radiation would result from light that is reflected from the surface and then scattered back to the earth by the atmosphere. Preliminary data from measurements made during the winter of 1975 to 1976 are reported

  13. Continuous coherent Lyman-alpha excitation of atomic hydrogen.

    NARCIS (Netherlands)

    Eikema, K.S.E.; Waltz, J.; Hänsch, T.

    2001-01-01

    The first near natural linewidth of the 1S-2P transition in atomic hydrogen was reported with a high degree of accuracy. A high yield of continuous Lyman-α radiation based on four wave mixing in mercury was employed. It was shown that laser cooloing and detection with Lyman-α radiation has excellent

  14. CAMEX-4 NOAA LYMAN-ALPHA HYGROMETER V1

    Data.gov (United States)

    National Aeronautics and Space Administration — Ozone is measured in situ using a photometer consisting of a mercury lamp, two sample chambers and two detectors. The detectors measure the 254nm radiation...

  15. High-resolution Lyman-alpha filtergrams of the sun

    International Nuclear Information System (INIS)

    Bonnet, R.M.; Bruner, E.C. Jr.; Acton, L.W.; Brown, W.A.; Decaudin, M.

    1980-01-01

    1'' resolution Lα pictures of the Sun have been obtained during the flight of a Black Brant rocket which took place on 1979 July 3. These pictures reveal many new structures never seen before on Lα spectroheliograms. The instrumentation, flight conditions, and preliminary results are described

  16. Detection of Lyman/alpha emission from a DLA galaxy

    DEFF Research Database (Denmark)

    Moller, P.; Fynbo, Johan Peter Uldall; Fall, S.M

    2004-01-01

    HIGH-REDSHIFT; BREAK GALAXIES; STARFORMATION; DISK GALAXIES; METAL ENRICHMENT; HOST GALAXY; ABSORPTION; ABSORBER; SYSTEMS; SPECTROSCOPY......HIGH-REDSHIFT; BREAK GALAXIES; STARFORMATION; DISK GALAXIES; METAL ENRICHMENT; HOST GALAXY; ABSORPTION; ABSORBER; SYSTEMS; SPECTROSCOPY...

  17. Oxygen sensitivity of krypton and Lyman-alpha hygrometers

    NARCIS (Netherlands)

    Dijk, van A.; Kohsiek, W.; Bruin, de H.A.R.

    2003-01-01

    The oxygen sensitivity of krypton and Lyman-¿ hygrometers is studied. Using a dewpoint generator and a controlled nitrogen/oxygen flow the extinction coefficients of five hygrometers associated with the third-order Taylor expansion of the Lambert¿Beer law around reference conditions for oxygen and

  18. The first continuous coherent Lyman-alpha source

    NARCIS (Netherlands)

    Walz, J.; Pahl, A.; Eikema, K.S.E.; Hansch, T.W.

    2001-01-01

    Ultrahigh-resolution laser spectroscopy of antihydrogen atoms in a magnetic trap could open a new field of challenging tests of the fundamental CPT theorem. The required laser cooling and laser spectroscopy techniques are also essential for future experiments on the gravitational acceleration of

  19. The Lyman alpha reference sample VI. Lyman alpha escape from the edge-on disk galaxy Mrk 1486

    Czech Academy of Sciences Publication Activity Database

    Duval, F.; Ostlin, G.; Hayes, M.; Zackrisson, E.; Verhamme, A.; Orlitová, Ivana; Adamo, A.; Guaita, L.; Melinder, J.; Cannon, J.M.; Laursen, P.; Rivera-Thorsen, T.; Herenz, E.Ch.; Gruyters, P.; Mas-Hesse, J. M.; Kunth, D.; Sandberg, A.; Schaerer, D.; Mansson, J.-E.

    2016-01-01

    Roč. 587, March (2016), A77/1-A77/24 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GP14-20666P Institutional support: RVO:67985815 Keywords : galaxies * starburst * submillimeter Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  20. Direct-heating solar-collector dump valve

    Science.gov (United States)

    Howikman, T. C.

    1977-01-01

    Five-port ganged valve isolates collector from primary load system pressure and drains collectors, allowing use of direct heating with all its advantages. Valve is opened and closed by same switch that controls pump or by temperature sensor set at O C, while providing direct dump option.

  1. Shake flask decolourization of direct dye solar golden yellow R by pleurotus ostreatus

    International Nuclear Information System (INIS)

    Jilani, K.; Asghar, M.; Bhatti, H.N.; Mushtaq, Z.

    2011-01-01

    Different on site treatment technologies are in practice for industrial wastewaters but bioremediation using white rot fungi is the most attractive option due to complete degradation of the pollutants to non toxic end products. Three direct dyes (Solar golden yellow R, Solar brilliant red BA and Solar orange RSN) were decolourized using white rot fungus (WRF) Pleurotus ostreatus. The best decolourized dye Solar golden yellow R was selected for subsequent optimization studies for decolourization. Under optimum conditions Pleurotus ostreatus caused 90.32 % decolourization of 0.01 % Solar golden yellow R solution within two days of shake flask incubation at pH 3.5 and 30 deg. C temperature in Kirk's basal nutrient medium with added 1 % starch and 0.01 % ammonium sulphate as carbon and nitrogen sources, respectively. Ligninolytic enzyme activities were correlated to dye decolourization and maximum laccase activity of 356.23 U/ml was also noted in the maximally decolourized medium. (author)

  2. Direct Heat-Flux Measurement System (MDF) for Solar central Receiver Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ballestrin, J.

    2001-07-01

    A direct flux measurement system, MDF, has been designed, constructed and mounted on top of the SSPS-CRS tower at the Plataforma Solar de Almeria (PSA) in addition to an indirect flux measurement system based on a CCD camera. It's one of the main future objectives to compare systematically both measurements of the concentrated solar power, increasing in this way the confidence in the estimate of this quantity. Today everything is prepared to perform the direct flux measurement on the aperture of solar receivers: calorimeter array, data acquisition system and software. the geometry of the receiver determines the operation and analysis procedures to obtain the indecent power onto the defined area. The study of previous experiences with direct flux measurement systems ha been useful to define a new simpler and more accurate system. A description of each component of the MDF system is included, focusing on the heat-flux sensors or calorimeters, which enables these measurements to be done in a few seconds without water-cooling. The incident solar power and the spatial flux distribution on the aperture of the volumetric receiver Hitrec II are supplied by the above-mentioned MDF system. The first results obtained during the evaluation of this solar receiver are presented including a sunrise-sunset test. All these measurements have been concentrated in one coefficient that describes the global behavior of the Solar Power Plant. (Author) 18 refs.

  3. Toward an Aqueous Solar Battery: Direct Electrochemical Storage of Solar Energy in Carbon Nitrides.

    Science.gov (United States)

    Podjaski, Filip; Kröger, Julia; Lotsch, Bettina V

    2018-03-01

    Graphitic carbon nitrides have emerged as an earth-abundant family of polymeric materials for solar energy conversion. Herein, a 2D cyanamide-functionalized polyheptazine imide (NCN-PHI) is reported, which for the first time enables the synergistic coupling of two key functions of energy conversion within one single material: light harvesting and electrical energy storage. Photo-electrochemical measurements in aqueous electrolytes reveal the underlying mechanism of this "solar battery" material: the charge storage in NCN-PHI is based on the photoreduction of the carbon nitride backbone and charge compensation is realized by adsorption of alkali metal ions within the NCN-PHI layers and at the solution interface. The photoreduced carbon nitride can thus be described as a battery anode operating as a pseudocapacitor, which can store light-induced charge in the form of long-lived, "trapped" electrons for hours. Importantly, the potential window of this process is not limited by the water reduction reaction due to the high intrinsic overpotential of carbon nitrides for hydrogen evolution, potentially enabling new applications for aqueous batteries. Thus, the feasibility of light-induced electrical energy storage and release on demand by a one-component light-charged battery anode is demonstrated, which provides a sustainable solution to overcome the intermittency of solar radiation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. First principle analyses of direct bandgap solar cells with absorbing substrates versus mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Alexander P. [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Kirk, Wiley P. [Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2013-11-07

    Direct bandgap InP, GaAs, CdTe, and Ga{sub 0.5}In{sub 0.5}P solar cells containing backside mirrors as well as parasitically absorbing substrates are analyzed for their limiting open circuit voltage and power conversion efficiency with comparison to record solar cells. From the principle of detailed balance, it is shown quantitatively that mirror solar cells have greater voltage and power conversion efficiency than their substrate counterparts. Next, the radiative recombination coefficient and maximum radiative lifetime of GaAs mirror and substrate solar cells are calculated and compared to the nonradiative Auger and Shockley-Read-Hall (SRH) lifetimes. Mirror solar cells have greater radiative lifetime than their substrate variants. Auger lifetime exceeds radiative lifetime for both substrate and mirror cells while SRH lifetime may be less or greater than radiative lifetime depending on trap concentration and capture cross section. Finally, the change in free energy of the photogenerated carriers is analyzed in a comparison between InP, GaAs, CdTe, and Ga{sub 0.5}In{sub 0.5}P mirror and substrate solar cells in order to characterize the relationship between solar photon quality and free energy management in solar cells with differing bandgaps. Wider bandgap visible threshold Ga{sub 0.5}In{sub 0.5}P solar cells make better use of the available change in free energy of the photogenerated charge carriers, even when normalized to the bandgap energy, than narrower bandgap near-IR threshold InP, GaAs, and CdTe solar cells.

  5. The direct conversion of solar energy to electricity

    International Nuclear Information System (INIS)

    1992-01-01

    Half the world's population lives without access to electricity in the rural areas and villages of developing countries. In 1987, world population reached 5 billion and, according to World Bank projections, will increase to over 6 billion in the year 2000 and to over 8 billion in 2025. Such population growth is not uniformly distributed: developed countries have small or negative growth and account for a declining proportion of the world's population. Inasmuch as 95 per cent of the extra inhabitants added each year are in developing countries, rapid population growth in those countries raises serious questions about energy availability for basic human needs and, of course, more broadly about the environment's capacity to support that growth. The present report makes reference to one of the most comprehensively documented conservative scenarios for world energy demand in the year 2020, namely, Energy for a Sustainable World, which assumed that long-term world sustainability must entail constraints on (a) use of natural resources and (b) combustion of fossil fuels resulting in the greenhouse effect. Solar energy is abundant and could become a major source of electricity. Photovoltaics has three particular advantages. It accomplishes sunlight-to-electricity conversion entirely with solid-state electronic components, and with no moving parts required, thereby promising high equipment availability and very low operating and maintenance costs. PV also appears to have very limited environmental impact, with no emissions of the gaseous pollutants associated with fossil-fuel burning and few of the possible local problems associated with some other renewable energy technologies. Finally, the products of photovoltaic technology are modular in construction and can be built up on site in a flexible way, thus minimizing front-end financial risk and investment costs. Figs and tabs

  6. Calculation and mapping of direct and diffuse solar radiation in Costa Rica

    International Nuclear Information System (INIS)

    Wright, Jaime

    2008-01-01

    Knowledge of direct and diffuse solar radiation has been of vital importance in assessing the energy potential of Costa Rica. The work is focused on the calculation and plotting of contour maps of the direct and diffuse solar radiation, based in sixty-two radiometric stations scattered throughout the country. In tracing these contours have been used experimental and predicted values of direct and diffuse radiation. Additionally, direct and diffuse solar radiation is compared during the dry season and the rainy season in the six climatic regions of the country: Valle Central, North Pacific, Central Pacific, South Pacific, North Zone and Caribbean Region. Daily average levels of radiation observed directly have been from 6.1 and 10.1 MJ/m 2 , with higher values in the northern sections of the Pacific Slope, west of Valle Central and the tops of the highest mountains. The lowest values have coincided with the North Zone and Caribbean Region. The highest values of diffuse radiation have coincided with the North Zone and South Pacific. An increase in direct solar radiation by 40% is observed in the month of the dry season. (author) [es

  7. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator

    Directory of Open Access Journals (Sweden)

    Guoying Xu

    2015-12-01

    Full Text Available Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors’ tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC. The theoretical analysis results suggested that the fluid’s temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed.

  8. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator

    Science.gov (United States)

    Xu, Guoying; Chen, Wei; Deng, Shiming; Zhang, Xiaosong; Zhao, Sainan

    2015-01-01

    Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors’ tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC) employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC). The theoretical analysis results suggested that the fluid’s temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed. PMID:28347112

  9. Material challenges for solar cells in the twenty-first century: directions in emerging technologies

    Science.gov (United States)

    Delamarre, Amaury; Jehl, Zacharie; Suchet, Daniel; Cojocaru, Ludmila; Giteau, Maxime; Behaghel, Benoit; Julian, Anatole; Ibrahim, Camille; Tatry, Léa; Wang, Haibin; Kubo, Takaya; Uchida, Satoshi; Segawa, Hiroshi; Miyashita, Naoya; Tamaki, Ryo; Shoji, Yasushi; Yoshida, Katsuhisa; Ahsan, Nazmul; Watanabe, Kentaro; Inoue, Tomoyuki; Sugiyama, Masakazu; Nakano, Yoshiaki; Hamamura, Tomofumi; Toupance, Thierry; Olivier, Céline; Chambon, Sylvain; Vignau, Laurence; Geffroy, Camille; Cloutet, Eric; Hadziioannou, Georges; Cavassilas, Nicolas; Rale, Pierre; Cattoni, Andrea; Collin, Stéphane; Gibelli, François; Paire, Myriam; Lombez, Laurent; Aureau, Damien; Bouttemy, Muriel; Etcheberry, Arnaud; Okada, Yoshitaka

    2018-01-01

    Abstract Photovoltaic generation has stepped up within the last decade from outsider status to one of the important contributors of the ongoing energy transition, with about 1.7% of world electricity provided by solar cells. Progress in materials and production processes has played an important part in this development. Yet, there are many challenges before photovoltaics could provide clean, abundant, and cheap energy. Here, we review this research direction, with a focus on the results obtained within a Japan–French cooperation program, NextPV, working on promising solar cell technologies. The cooperation was focused on efficient photovoltaic devices, such as multijunction, ultrathin, intermediate band, and hot-carrier solar cells, and on printable solar cell materials such as colloidal quantum dots. PMID:29707072

  10. Material challenges for solar cells in the twenty-first century: directions in emerging technologies.

    Science.gov (United States)

    Almosni, Samy; Delamarre, Amaury; Jehl, Zacharie; Suchet, Daniel; Cojocaru, Ludmila; Giteau, Maxime; Behaghel, Benoit; Julian, Anatole; Ibrahim, Camille; Tatry, Léa; Wang, Haibin; Kubo, Takaya; Uchida, Satoshi; Segawa, Hiroshi; Miyashita, Naoya; Tamaki, Ryo; Shoji, Yasushi; Yoshida, Katsuhisa; Ahsan, Nazmul; Watanabe, Kentaro; Inoue, Tomoyuki; Sugiyama, Masakazu; Nakano, Yoshiaki; Hamamura, Tomofumi; Toupance, Thierry; Olivier, Céline; Chambon, Sylvain; Vignau, Laurence; Geffroy, Camille; Cloutet, Eric; Hadziioannou, Georges; Cavassilas, Nicolas; Rale, Pierre; Cattoni, Andrea; Collin, Stéphane; Gibelli, François; Paire, Myriam; Lombez, Laurent; Aureau, Damien; Bouttemy, Muriel; Etcheberry, Arnaud; Okada, Yoshitaka; Guillemoles, Jean-François

    2018-01-01

    Photovoltaic generation has stepped up within the last decade from outsider status to one of the important contributors of the ongoing energy transition, with about 1.7% of world electricity provided by solar cells. Progress in materials and production processes has played an important part in this development. Yet, there are many challenges before photovoltaics could provide clean, abundant, and cheap energy. Here, we review this research direction, with a focus on the results obtained within a Japan-French cooperation program, NextPV, working on promising solar cell technologies. The cooperation was focused on efficient photovoltaic devices, such as multijunction, ultrathin, intermediate band, and hot-carrier solar cells, and on printable solar cell materials such as colloidal quantum dots.

  11. Correlations of Mean Process Parameters for Agricultural Products Drying in Thin Bed in Solar Direct Dryers

    Directory of Open Access Journals (Sweden)

    MSc. Ciro César Bergues-Ricardo

    2015-11-01

    Full Text Available A group of correlations is given between mean parameters of drying process drying velocity, energy losses, useful energy, and thermal efficiency. Those are suitable for conditions of thin bed drying, in direct solar dryers, and may help for developing of an integral approach of solar drying in those conditions. Correlations are reliable for drying processes of diverse crop products specified, suchas roots, seeds, vegetables, fruits, wood, etc, with natural or forced convection. Correlations were validated in Cuba for usual ranges of efficiency and products in solar dryers of cover, cabinet and house types, in tropical conditions. These correlations are useful for design and exploitation ofdryers and for theoretical and practical comprehension of solar drying like a system.

  12. Performance analysis of an Integrated Solar Combined Cycle using Direct Steam Generation in parabolic trough collectors

    International Nuclear Information System (INIS)

    Montes, M.J.; Rovira, A.; Munoz, M.; Martinez-Val, J.M.

    2011-01-01

    Highlights: → Solar hybridization improves the performance of CCGT in a very hot and dry weather. → The scheme analyzed is a DSG parabolic trough field coupled to the Rankine cycle. → An annual simulation has been carried out for two locations: Almeria and Las Vegas. → Economical analysis shows that this scheme is a cheaper way to exploit solar energy. → For that, solar hybridization must be limited to a small fraction of the CCGT power. - Abstract: The contribution of solar thermal power to improve the performance of gas-fired combined cycles in very hot and dry environmental conditions is analyzed in this work, in order to assess the potential of this technique, and to feature Direct Steam Generation (DSG) as a well suited candidate for achieving very good results in this quest. The particular Integrated Solar Combined Cycle (ISCC) power plant proposed consists of a DSG parabolic trough field coupled to the bottoming steam cycle of a Combined Cycle Gas Turbine (CCGT) power plant. For this analysis, the solar thermal power plant performs in a solar dispatching mode: the gas turbine always operates at full load, only depending on ambient conditions, whereas the steam turbine is somewhat boosted to accommodate the thermal hybridization from the solar field. Although the analysis is aimed to studying such complementary effects in the widest perspective, two relevant examples are given, corresponding to two well-known sites: Almeria (Spain), with a mediterranean climate, and Las Vegas (USA), with a hot and dry climate. The annual simulations show that, although the conventional CCGT power plant works worse in Las Vegas, owing to the higher temperatures, the ISCC system operates better in Las Vegas than in Almeria, because of solar hybridization is especially well coupled to the CCGT power plant in the frequent days with great solar radiation and high temperatures in Las Vegas. The complementary effect will be clearly seen in these cases, because the thermal

  13. Direct tracking error characterization on a single-axis solar tracker

    International Nuclear Information System (INIS)

    Sallaberry, Fabienne; Pujol-Nadal, Ramon; Larcher, Marco; Rittmann-Frank, Mercedes Hannelore

    2015-01-01

    Highlights: • The solar tracker of a small-size parabolic trough collector was tested. • A testing procedure for the tracking error characterization of a single-axis tracker was proposed. • A statistical analysis on the tracking error distribution was done regarding different variables. • The optical losses due to the tracking error were calculated based on a ray-tracing simulation. - Abstract: The solar trackers are devices used to orientate solar concentrating systems in order to increase the focusing of the solar radiation on a receiver. A solar concentrator with a medium or high concentration ratio needs to be orientated correctly by an accurate solar tracking mechanism to avoid losing the sunrays out from the receiver. Hence, to obtain an appropriate operation, it is important to know the accuracy of a solar tracker in regard to the required precision of the concentrator in order to maximize the collector optical efficiency. A procedure for the characterization of the accuracy of a solar tracker is presented for a single-axis solar tracker. More precisely, this study focuses on the estimation of the positioning angle error of a parabolic trough collector using a direct procedure. A testing procedure, adapted from the International standard IEC 62817 for photovoltaic trackers, was defined. The results show that the angular tracking error was within ±0.4° for this tracker. The optical losses due to the tracking were calculated using the longitudinal incidence angle modifier obtained by ray-tracing simulation. The acceptance angles for various transversal angles were analyzed, and the average optical loss, due to the tracking, was 0.317% during the whole testing campaign. The procedure presented in this work showed that the tracker precision was adequate for the requirements of the analyzed optical system.

  14. EU Directives, national regulations and incentives for photovoltaic solar energy

    International Nuclear Information System (INIS)

    Jager-Waldau, A.; Ossenbrink, H.; Scholz, H.; Bloem, H.; Werring, L.

    2004-01-01

    The European Union long-term strategy for security of energy supply and its commitment to curb climate change led to the adoption of a series of Strategy Papers and EU Directives. In all these, it is clearly stated that climate change is a long-term challenge for the international community and that the commitments made in the Kyoto Protocol can only be a first step. The promotion of renewable energies is a most important element of this process. It regards industry, jobs and foreign trade balance as well, generating benefit to social sustainability. Photovoltaic is a key technology with the potential not only to serve the needs in energy supply of tomorrow in a sustainable way, but already today, it can improve security and stability of electricity services at peak times, due to its decentralized nature. This paper gives an update on the EU and National legislation in place to promote the implementation of photovoltaic. (authors)

  15. Block copolymer directed synthesis of mesoporous TiO 2 for dye-sensitized solar cells

    KAUST Repository

    Nedelcu, Mihaela

    2009-01-01

    The morphology of TiO2 plays an important role in the operation of solid-state dye-sensitized solar cells. By using polyisoprene-block- ethyleneoxide (PI-b-PEO) copolymers as structure directing agents for a sol-gel based synthesis of mesoporous TiO2, we demonstrate a strategy for the detailed control of the semiconductor morphology on the 10 nm length scale. The careful adjustment of polymer molecular weight and titania precursor content is used to systematically vary the material structure and its influence upon solar cell performance is investigated. Furthermore, the use of a partially sp 2 hybridized structure directing polymer enables the crystallization of porous TiO2 networks at high temperatures without pore collapse, improving its performance in solid-state dye-sensitized solar cells. © 2009 The Royal Society of Chemistry.

  16. Analysis of Direct Samples of Early Solar System Aqueous Fluids

    Science.gov (United States)

    Zolensky, Michael E.; Bodnar, R J.; Fedele, L.; Yurimoto,H.; Itoh, S.; Fries, M.; Steele, A.

    2012-01-01

    Over the past three decades we have become increasingly aware of the fundamental importance of water, and aqueous alteration, on primitive solar-system bodies. Some carbonaceous and ordinary chondrites have been altered by interactions with liquid water within the first 10 million years after formation of their parent asteroids. Millimeter to centimeter-sized aggregates of purple halite containing aqueous fluid inclusions were found in the matrix of two freshly-fallen brecciated H chondrite falls, Monahans (1998, hereafter simply "Monahans") (H5) and Zag (H3-6) (Zolensky et al., 1999; Whitby et al., 2000; Bogard et al., 2001) In order to understand origin and evolution of the aqueous fluids inside these inclusions we much measure the actual fluid composition, and also learn the O and H isotopic composition of the water. It has taken a decade for laboratory analytical techniques to catch up to these particular nanomole-sized aqueous samples. We have recently been successful in (1) measuring the isotopic composition of H and O in the water in a few fluid inclusions from the Zag and Monahans halite, (2) mineralogical characterization of the solid mineral phases associated with the aqueous fluids within the halite, and (3) the first minor element analyses of the fluid itself. A Cameca ims-1270 equipped with a cryo-sample-stage of Hokkaido University was specially prepared for the O and H isotopic measurements. The cryo-sample-stage (Techno. I. S. Corp.) was cooled down to c.a. -190 C using liquid nitrogen at which the aqueous fluid in inclusions was frozen. We excavated the salt crystal surfaces to expose the frozen fluids using a 15 keV Cs+ beam and measured negative secondary ions. The secondary ions from deep craters of approximately 10 m in depth emitted stably but the intensities changed gradually during measurement cycles because of shifting states of charge compensation, resulting in rather poor reproducibility of multiple measurements of standard fluid

  17. Heliosynthesis: A solar biotechnology based on direct bioconversion of solar energy by photosynthetic cells

    Science.gov (United States)

    Gudin, C.

    1982-12-01

    Certain limiting aspects of current technology should be studied, such as the lifetimes of tubing material and the utilization of renewable sources of energy for pumping. Only exocellular or cellular biomass with high specific value, involving small markets and small plant areas (less than 1 ha), will be economically possible for the short term and will allow improvement of this technology. A valorization of the totality of photosynthetic biomass with respect to economics and energy is an absolute necessity. There is an immediate need for genetic studies of microalgae that will allow enhancement or even creation of chemical production satisfying economic and energy needs. Such efforts should permit the rapid establishment of an aggressive and sophisticated solar biotechnology that integrates scientific and technical' developments to meet the new needs of humanity for food, chemicals, and energy, thereby complementing agriculture with a sort of cellular horticulture.

  18. Spectral and directional dependence of light-trapping in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ulbrich, Carolin

    2011-02-17

    This thesis investigates the directional and spectral dependence of light-incoupling and light-trapping in solar cells. The light-trapping does not notably change under increased angles of incidence. To enhance the incoupling at the front of the solar cell, the effects of a textured surface structure on the cover glass of the solar cell are investigated. The texture reduces the reflectance at the air-glass interface and, additionally, reduces the reflection losses originating at the interface between the glass and the transparent conductive oxide (TCO) as well as the TCO and the silicon (Si) absorber due to the randomization of light. On samples without a textured TCO/Si interface, the textured foil induces additional light-trapping in the photovoltaically active absorber material. This effect is not observed for samples with a textured TCO/Si interface. In this case, using tandem solar cells, a redistribution of light absorption in the top and bottom subcells is detected. The antireflective texture increases the short circuit current density in thin film silicon tandem solar cells by up to 1 mA/cm{sup 2}, and the conversion efficiency by up to 0.7 % absolute. The increase in the annual yield of solar cells is estimated to be up to 10 %. Further, the spectral dependence of the efficiency and annual yield of a tandem solar cell was investigated. The daily variation of the incident spectrum causes a change in the current matching of the serial connected subcells. Simulations determine the optimum subcell layer thicknesses of tandem solar cells. The thicknesses optimized in respect to the annual yield overlap in a wide range for both investigated locations with those for the AM1.5g standard spectrum. Though, a slight top limitation is favorable. Matching the short circuit currents of the subcells maximizes the overall current, but minimizes the fill factor. This thesis introduces a new definition for the matching condition of tandem solar cells. This definition

  19. Block copolymer directed synthesis of mesoporous TiO 2 for dye-sensitized solar cells

    KAUST Repository

    Nedelcu, Mihaela; Lee, Jinwoo; Crossland, Edward J. W.; Warren, Scott C.; Orilall, M. Christopher; Guldin, Stefan; Hü ttner, Sven; Ducati, Catarina; Eder, Dominik; Wiesner, Ulrich; Steiner, Ullrich; Snaith, Henry J.

    2009-01-01

    The morphology of TiO2 plays an important role in the operation of solid-state dye-sensitized solar cells. By using polyisoprene-block- ethyleneoxide (PI-b-PEO) copolymers as structure directing agents for a sol-gel based synthesis of mesoporous TiO

  20. Increasing the temporal resolution of direct normal solar irradiance forecasted series

    Science.gov (United States)

    Fernández-Peruchena, Carlos M.; Gastón, Martin; Schroedter-Homscheidt, Marion; Marco, Isabel Martínez; Casado-Rubio, José L.; García-Moya, José Antonio

    2017-06-01

    A detailed knowledge of the solar resource is a critical point in the design and control of Concentrating Solar Power (CSP) plants. In particular, accurate forecasting of solar irradiance is essential for the efficient operation of solar thermal power plants, the management of energy markets, and the widespread implementation of this technology. Numerical weather prediction (NWP) models are commonly used for solar radiation forecasting. In the ECMWF deterministic forecasting system, all forecast parameters are commercially available worldwide at 3-hourly intervals. Unfortunately, as Direct Normal solar Irradiance (DNI) exhibits a great variability due to the dynamic effects of passing clouds, 3-h time resolution is insufficient for accurate simulations of CSP plants due to their nonlinear response to DNI, governed by various thermal inertias due to their complex response characteristics. DNI series of hourly or sub-hourly frequency resolution are normally used for an accurate modeling and analysis of transient processes in CSP technologies. In this context, the objective of this study is to propose a methodology for generating synthetic DNI time series at 1-h (or higher) temporal resolution from 3-h DNI series. The methodology is based upon patterns as being defined with help of the clear-sky envelope approach together with a forecast of maximum DNI value, and it has been validated with high quality measured DNI data.

  1. Real-time dynamic analysis for complete loop of direct steam generation solar trough collector

    International Nuclear Information System (INIS)

    Guo, Su; Liu, Deyou; Chu, Yinghao; Chen, Xingying; Shen, Bingbing; Xu, Chang; Zhou, Ling; Wang, Pei

    2016-01-01

    Highlights: • A nonlinear distribution parameter dynamic model has been developed. • Real-time local heat transfer coefficient and friction coefficient are adopted. • The dynamic behavior of the solar trough collector loop are simulated. • High-frequency chattering of outlet fluid flow are analyzed and modeled. • Irradiance disturbance at subcooled water region generates larger influence. - Abstract: Direct steam generation is a potential approach to further reduce the levelized electricity cost of solar trough. Dynamic modeling of the collector loop is essential for operation and control of direct steam generation solar trough. However, the dynamic behavior of fluid based on direct steam generation is complex because of the two-phase flow in the pipeline. In this work, a nonlinear distribution parameter model has been developed to model the dynamic behaviors of direct steam generation parabolic trough collector loops under either full or partial solar irradiance disturbance. Compared with available dynamic model, the proposed model possesses two advantages: (1) real-time local values of heat transfer coefficient and friction resistance coefficient, and (2) considering of the complete loop of collectors, including subcooled water region, two-phase flow region and superheated steam region. The proposed model has shown superior performance, particularly in case of sensitivity study of fluid parameters when the pipe is partially shaded. The proposed model has been validated using experimental data from Solar Thermal Energy Laboratory of University of New South Wales, with an outlet fluid temperature relative error of only 1.91%. The validation results show that: (1) The proposed model successfully outperforms two reference models in predicting the behavior of direct steam generation solar trough. (2) The model theoretically predicts that, during solar irradiance disturbance, the discontinuities of fluid physical property parameters and the moving back and

  2. Nanofluid Types, Their Synthesis, Properties and Incorporation in Direct Solar Thermal Collectors: A Review

    Directory of Open Access Journals (Sweden)

    Wisut Chamsa-ard

    2017-05-01

    Full Text Available The global demand for energy is increasing and the detrimental consequences of rising greenhouse gas emissions, global warming and environmental degradation present major challenges. Solar energy offers a clean and viable renewable energy source with the potential to alleviate the detrimental consequences normally associated with fossil fuel-based energy generation. However, there are two inherent problems associated with conventional solar thermal energy conversion systems. The first involves low thermal conductivity values of heat transfer fluids, and the second involves the poor optical properties of many absorbers and their coating. Hence, there is an imperative need to improve both thermal and optical properties of current solar conversion systems. Direct solar thermal absorption collectors incorporating a nanofluid offers the opportunity to achieve significant improvements in both optical and thermal performance. Since nanofluids offer much greater heat absorbing and heat transfer properties compared to traditional working fluids. The review summarizes current research in this innovative field. It discusses direct solar absorber collectors and methods for improving their performance. This is followed by a discussion of the various types of nanofluids available and the synthesis techniques used to manufacture them. In closing, a brief discussion of nanofluid property modelling is also presented.

  3. Nanofluid Types, Their Synthesis, Properties and Incorporation in Direct Solar Thermal Collectors: A Review.

    Science.gov (United States)

    Chamsa-Ard, Wisut; Brundavanam, Sridevi; Fung, Chun Che; Fawcett, Derek; Poinern, Gerrard

    2017-05-31

    The global demand for energy is increasing and the detrimental consequences of rising greenhouse gas emissions, global warming and environmental degradation present major challenges. Solar energy offers a clean and viable renewable energy source with the potential to alleviate the detrimental consequences normally associated with fossil fuel-based energy generation. However, there are two inherent problems associated with conventional solar thermal energy conversion systems. The first involves low thermal conductivity values of heat transfer fluids, and the second involves the poor optical properties of many absorbers and their coating. Hence, there is an imperative need to improve both thermal and optical properties of current solar conversion systems. Direct solar thermal absorption collectors incorporating a nanofluid offers the opportunity to achieve significant improvements in both optical and thermal performance. Since nanofluids offer much greater heat absorbing and heat transfer properties compared to traditional working fluids. The review summarizes current research in this innovative field. It discusses direct solar absorber collectors and methods for improving their performance. This is followed by a discussion of the various types of nanofluids available and the synthesis techniques used to manufacture them. In closing, a brief discussion of nanofluid property modelling is also presented.

  4. Measuring Broadband IR Irradiance in the Direct Solar Beam and Recent Developments

    Energy Technology Data Exchange (ETDEWEB)

    Reda, Ibrahim; Andreas, Afshin; Dooraghi, Mike; Habte, Aron; Sengupta, Manajit; Kutchenreiter, Mark

    2016-12-14

    Solar and atmospheric science radiometers such as pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference which is maintained by Absolute Cavity Radiometers (ACRs). An ACR is an open cavity with no window, developed to measure the extended broadband spectrum of the terrestrial direct solar beam irradiance that extends beyond the ultraviolet and infrared bands; i.e. below 0.2 um and above 50 um, respectively. On the other hand, the pyranometers and pyrheliometers were developed to measure broadband shortwave irradiance from approximately 0.3 um to 3 um, while the present photovoltaic cells are limited to the spectral range of approximately 0.3 um to 1 um. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers, which measure the atmospheric longwave irradiance, are also used for solar and atmospheric science applications and calibrated with traceability to a consensus reference, yet they are calibrated during nighttime only, because no consensus reference has been established for the daytime longwave irradiance. This poster describes a method to measure the broadband longwave irradiance in the terrestrial direct solar beam from 3 um to 50 um, as a first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The described method is used to measure the irradiance from sunrise to sunset; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 with an estimated uncertainty of 1.5 Wm-2, for a solar zenith angle range from 80 degrees to 16 degrees, respectively. Recent development shows that there is greater than 1.1 percent bias in measuring shortwave solar irradiance.

  5. Comparison of Heat Transfer Fluid and Direct Steam Generation technologies for Integrated Solar Combined Cycles

    International Nuclear Information System (INIS)

    Rovira, Antonio; Montes, María José; Varela, Fernando; Gil, Mónica

    2013-01-01

    At present time and in the medium term, Solar Thermal Power Plants are going to share scenario with conventional energy generation technologies, like fossil and nuclear. In such a context, Integrated Solar Combined Cycles (ISCCs) may be an interesting choice since integrated designs may lead to a very efficient use of the solar and fossil resources. In this work, different ISCC configurations including a solar field based on parabolic trough collectors and working with the so-called Heat Transfer Fluid (HTF) and Direct Steam Generation (DSG) technologies are compared. For each technology, four layouts have been studied: one in which solar heat is used to evaporate part of the high pressure steam of a bottoming Rankine cycle with two pressure levels, another that incorporates a preheating section to the previous layout, the third one that includes superheating instead of preheating and the last one including both preheating and superheating in addition to the evaporation. The analysis is made with the aim of finding out which of the different layouts reaches the best performance. For that purpose, three types of comparisons have been performed. The first one assesses the benefits of including a solar steam production fixed at 50 MW th . The second one compares the configurations with a standardised solar field size instead of a fixed solar steam production. Finally, the last one consists on an even more homogeneous comparison considering the same steam generator size for all the configurations as well as standardised solar fields. The configurations are studied by mean of exergy analyses. Several figures of merit are used to correctly assess the configurations. Results reveal that the only-evaporative DSG configuration becomes the best choice, since it benefits of both low irreversibility at the heat recovery steam generator and high thermal efficiency in the solar field. Highlights: ► ISCC configurations with DSG and HTF technologies are compared. ► Four

  6. Decentralized and direct solar hydrogen production: Towards a hydrogen economy in MENA region

    Energy Technology Data Exchange (ETDEWEB)

    Bensebaa, Farid; Khalfallah, Mohamed; Ouchene, Majid

    2010-09-15

    Hydrogen has certainly some advantages in spite of its high cost and low efficiency when compared to other energy vectors. Solar energy is an abundant, clean and renewable source of energy, currently competing with fossil fuel for water heating without subsidy. Photo-electrochemical, thermo-chemicals and photo-biological processes for hydrogen production processes have been demonstrated. These decentralised hydrogen production processes using directly solar energy do not require expensive hydrogen infrastructure for packaging and delivery in the short and medium terms. MENA region could certainly be considered a key area for a new start to a global deployment of hydrogen economy.

  7. Calculating spectral direct solar irradiance, diffuse and global in Heredia, Costa Rica

    International Nuclear Information System (INIS)

    Wright, Jaime

    2008-01-01

    A spectral model under conditions of clear skies has described the flow of solar irradiation and is verified experimentally in Heredia, Costa Rica. A description of the model is presented by comparing its results with experimental measurements. The model has calculated the spectral flows of the global solar irradiation, direct and diffuse incident on a horizontal surface. Necessary input data include latitude, altitude, surface albedo as characteristics of a locality, and atmospheric characteristics: turbidity, precipitable water vapor, total ozone content and the optical thickness of a particular subject. The results show satisfactory values. (author) [es

  8. Solar energy utilization in the direct photocarboxylation of 2,3-dihydrofuran using CO2.

    Science.gov (United States)

    Aresta, Michele; Dibenedetto, Angela; Baran, Tomasz; Wojtyła, Szymon; Macyk, Wojciech

    2015-01-01

    The conversion of CO2 into high energy products (fuels) and the direct carboxylation of C-H bonds require a high energy input. Energy cannot be derived from fossil carbon, in this case. Solar energy can be used instead, with a low environmental impact and good profit. We have studied the use of white light or solar energy in the photoreduction of CO2 and in photocarboxylation reactions, using different semiconductors modified at their surface. Two examples of reduction of CO2 to methanol and CO will be shortly discussed, and two cases of carboxylation of organic substrates. The case of carboxylation of 2,3-dihydrofuran will be discussed in detail.

  9. TiO2-photoanode-assisted direct solar energy harvesting and storage in a solar-powered redox cell using halides as active materials.

    Science.gov (United States)

    Zhang, Shun; Chen, Chen; Zhou, Yangen; Qian, Yumin; Ye, Jing; Xiong, Shiyun; Zhao, Yu; Zhang, Xiaohong

    2018-06-19

    The rapid deployment of renewable energy is resulting in significant energy security, climate change mitigation, and economic benefits. We demonstrate here the direct solar energy harvesting and storage in a rechargeable solar-powered redox cell, which can be charged solely by solar irradiation. The cell follows a conventional redox-flow cell design with one integrated TiO2 photoanode in the cathode side. Direct charging the cell by solar irradiation results in the conversion of solar energy in to chemical energy. While discharging the cell leads to the release of chemical energy in the form of electricity. The cell integrates energy conversion and storage processes in a single device, making the solar energy directly and efficiently dispatchable. When using redox couples of Br2/Br- and I3-/I- in the cathode side and anode side, respectively, the cell can be directly charged upon solar irradiation, yielding a discharge potential of 0.5V with good round-trip efficiencies. This design is expected to be a potential alternative towards the development of affordable, inexhaustible and clean solar energy technologies.

  10. Solar glint suppression in compact planetary ultraviolet spectrographs

    Science.gov (United States)

    Davis, Michael W.; Cook, Jason C.; Grava, Cesare; Greathouse, Thomas K.; Gladstone, G. Randall; Retherford, Kurt D.

    2015-08-01

    Solar glint suppression is an important consideration in the design of compact photon-counting ultraviolet spectrographs. Southwest Research Institute developed the Lyman Alpha Mapping Project for the Lunar Reconnaissance Orbiter (launch in 2009), and the Ultraviolet Spectrograph on Juno (Juno-UVS, launch in 2011). Both of these compact spectrographs revealed minor solar glints in flight that did not appear in pre-launch analyses. These glints only appeared when their respective spacecraft were operating outside primary science mission parameters. Post-facto scattered light analysis verifies the geometries at which these glints occurred and why they were not caught during ground testing or nominal mission operations. The limitations of standard baffle design at near-grazing angles are discussed, as well as the importance of including surface scatter properties in standard stray light analyses when determining solar keep-out efficiency. In particular, the scattered light analysis of these two instruments shows that standard "one bounce" assumptions in baffle design are not always enough to prevent scattered sunlight from reaching the instrument focal plane. Future builds, such as JUICE-UVS, will implement improved scattered and stray light modeling early in the design phase to enhance capabilities in extended mission science phases, as well as optimize solar keep out volume.

  11. The search for and analysis of direct samples of early Solar System aqueous fluids.

    Science.gov (United States)

    Zolensky, Michael E; Bodnar, Robert J; Yurimoto, Hisayoshi; Itoh, Shoichi; Fries, Marc; Steele, Andrew; Chan, Queenie H-S; Tsuchiyama, Akira; Kebukawa, Yoko; Ito, Motoo

    2017-05-28

    We describe the current state of the search for direct, surviving samples of early, inner Solar System fluids-fluid inclusions in meteorites. Meteoritic aqueous fluid inclusions are not rare, but they are very tiny and their characterization is at the state of the art for most analytical techniques. Meteoritic fluid inclusions offer us a unique opportunity to study early Solar System brines in the laboratory. Inclusion-by-inclusion analyses of the trapped fluids in carefully selected samples will, in the immediate future, provide us detailed information on the evolution of fluids as they interacted with anhydrous solid materials. Thus, real data can replace calculated fluid compositions in thermochemical calculations of the evolution of water and aqueous reactions in comets, asteroids, moons and the terrestrial planets.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  12. Design of a Solar Motor Drive System Fed by a Direct-Connected Photovoltaic Array

    Directory of Open Access Journals (Sweden)

    AYDOGMUS, O.

    2012-08-01

    Full Text Available A solar motor pump drive system is modeled and simulated. The proposed drive system does not require any kind of energy storage system and dc-dc converter. The system is connected directly to a photovoltaic (PV array. Thus, a low cost solar system can be achieved. A vector controlled Permanent Magnet Synchronous Motor (PMSM is used as a solar motor to increase the efficiency of system. The motor is designed for a low rated voltage level about 24V. The hill climbing MPPT method is used for balanced the motor power and PV power to obtain a high efficiency. The results are performed by using MATLAB/SimPowerSystem blocks. In addition, the PV array is modeled to allow for the possibility of running as on-line adjustable in simulation environment without using lookup table. The performances of motor, MPPT and drive system are analyzed in different conditions as temperature and irradiation of PV array.

  13. High Voltage Solar Array Arc Testing for a Direct Drive Hall Effect Thruster System

    Science.gov (United States)

    Schneider, Todd; Carruth, M. R., Jr.; Vaughn, J. A.; Jongeward, G. A.; Mikellides, I. G.; Ferguson, D.; Kerslake, T. W.; Peterson, T.; Snyder, D.; Hoskins, A.

    2004-01-01

    The deleterious effects of spacecraft charging are well known, particularly when the charging leads to arc events. The damage that results from arcing can severely reduce system lifetime and even cause critical system failures. On a primary spacecraft system such as a solar array, there is very little tolerance for arcing. Motivated by these concerns, an experimental investigation was undertaken to determine arc thresholds for a high voltage (200-500 V) solar array in a plasma environment. The investigation was in support of a NASA program to develop a Direct Drive Hall-Effect Thruster (D2HET) system. By directly coupling the solar array to a Hall-effect thruster, the D2HET program seeks to reduce mass, cost and complexity commonly associated with the power processing in conventional power systems. In the investigation, multiple solar array technologies and configurations were tested. The cell samples were biased to a negative voltage, with an applied potential difference between them, to imitate possible scenarios in solar array strings that could lead to damaging arcs. The samples were tested in an environment that emulated a low-energy, HET-induced plasma. Short duration trigger arcs as well as long duration sustained arcs were generated. Typical current and voltage waveforms associated with the arc events are presented. Arc thresholds are also defined in terms of voltage, current and power. The data will be used to propose a new, high-voltage (greater than 300 V) solar array design for which the likelihood of damage from arcing is minimal.

  14. Anomalous Temporal Behaviour of Broadband Ly Alpha Observations During Solar Flares from SDO/EVE

    Science.gov (United States)

    Milligan, Ryan O.; Chamberlin, Phillip C.

    2016-01-01

    Although it is the most prominent emission line in the solar spectrum, there has been a notable lack of studies devoted to variations in Lyman-alpha (Ly-alpha) emission during solar flares in recent years. However, the few examples that do exist have shown Ly-alpha emission to be a substantial radiator of the total energy budget of solar flares (of the order of 10 percent). It is also a known driver of fluctuations in the Earth's ionosphere. The EUV (Extreme Ultra-Violet) Variability Experiment (EVE) on board the Solar Dynamics Observatory (SDO) now provides broadband, photometric Ly-alpha data at 10-second cadence with its Multiple EUV Grating Spectrograph-Photometer (MEGS-P) component, and has observed scores of solar flares in the 5 years since it was launched. However, the MEGS-P time profiles appear to display a rise time of tens of minutes around the time of the flare onset. This is in stark contrast to the rapid, impulsive increase observed in other intrinsically chromospheric features (H-alpha, Ly-beta, LyC, C III, etc.). Furthermore, the emission detected by MEGS-P peaks around the time of the peak of thermal soft X-ray emission and not during the impulsive phase when energy deposition in the chromosphere (often assumed to be in the form of non-thermal electrons) is greatest. The time derivative of Ly-alpha lightcurves also appears to resemble that of the time derivative of soft X-rays, reminiscent of the Neupert effect. Given that spectrally-resolved Ly-alpha observations during flares from SORCE / SOLSTICE (Solar Radiation and Climate Experiment / Solar Stellar Irradiance Comparison Experiment) peak during the impulsive phase as expected, this suggests that the atypical behaviour of MEGS-P data is a manifestation of the broadband nature of the observations. This could imply that other lines andor continuum emission that becomes enhanced during flares could be contributing to the passband. Users are hereby urged to exercise caution when interpreting

  15. Future mission studies: Forecasting solar flux directly from its chaotic time series

    Science.gov (United States)

    Ashrafi, S.

    1991-01-01

    The mathematical structure of the programs written to construct a nonlinear predictive model to forecast solar flux directly from its time series without reference to any underlying solar physics is presented. This method and the programs are written so that one could apply the same technique to forecast other chaotic time series, such as geomagnetic data, attitude and orbit data, and even financial indexes and stock market data. Perhaps the most important application of this technique to flight dynamics is to model Goddard Trajectory Determination System (GTDS) output of residues between observed position of spacecraft and calculated position with no drag (drag flag = off). This would result in a new model of drag working directly from observed data.

  16. Epitaxial Ge Solar Cells Directly Grown on Si (001) by MOCVD Using Isobutylgermane

    Science.gov (United States)

    Kim, Youngjo; Kim, Kangho; Lee, Jaejin; Kim, Chang Zoo; Kang, Ho Kwan; Park, Won-Kyu

    2018-03-01

    Epitaxial Ge layers have been grown on Si (001) substrates by metalorganic chemical vapor deposition (MOCVD) using an isobutylgermane (IBuGe) metalorganic source. Low and high temperature two-step growth and post annealing techniques are employed to overcome the lattice mismatch problem between Ge and Si. It is demonstrated that high quality Ge epitaxial layers can be grown on Si (001) by using IBuGe with surface RMS roughness of 2 nm and an estimated threading dislocation density of 4.9 × 107 cm -2. Furthermore, single-junction Ge solar cells have been directly grown on Si substrates with an in situ MOCVD growth. The epitaxial Ge p- n junction structures are investigated with transmission electron microscopy and electrochemical C- V measurements. As a result, a power conversion efficiency of 1.69% was achieved for the Ge solar cell directly grown on Si substrate under AM1.5G condition.

  17. Solar power satellite rectenna design study: Directional receiving elements and parallel-series combining analysis

    Science.gov (United States)

    Gutmann, R. J.; Borrego, J. M.

    1978-01-01

    Rectenna conversion efficiencies (RF to dc) approximating 85 percent were demonstrated on a small scale, clearly indicating the feasibility and potential of efficiency of microwave power to dc. The overall cost estimates of the solar power satellite indicate that the baseline rectenna subsystem will be between 25 to 40 percent of the system cost. The directional receiving elements and element extensions were studied, along with power combining evaluation and evaluation extensions.

  18. Dynamical response of the magnetotail to changes of the solar wind direction: an MHD modeling perspective

    Directory of Open Access Journals (Sweden)

    V. A. Sergeev

    2008-08-01

    Full Text Available We performed global MHD simulations to investigate the magnetotail response to the solar wind directional changes (Vz-variations. These changes, although small, cause significant variations of the neutral sheet shape and location even in the near and middle tail regions. They display a complicated temporal response, in which ~60 to 80% of the final shift of the neutral sheet in Z direction occurs within first 10–15 min (less for faster solar wind, whereas a much longer time (exceeding half hour is required to reach a new equilibrium. The asymptotic equilibrium shape of the simulated neutral sheet is consistent with predictions of Tsyganenko-Fairfield (2004 empirical model. To visualize a physical origin of the north-south tail motion we compared the values of the total pressure in the northern and southern tail lobes and found a considerable difference (10–15% for only 6° change of the solar wind direction used in the simulation. That difference builds up during the passage of the solar wind directional discontinuity and is responsible for the vertical shift of the neutral sheet, although some pressure difference remains in the near tail even near the new equilibrium. Surprisingly, at a given tailward distance, the response was found to be first initiated in the tail center (the "leader effect", rather than near the flanks, which can be explained by the wave propagation in the tail, and which may have interesting implications for the substorm triggering studies. The present results have serious implications for the data-based modeling, as they place constraints on the accuracy of tail magnetic configurations to be derived for specific events using data of multi-spacecraft missions, e.g. such as THEMIS.

  19. A concentrated solar cavity absorber with direct heat transfer through recirculating metallic particles

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, M. R. I., E-mail: islamrabiul@yahoo.com; Saha, Manabendra, E-mail: manabendra.saha@adelaide.edu.au, E-mail: manab04me@gmail.com; Beg, R. A. [Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi-6204 (Bangladesh)

    2016-07-12

    A recirculating flow solar particle cavity absorber (receiver) is modeled to investigate the flow behavior and heat transfer characteristics of a novel developing concept. It features a continuous recirculating flow of non-reacting metallic particles (black silicon carbide) with air which are used as a thermal enhancement medium. The aim of the present study is to numerically investigate the thermal behavior and flow characteristics of the proposed concept. The proposed solar particle receiver is modeled using two phase discrete particle model (DPM), RNG k-flow model and discrete ordinate (DO) radiation model. Numerical analysis is carried out considering a solar receiver with only air and the mixture of non-reacting particles and air as a heat transfer as well as heat carrying medium. The parametric investigation is conducted considering the incident solar flux on the receiver aperture and changing air flow rate and recirculation rate inside the receiver. A stand-alone feature of the recirculating flow solar particle receiver concept is that the particles are directly exposed to concentrated solar radiation monotonously through recirculating flow inside the receiver and results in efficient irradiation absorption and convective heat transfer to air that help to achieve high temperature air and consequently increase in thermal efficiency. This paper presents, results from the developed concept and highlights its flow behavior and potential to enhance the heat transfer from metallic particles to air by maximizing heat carrying capacity of the heat transfer medium. The imposed milestones for the present system will be helpful to understand the radiation absorption mechanism of the particles in a recirculating flow based receiver, the thermal transport between the particles, the air and the cavity, and the fluid dynamics of the air and particle in the cavity.

  20. DROPOUT OF DIRECTIONAL ELECTRON INTENSITIES IN LARGE SOLAR ENERGETIC PARTICLE EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lun C. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Reames, Donald V., E-mail: ltan@umd.edu [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States)

    2016-01-10

    In the “gradual” solar energetic particle (SEP) event during solar cycle 23 we have observed the dispersionless modulation (“dropout”) in directional intensities of nonrelativistic electrons. The average duration of dropout periods is ∼0.8 hr, which is consistent with the correlation scale of solar wind turbulence. During the dropout period electrons could display scatter-free transport in an intermittent way. Also, we have observed a decrease in the anisotropic index of incident electrons with increasing electron energy (E{sub e}), while the index of scattered/reflected electrons is nearly independent of E{sub e}. We hence perform an observational examination of the correlation between the anisotropic index of low-energy scattered/reflected electrons and the signature of the locally measured solar wind turbulence in the dissipation range, which is responsible for resonant scattering of nonrelativistic electrons. Since during the dropout period the slab turbulence fraction is dominant (0.8 ± 0.1), we pay close attention to the effect of slab fraction on the correlation examined. Our observation is consistent with the simulation result that in the dominance of the slab turbulence component there should exist a dispatched structure of magnetic flux tubes, along which electrons could be transported in a scatter-free manner. Since a similar phenomenon is exhibited in the “impulsive” SEP event, electron dropout should be a transport effect. Therefore, being different from most ion dropout events, which are due to a compact flare source, the dropout of directional electron intensities should be caused by the change of turbulence status in the solar wind.

  1. DROPOUT OF DIRECTIONAL ELECTRON INTENSITIES IN LARGE SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Tan, Lun C.; Reames, Donald V.

    2016-01-01

    In the “gradual” solar energetic particle (SEP) event during solar cycle 23 we have observed the dispersionless modulation (“dropout”) in directional intensities of nonrelativistic electrons. The average duration of dropout periods is ∼0.8 hr, which is consistent with the correlation scale of solar wind turbulence. During the dropout period electrons could display scatter-free transport in an intermittent way. Also, we have observed a decrease in the anisotropic index of incident electrons with increasing electron energy (E e ), while the index of scattered/reflected electrons is nearly independent of E e . We hence perform an observational examination of the correlation between the anisotropic index of low-energy scattered/reflected electrons and the signature of the locally measured solar wind turbulence in the dissipation range, which is responsible for resonant scattering of nonrelativistic electrons. Since during the dropout period the slab turbulence fraction is dominant (0.8 ± 0.1), we pay close attention to the effect of slab fraction on the correlation examined. Our observation is consistent with the simulation result that in the dominance of the slab turbulence component there should exist a dispatched structure of magnetic flux tubes, along which electrons could be transported in a scatter-free manner. Since a similar phenomenon is exhibited in the “impulsive” SEP event, electron dropout should be a transport effect. Therefore, being different from most ion dropout events, which are due to a compact flare source, the dropout of directional electron intensities should be caused by the change of turbulence status in the solar wind

  2. Formation and growth of crystal defects in directionally solidified multicrystalline silicon for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryningen, Birgit

    2008-07-01

    Included in this thesis are five publications and one report. The common theme is characterisation of directionally solidified multicrystalline silicon for solar cells. Material characterisation of solar cell silicon is naturally closely linked to both the casting process and to the solar cell processing: Many of the material properties are determined by the casting process, and the solar cell processing will to some extend determine which properties will influence the solar cell performance. Solar grade silicon (SoG-Si) made by metallurgical refining route and supplied by Elkem Solar was directionally solidified and subsequently characterised, and a simple solar cell process was applied. Except from some metallic co-precipitates in the top of the ingot, no abnormalities were found, and it is suggested that within the limits of the tests performed in this thesis, the casting and the solar cell processing, rather than the assumed higher impurity content, was the limiting factor. It is suggested in this thesis that the main quality problem in multicrystalline silicon wafers is the existence of dislocation clusters covering large wafer areas. The clusters will reduce the effect of gettering and even if gettering could be performed successfully, the clusters will still reduce the minority carrier mobility and hence the solar cell performance. It has further been pointed out that ingots solidified under seemingly equal conditions might have a pronounced difference in minority carrier lifetime. Ingots with low minority carrier lifetime have high dislocation densities. The ingots with the substantially higher lifetime seem all to be dominated by twins. It is also found a link between a higher undercooling and the ingots dominated by twins. It is suggested that the two types of ingots are subject to different nucleation and crystal growth mechanisms: For the ingots dominated by dislocations, which are over represented, the crystal growth is randomly nucleated at the

  3. Development of a direct expansion solar assisted heat pump for hot water supply

    International Nuclear Information System (INIS)

    Abdesselam Hamloui; Ong, K.S.; Than Cheok Fah; Masjuki Hassan

    2000-01-01

    Experimental investigations were conducted on the direct expansion solar assisted Heat Pump (DESAHP). Refrigerant R-22 was expanded in the solar collector which also acted as the evaporator in a conventional vapor compression refrigerating machine. The experiments were conducted under conditions of high and low solar radiation, with evaporator completely shaded from the sun, and at night. System thermal performance was determined by measuring refrigerant flow rate, temperature and pressure at numerous points in the system. The results showed that 227-l of water could be heated from 3O degree to 55 degree C in about 105 minutes. Higher water temperatures were obtained during hot sunny days. The coefficient of performance of heating, COP h , ranged from 11 to 4.7, depending upon operating conditions. The total saving of electric energy during hot sunny days was about 460 %. It means that for 1 kWh of electrical input to the system, we achieve 4.6 kWh. This percentage decreases as the evaporator temperature decreases and is a function of solar energy input. (Author)

  4. Experimental investigation on photothermal properties of nanofluids for direct absorption solar thermal energy systems

    International Nuclear Information System (INIS)

    He, Qinbo; Wang, Shuangfeng; Zeng, Shequan; Zheng, Zhaozhi

    2013-01-01

    Highlights: • The factors affecting the transmittance of Cu–H 2 O nanofluids were studied with UV–Vis–NIR spectrophotometer. • The optical properties of Cu–H 2 O nanofluids were studied through the theoretical model. • The Cu–H 2 O nanofluids can enhance the absorption ability for solar energy. - Abstract: In this article, Cu–H 2 O nanofluids were prepared through two-step method. The transmittance of nanofluids over solar spectrum (250–2500 nm) was measured by the UV–Vis–NIR spectrophotometer based on integrating sphere principle. The factors influencing transmittance of nanofluids, such as particle size, mass fraction and optical path were investigated. The extinction coefficients measured experimentally were compared with the theoretical calculation value. Meanwhile, the photothermal properties of nanofluids were also investigated. The experimental results show that the transmittance of Cu–H 2 O nanofluids is much less than that of deionized water, and decreases with increasing nanoparticle size, mass fraction and optical depth. The highest temperature of Cu–H 2 O nanofluids (0.1 wt.%) can increased up to 25.3% compared with deionized water. The good absorption ability of Cu–H 2 O nanofluids for solar energy indicates that it is suitable for direct absorption solar thermal energy systems

  5. Development of a direct solar driven diffusion absorption chiller; Entwicklung einer direkt solarthermisch angetriebenen Diffusions-Absorptionskaeltemaschine

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Fabian; Bierling, Bernd; Spindler, Klaus [Stuttgart Univ. (Germany). Inst. fuer Thermodynamik und Waermetechnik (ITW)

    2013-03-15

    At the ITW, a decentralized solar cooling system is developed based on the diffusion-absorption refrigeration cycle. The generator and the bubble pump of the process are integrated in a solar collector, and therefore directly heated. The main research focus after reaching a stable operation of the system is a detailed investigation of the auxiliary gas circuit. (orig.)

  6. AN INVESTIGATION OF THE SOURCES OF EARTH-DIRECTED SOLAR WIND DURING CARRINGTON ROTATION 2053

    Energy Technology Data Exchange (ETDEWEB)

    Fazakerley, A. N.; Harra, L. K.; Van Driel-Gesztelyi, L., E-mail: a.fazakerley@ucl.ac.uk [Mullard Space Science Laboratory, University College London (United Kingdom)

    2016-06-01

    In this work we analyze multiple sources of solar wind through a full Carrington Rotation (CR 2053) by analyzing the solar data through spectroscopic observations of the plasma upflow regions and the in situ data of the wind itself. Following earlier authors, we link solar and in situ observations by a combination of ballistic backmapping and potential-field source-surface modeling. We find three sources of fast solar wind that are low-latitude coronal holes. The coronal holes do not produce a steady fast wind, but rather a wind with rapid fluctuations. The coronal spectroscopic data from Hinode ’s Extreme Ultraviolet Imaging Spectrometer show a mixture of upflow and downflow regions highlighting the complexity of the coronal hole, with the upflows being dominant. There is a mix of open and multi-scale closed magnetic fields in this region whose (interchange) reconnections are consistent with the up- and downflows they generate being viewed through an optically thin corona, and with the strahl directions and freeze-in temperatures found in in situ data. At the boundary of slow and fast wind streams there are three short periods of enhanced-velocity solar wind, which we term intermediate based on their in situ characteristics. These are related to active regions that are located beside coronal holes. The active regions have different magnetic configurations, from bipolar through tripolar to quadrupolar, and we discuss the mechanisms to produce this intermediate wind, and the important role that the open field of coronal holes adjacent to closed-field active regions plays in the process.

  7. An Investigation of the Sources of Earth-directed Solar Wind during Carrington Rotation 2053

    Science.gov (United States)

    Fazakerley, A. N.; Harra, L. K.; van Driel-Gesztelyi, L.

    2016-06-01

    In this work we analyze multiple sources of solar wind through a full Carrington Rotation (CR 2053) by analyzing the solar data through spectroscopic observations of the plasma upflow regions and the in situ data of the wind itself. Following earlier authors, we link solar and in situ observations by a combination of ballistic backmapping and potential-field source-surface modeling. We find three sources of fast solar wind that are low-latitude coronal holes. The coronal holes do not produce a steady fast wind, but rather a wind with rapid fluctuations. The coronal spectroscopic data from Hinode’s Extreme Ultraviolet Imaging Spectrometer show a mixture of upflow and downflow regions highlighting the complexity of the coronal hole, with the upflows being dominant. There is a mix of open and multi-scale closed magnetic fields in this region whose (interchange) reconnections are consistent with the up- and downflows they generate being viewed through an optically thin corona, and with the strahl directions and freeze-in temperatures found in in situ data. At the boundary of slow and fast wind streams there are three short periods of enhanced-velocity solar wind, which we term intermediate based on their in situ characteristics. These are related to active regions that are located beside coronal holes. The active regions have different magnetic configurations, from bipolar through tripolar to quadrupolar, and we discuss the mechanisms to produce this intermediate wind, and the important role that the open field of coronal holes adjacent to closed-field active regions plays in the process.

  8. Performance investigation of a solar-assisted direct contact membrane distillation system

    KAUST Repository

    Kim, Youngdeuk

    2013-01-01

    This paper presents a solar-assisted direct contact membrane distillation (DCMD) system with novel energy recovery concepts for a continuous 24-h-a-day operation. A temperature modulating scheme is introduced to the solar-thermal system that supplies feed seawater to the DCMD modules. This scheme attenuates extreme temperature fluctuations of the feed water by storing the collected energy during solar-peak hours and reutilizing it throughout the day. Thus, the energy savings is realized yet the feed seawater temperature is maintained within the desired range. Additionally, the system employs heat recovery from the permeate and brine streams to the feed seawater. The simulations for such a system with a shell-and-tube type DCMD modules are carried out to examine the spatial property variations and the sensitivity of system performance (i.e., transmembrane pressure, permeate flux and performance ratio) to the operating conditions (inlet temperature and flow rate) and the fiber dimensions (fiber length and packing density). It is found that there are trade-offs between mean permeate flux and performance ratio with respect to permeate inlet temperature and flow rate and between total distillate production and performance ratio with respect to packing density. For the solar-assisted DCMD system having evacuated-tube collectors of 3360m2 with 160m3 seawater storage tanks and 50 DCMD modules, the annual solar fraction and the collector efficiency are found to be 77% and 53%, respectively, whilst the overall permeate production capacity is 31m3/day. The overall specific thermal energy consumption of the DCMD system with heat recovery is found to be 436kWh/m3 and it is about 43% lower as compared to the system without heat recovery. It is observed that the specific thermal energy consumption decreases significantly by 55% with increased collector area from 1983m2 to 3360m2 whereas the specific electrical energy consumption increases slightly by 16%. © 2012 Elsevier B.V.

  9. Effect of Working Fluids on the Thermal Performance of a Bi-directional Solar Thermodiode

    International Nuclear Information System (INIS)

    Ko, Yung Joo

    2008-02-01

    An excessive use of fossil fuel leads to the limitation of coal deposits and carbon dioxide accumulation that accelerates the global warming, so the international environment regulation becomes more strict to control the greenhouse gas emission. Many researches are being made on alternative energy development to cut down fossil fuel and to decrease carbon dioxide. During the last decade, there have been active tries to utilize the solar energy that is unlimited and clean . The application of solar energy to heating and cooling of the building has much improved the economical efficiency and function with the development of high-technology materials, and it is not rare to find the recently built houses and commercial buildings equipped with solar energy systems. In particular, the advanced countries such as USA and Japan attempt the remarkable reduction of energy consumption in heating and cooling of buildings. For this, they are searching for the more effective application of various alternative energies including the solar energy. In addition, they are trying to realize the distinct zero energy conception by applying the new techniques and materials to the existing buildings. In developing the new techniques of solar energy application to heating and cooling system, the economic problems hire to be addressed, The typical problems encountered in applying the solar energy are insufficient design concept for HVAC(heating, ventilation, and air conditioning) system and low reliability, Further, the economical efficiency of the solar energy is still low to compete with the oil, and there are many limits on the realization of the actual system in a building, e.g. spatial alignments and exterior appearances. The purpose of this study is to find the improved method to increase the heat transfer efficiency of the solar energy system that are to be installed in houses and commercial buildings. For this, a series of experiments using the bi-directional thermo diode system

  10. Real time optimization of solar powered direct contact membrane distillation based on multivariable extremum seeking

    KAUST Repository

    Karam, Ayman M.; Laleg-Kirati, Taous-Meriem

    2015-01-01

    This paper presents a real time optimization scheme for a solar powered direct contact membrane distillation (DCMD) water desalination system. The sun and weather conditions vary and are inconsistent throughout the day. Therefore, the solar powered DCMD feed inlet temperature is never constant, which influences the distilled water flux. The problem of DCMD process optimization has not been studied enough. In this work, the response of the process under various feed inlet temperatures is investigated, which demonstrates the need for an optimal controller. To address this issue, we propose a multivariable Newton-based extremum seeking controller which optimizes the inlet feed and permeate mass flow rates as the feed inlet temperature varies. Results are presented and discussed for a realistic temperature profile.

  11. Direct solar energy conversion and storage through coupling between photoelectrochemical and ferroelectric effects

    Directory of Open Access Journals (Sweden)

    Chi-Wei Lo

    2011-12-01

    Full Text Available Harvesting and storing solar energy has become more and more important. Current solid-state photovoltaic cells and conventional photoelectrochemical cells are not capable of directly storing the converted energy, which has to be facilitated by connecting to external storing devices. We demonstrate a device architecture that can convert and store solar energy in the electrical form within an intrinsically single structure. Mobile charge is internally stored, based on the coupling between photoelectrochemical and ferroelectric effects. The tested device architecture can be photo-charged under 1000 W/m2 of white light to an open-circuit voltage of 0.47V with a capacity of 37.62 mC/cm2. After removal of the light source, the mobile charge stored lasts more than 8 hours, and the open-circuit output voltage lasts more than 24 hours.

  12. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells.

    KAUST Repository

    Tan, Kwan Wee

    2014-04-11

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI(3-x)Cl(x)) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI(3-x)Cl(x) material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance.

  13. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure

    Science.gov (United States)

    May, Matthias M.; Lewerenz, Hans-Joachim; Lackner, David; Dimroth, Frank; Hannappel, Thomas

    2015-09-01

    Photosynthesis is nature's route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators.

  14. Real time optimization of solar powered direct contact membrane distillation based on multivariable extremum seeking

    KAUST Repository

    Karam, Ayman M.

    2015-09-21

    This paper presents a real time optimization scheme for a solar powered direct contact membrane distillation (DCMD) water desalination system. The sun and weather conditions vary and are inconsistent throughout the day. Therefore, the solar powered DCMD feed inlet temperature is never constant, which influences the distilled water flux. The problem of DCMD process optimization has not been studied enough. In this work, the response of the process under various feed inlet temperatures is investigated, which demonstrates the need for an optimal controller. To address this issue, we propose a multivariable Newton-based extremum seeking controller which optimizes the inlet feed and permeate mass flow rates as the feed inlet temperature varies. Results are presented and discussed for a realistic temperature profile.

  15. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells.

    KAUST Repository

    Tan, Kwan Wee; Moore, David T; Saliba, Michael; Sai, Hiroaki; Estroff, Lara A; Hanrath, Tobias; Snaith, Henry J; Wiesner, Ulrich

    2014-01-01

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI(3-x)Cl(x)) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI(3-x)Cl(x) material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance.

  16. Information content of sky intensity and polarization measurements at right angles to the solar direction

    Science.gov (United States)

    Holland, A. C.; Thomas, R. W. L.; Pearce, W. A.

    1978-01-01

    The paper presents the results of a Monte Carlo simulation study of the brightness and polarization at right angles to the solar direction both for ground-based observations (looking up) and for satellite-based systems (looking down). Calculations have been made for a solar zenith angle whose cosine was 0.6 and wavelengths ranging from 3500 A to 9500 A. A sensitivity of signatures to total aerosol loading, aerosol particle size distribution and refractive index, and the surface reflectance albedo has been demonstrated. For Lambertian-type surface reflection the albedo effects enter solely through the intensity sensitivity, and very high correlations have been found between the polarization term signatures for the ground-based and satellite-based systems. Potential applications of these results for local albedo predictions and satellite imaging systems recalibrations are discussed.

  17. Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells

    Science.gov (United States)

    2015-01-01

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI3–xClx) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI3–xClx material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance. PMID:24684494

  18. Dynamic solar-powered multi-stage direct contact membrane distillation system: Concept design, modeling and simulation

    KAUST Repository

    Lee, Jung Gil; Kim, Woo-Seung; Choi, June-Seok; Ghaffour, NorEddine; Kim, Young-Deuk

    2017-01-01

    This paper presents a theoretical analysis of the monthly average daily and hourly performances of a solar-powered multi-stage direct contact membrane distillation (SMDCMD) system with an energy recovery scheme and dynamic operating system. Mid

  19. Assessment Of The Viability Of Kaduna City Climate For Year Round Use Of Direct Solar Thermal Cooking Fuel In Housing

    Directory of Open Access Journals (Sweden)

    Boumann Ephraim Sule

    2017-10-01

    Full Text Available Solar energy obtained from the sun is the world most abundant and cheapest source of energy as a cooking fuel. It comes in two forms Concentrated Solar Thermal direct conversion of solar energy to heat that cooks and Solar Photovoltaic PV a conversion of solar energy to electrical then to heat energy the former technology is simple and far cheaper. Despite all these architectural and engineering researches is yet to capture it for indoor cooking because of inability to cook year round due the claimed hindrances by weather condition such as clouds rainfall wind dusty atmosphere and many others. This paper attempted to look into the possibility of cooking year round in Kaduna city. It collected and analyzed ten years climatic data from three different meteorological stations strategically located round the city this showed a low solar radiation in the month of August. It further compared the result with a literature review of solar cooking carried in the same month the findings showed at the peak of each weather hindrance a another element overrides it to give enough minimum energy for cooking a meals. This paper has therefore pointed the potentials of Kaduna city climate for year round use of concentrated solar thermal as a cooking fuel in residential building and further recommends the architectural collaboration with engineers for the direct capturing of solar rays into residential dwelling as a sustainable cooking fuel.

  20. DEPENDENCE OF SOLAR-WIND POWER SPECTRA ON THE DIRECTION OF THE LOCAL MEAN MAGNETIC FIELD

    International Nuclear Information System (INIS)

    Podesta, J. J.

    2009-01-01

    Wavelet analysis can be used to measure the power spectrum of solar-wind fluctuations along a line in any direction (θ, φ) with respect to the local mean magnetic field B 0 . This technique is applied to study solar-wind turbulence in high-speed streams in the ecliptic plane near solar minimum using magnetic field measurements with a cadence of eight vectors per second. The analysis of nine high-speed streams shows that the reduced spectrum of magnetic field fluctuations (trace power) is approximately azimuthally symmetric about B 0 in both the inertial range and dissipation range; in the inertial range the spectra are characterized by a power-law exponent that changes continuously from 1.6 ± 0.1 in the direction perpendicular to the mean field to 2.0 ± 0.1 in the direction parallel to the mean field. The large uncertainties suggest that the perpendicular power-law indices 3/2 and 5/3 are both consistent with the data. The results are similar to those found by Horbury et al. at high heliographic latitudes. Comparisons between solar-wind observations and the theories of strong incompressible MHD turbulence developed by Goldreich and Sridhar and Boldyrev are not rigorously justified because these theories only apply to turbulence with vanishing cross-helicity although the normalized cross-helicity of solar-wind turbulence is not negligible. Assuming these theories can be generalized in such a way that the three-dimensional wavevector spectra have similar functional forms when the cross-helicity is nonzero, then for the interval of Ulysses data analyzed by Horbury et al. the ratio of the spectra perpendicular and parallel to B 0 is more consistent with the Goldreich and Sridhar scaling P perpendicular /P || ∝ ν 1/3 than with the Boldyrev scaling ν 1/2 . The analysis of high-speed streams in the ecliptic plane does not yield a reliable measurement of this scaling law. The transition from a turbulent MHD-scale energy cascade to a kinetic Alfven wave (KAW

  1. Direct detection of light dark matter and solar neutrinos via color center production in crystals

    OpenAIRE

    Budnik, Ranny; Cheshnovsky, Ori; Slone, Oren; Volansky, Tomer

    2018-01-01

    We propose a new low-threshold direct-detection concept for dark matter and for coherent nuclear scattering of solar neutrinos, based on the dissociation of atoms and subsequent creation of color center type defects within a lattice. The novelty in our approach lies in its ability to detect single defects in a macroscopic bulk of material. This class of experiments features ultra-low energy thresholds which allows for the probing of dark matter as light as O(10) MeV through nuclear scattering...

  2. Integrating a Photocatalyst into a Hybrid Lithium-Sulfur Battery for Direct Storage of Solar Energy.

    Science.gov (United States)

    Li, Na; Wang, Yarong; Tang, Daiming; Zhou, Haoshen

    2015-08-03

    Direct capture and storage of abundant but intermittent solar energy in electrical energy-storage devices such as rechargeable lithium batteries is of great importance, and could provide a promising solution to the challenges of energy shortage and environment pollution. Here we report a new prototype of a solar-driven chargeable lithium-sulfur (Li-S) battery, in which the capture and storage of solar energy was realized by oxidizing S(2-) ions to polysulfide ions in aqueous solution with a Pt-modified CdS photocatalyst. The battery can deliver a specific capacity of 792 mAh g(-1) during 2 h photocharging process with a discharge potential of around 2.53 V versus Li(+)/Li. A specific capacity of 199 mAh g(-1), reaching the level of conventional lithium-ion batteries, can be achieved within 10 min photocharging. Moreover, the charging process of the battery can proceed under natural sunlight irradiation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Direct EUV/X-Ray Modulation of the Ionosphere During the August 2017 Total Solar Eclipse

    Science.gov (United States)

    Mrak, Sebastijan; Semeter, Joshua; Drob, Douglas; Huba, J. D.

    2018-05-01

    The great American total solar eclipse of 21 August 2017 offered a fortuitous opportunity to study the response of the atmosphere and ionosphere using a myriad of ground instruments. We have used the network of U.S. Global Positioning System receivers to examine perturbations in maps of ionospheric total electron content (TEC). Coherent large-scale variations in TEC have been interpreted by others as gravity wave-induced traveling ionospheric disturbances. However, the solar disk had two active regions at that time, one near the center of the disk and one at the edge, which resulted in an irregular illumination pattern in the extreme ultraviolet (EUV)/X-ray bands. Using detailed EUV occultation maps calculated from the National Aeronautics and Space Administration Solar Dynamics Observatory Atmospheric Imaging Assembly images, we show excellent agreement between TEC perturbations and computed gradients in EUV illumination. The results strongly suggest that prominent large-scale TEC disturbances were consequences of direct EUV modulation, rather than gravity wave-induced traveling ionospheric disturbances.

  4. Design and Fabrication of a Direct Natural Convection Solar Dryer for Tapioca

    Directory of Open Access Journals (Sweden)

    Diemuodeke E. OGHENERUONA

    2011-06-01

    Full Text Available Based on preliminary investigations under controlled conditions of drying experiments, a direct natural convection solar dryer was designed and fabricated to dry tapioca in the rural area. This paper describes the design considerations followed and presents the results of MS excel computed results of the design parameters. A minimum of 7.56 m2 solar collector area is required to dry a batch of 100 kg tapioca in 20 hours (two days drying period. The initial and final moisture content considered were 79 % and 10 % wet basis, respectively. The average ambient conditions are 32ºC air temperatures and 74 % relative humidity with daily global solar radiation incident on horizontal surface of 13 MJ/m2/day. The weather conditions considered are of Warri (lat. 5°30’, long. 5°41’, Nigeria. A prototype of the dryer so designed was fabricated with minimum collector area of 1.08 m2. This prototype dryer will be used in experimental drying tests under various loading conditions.

  5. Parabolic solar cooker: Cooking with heat pipe vs direct spiral copper tubes

    Science.gov (United States)

    Craig, Omotoyosi O.; Dobson, Robert T.

    2016-05-01

    Cooking with solar energy has been seen by many researchers as a solution to the challenges of poverty and hunger in the world. This is no exception in Africa, as solar coking is viewed as an avenue to eliminate the problem of food insecurity, insufficient energy supply for household and industrial cooking. There are several types of solar cookers that have been manufactured and highlighted in literature. The parabolic types of solar cookers are known to reach higher temperatures and therefore cook faster. These cookers are currently being developed for indoor cooking. This technology has however suffered low cooking efficiency and thus leads to underutilization of the high heat energy captured from the sun in the cooking. This has made parabolic solar cookers unable to compete with other conventional types of cookers. Several methods to maximize heat from the sun for indirect cooking has been developed, and the need to improve on them of utmost urgency. This paper investigates how to optimize the heat collected from the concentrating types of cookers by proposing and comparing two types of cooking sections: the spiral hot plate copper tube and the heat pipe plate. The system uses the concentrating solar parabolic dish technology to focus the sun on a conical cavity of copper tubes and the heat is stored inside an insulated tank which acts both as storage and cooking plate. The use of heat pipes to transfer heat between the oil storage and the cooking pot was compared to the use of a direct natural syphon principle which is achieved using copper tubes in spiral form like electric stove. An accurate theoretical analysis for the heat pipe cooker was achieved by solving the boiling and vaporization in the evaporator side and then balancing it with the condensation and liquid-vapour interaction in the condenser part while correct heat transfer, pressure and height balancing was calculated in the second experiment. The results show and compare the cooking time, boiling

  6. Direct expansion solar assisted heat pumps – A clean steady state approach for overall performance analysis

    International Nuclear Information System (INIS)

    Tagliafico, Luca A.; Scarpa, Federico; Valsuani, Federico

    2014-01-01

    Traditional thermal solar panel technologies have limited efficiency and the required economic investments make them noncompetitive in the space heating market. The greatest limit to the diffusion of thermal solar systems is the characteristic temperatures they can reach: the strong connection between the user temperature and the collector temperature makes it possible to achieve high thermal (collector) efficiency only at low, often useless, user temperatures. By using solar collectors as thermal exchange units (evaporators) in a heat pump system (direct expansion solar assisted heat pump, DX-SAHP), the overall efficiency greatly increases with a significative cut of the associated investment in terms of pay-back time. In this study, an approach is proposed to the steady state analysis of DX-SAHP, which is based on the simplified inverse Carnot cycle and on the second law efficiency concept. This method, without the need of calculating the refrigerant fluid properties and the detailed processes occurring in the refrigeration device, allows us to link the main features of the plant to its relevant interactions with the surroundings. The very nature of the proposed method makes the relationship explicit and meaningful among all the involved variables. The paper, after the description of the method, presents an explanatory application of this technique by reviewing various aspects of the performance of a typical DX-SAHP in which the savings on primary energy consumption is regarded as the main feature of the plant and highlighted in a monthly averaged analysis. Results agree to those coming from a common standard steady state thermodynamic analysis. The application to a typical DX-SAHP system demonstrates that a mean saved primary energy of about 50% with respect to standard gas burner can be achieved for the same user needs. Such a result is almost independent from the type of flat plate solar panel used (double or single glazed, or even bare panels) as a result of

  7. Solvent Vapor Annealing-Mediated Crystallization Directs Charge Generation, Recombination and Extraction in BHJ Solar Cells

    KAUST Repository

    Babics, Maxime; Liang, Ru-Ze; Wang, Kai; Cruciani, Federico; Kan, Zhipeng; Wohlfahrt, Markus; Tang, Ming-Chun; Laquai, Fré dé ric; Beaujuge, Pierre

    2017-01-01

    Small-molecule (SM) donors that can be solution-processed with fullerene acceptors (e.g., PC61/71BM), or their “nonfullerene” counterparts, are proving particularly promising for the realization of high-efficiency bulk-heterojunction (BHJ) solar cells. In several recent studies, solvent vapor annealing (SVA) protocols have been found to yield significant BHJ device efficiency improvements via structural changes in the active layer morphologies. However, the mechanisms by which active layer morphologies evolve when subjected to SVA treatments, and the structural factors impacting charge generation, carrier transport, recombination and extraction in BHJ solar cells with SM donors and fullerene acceptors, remain important aspects to be elucidated. In this report, we show that – in BHJ solar cells with SM donors and fullerene acceptors – selective crystallization promoted by SVA mediates the development of optimized morphologies across the active layers, setting domain sizes and boundaries. Examining BHJ solar cells subjected to various SVA exposure times, with BDT[2F]QdC as the SM donor and PC71BM as the acceptor, we connect those morphological changes to specific carrier effects, showing that crystal growth effectively directs charge generation and recombination. We find that the SM donor-pure domains growing at the expense of a mixed donor-acceptor phase play a determining role, establishing optimum networks with 10-20nm-sized domains during the SVA treatment. Longer SVA times result in highly textured active layers with crystalline domains that can exceed the lengthscale of exciton diffusion, while inducing detrimental vertical morphologies and deep carrier traps. Last, we emphasize the field-dependence charge generation occurring upon SVA-mediated crystallization and link this carrier effect to the mixed phase depletion across the BHJ active layer.

  8. Sensitivity analysis of numerical weather prediction radiative schemes to forecast direct solar radiation over Australia

    Science.gov (United States)

    Mukkavilli, S. K.; Kay, M. J.; Taylor, R.; Prasad, A. A.; Troccoli, A.

    2014-12-01

    The Australian Solar Energy Forecasting System (ASEFS) project requires forecasting timeframes which range from nowcasting to long-term forecasts (minutes to two years). As concentrating solar power (CSP) plant operators are one of the key stakeholders in the national energy market, research and development enhancements for direct normal irradiance (DNI) forecasts is a major subtask. This project involves comparing different radiative scheme codes to improve day ahead DNI forecasts on the national supercomputing infrastructure running mesoscale simulations on NOAA's Weather Research & Forecast (WRF) model. ASEFS also requires aerosol data fusion for improving accurate representation of spatio-temporally variable atmospheric aerosols to reduce DNI bias error in clear sky conditions over southern Queensland & New South Wales where solar power is vulnerable to uncertainities from frequent aerosol radiative events such as bush fires and desert dust. Initial results from thirteen years of Bureau of Meteorology's (BOM) deseasonalised DNI and MODIS NASA-Terra aerosol optical depth (AOD) anomalies demonstrated strong negative correlations in north and southeast Australia along with strong variability in AOD (~0.03-0.05). Radiative transfer schemes, DNI and AOD anomaly correlations will be discussed for the population and transmission grid centric regions where current and planned CSP plants dispatch electricity to capture peak prices in the market. Aerosol and solar irradiance datasets include satellite and ground based assimilations from the national BOM, regional aerosol researchers and agencies. The presentation will provide an overview of this ASEFS project task on WRF and results to date. The overall goal of this ASEFS subtask is to develop a hybrid numerical weather prediction (NWP) and statistical/machine learning multi-model ensemble strategy that meets future operational requirements of CSP plant operators.

  9. Solvent Vapor Annealing-Mediated Crystallization Directs Charge Generation, Recombination and Extraction in BHJ Solar Cells

    KAUST Repository

    Babics, Maxime

    2017-12-19

    Small-molecule (SM) donors that can be solution-processed with fullerene acceptors (e.g., PC61/71BM), or their “nonfullerene” counterparts, are proving particularly promising for the realization of high-efficiency bulk-heterojunction (BHJ) solar cells. In several recent studies, solvent vapor annealing (SVA) protocols have been found to yield significant BHJ device efficiency improvements via structural changes in the active layer morphologies. However, the mechanisms by which active layer morphologies evolve when subjected to SVA treatments, and the structural factors impacting charge generation, carrier transport, recombination and extraction in BHJ solar cells with SM donors and fullerene acceptors, remain important aspects to be elucidated. In this report, we show that – in BHJ solar cells with SM donors and fullerene acceptors – selective crystallization promoted by SVA mediates the development of optimized morphologies across the active layers, setting domain sizes and boundaries. Examining BHJ solar cells subjected to various SVA exposure times, with BDT[2F]QdC as the SM donor and PC71BM as the acceptor, we connect those morphological changes to specific carrier effects, showing that crystal growth effectively directs charge generation and recombination. We find that the SM donor-pure domains growing at the expense of a mixed donor-acceptor phase play a determining role, establishing optimum networks with 10-20nm-sized domains during the SVA treatment. Longer SVA times result in highly textured active layers with crystalline domains that can exceed the lengthscale of exciton diffusion, while inducing detrimental vertical morphologies and deep carrier traps. Last, we emphasize the field-dependence charge generation occurring upon SVA-mediated crystallization and link this carrier effect to the mixed phase depletion across the BHJ active layer.

  10. A DIRECT METHOD TO DETERMINE THE PARALLEL MEAN FREE PATH OF SOLAR ENERGETIC PARTICLES WITH ADIABATIC FOCUSING

    International Nuclear Information System (INIS)

    He, H.-Q.; Wan, W.

    2012-01-01

    The parallel mean free path of solar energetic particles (SEPs), which is determined by physical properties of SEPs as well as those of solar wind, is a very important parameter in space physics to study the transport of charged energetic particles in the heliosphere, especially for space weather forecasting. In space weather practice, it is necessary to find a quick approach to obtain the parallel mean free path of SEPs for a solar event. In addition, the adiabatic focusing effect caused by a spatially varying mean magnetic field in the solar system is important to the transport processes of SEPs. Recently, Shalchi presented an analytical description of the parallel diffusion coefficient with adiabatic focusing. Based on Shalchi's results, in this paper we provide a direct analytical formula as a function of parameters concerning the physical properties of SEPs and solar wind to directly and quickly determine the parallel mean free path of SEPs with adiabatic focusing. Since all of the quantities in the analytical formula can be directly observed by spacecraft, this direct method would be a very useful tool in space weather research. As applications of the direct method, we investigate the inherent relations between the parallel mean free path and various parameters concerning physical properties of SEPs and solar wind. Comparisons of parallel mean free paths with and without adiabatic focusing are also presented.

  11. Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater

    International Nuclear Information System (INIS)

    Kong, X.Q.; Zhang, D.; Li, Y.; Yang, Q.M.

    2011-01-01

    A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described, which can supply hot water for domestic use during the whole year. The system mainly employs a bare flat-plate collector/evaporator with a surface area of 4.2 m 2 , an electrical rotary-type hermetic compressor, a hot water tank with the volume of 150 L and a thermostatic expansion valve. R-22 is used as working fluid in the system. A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. Given the structure parameters, meteorological parameters, time step and final water temperature, the numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. The effect of various parameters, including solar radiation, ambient temperature, wind speed and compressor speed, has been analyzed on the thermal performance of the system. -- Highlights: ► A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described. ► A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. ► The numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. ► Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. ► The effect of various parameters has been analyzed on the thermal performance of the system.

  12. A method for the direct generation of comprehensive numerical solar building transfer functions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T.Y. [The Hong Kong Polytechnic University (China). Dept. of Building Services Engineering

    2003-02-01

    This paper describes a method for the direct generation of comprehensive numerical room transfer functions with any derived parameters as output, such as operative temperature or thermal load. Complex conductive, convective and radiant heat transfer processes, or any derived thermal parameters in buildings can be explicitly and precisely described by a generalized thermal network. This allows the s-transfer and z-transfer functions to be directly generated, using semi-symbolic analysis techniques, Cayley's expansion of determinant and Heaviside's expansion theorem. A simple algorithm is developed for finding the roots of the denominator in the inverse transform of the s-transfer functions, which ensures that no single root is missing. The techniques have been applied to generating the transfer functions of a passive solar room with floor heating. The example calculation demonstrates the high efficiency of the computational method. (author)

  13. Measuring Air Temperature in Glazed Ventilated Facades in the Presence of Direct Solar Radiation

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Zanghirella, Fabio; Heiselberg, Per

    2007-01-01

    A distinctive element of buildings with a double glazed façade is naturally or mechanically driven flow in a ventilated cavity. Accurate air temperature measurements in the cavity are crucial to evaluate the dynamic performance of the façade, to predict and control its behavior as a significant...... part of the complete ventilation system. Assessment of necessary cooling/heating loads and of the whole building energy performance will then depend on the accuracy of measured air temperature. The presence of direct solar radiation is an essential element for the façade operation, but it can heavily...... affect measurements of air temperature and may lead to errors of high magnitude using bare thermocouples and even adopting shielding devices. Two different research groups, from Aalborg University and Politecnico di Torino, tested separately various techniques to shield thermocouples from direct...

  14. Experimental performance analysis on a direct-expansion solar-assisted heat pump water heater

    International Nuclear Information System (INIS)

    Li, Y.W.; Wang, R.Z.; Wu, J.Y.; Xu, Y.X.

    2007-01-01

    A direct expansion solar assisted heat pump water heater (DX-SAHPWH) experimental set-up is introduced and analyzed. This DX-SAHPWH system mainly consists of 4.20 m 2 direct expansion type collector/evaporator, R-22 rotary-type hermetic compressor with rated input power 0.75 kW, 150 L water tank with immersed 60 m serpentine copper coil and external balance type thermostatic expansion valve. The experimental research under typical spring climate in Shanghai showed that the COP of the DX-SAHPWH system can reach 6.61 when the average temperature of 150 L water is heated from 13.4 deg. C to 50.5 deg. C in 94 min with average ambient temperature 20.6 deg. C and average solar radiation intensity 955 W/m 2 . And the COP of the DX-SAHPWH system is 3.11 even if at a rainy night with average ambient temperature 17.1 deg. C. The seasonal average value of the COP and the collector efficiency was measured as 5.25 and 1.08, respectively. Through exergy analysis for each component of the DX-SAHPWH system, it can be calculated that the highest exergy loss occurs in the compressor, followed by collector/evaporator, condenser and expansion valve, respectively. Further more, some methods are suggested to improve the thermal performance of each component and the whole DX-SAHPWH system

  15. Experimental analysis of a direct expansion solar assisted heat pump with integral storage tank for domestic water heating under zero solar radiation conditions

    International Nuclear Information System (INIS)

    Fernández-Seara, José; Piñeiro, Carolina; Alberto Dopazo, J.; Fernandes, F.; Sousa, Paulo X.B.

    2012-01-01

    Highlights: ► We analyze a direct expansion solar assisted heat pump under zero solar radiation. ► We determine the COP and equivalent seasonal performance factors (SPFe). ► We determine the main components’ performance under transient operating conditions. ► The Huang and Lee performance evaluation method provides a characteristic COP of 3.23. - Abstract: This paper deals with the experimental evaluation of the performance of a direct expansion solar assisted heat pump water heating (DX-SAHPWH) system working under zero solar radiation conditions at static heating operation mode of the storage tank. The DX-SAHPWH system includes two bare solar collectors as evaporator, a R134a rotary-type hermetic compressor, a thermostatic expansion valve and a helical coil condenser immersed in a 300 L water storage tank. The zero solar radiation and stable ambient air temperature working conditions were established by placing the solar collectors into a climate chamber. The analysis is based on experimental data taken from the DX-SAHPWH provided by the manufacturer and equipped with an appropriate data acquisition system. In the paper, the experimental facility, the data acquisition system and the experimental methodology are described. Performance parameters to evaluate the energy efficiency, such as COP and equivalent seasonal performance factors (SPFe) for the heating period, and the water thermal stratification in the storage tank are defined and obtained from the experimental data. Results from the experimental analysis under transient operating working conditions of the DX-SAHPWH system and its main components are shown and discussed. Lastly, the Huang and Lee DX-SAHPWH performance evaluation method was applied resulting in a characteristic COP of 3.23 for the DX-SAHPWH system evaluated under zero solar radiation condition.

  16. Discovery of Scattering Polarization in the Hydrogen Ly α Line of the Solar Disk Radiation

    International Nuclear Information System (INIS)

    Kano, R.; Narukage, N.; Ishikawa, R.; Bando, T.; Katsukawa, Y.; Kubo, M.; Giono, G.; Hara, H.; Suematsu, Y.; Bueno, J. Trujillo; Winebarger, A.; Kobayashi, K.; Auchère, F.; Ishikawa, S.; Shimizu, T.; Sakao, T.; Tsuneta, S.; Ichimoto, K.; Goto, M.; Belluzzi, L.

    2017-01-01

    There is a thin transition region (TR) in the solar atmosphere where the temperature rises from 10,000 K in the chromosphere to millions of degrees in the corona. Little is known about the mechanisms that dominate this enigmatic region other than the magnetic field plays a key role. The magnetism of the TR can only be detected by polarimetric measurements of a few ultraviolet (UV) spectral lines, the Ly α line of neutral hydrogen at 121.6 nm (the strongest line of the solar UV spectrum) being of particular interest given its sensitivity to the Hanle effect (the magnetic-field-induced modification of the scattering line polarization). We report the discovery of linear polarization produced by scattering processes in the Ly α line, obtained with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) rocket experiment. The Stokes profiles observed by CLASP in quiet regions of the solar disk show that the Q / I and U / I linear polarization signals are of the order of 0.1% in the line core and up to a few percent in the nearby wings, and that both have conspicuous spatial variations with scales of ∼10 arcsec. These observations help constrain theoretical models of the chromosphere–corona TR and extrapolations of the magnetic field from photospheric magnetograms. In fact, the observed spatial variation from disk to limb of polarization at the line core and wings already challenge the predictions from three-dimensional magnetohydrodynamical models of the upper solar chromosphere.

  17. Discovery of Scattering Polarization in the Hydrogen Ly α Line of the Solar Disk Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kano, R.; Narukage, N.; Ishikawa, R.; Bando, T.; Katsukawa, Y.; Kubo, M.; Giono, G.; Hara, H.; Suematsu, Y. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Bueno, J. Trujillo [Instituto de Astrofísica de Canarias, La Laguna, Tenerife, E-38205 (Spain); Winebarger, A.; Kobayashi, K. [Marshall Space Flight Center, National Aeronautics and Space Administration (NASA), Huntsville, AL 35812 (United States); Auchère, F. [Institut d’Astrophysique Spatiale, Université Paris Sud, Batiment 121, F-91405 Orsay (France); Ishikawa, S.; Shimizu, T.; Sakao, T.; Tsuneta, S. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Ichimoto, K. [Hida Observatory, Kyoto University, Takayama, Gifu 506-1314 (Japan); Goto, M. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Belluzzi, L., E-mail: ryouhei.kano@nao.ac.jp [Istituto Ricerche Solari Locarno, CH-6605 Locarno Monti (Switzerland); and others

    2017-04-10

    There is a thin transition region (TR) in the solar atmosphere where the temperature rises from 10,000 K in the chromosphere to millions of degrees in the corona. Little is known about the mechanisms that dominate this enigmatic region other than the magnetic field plays a key role. The magnetism of the TR can only be detected by polarimetric measurements of a few ultraviolet (UV) spectral lines, the Ly α line of neutral hydrogen at 121.6 nm (the strongest line of the solar UV spectrum) being of particular interest given its sensitivity to the Hanle effect (the magnetic-field-induced modification of the scattering line polarization). We report the discovery of linear polarization produced by scattering processes in the Ly α line, obtained with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) rocket experiment. The Stokes profiles observed by CLASP in quiet regions of the solar disk show that the Q / I and U / I linear polarization signals are of the order of 0.1% in the line core and up to a few percent in the nearby wings, and that both have conspicuous spatial variations with scales of ∼10 arcsec. These observations help constrain theoretical models of the chromosphere–corona TR and extrapolations of the magnetic field from photospheric magnetograms. In fact, the observed spatial variation from disk to limb of polarization at the line core and wings already challenge the predictions from three-dimensional magnetohydrodynamical models of the upper solar chromosphere.

  18. Generación directa de vapor con colectores solares cilindro parabólicos Proyecto DIrect Solar Steam (DISS)

    OpenAIRE

    Zarza Moya, Eduardo

    2003-01-01

    La Generación Directa de Vapor (GDV) en los tubos absorbedores de los colectores solares cilindro parabólicos es considerada la opción tecnológica más atractiva para conseguir una sustancial reducción del coste de la energía térmica producida por este tipo de colector solar. Sin embargo, antes de poder comercializar sistemas solares con GDV e s necesario aclarar todas aquellas cuestiones técnicas que conlleva la existencia de un flujo bifásico circulando por el interior de los tubos absorbedo...

  19. Analysis of direct to diffuse partitioning of global solar irradiance at the radiometric station in Badajoz (Spain)

    Science.gov (United States)

    Sanchez, G.; Cancillo, M. L.; Serrano, A.

    2010-09-01

    This study is aimed at the analysis of the partitioning of global solar irradiance into its direct and diffuse components at the radiometric station in Badajoz (Spain). The detailed knowledge of the solar radiation field is of increasing interest in Southern Europe due to its use as renewable energy. In particular, the knowledge of the solar radiation partitioning into direct and diffuse radiation has become a major demand for the design and suitable orientation of solar panels in solar power plants. In this study the first measurements of solar diffuse irradiance performed in the radiometric station in Badajoz (Spain) are presented and analyzed in the framework of the partitioning of solar global radiation. Thus, solar global and diffuse irradiance were measured at one-minute basis from 23 November 2009 to 31 March 2010. Solar irradiances were measured by two Kipp&Zonen CMP11 pyranometers, using a Kipp&Zonen CM121 shadow ring for the measurements of solar diffuse irradiance. Diffuse measurements were corrected from the solid angle hidden by the ring and direct irradiance was calculated as the difference between global and diffuse measurements. Irradiance was obtained from the pyranomenters by applying calibration coefficients obtained in an inter-comparison campaign performed at INTA/El Arenosillo, in Huelva (Spain), last September 2009. There, calibration coefficients were calculated using as a reference a CMP11 pyranometer which had been previously calibrated by the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Centre in Switzerland. In order to study the partitioning of the solar radiation, the global and diffuse irradiances have been analyzed for three typical different sky conditions: cloud-free, broken clouds and overcast. Particular days within the period of study have been selected by visual inspection. Along with the analysis of the global and diffuse irradiances themselves, ratios of these irradiances to the downward irradiance at the

  20. Model and control scheme for recirculation mode direct steam generation parabolic trough solar power plants

    International Nuclear Information System (INIS)

    Guo, Su; Liu, Deyou; Chen, Xingying; Chu, Yinghao; Xu, Chang; Liu, Qunming; Zhou, Ling

    2017-01-01

    steam generation Technology for Electricity Production and experimental data obtained from the DIrect Solar Steam project.

  1. On Possibility of Direct Asteroid Deflection by Electric Solar Wind Sail

    Science.gov (United States)

    Merikallio, Sini; Janhunen, Pekka

    2010-05-01

    The Electric Solar Wind Sail (E-sail) is a new propulsion method for interplanetary travel which was invented in 2006 and is currently under development. The E-sail uses charged tethers to extract momentum from the solar wind particles to obtain propulsive thrust. According to current estimates, the E-sail is 2-3 orders of magnitude better than traditional propulsion methods (chemical rockets and ion engines) in terms of produced lifetime-integrated impulse per propulsion system mass. Here we analyze the problem of using the E-sail for directly deflecting an Earth-threatening asteroid. The problem then culminates into how to attach the E-sail device to the asteroid. We assess a number of alternative attachment strategies and arrive at a recommendation of using the gravity tractor method because of its workability for a wide variety of asteroid types. We also consider possible techniques to scale up the E-sail force beyond the baseline one Newton level to deal with more imminent or larger asteroid or cometary threats. As a baseline case we consider a 3 million ton asteroid which can be deflected with a baseline 1 N E-sail in 5-10 years. Once developed, the E-sail would appear to provide a safe and reasonably low-cost way of deflecting dangerous asteroids and other heavenly bodies in cases where the collision threat becomes known several years in advance.

  2. Numerical and experimental investigation of direct solar crop dryer for farmers

    Science.gov (United States)

    Kareem, M. W.; Habib, Khairul; Sulaiman, S. A.

    2015-07-01

    This article presents a theoretical and experimental investigation on effects of weather on direct solar crop drying technique. The SIMULINK tool was employed to analyze the energy balance equations of the transient system model. A prototype of the drying system was made and data were collected between the months of June and July in Perak, Malaysia. The contribution of intense sunny days was encouraging despite the wet season, and the wind velocity was dynamic during the period of investigation. However, high percentage of relative humidity was observed. This constitutes a hindrance to efficient drying process. The reported studies were silent on the effect of thick atmospheric moisture content on drying rate of agricultural products in tropic climate. This finding has revealed the mean values of insolation, wind speed, moisturized air, system performance efficiency and chili microscopy image morphology. The predicted and measured results were compared with good agreement.

  3. Direct observations of the charge states of low energy solar particles

    Science.gov (United States)

    Gloeckler, G.; Fan, C. Y.; Hovestadt, D.

    1974-01-01

    The charge states of carbon and oxygen of solar origin have been measured directly in interplanetary space. At 100 keV per nucleon the C(+5)/C(+6) and O(+7)/O(+8) ratios are 1.8 and 1.6, respectively. Abundance ratios of low energy heavy nuclei to He are found which are significantly larger than the corresponding photospheric values. The enhancement of O/He is 35, and both Si/He and Fe/He are overabundant by a factor of 100. To explain these observations a mechanism is proposed which first preferentially accelerates heavy ions and is followed by either storage of these ions in the coronal regions or strong adiabatic deceleration.

  4. Simulation of Solar Heat Pump Dryer Directly Driven by Photovoltaic Panels

    Science.gov (United States)

    Houhou, H.; Yuan, W.; Wang, G.

    2017-05-01

    This paper investigates a new type of solar heat pump dryer directly driven by photovoltaic panels. In order to design this system, a mathematical model has been established describing the whole drying process, including models of key components and phenomena of heat and mass transfer at the product layer and the air. The results of simulation at different drying air temperatures and velocities have been calculated and it indicate that the temperature of drying air is crucial external parameter compared to the velocity, with the increase of drying temperature from 45°C to 55°C, the product moisture content (Kg water/Kg dry product) decreased from 0.75 Kg/Kg to 0.3 Kg/Kg.

  5. Direct battery-driven solar LED lighting using constant-power control

    KAUST Repository

    Huang, Bin-Juine

    2012-11-01

    A direct battery-driven LED lighting technique using constant-power control is proposed in the present study. A system dynamics model of LED luminaire was derived and used in the design of the feedback constant-power control system. The test result has shown that the power of 18. W and 100. W LED luminaires can be controlled accurately with error at 2-5%. A solar LED street lighting system using constant-power and dimming control was designed and built for field test in a remote area. The long-term performance was satisfactory and no any failure since the installation. Since no high-power capacitor is used in the present constant-power control circuit, a longer lifetime is expected. © 2012 Elsevier Ltd.

  6. Characterisation of a smartphone image sensor response to direct solar 305nm irradiation at high air masses.

    Science.gov (United States)

    Igoe, D P; Amar, A; Parisi, A V; Turner, J

    2017-06-01

    This research reports the first time the sensitivity, properties and response of a smartphone image sensor that has been used to characterise the photobiologically important direct UVB solar irradiances at 305nm in clear sky conditions at high air masses. Solar images taken from Autumn to Spring were analysed using a custom Python script, written to develop and apply an adaptive threshold to mitigate the effects of both noise and hot-pixel aberrations in the images. The images were taken in an unobstructed area, observing from a solar zenith angle as high as 84° (air mass=9.6) to local solar maximum (up to a solar zenith angle of 23°) to fully develop the calibration model in temperatures that varied from 2°C to 24°C. The mean ozone thickness throughout all observations was 281±18 DU (to 2 standard deviations). A Langley Plot was used to confirm that there were constant atmospheric conditions throughout the observations. The quadratic calibration model developed has a strong correlation between the red colour channel from the smartphone with the Microtops measurements of the direct sun 305nm UV, with a coefficient of determination of 0.998 and very low standard errors. Validation of the model verified the robustness of the method and the model, with an average discrepancy of only 5% between smartphone derived and Microtops observed direct solar irradiances at 305nm. The results demonstrate the effectiveness of using the smartphone image sensor as a means to measure photobiologically important solar UVB radiation. The use of ubiquitous portable technologies, such as smartphones and laptop computers to perform data collection and analysis of solar UVB observations is an example of how scientific investigations can be performed by citizen science based individuals and groups, communities and schools. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Extinction of direct solar radiation in Puławy in the years 1969–1989

    International Nuclear Information System (INIS)

    Uscka-Kowalkowska, J.

    2007-01-01

    The paper presents the problem of attenuation of the direct solar radiation in Puławy in the years 1969–1989. The extinction was expressed with the help of the Linke’s turbidity factor counted on the basis of measurements of the direct solar irradiance at the Institute of Soil Science and Plant Cultivation in the years 1969–1989. The turbidity factor was counted and reduced to 2 optical mass of the atmosphere according to the method proposed by Grenier et al. (6). The mean value of the turbidity factor for the atmosphere in the study period was in the class of raised turbidity and equalled 3.41. However, an improvement was noted in the optical conditions of the atmosphere expressed by the decrease of the value of Linke’s turbidity factor during the whole study period. The annual course of the turbidity is typical, i.e. it increases in the warm half-year and decreases in the cold half-year. In the daily course, the mean turbidity of the atmosphere increases with the altitude of the Sun above the horizon. The atmospheric turbidity also depends on the kind of the air masses present. During the study period in Puławy, the lowest value of the atmospheric turbidity occurred in the case of arctic air masses (2.79), while the highest in tropical air (4.05). Polar-continental and polar-maritime air masses are characterised by similar turbidity level of the atmosphere, 3.44 and 3.50, respectively. (author) [pl

  8. Heat transfer analysis and the effect of CuO/Water nanofluid on direct absorption concentrating solar collector

    International Nuclear Information System (INIS)

    Menbari, Amir; Alemrajabi, Ali Akbar; Rezaei, Amin

    2016-01-01

    Highlights: • The effect of CuO/Water on a direct absorption parabolic collector is investigated. • The power-law is used for simulating the turbulent flow into the receiver pipe. • In this collector the solar irradiance is absorbed directly and converted to heat. • Nanofluid as the working fluid improves the thermal efficiency of the collector. - Abstract: Direct absorption solar collectors (DASCs) form a new class of collectors that directly harvest sun beams via a working fluid. They offer several advantages over their conventional surface absorption counterparts such as reduced surface heat loss and increased solar irradiance absorption. The optical and thermo-physical properties of the working fluid may be improved and system efficiency may be enhanced in direct absorption solar collectors (DASCs) by introducing nanoparticles into the base fluid. The present study investigates, both analytically and experimentally, the effects of CuO/Water nanofluid on the efficiency of a direct absorption parabolic trough collector (DAPTC). The theoretical analysis of DAPTC is based on the power-law with the objective of simulating a turbulent flow into the receiver pipe. Comparison of the results obtained from the model and the experimental measurements reveals a good agreement between the two sets of data, indicating that they can be exploited to validate the numerical solution. Moreover, modeling results indicate that the average radial temperature and energy generation terms due to the solar irradiance absorbed and scattered by the nanoparticles decrease with increasing distance from the receiver pipe wall. It is also found that the solar irradiance is absorbed and converted into a significant amount of sensible heat along the length of the receiver pipe. Finally, the results of both the numerical and the experimental investigations of the DAPTC collector show that the thermal efficiency of the system improves as a result of increased nanoparticle volume fraction

  9. Directional and hemispherical solar energy transmittance of single and double glazing

    NARCIS (Netherlands)

    Nijnatten, van P.A.; Hugot-Le Goff, le A; Granqvist, C.-G.; Lampert, C.M.

    1992-01-01

    Solar and visual light transmittance, color appearance, thermal emissivity, and other optical properties of architectural glazing are in general angular dependent. Realistic computation of solar properties, therefore, requires the angular behavior to be known. Determination of these properties for

  10. Numerical simulation of a Linear Fresnel Reflector Concentrator used as direct generator in a Solar-GAX cycle

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, N.; Sauceda, D.; Beltran, R. [Instituto de Ingenieria, Universidad Autonoma de Baja California, Blvd. Benito Juarez y Calle de la Normal s/n, Mexicali, Baja California 21280 (Mexico); Garcia-Valladares, O. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Temixco, Morelos 62580 (Mexico)

    2010-03-15

    In this work a methodological analysis to design and evaluate the technical feasibility of use a Linear Fresnel Reflector Concentrator (LFRC) as generator in an advanced absorption refrigeration system (Solar-GAX cycle) has been carried out. For this purpose, a detailed one-dimensional numerical simulation of the thermal and fluid-dynamic behavior of a LFRC that solves, in a segregated manner, four subroutines: (a) fluid flow inside the receptor tube, (b) heat transfer in the receptor tube wall, (c) heat transfer in cover tube wall, and (d) solar thermal analysis in the solar concentrator has been developed. The LFRC numerical model has been validated with experimental data obtained from the technical literature; after that, a parametric study for different configurations of design has been carried out in order to obtain the highest solar concentration with the lowest thermal losses, keeping in mind both specific weather conditions and construction restrictions. The numerical result obtained demonstrates that using a LFRC as a direct generator in a Solar-GAX cycle satisfy not only the quantity and quality of the energy demanded by the advanced cooling system, it also allows to obtain higher global efficiencies of the system due to it can be operated in conditions where the maximum performance of the Solar-GAX cycle is obtained without affecting in any significant way the solar collector efficiency. (author)

  11. Numerical simulation of a Linear Fresnel Reflector Concentrator used as direct generator in a Solar-GAX cycle

    International Nuclear Information System (INIS)

    Velazquez, N.; Garcia-Valladares, O.; Sauceda, D.; Beltran, R.

    2010-01-01

    In this work a methodological analysis to design and evaluate the technical feasibility of use a Linear Fresnel Reflector Concentrator (LFRC) as generator in an advanced absorption refrigeration system (Solar-GAX cycle) has been carried out. For this purpose, a detailed one-dimensional numerical simulation of the thermal and fluid-dynamic behavior of a LFRC that solves, in a segregated manner, four subroutines: (a) fluid flow inside the receptor tube, (b) heat transfer in the receptor tube wall, (c) heat transfer in cover tube wall, and (d) solar thermal analysis in the solar concentrator has been developed. The LFRC numerical model has been validated with experimental data obtained from the technical literature; after that, a parametric study for different configurations of design has been carried out in order to obtain the highest solar concentration with the lowest thermal losses, keeping in mind both specific weather conditions and construction restrictions. The numerical result obtained demonstrates that using a LFRC as a direct generator in a Solar-GAX cycle satisfy not only the quantity and quality of the energy demanded by the advanced cooling system, it also allows to obtain higher global efficiencies of the system due to it can be operated in conditions where the maximum performance of the Solar-GAX cycle is obtained without affecting in any significant way the solar collector efficiency.

  12. Assessment of High-Voltage Photovoltaic Technologies for the Design of a Direct Drive Hall Effect Thruster Solar Array

    Science.gov (United States)

    Mikellides, I. G.; Jongeward, G. A.; Schneider, T.; Carruth, M. R.; Peterson, T.; Kerslake, T. W.; Snyder, D.; Ferguson, D.; Hoskins, A.

    2004-01-01

    A three-year program to develop a Direct Drive Hall-Effect Thruster system (D2HET) begun in 2001 as part of the NASA Advanced Cross-Enterprise Technology Development initiative. The system, which is expected to reduce significantly the power processing, complexity, weight, and cost over conventional low-voltage systems, will employ solar arrays that operate at voltages higher than (or equal to) 300 V. The lessons learned from the development of the technology also promise to become a stepping-stone for the production of the next generation of power systems employing high voltage solar arrays. This paper summarizes the results from experiments conducted mainly at the NASA Marshal Space Flight Center with two main solar array technologies. The experiments focused on electron collection and arcing studies, when the solar cells operated at high voltages. The tests utilized small coupons representative of each solar array technology. A hollow cathode was used to emulate parts of the induced environment on the solar arrays, mostly the low-energy charge-exchange plasma (1012-1013 m-3 and 0.5-1 eV). Results and conclusions from modeling of electron collection are also summarized. The observations from the total effort are used to propose a preliminary, new solar array design for 2 kW and 30-40 kW class, deep space missions that may employ a single or a cluster of Hall- Effect thrusters.

  13. Experimental Study of a Novel Direct-Expansion Variable Frequency Finned Solar/Air-Assisted Heat Pump Water Heater

    Directory of Open Access Journals (Sweden)

    Jing Qin

    2018-01-01

    Full Text Available A novel direct expansion variable frequency finned solar/air-assisted heat pump water heater was fabricated and tested in the enthalpy difference lab with a solar simulator. A solar/air source evaporator-collector with an automatic lifting glass cover plate was installed on the system. The system could be operated in three modes, namely, air, solar, and dual modes. The effects of the ambient temperature, solar irradiation, compressor frequency, and operating mode on the performance of this system were studied in this paper. The experimental results show that the ambient temperature, solar irradiation, and operating mode almost have no effect on the energy consumption of the compressor. When the ambient temperature and the solar irradiation were increased, the COP was found to increase with decreasing heating time. Also, when the compressor frequency was increased, an increase in the energy consumption of the compressor and the heat gain of the evaporator were noted with a decrease in the heating time.

  14. On the relationship between cardboard burning in a sunshine recorder and the direct solar irradiance.

    Science.gov (United States)

    Sanchez, A.; Calbó, J.; González, J. A.

    2012-04-01

    Since the end of XIX century, the Campbell-Stokes recorder (CSR) has been the instrument used to measure the insolation (hours of sunshine during per day). Due to the large number of records that exist worldwide (some of them extending over more than 100 years), valuable climatic information can be extracted from them. There are various articles that relate the insolation with the cloudiness and the global solar irradiation (Angstrom-Prescott type formulas). Theoretically, the insolation is defined as the number of hours that direct solar irradiance (DSI) exceeds 120 W/m2, thus corresponding to the total length of the burning in the bands. The width of the burn has not been well studied, so the aim of this research is to relate this width, first with the DSI and then, with other variables. The research was carried out in Girona (NE Spain) for a period extending since February 2011. A CSR from Thies Clima and a pyrheliometer from Kipp&Zonen were used to measure insolation and the direct solar irradiance. Other meteorological variables were also stored for the study. For each band, we made two independent measurements of the width of the burn every 10 minutes: first, we measured directly the width of the perforated portion of the burn; second, we measured the width of the burn after applying a digital image process that increases the contrast of the burn. The burn in a band has a direct relationship with the DSI. Specifically, correlation coefficients of the perforation width and the burning width with DSI were 0.838 and 0.864 respectively. However, we found that there are times when despite of DSI is as high as 400 W/m2 (i.e. much greater than 120 W/m2), there is no burn in the band. Contrarily, sometimes a burn occurs with almost no DSI. Furthermore, a higher DSI does not always correspond to a wider burn of the band. Because of this, we consider that characteristics of band burns must also depend on other meteorological variables (temperature, humidity...). The

  15. Parameter Improved Particle Swarm Optimization Based Direct-Current Vector Control Strategy for Solar PV System

    Directory of Open Access Journals (Sweden)

    NAMMALVAR, P.

    2018-02-01

    Full Text Available This paper projects Parameter Improved Particle Swarm Optimization (PIPSO based direct current vector control technology for the integration of photovoltaic array in an AC micro-grid to enhance the system performance and stability. A photovoltaic system incorporated with AC micro-grid is taken as the pursuit of research study. The test system features two power converters namely, PV side converter which consists of DC-DC boost converter with Perturbation and Observe (P&O MPPT control to reap most extreme power from the PV array, and grid side converter which consists of Grid Side-Voltage Source Converter (GS-VSC with proposed direct current vector control strategy. The gain of the proposed controller is chosen from a set of three values obtained using apriori test and tuned through the PIPSO algorithm so that the Integral of Time multiplied Absolute Error (ITAE between the actual and the desired DC link capacitor voltage reaches a minimum and allows the system to extract maximum power from PV system, whereas the existing d-q control strategy is found to perform slowly to control the DC link voltage under varying solar insolation and load fluctuations. From simulation results, it is evident that the proposed optimal control technique provides robust control and improved efficiency.

  16. A 50-kW Module Power Station of Directly Solar-Pumped Iodine Laser

    Science.gov (United States)

    Choi, S. H.; Lee, J. H.; Meador, W. E.; Conway, E. J.

    1997-01-01

    The conceptual design of a 50 kW Directly Solar-Pumped Iodine Laser (DSPIL) module was developed for a space-based power station which transmits its coherent-beam power to users such as the moon, Martian rovers, or other satellites with large (greater than 25 kW) electric power requirements. Integration of multiple modules would provide an amount of power that exceeds the power of a single module by combining and directing the coherent beams to the user's receiver. The model developed for the DSPIL system conservatively predicts the laser output power (50 kW) that appears much less than the laser output (93 kW) obtained from the gain volume ratio extrapolation of experimental data. The difference in laser outputs may be attributed to reflector configurations adopted in both design and experiment. Even though the photon absorption by multiple reflections in experimental cavity setup was more efficient, the maximum secondary absorption amounts to be only 24.7 percent of the primary. However, the gain volume ratio shows 86 percent more power output than theoretical estimation that is roughly 60 percent more than the contribution by the secondary absorption. Such a difference indicates that the theoretical model adopted in the study underestimates the overall performance of the DSPIL. This fact may tolerate more flexible and radical selection of design parameters than used in this design study. The design achieves an overall specific power of approximately 5 W/kg and total mass of 10 metric tons.

  17. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS

    International Nuclear Information System (INIS)

    Kramar, M.; Lin, H.; Tomczyk, S.

    2016-01-01

    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments

  18. Workshop on Direct Contact Heat Transfer at the Solar Energy Research Institute

    CERN Document Server

    Boehm, R

    1988-01-01

    to increase the use of direct contact processes, the National Science Foundation sup­ ported a workshop on direct contact heat transfer at the Solar Energy Research Insti­ tute in the summer of 1985. We served as organizers for this workshop, which em­ phasized an area of thermal engineering that, in our opinion, has great promise for the future, but has not yet reached the point of wide-spread commercial application. Hence, a summary of the state of knowledge at this point is timely. The workshop had a dual objective: 1. To summarize the current state of knowledge in such a form that industrial practi­ tioners can make use of the available information. 2. To indicate the research and development needed to advance the state-of-the-art, indicating not only what kind of research is needed, but also the industrial poten­ tial that could be realized if the information to be obtained through the proposed research activities were available.

  19. Direct Solar Charging of an Organic-Inorganic, Stable, and Aqueous Alkaline Redox Flow Battery with a Hematite Photoanode.

    Science.gov (United States)

    Wedege, Kristina; Azevedo, João; Khataee, Amirreza; Bentien, Anders; Mendes, Adélio

    2016-06-13

    The intermittent nature of the sunlight and its increasing contribution to electricity generation is fostering the energy storage research. Direct solar charging of an auspicious type of redox flow battery could make solar energy directly and efficiently dispatchable. The first solar aqueous alkaline redox flow battery using low cost and environmentally safe materials is demonstrated. The electrolytes consist of the redox couples ferrocyanide and anthraquinone-2,7-disulphonate in sodium hydroxide solution, yielding a standard cell potential of 0.74 V. Photovoltage enhancement strategies are demonstrated for the ferrocyanide-hematite junction by employing an annealing treatment and growing a layer of a conductive polyaniline polymer on the electrode surface, which decreases electron-hole recombination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Optimisation of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Central receiver solar thermal power plants are regarded as one of the promising ways to generate electricity in near future. They offer the possibility of using high temperatures and pressures to achieve high efficiencies with standard power cycles. A direct steam generation approach can be used...

  1. Carbazole-based copolymers via direct arylation polymerization (DArP) for Suzuki-convergent polymer solar cell performance

    DEFF Research Database (Denmark)

    Gobalasingham, Nemal S.; Ekiz, Seyma; Pankow, Robert M.

    2017-01-01

    Although direct arylation polymerization (DArP) has recently emerged as an alternative to traditional cross-coupling methods like Suzuki polymerization, the evaluation of DArP polymers in practical applications like polymer solar cells (PSCs) is limited. Because even the presence of minute...

  2. Direct synthesis of platelet graphitic-nanofibres as a highly porous counter-electrode in dye-sensitized solar cells.

    Science.gov (United States)

    Hsieh, Chien-Kuo; Tsai, Ming-Chi; Yen, Ming-Yu; Su, Ching-Yuan; Chen, Kuei-Fu; Ma, Chen-Chi M; Chen, Fu-Rong; Tsai, Chuen-Horng

    2012-03-28

    We synthesized platelet graphitic-nanofibres (GNFs) directly onto FTO glass and applied this forest of platelet GNFs as a highly porous structural counter-electrode in dye-sensitized solar cells (DSSCs). We investigated the electrochemical properties of counter-electrodes made from the highly porous structural GNFs and the photoconversion performance of the cells made with these electrodes.

  3. The direct effect of aerosols on solar radiation over the broader Mediterranean basin

    Directory of Open Access Journals (Sweden)

    C. D. Papadimas

    2012-08-01

    Full Text Available For the first time, the direct radiative effect (DRE of aerosols on solar radiation is computed over the entire Mediterranean basin, one of the most climatically sensitive world regions, using a deterministic spectral radiation transfer model (RTM. The DRE effects on the outgoing shortwave radiation at the top of atmosphere (TOA, DRETOA, on the absorption of solar radiation in the atmospheric column, DREatm, and on the downward and absorbed surface solar radiation (SSR, DREsurf and DREnetsurf, respectively, are computed separately. The model uses input data for the period 2000–2007 for various surface and atmospheric parameters, taken from satellite (International Satellite Cloud Climatology Project, ISCCP-D2, Global Reanalysis projects (National Centers for Environmental Prediction – National Center for Atmospheric Research, NCEP/NCAR, and other global databases. The spectral aerosol optical properties (aerosol optical depth, AOD, asymmetry parameter, gaer and single scattering albedo, ωaer, are taken from the MODerate resolution Imaging Spectroradiometer (MODIS of NASA (National Aeronautics and Space Administration and they are supplemented by the Global Aerosol Data Set (GADS. The model SSR fluxes have been successfully validated against measurements from 80 surface stations of the Global Energy Balance Archive (GEBA covering the period 2000–2007.

    A planetary cooling is found above the Mediterranean on an annual basis (regional mean DRETOA = −2.4 W m−2. Although a planetary cooling is found over most of the region, of up to −7 W m−2, large positive DRETOA values (up to +25 W m−2 are found over North Africa, indicating a strong planetary warming, and a weaker warming over the Alps (+0.5 W m−2. Aerosols are found to increase the absorption of solar radiation in the atmospheric

  4. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    Science.gov (United States)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  5. Effect of working fluids on the performance of a novel direct vapor generation solar organic Rankine cycle system

    International Nuclear Information System (INIS)

    Li, Jing; Alvi, Jahan Zeb; Pei, Gang; Ji, Jie; Li, Pengcheng; Fu, Huide

    2016-01-01

    Highlights: • A novel, flexible direct vapor generation solar ORC is proposed. • Technical feasibility of the system is discussed. • Fluid effect on collector efficiency is explored. • The system is more efficient than solar ORC with HTF. - Abstract: A novel solar organic Rankine cycle (ORC) system with direct vapor generation (DVG) is proposed. A heat storage unit is embedded in the ORC to guarantee the stability of power generation. Compared with conventional solar ORCs, the proposed system avoids the secondary heat transfer intermediate and shows good reaction to the fluctuation of solar radiation. The technical feasibility of the system is discussed. Performance is analyzed by using 17 dry and isentropic working fluids. Fluid effects on the efficiencies of ORC, collectors and the whole system are studied. The results indicate that the collector efficiency generally decreases while the ORC and system efficiencies increase with the increment in fluid critical temperature. At evaporation temperature of 120 °C and solar radiation of 800 Wm −2 , the ORC, collector and overall thermal efficiencies of R236fa are 10.59, 56.14 and 5.08% while their values for Benzene are 12.5, 52.58 and 6.57% respectively. The difference between collector efficiencies using R236fa and Benzene gets larger at lower solar radiation. The heat collection is strongly correlated with latent and sensible heat of the working fluid. Among the fluids, R123 exhibits the highest overall performance and seems to be suitable for the proposed system in the short term.

  6. Economic impact of latent heat thermal energy storage systems within direct steam generating solar thermal power plants with parabolic troughs

    International Nuclear Information System (INIS)

    Seitz, M.; Johnson, M.; Hübner, S.

    2017-01-01

    Highlights: • Integration of a latent heat thermal energy storage system into a solar direct steam generation power cycle. • Parametric study of solar field and storage size for determination of the optimal layout. • Evaluation of storage impact on the economic performance of the solar thermal power plant. • Economic comparison of new direct steam generation plant layout with state-of-the-art oil plant layout. - Abstract: One possible way to further reduce levelized costs of electricity of concentrated solar thermal energy is to directly use water/steam as the primary heat transfer fluid within a concentrated collector field. This so-called direct steam generation offers the opportunity of higher operating temperatures and better exergy efficiency. A technical challenge of the direct steam generation technology compared to oil-driven power cycles is a competitive storage technology for heat transfer fluids with a phase change. Latent heat thermal energy storages are suitable for storing heat at a constant temperature and can be used for direct steam generation power plants. The calculation of the economic impact of an economically optimized thermal energy storage system, based on a latent heat thermal energy storage system with phase change material, is the main focus of the presented work. To reach that goal, a thermal energy storage system for a direct steam generation power plant with parabolic troughs in the solar field was thermally designed to determine the boundary conditions. This paper discusses the economic impact of the designed thermal energy storage system based on the levelized costs of electricity results, provided via a wide parametric study. A state-of-the-art power cycle with a primary and a secondary heat transfer fluid and a two-tank thermal energy storage is used as a benchmark technology for electricity generation with solar thermal energy. The benchmark and direct steam generation systems are compared to each other, based respectively

  7. Advances in solar photoelectro-Fenton: Decolorization and mineralization of the Direct Yellow 4 diazo dye using an autonomous solar pre-pilot plant

    International Nuclear Information System (INIS)

    Garcia-Segura, Sergi; Brillas, Enric

    2014-01-01

    Highlights: • Assessment of an autonomous solar pre-pilot plant for solar photoelectro-Fenton. • Total decolorization and 96-97% mineralization for solutions of Direct Yellow 4 diazo dye at pH 3.0. • More rapid dye decay and mineralization at 0.50 mmol dm −3 Fe 2+ and maximum current of 5.0 A. • 11 aromatics, 22 hydroxylated derivatives and 9 carboxylic acids detected as intermediates. • Release of NH 4 + and SO 4 2− as main inorganic ions. - Abstract: Here, an overview on the advances in solar photoelectro-Fenton (SPEF) is initially presented to show that it is the more potent electrochemical advanced oxidation process based on Fenton's reaction chemistry to remove organic pollutants from waters, due to the synergistic action of generated hydroxyl radicals and solar irradiation. As a novel advance for SPEF, an autonomous solar pre-pilot plant is proposed to make an energetically inexpensive process that can be viable at industrial level. The plant of 10 dm 3 capacity contained a Pt/air-diffusion cell with 90.2 cm 2 electrode area, coupled to a solar compound parabolic collectors (CPCs) photoreactor of 1.57 dm 3 irradiation volume and to a solar photovoltaic panel that provides a maximum average current of 5.0 A. The oxidation ability of this plant was assessed by studying the degradation of Direct Yellow 4 (DY4) diazo dye, which involved the predominant destruction of organics by ·OH formed from Fenton's reaction between H 2 O 2 generated at the cathode and added Fe 2+ , along with the photolysis of Fe(III)-carboxylate complexes with sunlight in the CPCs photoreactor. The effect of Fe 2+ and dye contents as well as current on decolorization rate, substrate decay and mineralization rate was examined. About 96-97% mineralization was rapidly attained using 0.50 mmol dm −3 Fe 2+ and up to 0.32 mmol dm −3 DY4 at 5.0 A. The DY4 decay always obeyed a pseudo-first-order kinetics. Eleven aromatic products, twenty two hydroxylated derivatives

  8. Directly Detecting MeV-Scale Dark Matter Via Solar Reflection.

    Science.gov (United States)

    An, Haipeng; Pospelov, Maxim; Pradler, Josef; Ritz, Adam

    2018-04-06

    If dark matter (DM) particles are lighter than a few   MeV/c^{2} and can scatter off electrons, their interaction within the solar interior results in a considerable hardening of the spectrum of galactic dark matter received on Earth. For a large range of the mass versus cross section parameter space, {m_{e},σ_{e}}, the "reflected" component of the DM flux is far more energetic than the end point of the ambient galactic DM energy distribution, making it detectable with existing DM detectors sensitive to an energy deposition of 10-10^{3}  eV. After numerically simulating the small reflected component of the DM flux, we calculate its subsequent signal due to scattering on detector electrons, deriving new constraints on σ_{e} in the MeV and sub-MeV range using existing data from the XENON10/100, LUX, PandaX-II, and XENON1T experiments, as well as making projections for future low threshold direct detection experiments.

  9. Experimental performance analysis and optimization of a direct expansion solar-assisted heat pump water heater

    International Nuclear Information System (INIS)

    Li, Y.W.; Wang, R.Z.; Wu, J.Y.; Xu, Y.X.

    2007-01-01

    In this study, a direct expansion solar-assisted heat pump water heater (DX-SAHPWH) with rated input power 750 W was tested and analyzed. Through experimental research in spring and thermodynamics analysis about the system performance, some suggestions for the system optimization are proposed. Then, a small-type DX-SAHPWH with rated input power 400 W was built, tested and analyzed. Through exergy analysis for each component of DX-SAHPWH (A) and (B), it can be seen that the highest exergy loss occurs in the compressor and collector/evaporator, followed by the condenser and expansion valve, respectively. Furthermore, some methods are suggested to improve the performance of each component, especially the collector/evaporator. A methodology for the design optimization of the collector/evaporator was introduced and applied. In order to maintain a proper matching between the heat pumping capacity of the compressor and the evaporative capacity of the collector/evaporator under widely varying ambient conditions, the electronic expansion valve and variable frequency compressor are suggested to be utilized for the DX-SAHPWH

  10. Development of a Vsible-Light-Active Film for Direct Solar Energy Storage

    Science.gov (United States)

    Salazar, Audrey

    We conceived of a two-compartment photocatalytic assembly for direct storage of solar energy as chemical potential. Our approach was to maintain reductant and oxidant in separate compartments and develop a visible light (wavelength >400nm) photo-active film to effect an uphill photoreaction between compartments. A proton exchange membrane was included in the assembly to complete the electrical circuit. Towards obtaining a working prototype of the assembly, we developed a freeze-drying method to adhere visible-light photoactive nanoparticles to a self- standing, non-porous and conductive indium tin oxide-polyvinylidene difluoride (ITO-PVDF) support film, developed in-house. We explored the possibility of employing an iron-rich metal oxide as the photocatalytic component of the film and several were explored utilizing the sodium tartrate-assisted photoreduction of Cr(VI) to Cr(III). Although the Fe2O3-coated TiO2 nanoparticles were active for photoreduction, the initial reaction rate was modest and was slowed by substantial deactivation, making it unsuitable as a photo-active material for the composite film. A complete, two-compartment assembly was prepared using cadmium sulfide (CdS) and preliminarily examined for the Cr(VI) probe reaction, however, no catalytic activity was observed. To identify the reason(s) for this observation, further testing of the apparatus and the composite film is required.

  11. Conversion of solar energy into electricity by using duckweed in Direct Photosynthetic Plant Fuel Cell.

    Science.gov (United States)

    Hubenova, Yolina; Mitov, Mario

    2012-10-01

    In the present study we demonstrate for the first time the possibility for conversion of solar energy into electricity on the principles of Direct Photosynthetic Plant Fuel Cell (DPPFC) technology by using aquatic higher plants. Lemna minuta duckweed was grown autotrophically in specially constructed fuel cells under sunlight irradiation and laboratory lighting. Current and power density up to 1.62±0.10 A.m(-2) and 380±19 mW.m(-2), respectively, were achieved under sunlight conditions. The influence of the temperature, light intensity and day/night sequencing on the current generation was investigated. The importance of the light intensity was demonstrated by the higher values of generated current (at permanently connected resistance) during daytime than those through the nights, indicating the participation of light-dependent photosynthetic processes. The obtained DPPFC outputs in the night show the contribution of light-independent reactions (respiration). The electron transfer in the examined DPPFCs is associated with a production of endogenous mediator, secreted by the duckweed. The plants' adaptive response to the applied polarization is also connected with an enhanced metabolism resulting in an increase of the protein and carbohydrate intracellular content. Further investigations aiming at improvement of the DPPFC outputs and elucidation of the electron transfer mechanism are required for practical application. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Directly Detecting MeV-Scale Dark Matter Via Solar Reflection

    Science.gov (United States)

    An, Haipeng; Pospelov, Maxim; Pradler, Josef; Ritz, Adam

    2018-04-01

    If dark matter (DM) particles are lighter than a few MeV /c2 and can scatter off electrons, their interaction within the solar interior results in a considerable hardening of the spectrum of galactic dark matter received on Earth. For a large range of the mass versus cross section parameter space, {me,σe}, the "reflected" component of the DM flux is far more energetic than the end point of the ambient galactic DM energy distribution, making it detectable with existing DM detectors sensitive to an energy deposition of 10 -103 eV . After numerically simulating the small reflected component of the DM flux, we calculate its subsequent signal due to scattering on detector electrons, deriving new constraints on σe in the MeV and sub-MeV range using existing data from the XENON10/100, LUX, PandaX-II, and XENON1T experiments, as well as making projections for future low threshold direct detection experiments.

  13. Simple Moving Voltage Average Incremental Conductance MPPT Technique with Direct Control Method under Nonuniform Solar Irradiance Conditions

    Directory of Open Access Journals (Sweden)

    Amjad Ali

    2015-01-01

    Full Text Available A new simple moving voltage average (SMVA technique with fixed step direct control incremental conductance method is introduced to reduce solar photovoltaic voltage (VPV oscillation under nonuniform solar irradiation conditions. To evaluate and validate the performance of the proposed SMVA method in comparison with the conventional fixed step direct control incremental conductance method under extreme conditions, different scenarios were simulated. Simulation results show that in most cases SMVA gives better results with more stability as compared to traditional fixed step direct control INC with faster tracking system along with reduction in sustained oscillations and possesses fast steady state response and robustness. The steady state oscillations are almost eliminated because of extremely small dP/dV around maximum power (MP, which verify that the proposed method is suitable for standalone PV system under extreme weather conditions not only in terms of bus voltage stability but also in overall system efficiency.

  14. The large-scale cross-correlation of Damped Lyman alpha systems with the Lyman alpha forest: first measurements from BOSS

    Energy Technology Data Exchange (ETDEWEB)

    Font-Ribera, Andreu [Institute of Theoretical Physics, University of Zurich, 8057 Zurich (Switzerland); Miralda-Escudé, Jordi [Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia (Spain); Arnau, Eduard [Institut de Ciències del Cosmos (IEEC/UB), Barcelona, Catalonia (Spain); Carithers, Bill; Ross, Nicholas P.; White, Martin [Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, California 94720 (United States); Lee, Khee-Gan [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Noterdaeme, Pasquier; Pâris, Isabelle; Petitjean, Patrick; Rollinde, Emmanuel [Institut d' Astrophysique de Paris, Université Paris 6 et CNRS, 98bis blvd. Arago, 75014 Paris (France); Rich, James [CEA, Centre de Saclay, IRFU, 91191 Gif-sur-Yvette (France); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); York, Donald G., E-mail: font@physik.uzh.ch, E-mail: miralda@icc.ub.edu [Department of Astronomy and Astrophysics and The Fermi Institute, Chicago University, 5640 So. Ellis Ave., Chicago, IL 60637 (United States)

    2012-11-01

    We present the first measurement of the large-scale cross-correlation of Lyα forest absorption and Damped Lyman α systems (DLA), using the 9th Data Release of the Baryon Oscillation Spectroscopic Survey (BOSS). The cross-correlation is clearly detected on scales up to 40h{sup −1}Mpc and is well fitted by the linear theory prediction of the standard Cold Dark Matter model of structure formation with the expected redshift distortions, confirming its origin in the gravitational evolution of structure. The amplitude of the DLA-Lyα cross-correlation depends on only one free parameter, the bias factor of the DLA systems, once the Lyα forest bias factors are known from independent Lyα forest correlation measurements. We measure the DLA bias factor to be b{sub D} = (2.17±0.20)β{sub F}{sup 0.22}, where the Lyα forest redshift distortion parameter β{sub F} is expected to be above unity. This bias factor implies a typical host halo mass for DLAs that is much larger than expected in present DLA models, and is reproduced if the DLA cross section scales with halo mass as M{sub h}{sup α}, with α = 1.1±0.1 for β{sub F} = 1. Matching the observed DLA bias factor and rate of incidence requires that atomic gas remains extended in massive halos over larger areas than predicted in present simulations of galaxy formation, with typical DLA proper sizes larger than 20 kpc in host halos of masses ∼ 10{sup 12}M{sub ☉}. We infer that typical galaxies at z ≅ 2 to 3 are surrounded by systems of atomic clouds that are much more extended than the luminous parts of galaxies and contain ∼ 10% of the baryons in the host halo.

  15. Effects of vernal equinox solar eclipse on temperature and wind direction in Switzerland

    Science.gov (United States)

    Eugster, Werner; Emmel, Carmen; Wolf, Sebastian; Buchmann, Nina; McFadden, Joseph P.; Whiteman, Charles David

    2017-12-01

    The vernal equinox total solar eclipse of 20 March 2015 produced a maximum occultation of 65.8-70.1 % over Switzerland during the morning hours (09:22 to 11:48 CET). Skies were generally clear over the Swiss Alps due to a persistent high-pressure band between the UK and Russia associated with a rather weak pressure gradient over the continent. To assess the effects of penumbral shading on near-surface meteorology across Switzerland, air temperature data measured at 10 min intervals at 184 MeteoSwiss weather stations were used. Wind speed and direction data were available from 165 of these stations. Additionally, six Swiss FluxNet eddy covariance flux (ECF) sites provided turbulent measurements at 20 Hz resolution. During maximum occultation, the temperature drop was up to 5.8 K at a mountain site where cold air can pool in a topographic depression. The bootstrapped average of the maximum temperature drops of all 184 MeteoSwiss sites during the solar eclipse was 1.51 ± 0.02 K (mean ± SE). A detailed comparison with literature values since 1834 showed a temperature decrease of 2.6 ± 1.7 K (average of all reports), with extreme values up to 11 K. On fair weather days under weak larger-scale pressure gradients, local thermo-topographic wind systems develop that are driven by small-scale pressure and temperature gradients. At one ECF site, the penumbral shading delayed the morning transition from down-valley to up-valley wind conditions. At another site, it prevented this transition from occurring at all. Data from the 165 MeteoSwiss sites measuring wind direction did not show a consistent pattern of wind direction response to the passing of the penumbral shadow. These results suggest that the local topographic setting had an important influence on the temperature drop and the wind flow patterns during the eclipse. A significant cyclonic effect of the passing penumbral shadow was found in the elevation range ≈ 1700-2700 m a. s. l., but not at lower

  16. Effects of vernal equinox solar eclipse on temperature and wind direction in Switzerland

    Directory of Open Access Journals (Sweden)

    W. Eugster

    2017-12-01

    Full Text Available The vernal equinox total solar eclipse of 20 March 2015 produced a maximum occultation of 65.8–70.1 % over Switzerland during the morning hours (09:22 to 11:48 CET. Skies were generally clear over the Swiss Alps due to a persistent high-pressure band between the UK and Russia associated with a rather weak pressure gradient over the continent. To assess the effects of penumbral shading on near-surface meteorology across Switzerland, air temperature data measured at 10 min intervals at 184 MeteoSwiss weather stations were used. Wind speed and direction data were available from 165 of these stations. Additionally, six Swiss FluxNet eddy covariance flux (ECF sites provided turbulent measurements at 20 Hz resolution. During maximum occultation, the temperature drop was up to 5.8 K at a mountain site where cold air can pool in a topographic depression. The bootstrapped average of the maximum temperature drops of all 184 MeteoSwiss sites during the solar eclipse was 1.51 ± 0.02 K (mean ± SE. A detailed comparison with literature values since 1834 showed a temperature decrease of 2.6 ± 1.7 K (average of all reports, with extreme values up to 11 K. On fair weather days under weak larger-scale pressure gradients, local thermo-topographic wind systems develop that are driven by small-scale pressure and temperature gradients. At one ECF site, the penumbral shading delayed the morning transition from down-valley to up-valley wind conditions. At another site, it prevented this transition from occurring at all. Data from the 165 MeteoSwiss sites measuring wind direction did not show a consistent pattern of wind direction response to the passing of the penumbral shadow. These results suggest that the local topographic setting had an important influence on the temperature drop and the wind flow patterns during the eclipse. A significant cyclonic effect of the passing penumbral shadow was found in the elevation range

  17. A Nonlinear Autoregressive Exogenous (NARX Neural Network Model for the Prediction of the Daily Direct Solar Radiation

    Directory of Open Access Journals (Sweden)

    Zina Boussaada

    2018-03-01

    Full Text Available The solar photovoltaic (PV energy has an important place among the renewable energy sources. Therefore, several researchers have been interested by its modelling and its prediction, in order to improve the management of the electrical systems which include PV arrays. Among the existing techniques, artificial neural networks have proved their performance in the prediction of the solar radiation. However, the existing neural network models don’t satisfy the requirements of certain specific situations such as the one analyzed in this paper. The aim of this research work is to supply, with electricity, a race sailboat using exclusively renewable sources. The developed solution predicts the direct solar radiation on a horizontal surface. For that, a Nonlinear Autoregressive Exogenous (NARX neural network is used. All the specific conditions of the sailboat operation are taken into account. The results show that the best prediction performance is obtained when the training phase of the neural network is performed periodically.

  18. Heat transference in flat solar collectors considering speed and wind direction; Transferencia de calor en colectores solares planos considerando velocidad y direccion del viento

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M. C.; Rodriguez, P. A.; Salgado, R.; Venegas, M.; Lecuona, A.

    2008-07-01

    Thermal solar collector performance depends on the process temperature but also on environmental variables like solar radiation, ambient temperature, wind speed and wind direction. collector operating design parameters like insulating and optical characteristics will affect also its performance. An unsteady energy balance on the collector developing a numerical method has been carried out to evaluate thermal losses. The numerical results are validated with experimental data from the facility placed at UC3M. these data, together with environmental variables, enable to calculate experimentally the collector performance to be compared with normalization curve and model prediction. The latest ones adjust more accurately to experimental than those from normalization curve. The main causes for this discrepancy are optical degradation of the collector due to aging and the wind effects. (Author)

  19. Solar power conversion system with directionally- and spectrally-selective properties based on a reflective cavity

    Science.gov (United States)

    Boriskina, Svetlana; Kraemer, Daniel; McEnaney, Kenneth; Weinstein, Lee A.; Chen, Gang

    2018-03-13

    Solar power conversion system. The system includes a cavity formed within an enclosure having highly specularly reflecting in the IR spectrum inside walls, the enclosure having an opening to receive solar radiation. An absorber is positioned within the cavity for receiving the solar radiation resulting in heating of the absorber structure. In a preferred embodiment, the system further contains an energy conversion and storage devices thermally-linked to the absorber by heat conduction, convection, far-field or near-field thermal radiation.

  20. Solar induced inter-annual variability of ozone

    Science.gov (United States)

    Fytterer, Tilo; Nieder, Holger; Perot, Kristell; Sinnhuber, Miriam; Stiller, Gabriele; Urban, Joachim

    2014-05-01

    Measurements by the Michelson Interferometer for Passive Atmospheric Sounding instrument on board the ENVIromental SATellite from 2005 - 2011 are used to investigate the impact of solar and geomagnetic activity on O3 in the stratosphere and mesosphere inside the Antarctic polar vortex. It is known from observations that energetic particles, mainly originating from the sun, precipitate in the Earth atmosphere and produce odd nitrogen NOx (N + NO + NO2) in the upper mesosphere and lower thermosphere, which is transported downwards into the stratosphere during polar winter. Results from global chemistry-transport models suggest that this leads to a depletion of O3 down to ~30 km at high latitudes during winter. Therefore it appears promising to search for a link between high energetic particles and O3 in actual data sets. Thus in this study, correlation analysis between a 26 days average centred around 1 Apr, 1 May and 1 Jun of several solar/geomagnetic indices (Ap index, F10.7 cm solar radio flux, Lyman-alpha, 2 MeV electrons flux) and 26 day running means from 1 Apr - 1 Nov of O3 in the altitude range from 20 - 70 km were performed. The results reveal negative correlation coefficients propagating downwards throughout the polar winter, at least for the Ap index and the 2 MeV electrons flux. Comparisons with TIMED/SABER and Odin/SMR O3 data are in moderate agreement, also showing a descending negative signal in either indices, but only for the correlation with 1 Apr.

  1. Energy and exergy analysis of the Kalina cycle for use in concentrated solar power plants with direct steam generation

    DEFF Research Database (Denmark)

    Knudsen, Thomas; Clausen, Lasse Røngaard; Haglind, Fredrik

    2014-01-01

    In concentrated solar power plants using direct steam generation, the usage of a thermal storage unit based only on sensible heat may lead to large exergetic losses during charging and discharging, due to a poor matching of the temperature profiles. By the use of the Kalina cycle, in which...... evaporation and condensation takes place over a temperature range, the efficiency of the heat exchange processes can be improved, possibly resulting also in improved overall performance of the system. This paper is aimed at evaluating the prospect of using the Kalina cycle for concentrated solar power plants...... with direct steam generation. The following two scenarios were addressed using energy and exergy analysis: generating power using heat from only the receiver and using only stored heat. For each of these scenarios comparisons were made for mixture concentrations ranging from 0.1 mole fraction of ammonia to 0...

  2. Performance analysis of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    International Nuclear Information System (INIS)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Solar thermal power plants have attracted increasing interest in the past few years – with respect to both the design of the various plant components, and extending the operation hours by employing different types of storage systems. One approach to improve the overall plant efficiency is to use direct steam generation with water/steam as both the heat transfer fluid in the solar receivers and the cycle working fluid. This enables operating the plant with higher turbine inlet temperatures. Available literature suggests that it is feasible to use ammonia-water mixtures at high temperatures without corroding the equipment by using suitable additives with the mixture. The purpose of the study reported here was to investigate if there is any benefit of using a Kalina cycle for a direct steam generation, central receiver solar thermal power plant with high live steam temperature (450 °C) and pressure (over 100 bar). Thermodynamic performance of the Kalina cycle in terms of the plant exergy efficiency was evaluated and compared with a simple Rankine cycle. The rates of exergy destruction for the different components in the two cycles were also calculated and compared. The results suggest that the simple Rankine cycle exhibits better performance than the Kalina cycle when the heat input is only from the solar receiver. However, when using a two-tank molten-salt storage system as the primary source of heat input, the Kalina cycle showed an advantage over the simple Rankine cycle because of about 33 % reduction in the storage requirement. The solar receiver showed the highest rate of exergy destruction for both the cycles. The rates of exergy destruction in other components of the cycles were found to be highly dependent on the amount of recuperation, and the ammonia mass fraction and pressure at the turbine inlet. - Highlights: •Kalina cycle for a central receiver solar thermal power plant with direct steam generation. •Rankine cycle shows better plant exergy

  3. Direct transformation of solar energy into three-phase current for technical uses

    Energy Technology Data Exchange (ETDEWEB)

    von Hacht, G [Ingenieurbuero Opto-Sensor-Technik, Frankfurt am Main (Germany, F.R.)

    1977-08-01

    The author proposes a method which may increase the 15% efficiency of present solar plants. In principle, the device consists of an optical waveguide tube containing a chain of solar elements. The tube serves as conductive wire for the primary coil of an a.c. or three-phase current transformer. The 50 Hz cycle of the a.c. or three-phase current is generated by rotor or cylindrical diaphragms and/or electronic pilot/thyristor control. The solar energy is focussed axially and/or vertically to the axis of the optical waveguide tube. The light going through the optical waveguide tube makes it possible for solar elements to be equipped with light-sensitive layers on both sides instead of just on one side, as until now. This means a higher efficiency than for conventional solar elements exposed to light only on one side. In addition, the optical waveguide tube is designed in its length as Fabry-Perot resonator. This way, it may also be used as a gas laser. The light generated in this gas laser would multiply the luminous intensity which again acts on the two light-sensitive sides of the solar elements, thus again increasing their efficiency.

  4. Satellite orbits perturbed by direct solar radiation pressure: general expansion of the disturbing function

    International Nuclear Information System (INIS)

    Hughes, S.

    1977-01-01

    An expression is derived for the solar radiation pressure disturbing function on an Earth satellite orbit which takes into account the variation of the solar radiation flux with distance from the Sun's centre and the absorption of radiation by the satellite. This expression is then expanded in terms of the Keplerian elements of the satellite and solar orbits using Kaula's method (Astr. J.; 67:300 (1962)). The Kaula inclination functions are replaced by an equivalent set of modified Allan (Proc. R. Soc. A.; 288:60 (1965)) inclination functions. The resulting expression reduces to the form commonly used in solar radiation pressure perturbation studies (e.g. Aksnes, Cel. Mech.; 13:89 (1976)), when certain terms are neglected. If, as happens quite often in practice, a satellite's orbit is in near-resonance with certain of these neglected terms, these near-resonant terms can cause changes in the satellite's orbital elements comparable to those produced by the largest term in Aksnes's expression. A new expression for the solar radiation pressure disturbing function expansion is suggested for use in future studies of satellite orbits perturbed by solar radiation pressure. (author)

  5. Direct imaging of enhanced current collection on grain boundaries of Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, JunHo, E-mail: jhk@incheon.ac.kr [Department of Physics, Incheon National University, Incheon 406-772 (Korea, Republic of); National Center for Photovoltaics, National Renewable Energy Laboratory (NREL), Golden, Colorado 80401 (United States); Kim, SeongYeon [Department of Physics, Incheon National University, Incheon 406-772 (Korea, Republic of); Jiang, Chun-Sheng; Ramanathan, Kannan; Al-Jassim, Mowafak M. [National Center for Photovoltaics, National Renewable Energy Laboratory (NREL), Golden, Colorado 80401 (United States)

    2014-02-10

    We report on direct imaging of current collection by performing conductive atomic force microscopy (C-AFM) measurement on a complete Cu(In,Ga)Se{sub 2} solar cell. The localized current was imaged by milling away the top conductive layer of the device by repeated C-AFM scans. The result exhibits enhanced photocurrent collection on grain boundaries (GBs) of CIGS films, consistent with the argument for electric-field-assisted carrier collection on the GBs.

  6. Advancing Solar Irradiance Measurement for Climate-Related Studies: Accurate Constraint on Direct Aerosol Radiative Effect (DARE)

    Science.gov (United States)

    Tsay, Si-Chee; Ji, Q. Jack

    2011-01-01

    Earth's climate is driven primarily by solar radiation. As summarized in various IPCC reports, the global average of radiative forcing for different agents and mechanisms, such as aerosols or CO2 doubling, is in the range of a few W/sq m. However, when solar irradiance is measured by broadband radiometers, such as the fleet of Eppley Precision Solar Pyranometers (PSP) and equivalent instrumentation employed worldwide, the measurement uncertainty is larger than 2% (e.g., WMO specification of pyranometer, 2008). Thus, out of the approx. 184 W/sq m (approx.263 W/sq m if cloud-free) surface solar insolation (Trenberth et al. 2009), the measurement uncertainty is greater than +/-3.6 W/sq m, overwhelming the climate change signals. To discern these signals, less than a 1 % measurement uncertainty is required and is currently achievable only by means of a newly developed methodology employing a modified PSP-like pyranometer and an updated calibration equation to account for its thermal effects (li and Tsay, 2010). In this talk, we will show that some auxiliary measurements, such as those from a collocated pyrgeometer or air temperature sensors, can help correct historical datasets. Additionally, we will also demonstrate that a pyrheliometer is not free of the thermal effect; therefore, comparing to a high cost yet still not thermal-effect-free "direct + diffuse" approach in measuring surface solar irradiance, our new method is more economical, and more likely to be suitable for correcting a wide variety of historical datasets. Modeling simulations will be presented that a corrected solar irradiance measurement has a significant impact on aerosol forcing, and thus plays an important role in climate studies.

  7. Experimental study on direct-contact liquid film cooling simulated dense-array solar cells in high concentrating photovoltaic system

    International Nuclear Information System (INIS)

    Wang, Yiping; Shi, Xusheng; Huang, Qunwu; Cui, Yong; Kang, Xue

    2017-01-01

    Highlights: • Direct-contact liquid film cooling dense-array solar cells was first proposed. • Average temperature was controlled well below 80 °C. • The maximum temperature difference was less than 10 °C. • The heat transfer coefficient reached up to 11.91 kW/(m"2·K) under 589X. - Abstract: This paper presented a new method of cooling dense-array solar cells in high concentrating photovoltaic system by direct-contact liquid film, and water was used as working fluid. An electric heating plate was designed to simulate the dense-array solar cells in high concentrating photovoltaic system. The input power of electric heating plate simulated the concentration ratios. By heat transfer experiments, the effect of water temperatures and flow rates on heat transfer performance was investigated. The results indicated that: the average temperature of simulated solar cells was controlled well below 80 °C under water temperature of 30 °C and flow rate of 300 L/h when concentration ratio ranged between 300X and 600X. The maximum temperature difference among temperature measurement points was less than 10 °C, which showed the temperature distribution was well uniform. The heat transfer coefficient reached up to 11.91 kW/(m"2·K) under concentration ratio of 589X. To improve heat transfer performance and obtain low average temperature of dense-array solar cells, lower water temperature and suitable water flow rate are preferred.

  8. Study on direct-contact phase-change liquid immersion cooling dense-array solar cells under high concentration ratios

    International Nuclear Information System (INIS)

    Kang, Xue; Wang, Yiping; Huang, Qunwu; Cui, Yong; Shi, Xusheng; Sun, Yong

    2016-01-01

    Highlights: • Direct-contact phase-change liquid immersion cooling for solar cells was proposed. • A self-regulating system investigated the feasibility in temperature control. • Temperature was well controlled between 87.3 °C and 88.5 °C. • Surface heat transfer coefficient was up to 23.49 kW/(m"2·K) under 398.4×. • A model illustrated the interface function was the main reason to affect light. - Abstract: A new cooling method by directly immersing the solar cells into phase-change liquid was put forward to cool dense-array solar cells in high concentrating photovoltaic system. A self-running system was built to study the feasibility of temperature control and the effect of bubbles generated by ethanol phase change under concentration ratio ranged between 219.8× and 398.4×. The results show that the cooling system is self-regulating without consuming extra energy and ethanol flow rate reaches up to 180.6 kg/(s·m"2) under 398.4×. The temperature of solar cells distributes in the range between 87.3 °C and 88.5 °C, the surface heat transfer coefficient of electric heating plate is up to 23.49 kW/(m"2·K) under 398.4×. The bubble effect on electrical performance of triple-junction solar cells is reported and the results show that I_s_c and P_m_a_x decline 10.2% and 7.3%, respectively. A model based on bubble images illustrates that light loss at the interface between ethanol and bubble is the main reason to cut down the electrical performance.

  9. Use of a solar panel as a directionally sensitive large-area radiation monitor for direct and scattered x-rays and gamma-rays.

    Science.gov (United States)

    Abdul-Majid, S

    1987-01-01

    The characteristics of a 25.4 X 91 cm solar cell panel used as an x-ray and gamma-ray radiation monitor are presented. Applications for monitoring the primary x-ray beam are described at different values of operating currents and voltages as well as for directional dependence of scattered radiation. Other applications in gamma-ray radiography are also given. The detector showed linear response to both x-ray and gamma-ray exposures. The equipment is rigid, easy to use, relatively inexpensive and requires no power supply or any complex electronic equipment.

  10. Experimental validation of a theoretical model for a direct-expansion solar-assisted heat pump applied to heating

    International Nuclear Information System (INIS)

    Moreno-Rodriguez, A.; Garcia-Hernando, N.; González-Gil, A.; Izquierdo, M.

    2013-01-01

    This paper discusses the experimental validation of a theoretical model that determines the operating parameters of a DXSAHP (direct-expansion solar-assisted heat pump) applied to heating. For this application, the model took into account the variable condensing temperature, and it was developed from the following environmental variables: outdoor temperature, solar radiation and wind. The experimental data were obtained from a prototype installed at the University Carlos III, which is located south of Madrid. The prototype uses a solar collector with a total area of 5.6 m 2 , a compressor with a rated capacity of 1100 W, a thermostatic expansion valve and fan-coil units as indoor terminals. The monitoring results were analyzed for several typical days in the climatic zone where the machine was located to understand the equipment's seasonal behavior. The experimental coefficient of the performance varies between 1.9 and 2.7, and the equipment behavior in extreme outdoor conditions has also been known to determine the thermal demand that can be compensated for. - Highlights: • The study aims to present an experimental validation of a theoretical model. • The experimental COP can vary between 1.9 and 2.7 (max. condensation temperature 59 °C). • A “dragging term” relates condensation and evaporation temperature. • The operating parameters respond to the solar radiation. The COP may increase up to 25%

  11. Comparison of Solar Fine Structure Observed Simultaneously in Lyα and Mg II h

    Science.gov (United States)

    Schmit, D.; Sukhorukov, A. V.; De Pontieu, B.; Leenaarts, J.; Bethge, C.; Winebarger, A.; Auchère, F.; Bando, T.; Ishikawa, R.; Kano, R.; Kobayashi, K.; Narukage, N.; Trujillo Bueno, J.

    2017-10-01

    The Chromospheric Lyman Alpha Spectropolarimeter (CLASP) observed the Sun in H I Lyα during a suborbital rocket flight on 2015 September 3. The Interface Region Imaging Telescope (IRIS) coordinated with the CLASP observations and recorded nearly simultaneous and co-spatial observations in the Mg II h and k lines. The Mg II h and Lyα lines are important transitions, energetically and diagnostically, in the chromosphere. The canonical solar atmosphere model predicts that these lines form in close proximity to each other and so we expect that the line profiles will exhibit similar variability. In this analysis, we present these coordinated observations and discuss how the two profiles compare over a region of quiet Sun at viewing angles that approach the limb. In addition to the observations, we synthesize both line profiles using a 3D radiation-MHD simulation. In the observations, we find that the peak width and the peak intensities are well correlated between the lines. For the simulation, we do not find the same relationship. We have attempted to mitigate the instrumental differences between IRIS and CLASP and to reproduce the instrumental factors in the synthetic profiles. The model indicates that formation heights of the lines differ in a somewhat regular fashion related to magnetic geometry. This variation explains to some degree the lack of correlation, observed and synthesized, between Mg II and Lyα. Our analysis will aid in the definition of future observatories that aim to link dynamics in the chromosphere and transition region.

  12. Comparison of Solar Fine Structure Observed Simultaneously in Ly α and Mg ii h

    Energy Technology Data Exchange (ETDEWEB)

    Schmit, D. [Bay Area Environmental Research Institute, 625 2nd Street, Suite 209, Petaluma, CA 94952 (United States); Sukhorukov, A. V.; Leenaarts, J. [Institute for Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern NO-0315 Oslo (Norway); De Pontieu, B. [Lockheed Martin Solar and Astrophysics Laboratory, Building 252, 3176 Porter Drive, Palo Alto, CA 94304 (United States); Bethge, C.; Winebarger, A.; Kobayashi, K. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Auchère, F. [Institut d’Astrophysique Spatiale, CNRS/Univ. Paris-Sud 11, Bâtiment 121, F-91405 Orsay (France); Bando, T.; Kano, R.; Narukage, N. [National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Ishikawa, R. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Bueno, J. Trujillo [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2017-10-01

    The Chromospheric Lyman Alpha Spectropolarimeter (CLASP) observed the Sun in H i Ly α during a suborbital rocket flight on 2015 September 3. The Interface Region Imaging Telescope ( IRIS ) coordinated with the CLASP observations and recorded nearly simultaneous and co-spatial observations in the Mg ii h and k lines. The Mg ii h and Ly α lines are important transitions, energetically and diagnostically, in the chromosphere. The canonical solar atmosphere model predicts that these lines form in close proximity to each other and so we expect that the line profiles will exhibit similar variability. In this analysis, we present these coordinated observations and discuss how the two profiles compare over a region of quiet Sun at viewing angles that approach the limb. In addition to the observations, we synthesize both line profiles using a 3D radiation-MHD simulation. In the observations, we find that the peak width and the peak intensities are well correlated between the lines. For the simulation, we do not find the same relationship. We have attempted to mitigate the instrumental differences between IRIS and CLASP and to reproduce the instrumental factors in the synthetic profiles. The model indicates that formation heights of the lines differ in a somewhat regular fashion related to magnetic geometry. This variation explains to some degree the lack of correlation, observed and synthesized, between Mg ii and Ly α . Our analysis will aid in the definition of future observatories that aim to link dynamics in the chromosphere and transition region.

  13. Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia

    International Nuclear Information System (INIS)

    El-Sebaii, A.A.; Al-Hazmi, F.S.; Al-Ghamdi, A.A.; Yaghmour, S.J.

    2010-01-01

    The measured data of global and diffuse solar radiation on a horizontal surface, the number of bright sunshine hours, mean daily ambient temperature, maximum and minimum ambient temperatures, relative humidity and amount of cloud cover for Jeddah (lat. 21 o 42'37''N, long. 39 o 11'12''E), Saudi Arabia, during the period (1996-2007) are analyzed. The monthly averages of daily values for these meteorological variables have been calculated. The data are then divided into two sets. The sub-data set I (1996-2004) are employed to develop empirical correlations between the monthly average of daily global solar radiation fraction (H/H 0 ) and the various weather parameters. The sub-data set II (2005-2007) are then used to evaluate the derived correlations. Furthermore, the total solar radiation on horizontal surfaces is separated into the beam and diffuses components. Empirical correlations for estimating the diffuse solar radiation incident on horizontal surfaces have been proposed. The total solar radiation incident on a tilted surface facing south H t with different tilt angles is then calculated using both Liu and Jordan isotropic model and Klucher's anisotropic model. It is inferred that the isotropic model is able to estimate H t more accurate than the anisotropic one. At the optimum tilt angle, the maximum value of H t is obtained as ∼36 (MJ/m 2 day) during January. Comparisons with 22 years average data of NASA SSE Model showed that the proposed correlations are able to predict the total annual energy on horizontal and tilted surfaces in Jeddah with a reasonable accuracy. It is also found that at Jeddah, the solar energy devices have to be tilted to face south with a tilt angle equals the latitude of the place in order to achieve the best performance all year round.

  14. Aerosol direct effect on solar radiation over the eastern Mediterranean Sea based on AVHRR satellite measurements

    Science.gov (United States)

    Georgakaki, Paraskevi; Papadimas, Christos D.; Hatzianastassiou, Nikos; Fotiadi, Aggeliki; Matsoukas, Christos; Stackhouse, Paul; Kanakidou, Maria; Vardavas, Ilias M.

    2017-04-01

    Despite the improved scientific understanding of the direct effect of aerosols on solar radiation (direct radiative effect, DRE) improvements are necessary, for example regarding the accuracy of the magnitude of estimated DREs and their spatial and temporal variability. This variability cannot be ensured by in-situ surface and airborne measurements, while it is also relatively difficult to capture through satellite observations. This becomes even more difficult when complete spatial coverage of extended areas is required, especially concerning areas that host various aerosol types with variable physico-chemical and optical aerosol properties. Better assessments of aerosol DREs are necessary, relying on aerosol optical properties with high spatial and temporal variation. The present study aims to provide a refined, along these lines, assessment of aerosol DREs over the eastern Mediterranean (EM) Sea, which is a key area for aerosol studies. Daily DREs are computed for 1˚ x1˚ latitude-longitude grids with the FORTH detailed spectral radiation transfer model (RTM) using input data for various atmospheric and surface parameters, such as clouds, water vapor, ozone and surface albedo, taken from the NASA-Langley Global Earth Observing System (GEOS) database. The model spectral aerosol optical depth (AOD), single scattering albedo and asymmetry parameter are taken from the Global Aerosol Data Set and the NOAA Climate Data Record (CDR) version 2 of Advanced Very High resolution Radiometer (AVHRR) AOD dataset which is available over oceans at 0.63 microns and at 0.1˚ x0.1˚ . The aerosol DREs are computed at the surface, the top-of-atmosphere and within the atmosphere, over the period 1985-1995. Preliminary model results for the period 1990-1993 reveal a significant spatial and temporal variability of DREs over the EM Sea, for example larger values over the Aegean and Black Seas, surrounded by land areas with significant anthropogenic aerosol sources, and over the

  15. Prediction of SEP Peak Proton Intensity Based on CME Speed, Direction and Observations of Associated Solar Phenomena

    Science.gov (United States)

    Richardson, I. G.; Mays, M. L.; Thompson, B. J.; Kwon, R.; Frechette, B. P.

    2017-12-01

    We assess whether a formula obtained by Richardson et al. (Solar Phys., 289, 3059, 2014; DOI 10.1007/s11207-014-0524-8) relating the intensity of 14-24 MeV protons in a solar energetic particle event at 1 AU to the solar event location and the speed of the associated coronal mass ejection (CME), may be used to "predict" the intensity of a solar energetic particle event. Starting with a subset of several hundred CMEs in the CCMC/SWRC DONKI real-time database (http://kauai.ccmc.gsfc.nasa.gov/DONKI/) selected without consideration of whether they were associated with SEP events, we first use the CME speed and direction to predict the proton intensity at Earth or the STEREO spacecraft using this formula. Since most of these CMEs were not in fact associated with SEP events, many "false alarms" result. We then examine whether considering other phenomena which may accompany the CMEs, such as the X-ray flare intensity and the properties of type II and type III radio emissions, may help to reduce the false alarm rate. We also use CME parameters calculated from an ellipsoidal shell fit to multi-spacecraft CME shock observations for a smaller number of events to predict the SEP intensity. We calculate skill scores for each case and assess whether the Richardson et al. (2014) formula, using additional observations to reduce the false alarm rate, has any potential as a SEP prediction tool, assuming that the required observations could be acquired sufficiently rapidly following the onset of the related solar event/CME.

  16. All solution processing of ITO-free organic solar cell modules directly on barrier foil

    DEFF Research Database (Denmark)

    Angmo, Dechan; Hösel, Markus; Krebs, Frederik C

    2012-01-01

    In this study, we demonstrate fully solution processed semi-transparent silver electrodes on flexible substrates having a sheet resistance as low as 5Ω/□ and transmittance of ∼30% at 550nm. We demonstrate the use of this electrode as a substitute for ITO in an inverted organic solar cell (OSC...

  17. Characterization of extra-solar planets with direct-imaging techniques

    NARCIS (Netherlands)

    Tinetti, G.; Cash, W.; Glassman, T.; Keller, C.U.; Oakley, P.; Snik, F.; Stam, D.; Turnbull, M.

    2009-01-01

    In order to characterize the physical properties of an extra-solar planet one needs to detect planetary radiation, either visible (VIS) to near-infrared (NIR) reflected starlight or infrared (IR) thermal radiation. Both the reflected and thermal flux depend on the size of the planet, the distance

  18. Transient heat transfer in a directly-irradiated solar chemical reactor for the thermal dissociation of ZnO

    International Nuclear Information System (INIS)

    Mueller, R.; Lipinski, W.; Steinfeld, A.

    2008-01-01

    A numerical and experimental investigation is carried out in a solar thermochemical reactor for the thermal dissociation of ZnO at 2000 K using concentrated solar energy. The reactor consists of a cavity-receiver lined with ZnO particles and directly exposed to high-flux irradiation. A transient heat transfer model is formulated to link the rate of radiation, convection, and conduction heat transfer to the reaction kinetics. The radiosity and Monte Carlo methods are applied to obtain the distribution of net radiative fluxes at the internal surfaces of the reactor cavity and at the surface of the ZnO bed. Validation is accomplished in terms of the calculated and measured transient temperature profiles and chemical reaction rates

  19. EnviroAtlas - Average Direct Normal Solar resources kWh/m2/Day by 12-Digit HUC for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — The annual average direct normal solar resources by 12-Digit Hydrologic Unit (HUC) was estimated from maps produced by the National Renewable Energy Laboratory for...

  20. Direct conversion of light to radio frequency energy. [using photoklystrons for solar power satellites

    Science.gov (United States)

    Freeman, J. W.; Simons, S.

    1981-01-01

    A description is presented of the test results obtained with the latest models of the phototron. The phototron was conceived as a replacement for the high voltage solar cell-high power klystron combination for the solar power satellite concept. Physically, the phototron is a cylindrical evacuated glass tube with a photocathode, two grids, and a reflector electrode in a planar configuration. The phototron can be operated either in a biased mode where a low voltage is used to accelerate the electron beam produced by the photocathode or in an unbiased mode referred to as self-oscillation. The device is easily modulated by light input or voltage to broadcast in AM or FM. The range of operation of the present test model phototrons is from 2 to 200 MHz.

  1. Multidisciplinary research program directed toward utilization of solar energy through bioconversion of renewable resources. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Finnerty, W. R.

    1976-07-01

    Progress is reported in four research areas of solar bioconversion. The first program deals with the genetic selection of superior trees, physiological basis of vigor, tissue culture, haploid cell lines, and somatic hybridization. The second deals with the physiology of paraquat-induced oleoresin biogenesis. Separate abstracts were prepared for the other two program areas: biochemical basis of paraquat-induced oleoresin production in pines and biochemistry of methanogenesis. (JSR)

  2. Nanocrystalline diamond on Si solar cells for direct photoelectrochemical water splitting

    Czech Academy of Sciences Publication Activity Database

    Ashcheulov, Petr; Kusko, M.; Fendrych, František; Poruba, A.; Taylor, Andrew; Jäger, Aleš; Fekete, Ladislav; Kraus, I.; Kratochvílová, Irena

    2014-01-01

    Roč. 211, č. 10 (2014), s. 2347-2352 ISSN 1862-6300 R&D Projects: GA ČR GA13-31783S; GA MŠk(CZ) LM2011026 EU Projects: European Commission(XE) 238201 - MATCON Institutional support: RVO:68378271 Keywords : boron-doped diamond * solar cell * heterostructure * water splitting Subject RIV: JI - Composite Materials Impact factor: 1.616, year: 2014

  3. Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors

    International Nuclear Information System (INIS)

    Chen, Meijie; He, Yurong; Zhu, Jiaqi; Wen, Dongsheng

    2016-01-01

    Highlights: • An analysis coupled with Radiation transfer, Maxwell and Energy equation is developed. • Plasmonic Au and Ag nanofluids show better photo-thermal conversion properties. • Collector height and particle concentration exist optimum solutions for efficiency. - Abstract: A one-dimensional transient heat transfer analysis was carried out to analyze the effects of the Nanoparticle (NP) volume fraction, collector height, irradiation time, solar flux, and NP material on the collector efficiency. The numerical results were compared with the experimental results obtained by silver nanofluids to validate the model, and good agreement was obtained. The numerical results show that the collector efficiency increases as the collector height and NP volume fraction increase and then reaches a maximum value. An optimum collector height (∼10 mm) and particle concentration (∼0.03%) achieving a collector efficiency of 90% of the maximum efficiency can be obtained under the conditions used in the simulation. However, the collector efficiency decreases as the irradiation time increases owing to the increased heat loss. A high solar flux is desirable to maintain a high efficiency over a wide temperature range, which is beneficial for subsequent energy utilization. The modeling results also show silver and gold nanofluids obtain higher photothermal conversion efficiencies than the titanium dioxide nanofluid because their absorption spectra are similar to the solar radiation spectrum.

  4. Cosmic ray intensity distribution in the vertical direction to solar equator plane

    International Nuclear Information System (INIS)

    Nosaka, Toru; Mori, Satoru; Sagisaka, Shuji.

    1983-01-01

    The data of the annual variation of cosmic ray intensity measured by neutron detectors were used to study the distribution of cosmic ray intensity vertical to the solar equator plane and its long term variation. The data used were obtained at Deep River, Kiel, Kerguelen Island, McMurdo, Ottawa, and Mt. Washington. All data showed annual variation. The patterns and degree of variation obtained in northern and southern hemisphere were similar. The summation dial representation of the annual variation and semi-annual variation of cosmic ray was obtained. The inversion of annual variation in 1958 - 1959 and 1968 - 1969 corresponded to the inversion of polarity of solar pole magnetic field. The semi-annual variation showed a complex behavior. The helio-latitudial distribution of cosmic ray intensity was obtained. The asymmetric distribution in relation to the solar equator was observed in the annual variation. The northward gradient of density in 1955 - 1958 and southward gradient in 1959 - 1968 were seen. (Kato, T.)

  5. Solution for Direct Solar Impingement Problem on Landsat-7 ETM+ Cooler Door During Cooler Outgas in Flight

    Science.gov (United States)

    Choi, Michael K.

    1999-01-01

    There was a thermal anomaly of the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) radiative cooler cold stage during the cooler outgas phase in flight. With the cooler door in the outgas position and the outgas heaters enabled, the cold stage temperature increased to a maximum of 323 K when the spacecraft was in the sunlight, which was warmer than the 316.3 K upper set point of the outgas heater controller on the cold stage. Also, the outgas heater cycled off when the cold stage was warming up to 323 K. A corrective action was taken before the attitude of the spacecraft was changed during the first week in flight. One orbit before the attitude was changed, the outgas heaters were disabled to cool off the cold stage. The cold stage temperature increase was strongly dependent on the spacecraft roll and yaw. It provided evidence that direct solar radiation entered the gap between the cooler door and cooler shroud. There was a concern that the direct solar radiation could cause polymerization of hydrocarbons, which could contaminate the cooler and lead to a thermal short. After outgas with the cooler door in the outgas position for seven days, the cooler door was changed to the fully open position. With the cooler door fully open, the maximum cold stage temperature was 316.3 K when the spacecraft was in the sunlight, and the duty cycle of the outgas heater in the eclipse was the same as that in the sunlight. It provided more evidence that direct solar radiation had entered the gap between the cooler door and cooler shroud. Cooler outgas continued for seven more days, with the cooler door fully open. The corrective actions had prevented overheating of the cold stage and cold focal plane array (CFPA), which could damage these two components. They also minimized the risk of contamination on the cold stage, which could lead to a thermal short.

  6. MoO3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells

    Directory of Open Access Journals (Sweden)

    Guillaume Wantz

    2012-11-01

    Full Text Available Several parameters of the fabrication process of inverted polymer bulk heterojunction solar cells based on titanium oxide as an electron selective layer and molybdenum oxide as a hole selective layer were tested in order to achieve efficient organic photovoltaic solar cells. Thermal annealing treatment is a common process to achieve optimum morphology, but it proved to be damageable for the performance of this kind of inverted solar cells. We demonstrate using Auger analysis combined with argon etching that diffusion of species occurs from the MoO3/Ag top layers into the active layer upon thermal annealing. In order to achieve efficient devices, the morphology of the bulk heterojunction was then manipulated using the solvent annealing technique as an alternative to thermal annealing. The influence of the MoO3 thickness was studied on inverted, as well as direct, structure. It appeared that only 1 nm-thick MoO3 is enough to exhibit highly efficient devices (PCE = 3.8% and that increasing the thickness up to 15 nm does not change the device performance. 

  7. Characterization of Cr-O cermet solar selective coatings deposited by using direct-current magnetron sputtering technology

    International Nuclear Information System (INIS)

    Lee, Kil Dong

    2006-01-01

    Cr-O (Cr-CrO) cermet solar selective coatings with a double cermet layer film structure were prepared by using a special direct-current (dc) magnetron sputtering technology. The typical film structure from the surface to the bottom substrate was an Al 2 O 3 anti-reflection layer on a double Cr-O cermet layer on an Al metal infrared reflection layer. The deposited Cr-O cermet solar selective coating had an absorptance of α = 0.93 - 0.95 and an emittance of ε = 0.09 - 0.10(100 .deg. C). The absorption layers of the Cr-O cermet coatings deposited on glass and silicon substrates were identified as being amorphous by using X-ray diffraction (XRD). Atomic force microscopy (AFM) showed that Cr-O cermet layers were very smooth and that their grain sizes were very small. The result of thermal stability test showed that the Cr-O cermet solar selective coating was stable for use at temperatures of under 400 .deg. C.

  8. Assessment of R290 as a possible alternative to R22 in direct expansion solar assisted heat pumps

    Directory of Open Access Journals (Sweden)

    Paradeshi Lokesh

    2017-01-01

    Full Text Available In this paper, the energy performance of a direct expansion solar assisted heat pump has been experimentally assessed with R290 as an alternative to R22 to meet the requirements of Kigali agreement. The experiments have been performed at Calicut climatic conditions (latitude of 11.15° N, longitude of 75.49° E during the winter climates of 2016. The performance parameters such as, compressor power consumption, condenser heating capacity, energy performance ratio, and solar energy input ratio were evaluated for energy performance comparison. The results showed that, R290 has 6.8% higher energy performance ratio when compared to R22, with 11% reduction in compressor power consumption. Moreover, R290 has negligible global warming impact and zero ozone depletion potential when compared to R22. The effect of wind speed, collector area, ambient temperature, and solar insolation on the system performance found to be with an average value of 0.85%, 12%, 2.5%, and 4.5% for the selected refrigerants, respectively.

  9. Utilization of solar energy for direct contact membrane distillation process: An experimental study for desalination of real seawater

    International Nuclear Information System (INIS)

    Palanisami, Nallasamy; He, Ke; Moon, Il Shik

    2014-01-01

    Membrane distillation (MD), a non-isothermal membrane separation process, is based on the phenomenon that pure water in its vapor state can be extracted from aqueous solutions by passing vapor through a hydrophobic microporous membrane when a temperature difference is established across it. We used three commercially available hydrophobic microporous membranes (C02, C07 and C12; based on the pore size 0.2, 0.7 and 1.2 µm respectively) for desalination via direct contact MD (DCMD). The effects of operating parameters on permeation flux were studied. In addition, the desalination of seawater by solar assisted DCMD process was experimentally investigated. First, using solar power only short-term (one day), successful desalination of real seawater was achieved without temperature control under the following conditions: feed inlet temperature 65.0 .deg. C, permeate inlet temperature 25.0 .deg. C, and a flow rate of 2.5 L/min. The developed system also worked well in the long-term (150 days) for seawater desalination using both solar and electric power. Long-term test flux was reduced from 28.48 to only 26.50 L/m 2 hr, indicating system feasibility

  10. Utilization of solar energy for direct contact membrane distillation process: An experimental study for desalination of real seawater

    Energy Technology Data Exchange (ETDEWEB)

    Palanisami, Nallasamy; He, Ke; Moon, Il Shik [Sunchon National University, Suncheon (Korea, Republic of)

    2014-01-15

    Membrane distillation (MD), a non-isothermal membrane separation process, is based on the phenomenon that pure water in its vapor state can be extracted from aqueous solutions by passing vapor through a hydrophobic microporous membrane when a temperature difference is established across it. We used three commercially available hydrophobic microporous membranes (C02, C07 and C12; based on the pore size 0.2, 0.7 and 1.2 µm respectively) for desalination via direct contact MD (DCMD). The effects of operating parameters on permeation flux were studied. In addition, the desalination of seawater by solar assisted DCMD process was experimentally investigated. First, using solar power only short-term (one day), successful desalination of real seawater was achieved without temperature control under the following conditions: feed inlet temperature 65.0 .deg. C, permeate inlet temperature 25.0 .deg. C, and a flow rate of 2.5 L/min. The developed system also worked well in the long-term (150 days) for seawater desalination using both solar and electric power. Long-term test flux was reduced from 28.48 to only 26.50 L/m{sup 2}hr, indicating system feasibility.

  11. Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish. 2: Modeling and analysis

    Science.gov (United States)

    Skocypec, Russell D.; Hogan, Roy E., Jr.; Muir, James F.

    1991-01-01

    The catalytically enhanced solar absorption receiver (CAESAR) experiment was conducted to determine the thermal, chemical, and mechanical performance of a commercial-scale, dish-mounted, direct catalytic absorption receiver (DCAR) reactor over a range of steady state and transient (cloud) operating conditions. The focus of the experiment is on global performance such as receiver efficiencies and overall methane conversion; it was not intended to provide data for code validation. A numerical model was previously developed to provide guidance in the design of the absorber. The one-dimensional, planar and steady-state model incorporates, the following energy transfer mechanisms: solar and infrared radiation, heterogeneous chemical reaction, conduction in the solid phase, and convection between the fluid and solid phases. A number of upgrades to the model and improved property values are presented here. Model predictions are shown to bound the experimental axial thermocouple data when experimental uncertainties are included. Global predictions are made using a technique in which the incident solar flux distribution is subdivided into flux contour bands. Model predictions for each band are then spatially integrated to provide global predictions such as reactor efficiencies and methane conversions. Global predictions are shown to compare well with experimental data. Reactor predictions for anticipated operating conditions suggest a further decrease in optical density at the front of the absorber inner disk may be beneficial. The need to conduct code-validation experiments is identified as being essential in improving the confidence in the capability to predict large-scale reactor operation.

  12. Direct Observations of Magnetic Flux Rope Formation during a Solar Coronal Mass Ejection

    Science.gov (United States)

    Song, H.; Zhang, J.; Chen, Y.; Cheng, X.

    2014-12-01

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are results of eruptions of magnetic flux ropes (MFRs). However, a heated debate is on whether MFRs pre-exist before the eruptions or they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre existing MFR scenario. There is almost no reported observation about MFR formation during the eruption. In this presentation, we present an intriguing observation of a solar eruptive event with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows a detailed formation process of the MFR during the eruption. The process started with the expansion of a low lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly-formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved-in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (~ 10 MK), presumably a MFR, producing a CME. We suggest that two spatially-separated magnetic reconnections occurred in this event, responsible for producing the flare and the hot blob (CME), respectively.

  13. DIRECT OBSERVATIONS OF MAGNETIC FLUX ROPE FORMATION DURING A SOLAR CORONAL MASS EJECTION

    International Nuclear Information System (INIS)

    Song, H. Q.; Chen, Y.; Zhang, J.; Cheng, X.

    2014-01-01

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are the results of eruptions of magnetic flux ropes (MFRs). However, there is heated debate on whether MFRs exist prior to the eruptions or if they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures, and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre-existing MFR scenario. There is almost no reported observation of MFR formation during the eruption. In this Letter, we present an intriguing observation of a solar eruptive event that occurred on 2013 November 21 with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows the formation process of the MFR during the eruption in detail. The process began with the expansion of a low-lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (∼10 MK), presumably an MFR, producing a CME. We suggest that two spatially separated magnetic reconnections occurred in this event, which were responsible for producing the flare and the hot blob (CME)

  14. DIRECT OBSERVATIONS OF MAGNETIC FLUX ROPE FORMATION DURING A SOLAR CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Song, H. Q.; Chen, Y. [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Zhang, J. [School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, VA 22030 (United States); Cheng, X., E-mail: hqsong@sdu.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing, Jiangsu 210093 (China)

    2014-09-10

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are the results of eruptions of magnetic flux ropes (MFRs). However, there is heated debate on whether MFRs exist prior to the eruptions or if they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures, and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre-existing MFR scenario. There is almost no reported observation of MFR formation during the eruption. In this Letter, we present an intriguing observation of a solar eruptive event that occurred on 2013 November 21 with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows the formation process of the MFR during the eruption in detail. The process began with the expansion of a low-lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (∼10 MK), presumably an MFR, producing a CME. We suggest that two spatially separated magnetic reconnections occurred in this event, which were responsible for producing the flare and the hot blob (CME)

  15. Characterization of extra-solar planets with direct-imaging techniques

    OpenAIRE

    Tinetti, G.; Cash, W.; Glassman, T.; Keller, C.U.; Oakley, P.; Snik, F.; Stam, D.; Turnbull, M.

    2009-01-01

    In order to characterize the physical properties of an extra-solar planet one needs to detect planetary radiation, either visible (VIS) to near-infrared (NIR) reflected starlight or infrared (IR) thermal radiation. Both the reflected and thermal flux depend on the size of the planet, the distance between the planet and the star, the distance between the observer and the planet, and the planet’s phase angle (i.e. the angle between the star and the observer as seen from the planet). Moreover, t...

  16. Rational Design of Molecular Hole-Transporting Materials for Perovskite Solar Cells: Direct versus Inverted Device Configurations.

    Science.gov (United States)

    Grisorio, Roberto; Iacobellis, Rosabianca; Listorti, Andrea; De Marco, Luisa; Cipolla, Maria Pia; Manca, Michele; Rizzo, Aurora; Abate, Antonio; Gigli, Giuseppe; Suranna, Gian Paolo

    2017-07-26

    Due to a still limited understanding of the reasons making 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD) the state-of-the-art hole-transporting material (HTM) for emerging photovoltaic applications, the molecular tailoring of organic components for perovskite solar cells (PSCs) lacks in solid design criteria. Charge delocalization in radical cationic states can undoubtedly be considered as one of the essential prerequisites for an HTM, but this aspect has been investigated to a relatively minor extent. In marked contrast with the 3-D structure of Spiro-OMeTAD, truxene-based HTMs Trux1 and Trux2 have been employed for the first time in PSCs fabricated with a direct (n-i-p) or inverted (p-i-n) architecture, exhibiting a peculiar behavior with respect to the referential HTM. Notwithstanding the efficient hole extraction from the perovskite layer exhibited by Trux1 and Trux2 in direct configuration devices, their photovoltaic performances were detrimentally affected by their poor hole transport. Conversely, an outstanding improvement of the photovoltaic performances in dopant-free inverted configuration devices compared to Spiro-OMeTAD was recorded, ascribable to the use of thinner HTM layers. The rationalization of the photovoltaic performances exhibited by different configuration devices discussed in this paper can provide new and unexpected prospects for engineering the interface between the active layer of perovskite-based solar cells and the hole transporters.

  17. Adaption of an array spectroradiometer for total ozone column retrieval using direct solar irradiance measurements in the UV spectral range

    Science.gov (United States)

    Zuber, Ralf; Sperfeld, Peter; Riechelmann, Stefan; Nevas, Saulius; Sildoja, Meelis; Seckmeyer, Gunther

    2018-04-01

    A compact array spectroradiometer that enables precise and robust measurements of solar UV spectral direct irradiance is presented. We show that this instrument can retrieve total ozone column (TOC) accurately. The internal stray light, which is often the limiting factor for measurements in the UV spectral range and increases the uncertainty for TOC analysis, is physically reduced so that no other stray-light reduction methods, such as mathematical corrections, are necessary. The instrument has been extensively characterised at the Physikalisch-Technische Bundesanstalt (PTB) in Germany. During an international total ozone measurement intercomparison at the Izaña Atmospheric Observatory in Tenerife, the high-quality applicability of the instrument was verified with measurements of the direct solar irradiance and subsequent TOC evaluations based on the spectral data measured between 12 and 30 September 2016. The results showed deviations of the TOC of less than 1.5 % from most other instruments in most situations and not exceeding 3 % from established TOC measurement systems such as Dobson or Brewer.

  18. Automatic control of plants of direct steam generation with cylinder-parabolic solar collectors; Control automatico de plantas de generacion directa de vapor con colectores solares cilindro-parabolicos

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela Gutierrez, L.

    2008-07-01

    The main objective of this dissertation has been the contributions to the operation in automatic mode of a new generation of direct steam generation solar plants with parabolic-trough collectors. The dissertation starts introducing the parabolic-trough collectors solar thermal technology for the generation of process steam or steam for a Rankine cycle in the case of power generation generation, which is currently the most developed and commercialized technology. Presently, the parabolic-trough collectors technology is based on the configuration known as heat-exchanger system, based in the use of a heat transfer fluid in the solar field which is heated during the recirculation through the absorber tubes of the solar collectors, transferring later on the that thermal energy to a heat-exchanger for steam generation. Direct steam generation in the absorber tubes has always been shown as an ideal pathway to reduce generation cost by 15% and increase conversion efficiency by 20% (DISS, 1999). (Author)

  19. New evidence from the Lyman-alpha forest concerning the formation of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, A M

    1986-12-17

    A new type of survey for galaxies with z > 2 is described. The idea is to search for the spectroscopic imprint that the H1 disc of a foreground galaxy leaves on radiation emitted by a background QSO; namely, a Lyman-..cap alpha.. absorption line broadened by radiation damping. A continuing survey has revealed the presence of 15 damped L..cap alpha.. lines with redshifts between 1.8 and 2.8 in the spectra of 68 QSOs. In comparison, no more than three discs with the properties of nearby galaxies should have been detected. Furthermore, the mean column density of the 15 absorbers, = 1.4 x 10/sup 21/cm/sup -2/, is much larger than expected for the outskirts of H1 discs. The statistical and physical evidence accumulated suggests that the damped L..cap alpha.. systems are a distinct population of absorbers with properties reminiscent of H1 discs. It is concluded that the progenitors of the baryon content of nearby galaxies have been detected. The implications for theories of galaxy formations of the discovery of this damped population of absorbers are explained.

  20. The Lyman alpha reference sample VII. Spatially resolved H alpha kinematics

    Czech Academy of Sciences Publication Activity Database

    Herenz, E.Ch.; Gruyters, P.; Orlitová, Ivana; Hayes, M.; Ostlin, G.; Cannon, J.M.; Roth, M.M.; Bik, A.; Pardy, S.; Oti-Floranes, H.; Mas-Hesse, J. M.; Adamo, A.; Atek, H.; Duval, F.; Guaita, L.; Kunth, D.; Laursen, P.; Melinder, J.; Puschnig, J.; Rivera-Thorsen, T.; Schaerer, D.; Verhamme, A.

    2016-01-01

    Roč. 587, March (2016), A78/1-A78/27 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GP14-20666P Institutional support: RVO:67985815 Keywords : galaxies * ISM * starburst Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  1. The Lyman Alpha Reference Sample. III. Properties of the Neutral ISM from GBT and VLA Observations

    Czech Academy of Sciences Publication Activity Database

    Pardy, S.; Cannon, J.M.; Ostlin, G.; Hayes, M.; Rivera-Thorsen, T.; Sandberg, A.; Adamo, A.; Freeland, E.; Herenz, E.Ch.; Guaita, L.; Kunth, D.; Laursen, P.; Mas-Hesse, J. M.; Melinder, J.; Orlitová, Ivana; Oti-Floranes, H.; Puschnig, J.; Schaerer, D.; Verhamme, A.

    2014-01-01

    Roč. 794, č. 2 (2014), 101/1-101/19 ISSN 0004-637X Institutional support: RVO:67985815 Keywords : galaxies: ISM * kinematics and dynamics * star burst Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.993, year: 2014

  2. The Lyman Alpha Reference Sample. II. Hubble Space Telescope Imaging Results, Integrated Properties, and Trends

    Czech Academy of Sciences Publication Activity Database

    Hayes, M.; Ostlin, G.; Duval, F.; Sandberg, A.; Guaita, L.; Melinder, J.; Adamo, A.; Schaerer, D.; Verhamme, A.; Orlitová, Ivana; Mas-Hesse, J. M.; Cannon, J.M.; Atek, H.; Kunth, D.; Laursen, P.; Oti-Floranes, H.; Pardy, S.; Rivera-Thorsen, T.; Herenz, E.Ch.

    2014-01-01

    Roč. 782, č. 1 (2014), 6/1-6/22 ISSN 0004-637X Institutional support: RVO:67985815 Keywords : cosmology: observations * galaxies: star burst Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.993, year: 2014

  3. Discovery of Ubiquitous Fast-Propagating Intensity Disturbances by the Chromospheric Lyman Alpha Spectropolarimeter (CLASP)

    Czech Academy of Sciences Publication Activity Database

    Kubo, M.; Katsukawa, Y.; Suematsu, Y.; Kano, R.; Bando, T.; Narukage, N.; Ishikawa, R.; Hara, H.; Giono, G.; Tsuneta, S.; Ishikawa, S.; Shimizu, T.; Sakao, T.; Winebarger, A.; Kobayashi, K.; Cirtain, J.; Champey, P.; Auchere, F.; Trujillo Bueno, J.; Ramos, A. A.; Štěpán, Jiří; Belluzzi, L.; Sainz, R.M.; de Pontieu, B.; Ichimoto, K.; Carlsson, M.; Casini, R.; Goto, M.

    2016-01-01

    Roč. 832, č. 2 (2016), 141/1-141/9 ISSN 0004-637X R&D Projects: GA ČR(CZ) GA16-16861S Institutional support: RVO:67985815 Keywords : magnetic reconnection * Sun * chromosphere Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.533, year: 2016

  4. Lyman-alpha spectral properties of five newly discovered Lyman continuum emitters

    Czech Academy of Sciences Publication Activity Database

    Verhamme, A.; Orlitová, Ivana; Schaerer, D.; Izotov, Y.I.; Worseck, G.; Thuan, T.X.; Guseva, N.G.

    2017-01-01

    Roč. 597, January (2017), A13/1-A13/13 E-ISSN 1432-0746 R&D Projects: GA ČR(CZ) GP14-20666P Institutional support: RVO:67985815 Keywords : radiative transfer * dark ages * reionization Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.014, year: 2016

  5. Damped Lyman-alpha absorption by disk galaxies with large redshifts. III. Intermediate-resolution spectroscopy

    International Nuclear Information System (INIS)

    Turnshek, D.A.; Wolfe, A.M.; Lanzetta, K.M.; Briggs, F.H.; Cohen, R.D.

    1989-01-01

    New intermediate-resolution spectroscopy for six members of a sample of 68 moderate- to high-redshift QSOs is presented. Evidence is reported which indicates that seven strong absorption features in the QSO spectra are due to damped Ly-alpha absorption. A standard curve-of-growth analysis on five of the damped systems is performed, and relevant properties are tabulated and discussed. Six of the seven damped Ly-alpha systems have H I column densities of 2 x 10 to the 20th/sq cm or larger, while the remaining system has an H I column density of about 10 to the 20th/sq cm. It is suggested that damped Ly-alpha systems arise when a sight line intercepts a high-redshift protogalaxy disk containing a quiescent cloud component characterized by high column density and low effective velocity dispersion. At the same time, the sight line usually intercepts a broader turbulent component, which is identified as the halo, characterized by much lower column density and higher effective velocity dispersion. 42 refs

  6. Minihalo Model for the Low-Redshift Lyman alpha Absorbers Revisited

    Directory of Open Access Journals (Sweden)

    Lalović, A.

    2008-06-01

    Full Text Available We reconsider the basic properties of the classical minihalo model of Rees and Milgrom in light of the new work, both observational (on "dark galaxies" and masses of baryonic haloes and theoretical (on the cosmological mass function and the history of star formation. In particular, we show that more detailed models of ionized gas in haloes of dark matter following isothermal and Navarro-Frenk-White density profile can effectively reproduce particular aspects of the observed column density distribution function in a heterogeneous sample of low-and intermediate-redshift Ly$alpha$ forest absorption lines.

  7. Clustering of galaxies near damped Lyman-alpha systems with (z) = 2.6

    Science.gov (United States)

    Wolfe, A. M

    1993-01-01

    The galaxy two-point correlation function, xi, at (z) = 2.6 is determined by comparing the number of Ly-alpha-emitting galaxies in narrowband CCD fields selected for the presence of damped L-alpha absorption to their number in randomly selected control fields. Comparisons between the presented determination of (xi), a density-weighted volume average of xi, and model predictions for (xi) at large redshifts show that models in which the clustering pattern is fixed in proper coordinates are highly unlikely, while better agreement is obtained if the clustering pattern is fixed in comoving coordinates. Therefore, clustering of Ly-alpha-emitting galaxies around damped Ly-alpha systems at large redshifts is strong. It is concluded that the faint blue galaxies are drawn from a parent population different from normal galaxies, the presumed offspring of damped Ly-alpha systems.

  8. Measuring the cosmological constant through the Lyman-alpha forest using the Alcock-Paczynski test

    Science.gov (United States)

    Lin, Wen-Ching

    An important topic in cosmology is the determination of the energy densities of the major components of the Universe---OB, O DM and OΛ. Among these, the cosmological constant OΛ, which associates with the vacuum energy of our universe, draws specific attentions for its importance in fundamental particle physics. The Lyalpha forest QSO spectra are observationally available from z ˜ 0 to z ˜ 4. Recently the concept of performing the Alcock-Paczynski test on the Lyalpha forest to determine the cosmological constant has been proposed. This motivates us to develop a methodology incorporating sophisticated cosmological hydrodynamics simulations including these effects to implement the AP test and to perform an accurate measurement on the cosmological constant O Λ. To manipulate the data from paired QSO spectra with different angular separations, we propose an explicit method based on the maximum likelihood estimation. We use this method to implement the AP test and demonstrate the whole procedure based on our numerical simulations. Using mock pair spectra, we estimate that more than 40 pairs are required to derive an accurate value of OΛ due to the impact of cosmic variance. The degeneracy of other cosmological parameters is an important topic for this project. We examine two other parameters, sigma8 and n, the initial power spectrum amplitude and index, whose value are not consistently derived through other means. We conclude that when the uncertainties of these two parameters are around 10%--20%, the resulting bias in O Λ is less than 10%. Using a small sample of currently available QSO pairs, we have derived OΛ = 0.65+0.39-1.16 . Our preliminary result encourges us to take further steps on this project.

  9. Low redshift Lyman alpha absorption lines and the dark matter halos of disk galaxies

    Science.gov (United States)

    Maloney, Philip

    1993-01-01

    Recent observations using the Hubble Space Telescope of the z = 0.156 QSO 3C 273 have discovered a surprisingly large number of Ly-alpha absorption lines. In particular, Morris et al. found 9 certain and 7 possible Ly-alpha lines with equivalent widths above 25 mA. This is much larger (by a factor of 5-10) than the number expected from extrapolation of the high-redshift behavior of the Ly-alpha forest. Within the context of pressure-confined models for the Ly-alpha clouds, this behavior can be understood if the ionizing background declines sharply between z is approximately 2 and z is approximately 0. However, this requires that the ionizing photon flux drop as rapidly as the QSO volume emissivity; moreover, the absorbers must have a space density n(sub O) is approximately 2.6(N/10)h/((D/100 kpc)(sup 2)) Mpc(sup -3) where D is the present-day diameter of the absorbers. It is somewhat surprising that such necessarily fragile objects could have survived in such numbers to the present day. It is shown that it is plausible that the atomic hydrogen extents of spiral and irregular galaxies are large enough to produce the observed number of Ly-alpha absorption lines toward 3C 273, and that the neutral column densities and doppler b-values expected under these conditions fall in the range found by Morris et al. (1991).

  10. Modelling of Lyman-alpha emitting galaxies and ionized bubbles at the epoch of reionization

    Science.gov (United States)

    Yajima, Hidenobu; Sugimura, Kazuyuki; Hasegawa, Kenji

    2018-04-01

    Understanding {Ly{α }} emitting galaxies (LAEs) can be a key to reveal cosmic reionization and galaxy formation in the early Universe. Based on halo merger trees and {Ly{α }} radiation transfer calculations, we model redshift evolution of LAEs and their observational properties at z ≥ 6. We consider ionized bubbles associated with individual LAEs and IGM transmission of {Ly{α }} photons. We find that {Ly{α }} luminosity tightly correlates with halo mass and stellar mass, while the relation with star formation rate has a large dispersion. Comparing our models with the observed luminosity function by Konno et al., we suggest that LAEs at z ˜ 7 have galactic wind of V_out ≳ 100 km s^{-1} and HI column density of N_HI ≳ 10^{20} cm^{-2}. Number density of bright LAEs rapidly decreases as redshift increases, due to both lower star formation rate and smaller HII bubbles. Our model predicts future wide deep surveys with next generation telescopes, such as JWST, E-ELT and TMT, can detect LAEs at z ˜ 10 with a number density of n_LAE ˜ a few × 10^{-6} Mpc^{-3} for the flux sensitivity of 10^{-18} erg cm^{-2} s^{-1}. When giant HII bubbles are formed by clustering LAEs, the number density of observable LAEs can increase by a factor of few. By combining these surveys with future 21-cm observations, it could be possible to detect both LAEs with L_{Lyα }≳ 10^{42} erg s^{-1} and their associated giant HII bubbles with the size ≳ 250 kpc at z ˜ 10.

  11. arXiv Neutrino masses and cosmology with Lyman-alpha forest power spectrum

    CERN Document Server

    Palanque-Delabrouille, Nathalie; Baur, Julien; Magneville, Christophe; Rossi, Graziano; Lesgourgues, Julien; Borde, Arnaud; Burtin, Etienne; LeGoff, Jean-Marc; Rich, James; Viel, Matteo; Weinberg, David

    2015-11-06

    We present constraints on neutrino masses, the primordial fluctuation spectrum from inflation, and other parameters of the $\\Lambda$CDM model, using the one-dimensional Ly$\\alpha$-forest power spectrum measured by Palanque-Delabrouille et al. (2013) from SDSS-III/BOSS, complemented by Planck 2015 cosmic microwave background (CMB) data and other cosmological probes. This paper improves on the previous analysis by Palanque-Delabrouille et al. (2015) by using a more powerful set of calibrating hydrodynamical simulations that reduces uncertainties associated with resolution and box size, by adopting a more flexible set of nuisance parameters for describing the evolution of the intergalactic medium, by including additional freedom to account for systematic uncertainties, and by using Planck 2015 constraints in place of Planck 2013. Fitting Ly$\\alpha$ data alone leads to cosmological parameters in excellent agreement with the values derived independently from CMB data, except for a weak tension on the scalar index ...

  12. Constraints on neutrino masses from Lyman-alpha forest power spectrum with BOSS and XQ-100

    Energy Technology Data Exchange (ETDEWEB)

    Yèche, Christophe; Palanque-Delabrouille, Nathalie; Baur, Julien; Bourboux, Hélion du Mas des, E-mail: christophe.yeche@cea.fr, E-mail: nathalie.palanque-delabrouille@cea.fr, E-mail: julien.baur@cea.fr, E-mail: helion.du-mas-des-bourboux@cea.fr [CEA, Centre de Saclay, IRFU/SPP, F-91191 Gif-sur-Yvette (France)

    2017-06-01

    We present constraints on masses of active and sterile neutrinos in the context of the ΛCDMν and ΛWDM models, respectively. We use the one-dimensional Lyα-forest power spectrum from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey (SDSS-III) measured by Palanque-Delabrouille et al. [1], and from the VLT/XSHOOTER legacy survey (XQ-100). In this paper, we present our own measurement of the publicly released XQ-100 quasar spectra, focusing in particular on an improved determination of the spectrograph resolution that allows us to push to smaller scales than the public release and reach k -modes of 0.070 s km{sup −1}. We compare the obtained 1D Lyα flux power spectrum to the one measured by Irsic et al. [2] to k -modes of 0.057 s km{sup −1}. Fitting Lyα data alone leads to cosmological parameters in excellent agreement with the values derived independently from Planck 2015 Cosmic Microwave Background (CMB) data. Combining BOSS and XQ-100 Lyα power spectra, we constrain the sum of neutrino masses to ∑ m {sub ν} < 0.8 eV (95% C.L.) including all identified sources of systematic uncertainties. With the addition of CMB data, this bound is tightened to ∑ m {sub ν} < 0.14 eV (95% C.L.). With their sensitivity to small scales, Lyα data are ideal to constrain ΛWDM models. Using XQ-100 alone, we issue lower bounds on pure dark matter particles: m {sub X} ∼> 2.08 : keV (95% C.L.) for early decoupled thermal relics, and m {sub s} ∼> 10.2 : keV (95% C.L.) for non-resonantly produced right-handed neutrinos. Combining the 1D Lyα-forest power spectrum measured by BOSS and XQ-100, we improve the two bounds to m {sub X} ∼> 4.17 : keV and m {sub s} ∼> 25.0 : keV (95% C.L.), slightly more constraining than what was achieved in Baur et al. 2015 [3] with BOSS data alone. The 3 σ bound shows a more significant improvement, increasing from m {sub X} ∼> 2.74 : keV for BOSS alone to m {sub X} ∼> 3.10 : keV for the combined BOSS+XQ-100 data set. Finally, we include in our analysis the first two redshift bins ( z = 4.2 and z = 4.6) of the power spectrum measured by Viel et al. 2013 [4] with the high-resolution HIRES/MIKE spectrographs. The addition of HIRES/MIKE power spectrum allows us to further improve the two limits to m {sub X} ∼> 4.65 : keV and m {sub s} ∼> 28.8 : keV (95% C.L.).

  13. Using Lyman-alpha to detect galaxies that leak Lyman continuum

    Czech Academy of Sciences Publication Activity Database

    Verhamme, A.; Orlitová, Ivana; Schaerer, D.; Hayes, M.

    2015-01-01

    Roč. 578, June (2015), A7/1-A7/13 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GP14-20666P Institutional support: RVO:67985815 Keywords : line profiles * radiative transfer * galaxies Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  14. Impact of Lyman alpha pressure on metal-poor dwarf galaxies

    Science.gov (United States)

    Kimm, Taysun; Haehnelt, Martin; Blaizot, Jérémy; Katz, Harley; Michel-Dansac, Léo; Garel, Thibault; Rosdahl, Joakim; Teyssier, Romain

    2018-04-01

    Understanding the origin of strong galactic outflows and the suppression of star formation in dwarf galaxies is a key problem in galaxy formation. Using a set of radiation-hydrodynamic simulations of an isolated dwarf galaxy embedded in a 1010 M⊙ halo, we show that the momentum transferred from resonantly scattered Lyman-α (Lyα) photons is an important source of stellar feedback which can shape the evolution of galaxies. We find that Lyα feedback suppresses star formation by a factor of two in metal-poor galaxies by regulating the dynamics of star-forming clouds before the onset of supernova explosions (SNe). This is possible because each Lyα photon resonantly scatters and imparts ˜10-300 times greater momentum than in the single scattering limit. Consequently, the number of star clusters predicted in the simulations is reduced by a factor of ˜5, compared to the model without the early feedback. More importantly, we find that galactic outflows become weaker in the presence of strong Lyα radiation feedback, as star formation and associated SNe become less bursty. We also examine a model in which radiation field is arbitrarily enhanced by a factor of up to 10, and reach the same conclusion. The typical mass-loading factors in our metal-poor dwarf system are estimated to be ˜5-10 near the mid-plane, while it is reduced to ˜1 at larger radii. Finally, we find that the escape of ionizing radiation and hence the reionization history of the Universe is unlikely to be strongly affected by Lyα feedback.

  15. Daytime relapse of the mean radiant temperature based on the six-directional method under unobstructed solar radiation.

    Science.gov (United States)

    Kántor, Noémi; Lin, Tzu-Ping; Matzarakis, Andreas

    2014-09-01

    This study contributes to the knowledge about the capabilities of the popular "six-directional method" describing the radiation fields outdoors. In Taiwan, measurements were carried out with three orthogonally placed net radiometers to determine the mean radiant temperature (T(mrt)). The short- and long-wave radiation flux densities from the six perpendicular directions were recorded in the daylight hours of 12 days. During unobstructed direct irradiation, a specific daytime relapse was found in the temporal course of the T(mrt) values referring to the reference shapes of a standing man and also of a sphere. This relapse can be related to the short-wave fluxes reaching the body from the lateral directions. Through deeper analysis, an instrumental shortcoming of the six-directional technique was discovered. The pyranometer pairs of the same net radiometer have a 10-15-min long "blind spot" when the sun beams are nearly perpendicular to them. The blind-spot period is supposed to be shorter with steeper solar azimuth curve on the daylight period. This means that the locations with lower geographical latitude, and the summertime measurements, are affected less by this instrumental problem. A methodological shortcoming of the six-directional technique was also demonstrated. Namely, the sum of the short-wave flux densities from the lateral directions is sensitive to the orientation of the radiometers, and therefore by deviating from the original directions, the T(mrt) decrease on clear sunny days will occur in different times and will be different in extent.

  16. Energy performance of water hybrid PV/T collectors applied to combisystems of Direct Solar Floor type

    Energy Technology Data Exchange (ETDEWEB)

    Fraisse, G.; Johannes, K. [Laboratoire Optimisation de la Conception et Ingenierie de l' Environnement, Ecole Superieure d' Ingenieurs de Chambery, Campus Scientifique Savoie Technolac, 73376 Le Bourget du Lac Cedex (France); Menezo, C. [Centre de Thermique de Lyon, Domaine Scientifique de La Doua, Bat. Freyssinet, 20, Avenue A. Einstein, 69621 Villeurbanne Cedex (France)

    2007-11-15

    The integration of photovoltaic (PV) modules in buildings allows one to consider a multifunctional frame and then to reduce the cost by substitution of components. In order to limit the rise of the cell operating temperature, a photovoltaics/thermal (PV/T) collector combines a solar water heating collector and PV cells. The recovered heat energy can be used for heating systems and domestic hot water. A combination with a Direct Solar Floor is studied. Its low operating temperature level is appropriate for the operating conditions of the mono- or poly-crystalline photovoltaic modules which are selected in that study. However, for a system including a glass covered collector and localised in Macon area in France, we show that the annual photovoltaic cell efficiency is 6.8% which represents a decrease of 28% in comparison with a conventional non-integrated PV module of 9.4% annual efficiency. This is obviously due to a temperature increase related to the cover. On the other hand, we show that without a glass cover, the efficiency is 10% which is 6% better than a standard module due to the cooling effect. Moreover, in the case of a glazed PV/T collector with a conventional control system for Direct Solar Floor, the maximum temperature reached at the level of the PV modules is higher than 100{sup o}C. This is due to the oversize of the collectors during the summer when the heating needs are null, i.e. without a heated swimming pool for example. This temperature level does not allow the use of EVA resin (ethylene vinyl acetate) in PV modules due to strong risks of degradation. The current solution consists of using amorphous cells or, if we do not enhance the thermal production, uncovered PV/T collector. Further research led to water hybrid PV/T solar collectors as a one-piece component, both reliable and efficient, and including the thermal absorber, the heat exchanger and the photovoltaic functions. (author)

  17. Direct Current Sputter Epitaxy of Heavily Doped p+ Layer for Monocrystalline Si Solar Cells

    Directory of Open Access Journals (Sweden)

    Wenchang Yeh

    2017-01-01

    Full Text Available Sputter epitaxy of p+ layer for fabrication of Si solar cells (SCs was demonstrated. Hall carrier concentration of p+ layer was 2.6 × 1020 cm−3 owing to cosputtering of B with Si at low temperature, which had enabled heavy and shallow p+ dope layer. p+nn+ SCs were fabricated and influence of p+ and n+ layers was investigated. Internal quantum efficiency (IQE of p+nn+ SCs was 95% at visible light and was larger than 60% at ultraviolet (UV light when the p+ layer was thinner than 30 nm. At near infrared (NIR, extra increment on IQE was achieved by rear n+ back surface field (BSF layer with a thickness thinner than 100 nm.

  18. The Search for Surviving Direct Samples of Early Solar System Water

    Science.gov (United States)

    Zolensky, Michael

    2016-01-01

    We have become increasingly aware of the fundamental importance of water, and aqueous alteration, on primitive solar-system bodies. All classes of astromaterials studied show some degree of interaction with aqueous fluids. Nevertheless, we are still lacking fundamental information such as the location and timing of the aqueous alteration and the detailed nature of the aqueous fluids. Halite crystals in two meteorite regolith breccias were found to contain aqueous fluid inclusions (brines) trapped approx. 4.5 BYBP. Heating/freezing studies of the aqueous fluid inclusions in these halites demonstrated that they were trapped near 25 C. The initial results of our O and H isotopic measurements on these brine inclusions can be explained by a simple model mixing asteroidal and cometary water. We have been analyzing solids and organics trapped alongside the brines in the halites by FTIR, C-XANES, SXRD and Raman, as clues to the origin of the water. The organics show thermal effects that span the entire range witnessed by organics in all chondrite types. Since we identified water-soluble aromatics, including partially halogenated methanol, in some of the halite, we suspected amino acids were also present, but have thus far found that levels of amino acids were undetectable (which is very interesting). We have also been locating aqueous fluid inclusions in other astromaterials, principally carbonates in CI and CM chondrites. Although we have advanced slowly towards detailed analysis of these ancient brines, since they require techniques right at or just beyond current analytical capabilities, their eventual full characterization will completely open the window onto the origin and activity of early solar system water.

  19. An experimental investigation of a novel design air humidifier using direct solar thermal heating

    International Nuclear Information System (INIS)

    Abd-ur-Rehman, Hafiz M.; Al-Sulaiman, Fahad A.

    2016-01-01

    Highlights: • A novel solar driven multi-stage bubble column humidifier is developed and tested. • Single stage, two stage, and three stage configuration were tested. • Average day round absolute humidity is increased by 9% for 2 stage configuration. • Average day round absolute humidity is increased by 23% for 3 stage configuration. • Air absolute humidity increases up to 26% with the integration of Fresnel lens. - Abstract: In this study, a novel solar heated multi-stage bubble column humidifier is designed and tested. The overall objective of this work is to investigate the main operating parameters of the new humidifier. The study addresses the significance of the perforated plate geometric features, optimum balance of air superficial velocity and water column height, and the influence of inlet water temperature and inlet air relative humidity on the performance of the humidifier. The day round performance of the humidifier is investigated in single stage, two stage, and three stage configuration, in which each configuration was tested with and without the integration of the Fresnel lens. Findings show that the average day round absolute humidity, without Fresnel lens, increased up to 9% for the two stage configuration and 23% for the three stage configuration as compared to the single stage configuration of the humidifier. The integration of the Fresnel lens further increased the absolute humidity up to 25% as compared to the results obtained without the integration of the Fresnel lens under the same prevailing conditions, which is significant. Moreover, the current humidifier shows a higher humidification efficiency in the climatic conditions that have a lower inlet air relative humidity. Furthermore, the finding demonstrates that the newly developed multi-stage bubble column humidifier has better performance as compared to the conventional single stage bubble column humidifier. The findings from this study are of pivotal importance to understand

  20. For a fistful of dollars. Increasingly, solar plant operators are marketing their power directly, at the expense of the public; Fuer eine Handvoll Dollar. Immer mehr Anlagenbetreiber verkaufen ihren Solarstrom direct - auf Kosten der Allgemeinheit

    Energy Technology Data Exchange (ETDEWEB)

    Podewils, Christoph

    2012-04-15

    Since 1 January 2012, the German Renewables Act permits direct marketing of solar power. Some new organizations have been founded that provide better profits for plant owners than the former reimbursement rates. Plant owners are opting for direct marketing increasingly often, but it is only possible with power in the range of a few hundred kW.

  1. The roles of direct input of energy from the solar wind and unloading of stored magnetotail energy in driving magnetospheric substorms

    Science.gov (United States)

    Rostoker, G.; Akasofu, S. I.; Baumjohann, W.; Kamide, Y.; Mcpherron, R. L.

    1987-01-01

    The contributions to the substorm expansive phase of direct energy input from the solar wind and from energy stored in the magnetotail which is released in an unpredictable manner are considered. Two physical processes for the dispensation of the energy input from the solar wind are identified: (1) a driven process in which energy supplied from the solar wind is directly dissipated in the ionosphere; and (2) a loading-unloading process in which energy from the solar wind is first stored in the magnetotail and then is suddenly released to be deposited in the ionosphere. The pattern of substorm development in response to changes in the interplanetary medium has been elucidated for a canonical isolated substorm.

  2. A New Database of Global and Direct Solar Radiation Using the Eastern Meteosat Satellite, Models and Validation

    Directory of Open Access Journals (Sweden)

    Ana Gracia Amillo

    2014-08-01

    Full Text Available We present a new database of solar radiation at ground level for Eastern Europe and Africa, the Middle East and Asia, estimated using satellite images from the Meteosat East geostationary satellites. The method presented calculates global horizontal (G and direct normal irradiance (DNI at hourly intervals, using the full Meteosat archive from 1998 to present. Validation of the estimated global horizontal and direct normal irradiance values has been performed by comparison with high-quality ground station measurements. Due to the low number of ground measurements in the viewing area of the Meteosat Eastern satellites, the validation of the calculation method has been extended by a comparison of the estimated values derived from the same class of satellites but positioned at 0°E, where more ground stations are available. Results show a low overall mean bias deviation (MBD of +1.63 Wm−2 or +0.73% for global horizontal irradiance. The mean absolute bias of the individual station MBD is 2.36%, while the root mean square deviation of the individual MBD values is 3.18%. For direct normal irradiance the corresponding values are overall MBD of +0.61 Wm−2 or +0.62%, while the mean absolute bias of the individual station MBD is 5.03% and the root mean square deviation of the individual MBD values is 6.30%. The resulting database of hourly solar radiation values will be made freely available. These data will also be integrated into the PVGIS web application to allow users to estimate the energy output of photovoltaic (PV systems not only in Europe and Africa, but now also in Asia.

  3. Experimental evaluation of a direct air-cooled lithium bromide-water absorption prototype for solar air conditioning

    International Nuclear Information System (INIS)

    Gonzalez-Gil, A.; Izquierdo, M.; Marcos, J.D.; Palacios, E.

    2011-01-01

    A new direct air-cooled single-effect LiBr-H 2 O absorption prototype is described and proposed for use in solar cooling. As distinguishing aspects, it presents: an adiabatic absorber using flat-fan sheets; an air-cooling system that directly refrigerates both the condenser and the absorber and; the possibility of being operated also as a double-effect unit. A solar facility comprising a 48 m 2 field of flat-plate collectors was used to test the single-effect operation mode of the prototype. Results from an experimental campaign carried out in Madrid during summer 2010 are shown and operation parameters corresponding to two typical summer days are detailed. The prototype worked efficiently, with COP values around 0.6. Cooling power varied from 2 kW to 3.8 kW, which represented about 85% of the prototype's nominal capacity. Chilled water temperatures mostly ranged between 14 o C and 16 o C, although the lowest measured value was of 12.8 o C. Condensation and absorption temperatures were under 50 o C and 46 o C, respectively, even with outdoor temperatures of 40 o C. Driving water temperature ranged between 85 o C and 110 o C. As a mean, the system was able to meet 65% of the cooling demand corresponding to a room of 40 m 2 . No signs of crystallization were observed during about a hundred hours of operation. - Highlights: → A novel direct air-cooled single-effect absorption prototype is described. → Feasibility of air-cooled technology for LiBr-H 2 O absorption cooling is proved. → An adiabatic absorber using flat-fan sheets avoids crystallization of the solution. → A field of flat-plate collectors powers the chiller at temperatures from 85 to 110 o C. → The prototype works with thermal COP about 0.6.

  4. Weaving the history of the solar wind with magnetic field lines

    Science.gov (United States)

    Alvarado Gomez, Julian

    2017-08-01

    Despite its fundamental role for the evolution of the solar system, our observational knowledge of the wind properties of the young Sun comes from a single stellar observation. This unexpected fact for a field such as astrophysics arises from the difficulty of detecting Sun-like stellar winds. Their detection relies on the appearance of an astrospheric signature (from the stellar wind-ISM interaction region), visible only with the aid of high-resolution HST Lyman-alpha spectra. However, observations and modelling of the present day Sun have revealed that magnetic fields constitute the main driver of the solar wind, providing guidance on how such winds would look like back in time. In this context we propose observations of four young Sun-like stars in order to detect their astrospheres and characterise their stellar winds. For all these objects we have recovered surface magnetic field maps using the technique of Zeeman Doppler Imaging, and developed detailed wind models based on these observed field distributions. Even a single detection would represent a major step forward for our understanding of the history of the solar wind, and the outflows in more active stars. Mass loss rate estimates from HST will be confronted with predictions from realistic models of the corona/stellar wind. In one of our objects the comparison would allow us to quantify the wind variability induced by the magnetic cycle of a star, other than the Sun, for the first time. Three of our targets are planet hosts, thus the HST spectra would also provide key information on the high-energy environment of these systems, guaranteeing their legacy value for the growing field of exoplanet characterisation.

  5. Operating conditions of an open and direct solar thermal Brayton cycle with optimised cavity receiver and recuperator

    International Nuclear Information System (INIS)

    Le Roux, W.G.; Bello-Ochende, T.; Meyer, J.P.

    2011-01-01

    The small-scale open and direct solar thermal Brayton cycle with recuperator has several advantages, including low cost, low operation and maintenance costs and it is highly recommended. The main disadvantages of this cycle are the pressure losses in the recuperator and receiver, turbomachine efficiencies and recuperator effectiveness, which limit the net power output of such a system. The irreversibilities of the solar thermal Brayton cycle are mainly due to heat transfer across a finite temperature difference and fluid friction. In this paper, thermodynamic optimisation is applied to concentrate on these disadvantages in order to optimise the receiver and recuperator and to maximise the net power output of the system at various steady-state conditions, limited to various constraints. The effects of wind, receiver inclination, rim angle, atmospheric temperature and pressure, recuperator height, solar irradiance and concentration ratio on the optimum geometries and performance were investigated. The dynamic trajectory optimisation method was applied. Operating points of a standard micro-turbine operating at its highest compressor efficiency and a parabolic dish concentrator diameter of 16 m were considered. The optimum geometries, minimum irreversibility rates and maximum receiver surface temperatures of the optimised systems are shown. For an environment with specific conditions and constraints, there exists an optimum receiver and recuperator geometry so that the system produces maximum net power output. -- Highlights: → Optimum geometries exist such that the system produces maximum net power output. → Optimum operating conditions are shown. → Minimum irreversibility rates and minimum entropy generation rates are shown. → Net power output was described in terms of total entropy generation rate. → Effects such as wind, recuperator height and irradiance were investigated.

  6. MODELING OF DIRECT SOLAR RADIATION IN A COMPOUND PARABOLIC COLLECTOR (CPC WITH THE RAY TRACING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    JOSÉ A. COLINA MÁRQUEZ

    2010-01-01

    Full Text Available El colector parabólico compuesto (CPC es una tecnología ampliamente usada en aplicaciones fotoquímicas, como las reacciones fotocatalíticas. Para propósitos cinéticos en esta clase de reacciones, se debe conocer la distribución de la radiación ya que la velocidad de reacción depende la absorción de fotones. En el presente trabajo desarrolló un modelo matemático que permitió simular el fenómeno de reflexión de la radiación solar directa en un CPC. Las ecuaciones se evaluaron usando geometría analítica y cálculo vectorial, primero para calcular las coordenadas cartesianas de la superficie reflectiva. Luego estos puntos se usaron para calcular las trayectorias de los rayos incidentes y reflejados en cualquier instante. La radiación incidente en el receptor se graficó independientemente, mostrando la distribución de la energía directa que llega directamente al absorbedor. La longitud de la involuta también se calculó a partir de estos datos, los cuales pueden resultar muy útiles para su construcción. Los resultados obtenidos a partir de las simulaciones muestran que la distribución de la energía incidente en la superficie del absorbedor depende de la reflectividad de la superficie del CPC. La energía incidente es mayor en la parte superior que en la inferior del absorbedor, y son más convenientes valores altos de reflectividad para distribuciones de energía más uniformes. Este modelo matemático puede ser una primera aproximación para modelos más complejos de absorción de fotones que incluyan radiación solar directa en aplicaciones fotoquímicas o fototérmicas.

  7. Device Strategies Directed to Improving the Efficiency of Solution-Processed Organic Solar Cells

    KAUST Repository

    Liang, Ru-Ze

    2018-04-18

    In the last decade, organic photovoltaics (OPVs) have been attracting much attention for their low cost, and feasibility of mass production in large-area modules. Reported power conversion efficiencies (PCE) of organic solar cells have reached more than 10%. These promising PCEs can be realized by uncovering important principles: (1) rational molecular design, (2) matching of the material energy level, (3) favorable morphology of donor-acceptor (D/A) network, (4) higher carrier mobilities, and (5) suppression of charge recombination within the bulk heterojunction (BHJ). Though these key properties are frequently stated, the relationships between these principles remain unclear, which motivates us to fill these gaps. In the beginning, we show that changing the sequence of donor and acceptor units of the benzodithiophene-core (BDT) SM donors critically impacts molecular packing and charge transport in BHJ solar cells. Moreover, we find out that by adding small amount of the external solvent additive, the domain size of the SMFQ1 become relatively smaller, resulting in the FF enhancement of ~70% and thus pushing PCE to >6.5%. To further improve the device performance, we utilize another technique of device optimization: Solvent Vapor Annealing (SVA). Compared with solvent additive, the SVA creates a solvent-saturated environment for SMs to re-arrange and crystalize, leading to PCE of >8%, with nearly-free bimolecular recombination. When the systems are shifted from fullerene acceptors to nonfullerene acceptors, using solvent additives in indacenodithiophene-core (IDT) systems significantly reduces the domain size from >500nm to <50nm and also allows the SM donors to orderly packed, rising the PCE from <1% to 4.5%. Furthermore in a similar IDT-based system, it shows unexpectedly high VOC and low energy loss, and high PCE > 6% can be reached by employing the dimethyl disulfide (DMDS) as the SVA solvent to re-organize the morphology from excessive mixing to ordered phase

  8. Theoretical model and experimental validation of a direct-expansion solar assisted heat pump for domestic hot water applications

    International Nuclear Information System (INIS)

    Moreno-Rodríguez, A.; González-Gil, A.; Izquierdo, M.; Garcia-Hernando, N.

    2012-01-01

    This paper has shown the development of a theoretical model to determine the operating parameters and consumption of a domestic hot water (DHW) installation, which uses a direct-expansion solar assisted heat pump (DXSAHP) with refrigerant R-134a, a compressor with a rated capacity of 1.1 kW and collectors with a total area of 5.6 m 2 . The model results have been compared and validated the experimental results obtained with the equipment installed at the University Carlos III, South of Madrid. The analysis was conducted over the course of a year, and the results have been represented depending on the meteorological and process variables of several representative days. Taking into account the thermal losses of the installation and the dependency on the operating conditions, the acquired experimental coefficient of performance is between 1.7 and 2.9, while the DHW tank temperature over the course of the study is 51 °C. -- Highlights: ► The study aims to present a new theoretical model and an experimental validation. ► The experimental COP vary between 1.7 and 2.9 (max. condensation temperature 57 °C). ► The operating parameters respond to the solar radiation. The COP may increase up to 50%. ► The useful surface area varies between 50% and 85% of the total surface. ► The system stops if conditions exceed the maximum value of the absorbed heat.

  9. Dynamic solar-powered multi-stage direct contact membrane distillation system: Concept design, modeling and simulation

    KAUST Repository

    Lee, Jung Gil

    2017-04-26

    This paper presents a theoretical analysis of the monthly average daily and hourly performances of a solar-powered multi-stage direct contact membrane distillation (SMDCMD) system with an energy recovery scheme and dynamic operating system. Mid-latitude meteorological data from Busan, Korea is employed, featuring large climate variation over the course of one year. The number of module stages used by the dynamic operating scheme changes dynamically based on the inlet feed temperature of the successive modules, which results in an improvement of the water production and thermal efficiency. The simulations of the SMDCMD system are carried out to investigate the spatial and temporal variations in the feed and permeate temperatures and permeate flux. The monthly average daily water production increases from 0.37m3/day to 0.4m3/day and thermal efficiency increases from 31% to 45% when comparing systems both without and with dynamic operation in December. The water production with respect to collector area ranged from 350m2 to 550m2 and the seawater storage tank volume ranged from 16m3 to 28.8m3, and the solar fraction at various desired feed temperatures from 50°C to 80°C have been investigated in October and December.

  10. Direct evidence of an eruptive, filament-hosting magnetic flux rope leading to a fast solar coronal mass ejection

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin; Gary, D. E. [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Bastian, T. S., E-mail: bin.chen@cfa.harvard.edu [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States)

    2014-10-20

    Magnetic flux ropes (MFRs) are believed to be at the heart of solar coronal mass ejections (CMEs). A well-known example is the prominence cavity in the low corona that sometimes makes up a three-part white-light (WL) CME upon its eruption. Such a system, which is usually observed in quiet-Sun regions, has long been suggested to be the manifestation of an MFR with relatively cool filament material collecting near its bottom. However, observational evidence of eruptive, filament-hosting MFR systems has been elusive for those originating in active regions. By utilizing multi-passband extreme-ultraviolet (EUV) observations from Solar Dynamics Observatory/Atmospheric Imaging Assembly, we present direct evidence of an eruptive MFR in the low corona that exhibits a hot envelope and a cooler core; the latter is likely the upper part of a filament that undergoes a partial eruption, which is later observed in the upper corona as the coiled kernel of a fast, WL CME. This MFR-like structure exists more than 1 hr prior to its eruption, and displays successive stages of dynamical evolution, in which both ideal and non-ideal physical processes may be involved. The timing of the MFR kinematics is found to be well correlated with the energy release of the associated long-duration C1.9 flare. We suggest that the long-duration flare is the result of prolonged energy release associated with the vertical current sheet induced by the erupting MFR.

  11. Direct Evidence of an Eruptive, Filament-hosting Magnetic Flux Rope Leading to a Fast Solar Coronal Mass Ejection

    Science.gov (United States)

    Chen, Bin; Bastian, T. S.; Gary, D. E.

    2014-10-01

    Magnetic flux ropes (MFRs) are believed to be at the heart of solar coronal mass ejections (CMEs). A well-known example is the prominence cavity in the low corona that sometimes makes up a three-part white-light (WL) CME upon its eruption. Such a system, which is usually observed in quiet-Sun regions, has long been suggested to be the manifestation of an MFR with relatively cool filament material collecting near its bottom. However, observational evidence of eruptive, filament-hosting MFR systems has been elusive for those originating in active regions. By utilizing multi-passband extreme-ultraviolet (EUV) observations from Solar Dynamics Observatory/Atmospheric Imaging Assembly, we present direct evidence of an eruptive MFR in the low corona that exhibits a hot envelope and a cooler core; the latter is likely the upper part of a filament that undergoes a partial eruption, which is later observed in the upper corona as the coiled kernel of a fast, WL CME. This MFR-like structure exists more than 1 hr prior to its eruption, and displays successive stages of dynamical evolution, in which both ideal and non-ideal physical processes may be involved. The timing of the MFR kinematics is found to be well correlated with the energy release of the associated long-duration C1.9 flare. We suggest that the long-duration flare is the result of prolonged energy release associated with the vertical current sheet induced by the erupting MFR.

  12. Direct evidence of an eruptive, filament-hosting magnetic flux rope leading to a fast solar coronal mass ejection

    International Nuclear Information System (INIS)

    Chen, Bin; Gary, D. E.; Bastian, T. S.

    2014-01-01

    Magnetic flux ropes (MFRs) are believed to be at the heart of solar coronal mass ejections (CMEs). A well-known example is the prominence cavity in the low corona that sometimes makes up a three-part white-light (WL) CME upon its eruption. Such a system, which is usually observed in quiet-Sun regions, has long been suggested to be the manifestation of an MFR with relatively cool filament material collecting near its bottom. However, observational evidence of eruptive, filament-hosting MFR systems has been elusive for those originating in active regions. By utilizing multi-passband extreme-ultraviolet (EUV) observations from Solar Dynamics Observatory/Atmospheric Imaging Assembly, we present direct evidence of an eruptive MFR in the low corona that exhibits a hot envelope and a cooler core; the latter is likely the upper part of a filament that undergoes a partial eruption, which is later observed in the upper corona as the coiled kernel of a fast, WL CME. This MFR-like structure exists more than 1 hr prior to its eruption, and displays successive stages of dynamical evolution, in which both ideal and non-ideal physical processes may be involved. The timing of the MFR kinematics is found to be well correlated with the energy release of the associated long-duration C1.9 flare. We suggest that the long-duration flare is the result of prolonged energy release associated with the vertical current sheet induced by the erupting MFR.

  13. ADA-07 Suppresses Solar Ultraviolet-Induced Skin Carcinogenesis by Directly Inhibiting TOPK.

    Science.gov (United States)

    Gao, Ge; Zhang, Tianshun; Wang, Qiushi; Reddy, Kanamata; Chen, Hanyong; Yao, Ke; Wang, Keke; Roh, Eunmiri; Zykova, Tatyana; Ma, Weiya; Ryu, Joohyun; Curiel-Lewandrowski, Clara; Alberts, David; Dickinson, Sally E; Bode, Ann M; Xing, Ying; Dong, Zigang

    2017-09-01

    Cumulative exposure to solar ultraviolet (SUV) irradiation is regarded as the major etiologic factor in the development of skin cancer. The activation of the MAPK cascades occurs rapidly and is vital in the regulation of SUV-induced cellular responses. The T-LAK cell-originated protein kinase (TOPK), an upstream activator of MAPKs, is heavily involved in inflammation, DNA damage, and tumor development. However, the chemopreventive and therapeutic effects of specific TOPK inhibitors in SUV-induced skin cancer have not yet been elucidated. In the current study, ADA-07, a novel TOPK inhibitor, was synthesized and characterized. Pull-down assay results, ATP competition, and in vitro kinase assay data revealed that ADA-07 interacted with TOPK at the ATP-binding pocket and inhibited its kinase activity. Western blot analysis showed that ADA-07 suppressed SUV-induced phosphorylation of ERK1/2, p38, and JNKs and subsequently inhibited AP-1 activity. Importantly, topical treatment with ADA-07 dramatically attenuated tumor incidence, multiplicity, and volume in SKH-1 hairless mice exposed to chronic SUV. Our findings suggest that ADA-07 is a promising chemopreventive or potential therapeutic agent against SUV-induced skin carcinogenesis that acts by specifically targeting TOPK. Mol Cancer Ther; 16(9); 1843-54. ©2017 AACR . ©2017 American Association for Cancer Research.

  14. Semi-empirical models for the estimation of clear sky solar global and direct normal irradiances in the tropics

    International Nuclear Information System (INIS)

    Janjai, S.; Sricharoen, K.; Pattarapanitchai, S.

    2011-01-01

    Highlights: → New semi-empirical models for predicting clear sky irradiance were developed. → The proposed models compare favorably with other empirical models. → Performance of proposed models is comparable with that of widely used physical models. → The proposed models have advantage over the physical models in terms of simplicity. -- Abstract: This paper presents semi-empirical models for estimating global and direct normal solar irradiances under clear sky conditions in the tropics. The models are based on a one-year period of clear sky global and direct normal irradiances data collected at three solar radiation monitoring stations in Thailand: Chiang Mai (18.78 o N, 98.98 o E) located in the North of the country, Nakhon Pathom (13.82 o N, 100.04 o E) in the Centre and Songkhla (7.20 o N, 100.60 o E) in the South. The models describe global and direct normal irradiances as functions of the Angstrom turbidity coefficient, the Angstrom wavelength exponent, precipitable water and total column ozone. The data of Angstrom turbidity coefficient, wavelength exponent and precipitable water were obtained from AERONET sunphotometers, and column ozone was retrieved from the OMI/AURA satellite. Model validation was accomplished using data from these three stations for the data periods which were not included in the model formulation. The models were also validated against an independent data set collected at Ubon Ratchathani (15.25 o N, 104.87 o E) in the Northeast. The global and direct normal irradiances calculated from the models and those obtained from measurements are in good agreement, with the root mean square difference (RMSD) of 7.5% for both global and direct normal irradiances. The performance of the models was also compared with that of other models. The performance of the models compared favorably with that of empirical models. Additionally, the accuracy of irradiances predicted from the proposed model are comparable with that obtained from some

  15. Verification of ECMWF and ECMWF/MACC's global and direct irradiance forecasts with respect to solar electricity production forecasts

    Directory of Open Access Journals (Sweden)

    M. Schroedter-Homscheidt

    2017-02-01

    Full Text Available The successful electricity grid integration of solar energy into day-ahead markets requires at least hourly resolved 48 h forecasts. Technologies as photovoltaics and non-concentrating solar thermal technologies make use of global horizontal irradiance (GHI forecasts, while all concentrating technologies both from the photovoltaic and the thermal sector require direct normal irradiances (DNI. The European Centre for Medium-Range Weather Forecasts (ECMWF has recently changed towards providing direct as well as global irradiances. Additionally, the MACC (Monitoring Atmospheric Composition & Climate near-real time services provide daily analysis and forecasts of aerosol properties in preparation of the upcoming European Copernicus programme. The operational ECMWF/IFS (Integrated Forecast System forecast system will in the medium term profit from the Copernicus service aerosol forecasts. Therefore, within the MACC‑II project specific experiment runs were performed allowing for the assessment of the performance gain of these potential future capabilities. Also the potential impact of providing forecasts with hourly output resolution compared to three-hourly resolved forecasts is investigated. The inclusion of the new aerosol climatology in October 2003 improved both the GHI and DNI forecasts remarkably, while the change towards a new radiation scheme in 2007 only had minor and partly even unfavourable impacts on the performance indicators. For GHI, larger RMSE (root mean square error values are found for broken/overcast conditions than for scattered cloud fields. For DNI, the findings are opposite with larger RMSE values for scattered clouds compared to overcast/broken cloud situations. The introduction of direct irradiances as an output parameter in the operational IFS version has not resulted in a general performance improvement with respect to biases and RMSE compared to the widely used Skartveit et al. (1998 global to direct irradiance

  16. Direct battery-driven solar LED lighting using constant-power control

    KAUST Repository

    Huang, Bin-Juine; Chen, Chun-Wei; Hsu, Po-Chien; Tseng, Wei-Min; Wu, Min-Sheng

    2012-01-01

    A direct battery-driven LED lighting technique using constant-power control is proposed in the present study. A system dynamics model of LED luminaire was derived and used in the design of the feedback constant-power control system. The test result

  17. Software simulation and experimental characterisation of a rotationally asymmetrical concentrator under direct and diffuse solar radiation

    International Nuclear Information System (INIS)

    Freier, Daria; Muhammad-Sukki, Firdaus; Abu-Bakar, Siti Hawa; Ramirez-Iniguez, Roberto; Abubakar Mas’ud, Abdullahi; Albarracín, Ricardo; Ardila-Rey, Jorge Alfredo; Munir, Abu Bakar; Mohd Yasin, Siti Hajar; Bani, Nurul Aini

    2016-01-01

    Highlights: • The performance of the RADTIRC was analysed under direct and diffuse radiation. • Optical gains of 4.66 under direct and 1.94 under diffuse light were achieved. • The experiments show good agreement with the simulations. • The RADTIRC is an attractive alternative for BICPV systems. - Abstract: Making housing carbon neutral is one of the European Union (EU) targets with the aim to reduce energy consumption and to increase on-site renewable energy generation in the domestic sector. Optical concentrators have a strong potential to minimise the cost of building integrated photovoltaic (BIPV) systems by replacing expensive photovoltaic (PV) material whilst maintaining the same electrical output. In this work, the performance of a recently patented optical concentrator known as the rotationally asymmetrical dielectric totally internally reflective concentrator (RADTIRC) was analysed under direct and diffuse light conditions. The RADTIRC has a geometrical concentration gain of 4.969 and two half acceptance angles of ±40° and ±30° respectively along the two axes. Simulation and experimental work has been carried out to determine the optical concentration gain and the angular response of the concentrator. It was found that the RADTIRC has an optical concentration gain of 4.66 under direct irradiance and 1.94 under diffuse irradiance. The experimental results for the single concentrator showed a reduction in concentration gain of 4.2% when compared with simulation data.

  18. The Ultraviolet Radiation Environment around M Dwarf Exoplanet Host Stars

    Science.gov (United States)

    France, Kevin; Froning, Cynthia S.; Linsky, Jeffrey L.; Roberge, Aki; Stocke, John T.; Tian, Feng; Bushinsky, Rachel; Desert, Jean-Michel; Mauas, Pablo; Mauas, Pablo; hide

    2013-01-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. Ultraviolet photons influence the atmospheric temperature profiles and production of potential biomarkers on Earth-like planets around these stars. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both far-UV (FUV) and near-UV (NUV) wavelengths. The combined FUV+NUV spectra are publicly available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No "UV-quiet" M dwarfs are observed. The bright stellar Lyman-alpha emission lines are reconstructed, and we find that the Lyman-alpha line fluxes comprise approximately 37%-75% of the total 1150-3100 A flux from most M dwarfs; approximately greater than 10(exp3) times the solar value. We develop an empirical scaling relation between Lyman-alpha and Mg II emission, to be used when interstellar H I attenuation precludes the direct observation of Lyman-alpha. The intrinsic unreddened flux ratio is F(Lyman-alpha)/F(Mg II) = 10(exp3). The F(FUV)/F(NUV) flux ratio, a driver for abiotic production of the suggested biomarkers O2 and O3, is shown to be approximately 0.5-3 for all M dwarfs in our sample, greather than 10(exp3) times the solar ratio. For the four stars with moderate signal-to-noise Cosmic Origins Spectrograph time-resolved spectra, we find UV emission line variability with amplitudes of 50%.500% on 10(exp2)-10(exp3) s timescales. This effect should be taken

  19. Direct measurements of the 160.01-min oscillation in the solar radio brightness

    International Nuclear Information System (INIS)

    Efanov, V.A.; Moiseev, I.G.; Nesterov, N.S.

    1983-01-01

    Direct (nondifferential) brightness measurements of the quiet sun at lambda = 8.2 and 13.5 mm, corrected by the Bouguer law for absorption in the terrestrial atmosphere, confirm the presence of a 160.009 +- 0.002 min periodicity. At the two wavelengths the relative amplitudes are roughly-equal0.6 x 10 -3 , 1 x 10 -3 . Maximum radio brightness occurs at the phase when optical data indicate the photosphere radius is largest

  20. Experimental investigation of a multi-stage humidification-dehumidification desalination system heated directly by a cylindrical Fresnel lens solar concentrator

    International Nuclear Information System (INIS)

    Wu, Gang; Zheng, Hongfei; Ma, Xinglong; Kutlu, Cagri; Su, Yuehong

    2017-01-01

    Highlights: • A solar desalination system heated directly by curved Fresnel lens concentrator. • Desalination system is based on the humidification-dehumidification process. • Four-stage multi-effect desalination system is proposed. • Condensation latent heat and residual heat in the brine are recycled and reutilized. • The maximum yield and GOR of the unit can reach 3.4 kg/h and 2.1, respectively. - Abstract: This study demonstrates a multi-stage humidification-dehumidification (HDH) solar desalination system heated directly by a cylindrical Fresnel lens concentrator. In this novel system, the solar radiation is sent directly into desalination unit. That is to say, the solar receiver and the evaporator of the system are a whole in which the black fillers in seawater directly absorb the concentrated solar lights to heat the seawater film to produce the evaporation. The configuration and working processes of the proposed design are described in detail. In order to analyze its performance, a small solar desalination prototype unit incorporated with a cylindrical Fresnel lens concentrator was designed and built in our laboratory. Using three-stage isothermal tandem heating mode, the variation of the fresh water yield rate and the absorber temperature with time were measured experimentally and were compared with theoretical calculations. The experimental results show that the maximum yield of the unit is about 3.4 kg/h, the maximum gained output ratio (GOR) is about 2.1, when the average intensity of solar radiation is about 867 W/m"2. This study indicates that the proposed system has the characteristics of compact structure and GOR high. It still can be improved when the design and operation are optimized further.

  1. The heliothermic lake: a direct method of collecting and storing solar energy

    Science.gov (United States)

    Kirkland, Douglas W.; Bradbury, J. Platt; Dean, Walter E.

    1980-01-01

    Heliothermic lakes contain a sun-heated layer of warm, saline water beneath a surface layer of cooler, less saline water. The two layers are separated by a chemocline, a stratum in which salinity increases progressively with depth. The chemocline, the position of which varies from lake to lake, functions as a heat trap. Most sunlight that penetrates this stratum is transformed into heat, which cannot escape by radiation because water is opaque to infrared light, and which cannot escape by convection because the specific gravity of the dense water below the chemocline is not significantly decreased by the increasing temperature. Heat can escape only by conduction through the chemocline, and water or brine is a very poor conductor. As a result, the temperature within and commonly below the chemocline rises. Under ideal conditions of a clear solution, high isolation, and a suitable salinity distribution, the temperature of the chemocline will increase to the boiling point. The lower part of the chemocline in a shallow (0.8-m) manmade heliothermic lake at Sedom, Israel, for example, reached a temperature of 96°C (205°F) in spite of a brine with poor light transmissibility.About 30 natural heliothermic lakes have been reported. The best known, Lake Ursului, occurs in Transylvania, Romania (latitude, 46°35'N). During four consecutive summers, 1899 to 1902, this lake had temperatures of 60-70°C (140-158°F) at a depth of 1-2 m. Heliothermic conditions have persisted in this lake for at least 28 and probably for more than 77 years. The most unusual, Lake Vanda, Victoria Land, Antarctica (latitude, 77°35'S), has a temperature of 26°C near the base of the chemocline at a depth of 61 despite a mean atmospheric temperature of -20°C. Sunlight penetrates into the chemocline through 5 m of remarkably clear ice.Maintenance of the chemocline is the chief problem preventing commercial use of manmade heliothermic lakes for the collection and storage of solar energy. The most

  2. Detection of solar radio brightness oscillations with 160.01-min period from direct measurements

    International Nuclear Information System (INIS)

    Efanov, V.A.; Moiseev, I.G.; Nesterov, N.S.

    1983-01-01

    It is shown that direct measurements of the quiet Sun brightness at 8.2 and 13.5 mm wavelengths corrected for extinction in the Earth atmosphere by means of the Bouguer law reveal the 160.01-min periodic component. The relative amplitudes of variations are of approximately 6x10 -4 at the shorter wavelength and of 10 -3 at the longer one. The brightness maximum coincides with the phase of the maximal radius of the photosphere as derived from the optical data

  3. Direct imaging of extra-solar planetary systems with the Circumstellar Imaging Telescope (CIT)

    International Nuclear Information System (INIS)

    Terrile, R.J.

    1988-01-01

    In a joint study conducted by the Jet Propulsion Laboratory and the Perkin-Elmer Corporation it was found that an earth orbital, 1.5 meter diameter low scattered light coronagraphic telescope can achieve a broad range of scientific objectives including the direct detection of Jupiter-sized planets around the nearby stars. Recent major advances in the understanding of coronagraphic performance and in the field of super smooth mirror fabrication allow such an instrument to be designed and built within current technology. Such a project, called the Circumstellar Imaging Telescope (CIT), is currently being proposed. 10 references

  4. Off-axis holographic lens spectrum-splitting photovoltaic system for direct and diffuse solar energy conversion.

    Science.gov (United States)

    Vorndran, Shelby D; Chrysler, Benjamin; Wheelwright, Brian; Angel, Roger; Holman, Zachary; Kostuk, Raymond

    2016-09-20

    This paper describes a high-efficiency, spectrum-splitting photovoltaic module that uses an off-axis volume holographic lens to focus and disperse incident solar illumination to a rectangular shaped high-bandgap indium gallium phosphide cell surrounded by strips of silicon cells. The holographic lens design allows efficient collection of both direct and diffuse illumination to maximize energy yield. We modeled the volume diffraction characteristics using rigorous coupled-wave analysis, and simulated system performance using nonsequential ray tracing and PV cell data from the literature. Under AM 1.5 illumination conditions the simulated module obtained a 30.6% conversion efficiency. This efficiency is a 19.7% relative improvement compared to the more efficient cell in the system (silicon). The module was also simulated under a typical meteorological year of direct and diffuse irradiance in Tucson, Arizona, and Seattle, Washington. Compared to a flat panel silicon module, the holographic spectrum splitting module obtained a relative improvement in energy yield of 17.1% in Tucson and 14.0% in Seattle. An experimental proof-of-concept volume holographic lens was also fabricated in dichromated gelatin to verify the main characteristics of the system. The lens obtained an average first-order diffraction efficiency of 85.4% across the aperture at 532 nm.

  5. Reduced-Order Dynamic Modeling, Fouling Detection, and Optimal Control of Solar-Powered Direct Contact Membrane Distillation

    KAUST Repository

    Karam, Ayman M.

    2016-12-01

    Membrane Distillation (MD) is an emerging sustainable desalination technique. While MD has many advantages and can be powered by solar thermal energy, its main drawback is the low water production rate. However, the MD process has not been fully optimized in terms of its manipulated and controlled variables. This is largely due to the lack of adequate dynamic models to study and simulate the process. In addition, MD is prone to membrane fouling, which is a fault that degrades the performance of the MD process. This work has three contributions to address these challenges. First, we derive a mathematical model of Direct Contact Membrane Distillation (DCMD), which is the building block for the next parts. Then, the proposed model is extended to account for membrane fouling and an observer-based fouling detection method is developed. Finally, various control strategies are implemented to optimize the performance of the DCMD solar-powered process. In part one, a reduced-order dynamic model of DCMD is developed based on lumped capacitance method and electrical analogy to thermal systems. The result is an electrical equivalent thermal network to the DCMD process, which is modeled by a system of nonlinear differential algebraic equations (DAEs). This model predicts the water-vapor flux and the temperature distribution along the module length. Experimental data is collected to validate the steady-state and dynamic responses of the proposed model, with great agreement demonstrated in both. The second part proposes an extension of the model to account for membrane fouling. An adaptive observer for DAE systems is developed and convergence proof is presented. A method for membrane fouling detection is then proposed based on adaptive observers. Simulation results demonstrate the performance of the membrane fouling detection method. Finally, an optimization problem is formulated to maximize the process efficiency of a solar-powered DCMD. The adapted method is known as Extremum

  6. INITIATION AND ERUPTION PROCESS OF MAGNETIC FLUX ROPE FROM SOLAR ACTIVE REGION NOAA 11719 TO EARTH-DIRECTED CME

    Energy Technology Data Exchange (ETDEWEB)

    Vemareddy, P. [Udaipur Solar Observatory, Physical Research Laboratory, Badi Road, Dewali, Udaipur 313 001 (India); Zhang, J., E-mail: vema@prl.res.in [School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, VA 22030 (United States)

    2014-12-20

    An eruption event launched from the solar active region (AR) NOAA 11719 is investigated based on coronal EUV observations and photospheric magnetic field measurements obtained from the Solar Dynamic Observatory. The AR consists of a filament channel originating from a major sunspot and its south section is associated with an inverse-S sigmoidal system as observed in Atmospheric Imaging Assembly passbands. We regard the sigmoid as the main body of the flux rope (FR). There also exists a twisted flux bundle crossing over this FR. This overlying flux bundle transforms in shape similar to kink-rise evolution, which corresponds with the rise motion of the FR. The emission measure and temperature along the FR exhibits an increasing trend with its rising motion, indicating reconnection in the thinning current sheet underneath the FR. Net magnetic flux of the AR, evaluated at north and south polarities, showed decreasing behavior whereas the net current in these fluxes exhibits an increasing trend. Because the negative (positive) flux has a dominant positive (negative) current, the chirality of AR flux system is likely negative (left handed) in order to be consistent with the chirality of inverse S-sigmoidal FR. This analysis of magnetic fields of the source AR suggests that the cancelling fluxes are prime factors of the monotonous twisting of the FR system, reaching to a critical state to trigger kink instability and rise motion. This rise motion may have led to the onset of the torus instability, resulting in an Earth-directed coronal mass ejection, and the progressive reconnection in the thinning current sheet beneath the rising FR led to the M6.5 flare.

  7. INITIATION AND ERUPTION PROCESS OF MAGNETIC FLUX ROPE FROM SOLAR ACTIVE REGION NOAA 11719 TO EARTH-DIRECTED CME

    International Nuclear Information System (INIS)

    Vemareddy, P.; Zhang, J.

    2014-01-01

    An eruption event launched from the solar active region (AR) NOAA 11719 is investigated based on coronal EUV observations and photospheric magnetic field measurements obtained from the Solar Dynamic Observatory. The AR consists of a filament channel originating from a major sunspot and its south section is associated with an inverse-S sigmoidal system as observed in Atmospheric Imaging Assembly passbands. We regard the sigmoid as the main body of the flux rope (FR). There also exists a twisted flux bundle crossing over this FR. This overlying flux bundle transforms in shape similar to kink-rise evolution, which corresponds with the rise motion of the FR. The emission measure and temperature along the FR exhibits an increasing trend with its rising motion, indicating reconnection in the thinning current sheet underneath the FR. Net magnetic flux of the AR, evaluated at north and south polarities, showed decreasing behavior whereas the net current in these fluxes exhibits an increasing trend. Because the negative (positive) flux has a dominant positive (negative) current, the chirality of AR flux system is likely negative (left handed) in order to be consistent with the chirality of inverse S-sigmoidal FR. This analysis of magnetic fields of the source AR suggests that the cancelling fluxes are prime factors of the monotonous twisting of the FR system, reaching to a critical state to trigger kink instability and rise motion. This rise motion may have led to the onset of the torus instability, resulting in an Earth-directed coronal mass ejection, and the progressive reconnection in the thinning current sheet beneath the rising FR led to the M6.5 flare

  8. DIRECT OBSERVATIONS OF TETHER-CUTTING RECONNECTION DURING A MAJOR SOLAR EVENT FROM 2014 FEBRUARY 24 TO 25

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huadong; Zhang, Jun; Yang, Shuhong; Li, Ting [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Cheng, Xin [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Ma, Suli, E-mail: hdchen@nao.cas.cn [College of Science, China University of Petroleum, Qingdao 266580 (China)

    2014-12-20

    Using multi-wavelength data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we investigated two successive solar flares, a C5.1 confined flare and an X4.9 ejective flare with a halo coronal mass ejection, in NOAA active region 11990 from 2014 February 24 to 25. Before the confined flare onset, EUV brightening beneath the filament was detected. As the flare began, a twisted helical flux rope (FR) wrapping around the filament moved upward and then stopped, and in the meantime an obvious X-ray source below it was observed. Prior to the ejective X4.9 flare, some pre-existing loop structures in the active region interacted with each other, which produced a brightening region beneath the filament. Meanwhile, a small flaring loop appeared below the interaction region and some new helical lines connecting the far ends of the loop structures were gradually formed and continually added into the former twisted FR. Then, due to the resulting imbalance between the magnetic pressure and tension, the new FR, together with the filament, erupted outward. Our observations coincide well with a tether-cutting model, suggesting that the two flares probably have the same triggering mechanism, i.e., tether-cutting reconnection. To our knowledge, this is the first direct observation of tether-cutting reconnection occurring between pre-existing loops in an active region. In the ejective flare case, the erupting filament exhibited an Ω-like kinked structure and underwent an exponential rise after a slow-rise phase, indicating that the kink instability might be also responsible for the eruption initiation.

  9. Two-phase flow pattern measurements with a wire mesh sensor in a direct steam generating solar thermal collector

    Science.gov (United States)

    Berger, Michael; Mokhtar, Marwan; Zahler, Christian; Willert, Daniel; Neuhäuser, Anton; Schleicher, Eckhard

    2017-06-01

    At Industrial Solar's test facility in Freiburg (Germany), two phase flow patterns have been measured by using a wire mesh sensor from Helmholtz Zentrum Dresden-Rossendorf (HZDR). Main purpose of the measurements was to compare observed two-phase flow patterns with expected flow patterns from models. The two-phase flow pattern is important for the design of direct steam generating solar collectors. Vibrations should be avoided in the peripheral piping, and local dry-outs or large circumferential temperature gradients should be prevented in the absorber tubes. Therefore, the choice of design for operation conditions like mass flow and steam quality are an important step in the engineering process of such a project. Results of a measurement with the wire mesh sensor are the flow pattern and the plug or slug frequency at the given operating conditions. Under the assumption of the collector power, which can be assumed from previous measurements at the same collector and adaption with sun position and incidence angle modifier, also the slip can be evaluated for a wire mesh sensor measurement. Measurements have been performed at different mass flows and pressure levels. Transient behavior has been tested for flashing, change of mass flow, and sudden changes of irradiation (cloud simulation). This paper describes the measurements and the method of evaluation. Results are shown as extruded profiles in top view and in side view. Measurement and model are compared. The tests have been performed at low steam quality, because of the limits of the test facility. Conclusions and implications for possible future measurements at larger collectors are also presented in this paper.

  10. Using deep recurrent neural network for direct beam solar irradiance cloud screening

    Science.gov (United States)

    Chen, Maosi; Davis, John M.; Liu, Chaoshun; Sun, Zhibin; Zempila, Melina Maria; Gao, Wei

    2017-09-01

    Cloud screening is an essential procedure for in-situ calibration and atmospheric properties retrieval on (UV-)MultiFilter Rotating Shadowband Radiometer [(UV-)MFRSR]. Previous study has explored a cloud screening algorithm for direct-beam (UV-)MFRSR voltage measurements based on the stability assumption on a long time period (typically a half day or a whole day). To design such an algorithm requires in-depth understanding of radiative transfer and delicate data manipulation. Recent rapid developments on deep neural network and computation hardware have opened a window for modeling complicated End-to-End systems with a standardized strategy. In this study, a multi-layer dynamic bidirectional recurrent neural network is built for determining the cloudiness on each time point with a 17-year training dataset and tested with another 1-year dataset. The dataset is the daily 3-minute cosine corrected voltages, airmasses, and the corresponding cloud/clear-sky labels at two stations of the USDA UV-B Monitoring and Research Program. The results show that the optimized neural network model (3-layer, 250 hidden units, and 80 epochs of training) has an overall test accuracy of 97.87% (97.56% for the Oklahoma site and 98.16% for the Hawaii site). Generally, the neural network model grasps the key concept of the original model to use data in the entire day rather than short nearby measurements to perform cloud screening. A scrutiny of the logits layer suggests that the neural network model automatically learns a way to calculate a quantity similar to total optical depth and finds an appropriate threshold for cloud screening.

  11. Frosting characteristics and heating performance of a direct-expansion solar-assisted heat pump for space heating under frosting conditions

    International Nuclear Information System (INIS)

    Huang, Wenzhu; Ji, Jie; Xu, Ning; Li, Guiqiang

    2016-01-01

    Highlights: • Frosting and heating performance of DX-SAHP under frosting conditions is investigated. • The conditions when DX-SAHP frosts are studied. • The frosting process is observed during 360 min of operating. • The effect of ambient temperature, relative humidity and solar irradiation is analyzed. - Abstract: Direct expansion solar-assisted heat pump system (DX-SAHP) is promising in energy saving applications, but the performance of DX-SAHP under frosting conditions is rarely reported in the published literatures. In this paper, a DX-SAHP system with bare solar collectors for space heating is designed and experimentally investigated in the enthalpy difference lab with a solar simulator. The system is tested under a range of frosting conditions, with the ambient temperatures from 7 °C to −3 °C, the relative humidities of 50%, 70% and 90% and the solar irradiances of 0 W/m"2, 100 W/m"2, 200 W/m"2 and 300 W/m"2. The conditions when the DX-SAHP system frosts are studied. Results show that solar irradiance as low as 100 W/m"2 can totally prevent frosting when the ambient temperature is above −3 °C and the relative humidity is 70%. Besides, the frosting process is observed to be slower than that of fin-and-tube heat exchangers. The evaporator is not seriously frosted and the system performance is not significantly influenced after 360 min of continuous operating. Moreover the effects of ambient parameters, including the ambient temperature and the relative humidity, especially solar irradiation, on the system performance are studied and analyzed. Solar irradiation can effectively prevent or retard frosting, and also improve the heating performance of the DX-SAHP system. The DX-SAHP system is proved to be applicable under frosting conditions.

  12. Dual direction blower system powered by solar energy to reduce car cabin temperature in open parking condition

    Science.gov (United States)

    Hamdan, N. S.; Radzi, M. F. M.; Damanhuri, A. A. M.; Mokhtar, S. N.

    2017-10-01

    El-nino phenomenon that strikes Malaysia with temperature recorded more than 35°C can lead to extreme temperature rise in car cabin up to 80°C. Various problems will arise due to this extreme rising of temperature such as the occupant are vulnerable to heat stroke, emission of benzene gas that can cause cancer due to reaction of high temperature with interior compartments, and damage of compartments in the car. The current solution available to reduce car cabin temperature including tinted of window and portable heat rejection device that are available in the market. As an alternative to reduce car cabin temperature, this project modifies the car’s air conditioning blower motor into dual direction powered by solar energy and identifies its influence to temperature inside the car, parked under scorching sun. By reducing the car cabin temperature up to 10°C which equal to 14% of reduction in the car cabin temperature, this simple proposed system aims to provide comfort to users due to its capability in improving the quality of air and moisture in the car cabin.

  13. Modulation of dayside on and neutral distributions at Venus Evidence of direct and indirect solar energy inputs

    Science.gov (United States)

    Taylor, H. A., Jr.; Mayr, H. G.; Grebowsky, J. M.; Niemann, H. B.; Hartle, R. E.; Cloutier, P. A.; Barnes, A.; Daniell, R. E., Jr.

    1982-01-01

    The details of solar variability and its coupled effects on the Venusian dayside are examined for evidence of short-term perturbations and associated energy inputs. Ion and neutral measurements obtained from the Orbiter Ion Mass Spectrometer and Orbital Neutral mass Spectrometer are used to show that the dayside concentrations of CO2(+) and the neutral gas temperature are smoothly modulated with a 28-day cycle reasonably matching that of the solar F(10.7) and EUV fluxes. Earlier measurements show less pronounced and more irregular modulations and more conspicuous short-term day-to-day fluctuations in the ions and neutrals, as well as relatively large enhancements in the solar wind, which appear consistent with differences in solar coronal behavior during the two periods. It is suggested that the solar wind variations cause fluctuations in joule heating, producing the observed short-term ion and neutral variations.

  14. Solar Wind Halo Formation by the Scattering of the Strahl via Direct Cluster/PEACE Observations of the 3D Velocity Distribution Function

    Science.gov (United States)

    Figueroa-Vinas, Adolfo; Gurgiolo, Chris A.; Nieves-Chinchilla, Teresa; Goldstein, Melvyn L.

    2010-01-01

    It has been suggested by a number of authors that the solar wind electron halo can be formed by the scattering of the strahl. On frequent occasions we have observed in electron angular skymaps (Phi/Theta-plots) of the electron 3D velocity distribution functions) a bursty-filament of particles connecting the strahl to the solar wind core-halo. These are seen over a very limited energy range. When the magnetic field is well off the nominal solar wind flow direction such filaments are inconsistent with any local forces and are probably the result of strong scattering. Furthermore, observations indicates that the strahl component is frequently and significantly anisotropic (Tper/Tpal approx.2). This provides a possible free energy source for the excitation of whistler waves as a possible scattering mechanism. The empirical observational evidence between the halo and the strahl suggests that the strahl population may be, at least in part, the source of the halo component.

  15. Experimental Investigation of a Direct-drive Hall Thruster and Solar Array System at Power Levels up to 10 kW

    Science.gov (United States)

    Snyder, John S.; Brophy, John R.; Hofer, Richard R.; Goebel, Dan M.; Katz, Ira

    2012-01-01

    As NASA considers future exploration missions, high-power solar-electric propulsion (SEP) plays a prominent role in achieving many mission goals. Studies of high-power SEP systems (i.e. tens to hundreds of kilowatts) suggest that significant mass savings may be realized by implementing a direct-drive power system, so NASA recently established the National Direct-Drive Testbed to examine technical issues identified by previous investigations. The testbed includes a 12-kW solar array and power control station designed to power single and multiple Hall thrusters over a wide range of voltages and currents. In this paper, single Hall thruster operation directly from solar array output at discharge voltages of 200 to 450 V and discharge powers of 1 to 10 kW is reported. Hall thruster control and operation is shown to be simple and no different than for operation on conventional power supplies. Thruster and power system electrical oscillations were investigated over a large range of operating conditions and with different filter capacitances. Thruster oscillations were the same as for conventional power supplies, did not adversely affect solar array operation, and were independent of filter capacitance from 8 to 80 ?F. Solar array current and voltage oscillations were very small compared to their mean values and showed a modest dependence on capacitor size. No instabilities or anomalous behavior were observed in the thruster or power system at any operating condition investigated, including near and at the array peak power point. Thruster startup using the anode propellant flow as the power 'switch' was shown to be simple and reliable with system transients mitigated by the proper selection of filter capacitance size. Shutdown via cutoff of propellant flow was also demonstrated. A simple electrical circuit model was developed and is shown to have good agreement with the experimental data.

  16. Optimum performance of the small scale open and direct solar thermal Brayton cycle at various environmental conditions and constraints

    Energy Technology Data Exchange (ETDEWEB)

    Le Roux, W.G.; Bello-Ochende, T.; Meyer, J.P. [Department of Mechanical and Aeronautical Engineering, University of Pretoria, (South Africa)

    2011-07-01

    The energy of the sun can be transformed into mechanical power through the use of concentrated solar power systems. The use of the Brayton cycle with recuperator has significant advantages but also raises issues such as pressure loss and low net power output which are mainly due to irreversibilities of heat transfer and fluid friction. The aim of this study is to optimize the system to generate maximum net power output. Thermodynamic and dynamic trajectory optimizations were performed on a dish concentrator and an off-the-shelf micro-turbine and the effects of wind, solar irradiance and other environmental conditions and constraints on the power output were analyzed. Results showed that the maximum power output is increased when wind decreases and irradiance increases; solar irradiance was found to have a more significant impact than wind. This study highlighted the factors which impact the power generation of concentrated solar power systems so that designers can take them into account.

  17. Energy Harvesting Through Optical Properties of TiO2 and C- TiO2 Nanofluid for Direct Absorption Solar Collectors

    OpenAIRE

    alagappan, subramaniyan; Subramaniyan, A. L.; Lakshmi Priya, S.; Ilangovan, R.

    2016-01-01

    Nanofluids are tailored suspensions of nanoparticles in a suitable base fluid. The discovery of  nanofluids by Stephen choi opened a new heat transfer mechanism. Since then several research has taken place to explore thermal, electrical and magnetic property of nanofluids. Nanofluids showed enhanced electrical and thermal conductivities. The nanofluids are also proved as a potential candidate for direct absorption solar collectors (DASC). The present work investigates the effect of nanopartic...

  18. Design and simulation of a heat transformer of a directly solar-driven diffusion absorption chiller; Auslegung und Simulation von Waermeuebertragern einer direkt solarthermisch angetriebenen Diffusions-Absorptionskaeltemaschine

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Josua; Schmid, Fabian; Spindler, Klaus [Stuttgart Univ. (DE). Inst. fuer Thermodynamik und Waermetechnik (ITW)

    2011-07-01

    The ITW is working on a directly solar-driven diffusion absorption chiller. Solar cooling offers vast potential for saving fossil resources, e.g. owing to the good temporal agreement between insolation and cold demand for cooling of office buildings and domestic buildings. So far, the focus has been on central systems with indirect solar thermal operation. Direct solar thermal plants can be decentral. A diffusion-absorption refrigeration system without mechanical components was constructed. Solvent circulation is achieved by the thermosyphon principle, which makes the plant noiseless, wear-free, and low-maintenance. In the course of a study, a mathematical model of the heat exchangers was established on the basis of the heat transfer equations, and optimisation suggestions for the heat exchanger were identified on this basis. The influence of the pressure gradient - which is decisive -, and the influence of geometry and materials were investigated. The simulations were validated by measurements. Concrete optimisation potentials were identified, and first suggestions were implemented. [German] Am ITW wird intensiv an einer direkt solarthermisch angetriebenen Diffusions-Absorptionskaeltemaschine (DAKM) geforscht. Die solare Kuehlung bietet grosse Potentiale zur Einsparung fossiler Energietraeger. Ein Grund dafuer ist die gute zeitliche Uebereinstimmung zwischen Solarstrahlung und dem Kaeltebedarf fuer die Kuehlung von Wohngebaeuden und Bueros. Bislang standen zentrale und indirekt solarthermisch angetriebene Systeme zur Kaelteerzeugung im Fokus. Die direkt solarthermisch angetriebene Anlage kann auf Grund ihres neuen Konzepts dezentral aufgebaut und betrieben werden. Auf Grundlage des Diffusions-Absorptionskaelteprozesses wurde eine Anlage gebaut, die ohne mechanische Bauteile funktioniert. Der Loesungsmittelumlauf erfolgt durch das Thermosiphonprinzip. Dadurch ist die Anlage im Betrieb geraeuschlos, verschleissfrei und wartungsarm. Im Rahmen einer Studienarbeit

  19. Performance analysis of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Solar thermal power plants have attracted increasing interest in the past few years - with respect to both the design of the various plant components, and extending the operation hours by employing different types of storage systems. One approach to improve the overall plant efficiency is to use ...

  20. Feasibility of using ammonia-water mixture in high temperature concentrated solar power plants with direct vapour generation

    DEFF Research Database (Denmark)

    Modi, Anish; Knudsen, Thomas; Haglind, Fredrik

    2014-01-01

    Concentrated solar power plants have attracted an increasing interest in the past few years – both with respect to the design of various plant components, and extending the operation hours by employing different types of storage systems. One approach to improve the overall plant performance is to...

  1. Radial direct bandgap p-i-n GaNP microwire solar cells with enhanced short circuit current

    Energy Technology Data Exchange (ETDEWEB)

    Sukrittanon, Supanee [Graduate Program of Materials Science and Engineering, University of California, San Diego, La Jolla, California 92037 (United States); Liu, Ren; Pan, Janet L. [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92037 (United States); Breeden, Michael C. [Department of Nanoengineering, University of California, San Diego, La Jolla, California 92037 (United States); Jungjohann, K. L. [Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Tu, Charles W., E-mail: ctu@ece.ucsd.edu, E-mail: sdayeh@ece.ucsd.edu; Dayeh, Shadi A., E-mail: ctu@ece.ucsd.edu, E-mail: sdayeh@ece.ucsd.edu [Graduate Program of Materials Science and Engineering, University of California, San Diego, La Jolla, California 92037 (United States); Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92037 (United States)

    2016-08-07

    We report the demonstration of dilute nitride heterostructure core/shell microwire solar cells utilizing the combination of top-down reactive-ion etching to create the cores (GaP) and molecular beam epitaxy to create the shells (GaNP). Systematic studies of cell performance over a series of microwire lengths, array periods, and microwire sidewall morphologies examined by transmission electron microscopy were conducted to shed light on performance-limiting factors and to optimize the cell efficiency. We show by microscopy and correlated external quantum efficiency characterization that the open circuit voltage is degraded primarily due to the presence of defects at the GaP/GaNP interface and in the GaNP shells, and is not limited by surface recombination. Compared to thin film solar cells in the same growth run, the microwire solar cells exhibit greater short circuit current but poorer open circuit voltage due to greater light absorption and number of defects in the microwire structure, respectively. The comprehensive understanding presented in this work suggests that performance benefits of dilute nitride microwire solar cells can be achieved by further tuning of the epitaxial quality of the underlying materials.

  2. Direct C-H Arylation Meets Perovskite Solar Cells: Sn-Free Synthesis Shortcut to High Performance Hole-Transporting Materials.

    Science.gov (United States)

    Chang, Yu-Chieh; Lee, Kun-Mu; Lai, Chia-Hsin; Liu, Ching-Yuan

    2018-03-30

    In contrast to the traditional multistep synthesis, we demonstrate herein a two-step synthesis-shortcut to triphenylamine-based hole-transporting materials (HTMs) through sequential direct C-H arylations. These hole-transporting molecules are fabricated in perovskite-based solar cells (PSCs), exhibiting promising efficiencies up to 17.69%, which is comparable to PSCs utilizing the commercially available spiro-OMeTAD as HTM. This is the first report describing the use of step-saving C-H activations/arylations in the facile synthesis of small-molecule HTMs for perovskite solar cells. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Solar electricity and solar fuels

    Science.gov (United States)

    Spiers, David J.

    1989-04-01

    The nature of solar radiation and its variation with location is described. The distribution of energy in the solar spectrum places immediate limits on the theoretical efficiency of conversion processes, since practical absorbers cannot convert all wavelengths received to useful energy. The principles of solar energy conversion methods are described. Absorption of solar energy can give rise to direct electrical generation, heating, or chemical change. Electrical generation from sunlight can be achieved by photovoltaic systems directly or by thermal systems which use solar heat to drive a heat engine and generator. The technology used and under research for promising ways of producing electricity or fuel from solar energy is described. Photovoltaic technology is established today for remote area, small power applications, and photovoltaic module sales alone are over 100 million dollars per year at present. The photovoltaic market has grown steadily since the mid-1970's, as prices have fallen continuously. Future energy options are briefly described. The merits of a sustainable energy economy, based on renewable energy resources, including solar energy, are emphasized, as this seems to provide the only hope of eliminating the problems caused by the build-up of atmospheric carbon dioxide, acid rain pollution and nuclear waste disposal. There is no doubt that clean fuels which were derived from solar energy and either did not involve carbon dioxide and used atmospheric carbon dioxide as the source dioxide as the source of carbon would be a worthy ideal. Methods described could one day achieve this.

  4. 直膨式太阳能热泵系统仿真%Simulation of Direct Expansion Solar Assisted Heat Pump System

    Institute of Scientific and Technical Information of China (English)

    汪坤海; 闫金州; 邢琳; 关欣

    2017-01-01

    随着太阳能热利用和热泵技术的成熟及商品化,直膨式太阳能热泵技术将太阳能资源的清洁性、可再生性等特点和热泵系统的节能、高效的优点相结合,极具研究价值.但是目前直膨式太阳能热泵不能产品化推广的主要限制因素是系统设计不合理、运行不稳定、整体性能不佳等问题.现以直膨式太阳能热泵系统的优化和设计匹配为研究目标,同时,建立压缩机、集热器/蒸发器、热力膨胀阀、冷凝器及储热水箱的数学模型.从理论上分析集热器中集热面积、太阳能辐照度、环境温度、压缩机容积及冷凝温度等因素对直膨式太阳能热泵系统热工性能的影响,通过系统仿真及实验研究系统的整体热力性能,并在此基础上给出改善系统性能的建议.%With the use of solar thermal energy and the development and commercialization of heat pump technology, the direct - expansion solar - assisted heat pump which combines both the clean, renewable and other properties of solar energy resources with energy-saving and high efficient advantages of heat pump system, has great research values. But now major limiting factors of the direct-expansion solar- assisted heat pump cannot be promoted include the unreasonable system design, the unstable operation, the overall poor performance and other issues. The optimization and design matching of the direct-expansion solar-assisted heat pump system are researched; at the same time, a mathematical model of the heat collector/evaporator, compressor, thermostatic expansion valve, condenser and heat storage water tank is established. The area of heat, solar irradiance, ambient temperature, volume of compressor and condensation temperature and other factors on the effect of direct expansion solar-assisted heat pump system of the thermal performance are analyzed from the theory analysis; the overall thermal performance of the system is simulated and studied with

  5. Behavior of current sheets at directional magnetic discontinuities in the solar wind at 0.72 AU

    Czech Academy of Sciences Publication Activity Database

    Zhang, T. L.; Russell, C. T.; Zambelli, W.; Vörös, Zoltán; Wang, C.; Cao, J. B.; Jian l, L. K.; Strangeway, R. J.; Balikhin, M.; Baumjohann, W.; Delva, M.; Volwerk, M.; Glassmeier, K.; H.

    2008-01-01

    Roč. 35, č. 24 (2008), L24102/1-L24102/5 ISSN 0094-8276 Grant - others:Austrian Wissenschaftfonds(AT) P20131-N16; NNSFC(CN) 40628003; 973 Program(CN) 2006CB806305; NASA (US) NNG06GC62G Institutional research plan: CEZ:AV0Z30420517 Keywords : solar wind * current sheets * magnetic annihilation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.959, year: 2008

  6. Photothermal response of CVD synthesized carbon (nanospheres/aqueous nanofluids for potential application in direct solar absorption collectors: a preliminary investigation

    Directory of Open Access Journals (Sweden)

    Poinern GE

    2012-07-01

    Full Text Available Gérrard Eddy Jai Poinern,1 Sridevi Brundavanam,1 Monaliben Shah,1 Iafeta Laava,2 Derek Fawcett11Murdoch Applied Nanotechnology Research Group, 2Department of Physics, Energy Studies and Nanotechnology, Murdoch University, Perth, AustraliaAbstract: Direct-absorption solar collectors have the potential to offer an unlimited source of renewable energy with minimal environmental impact. Unfortunately, their performance is limited by the absorption efficiency of the working fluid. Nanoparticles of functionalized carbon nanospheres (CNS have the potential to improve the photothermal properties of the working fluid. CNS are produced by the pyrolysis of acetylene gas in a tube-based electric furnace/chemical vapor deposition apparatus. The reaction takes place at 1000°C in the presence of nitrogen gas without the use of a catalyst. The synthesized CNS were examined and characterized using field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction spectroscopy, Raman spectroscopy, thermal gravimetric analysis, and ultraviolet-visible analysis. The CNS powders with a mean particle size of 210 nm were then functionalized using tetraethylammonium hydroxide ([C2H5]4 N[OH] and used to produce a series of aqueous nanofluids with varying mass content. The photothermal response of both the nanofluids and films composed of CNS were investigated under 1000 W/m2 solar irradiation.Keywords: solar absorption, carbon nanospheres, nanofluids, photothermal

  7. Solar chulha

    Energy Technology Data Exchange (ETDEWEB)

    Jadhao, P. H. [Department of Physics J.D. Institute of Engg. & Tech. Yavatmal (India); Patrikar, S. R. [Department of Physics VNIT, Nagpur (India)

    2016-05-06

    The main goal of the proposed system is to transfer energy from sun to the cooking load that is located in the kitchen. The energy is first collected by the solar collector lens system and two curve bars of same radius of curvature are mounted parallel and adjacent to each other at different height the solar collector is clamed on this two bars such that solar collector is exactly perpendicular to sunlight. The topology includes an additional feature which is window in the wall through which the beam is collimated is directed in the of kitchen. The solar energy that is collected is directed by the mirror system into the kitchen, where it is redirected to cooking platform located in the kitchen. The special feature in this system full Indian meal can be made since cooking platform is indoors.

  8. New observations of the solar ultraviolet chromosphere.

    Science.gov (United States)

    Bruner, E. C., Jr.; Parker, R. W.; Chipman, E.; Stevens, R.

    1973-01-01

    We present some of the results of a rocket flight which obtained a stigmatic spectrum of the sun in the region 1190 to 1320A. The experiment achieved a spectral resolution of 0.01A throughout this range, and the effective angular resolution was about 20 sec. Lines which are formed in the chromosphere and transition zone show strong fluctuations with position on the disk. The correspondence between the H Lyman-alpha profile and chromospheric details seen in the Ca K-line is demonstrated.

  9. Reduction of Energy Consumption and CO2 Emissions in Domestic Water Heating by Means of Direct Expansion Solar Assisted Heat Pump

    International Nuclear Information System (INIS)

    Baleta, J.; Curko, T.; Cutic, T.; Pasanec, J.; Soldo, V.

    2012-01-01

    Domestic water heating in households sector is usually performed by either fossil fuel fired or electric boilers. Both the combustion process of the former and large electricity consumption of the latter strongly influence overall greenhouse gas emissions. Moreover, very high specific heat of water requires large quantity of energy for water heating making a significant impact on the overall energy consumption in the households sector whose total consumption of 80,81 PJ equals to 19,6% of total primary energy supply in Croatia in 2010. Considering the mentioned impact on energy consumption and CO 2 emissions as well as goals set by European Commission (so called 20-20-20), new technologies based on renewable energy sources are more than welcome in the field of domestic water heating. Direct expansion solar assisted heat pump is presented in this paper. Its working principle is based on single-stage vapour-compression cycle. Representing a gradual step to commercial application with a water tank of 300 l, the developed mobile unit is designed as a test rig enabling all necessary measurements to evaluate potential of solar irradiation for domestic water heating on various locations. Besides the unit description, trial testing results are presented and analyzed as well as a basic comparison of CO 2 emissions between solar assisted heat pump and conventionally used water heating systems. Taking into account both the decentralized water heating and favourable climatic conditions (especially along the Croatian Adriatic coast) as well as rising fossil fuel prices, it is expected that solar assisted heat pumps will be commercialized in the near future.(author)

  10. Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence

    Directory of Open Access Journals (Sweden)

    I. A. Mironova

    2012-01-01

    Full Text Available Energetic cosmic rays are the main source of ionization of the low-middle atmosphere, leading to associated changes in atmospheric properties. Via the hypothetical influence of ionization on aerosol growth and facilitated formation of clouds, this may be an important indirect link relating solar variability to climate. This effect is highly debated, however, since the proposed theoretical mechanisms still remain illusive and qualitative, and observational evidence is inconclusive and controversial. Therefore, important questions regarding the existence and magnitude of the effect, and particularly the fraction of aerosol particles that can form and grow, are still open. Here we present empirical evidence of the possible effect caused by cosmic rays upon polar stratospheric aerosols, based on a case study of an extreme solar energetic particle (SEP event of 20 January 2005. Using aerosol data obtained over polar regions from different satellites with optical instruments that were operating during January 2005, such as the Stratospheric Aerosol and Gas Experiment III (SAGE III, and Optical Spectrograph and Infrared Imaging System (OSIRIS, we found a significant simultaneous change in aerosol properties in both the Southern and Northern Polar regions in temporal association with the SEP event. We speculate that ionization of the atmosphere, which was abnormally high in the lower stratosphere during the extreme SEP event, might have led to formation of new particles and/or growth of preexisting ultrafine particles in the polar stratospheric region. However, a detailed interpretation of the effect is left for subsequent studies. This is the first time high vertical resolution measurements have been used to discuss possible production of stratospheric aerosols under the influence of cosmic ray induced ionization. The observed effect is marginally detectable for the analyzed severe SEP event and can be undetectable for the majority of weak

  11. Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence

    Science.gov (United States)

    Mironova, I. A.; Usoskin, I. G.; Kovaltsov, G. A.; Petelina, S. V.

    2012-01-01

    Energetic cosmic rays are the main source of ionization of the low-middle atmosphere, leading to associated changes in atmospheric properties. Via the hypothetical influence of ionization on aerosol growth and facilitated formation of clouds, this may be an important indirect link relating solar variability to climate. This effect is highly debated, however, since the proposed theoretical mechanisms still remain illusive and qualitative, and observational evidence is inconclusive and controversial. Therefore, important questions regarding the existence and magnitude of the effect, and particularly the fraction of aerosol particles that can form and grow, are still open. Here we present empirical evidence of the possible effect caused by cosmic rays upon polar stratospheric aerosols, based on a case study of an extreme solar energetic particle (SEP) event of 20 January 2005. Using aerosol data obtained over polar regions from different satellites with optical instruments that were operating during January 2005, such as the Stratospheric Aerosol and Gas Experiment III (SAGE III), and Optical Spectrograph and Infrared Imaging System (OSIRIS), we found a significant simultaneous change in aerosol properties in both the Southern and Northern Polar regions in temporal association with the SEP event. We speculate that ionization of the atmosphere, which was abnormally high in the lower stratosphere during the extreme SEP event, might have led to formation of new particles and/or growth of preexisting ultrafine particles in the polar stratospheric region. However, a detailed interpretation of the effect is left for subsequent studies. This is the first time high vertical resolution measurements have been used to discuss possible production of stratospheric aerosols under the influence of cosmic ray induced ionization. The observed effect is marginally detectable for the analyzed severe SEP event and can be undetectable for the majority of weak-moderate events. The present

  12. Analysis of diverse direct arylation polymerization (DArP) conditions toward the efficient synthesis of polymers converging with stille polymers in organic solar cells

    DEFF Research Database (Denmark)

    Livi, Francesco; Gobalasingham, Nemal S.; Thompson, Barry C.

    2016-01-01

    Despite the emergence of direct arylation polymerization (DArP) as an alternative method to traditional cross-coupling routes like Stille polymerization, the exploration of DArP polymers in practical applications like polymer solar cells (PSCs) is limited. DArP polymers tend to have a reputation...... for being marginally inferior to Stille counterparts due to the increased presence of defects that result from unwanted side reactions in direct arylation, such as unselective C-H bond activation and homocoupling. We report ten DArP protocols across the three major classes of DArP to generate poly[(2,5-bis...... was synthesized in superheated THF with Cs2CO3, neodecanoic acid, and P(o-anisyl)3, it generated polymers of exceptional quality that performed comparably to Stille counterparts in both roll coated ITO-free and spin-coated ITO devices....

  13. A direct gravitational lensing test for 10 exp 6 solar masses black holes in halos of galaxies

    Science.gov (United States)

    Wambsganss, Joachim; Paczynski, Bohdan

    1992-01-01

    We propose a method that will be able to detect or exclude the existence of 10 exp 6 solar masses black holes in the halos of galaxies. VLBA radio maps of two milliarcsecond jets of a gravitationally lensed quasar will show the signature of these black holes - if they exist. If there are no compact objects in this mass range along the line of sight, the two jets should be linear mappings of each other. If they are not, there must be compact objects of about 10 exp 6 solar masses in the halo of the galaxy that deform the images by gravitational deflection. We present numerical simulations for the two jets A and B of the double quasar 0957 + 561, but the method is valid for any gravitationally lensed quasar with structure on milliarcsecond scales. As a by-product from high-quality VLBA maps of jets A and B, one will be able to tell which features in the maps are intrinsic in the original jet and which are only an optical illusion, i.e., gravitational distortions by black holes along the line of sight.

  14. Solar-powered single-and double-effect directly air-cooled LiBr–H2O absorption prototype built as a single unit

    International Nuclear Information System (INIS)

    Izquierdo, M.; González-Gil, A.; Palacios, E.

    2014-01-01

    Highlights: • This work presents a novel solar cooling air-cooled absorption prototype for buildings. • The solution (LiB r –H 2 O) and the refrigerant (H 2 O) are cooled directly by air. • The cooling is produced from solar energy when operates in single-effect mode. • If the demand is not met the prototype is able to operate in double-effect mode. - Abstract: This work describes an installation in Madrid, Spain, designed to test a new solar-powered air-cooled absorption refrigeration system. This installation essentially consists of a-48 m 2 field of flat-plate solar collectors, a 1500-L hot water storage tank and a single and-double effect air-cooled lithium bromide absorption prototype. Designed and built by our research group, this prototype is able to operate either as a single-effect unit (4.5 kW) or as a double-effect unit (7 kW). In operation as single-effect mode, the prototype is driven by solar energy, whereas in operation as a double effect mode, an external energy source may be used. The prototype’s evaporator is connected to a fan-coil placed inside an 80-m 2 laboratory that represent the average size of a Spanish housing unit. In August 2009, the cooling system was tested in the single-effect operation mode. The results show that the system is able to meet approximately 65% of the laboratory’s seasonal cooling demand, although 100% may be reached for a few days. The prototype can also operate in double-effect mode to meet the cooling demand. In that case, the prototype is fed by thermal oil, which is warmed until it reaches the process temperature in the high-temperature generator. The prototype can operate in either single-effect mode or in double-effect mode or can also operate simultaneously both modes using the components common to both modes, namely, the absorber, evaporator, condenser, solution pumps and control equipment. This paper reports the experimental results from the prototype operating separately in single-effect and

  15. Thin-Film Solar Cells with InP Absorber Layers Directly Grown on Nonepitaxial Metal Substrates

    KAUST Repository

    Zheng, Maxwell

    2015-08-25

    The design and performance of solar cells based on InP grown by the nonepitaxial thin-film vapor-liquid-solid (TF-VLS) growth technique is investigated. The cell structure consists of a Mo back contact, p-InP absorber layer, n-TiO2 electron selective contact, and indium tin oxide transparent top electrode. An ex situ p-doping process for TF-VLS grown InP is introduced. Properties of the cells such as optoelectronic uniformity and electrical behavior of grain boundaries are examined. The power conversion efficiency of first generation cells reaches 12.1% under simulated 1 sun illumination with open-circuit voltage (VOC) of 692 mV, short-circuit current (JSC) of 26.9 mA cm-2, and fill factor (FF) of 65%. The FF of the cell is limited by the series resistances in the device, including the top contact, which can be mitigated in the future through device optimization. The highest measured VOC under 1 sun is 692 mV, which approaches the optically implied VOC of ≈795 mV extracted from the luminescence yield of p-InP. The design and performance of solar cells based on indium phosphide (InP) grown by the nonepitaxial thin-film vapor-liquid-solid growth technique is investigated. The cell structure consists of a Mo back contact, p-InP absorber layer, n-TiO2 electron selective contact, and an indium tin oxide transparent top electrode. The highest measured open circuit voltage (VOC) under 1 sun is 692 mV, which approaches the optically implied VOC of ≈795 mV extracted from the luminescence yield of p-InP.

  16. The Lyman Alpha Reference Sample. V. The Impact of Neutral ISM Kinematics and Geometry on Lyalpha Escape

    Czech Academy of Sciences Publication Activity Database

    Rivera-Thorsen, T.; Hayes, M.; Ostlin, G.; Duval, F.; Orlitová, Ivana; Verhamme, A.; Más-Hesse, J. M.; Schaerer, D.; Cannon, J.M.; Oti-Floranes, H.; Sandberg, A.; Guaita, L.; Adamo, A.; Atek, H.; Herenz, E.Ch.; Kunth, D.; Laursen, P.; Melinder, J.

    2015-01-01

    Roč. 805, č. 1 (2015), 14/1-14/26 ISSN 0004-637X R&D Projects: GA ČR(CZ) GP14-20666P Institutional support: RVO:67985815 Keywords : cosmology * observations * galaxies Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.909, year: 2015

  17. Resonant line transfer in a fog: using Lyman-alpha to probe tiny structures in atomic gas

    Science.gov (United States)

    Gronke, Max; Dijkstra, Mark; McCourt, Michael; Peng Oh, S.

    2017-11-01

    Motivated by observational and theoretical work that suggest very small-scale (≲ 1 pc) structure in the circumgalactic medium of galaxies and in other environments, we study Lyman-α (Lyα) radiative transfer in an extremely clumpy medium with many clouds of neutral gas along the line of sight. While previous studies have typically considered radiative transfer through sightlines intercepting ≲ 10 clumps, we explored the limit of a very large number of clumps per sightline (up to fc 1000). Our main finding is that, for covering factors greater than some critical threshold, a multiphase medium behaves similarly to a homogeneous medium in terms of the emergent Lyα spectrum. The value of this threshold depends on both the clump column density and the movement of the clumps. We estimated this threshold analytically and compare our findings to radiative transfer simulations with a range of covering factors, clump column densities, radii, and motions. Our results suggest that (I) the success in fitting observed Lyα spectra using homogeneous "shell models" (and the corresponding failure of multiphase models) hints at the presence of very small-scale structure in neutral gas, which is in agreement within a number of other observations; and (II) the recurrent problems of reproducing realistic line profiles from hydrodynamical simulations may be due to their inability to resolve small-scale structure, which causes simulations to underestimate the effective covering factor of neutral gas clouds. The movie associated to Fig. B.2 is available at http://www.aanda.org

  18. Constraints on Neutral Hydrogen Outflow from the Warm Rocky Planet GJ1132b using Lyman-alpha Transit Observations

    Science.gov (United States)

    Waalkes, William; Berta-Thompson, Zachory; Charbonneau, David; Irwin, Jonathan; Newton, Elisabeth; Dittmann, Jason; Bourrier, Vincent; Ehrenreich, David; Kempton, Eliza

    2018-01-01

    GJ1132b is one of the few known Earth-sized planets, and at 12 pc away it is also one of the closest known transiting planets. With an equilibrium temperature of 500 K, this planet is too hot to be habitable but we can use it to learn about the presence and volatile content of rocky planet atmospheres around M dwarf stars. Using Hubble STIS spectra during primary transit, we explore the potential for UV transit detections of GJ1132b. If we were to observe a deep Lyman-α transit, that would indicate the presence of a neutral hydrogen envelope flowing from GJ1132b. On the other hand, ruling out deep absorption from neutral hydrogen may indicate that this planet has either retained its volatiles or lost them very early in the star’s life. We carry out this analysis by extracting 1D spectra from the STIS pipeline, splitting the time-tagged spectra into higher resolution samples, and producing light curves of the red and blue wings of the Lyman-α line. We fit for the baseline stellar flux and transit depths in order to constrain the characteristics of the cloud of neutral hydrogen gas that may surround the planet. Our work extends beyond the transit study into an analysis of the stellar variability and Lyman-α spectrum of GJ1132, a slowly-rotating 0.18 MSun M dwarf with previously uncharacterized UV activity. Understanding the role that UV variability plays in planetary atmospheres and volatile retention is crucial to assess atmospheric evolution and the habitability of cooler rocky planets.

  19. Diagnosing the reionization of the universe - The absorption spectrum of the intergalactic medium and Lyman alpha clouds

    Science.gov (United States)

    Giroux, Mark L.; Shapiro, Paul R.

    1991-01-01

    The thermal and ionization evolution of a uniform intergalactic medium composed of H and He and undergoing reionization is studied. The diagnosis of the metagalactic ionizing radiation background at z of about three using metal line ratios for Lyman limit quasar absorption line systems is addressed. The use of the He II Gunn-Peterson effect to diagnose the reionization source and/or nature of the Hy-alpha forest clouds is considered.

  20. THE LYMAN ALPHA REFERENCE SAMPLE. V. THE IMPACT OF NEUTRAL ISM KINEMATICS AND GEOMETRY ON Lyα ESCAPE

    International Nuclear Information System (INIS)

    Rivera-Thorsen, Thøger E.; Hayes, Matthew; Östlin, Göran; Duval, Florent; Sandberg, Andreas; Guaita, Lucia; Adamo, Angela; Orlitová, Ivana; Verhamme, Anne; Schaerer, Daniel; Mas-Hesse, J. Miguel; Cannon, John M.; Otí-Floranes, Héctor; Atek, Hakim; Herenz, E. Christian; Kunth, Daniel

    2015-01-01

    We present high-resolution far-UV spectroscopy of the 14 galaxies of the Lyα Reference Sample; a sample of strongly star-forming galaxies at low redshifts (0.028 < z < 0.18). We compare the derived properties to global properties derived from multi-band imaging and 21 cm H i interferometry and single-dish observations, as well as archival optical SDSS spectra. Besides the Lyα line, the spectra contain a number of metal absorption features allowing us to probe the kinematics of the neutral ISM and evaluate the optical depth and and covering fraction of the neutral medium as a function of line of sight velocity. Furthermore, we show how this, in combination with the precise determination of systemic velocity and good Lyα spectra, can be used to distinguish a model in which separate clumps together fully cover the background source, from the “picket fence” model named by Heckman et al. We find that no one single effect dominates in governing Lyα radiative transfer and escape. Lyα escape in our sample coincides with a maximum velocity-binned covering fraction of ≲0.9 and bulk outflow velocities of ≳50 km s −1 , although a number of galaxies show these characteristics and yet little or no Lyα escape. We find that Lyα peak velocities, where available, are not consistent with a strong backscattered component, but rather with a simpler model of an intrinsic emission line overlaid by a blueshifted absorption profile from the outflowing wind. Finally, we find a strong anticorrelation between Hα equivalent width and maximum velocity-binned covering factor, and propose a heuristic explanatory model

  1. THE LYMAN ALPHA REFERENCE SAMPLE. V. THE IMPACT OF NEUTRAL ISM KINEMATICS AND GEOMETRY ON Lyα ESCAPE

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-Thorsen, Thøger E.; Hayes, Matthew; Östlin, Göran; Duval, Florent; Sandberg, Andreas; Guaita, Lucia; Adamo, Angela [Department of Astronomy, Oskar Klein Centre, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden); Orlitová, Ivana [Astronomical Institute, Academy of Sciences of the Czech Republic, Boční II, CZ-14131 Prague (Czech Republic); Verhamme, Anne; Schaerer, Daniel [Geneva Observatory, University of Geneva, 51 Chemin des Maillettes, CH-1290 Versoix (Switzerland); Mas-Hesse, J. Miguel [Centro de Astrobiología (CSIC–INTA), Departamento de Astrofísica, P.O. Box 78, E-28691 Villanueva de la Cañada (Spain); Cannon, John M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Otí-Floranes, Héctor [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 106, B. C. 22800 Ensenada (Mexico); Atek, Hakim [Laboratoire d’Astrophysique, École Polytechnique Fédérale de Lausanne (EPFL), Observatoire, CH-1290 Sauverny (Switzerland); Herenz, E. Christian [Leibniz-Institut für Astrophysik (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Kunth, Daniel, E-mail: trive@astro.su.se [Institut d’Astrophysique de Paris, UMR 7095 CNRS and UPMC, 98 bis Bd Arago, F-75014 Paris (France); and others

    2015-05-20

    We present high-resolution far-UV spectroscopy of the 14 galaxies of the Lyα Reference Sample; a sample of strongly star-forming galaxies at low redshifts (0.028 < z < 0.18). We compare the derived properties to global properties derived from multi-band imaging and 21 cm H i interferometry and single-dish observations, as well as archival optical SDSS spectra. Besides the Lyα line, the spectra contain a number of metal absorption features allowing us to probe the kinematics of the neutral ISM and evaluate the optical depth and and covering fraction of the neutral medium as a function of line of sight velocity. Furthermore, we show how this, in combination with the precise determination of systemic velocity and good Lyα spectra, can be used to distinguish a model in which separate clumps together fully cover the background source, from the “picket fence” model named by Heckman et al. We find that no one single effect dominates in governing Lyα radiative transfer and escape. Lyα escape in our sample coincides with a maximum velocity-binned covering fraction of ≲0.9 and bulk outflow velocities of ≳50 km s{sup −1}, although a number of galaxies show these characteristics and yet little or no Lyα escape. We find that Lyα peak velocities, where available, are not consistent with a strong backscattered component, but rather with a simpler model of an intrinsic emission line overlaid by a blueshifted absorption profile from the outflowing wind. Finally, we find a strong anticorrelation between Hα equivalent width and maximum velocity-binned covering factor, and propose a heuristic explanatory model.

  2. A differential optical absorption spectroscopy method for retrieval from ground-based Fourier transform spectrometers measurements of the direct solar beam

    Science.gov (United States)

    Huo, Yanfeng; Duan, Minzheng; Tian, Wenshou; Min, Qilong

    2015-08-01

    A differential optical absorption spectroscopy (DOAS)-like algorithm is developed to retrieve the column-averaged dryair mole fraction of carbon dioxide from ground-based hyper-spectral measurements of the direct solar beam. Different to the spectral fitting method, which minimizes the difference between the observed and simulated spectra, the ratios of multiple channel-pairs—one weak and one strong absorption channel—are used to retrieve from measurements of the shortwave infrared (SWIR) band. Based on sensitivity tests, a super channel-pair is carefully selected to reduce the effects of solar lines, water vapor, air temperature, pressure, instrument noise, and frequency shift on retrieval errors. The new algorithm reduces computational cost and the retrievals are less sensitive to temperature and H2O uncertainty than the spectral fitting method. Multi-day Total Carbon Column Observing Network (TCCON) measurements under clear-sky conditions at two sites (Tsukuba and Bremen) are used to derive xxxx for the algorithm evaluation and validation. The DOAS-like results agree very well with those of the TCCON algorithm after correction of an airmass-dependent bias.

  3. Alternatives in solar energy

    Science.gov (United States)

    Schueler, D. G.

    1978-01-01

    Although solar energy has the potential of providing a significant source of clean and renewable energy for a variety of applications, it is expected to penetrate the nation's energy economy very slowly. The alternative solar energy technologies which employ direct collection and conversion of solar radiation as briefly described.

  4. Toxicological evaluation of liquids proposed for use in direct contact liquid--liquid heat exchangers for solar heated and cooled buildings

    Energy Technology Data Exchange (ETDEWEB)

    Buchan, R.M.; Majestic, J.R.; Billau, R.

    1976-09-01

    This report contains the results of the toxicological evaluation part of the project entitled, ''Direct Contact Liquid-Liquid Heat Exchangers for Solar Heated and Cooled Buildings.'' Obviously any liquid otherwise suitable for use in such a device should be subjected to a toxicological evaluation. 34 liquids (24 denser than water, 10 less dense) have physical and chemical properties that would make them suitable for use in such a device. In addition to the complexity involved in selecting the most promising liquids from the standpoint of their chemical and physical properties is added the additional difficulty of also considering their toxicological properties. Some of the physical and chemical properties of these liquids are listed. The liquids are listed in alphabetical order within groups, the denser than water liquids are listed first followed by those liquids less dense than water.

  5. Solar neutrinos as a signal and background in direct-detection experiments searching for sub-GeV dark matter with electron recoils

    Science.gov (United States)

    Essig, Rouven; Sholapurkar, Mukul; Yu, Tien-Tien

    2018-05-01

    Direct-detection experiments sensitive to low-energy electron recoils from sub-GeV dark matter interactions will also be sensitive to solar neutrinos via coherent neutrino-nucleus scattering (CNS), since the recoiling nucleus can produce a small ionization signal. Solar neutrinos constitute both an interesting signal in their own right and a potential background to a dark matter search that cannot be controlled or reduced by improved shielding, material purification and handling, or improved detector design. We explore these two possibilities in detail for semiconductor (silicon and germanium) and xenon targets, considering several possibilities for the unmeasured ionization efficiency at low energies. For dark-matter-electron-scattering searches, neutrinos start being an important background for exposures larger than ˜1 - 10 kg -years in silicon and germanium, and for exposures larger than ˜0.1 - 1 kg -year in xenon. For the absorption of bosonic dark matter (dark photons and axion-like particles) by electrons, neutrinos are most relevant for masses below ˜1 keV and again slightly more important in xenon. Treating the neutrinos as a signal, we find that the CNS of 8B neutrinos can be observed with ˜2 σ significance with exposures of ˜2 , 7, and 20 kg-years in xenon, germanium, and silicon, respectively, assuming there are no other backgrounds. We give an example for how this would constrain nonstandard neutrino interactions. Neutrino components at lower energy can only be detected if the ionization efficiency is sufficiently large. In this case, observing pep neutrinos via CNS requires exposures ≳10 - 100 kg -years in silicon or germanium (˜1000 kg -years in xenon), and observing CNO neutrinos would require an order of magnitude more exposure. Only silicon could potentially detect 7Be neutrinos. These measurements would allow for a direct measurement of the electron-neutrino survival probability over a wide energy range.

  6. Analysis of the ozone profile specifications in the WRF-ARW model and their impact on the simulation of direct solar radiation

    Directory of Open Access Journals (Sweden)

    A. Montornès

    2015-03-01

    Full Text Available Although ozone is an atmospheric gas with high spatial and temporal variability, mesoscale numerical weather prediction (NWP models simplify the specification of ozone concentrations used in their shortwave schemes by using a few ozone profiles. In this paper, a two-part study is presented: (i an evaluation of the quality of the ozone profiles provided for use with the shortwave schemes in the Advanced Research version of the Weather Research and Forecasting (WRF-ARW model and (ii an assessment of the impact of deficiencies in those profiles on the performance of model simulations of direct solar radiation. The first part compares simplified data sets used to specify the total ozone column in six schemes (i.e., Goddard, New Goddard, RRTMG, CAM, GFDL and Fu–Liou–Gu with the Multi-Sensor Reanalysis data set during the period 1979–2008 examining the latitudinal, longitudinal and seasonal limitations in the ozone profile specifications of each parameterization. The results indicate that the maximum deviations are over the poles and show prominent longitudinal patterns in the departures due to the lack of representation of the patterns associated with the Brewer–Dobson circulation and the quasi-stationary features forced by the land–sea distribution, respectively. In the second part, the bias in the simulated direct solar radiation due to these deviations from the simplified spatial and temporal representation of the ozone distribution is analyzed for the New Goddard and CAM schemes using the Beer–Lambert–Bouguer law and for the GFDL using empirical equations. For radiative applications those simplifications introduce spatial and temporal biases with near-zero departures over the tropics throughout the year and increasing poleward with a maximum in the high middle latitudes during the winter of each hemisphere.

  7. Solar Schematic

    Science.gov (United States)

    1979-01-01

    The home shown at right is specially designed to accommodate solar heating units; it has roof planes in four directions, allowing placement of solar collectors for best exposure to the sun. Plans (bottom) and complete working blueprints for the solar-heated house are being marketed by Home Building Plan Service, Portland, Oregon. The company also offers an inexpensive schematic (center) showing how a homeowner only moderately skilled in the use of tools can build his own solar energy system, applicable to new or existing structures. The schematic is based upon the design of a low-cost solar home heating system built and tested by NASA's Langley Research Center; used to supplement a warm-air heating system, it can save the homeowner about 40 percent of his annual heating bill for a modest investment in materials and components. Home Building Plan Service saved considerable research time by obtaining a NASA technical report which details the Langley work. The resulting schematic includes construction plans and simplified explanations of solar heat collection, collectors and other components, passive heat factors, domestic hot water supply and how to work with local heating engineers.

  8. Parameterization models for solar radiation and solar technology applications

    International Nuclear Information System (INIS)

    Khalil, Samy A.

    2008-01-01

    Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined

  9. Parameterization models for solar radiation and solar technology applications

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Samy A. [National Research Institute of Astronomy and Geophysics, Solar and Space Department, Marsed Street, Helwan, 11421 Cairo (Egypt)

    2008-08-15

    Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined. (author)

  10. Study of the lacustrine phytoplankton productivity dependence on solar radiation, on the basis of direct high-frequency measurements

    Science.gov (United States)

    Provenzale, Maria; Ojala, Anne; Heiskanen, Jouni; Erkkilä, Kukka-Maaria; Mammarella, Ivan; Hari, Pertti; Vesala, Timo

    2016-04-01

    One of the main components of the carbon cycle in lakes is phytoplankton. Its in situ photosynthesis and respiration are usually studied with traditional methods (dark and light bottle method, 14C labelling technique). These methods, relying on sampling and incubation, may lead to unrealistic results. They also have a poor temporal resolution, which does not allow the non-linear relationship between photosynthetically active solar radiation (PAR) and photosynthesis to be properly investigated. As a consequence, the phytoplankton net primary productivity (NPP) cannot be parameterised as a function of ambient variables. In 2008 an innovative free-water approach was proposed. It is based on non-dispersive infrared air CO2 probes that, by building an appropriate system, can be used to measure the CO2 concentration in the water at a high-frequency. At that time, the method was tested only on 3 days of data. Here, we deployed it on a boreal lake in Finland for four summers, in order to calculate the NPP and verify its dependence on PAR. The set-up was completed by an eddy-covariance system and water PAR and temperature sensors. In analogy with the procedure typically used in terrestrial ecology, we obtained the phytoplankton NPP computing the mass balance of CO2 in the mixed layer of the lake, i.e. the superficial layer where the conditions are homogeneous and most of the photosynthetic activity takes place. After calculating the NPP , we verified its dependence on PAR. The theoretical model we used was a saturating Michaelis-Menten curve, in which the variables are water temperature and PAR. The equation also contains parameters typical of the phytoplankton communities, which represent their maximum potential photosynthetic rate, their half-saturation constant and their basal respiration. These parameters allow the NPP to be parameterised as a function of T and PAR. For all the analysed year, we found a very good agreement between theory and data (R2 ranged from 0.80 to

  11. The Effects of Solar Irradience and Ambient Temperature on Solar ...

    African Journals Online (AJOL)

    Solar energy is abundant. It is however low grade energy and cannot be easily used in the form it occurs for work. Converting solar energy directly to electricity, using solar photovoltaic (PV) modules is however a low efficiency process. Optimizing this conversion, especially in the face of the high cost of solar panels, is thus ...

  12. Efficient small molecule bulk heterojunction solar cells with high fill factors via pyrene-directed molecular self-assembly

    KAUST Repository

    Lee, Olivia P.; Yiu, Alan T.; Beaujuge, Pierre; Woo, Claire; Holcombe, Thomas W.; Millstone, Jill E.; Douglas, Jessica D.; Chen, Mark S.; Frechet, Jean

    2011-01-01

    Efficient organic photovoltaic (OPV) materials are constructed by attaching completely planar, symmetric end-groups to donor-acceptor electroactive small molecules. Appending C2-pyrene as the small molecule end-group to a diketopyrrolopyrrole core leads to materials with a tight, aligned crystal packing and favorable morphology dictated by π-π interactions, resulting in high power conversion efficiencies and high fill factors. The use of end-groups to direct molecular self-assembly is an effective strategy for designing high-performance small molecule OPV devices. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Efficient small molecule bulk heterojunction solar cells with high fill factors via pyrene-directed molecular self-assembly

    KAUST Repository

    Lee, Olivia P.

    2011-10-21

    Efficient organic photovoltaic (OPV) materials are constructed by attaching completely planar, symmetric end-groups to donor-acceptor electroactive small molecules. Appending C2-pyrene as the small molecule end-group to a diketopyrrolopyrrole core leads to materials with a tight, aligned crystal packing and favorable morphology dictated by π-π interactions, resulting in high power conversion efficiencies and high fill factors. The use of end-groups to direct molecular self-assembly is an effective strategy for designing high-performance small molecule OPV devices. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells

    Science.gov (United States)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1993-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source.

  15. High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells

    International Nuclear Information System (INIS)

    Chubb, D.L.; Flood, D.J.; Lowe, R.A.

    1993-08-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source

  16. Spectro-polarimetric observation in UV with CLASP to probe the chromosphere and transition region

    Science.gov (United States)

    Kano, Ryouhei; Ishikawa, Ryohko; Winebarger, Amy R.; Auchère, Frédéric; Trujillo Bueno, Javier; Narukage, Noriyuki; Kobayashi, Ken; Bando, Takamasa; Katsukawa, Yukio; Kubo, Masahito; Ishikawa, Shin-Nosuke; Giono, Gabriel; Hara, Hirohisa; Suematsu, Yoshinori; Shimizu, Toshifumi; Sakao, Taro; Tsuneta, Saku; Ichimoto, Kiyoshi; Goto, Motoshi; Cirtain, Jonathan W.; De Pontieu, Bart; Casini, Roberto; Manso Sainz, Rafael; Asensio Ramos, Andres; Stepan, Jiri; Belluzzi, Luca; Carlsson, Mats

    2016-05-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a NASA sounding-rocket experiment that was performed in White Sands in the US on September 3, 2015. During its 5-minute ballistic flight, CLASP successfully made the first spectro-polarimetric observation in the Lyman-alpha line (121.57 nm) originating in the chromosphere and transition region. Since the Lyman-alpha polarization is sensitive to magnetic field of 10-100 G by the Hanle effect, we aim to infer the magnetic field information in such upper solar atmosphere with this experiment.The obtained CLASP data showed that the Lyman-alpha scattering polarization is about a few percent in the wings and the order of 0.1% in the core near the solar limb, as it had been theoretically predicted, and that both polarization signals have a conspicuous spatio-temporal variability. CLASP also observed another upper-chromospheric line, Si III (120.65 nm), whose critical field strength for the Hanle effect is 290 G, and showed a measurable scattering polarization of a few % in this line. The polarization properties of the Si III line could facilitate the interpretation of the scattering polarization observed in the Lyman-alpha line.In this presentation, we would like to show how the upper chromosphere and transition region are seen in the polarization of these UV lines and discuss the possible source of these complicated polarization signals.

  17. Improvement in performance of a direct solar-thermally driven diffusion-absorption refrigerator; Leistungssteigerung einer direkt solarthermisch angetriebenen Diffusions-Absorptionskaeltemaschine

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Fabian; Bierling, Bernd; Spindler, Klaus [Stuttgart Univ. (Germany). Inst. fuer Thermodynamik und Waermetechnik (ITW)

    2012-07-01

    The diffusion-absorption refrigeration process offers the possibility of a wear-free refrigeration system without electricity and noise. At the Institute for Thermodynamics and Thermal Engineering (Stuttgart, Federal Republic of Germany), a decentralized solar refrigeration system is developed based on this process. The expeller and the thermosiphon pump of this process are integrated in the collector, and thus are heated directly. The diffusion-absorption refrigeration process also can be used for domestic water heating by means of a second cycle in the collector. A cooling capacity of 400 W is to be achieved for each solar collector (2.5 m{sup 2}). Several refrigeration systems can be modular interconnected for higher cooling capacities. As part of the DKV Conference 2011, the construction of the plant, the first measurement data and results were presented. Since then, both the cooling capacity and the coefficient of performance of the diffusion-absorption refrigeration system could be increased significantly. For this, solvent heat exchanger, evaporator, absorber and gas heat exchanger have been optimized in terms of system efficiency. In addition, a stable system operation could be achieved by means of a bypass line. About this line, an exaggerated refrigerant already is removed in the solvent heat exchanger. In addition, a condensate pre-cooler was integrated in order to increase the efficiency. For a detailed investigation of the auxiliary gas cycle facilities, the volume flow and the concentration of the auxiliary gas circuit were examined under utilization of an ultrasonic sensor. In order to evaluate the influence factors by means of a parametric study, the mass transfer in the auxiliary gas circuit was simulated using the two-fluid model. The results of these studies, the current system configuration and the current results are presented in the contribution under consideration.

  18. A theoretical study of a direct contact membrane distillation system coupled to a salt-gradient solar pond for terminal lakes reclamation.

    Science.gov (United States)

    Suárez, Francisco; Tyler, Scott W; Childress, Amy E

    2010-08-01

    Terminal lakes are water bodies that are located in closed watersheds with the only output of water occurring through evaporation or infiltration. The majority of these lakes, which are commonly located in the desert and influenced by human activities, are increasing in salinity. Treatment options are limited, due to energy costs, and many of these lakes provide an excellent opportunity to test solar-powered desalination systems. This paper theoretically investigates utilization of direct contact membrane distillation (DCMD) coupled to a salt-gradient solar pond (SGSP) for sustainable freshwater production at terminal lakes. A model for heat and mass transport in the DCMD module and a thermal model for an SGSP were developed and coupled to evaluate the feasibility of freshwater production. The construction of an SGSP outside and inside of a terminal lake was studied. As results showed that freshwater flows are on the same order of magnitude as evaporation, these systems will only be successful if the SGSP is constructed inside the terminal lake so that there is little or no net increase in surface area. For the study site of this investigation, water production on the order of 2.7 x 10(-3) m(3) d(-1) per m(2) of SGSP is possible. The major advantages of this system are that renewable thermal energy is used so that little electrical energy is required, the coupled system requires low maintenance, and the terminal lake provides a source of salts to create the stratification in the SGSP. (c) 2010 Elsevier Ltd. All rights reserved.

  19. Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.

    Science.gov (United States)

    Longe, Karen M.; McClelland, Michael J.

    Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…

  20. Solar Indices - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  1. Solar Indices - Solar Ultraviolet

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  2. Solar Indices - Solar Corona

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  3. Solar Indices - Solar Irradiance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  4. Observations of chromospheric lines from OSO-8

    Science.gov (United States)

    Grossmann-Doerth, U.; Kneer, F.; Uexkuell, M.; Artzner, G. E.; Vial, J. C.

    1980-01-01

    Results of OSO-8 measurements of the line profiles of the solar Lyman alpha, Ca II K and Mg II k lines are presented. Observations were obtained with the Laboratoire de Physique Stellaire et Planetaire spectrometer at spectral resolutions of 0.25 and 0.060 A for Lyman alpha and 0.025 A for the Mg II and Ca II lines. The Lyman alpha profiles are found to be highly variable according to spatial position with the intensities of the three lines well correlated, and confirm previous observations of the quiet solar chromosphere. Data suggest that the quiet chromosphere is a dynamical phenomenon whose description in terms of a static model atmosphere is only qualitatively valid at best.

  5. Power Conversion Efficiency of Arylamine Organic Dyes for Dye-Sensitized Solar Cells (DSSCs) Explicit to Cobalt Electrolyte: Understanding the Structural Attributes Using a Direct QSPR Approach

    OpenAIRE

    Supratik Kar; Juganta K. Roy; Danuta Leszczynska; Jerzy Leszczynski

    2016-01-01

    Post silicon solar cell era involves light-absorbing dyes for dye-sensitized solar systems (DSSCs). Therefore, there is great interest in the design of competent organic dyes for DSSCs with high power conversion efficiency (PCE) to bypass some of the disadvantages of silicon-based solar cell technologies, such as high cost, heavy weight, limited silicon resources, and production methods that lead to high environmental pollution. The DSSC has the unique feature of a distance-dependent electron...

  6. An automatic measuring system for mapping of spectral and angular dependence of direct and diffuse solar radiation; Et automatisk maalesystem for kartlegging av vinkel- og spektralfordeling av direkte og diffus solstraaling

    Energy Technology Data Exchange (ETDEWEB)

    Grandum, Oddbjoern

    1997-12-31

    In optimizing solar systems, it is necessary to know the spectral and angular dependence of the radiation. The general nonlinear character of most solar energy systems accentuates this. This thesis describes a spectroradiometer that will measure both the direct component of the solar radiation and the angular dependence of the diffuse component. Radiation from a selected part of the sky is transported through a movable set of tube sections on to a stationary set of three monochromators with detectors. The beam transport system may effectively be looked upon as a single long tube aimed at a particular spot in the sky. The half value of the effective opening angle is 1.3{sup o} for diffuse radiation and 2.8{sup o} for direct radiation. The whole measurement process is controlled and operated by a PC and normally runs without manual attention. The instrument is built into a caravan. The thesis describes in detail the experimental apparatus, calibration and measurement accuracies. To map the diffuse radiation, one divides the sky into 26 sectors of equal solid angle. A complete measurement cycle is then made at a random point within each sector. These measurements are modelled by fitting to spherical harmonics, enforcing symmetry around the solar direction and the horizontal plane. The direct radiation is measured separately. Also the circumsolar sector is given special treatment. The measurements are routinely checked against global radiation measured in parallel by a standard pyranometer, and direct solar radiation by a pyrheliometer. An extensive improvement programme is being planned for the instrument, including the use of a photomultiplier tube to measure the UV part of the spectrum, a diode array for the 400-1100 nm range, and use of a Ge diode for the 1000-1900 nm range. 78 refs., 90 figs., 31 tabs.

  7. Solar Air Heaters with Thermal Heat Storages

    OpenAIRE

    Saxena, Abhishek; Goel, Varun

    2013-01-01

    Solar energy can be converted into different forms of energy, either to thermal energy or to electrical energy. Solar energy is converted directly into electrical power by photovoltaic modules, while solar collector converts solar energy into thermal energy. Solar collector works by absorbing the direct solar radiation and converting it into thermal energy, which can be stored in the form of sensible heat or latent heat or a combination of sensible and latent heats. A theoretical study has be...

  8. TiO2 film decorated with highly dispersed polyoxometalate nanoparticles synthesized by micelle directed method for the efficiency enhancement of dye-sensitized solar cells

    Science.gov (United States)

    He, Lifei; Chen, Li; Zhao, Yue; Chen, Weilin; Shan, Chunhui; Su, Zhongmin; Wang, Enbo

    2016-10-01

    In this work, two kinds of polyoxometalate (POM) nanoparticles with controlled shapes and structures were synthesized by micelle directed method and then composited with TiO2 via calcination to remove the surfactants owing to the excellent electronic storage and transmission ability of POM, finally obtaining two kinds of TiO2 composites with highly dispersed and small-sized POM nanoparticles (∼1 nm). The TiO2 composites were then induced into the photoanodes of dye-sensitized (N719) solar cells (DSSCs). The separation of electron-holes becomes more favorable due to the nanostructure and high dispersion of POM which provide more active sites than pure POM tending to agglomeration. The TiO2 composite photoanodes finally yielded the power conversion efficiency (PCE) of 8.4% and 8.2%, respectively, which were 42% and 39% higher than the pristine TiO2 based anodes. In addition, the mechanisms of POM in DSSC are proposed.

  9. The inconstant solar constant

    International Nuclear Information System (INIS)

    Willson, R.C.; Hudson, H.

    1984-01-01

    The Active Cavity Radiometer Irradiance Monitor (ACRIM) of the Solar Maximum Mission satellite measures the radiant power emitted by the sun in the direction of the earth and has worked flawlessly since 1980. The main motivation for ACRIM's use to measure the solar constant is the determination of the extent to which this quantity's variations affect earth weather and climate. Data from the solar minimum of 1986-1987 is eagerly anticipated, with a view to the possible presence of a solar cycle variation in addition to that caused directly by sunspots

  10. Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells

    OpenAIRE

    Werner, Jérémie; Barraud, Loris; Walter, Arnaud; Bräuninger, Matthias; Sahli, Florent; Sacchetto, Davide; Tétreault, Nicolas; Paviet-Salomon, Bertrand; Moon, Soo-Jin; Allebé, Christophe; Despeisse, Matthieu; Nicolay, Sylvain; De Wolf, Stefaan; Niesen, Bjoern; Ballif, Christophe

    2016-01-01

    Combining market-proven silicon solar cell technology with an efficient wide band gap top cell into a tandem device is an attractive approach to reduce the cost of photovoltaic systems. For this, perovskite solar cells are promising high-efficiency top cell candidates, but their typical device size (

  11. Solar building

    OpenAIRE

    Zhang, Luxin

    2014-01-01

    In my thesis I describe the utilization of solar energy and solar energy with building integration. In introduction it is also mentioned how the solar building works, trying to make more people understand and accept the solar building. The thesis introduces different types of solar heat collectors. I compared the difference two operation modes of solar water heating system and created examples of solar water system selection. I also introduced other solar building applications. It is conv...

  12. Solar energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role solar energy may have in the energy future of the US. The topics discussed in the chapter include the solar resource, solar architecture including passive solar design and solar collectors, solar-thermal concentrating systems including parabolic troughs and dishes and central receivers, photovoltaic cells including photovoltaic systems for home use, and environmental, health and safety issues

  13. Simulation and economic analysis of a liquid-based solar system with a direct-contact liquid-liquid heat exchanger, in comparison to a system with a conventional heat exchanger

    Science.gov (United States)

    Brothers, P.; Karaki, S.

    Using a solar computer simulation package called TRNSYS, simulations of the direct contact liquid-liquid heat exchanger (DCLLHE) solar system and a system with conventional shell-and-tube heat exchanger were developed, based in part on performance measurements of the actual systems. The two systems were simulated over a full year on an hour-by-hour basis at five locations; Boston, Massachusetts, Charleston, South Carolina, Dodge City, Kansas, Madison, Wisconsin, and Phoenix, Arizona. Typically the direct-contact system supplies slightly more heat for domestic hot water and space heating in all locations and about 5 percentage points more cooling as compared to the conventional system. Using a common set of economic parameters and the appropriate federal and state income tax credits, as well as property tax legislation for solar systems in the corresponding states, the results of the study indicate for heating-only systems, the DCLLHE system has a slight life-cycle cost disadvantage compared to the conventional system. For combined solar heating and cooling systems, the DCLLHE has a slight life-cycle cost advantage which varies with location and amounts to one to three percent difference from the conventional system.

  14. Polymer tandem solar cells

    NARCIS (Netherlands)

    Gilot, J.

    2010-01-01

    Solar cells convert solar energy directly into electricity and are attractive contribute to the increasing energy demand of modern society. Commercial mono-crystalline silicon based devices are infiltrating the energy market but their expensive, time and energy consuming production process

  15. Harnessing solar heat

    CERN Document Server

    Norton, Brian

    2013-01-01

    Systems engineered by man to harness solar heat in a controlled manner now include a diverse range of technologies each serving distinctive needs in particular climate contexts. This text covers the breadth of solar energy technologies for the conversion of solar energy to provide heat, either as the directly-used output or as an intermediary to other uses such as power generation or cooling. It is a wholly updated, extended and revised version of “Solar Energy Thermal Technology” first published in 1992. The text draws on the own author’s research and that of numerous colleagues and

  16. Solar energy policy review

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-08-17

    A number of memoranda and reports are collected which deal with evaluations of solar energy policy options, including direct and indirect labor impacts and costs of different options and consumer protection. (LEW)

  17. Solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, J.

    1981-08-05

    The photovoltaic generator is the central part of all solar systems. Flat solar cells embedded in glass are preferred which can also convert diffuse solar radiation. Hybrid modules generate electrical and thermal energy simultaneously. With decreasing generator cost, the cost of energy storage becomes critical. Development activities are mostly directed on the development of stationary lead accumulator batteries and the electronic charging and protective systems. The block diagram of the current converter is presented, and applications of solar systems in domestic heating engineering, transportation technology, communications, and hydrological engineering. Solar villages are recommended which, established in bilateral cooperation with Third World authorities, may demonstrate the advantages of solar energy in heat and electric power generation.

  18. Solar flares

    International Nuclear Information System (INIS)

    Kaastra, J.S.

    1985-01-01

    In this thesis an electrodynamic model for solar flares is developed. The main theoretical achievements underlying the present study are treated briefly and the observable flare parameters are described within the framework of the flare model of this thesis. The flare model predicts large induced electric fields. Therefore, acceleration processes of charged particles by direct electric fields are treated. The spectrum of the accelerated particles in strong electric fields is calculated, 3 with the electric field and the magnetic field perpendicular and in the vicinity of an X-type magnetic neutral line. An electromagnetic field configuration arises in the case of a solar flare. A rising current filament in a quiescent background bipolar magnetic field causes naturally an X-type magnetic field configuration below the filament with a strong induced electric field perpendicular to the ambient magnetic field. This field configuration drives particles and magnetic energy towards the neutral line, where a current sheet is generated. The global evolution of the fields in the flare is determined by force balance of the Lorentz forces on the filament and the force balance on the current sheet. The X-ray, optical and radio observations of a large solar flare on May 16, 1981 are analyzed. It is found that these data fit the model very well. (Auth.)

  19. Solar Features - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A solar flare is a short-lived sudden increase in the intensity of radiation emitted in the neighborhood of sunspots. For many years it was best monitored in the...

  20. Solar storms; Tormentas solares

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: Pereira Cuesta, S.; Pereira Pagan, B.

    2016-08-01

    Solar storms begin with an explosion, or solar flare, on the surface of the sun. The X-rays and extreme ultraviolet radiation from the flare reach the Earths orbit minutes later-travelling at light speed. The ionization of upper layers of our atmosphere could cause radio blackouts and satellite navigation errors (GPS). Soon after, a wave of energetic particles, electrons and protons accelerated by the explosion crosses the orbit of the Earth, and can cause real and significant damage. (Author)

  1. CERN... Solar Style

    CERN Multimedia

    2001-01-01

    Inventor William van Sprolant presenting the Solar Club's latest invention, the solar fountain. The CERN Solar Club is giving new meaning to the phrase 'fun in the sun' with their most recently developed contraption, the Solar Fountain. The Fountain was presented to the public just outside of Restaurant 1 on Wednesday October, 17th and uses solar energy to run a water pump at its base to propel a golden plastic ball up into the air. As lovely as the fountain is, the funny thing about it is that the height of the water jet and the ball are an artistic method of measuring the amount of solar power being captured by the photovoltaique panel (no batteries included). The day it was presented started out cloudy, but as the afternoon wore on, the weather brightened and the fountain jumped to life. William van Sprolant, the Solar Fountain's inventor, had great fun with the fountain in front of a group of visiting children swiveling the solar panel in multiple directions. 'Everyone who installs solar panels worrie...

  2. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    Science.gov (United States)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  3. Understanding S-shaped current-voltage characteristics of organic solar cells: Direct measurement of potential distributions by scanning Kelvin probe

    Science.gov (United States)

    Saive, Rebecca; Mueller, Christian; Schinke, Janusz; Lovrincic, Robert; Kowalsky, Wolfgang

    2013-12-01

    We present a comparison of the potential distribution along the cross section of bilayer poly(3-hexylthiophene)/1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 (P3HT/PCBM) solar cells, which show normal and anomalous, S-shaped current-voltage (IV) characteristics. We expose the cross sections of the devices with a focussed ion beam and measure them with scanning Kelvin probe microscopy. We find that in the case of S-shaped IV-characteristics, there is a huge potential drop at the PCBM/Al top contact, which does not occur in solar cells with normal IV-characteristics. This behavior confirms the assumption that S-shaped curves are caused by hindered charge transport at interfaces.

  4. Understanding S-shaped current-voltage characteristics of organic solar cells: Direct measurement of potential distributions by scanning Kelvin probe

    International Nuclear Information System (INIS)

    Saive, Rebecca; Kowalsky, Wolfgang; Mueller, Christian; Schinke, Janusz; Lovrincic, Robert

    2013-01-01

    We present a comparison of the potential distribution along the cross section of bilayer poly(3-hexylthiophene)/1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 (P3HT/PCBM) solar cells, which show normal and anomalous, S-shaped current-voltage (IV) characteristics. We expose the cross sections of the devices with a focussed ion beam and measure them with scanning Kelvin probe microscopy. We find that in the case of S-shaped IV-characteristics, there is a huge potential drop at the PCBM/Al top contact, which does not occur in solar cells with normal IV-characteristics. This behavior confirms the assumption that S-shaped curves are caused by hindered charge transport at interfaces

  5. Energy storage using phase-change materials for active solar heating and cooling: An evaluation of future research and development direction

    Science.gov (United States)

    Borkowski, R. J.; Stovall, T. K.; Kedl, R. J.; Tomlinson, J. J.

    1982-04-01

    The current state of the art and commercial potential of active solar heating and cooling systems for buildings, and the use of thermal energy storage with these systems are assessed. The need for advanced latent heat storage subsystems in these applications and priorities for their development are determined. Latent storage subsystems are advantageous in applications where their compactness may be exploited. It is suggested that subsystems could facilitate storage in retrofit applications in which storage would be physically impossible otherwise.

  6. Power Conversion Efficiency of Arylamine Organic Dyes for Dye-Sensitized Solar Cells (DSSCs Explicit to Cobalt Electrolyte: Understanding the Structural Attributes Using a Direct QSPR Approach

    Directory of Open Access Journals (Sweden)

    Supratik Kar

    2016-12-01

    Full Text Available Post silicon solar cell era involves light-absorbing dyes for dye-sensitized solar systems (DSSCs. Therefore, there is great interest in the design of competent organic dyes for DSSCs with high power conversion efficiency (PCE to bypass some of the disadvantages of silicon-based solar cell technologies, such as high cost, heavy weight, limited silicon resources, and production methods that lead to high environmental pollution. The DSSC has the unique feature of a distance-dependent electron transfer step. This depends on the relative position of the sensitized organic dye in the metal oxide composite system. In the present work, we developed quantitative structure-property relationship (QSPR models to set up the quantitative relationship between the overall PCE and quantum chemical molecular descriptors. They were calculated from density functional theory (DFT and time-dependent DFT (TD-DFT methods as well as from DRAGON software. This allows for understanding the basic electron transfer mechanism along with the structural attributes of arylamine-organic dye sensitizers for the DSSCs explicit to cobalt electrolyte. The identified properties and structural fragments are particularly valuable for guiding time-saving synthetic efforts for development of efficient arylamine organic dyes with improved power conversion efficiency.

  7. Solar Energy.

    Science.gov (United States)

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  8. XSST/TRC rocket observations of July 13, 1982 flare. [X-ray Spectrometer, Spectrograph and Telescope/Transition Region Camera

    Science.gov (United States)

    Foing, Bernard H.; Bonnet, Roger M.; Dame, Luc; Bruner, Marilyn; Acton, Loren W.

    1986-01-01

    The present analysis of UV filtergrams of the July 13, 1982 solar flare obtained by the XSST/TRC rocket experiments has used calibrated intensities of the flare components to directly estimate the Lyman-alpha line flux, C IV line flux, and excess 160-nm continuum temperature brighness over the underlying plage. The values obtained are small by comparison with other observed or calculated equivalent quantities from the Machado (1980) model of flare F1. The corresponding power required to heat up to the temperature minimum over the 1200 sq Mm area is found to be 3.6 x 10 to the 25th erg/sec for this small X-ray C6 flare, 7 min after the ground-based observed flare maximum.

  9. XSST/TRC rocket observations of July 13, 1982 flare

    International Nuclear Information System (INIS)

    Foing, B.H.; Bonnet, R.M.; Dame, L.; Bruner, M.; Acton, L.W.

    1986-01-01

    The present analysis of UV filtergrams of the July 13, 1982 solar flare obtained by the XSST/TRC rocket experiments has used calibrated intensities of the flare components to directly estimate the Lyman-alpha line flux, C IV line flux, and excess 160-nm continuum temperature brighness over the underlying plage. The values obtained are small by comparison with other observed or calculated equivalent quantities from the Machado (1980) model of flare F1. The corresponding power required to heat up to the temperature minimum over the 1200 sq Mm area is found to be 3.6 x 10 to the 25th erg/sec for this small X-ray C6 flare, 7 min after the ground-based observed flare maximum. 13 references

  10. Variations in Solar Parameters and Cosmic Rays with Solar Magnetic Polarity

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S. [Department of Earth Science Education, Chonnam National University, Gwangju, 61186 (Korea, Republic of); Yi, Y., E-mail: suyeonoh@jnu.ac.kr [Department of Astronomy, Space Science and Geology, Chungnam National University, Daejeon, 34134 (Korea, Republic of)

    2017-05-01

    The sunspot number varies with the 11-year Schwabe cycle, and the solar magnetic polarity reverses every 11 years approximately at the solar maximum. Because of polarity reversal, the difference between odd and even solar cycles is seen in solar activity. In this study, we create the mean solar cycle expressed by phase using the monthly sunspot number for all solar cycles 1–23. We also generate the mean solar cycle for sunspot area, solar radio flux, and cosmic ray flux within the allowance of observational range. The mean solar cycle has one large peak at solar maximum for odd solar cycles and two small peaks for most even solar cycles. The odd and even solar cycles have the statistical difference in value and shape at a confidence level of at least 98%. For solar cycles 19–23, the second peak in the even solar cycle is larger than the first peak. This result is consistent with the frequent solar events during the declining phase after the solar maximum. The difference between odd and even solar cycles can be explained by a combined model of polarity reversal and solar rotation. In the positive/negative polarity, the polar magnetic field introduces angular momentum in the same/opposite direction as/to the solar rotation. Thus the addition/subtraction of angular momentum can increase/decrease the motion of plasma to support the formation of sunspots. Since the polarity reverses at the solar maximum, the opposite phenomenon occurs in the declining phase.

  11. Solar energy

    Science.gov (United States)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  12. Solar Combisystems

    DEFF Research Database (Denmark)

    Thür, Alexander

    2006-01-01

    This note first introduces what is a solar combisystem, the structure how a solar combisystem is build up and what are criteria’s to evaluate a solar combisystem concept. Further on the main components of a solar combisystem, the main characteristics and possible advantages and disadvantages...... compared to each other are described. It is not the goal of this note to explain the technical details how to design all components of a solar combisystem. This is done during other lectures of the solar course and in other basic courses as well. This note tries to explain how a solar combisystem...

  13. Wireless transmission of metering data from a photovoltaic solar ...

    African Journals Online (AJOL)

    The data from direct cable connection was highly reliable because data ... aggregated solar home systems instead of establishing grid connected solar farms. ... Key words: PV solar home system, DC power meter, GSM, data adaptor software ...

  14. Sources of Sodium in the Lunar Exosphere: Modeling Using Ground-Based Observations of Sodium Emission and Spacecraft Data of the Plasma

    Science.gov (United States)

    Sarantos, Menelaos; Killen, Rosemary M.; Sharma, A. Surjalal; Slavin, James A.

    2009-01-01

    Observations of the equatorial lunar sodium emission are examined to quantify the effect of precipitating ions on source rates for the Moon's exospheric volatile species. Using a model of exospheric sodium transport under lunar gravity forces, the measured emission intensity is normalized to a constant lunar phase angle to minimize the effect of different viewing geometries. Daily averages of the solar Lyman alpha flux and ion flux are used as the input variables for photon-stimulated desorption (PSD) and ion sputtering, respectively, while impact vaporization due to the micrometeoritic influx is assumed constant. Additionally, a proxy term proportional to both the Lyman alpha and to the ion flux is introduced to assess the importance of ion-enhanced diffusion and/or chemical sputtering. The combination of particle transport and constrained regression models demonstrates that, assuming sputtering yields that are typical of protons incident on lunar soils, the primary effect of ion impact on the surface of the Moon is not direct sputtering but rather an enhancement of the PSD efficiency. It is inferred that the ion-induced effects must double the PSD efficiency for flux typical of the solar wind at 1 AU. The enhancement in relative efficiency of PSD due to the bombardment of the lunar surface by the plasma sheet ions during passages through the Earth's magnetotail is shown to be approximately two times higher than when it is due to solar wind ions. This leads to the conclusion that the priming of the surface is more efficiently carried out by the energetic plasma sheet ions.

  15. Solar Systems

    Science.gov (United States)

    1979-01-01

    The solar collectors shown are elements of domestic solar hot water systems produced by Solar One Ltd., Virginia Beach, Virginia. Design of these systems benefited from technical expertise provided Solar One by NASA's Langley Research Center. The company obtained a NASA technical support package describing the d e sign and operation of solar heating equipment in NASA's Tech House, a demonstration project in which aerospace and commercial building technology are combined in an energy- efficient home. Solar One received further assistance through personal contact with Langley solar experts. The company reports that the technical information provided by NASA influenced Solar One's panel design, its selection of a long-life panel coating which increases solar collection efficiency, and the method adopted for protecting solar collectors from freezing conditions.

  16. Solar radiophysics

    International Nuclear Information System (INIS)

    McLean, D.J.; Labrum, N.R.

    1985-01-01

    This book treats all aspects of solar radioastronomy at metre wavelengths, particularly work carried out on the Australian radioheliograph at Culgoora, with which most of the authors have been associated in one way or another. After an introductory section on historical aspects, the solar atmosphere, solar flares, and coronal radio emission, the book deals with instrumentation, theory, and details of observations and interpretations of the various aspects of metrewave solar radioastronomy, including burst types, solar storms, and the quiet sun. (U.K.)

  17. Transparent solar cell window module

    Energy Technology Data Exchange (ETDEWEB)

    Chau, Joseph Lik Hang; Chen, Ruei-Tang; Hwang, Gan-Lin; Tsai, Ping-Yuan [Nanopowder and Thin Film Technology Center, ITRI South, Industrial Technology Research Institute, Tainan County 709 (China); Lin, Chien-Chu [I-Lai Acrylic Corporation, Tainan City (China)

    2010-03-15

    A transparent solar cell window module based on the integration of traditional silicon solar cells and organic-inorganic nanocomposite material was designed and fabricated. The transparent solar cell window module was composed of a nanocomposite light-guide plate and traditional silicon solar cells. The preparation of the nanocomposite light-guide plate is easy without modification of the traditional casting process, the nanoparticles sol can be added directly to the polymethyl methacrylate (PMMA) monomer syrup during the process. The solar energy collected by this window can be used to power up small household electrical appliances. (author)

  18. Design and Implementation of Dual Axis Solar Tracking system

    OpenAIRE

    Sirigauri N,; Raghav S

    2015-01-01

    Solar energy is a promising technology that can have huge long term benefits. Solar cells convert the solar energy into electrical energy. Solar tracking system is the most suited technology to improve the efficiency and enhance the performance by utilizing maximum solar energy through the solar cell. In hardware development we utilize LDR’s as sensors and two servomotors to direct the position of the solar panel. The software part is implemented on a code written using an Arduino...

  19. Solar powered Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, R.J.

    1987-11-24

    In a solar dish module which comprises a dish which receives incident solar rays and reflects them to a focus at which is located the combination of a receiver and a heat engine organized and arranged so that the heat energy of the reflected solar rays collected at the receiver powers the engine, and wherein the receiver and heat engine are supported from the dish by a framework, the improvement is described which comprises journal means for journaling at least the engine on the framework to maintain certain predetermined spatial orientation for the engine in relation to the direction of gravity irrespective of spatial orientation of the dish.

  20. High-Fidelity Solar Power Income Modeling for Solar-Electric UAVs: Development and Flight Test Based Verification

    OpenAIRE

    Oettershagen, Philipp

    2017-01-01

    Solar power models are a crucial element of solar-powered UAV design and performance analysis. During the conceptual design phase, their accuracy directly relates to the accuracy of the predicted performance metrics and thus the final design characteristics of the solar-powered UAV. Likewise, during the operations phase of a solar-powered UAV accurate solar power income models are required to predict and assess the solar power system performance. However, the existing literature on solar-powe...

  1. Energy from solar balloons

    Energy Technology Data Exchange (ETDEWEB)

    Grena, Roberto [C. R. Casaccia, via Anguillarese 301, 00123 Roma (Italy)

    2010-04-15

    Solar balloons are hot air balloons in which the air is heated directly by the sun, by means of a black absorber. The lift force of a tethered solar balloon can be used to produce energy by activating a generator during the ascending motion of the balloon. The hot air is then discharged when the balloon reaches a predefined maximum height. A preliminary study is presented, along with an efficiency estimation and some considerations on possible realistic configurations. (author)

  2. Sunmotor Solar Shack 120

    International Nuclear Information System (INIS)

    Jensen, E.

    2009-01-01

    This article described a solar pump that was developed by Alberta-based Sunmotor International Ltd. The prototype Solar Shack 120 was recently deployed in central Alberta for a remediation project for Devon Canada. The portable solar pump unit is well suited for environmental remediation in the oilpatch where conventional electricity is not available. The solar panels automatically run the pump whenever there is enough sunlight and there is liquid in the sump. Devon Canada wanted a system that continues to pump during cloudy weather to avoid the accumulation of effluent in the sump. The Solar Shack 120 delivers 120 volts of alternating current (vac) power. Solar panels are used to charge a bank of large sealed batteries that supply direct power (DC) to an inverter, which converts it into AC. A thermostat control was added to shut off the pumps in cold weather to avoid battery discharging. The Solar Shack unit has possibilities in countries with unreliable electricity supplies. It could provide a backup power supply that automatically kicks in whenever the power grid goes down. Sunmotor International Ltd. can supply complete remote power systems for both AC and DC electrical requirements. The systems are designed for each application to ensure customer satisfaction. The company is currently building a unit that integrates solar power with a generator backup, thereby eliminating the annoying noise of a continually running generator. 1 fig

  3. Direct and seamless coupling of TiO{sub 2} nanotube photonic crystal to dye-sensitized solar cell: a single-step approach

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Cho Tung; Zhou, Limin [Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (China); Huang, Haitao; Xie, Keyu; Wang, Yu. [Department of Applied Physics and Materials Research Center, Hong Kong Polytechnic University, Hung Hom, Kowloon (China); Feng, Tianhua; Li, Jensen [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (China); Tam, Wing Yim [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (China)

    2011-12-15

    A TiO{sub 2} nanotube layer with a periodic structure is used as a photonic crystal to greatly enhance light harvesting in TiO{sub 2} nanotube-based dye-sensitized solar cells. Such a tube-on-tube structure fabricated by a single-step approach facilitates good physical contact, easy electrolyte infiltration, and efficient charge transport. An increase of over 50% in power conversion efficiency is obtained in comparison to reference cells without a photonic crystal layer (under similar total thickness and dye loading). (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Solar Energy Educational Material, Activities and Science Projects

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Solar Energy Educational Materials Solar with glasses " ;The sun has produced energy for billions of years. Solar energy is the solar radiation that reaches the earth. Solar energy can be converted directly or indirectly into other forms of energy, such as

  5. Triblock-Terpolymer-Directed Self-Assembly of Mesoporous TiO2: High-Performance Photoanodes for Solid-State Dye-Sensitized Solar Cells

    KAUST Repository

    Docampo, Pablo

    2012-04-30

    A new self-assembly platform for the fast and straightforward synthesis of bicontinuous, mesoporous TiO 2 films is presented, based on the triblock terpolymer poly(isoprene - b - styrene - b - ethylene oxide). This new materials route allows the co-assembly of the metal oxide as a fully interconnected minority phase, which results in a highly porous photoanode with strong advantages over the state-of-the-art nanoparticle-based photoanodes employed in solidstate dye-sensitized solar cells. Devices fabricated through this triblock terpolymer route exhibit a high availability of sub-bandgap states distributed in a narrow and low enough energy band, which maximizes photoinduced charge generation from a state-of-the-art organic dye, C220. As a consequence, the co-assembled mesoporous metal oxide system outperformed the conventional nanoparticle-based electrodes fabricated and tested under the same conditions, exhibiting solar power-conversion efficiencies of over 5%. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Triblock-Terpolymer-Directed Self-Assembly of Mesoporous TiO2: High-Performance Photoanodes for Solid-State Dye-Sensitized Solar Cells

    KAUST Repository

    Docampo, Pablo; Stefik, Morgan; Guldin, Stefan; Gunning, Robert; Yufa, Nataliya A.; Cai, Ning; Wang, Peng; Steiner, Ullrich; Wiesner, Ulrich; Snaith, Henry J.

    2012-01-01

    A new self-assembly platform for the fast and straightforward synthesis of bicontinuous, mesoporous TiO 2 films is presented, based on the triblock terpolymer poly(isoprene - b - styrene - b - ethylene oxide). This new materials route allows the co-assembly of the metal oxide as a fully interconnected minority phase, which results in a highly porous photoanode with strong advantages over the state-of-the-art nanoparticle-based photoanodes employed in solidstate dye-sensitized solar cells. Devices fabricated through this triblock terpolymer route exhibit a high availability of sub-bandgap states distributed in a narrow and low enough energy band, which maximizes photoinduced charge generation from a state-of-the-art organic dye, C220. As a consequence, the co-assembled mesoporous metal oxide system outperformed the conventional nanoparticle-based electrodes fabricated and tested under the same conditions, exhibiting solar power-conversion efficiencies of over 5%. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Control of Solid-State Dye-Sensitized Solar Cell Performance by Block-Copolymer-Directed TiO2 Synthesis

    KAUST Repository

    Docampo, Pablo

    2010-04-21

    Hybrid dye-sensitized solar cells are typically composed of mesoporous titania (TiO2), light-harvesting dyes, and organic molecular hole-transporters. Correctly matching the electronic properties of the materials is critical to ensure efficient device operation. In this study, TiO 2 is synthesized in a welldefined morphological confinement that arises from the self-assembly of a diblock copolymer - poly(isoprene-b-ethylene oxide) (Pl-b-PEO). The crystallization environment, tuned by the inorganic (TiO2 mass) to organic (polymer) ratio, is shown to be a decisive factor in determining the distribution of sub-bandgap electronic states and the associated electronic function in solid-state dye-sensitized solar cells. Interestingly, the tuning of the sub-bandgap states does not appear to strongly influence the charge transport and recombination in the devices. However, increasing the depth and breadth of the density of sub-bandgap states correlates well with an increase in photocurrent generation, suggesting that a high density of these sub-bandgap states is critical for efficient photo-induced electron transfer and charge separation. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Control of Solid-State Dye-Sensitized Solar Cell Performance by Block-Copolymer-Directed TiO2 Synthesis

    KAUST Repository

    Docampo, Pablo; Guldin, Stefan; Stefik, Morgan; Tiwana, Priti; Orilall, M. Christopher; Hü ttner, Sven; Sai, Hiroaki; Wiesner, Ulrich; Steiner, Ulrich; Snaith, Henry J.

    2010-01-01

    Hybrid dye-sensitized solar cells are typically composed of mesoporous titania (TiO2), light-harvesting dyes, and organic molecular hole-transporters. Correctly matching the electronic properties of the materials is critical to ensure efficient device operation. In this study, TiO 2 is synthesized in a welldefined morphological confinement that arises from the self-assembly of a diblock copolymer - poly(isoprene-b-ethylene oxide) (Pl-b-PEO). The crystallization environment, tuned by the inorganic (TiO2 mass) to organic (polymer) ratio, is shown to be a decisive factor in determining the distribution of sub-bandgap electronic states and the associated electronic function in solid-state dye-sensitized solar cells. Interestingly, the tuning of the sub-bandgap states does not appear to strongly influence the charge transport and recombination in the devices. However, increasing the depth and breadth of the density of sub-bandgap states correlates well with an increase in photocurrent generation, suggesting that a high density of these sub-bandgap states is critical for efficient photo-induced electron transfer and charge separation. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. In vitro and in vivo assessment of direct effects of simulated solar and galactic cosmic radiation on human hematopoietic stem/progenitor cells.

    Science.gov (United States)

    Rodman, C; Almeida-Porada, G; George, S K; Moon, J; Soker, S; Pardee, T; Beaty, M; Guida, P; Sajuthi, S P; Langefeld, C D; Walker, S J; Wilson, P F; Porada, C D

    2017-06-01

    Future deep space missions to Mars and near-Earth asteroids will expose astronauts to chronic solar energetic particles (SEP) and galactic cosmic ray (GCR) radiation, and likely one or more solar particle events (SPEs). Given the inherent radiosensitivity of hematopoietic cells and short latency period of leukemias, space radiation-induced hematopoietic damage poses a particular threat to astronauts on extended missions. We show that exposing human hematopoietic stem/progenitor cells (HSC) to extended mission-relevant doses of accelerated high-energy protons and iron ions leads to the following: (1) introduces mutations that are frequently located within genes involved in hematopoiesis and are distinct from those induced by γ-radiation; (2) markedly reduces in vitro colony formation; (3) markedly alters engraftment and lineage commitment in vivo; and (4) leads to the development, in vivo, of what appears to be T-ALL. Sequential exposure to protons and iron ions (as typically occurs in deep space) proved far more deleterious to HSC genome integrity and function than either particle species alone. Our results represent a critical step for more accurately estimating risks to the human hematopoietic system from space radiation, identifying and better defining molecular mechanisms by which space radiation impairs hematopoiesis and induces leukemogenesis, as well as for developing appropriately targeted countermeasures.

  10. Triblock-terpolymer-directed self-assembly of mesoporous TiO{sub 2}: High-performance photoanodes for solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Docampo, Pablo; Gunning, Robert; Snaith, Henry J. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Stefik, Morgan; Wiesner, Ulrich [Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853 (United States); Guldin, Stefan; Yufa, Nataliya A.; Steiner, Ullrich [Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Cai, Ning; Wang, Peng [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2012-06-15

    A new self-assembly platform for the fast and straightforward synthesis of bicontinuous, mesoporous TiO{sub 2} films is presented, based on the triblock terpolymer poly(isoprene-b-styrene-b-ethylene oxide). This new materials route allows the co-assembly of the metal oxide as a fully interconnected minority phase, which results in a highly porous photoanode with strong advantages over the state-of-the-art nanoparticle-based photoanodes employed in solid-state dye-sensitized solar cells. Devices fabricated through this triblock terpolymer route exhibit a high availability of sub-bandgap states distributed in a narrow and low enough energy band, which maximizes photoinduced charge generation from a state-of-the-art organic dye, C220. As a consequence, the co-assembled mesoporous metal oxide system outperformed the conventional nanoparticle-based electrodes fabricated and tested under the same conditions, exhibiting solar power-conversion efficiencies of over 5%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Anaerobic biogasification of domestic wastes and direct solar energy use to produce biogas, biofertilizer and distilled water in a city - a pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    kumar, R.A.; Pandya, N.H.; Patil, A.M.; Annamalai, M.; Iyer, M.V.; Nirmala, K.A.; Venkatesh, P.; Prasad, C.R.; Subramani, C.

    1982-01-01

    Domestic wastes are a source of gas of high calorific value as well as biofertilizer and distilled water. A pilot project undertaken by the Tata Electric Cos., Bombay on recycling sewage, garbage and garden wastes of a community by converting them into biogas, organic fertilizer and distilled water is described. Techniques used are anaerobic fermentation and Solar drying using Solar stills. A fish pond also can be fed the output slurry as feed material. In this pilot plant, 1 to 2 m/sup 3/ raw sewage and one to two tons of processed garden wastes and garbage would be input daily into the digester. The production is expected to be about 100 m/sup 3/ of gas per day, along with about 1500 litres of slurry from which organic fertilizer of 100 200 Kgs can be bagged and transported as well as distilled water of about 500 to 1000 litres Laboratory studies and studies on an approximate scale model of the plant are described. Scaling up to a pilot plant by about 2000 times would increase the efficiency of the rate of gas production as has been found by other workers. These tests and studies have shown that the project is technically and eonomically viable. Applications of the process on a mass scale would result in increasing replacement of fossil energy intensive processes with negentropic methods of economic and social activities.

  12. Solar energy

    International Nuclear Information System (INIS)

    Kruisheer, N.

    1992-01-01

    In five brief articles product information is given on solar energy applications with special attention to the Netherlands. After an introduction on solar energy availability in the Netherlands the developments in solar boiler techniques are dealt with. Solar water heaters have advantages for the environment, and government subsidies stimulate different uses of such water heaters. Also the developments of solar cells show good prospects, not only for developing countries, but also for the industrialized countries. In brief the developments in solar energy storage and the connection of solar equipment to the grid are discussed. Finally attention is paid to the applications of passive solar energy in the housing construction, the use of transparent thermal insulation and the developments of translucent materials. 18 figs., 18 ills

  13. Solar Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar photographic and illustrated datasets contributed by a number of national and private solar observatories located worldwide....

  14. Solar Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar feature datasets contributed by a number of national and private solar observatories located worldwide.

  15. Solar Indices

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  16. Solar Special

    International Nuclear Information System (INIS)

    Van Roekel, A.; Osborne, J.; Schroeter, S.; De Jong, R.; De Saint Jacob, Y.

    2009-01-01

    Solar power is growing much faster than most policymakers and analysts realise. As costs come down and feed-in tariffs go up across Europe, a number of countries have started in pursuit of market leader Germany. But in Germany criticism is growing of the multi-billion-euro support schemes that keep the solar industry booming. In this section of the magazine several articles are dedicated to developments in solar energy in Europe. The first article is an overview story on the strong growing global market for solar cells, mainly thanks to subsidy schemes. The second article is on the position of foreign companies in the solar market in Italy. Article number three is dedicated to the conditions for solar technology companies to establish themselves in the German state of Saxony. Also the fifth article deals with the development of solar cells in Saxony: scientists, plant manufacturers and module producers in Saxony are working on new technologies that can be used to produce solar electricity cost-effectively. The goal is to bring the price down to match that of conventionally generated electricity within the next few years. The sixth article deals with the the solar power market in Belgium, which may be overheated or 'oversubsidized'. Article seven is on France, which used to be a pioneer in solar technology, but now produces only a fraction of the solar output of market leader Germany. However, new attractive feed-in-tariffs are changing the solar landscape drastically

  17. Solar Indices - Solar Radio Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  18. Solar Energy Perspectives In Egypt

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2010-01-01

    Egypt belongs to the global sun-belt. The country is in advantageous position with solar energy. In 1991 solar atlas for Egypt was issued indicating that the country enjoys 2900-3200 hours of sunshine annually with annual direct normal energy density 1970-3200 kWh/m2 and technical solar-thermal electricity generating potential of 73.6 Peta watt hour (PWh). Egypt was among the first countries to utilize solar energy. In 1910, a practical industrial scale solar system engine was built at Maadi south to Cairo using solar thermal parabolic collectors. The engine was used to produce steam which drove a series of large water pumps for irrigation. Nowadays utilization of solar energy includes use of photovoltaic cells, solar water heating and solar thermal power. Use of solar thermal technology may include both electricity generation and water desalination, which is advantageous for Egypt taking in consideration its shortage in water supply. The article discusses perspectives of solar energy in Egypt and developmental trends till 2050

  19. Coupled solar still, solar heater

    Energy Technology Data Exchange (ETDEWEB)

    Davison, R R; Harris, W B; Moor, D H; Delyannis, A; Delyannis, E [eds.

    1976-01-01

    Computer simulation of combinations of solar stills and solar heaters indicates the probable economic advantage of such an arrangement in many locations if the size of the heater is optimized relative to that of the still. Experience with various low cost solar heaters is discussed.

  20. Solar Sailing

    Science.gov (United States)

    Johnson, Les

    2009-01-01

    Solar sailing is a topic of growing technical and popular interest. Solar sail propulsion will make space exploration more affordable and offer access to destinations within (and beyond) the solar system that are currently beyond our technical reach. The lecture will describe solar sails, how they work, and what they will be used for in the exploration of space. It will include a discussion of current plans for solar sails and how advanced technology, such as nanotechnology, might enhance their performance. Much has been accomplished recently to make solar sail technology very close to becoming an engineering reality and it will soon be used by the world s space agencies in the exploration of the solar system and beyond. The first part of the lecture will summarize state-of-the-art space propulsion systems and technologies. Though these other technologies are the key to any deep space exploration by humans, robots, or both, solar-sail propulsion will make space exploration more affordable and offer access to distant and difficult destinations. The second part of the lecture will describe the fundamentals of space solar sail propulsion and will describe the near-, mid- and far-term missions that might use solar sails as a propulsion system. The third part of the lecture will describe solar sail technology and the construction of current and future sailcraft, including the work of both government and private space organizations.

  1. Monte Carlo particle-trajectory models for neutral cometary gases. I. Models and equations. II. The spatial morphology of the Lyman-alpha coma

    International Nuclear Information System (INIS)

    Combi, M.R.; Smyth, W.H.

    1988-01-01

    The mathematical derivations of various methods employed in the Monte Carlo particle-trajectory model (MCPTM) are presented, and the application of the MCPTM to the calculation of the photochemical heating of the inner coma through the partial thermalization of cometary hydrogen atoms produced by the photodissociation of water is discussed. This model is then used to explain the observed morphology of the spatially extended Ly-alpha comas of comets. The rocket and Skylab images of the Ly-alpha coma of Comet Kohoutek are examined. 90 references

  2. Measurement of the Lyman-alpha radiation at ionization manometers for determination of the hydrogen atom number density in fusion experiments

    International Nuclear Information System (INIS)

    Loercher, M.

    1990-01-01

    Codes like DEGAS which simulate the interaction of neutral gas with plasma (e.g. in a divertor), not only deliver the global density and flux of neutral particles, but also allow one, in addition, to distinguish between atoms and molecules. Whereas the global parameters of the neutral gas in a divertor can be measured by, for example, special ion gauges like those, which are installed in the divertor chamber, there has until now been no possibility of measuring the atomic and molecular density independently. In the frame of a diploma thesis (M. Loercher) an ASDEX neutral pressure gauge was modified in such a way that it delivers not only the global density of neutral particles (molecules and atoms) by ionization, but also the density of the atoms by measurement of the Lα-radiation produced by electron impact exitation. Owing to the very weak intensity the main effort was dedicated to developing a detector-filter combination which allows the Lα-radiation to be separated from, the H 2 bands in the VUV and be measured with a time resolution of at least of few ms. Several versions were tested theoretically and practically. The best solution was found to be a combination of an O 2 filter using MgF 2 windows and a multichannel plate. The arrangement was tested and calibrated with an atomic beam of known intensity from an oven. (orig.)

  3. Solar energy applications in Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Ilenikhena, P.A.; Ezemonye, L.I.N.

    2010-09-15

    Solar radiation being abundantly present in Nigeria was one area of focus in renewable energy sources. Researches were carried out and technologies produced for direct harnessing of the energy in six energy centres across the country. Some state governments in collaboration with non-governmental agencies also sponsored solar energy projects in some villages that are not connected to the national grid.

  4. Integration of Solar Cells on Top of CMOS Chips - Part II: CIGS Solar Cells

    NARCIS (Netherlands)

    Lu, J.; Liu, Wei; Kovalgin, Alexeij Y.; Sun, Yun; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with copper indium gallium (di)selenide (CIGS) solar cells. Solar cells are manufactured directly on unpackaged CMOS chips. The microchips maintain comparable electronic performance,

  5. Passive-solar construction handbook

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E.; Evans, D.; Gardstein, C.

    1981-02-01

    Many of the basic elements of passive solar design are reviewed. Passive solar construction is covered according to system type, each system type discussion including a general discussion of the important design and construction issues which apply to the particular system and case studies illustrating designed and built examples of the system type. The three basic types of passive solar systems discussed are direct gain, thermal storage wall, and attached sunspace. Thermal performance and construction information is presented for typical materials used in passive solar collector components, storage components, and control components. Appended are an overview of analysis methods and a technique for estimating performance. (LEW)

  6. Speed of sound in the solar interior

    International Nuclear Information System (INIS)

    Christensen-Dalsgaard, J.; Rhodes, E.J. Jr.

    1985-01-01

    Frequencies of solar 5-min oscillations can be used to determine directly the sound speed of the solar interior. The determination described does not depend on a solar model, but relies only on a simple asymptotic description of the oscillations in terms of trapped acoustic waves. (author)

  7. SolarChill - a solar PV refrigerator without battery

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, P.H.; Poulsen, S.; Katic, I. [Danish Technological Inst., Taastrup (Denmark)

    2004-07-01

    A solar powered refrigerator (SolarChill) has been developed in an international project involving Greenpeace International, GTZ, UNICEF, UNEP, WHO, industrial partners and Danish Technological Institute. The refrigerator is able to operate directly on solar PV panels, without battery or additional electronics, and is therefore suitable for locations where little maintenance and reliable operation is mandatory. The main objective of the SolarChill Project is to help deliver vaccines and refrigeration to the rural poor. To achieve this objective, the SolarChill Project developed - and plans to make freely available a versatile refrigeration technology that is environmentally sound, technologically reliable, and affordable. SolarChill does not use any fluorocarbons in its cooling system or in the insulation. For domestic and small business applications, another type of solar refrigerator is under development. This is an upright type, suitable for cool storage of food and beverages in areas where grid power is non-existent or unstable. The market potential for this type is thus present in industrialised countries as well as in countries under development. The unique feature of SolarChill is that energy is stored in ice instead of in batteries. An ice compartment keeps the cabinet at desired temperatures during the night. The paper describes the product development, possible SolarChill applications and experience with the two types of solar refrigerators, as well as results from the laboratory and field test. (orig.)

  8. Solar pumped laser

    Science.gov (United States)

    Lee, J. H.; Hohl, F.; Weaver, W. R. (Inventor)

    1984-01-01

    A solar pumped laser is described in which the lasant is a gas that will photodissociate and lase when subjected to sunrays. Sunrays are collected and directed onto the gas lasant to cause it to lase. Applications to laser propulsion and laser power transmission are discussed.

  9. Solar Photovoltaic

    OpenAIRE

    Wang, Chen; Lu, Yuefeng

    2016-01-01

    In the 21st century, human demand for new energy sources is urgent, because the traditional fossil energy is unable to meet human needs, and the fossil resource will make pollution, in this situation, solar energy gradually into the vision of scientists. As science advances, humans can already extensive use of solar energy to generate electricity. Solar energy is an inexhaustible and clean energy. In the global energy crisis, environmental pollution is the growing problem of today. The us...

  10. Solar magnetohydrodynamics

    International Nuclear Information System (INIS)

    Priest, E.R.

    1982-01-01

    The book serves several purposes. First set of chapters gives a concise general introduction to solar physics. In a second set the basic methods of magnetohydrodynamics are developed. A third set of chapters is an account of current theories for observed phenomena. The book is suitable for a course in solar physics and it also provides a comprehensive review of present magnetohydrodynamical models in solar physics. (SC)

  11. Solar constraints

    International Nuclear Information System (INIS)

    Provost, J.

    1984-01-01

    Accurate tests of the theory of stellar structure and evolution are available from the Sun's observations. The solar constraints are reviewed, with a special attention to the recent progress in observing global solar oscillations. Each constraint is sensitive to a given region of the Sun. The present solar models (standard, low Z, mixed) are discussed with respect to neutrino flux, low and high degree five-minute oscillations and low degree internal gravity modes. It appears that actually there do not exist solar models able to fully account for all the observed quantities. (Auth.)

  12. Solar Simulator

    Science.gov (United States)

    1981-01-01

    Oriel Corporation's simulators have a high pressure xenon lamp whose reflected light is processed by an optical system to produce a uniform solar beam. Because of many different types of applications, the simulators must be adjustable to replicate many different areas of the solar radiation spectrum. Simulators are laboratory tools for such purposes as testing and calibrating solar cells, or other solar energy systems, testing dyes, paints and pigments, pharmaceuticals and cosmetic preparations, plant and animal studies, food and agriculture studies and oceanographic research.

  13. Manhattan Solar Cannon

    Science.gov (United States)

    Treffers, Richard R.; Loisos, George; Ubbelohde, Susan; Douglas, Susanna; Pintos, Eduardo; Mulherin, James; Pasley, David

    2015-01-01

    We describe a 2.4 m hexagonal solar collector atop a Manhattan office building used for a solar / arts project. The collector uses an afocal design to concentrate the sunlight into a 0.6 m diameter beam which is directed by mirrors into a 80 m long fiber optic sculpture which descends an interior stairwell. The collector is fully steerable and follows the sun each day robotically. The control system and the optical design of the collector as well as the fiber optic sculpture will be discussed.

  14. Solar noise storms

    CERN Document Server

    Elgaroy, E O

    2013-01-01

    Solar Noise Storms examines the properties and features of solar noise storm phenomenon. The book also presents some theories that can be used to gain a better understanding of the phenomenon. The coverage of the text includes topics that cover the features and behavior of noise storms, such as the observable features of noise storms; the relationship between noise storms and the observable features on the sun; and ordered behavior of storm bursts in the time-frequency plane. The book also covers the spectrum, polarization, and directivity of noise storms. The text will be of great use to astr

  15. Solar cooking

    Science.gov (United States)

    Over two billion people face fuel wood shortages, causing tremendous personal and environmental stress. Over 4 million people die prematurely from indoor air pollution. Solar cooking can reduce fuel wood consumption and indoor air pollution. Solar cooking has been practiced and published since th...

  16. Solar Sprint

    Science.gov (United States)

    Tabor, Richard; Anderson, Stephen

    2007-01-01

    In the "Solar Sprint" activity, students design, test, and race a solar-powered car built with Legos. The use of ratios is incorporated to simulate the actual work of scientists and engineers. This method encourages fourth-grade students to think about multiple variables and stimulates their curiosity when an activity doesn't come out as…

  17. Morphology control and device optimization for efficient organic solar cells

    NARCIS (Netherlands)

    Gevaerts, Veronique

    2013-01-01

    Renewable energy is paramount for a sustainable global future. Solar cells convert solar light directly into electricity and are therefore of great interest in meeting the world’s energy demand. Currently crystalline silicon solar cells dominate the market. Solution processed organic solar cells can

  18. Space solar power - An energy alternative

    Science.gov (United States)

    Johnson, R. W.

    1978-01-01

    The space solar power concept is concerned with the use of a Space Power Satellite (SPS) which orbits the earth at geostationary altitude. Two large symmetrical solar collectors convert solar energy directly to electricity using photovoltaic cells woven into blankets. The dc electricity is directed to microwave generators incorporated in a transmitting antenna located between the solar collectors. The antenna directs the microwave beam to a receiving antenna on earth where the microwave energy is efficiently converted back to dc electricity. The SPS design promises 30-year and beyond lifetimes. The SPS is relatively pollution free as it promises earth-equivalence of 80-85% efficient ground-based thermal power plant.

  19. Controlling the directionality of charge transfer in phthalocyaninato zinc sensitizer for a dye-sensitized solar cell: density functional theory studies.

    Science.gov (United States)

    Wan, Liang; Qi, Dongdong; Zhang, Yuexing; Jiang, Jianzhuang

    2011-01-28

    Density functional theory (DFT) calculation on the molecular structures, charge distribution, molecular orbitals, electronic absorption spectra of a series of eight unsymmetrical phthalocyaninato zinc complexes with one peripheral (E)-2-cyano-3-(5-vinylthiophen-2-yl) acrylic acid substituent at 2 or 3 position as an electron-withdrawing group and a different number of electron-donating amino groups at the remaining peripheral positions (9, 10, 16, 17, 23, 24) of the phthalocyanine ring, namely ZnPc-β-A, ZnPc-β-A-I-NH(2), ZnPc-β-A-II-NH(2), ZnPc-β-A-III-NH(2), ZnPc-β-A-I,II-NH(2), ZnPc-β-A-I,III-NH(2), ZnPc-β-A-II,III-NH(2), and ZnPc-β-A-I,II,III-NH(2), reveals the effects of amino groups on the charge transfer properties of these phthalocyanine derivatives with a typical D-π-A electronic structure. The introduction of amino groups was revealed altering of the atomic charge distribution, lifting the frontier molecular orbital level, red-shift of the near-IR bands in the electronic absorption spectra, and finally resulting in enhanced charge transfer directionality for the phthalocyanine compounds. Along with the increase of the peripheral amino groups at the phthalocyanine ring from 0, 2, 4, to 6, the dihedral angle between the phthalocyanine ring and the average plane of the (E)-2-cyano-3-(5-vinylthiophen-2-yl) acrylic acid substituent increases from 0 to 3.3° in an irregular manner. This is in good contrast to the regular and significant change in the charge distribution, destabilization of frontier orbital energies, and red shift of near-IR bands of phthalocyanine compounds along the same order. In addition, comparative studies indicate the smaller effect of incorporating two amino groups onto the 16 and 17 than on 9 and 10 or 23 and 24 peripheral positions of the phthalocyanine ring onto the aforementioned electronic properties, suggesting the least effect on tuning the charge transfer property of the phthalocyanine compound via introducing two

  20. Solar thermal

    International Nuclear Information System (INIS)

    Jones, J.

    2006-01-01

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m 3 - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become increasingly important as

  1. Solar thermal

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.

    2006-07-15

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m{sup 3} - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become

  2. Solar energy: photovoltaics

    International Nuclear Information System (INIS)

    Goetzberger, A.; Voss, B.; Knobloch, J.

    1994-01-01

    This textbooks covers the following topics: foundations of photovoltaics, solar energy, P-N junctions, physics of solar cells, high-efficiency solar cells, technology of Si solar cells, other solar cells, photovoltaic applications. (orig.)

  3. Solar Newsletter | Solar Research | NREL

    Science.gov (United States)

    more about work by this consortium, which crosses national laboratories, on new materials and designs information on NREL's research and development of solar technologies. To receive new issues by email prize, focused on solar energy technologies, and will release the prize rules and open registration

  4. Passive solar heating

    Energy Technology Data Exchange (ETDEWEB)

    Wiberg, K

    1981-11-10

    The present work treats the possibilities for heating according to the passive solar heating method. Problems of 'spatial organization in an energy-saving society' are distinguished from among other social problems. The final delimination of the actual problems under investigation consists of the use of passive solar heating and especially the 'consequences of such solar heating exploitation upon the form and structures' of planning and construction. In the concluding chapter an applied example shows how this method can be used in designing an urban area and what are its limitations. The results indicate the possibilities and difficulties in attempting to transfer this ideal and general method into models and directives for form and structure from which examples of the actual possibilities in practical planning can be given.

  5. The solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Combes, P.F.

    1982-01-01

    The construction, launch, components, and operations of satellite solar power systems (SSPS) for direct beaming of solar energy converted to electricity to earth stations are outlined. The reference designs of either Si or concentrator GaAs solar cell assemblies large enough to project 5 GW of power are described. The beam will be furnished by klystrons or amplitrons for reception by rectennas on earth. Conforming to the law of amplitude and the equiphase law will permit high efficiencies, pointing accuracy, and low power deposition/sq cm, thus avoiding environmental problems, although some telecommunications systems may suffer interference. The construction of the dipole rectenna grid is sketched, noting that one receiver would be an ellipse sized at 10 x 13 km. Various forms of pollution which could result from the construction of an SSPS are examined.

  6. Proton solar flares

    International Nuclear Information System (INIS)

    Shaposhnikova, E.F.

    1979-01-01

    The observations of proton solar flares have been carried out in 1950-1958 using the extrablackout coronograph of the Crimea astrophysical observatory. The experiments permit to determine two characteristic features of flares: the directed motion of plasma injection flux from the solar depths and the appearance of a shock wave moving from the place of the injection along the solar surface. The appearance of the shock wave is accompanied by some phenomena occuring both in the sunspot zone and out of it. The consistent flash of proton flares in the other groups of spots, the disappearance of fibres and the appearance of eruptive prominences is accomplished in the sunspot zone. Beyond the sunspot zone the flares occur above spots, the fibres disintegrate partially or completely and the eruptive prominences appear in the regions close to the pole

  7. The Global Solar Dynamo

    Science.gov (United States)

    Cameron, R. H.; Dikpati, M.; Brandenburg, A.

    2017-09-01

    A brief summary of the various observations and constraints that underlie solar dynamo research are presented. The arguments that indicate that the solar dynamo is an alpha-omega dynamo of the Babcock-Leighton type are then shortly reviewed. The main open questions that remain are concerned with the subsurface dynamics, including why sunspots emerge at preferred latitudes as seen in the familiar butterfly wings, why the cycle is about 11 years long, and why the sunspot groups emerge tilted with respect to the equator (Joy's law). Next, we turn to magnetic helicity, whose conservation property has been identified with the decline of large-scale magnetic fields found in direct numerical simulations at large magnetic Reynolds numbers. However, magnetic helicity fluxes through the solar surface can alleviate this problem and connect theory with observations, as will be discussed.

  8. Integration of Solar Cells on Top of CMOS Chips Part I: a-Si Solar Cells

    NARCIS (Netherlands)

    Lu, J.; Kovalgin, Alexeij Y.; van der Werf, Karine H.M.; Schropp, Ruud E.I.; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with a-Si:H solar cells. Solar cells are manufactured directly on the CMOS chips. The microchips maintain comparable electronic performance, and the solar cells show efficiency values

  9. Solar magnetohydrodynamics

    International Nuclear Information System (INIS)

    Priest, E.R.

    1982-01-01

    Solar MHD is an important tool for understanding many solar phenomena. It also plays a crucial role in explaining the behaviour of more general cosmical magnetic fields and plasmas, since the Sun provides a natural laboratory in which such behaviour may be studied. While terrestrial experiments are invaluable in demonstrating general plasma properties, conclusions from them cannot be applied uncritically to solar plasmas and have in the past given rise to misconceptions about solar magnetic field behaviour. Important differences between a laboratory plasma on Earth and the Sun include the nature of boundary conditions, the energy balance, the effect of gravity and the size of the magnetic Reynolds number (generally of order unity on the Earth and very much larger on the Sun). The overall structure of the book is as follows. It begins with two introductory chapters on solar observations and the MHD equations. Then the fundamentals of MHD are developed in chapters on magnetostatics, waves, shocks, and instabilities. Finally, the theory is applied to the solar phenomena of atmospheric heating, sunspots, dynamos, flares, prominences, and the solar wind. (Auth.)

  10. Availability of solar radiation and standards for solar access

    Energy Technology Data Exchange (ETDEWEB)

    Casabianca, G.A.; Evans, J.M. [Research Centre Habitat and Energy, Facultad de Arquitectura, Diseno y Urbanismo, Universidad de Buenos Aires, Capital Federal (Argentina)

    1997-12-31

    In southern Argentina, a region between latitudes 38 deg C and 55 deg C S, the heating demand in the residential sector is high while the availability of solar radiation is limited. A new proposal for solar access standards has been developed, taking into account the climatic conditions of each location, the effective availability of solar radiation and the direct sunlight requirements. This study analyses the climatic conditions for the Patagonia, relating heating demand and solar radiation availability in different sites, and presents the development of new sunlight standards that respond to these regional conditions. As a result of this study, the new Argentine standard TRAM 11.603 includes new conditions to protect solar access and provide design recommendations. (orig.) 4 refs.

  11. Solar energy – new photovoltaic technologies

    DEFF Research Database (Denmark)

    Sommer-Larsen, Peter

    2009-01-01

    Solar energy technologies directly convert sunlight into electricity and heat, or power chemical reactions that convert simple molecules into synthetic chemicals and fuels. The sun is by far the most abundant source of energy, and a sustainable society will need to rely on solar energy as one...... of its major energy sources. Solar energy is a focus point in many strategies for a sustainable energy supply. The European Commission’s Strategic Energy Plan (SET-plan) envisages a Solar Europe Initiative, where photovoltaics and concentrated solar power (CSP) supply as much power as wind mills...... in the future. Much focus is directed towards photovoltaics presently. Installation of solar cell occurs at an unprecedented pace and the expectations of the photovoltaics industry are high: a total PV capacity of 40 GW by 2012 as reported by a recent study. The talk progresses from general solar energy topics...

  12. Solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Hullmann, H; Schmidt, B [Technische Univ. Hannover (Germany, F.R.). Inst. fuer Industrialisierung des Bauens

    1976-01-01

    The utilisation possibilities of solar energy for the energy supplying of buildings are becoming increasingly more significant. Solar research at the moment aims predominantly with a high level of efficiency and therefore making accessible a significant range of applications for solar technology. Parallel to this are attempts to effect the saving of energy, be it in the demand for energy-saving constructions or in the increasing development and application of rational energy utilisation by technologists. The most important point of these activities at the moment, is still technological methods.

  13. Solar neutrinos

    International Nuclear Information System (INIS)

    Schatzman, E.

    1983-01-01

    The solar energy is produced by a series of nuclear reactions taking place in the deep interior of the sun. Some of these reactions produce neutrinos which may be detected, the proper detection system being available. The results of the Davis experiment (with 37 Cl) are given, showing a deficiency in the solar neutrino flux. The relevant explanation is either a property of the neutrino or an important change in the physics of the solar models. The prospect of a new experiment (with 71 Ga) is important as it will decide which of the two explanations is correct [fr

  14. Nanocrystal Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gur, Ilan [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  15. Concentrating Solar Power Projects - Planta Solar 20 | Concentrating Solar

    Science.gov (United States)

    Power | NREL 20 This page provides information on Planta Solar 20, a concentrating solar power Solar's Planta Solar 20 (PS20) is a 20-megawatt power tower plant being constructed next to the PS10 tower and increasing incident solar radiation capture will increase net electrical power output by 10

  16. Coordinated weather balloon solar radiation measurements during a solar eclipse.

    Science.gov (United States)

    Harrison, R G; Marlton, G J; Williams, P D; Nicoll, K A

    2016-09-28

    Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.

  17. External perforated Solar Screens for daylighting in residential desert buildings: Identification of minimum perforation percentages

    KAUST Repository

    Sherif, Ahmed; Sabry, Hanan; Rakha, Tarek

    2012-01-01

    and Saudi Arabia, result in the admittance of direct solar radiation, which leads to thermal discomfort and the incidence of undesired glare. One type of shading systems that is used to permit daylight while controlling solar penetration is " Solar Screens

  18. Solar Probe Cup: Laboratory Performance

    Science.gov (United States)

    Case, A. W.; Kasper, J. C.; Korreck, K. E.; Stevens, M. L.; Larson, D. E.; Wright, K. H., Jr.; Gallagher, D. L.; Whittlesey, P. L.

    2017-12-01

    The Solar Probe Cup (SPC) is a Faraday Cup instrument that will fly on the Paker Solar Probe (PSP) spacecraft, orbiting the Sun at as close as 9.86 solar radii. The SPC instrument is designed to measure the thermal solar wind plasma (protons, alphas, and electrons) that will be encountered throughout its close encounter with the Sun. Due to the solar wind flow being primarily radial, the SPC instrument is pointed directly at the Sun, resulting in an extreme thermal environment that must be tolerated throughout the primary data collection phase. Laboratory testing has been performed over the past 6 months to demonstrate the instrument's performance relative to its requirements, and to characterize the measurements over the expected thermal range. This presentation will demonstrate the performance of the instrument as measured in the lab, describe the operational configurations planned for flight, and discuss the data products that will be created.

  19. Hydrogen production from solar energy

    Science.gov (United States)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  20. Solar prominences

    CERN Document Server

    Engvold, Oddbjørn

    2015-01-01

    This volume presents the latest research results on solar prominences, including new developments on e.g. chirality, fine structure, magnetism, diagnostic tools and relevant solar plasma physics. In 1875 solar prominences, as seen out of the solar limb, were described by P.A. Secchi in his book Le Soleil as "gigantic pink or peach-flower coloured flames". The development of spectroscopy, coronagraphy and polarimetry brought tremendous observational advances in the twentieth century. The authors present and discuss exciting new challenges (resulting from observations made by space and ground-based telescopes in the 1990s and the first decade of the 21st century) concerning the diagnostics of prominences, their formation, their life time and their eruption along with their impact in the heliosphere (including the Earth). The book starts with a general introduction of the prominence “object” with some historical background on observations and instrumentation. In the next chapter, the various forms of promine...