WorldWideScience

Sample records for direct sequencing analysis

  1. Direct, rapid RNA sequence analysis

    International Nuclear Information System (INIS)

    Peattie, D.A.

    1987-01-01

    The original methods of RNA sequence analysis were based on enzymatic production and chromatographic separation of overlapping oligonucleotide fragments from within an RNA molecule followed by identification of the mononucleotides comprising the oligomer. Over the past decade the field of nucleic acid sequencing has changed dramatically, however, and RNA molecules now can be sequenced in a variety of more streamlined fashions. Most of the more recent advances in RNA sequencing have involved one-dimensional electrophoretic separation of 32 P-end-labeled oligoribonucleotides on polyacrylamide gels. In this chapter the author discusses two of these methods for determining the nucleotide sequences of RNA molecules rapidly: the chemical method and the enzymatic method. Both methods are direct and degradative, i.e., they rely on fragmatic and chemical approaches should be utilized. The single-strand-specific ribonucleases (A, T 1 , T 2 , and S 1 ) provide an efficient means to locate double-helical regions rapidly, and the chemical reactions provide a means to determine the RNA sequence within these regions. In addition, the chemical reactions allow one to assign interactions to specific atoms and to distinguish secondary interactions from tertiary ones. If the RNA molecule is small enough to be sequenced directly by the enzymatic or chemical method, the probing reactions can be done easily at the same time as sequencing reactions

  2. Direct chloroplast sequencing: comparison of sequencing platforms and analysis tools for whole chloroplast barcoding.

    Directory of Open Access Journals (Sweden)

    Marta Brozynska

    Full Text Available Direct sequencing of total plant DNA using next generation sequencing technologies generates a whole chloroplast genome sequence that has the potential to provide a barcode for use in plant and food identification. Advances in DNA sequencing platforms may make this an attractive approach for routine plant identification. The HiSeq (Illumina and Ion Torrent (Life Technology sequencing platforms were used to sequence total DNA from rice to identify polymorphisms in the whole chloroplast genome sequence of a wild rice plant relative to cultivated rice (cv. Nipponbare. Consensus chloroplast sequences were produced by mapping sequence reads to the reference rice chloroplast genome or by de novo assembly and mapping of the resulting contigs to the reference sequence. A total of 122 polymorphisms (SNPs and indels between the wild and cultivated rice chloroplasts were predicted by these different sequencing and analysis methods. Of these, a total of 102 polymorphisms including 90 SNPs were predicted by both platforms. Indels were more variable with different sequencing methods, with almost all discrepancies found in homopolymers. The Ion Torrent platform gave no apparent false SNP but was less reliable for indels. The methods should be suitable for routine barcoding using appropriate combinations of sequencing platform and data analysis.

  3. PMS2 gene mutational analysis: direct cDNA sequencing to circumvent pseudogene interference.

    Science.gov (United States)

    Wimmer, Katharina; Wernstedt, Annekatrin

    2014-01-01

    The presence of highly homologous pseudocopies can compromise the mutation analysis of a gene of interest. In particular, when using PCR-based strategies, pseudogene co-amplification has to be effectively prevented. This is often achieved by using primers designed to be parental gene specific according to the reference sequence and by applying stringent PCR conditions. However, there are cases in which this approach is of limited utility. For example, it has been shown that the PMS2 gene exchanges sequences with one of its pseudogenes, named PMS2CL. This results in functional PMS2 alleles containing pseudogene-derived sequences at their 3'-end and in nonfunctional PMS2CL pseudogene alleles that contain gene-derived sequences. Hence, the paralogues cannot be distinguished according to the reference sequence. This shortcoming can be effectively circumvented by using direct cDNA sequencing. This approach is based on the selective amplification of PMS2 transcripts in two overlapping 1.6-kb RT-PCR products. In addition to avoiding pseudogene co-amplification and allele dropout, this method has also the advantage that it allows to effectively identify deletions, splice mutations, and de novo retrotransposon insertions that escape the detection of most DNA-based mutation analysis protocols.

  4. Analysis of Pteridium ribosomal RNA sequences by rapid direct sequencing.

    Science.gov (United States)

    Tan, M K

    1991-08-01

    A total of 864 bases from 5 regions interspersed in the 18S and 26S rRNA molecules from various clones of Pteridium covering the general geographical distribution of the genus was analysed using a rapid rRNA sequencing technique. No base difference has been detected amongst the three major lineages, two of which apparently separated before the breakup of the ancient supercontinent, Pangaea. These regions of the rRNA sequences have thus been conserved for at least 160 million years and are here compared with other eukaryotic, especially plant rRNAs.

  5. Interference management using direct sequence spread spectrum ...

    African Journals Online (AJOL)

    Interference management using direct sequence spread spectrum (DSSS) technique ... Journal of Fundamental and Applied Sciences ... Keywords: DSSS, LTE network; Wi-Fi network; SINR; interference management and interference power.

  6. Population-Sequencing as a Biomarker of Burkholderia mallei and Burkholderia pseudomallei Evolution through Microbial Forensic Analysis

    Directory of Open Access Journals (Sweden)

    John P. Jakupciak

    2013-01-01

    Full Text Available Large-scale genomics projects are identifying biomarkers to detect human disease. B. pseudomallei and B. mallei are two closely related select agents that cause melioidosis and glanders. Accurate characterization of metagenomic samples is dependent on accurate measurements of genetic variation between isolates with resolution down to strain level. Often single biomarker sensitivity is augmented by use of multiple or panels of biomarkers. In parallel with single biomarker validation, advances in DNA sequencing enable analysis of entire genomes in a single run: population-sequencing. Potentially, direct sequencing could be used to analyze an entire genome to serve as the biomarker for genome identification. However, genome variation and population diversity complicate use of direct sequencing, as well as differences caused by sample preparation protocols including sequencing artifacts and mistakes. As part of a Department of Homeland Security program in bacterial forensics, we examined how to implement whole genome sequencing (WGS analysis as a judicially defensible forensic method for attributing microbial sample relatedness; and also to determine the strengths and limitations of whole genome sequence analysis in a forensics context. Herein, we demonstrate use of sequencing to provide genetic characterization of populations: direct sequencing of populations.

  7. Recent advances in nanopore-based nucleic acid analysis and sequencing

    International Nuclear Information System (INIS)

    Shi, Jidong; Fang, Ying; Hou, Junfeng

    2016-01-01

    Nanopore-based sequencing platforms are transforming the field of genomic science. This review (containing 116 references) highlights some recent progress on nanopore-based nucleic acid analysis and sequencing. These studies are classified into three categories, biological, solid-state, and hybrid nanopores, according to their nanoporous materials. We begin with a brief description of the translocation-based detection mechanism of nanopores. Next, specific examples are given in nanopore-based nucleic acid analysis and sequencing, with an emphasis on identifying strategies that can improve the resolution of nanopores. This review concludes with a discussion of future research directions that will advance the practical applications of nanopore technology. (author)

  8. An optimum analysis sequence for environmental gamma-ray spectrometry

    International Nuclear Information System (INIS)

    De la Torre, F.; Rios M, C.; Ruvalcaba A, M. G.; Mireles G, F.; Saucedo A, S.; Davila R, I.; Pinedo, J. L.

    2010-10-01

    This work aims to obtain an optimum analysis sequence for environmental gamma-ray spectroscopy by means of Genie 2000 (Canberra). Twenty different analysis sequences were customized using different peak area percentages and different algorithms for: 1) peak finding, and 2) peak area determination, and with or without the use of a library -based on evaluated nuclear data- of common gamma-ray emitters in environmental samples. The use of an optimum analysis sequence with certified nuclear information avoids the problems originated by the significant variations in out-of-date nuclear parameters of commercial software libraries. Interference-free gamma ray energies with absolute emission probabilities greater than 3.75% were included in the customized library. The gamma-ray spectroscopy system (based on a Ge Re-3522 Canberra detector) was calibrated both in energy and shape by means of the IAEA-2002 reference spectra for software intercomparison. To test the performance of the analysis sequences, the IAEA-2002 reference spectrum was used. The z-score and the reduced χ 2 criteria were used to determine the optimum analysis sequence. The results show an appreciable variation in the peak area determinations and their corresponding uncertainties. Particularly, the combination of second derivative peak locate with simple peak area integration algorithms provides the greater accuracy. Lower accuracy comes from the combination of library directed peak locate algorithm and Genie's Gamma-M peak area determination. (Author)

  9. An optimum analysis sequence for environmental gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    De la Torre, F.; Rios M, C.; Ruvalcaba A, M. G.; Mireles G, F.; Saucedo A, S.; Davila R, I.; Pinedo, J. L., E-mail: fta777@hotmail.co [Universidad Autonoma de Zacatecas, Centro Regional de Estudis Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2010-10-15

    This work aims to obtain an optimum analysis sequence for environmental gamma-ray spectroscopy by means of Genie 2000 (Canberra). Twenty different analysis sequences were customized using different peak area percentages and different algorithms for: 1) peak finding, and 2) peak area determination, and with or without the use of a library -based on evaluated nuclear data- of common gamma-ray emitters in environmental samples. The use of an optimum analysis sequence with certified nuclear information avoids the problems originated by the significant variations in out-of-date nuclear parameters of commercial software libraries. Interference-free gamma ray energies with absolute emission probabilities greater than 3.75% were included in the customized library. The gamma-ray spectroscopy system (based on a Ge Re-3522 Canberra detector) was calibrated both in energy and shape by means of the IAEA-2002 reference spectra for software intercomparison. To test the performance of the analysis sequences, the IAEA-2002 reference spectrum was used. The z-score and the reduced {chi}{sup 2} criteria were used to determine the optimum analysis sequence. The results show an appreciable variation in the peak area determinations and their corresponding uncertainties. Particularly, the combination of second derivative peak locate with simple peak area integration algorithms provides the greater accuracy. Lower accuracy comes from the combination of library directed peak locate algorithm and Genie's Gamma-M peak area determination. (Author)

  10. PseudoMLSA: a database for multigenic sequence analysis of Pseudomonas species

    Directory of Open Access Journals (Sweden)

    Lalucat Jorge

    2010-04-01

    Full Text Available Abstract Background The genus Pseudomonas comprises more than 100 species of environmental, clinical, agricultural, and biotechnological interest. Although, the recommended method for discriminating bacterial species is DNA-DNA hybridisation, alternative techniques based on multigenic sequence analysis are becoming a common practice in bacterial species discrimination studies. Since there is not a general criterion for determining which genes are more useful for species resolution; the number of strains and genes analysed is increasing continuously. As a result, sequences of different genes are dispersed throughout several databases. This sequence information needs to be collected in a common database, in order to be useful for future identification-based projects. Description The PseudoMLSA Database is a comprehensive database of multiple gene sequences from strains of Pseudomonas species. The core of the database is composed of selected gene sequences from all Pseudomonas type strains validly assigned to the genus through 2008. The database is aimed to be useful for MultiLocus Sequence Analysis (MLSA procedures, for the identification and characterisation of any Pseudomonas bacterial isolate. The sequences are available for download via a direct connection to the National Center for Biotechnology Information (NCBI. Additionally, the database includes an online BLAST interface for flexible nucleotide queries and similarity searches with the user's datasets, and provides a user-friendly output for easily parsing, navigating, and analysing BLAST results. Conclusions The PseudoMLSA database amasses strains and sequence information of validly described Pseudomonas species, and allows free querying of the database via a user-friendly, web-based interface available at http://www.uib.es/microbiologiaBD/Welcome.html. The web-based platform enables easy retrieval at strain or gene sequence information level; including references to published peer

  11. Direct amplification, sequencing and profiling of Chlamydia trachomatis strains in single and mixed infection clinical samples.

    Directory of Open Access Journals (Sweden)

    Sandeep J Joseph

    Full Text Available Sequencing bacterial genomes from DNA isolated directly from clinical samples offers the promise of rapid and precise acquisition of informative genetic information. In the case of Chlamydia trachomatis, direct sequencing is particularly desirable because it obviates the requirement for culture in mammalian cells, saving time, cost and the possibility of missing low abundance strains. In this proof of concept study, we developed methodology that would allow genome-scale direct sequencing, using a multiplexed microdroplet PCR enrichment technology to amplify a 100 kb region of the C. trachomatis genome with 500 1.1-1.3 kb overlapping amplicons (5-fold amplicon redundancy. We integrated comparative genomic data into a pipeline to preferentially select conserved sites for amplicon design. The 100 kb target region could be amplified from clinical samples, including remnants from diagnostics tests, originating from the cervix, urethra and urine, For rapid analysis of these data, we developed a framework for whole-genome based genotyping called binstrain. We used binstrain to estimate the proportion of SNPs originating from 14 C. trachomatis reference serotype genomes in each sample. Direct DNA sequencing methods such as the one described here may have an important role in understanding the biology of C. trachomatis mixed infections and the natural genetic variation of the species within clinically relevant ecological niches.

  12. Constructing and sampling directed graphs with given degree sequences

    International Nuclear Information System (INIS)

    Kim, H; Del Genio, C I; Bassler, K E; Toroczkai, Z

    2012-01-01

    The interactions between the components of complex networks are often directed. Proper modeling of such systems frequently requires the construction of ensembles of digraphs with a given sequence of in- and out-degrees. As the number of simple labeled graphs with a given degree sequence is typically very large even for short sequences, sampling methods are needed for statistical studies. Currently, there are two main classes of methods that generate samples. One of the existing methods first generates a restricted class of graphs and then uses a Markov chain Monte-Carlo algorithm based on edge swaps to generate other realizations. As the mixing time of this process is still unknown, the independence of the samples is not well controlled. The other class of methods is based on the configuration model that may lead to unacceptably many sample rejections due to self-loops and multiple edges. Here we present an algorithm that can directly construct all possible realizations of a given bi-degree sequence by simple digraphs. Our method is rejection-free, guarantees the independence of the constructed samples and provides their weight. The weights can then be used to compute statistical averages of network observables as if they were obtained from uniformly distributed sampling or from any other chosen distribution. (paper)

  13. Direct chromosome-length haplotyping by single-cell sequencing

    NARCIS (Netherlands)

    Porubský, David; Sanders, Ashley D; van Wietmarschen, Niek; Falconer, Ester; Hills, Mark; Spierings, Diana C J; Bevova, Marianna R; Guryev, Victor; Lansdorp, Peter Michael

    Haplotypes are fundamental to fully characterize the diploid genome of an individual, yet methods to directly chart the unique genetic makeup of each parental chromosome are lacking. Here we introduce single-cell DNA template strand sequencing (Strand-seq) as a novel approach to phasing diploid

  14. Quantiprot - a Python package for quantitative analysis of protein sequences.

    Science.gov (United States)

    Konopka, Bogumił M; Marciniak, Marta; Dyrka, Witold

    2017-07-17

    The field of protein sequence analysis is dominated by tools rooted in substitution matrices and alignments. A complementary approach is provided by methods of quantitative characterization. A major advantage of the approach is that quantitative properties defines a multidimensional solution space, where sequences can be related to each other and differences can be meaningfully interpreted. Quantiprot is a software package in Python, which provides a simple and consistent interface to multiple methods for quantitative characterization of protein sequences. The package can be used to calculate dozens of characteristics directly from sequences or using physico-chemical properties of amino acids. Besides basic measures, Quantiprot performs quantitative analysis of recurrence and determinism in the sequence, calculates distribution of n-grams and computes the Zipf's law coefficient. We propose three main fields of application of the Quantiprot package. First, quantitative characteristics can be used in alignment-free similarity searches, and in clustering of large and/or divergent sequence sets. Second, a feature space defined by quantitative properties can be used in comparative studies of protein families and organisms. Third, the feature space can be used for evaluating generative models, where large number of sequences generated by the model can be compared to actually observed sequences.

  15. Directionality analysis on functional magnetic resonance imaging during motor task using Granger causality.

    Science.gov (United States)

    Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Deuschl, G; Raethjen, J; Heute, U; Muthuraman, M

    2012-01-01

    Directionality analysis of signals originating from different parts of brain during motor tasks has gained a lot of interest. Since brain activity can be recorded over time, methods of time series analysis can be applied to medical time series as well. Granger Causality is a method to find a causal relationship between time series. Such causality can be referred to as a directional connection and is not necessarily bidirectional. The aim of this study is to differentiate between different motor tasks on the basis of activation maps and also to understand the nature of connections present between different parts of the brain. In this paper, three different motor tasks (finger tapping, simple finger sequencing, and complex finger sequencing) are analyzed. Time series for each task were extracted from functional magnetic resonance imaging (fMRI) data, which have a very good spatial resolution and can look into the sub-cortical regions of the brain. Activation maps based on fMRI images show that, in case of complex finger sequencing, most parts of the brain are active, unlike finger tapping during which only limited regions show activity. Directionality analysis on time series extracted from contralateral motor cortex (CMC), supplementary motor area (SMA), and cerebellum (CER) show bidirectional connections between these parts of the brain. In case of simple finger sequencing and complex finger sequencing, the strongest connections originate from SMA and CMC, while connections originating from CER in either direction are the weakest ones in magnitude during all paradigms.

  16. Biological sequence analysis

    DEFF Research Database (Denmark)

    Durbin, Richard; Eddy, Sean; Krogh, Anders Stærmose

    This book provides an up-to-date and tutorial-level overview of sequence analysis methods, with particular emphasis on probabilistic modelling. Discussed methods include pairwise alignment, hidden Markov models, multiple alignment, profile searches, RNA secondary structure analysis, and phylogene...

  17. Accident Sequence Precursor Analysis for SGTR by Using Dynamic PSA Approach

    International Nuclear Information System (INIS)

    Lee, Han Sul; Heo, Gyun Young; Kim, Tae Wan

    2016-01-01

    In order to address this issue, this study suggests the sequence tree model to analyze accident sequence systematically. Using the sequence tree model, all possible scenarios which need a specific safety action to prevent the core damage can be identified and success conditions of safety action under complicated situation such as combined accident will be also identified. Sequence tree is branch model to divide plant condition considering the plant dynamics. Since sequence tree model can reflect the plant dynamics, arising from interaction of different accident timing and plant condition and from the interaction between the operator action, mitigation system, and the indicators for operation, sequence tree model can be used to develop the dynamic event tree model easily. Target safety action for this study is a feed-and-bleed (F and B) operation. A F and B operation directly cools down the reactor cooling system (RCS) using the primary cooling system when residual heat removal by the secondary cooling system is not available. In this study, a TLOFW accident and a TLOFW accident with LOCA were the target accidents. Based on the conventional PSA model and indicators, the sequence tree model for a TLOFW accident was developed. Based on the results of a sampling analysis and data from the conventional PSA model, the CDF caused by Sequence no. 26 can be realistically estimated. For a TLOFW accident with LOCA, second accident timings were categorized according to plant condition. Indicators were selected as branch point using the flow chart and tables, and a corresponding sequence tree model was developed. If sampling analysis is performed, practical accident sequences can be identified based on the sequence analysis. If a realistic distribution for the variables can be obtained for sampling analysis, much more realistic accident sequences can be described. Moreover, if the initiating event frequency under a combined accident can be quantified, the sequence tree model

  18. Ultra-fast evaluation of protein energies directly from sequence.

    Directory of Open Access Journals (Sweden)

    Gevorg Grigoryan

    2006-06-01

    Full Text Available The structure, function, stability, and many other properties of a protein in a fixed environment are fully specified by its sequence, but in a manner that is difficult to discern. We present a general approach for rapidly mapping sequences directly to their energies on a pre-specified rigid backbone, an important sub-problem in computational protein design and in some methods for protein structure prediction. The cluster expansion (CE method that we employ can, in principle, be extended to model any computable or measurable protein property directly as a function of sequence. Here we show how CE can be applied to the problem of computational protein design, and use it to derive excellent approximations of physical potentials. The approach provides several attractive advantages. First, following a one-time derivation of a CE expansion, the amount of time necessary to evaluate the energy of a sequence adopting a specified backbone conformation is reduced by a factor of 10(7 compared to standard full-atom methods for the same task. Second, the agreement between two full-atom methods that we tested and their CE sequence-based expressions is very high (root mean square deviation 1.1-4.7 kcal/mol, R2 = 0.7-1.0. Third, the functional form of the CE energy expression is such that individual terms of the expansion have clear physical interpretations. We derived expressions for the energies of three classic protein design targets-a coiled coil, a zinc finger, and a WW domain-as functions of sequence, and examined the most significant terms. Single-residue and residue-pair interactions are sufficient to accurately capture the energetics of the dimeric coiled coil, whereas higher-order contributions are important for the two more globular folds. For the task of designing novel zinc-finger sequences, a CE-derived energy function provides significantly better solutions than a standard design protocol, in comparable computation time. Given these advantages

  19. Validation of Genotyping-By-Sequencing Analysis in Populations of Tetraploid Alfalfa by 454 Sequencing

    Science.gov (United States)

    Rocher, Solen; Jean, Martine; Castonguay, Yves; Belzile, François

    2015-01-01

    Genotyping-by-sequencing (GBS) is a relatively low-cost high throughput genotyping technology based on next generation sequencing and is applicable to orphan species with no reference genome. A combination of genome complexity reduction and multiplexing with DNA barcoding provides a simple and affordable way to resolve allelic variation between plant samples or populations. GBS was performed on ApeKI libraries using DNA from 48 genotypes each of two heterogeneous populations of tetraploid alfalfa (Medicago sativa spp. sativa): the synthetic cultivar Apica (ATF0) and a derived population (ATF5) obtained after five cycles of recurrent selection for superior tolerance to freezing (TF). Nearly 400 million reads were obtained from two lanes of an Illumina HiSeq 2000 sequencer and analyzed with the Universal Network-Enabled Analysis Kit (UNEAK) pipeline designed for species with no reference genome. Following the application of whole dataset-level filters, 11,694 single nucleotide polymorphism (SNP) loci were obtained. About 60% had a significant match on the Medicago truncatula syntenic genome. The accuracy of allelic ratios and genotype calls based on GBS data was directly assessed using 454 sequencing on a subset of SNP loci scored in eight plant samples. Sequencing depth in this study was not sufficient for accurate tetraploid allelic dosage, but reliable genotype calls based on diploid allelic dosage were obtained when using additional quality filtering. Principal Component Analysis of SNP loci in plant samples revealed that a small proportion (<5%) of the genetic variability assessed by GBS is able to differentiate ATF0 and ATF5. Our results confirm that analysis of GBS data using UNEAK is a reliable approach for genome-wide discovery of SNP loci in outcrossed polyploids. PMID:26115486

  20. Image sequence analysis

    CERN Document Server

    1981-01-01

    The processing of image sequences has a broad spectrum of important applica­ tions including target tracking, robot navigation, bandwidth compression of TV conferencing video signals, studying the motion of biological cells using microcinematography, cloud tracking, and highway traffic monitoring. Image sequence processing involves a large amount of data. However, because of the progress in computer, LSI, and VLSI technologies, we have now reached a stage when many useful processing tasks can be done in a reasonable amount of time. As a result, research and development activities in image sequence analysis have recently been growing at a rapid pace. An IEEE Computer Society Workshop on Computer Analysis of Time-Varying Imagery was held in Philadelphia, April 5-6, 1979. A related special issue of the IEEE Transactions on Pattern Anal­ ysis and Machine Intelligence was published in November 1980. The IEEE Com­ puter magazine has also published a special issue on the subject in 1981. The purpose of this book ...

  1. Single base pair mutation analysis by PNA directed PCR clamping

    DEFF Research Database (Denmark)

    Ørum, H.; Nielsen, P.E.; Egholm, M.

    1993-01-01

    A novel method that allows direct analysis of single base mutation by the polymerase chain reaction (PCR) is described. The method utilizes the finding that PNAs (peptide nucleic acids) recognize and bind to their complementary nucleic acid sequences with higher thermal stability and specificity...... allows selective amplification/suppression of target sequences that differ by only one base pair. Finally we show that PNAs can be designed in such a way that blockage can be accomplished when the PNA target sequence is located between the PCR primers....

  2. Directed PCR-free engineering of highly repetitive DNA sequences

    Directory of Open Access Journals (Sweden)

    Preissler Steffen

    2011-09-01

    Full Text Available Abstract Background Highly repetitive nucleotide sequences are commonly found in nature e.g. in telomeres, microsatellite DNA, polyadenine (poly(A tails of eukaryotic messenger RNA as well as in several inherited human disorders linked to trinucleotide repeat expansions in the genome. Therefore, studying repetitive sequences is of biological, biotechnological and medical relevance. However, cloning of such repetitive DNA sequences is challenging because specific PCR-based amplification is hampered by the lack of unique primer binding sites resulting in unspecific products. Results For the PCR-free generation of repetitive DNA sequences we used antiparallel oligonucleotides flanked by restriction sites of Type IIS endonucleases. The arrangement of recognition sites allowed for stepwise and seamless elongation of repetitive sequences. This facilitated the assembly of repetitive DNA segments and open reading frames encoding polypeptides with periodic amino acid sequences of any desired length. By this strategy we cloned a series of polyglutamine encoding sequences as well as highly repetitive polyadenine tracts. Such repetitive sequences can be used for diverse biotechnological applications. As an example, the polyglutamine sequences were expressed as His6-SUMO fusion proteins in Escherichia coli cells to study their aggregation behavior in vitro. The His6-SUMO moiety enabled affinity purification of the polyglutamine proteins, increased their solubility, and allowed controlled induction of the aggregation process. We successfully purified the fusions proteins and provide an example for their applicability in filter retardation assays. Conclusion Our seamless cloning strategy is PCR-free and allows the directed and efficient generation of highly repetitive DNA sequences of defined lengths by simple standard cloning procedures.

  3. Engineering of a DNA Polymerase for Direct m6 A Sequencing.

    Science.gov (United States)

    Aschenbrenner, Joos; Werner, Stephan; Marchand, Virginie; Adam, Martina; Motorin, Yuri; Helm, Mark; Marx, Andreas

    2018-01-08

    Methods for the detection of RNA modifications are of fundamental importance for advancing epitranscriptomics. N 6 -methyladenosine (m 6 A) is the most abundant RNA modification in mammalian mRNA and is involved in the regulation of gene expression. Current detection techniques are laborious and rely on antibody-based enrichment of m 6 A-containing RNA prior to sequencing, since m 6 A modifications are generally "erased" during reverse transcription (RT). To overcome the drawbacks associated with indirect detection, we aimed to generate novel DNA polymerase variants for direct m 6 A sequencing. Therefore, we developed a screen to evolve an RT-active KlenTaq DNA polymerase variant that sets a mark for N 6 -methylation. We identified a mutant that exhibits increased misincorporation opposite m 6 A compared to unmodified A. Application of the generated DNA polymerase in next-generation sequencing allowed the identification of m 6 A sites directly from the sequencing data of untreated RNA samples. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. A thaumatin-like genomic sequence identification in Vitis vinifera l., stormy wines and musts based on direct pcr

    Directory of Open Access Journals (Sweden)

    Jana Žiarovská

    2018-03-01

    Full Text Available Normal 0 21 false false false MicrosoftInternetExplorer4 Direct polymerase chain reaction method was use to amplify a thaumatin-like sequence of Vitis vinifera L. in grapes as well as in stormy wines and musts. Thaumatin-like proteins (TLPs of Vitis vinifera possess beside its function in abiotic and biotic stress response another one - they are able to cause protein haze in wine unless removed prior to bottling. Direct PCR is an approach where omission of DNA extraction is typical prior the amplification of the target site of plant genome. Crude extract or small pieces of plant tissues are used in the analysis directly without steps of extraction and purification of gDNA. The biological material that was used in analysis was collected during August - October 2017 in local stores and winery Sabo and comprises from cultivars Iršai, Muškát, Savignon Blanc, Svätovavrinecké, Dornfelder and Pálava. Direct PCR was performed by a cutted piece of grape tissue and a dilution buffer was use in 1:2 for stormy wine or must, respectively. Direct amplification of thaumatin-like protein sequence of Vitis vinifera was performed along with the control reactions with the primers for conserved region of plant chloroplast. Possitive amplification of thaumatin-like allergen sequence resulted in 570 bp amplicon. The most abundant amplicons were amplified in stormy wines, followed by musts and the amplicons from grapes were weaker when comparing them to others. The amplicon specificity checking of obtained PCR product of thaumatin-like allergen was performed by restriction cleavage by Psi I and resulted in restriction amplicons of the 80 bp, 81 bp, 94 bp and 315 bp in length. Confirmation of the amplicon specificity by restriction cleavage support the potential of direct PCR to become a reproducible method that will be fully applicable in routine analysis of not only plant genomes in the future, but it was demonstrated, that it works in liquids, too.  

  5. Characterization of Human Cytomegalovirus Genome Diversity in Immunocompromised Hosts by Whole-Genome Sequencing Directly From Clinical Specimens.

    Science.gov (United States)

    Hage, Elias; Wilkie, Gavin S; Linnenweber-Held, Silvia; Dhingra, Akshay; Suárez, Nicolás M; Schmidt, Julius J; Kay-Fedorov, Penelope C; Mischak-Weissinger, Eva; Heim, Albert; Schwarz, Anke; Schulz, Thomas F; Davison, Andrew J; Ganzenmueller, Tina

    2017-06-01

    Advances in next-generation sequencing (NGS) technologies allow comprehensive studies of genetic diversity over the entire genome of human cytomegalovirus (HCMV), a significant pathogen for immunocompromised individuals. Next-generation sequencing was performed on target enriched sequence libraries prepared directly from a variety of clinical specimens (blood, urine, breast milk, respiratory samples, biopsies, and vitreous humor) obtained longitudinally or from different anatomical compartments from 20 HCMV-infected patients (renal transplant recipients, stem cell transplant recipients, and congenitally infected children). De novo-assembled HCMV genome sequences were obtained for 57 of 68 sequenced samples. Analysis of longitudinal or compartmental HCMV diversity revealed various patterns: no major differences were detected among longitudinal, intraindividual blood samples from 9 of 15 patients and in most of the patients with compartmental samples, whereas a switch of the major HCMV population was observed in 6 individuals with sequential blood samples and upon compartmental analysis of 1 patient with HCMV retinitis. Variant analysis revealed additional aspects of minor virus population dynamics and antiviral-resistance mutations. In immunosuppressed patients, HCMV can remain relatively stable or undergo drastic genomic changes that are suggestive of the emergence of minor resident strains or de novo infection. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  6. Radiation-induced germ-line mutations detected by a direct comparison of parents and children DNA sequences containing SNPs

    International Nuclear Information System (INIS)

    Morimyo, M.; Hongo, E.; Higashi, T.; Wu, J.; Matsumoto, I.; Okamoto, M.; Kawano, A.; Tsuji, S.

    2003-01-01

    Full text: Germ-line mutation is detected in mice but not in humans. To estimate genetic risk of humans, a new approach to extrapolate from animal data to humans or to directly detect radiation-induced mutations in man is expected. We have developed a new method to detect germ-line mutations by directly comparing DNA sequences of parents and children. The nucleotide sequences among mouse strains are almost identical except SNP markers that are detected at 1/1000 frequency. When gamma-irradiated male mice are mated with female mice, heterogeneous nucleotide sequences induced in children DNA are a candidate of mutation, whose assignment can be done by SNP analysis. This system can easily detect all types of mutations such as transition, transversion, frameshift and deletion induced by radiation and can be applied to humans having genetically heterogeneous nucleotide sequences and many SNP markers. C3H male mice of 8 weeks of gestation were irradiated with gamma rays of 3 and 1 Gy and after 3 weeks, they were mated with the same aged C57BL female mice. After 3 weeks breeding, DNA was extracted from parents and children mice. The nucleotide sequences of 150 STS markers containing 300-900 bp and SNPs of parents and children DNA were determined by a direct sequencing; amplification of STS markers by Taq DNA polymerase, purification of PCR products, and DNA sequencing with a dye-terminator method. At each radiation dose, a total amount of 5 Mb DNA sequences were examined to detect radiation-induced mutations. We could find 6 deletions in 3 Gy irradiated mice but not in 1 Gy and control mice. The mutation frequency was about 4.0 x 10 -7 /bp/ Gy or 1.6 x 10 -4 /locus/Gy, and suggested the non-linear increase of mutation rate with dose

  7. Causality analysis of alpha activities by multidimensional directed coherence; Tajigen yuko coherence ni yoru {alpha}ritsudo no ingasei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, O.; Shimada, N.; Shiina, T. [University of Tsukuba, Tsukuba (Japan); Saito, Y.; Imanishi, N.

    1998-07-01

    Alpha activities as a basic component of EEG (electroencephalogram) are mainly observed with eye-closed and reported state, and indicates rhythmic and diffused pattern on the scalp. Therefore analysis of the relation among many sequences of alpha activities measured at different positions on the scalp is expected to be useful not only for diagnosing psychiatric but also for investigating mechanism of brain information processing by means of causality analysis that is, macroscopic estimation of flow pattern within brain. Although coherence analysis has been proposed as a method for estimating the direction and magnitude of information flow between two sequences, superposition of results for each pair of sequences can not represent true relation among the whole sequences. In this paper, we proposed the multidimensional directed coherence analysis by modifying two-channel formula in order to apply it to the analysis of multi-channel sequence of alpha activities. Results of simulation revealed that multidimensional directed coherence can indicate more quantitatively the relation among the multi-channel sequences compared with conventional two-channel formula. Moreover, the proposed method was applied to the analysis of EEG data of normal volunteer and patient. Results show the method can provide a useful diagnostic information by assessment of the signal flow pattern within brain. 16 refs., 10 figs.

  8. A Chaos-Based Secure Direct-Sequence/Spread-Spectrum Communication System

    Directory of Open Access Journals (Sweden)

    Nguyen Xuan Quyen

    2013-01-01

    Full Text Available This paper proposes a chaos-based secure direct-sequence/spread-spectrum (DS/SS communication system which is based on a novel combination of the conventional DS/SS and chaos techniques. In the proposed system, bit duration is varied according to a chaotic behavior but is always equal to a multiple of the fixed chip duration in the communication process. Data bits with variable duration are spectrum-spread by multiplying directly with a pseudonoise (PN sequence and then modulated onto a sinusoidal carrier by means of binary phase-shift keying (BPSK. To recover exactly the data bits, the receiver needs an identical regeneration of not only the PN sequence but also the chaotic behavior, and hence data security is improved significantly. Structure and operation of the proposed system are analyzed in detail. Theoretical evaluation of bit-error rate (BER performance in presence of additive white Gaussian noise (AWGN is provided. Parameter choice for different cases of simulation is also considered. Simulation and theoretical results are shown to verify the reliability and feasibility of the proposed system. Security of the proposed system is also discussed.

  9. Fractals in DNA sequence analysis

    Institute of Scientific and Technical Information of China (English)

    Yu Zu-Guo(喻祖国); Vo Anh; Gong Zhi-Min(龚志民); Long Shun-Chao(龙顺潮)

    2002-01-01

    Fractal methods have been successfully used to study many problems in physics, mathematics, engineering, finance,and even in biology. There has been an increasing interest in unravelling the mysteries of DNA; for example, how can we distinguish coding and noncoding sequences, and the problems of classification and evolution relationship of organisms are key problems in bioinformatics. Although much research has been carried out by taking into consideration the long-range correlations in DNA sequences, and the global fractal dimension has been used in these works by other people, the models and methods are somewhat rough and the results are not satisfactory. In recent years, our group has introduced a time series model (statistical point of view) and a visual representation (geometrical point of view)to DNA sequence analysis. We have also used fractal dimension, correlation dimension, the Hurst exponent and the dimension spectrum (multifractal analysis) to discuss problems in this field. In this paper, we introduce these fractal models and methods and the results of DNA sequence analysis.

  10. Novel primer specific false terminations during DNA sequencing reactions: danger of inaccuracy of mutation analysis in molecular diagnostics

    Science.gov (United States)

    Anwar, R; Booth, A; Churchill, A J; Markham, A F

    1996-01-01

    The determination of nucleotide sequence is fundamental to the identification and molecular analysis of genes. Direct sequencing of PCR products is now becoming a commonplace procedure for haplotype analysis, and for defining mutations and polymorphism within genes, particularly for diagnostic purposes. A previously unrecognised phenomenon, primer related variability, observed in sequence data generated using Taq cycle sequencing and T7 Sequenase sequencing, is reported. This suggests that caution is necessary when interpreting DNA sequence data. This is particularly important in situations where treatment may be dependent on the accuracy of the molecular diagnosis. Images PMID:16696096

  11. Genome Sequencing and Analysis Conference IV

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    J. Craig Venter and C. Thomas Caskey co-chaired Genome Sequencing and Analysis Conference IV held at Hilton Head, South Carolina from September 26--30, 1992. Venter opened the conference by noting that approximately 400 researchers from 16 nations were present four times as many participants as at Genome Sequencing Conference I in 1989. Venter also introduced the Data Fair, a new component of the conference allowing exchange and on-site computer analysis of unpublished sequence data.

  12. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing

    OpenAIRE

    Manske, Magnus; Miotto, Olivo; Campino, Susana; Auburn, Sarah; Almagro-Garcia, Jacob; Maslen, Gareth; O?Brien, Jack; Djimde, Abdoulaye; Doumbo, Ogobara; Zongo, Issaka; Ouedraogo, Jean-Bosco; Michon, Pascal; Mueller, Ivo; Siba, Peter; Nzila, Alexis

    2012-01-01

    : Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. Here we describe methods for the large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short-term culture. Analysis of 86,158 exonic single nucleotide polymorphisms that passed genotyping quality c...

  13. Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions.

    Science.gov (United States)

    Senol Cali, Damla; Kim, Jeremie S; Ghose, Saugata; Alkan, Can; Mutlu, Onur

    2018-04-02

    Nanopore sequencing technology has the potential to render other sequencing technologies obsolete with its ability to generate long reads and provide portability. However, high error rates of the technology pose a challenge while generating accurate genome assemblies. The tools used for nanopore sequence analysis are of critical importance, as they should overcome the high error rates of the technology. Our goal in this work is to comprehensively analyze current publicly available tools for nanopore sequence analysis to understand their advantages, disadvantages and performance bottlenecks. It is important to understand where the current tools do not perform well to develop better tools. To this end, we (1) analyze the multiple steps and the associated tools in the genome assembly pipeline using nanopore sequence data, and (2) provide guidelines for determining the appropriate tools for each step. Based on our analyses, we make four key observations: (1) the choice of the tool for basecalling plays a critical role in overcoming the high error rates of nanopore sequencing technology. (2) Read-to-read overlap finding tools, GraphMap and Minimap, perform similarly in terms of accuracy. However, Minimap has a lower memory usage, and it is faster than GraphMap. (3) There is a trade-off between accuracy and performance when deciding on the appropriate tool for the assembly step. The fast but less accurate assembler Miniasm can be used for quick initial assembly, and further polishing can be applied on top of it to increase the accuracy, which leads to faster overall assembly. (4) The state-of-the-art polishing tool, Racon, generates high-quality consensus sequences while providing a significant speedup over another polishing tool, Nanopolish. We analyze various combinations of different tools and expose the trade-offs between accuracy, performance, memory usage and scalability. We conclude that our observations can guide researchers and practitioners in making conscious

  14. DNA sequence analysis of X-ray induced Adh null mutations in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Mahmoud, J.; Fossett, N.G.; Arbour-Reily, P.; McDaniel, M.; Tucker, A.; Chang, S.H.; Lee, W.R.

    1991-01-01

    The mutational spectrum for 28 X-ray induced mutations and 2 spontaneous mutations, previously determined by genetic and cytogenetic methods, consisted of 20 multilocus deficiencies (19 induced and 1 spontaneous) and 10 intragenic mutations (9 induced and 1 spontaneous). One of the X-ray induced intragenic mutations was lost, and another was determined to be a recombinant with the allele used in the recovery scheme. The DNA sequence of two X-ray induced intragenic mutations has been published. This paper reports the results of DNA sequence analysis of the remaining intragenic mutations and a summary of the X-ray induced mutational spectrum. The combination of DNA sequence analysis with genetic complementation analysis shows a continuous distribution in size of deletions rather than two different types of mutations consisting of deletions and 'point mutations'. Sequencing is shown to be essential for detecting intragenic deletions. Of particular importance for future studies is the observation that all of the intragenic deletions consist of a direct repeat adjacent to the breakpoint with one of the repeats deleted

  15. Direct 16S rRNA gene sequencing of polymicrobial culture-negative samples with analysis of mixed chromatograms

    DEFF Research Database (Denmark)

    Hartmeyer, Gitte N; Justesen, Ulrik S

    2010-01-01

    Two cases involving polymicrobial culture-negative samples were investigated by 16S rRNA gene sequencing, with analysis of mixed chromatograms. Fusobacterium necrophorum, Prevotella intermedia and Streptococcus constellatus were identified from pleural fluid in a patient with Lemierre's syndrome...

  16. Performance Analysis of Direct-Sequence Code-Division Multiple-Access Communications with Asymmetric Quadrature Phase-Shift-Keying Modulation

    Science.gov (United States)

    Wang, C.-W.; Stark, W.

    2005-01-01

    This article considers a quaternary direct-sequence code-division multiple-access (DS-CDMA) communication system with asymmetric quadrature phase-shift-keying (AQPSK) modulation for unequal error protection (UEP) capability. Both time synchronous and asynchronous cases are investigated. An expression for the probability distribution of the multiple-access interference is derived. The exact bit-error performance and the approximate performance using a Gaussian approximation and random signature sequences are evaluated by extending the techniques used for uniform quadrature phase-shift-keying (QPSK) and binary phase-shift-keying (BPSK) DS-CDMA systems. Finally, a general system model with unequal user power and the near-far problem is considered and analyzed. The results show that, for a system with UEP capability, the less protected data bits are more sensitive to the near-far effect that occurs in a multiple-access environment than are the more protected bits.

  17. Comparative analysis of sequences from PT 2013

    DEFF Research Database (Denmark)

    Mikkelsen, Susie Sommer

    Sheatfish and not EHNV. Generally, mistakes occurred at the ends of the sequences. This can be due to several factors. One is that the sequence has not been trimmed of the sequence primer sites. Another is the lack of quality control of the chromatogram. Finally, sequencing in just one direction can result...... diseases in Europe. As part of the EURL proficiency test for fish diseases it is required to sequence any RANA virus isolates found in any of the samples. It is also highly recommended to sequence the ISA virus to determine whether it be HPRΔ or HPR0. Furthermore, it is recommended that any VHSV and IHNV...... isolates be genotyped. As part of the evaluation of the proficiency results it was decided this year to look into the quality and similarity of the sequence results for selected viruses. Ampoule III in the proficiency test 2013 contained an EHNV isolate. The EURL received 43 sequences from 41 laboratories...

  18. Robustness analysis of chiller sequencing control

    International Nuclear Information System (INIS)

    Liao, Yundan; Sun, Yongjun; Huang, Gongsheng

    2015-01-01

    Highlights: • Uncertainties with chiller sequencing control were systematically quantified. • Robustness of chiller sequencing control was systematically analyzed. • Different sequencing control strategies were sensitive to different uncertainties. • A numerical method was developed for easy selection of chiller sequencing control. - Abstract: Multiple-chiller plant is commonly employed in the heating, ventilating and air-conditioning system to increase operational feasibility and energy-efficiency under part load condition. In a multiple-chiller plant, chiller sequencing control plays a key role in achieving overall energy efficiency while not sacrifices the cooling sufficiency for indoor thermal comfort. Various sequencing control strategies have been developed and implemented in practice. Based on the observation that (i) uncertainty, which cannot be avoided in chiller sequencing control, has a significant impact on the control performance and may cause the control fail to achieve the expected control and/or energy performance; and (ii) in current literature few studies have systematically addressed this issue, this paper therefore presents a study on robustness analysis of chiller sequencing control in order to understand the robustness of various chiller sequencing control strategies under different types of uncertainty. Based on the robustness analysis, a simple and applicable method is developed to select the most robust control strategy for a given chiller plant in the presence of uncertainties, which will be verified using case studies

  19. Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning

    KAUST Repository

    Teng, Haotian; Cao, Minh Duc; Hall, Michael B; Duarte, Tania; Wang, Sheng; Coin, Lachlan J M

    2018-01-01

    Sequencing by translocating DNA fragments through an array of nanopores is a rapidly maturing technology that offers faster and cheaper sequencing than other approaches. However, accurately deciphering the DNA sequence from the noisy and complex electrical signal is challenging. Here, we report Chiron, the first deep learning model to achieve end-to-end basecalling and directly translate the raw signal to DNA sequence without the error-prone segmentation step. Trained with only a small set of 4,000 reads, we show that our model provides state-of-the-art basecalling accuracy, even on previously unseen species. Chiron achieves basecalling speeds of more than 2,000 bases per second using desktop computer graphics processing units.

  20. Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning

    KAUST Repository

    Teng, Haotian

    2018-04-10

    Sequencing by translocating DNA fragments through an array of nanopores is a rapidly maturing technology that offers faster and cheaper sequencing than other approaches. However, accurately deciphering the DNA sequence from the noisy and complex electrical signal is challenging. Here, we report Chiron, the first deep learning model to achieve end-to-end basecalling and directly translate the raw signal to DNA sequence without the error-prone segmentation step. Trained with only a small set of 4,000 reads, we show that our model provides state-of-the-art basecalling accuracy, even on previously unseen species. Chiron achieves basecalling speeds of more than 2,000 bases per second using desktop computer graphics processing units.

  1. Sequence comparison and phylogenetic analysis of core gene of ...

    African Journals Online (AJOL)

    Phylogenetic analysis suggests that our sequences are clustered with sequences reported from Japan. This is the first phylogenetic analysis of HCV core gene from Pakistani population. Our sequences and sequences from Japan are grouped into same cluster in the phylogenetic tree. Sequence comparison and ...

  2. Evaluating next-generation sequencing for direct clinical diagnostics in diarrhoeal disease

    DEFF Research Database (Denmark)

    Joensen, Katrine Grimstrup; Engsbro, A L Ø; Lukjancenko, Oksana

    2017-01-01

    The accurate microbiological diagnosis of diarrhoea involves numerous laboratory tests and, often, the pathogen is not identified in time to guide clinical management. With next-generation sequencing (NGS) becoming cheaper, it has huge potential in routine diagnostics. The aim of this study...... was to evaluate the potential of NGS-based diagnostics through direct sequencing of faecal samples. Fifty-eight clinical faecal samples were obtained from patients with diarrhoea as part of the routine diagnostics at Hvidovre University Hospital, Denmark. Ten samples from healthy individuals were also included...

  3. Infants learn better from left to right: a directional bias in infants' sequence learning.

    Science.gov (United States)

    Bulf, Hermann; de Hevia, Maria Dolores; Gariboldi, Valeria; Macchi Cassia, Viola

    2017-05-26

    A wealth of studies show that human adults map ordered information onto a directional spatial continuum. We asked whether mapping ordinal information into a directional space constitutes an early predisposition, already functional prior to the acquisition of symbolic knowledge and language. While it is known that preverbal infants represent numerical order along a left-to-right spatial continuum, no studies have investigated yet whether infants, like adults, organize any kind of ordinal information onto a directional space. We investigated whether 7-month-olds' ability to learn high-order rule-like patterns from visual sequences of geometric shapes was affected by the spatial orientation of the sequences (left-to-right vs. right-to-left). Results showed that infants readily learn rule-like patterns when visual sequences were presented from left to right, but not when presented from right to left. This result provides evidence that spatial orientation critically determines preverbal infants' ability to perceive and learn ordered information in visual sequences, opening to the idea that a left-to-right spatially organized mental representation of ordered dimensions might be rooted in biologically-determined constraints on human brain development.

  4. Direct typing of Canine parvovirus (CPV) from infected dog faeces by rapid mini sequencing technique.

    Science.gov (United States)

    V, Pavana Jyothi; S, Akila; Selvan, Malini K; Naidu, Hariprasad; Raghunathan, Shwethaa; Kota, Sathish; Sundaram, R C Raja; Rana, Samir Kumar; Raj, G Dhinakar; Srinivasan, V A; Mohana Subramanian, B

    2016-12-01

    Canine parvovirus (CPV) is a non-enveloped single stranded DNA virus with an icosahedral capsid. Mini-sequencing based CPV typing was developed earlier to detect and differentiate all the CPV types and FPV in a single reaction. This technique was further evaluated in the present study by performing the mini-sequencing directly from fecal samples which avoided tedious virus isolation steps by cell culture system. Fecal swab samples were collected from 84 dogs with enteritis symptoms, suggestive of parvoviral infection from different locations across India. Seventy six of these samples were positive by PCR; the subsequent mini-sequencing reaction typed 74 of them as type 2a virus, and 2 samples as type 2b. Additionally, 25 of the positive samples were typed by cycle sequencing of PCR products. Direct CPV typing from fecal samples using mini-sequencing showed 100% correlation with CPV typing by cycle sequencing. Moreover, CPV typing was achieved by mini-sequencing even with faintly positive PCR amplicons which was not possible by cycle sequencing. Therefore, the mini-sequencing technique is recommended for regular epidemiological follow up of CPV types, since the technique is rapid, highly sensitive and high capacity method for CPV typing. Copyright © 2016. Published by Elsevier B.V.

  5. Nonlinear analysis of sequence repeats of multi-domain proteins

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yanzhao [Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Li Mingfeng [Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Xiao Yi [Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China)]. E-mail: lmf_bill@sina.com

    2007-11-15

    Many multi-domain proteins have repetitive three-dimensional structures but nearly-random amino acid sequences. In the present paper, by using a modified recurrence plot proposed by us previously, we show that these amino acid sequences have hidden repetitions in fact. These results indicate that the repetitive domain structures are encoded by the repetitive sequences. This also gives a method to detect the repetitive domain structures directly from amino acid sequences.

  6. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently

    Science.gov (United States)

    Currin, Andrew; Swainston, Neil; Day, Philip J.

    2015-01-01

    The amino acid sequence of a protein affects both its structure and its function. Thus, the ability to modify the sequence, and hence the structure and activity, of individual proteins in a systematic way, opens up many opportunities, both scientifically and (as we focus on here) for exploitation in biocatalysis. Modern methods of synthetic biology, whereby increasingly large sequences of DNA can be synthesised de novo, allow an unprecedented ability to engineer proteins with novel functions. However, the number of possible proteins is far too large to test individually, so we need means for navigating the ‘search space’ of possible protein sequences efficiently and reliably in order to find desirable activities and other properties. Enzymologists distinguish binding (K d) and catalytic (k cat) steps. In a similar way, judicious strategies have blended design (for binding, specificity and active site modelling) with the more empirical methods of classical directed evolution (DE) for improving k cat (where natural evolution rarely seeks the highest values), especially with regard to residues distant from the active site and where the functional linkages underpinning enzyme dynamics are both unknown and hard to predict. Epistasis (where the ‘best’ amino acid at one site depends on that or those at others) is a notable feature of directed evolution. The aim of this review is to highlight some of the approaches that are being developed to allow us to use directed evolution to improve enzyme properties, often dramatically. We note that directed evolution differs in a number of ways from natural evolution, including in particular the available mechanisms and the likely selection pressures. Thus, we stress the opportunities afforded by techniques that enable one to map sequence to (structure and) activity in silico, as an effective means of modelling and exploring protein landscapes. Because known landscapes may be assessed and reasoned about as a whole

  7. MerCat: a versatile k-mer counter and diversity estimator for database-independent property analysis obtained from metagenomic and/or metatranscriptomic sequencing data

    Energy Technology Data Exchange (ETDEWEB)

    White, Richard A.; Panyala, Ajay R.; Glass, Kevin A.; Colby, Sean M.; Glaesemann, Kurt R.; Jansson, Georg C.; Jansson, Janet K.

    2017-02-21

    MerCat is a parallel, highly scalable and modular property software package for robust analysis of features in next-generation sequencing data. MerCat inputs include assembled contigs and raw sequence reads from any platform resulting in feature abundance counts tables. MerCat allows for direct analysis of data properties without reference sequence database dependency commonly used by search tools such as BLAST and/or DIAMOND for compositional analysis of whole community shotgun sequencing (e.g. metagenomes and metatranscriptomes).

  8. A comparison of EGFR mutation testing methods in lung carcinoma: direct sequencing, real-time PCR and immunohistochemistry.

    Directory of Open Access Journals (Sweden)

    Bárbara Angulo

    Full Text Available The objective of this study is to compare two EGFR testing methodologies (a commercial real-time PCR kit and a specific EGFR mutant immunohistochemistry, with direct sequencing and to investigate the limit of detection (LOD of both PCR-based methods. We identified EGFR mutations in 21 (16% of the 136 tumours analyzed by direct sequencing. Interestingly, the Therascreen EGFR Mutation Test kit was able to characterize as wild-type one tumour that could not be analyzed by direct sequencing of the PCR product. We then compared the LOD of the kit and that of direct sequencing using the available mutant tumours. The kit was able to detect the presence of a mutation in a 1% dilution of the total DNA in nine of the 18 tumours (50%, which tested positive with the real-time quantitative PCR method. In all cases, EGFR mutation was identified at a dilution of 5%. Where the mutant DNA represented 30% of the total DNA, sequencing was able to detect mutations in 12 out of 19 cases (63%. Additional experiments with genetically defined standards (EGFR ΔE746-A750/+ and EGFR L858R/+ yielded similar results. Immunohistochemistry (IHC staining with exon 19-specific antibody was seen in eight out of nine cases with E746-A750del detected by direct sequencing. Neither of the two tumours with complex deletions were positive. Of the five L858R-mutated tumours detected by the PCR methods, only two were positive for the exon 21-specific antibody. The specificity was 100% for both antibodies. The LOD of the real-time PCR method was lower than that of direct sequencing. The mutation specific IHC produced excellent specificity.

  9. Error Analysis of Deep Sequencing of Phage Libraries: Peptides Censored in Sequencing

    Directory of Open Access Journals (Sweden)

    Wadim L. Matochko

    2013-01-01

    Full Text Available Next-generation sequencing techniques empower selection of ligands from phage-display libraries because they can detect low abundant clones and quantify changes in the copy numbers of clones without excessive selection rounds. Identification of errors in deep sequencing data is the most critical step in this process because these techniques have error rates >1%. Mechanisms that yield errors in Illumina and other techniques have been proposed, but no reports to date describe error analysis in phage libraries. Our paper focuses on error analysis of 7-mer peptide libraries sequenced by Illumina method. Low theoretical complexity of this phage library, as compared to complexity of long genetic reads and genomes, allowed us to describe this library using convenient linear vector and operator framework. We describe a phage library as N×1 frequency vector n=ni, where ni is the copy number of the ith sequence and N is the theoretical diversity, that is, the total number of all possible sequences. Any manipulation to the library is an operator acting on n. Selection, amplification, or sequencing could be described as a product of a N×N matrix and a stochastic sampling operator (Sa. The latter is a random diagonal matrix that describes sampling of a library. In this paper, we focus on the properties of Sa and use them to define the sequencing operator (Seq. Sequencing without any bias and errors is Seq=Sa IN, where IN is a N×N unity matrix. Any bias in sequencing changes IN to a nonunity matrix. We identified a diagonal censorship matrix (CEN, which describes elimination or statistically significant downsampling, of specific reads during the sequencing process.

  10. Integrated sequence analysis. Final report

    International Nuclear Information System (INIS)

    Andersson, K.; Pyy, P.

    1998-02-01

    The NKS/RAK subprojet 3 'integrated sequence analysis' (ISA) was formulated with the overall objective to develop and to test integrated methodologies in order to evaluate event sequences with significant human action contribution. The term 'methodology' denotes not only technical tools but also methods for integration of different scientific disciplines. In this report, we first discuss the background of ISA and the surveys made to map methods in different application fields, such as man machine system simulation software, human reliability analysis (HRA) and expert judgement. Specific event sequences were, after the surveys, selected for application and testing of a number of ISA methods. The event sequences discussed in the report were cold overpressure of BWR, shutdown LOCA of BWR, steam generator tube rupture of a PWR and BWR disturbed signal view in the control room after an external event. Different teams analysed these sequences by using different ISA and HRA methods. Two kinds of results were obtained from the ISA project: sequence specific and more general findings. The sequence specific results are discussed together with each sequence description. The general lessons are discussed under a separate chapter by using comparisons of different case studies. These lessons include areas ranging from plant safety management (design, procedures, instrumentation, operations, maintenance and safety practices) to methodological findings (ISA methodology, PSA,HRA, physical analyses, behavioural analyses and uncertainty assessment). Finally follows a discussion about the project and conclusions are presented. An interdisciplinary study of complex phenomena is a natural way to produce valuable and innovative results. This project came up with structured ways to perform ISA and managed to apply the in practice. The project also highlighted some areas where more work is needed. In the HRA work, development is required for the use of simulators and expert judgement as

  11. Integrated sequence analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, K.; Pyy, P

    1998-02-01

    The NKS/RAK subprojet 3 `integrated sequence analysis` (ISA) was formulated with the overall objective to develop and to test integrated methodologies in order to evaluate event sequences with significant human action contribution. The term `methodology` denotes not only technical tools but also methods for integration of different scientific disciplines. In this report, we first discuss the background of ISA and the surveys made to map methods in different application fields, such as man machine system simulation software, human reliability analysis (HRA) and expert judgement. Specific event sequences were, after the surveys, selected for application and testing of a number of ISA methods. The event sequences discussed in the report were cold overpressure of BWR, shutdown LOCA of BWR, steam generator tube rupture of a PWR and BWR disturbed signal view in the control room after an external event. Different teams analysed these sequences by using different ISA and HRA methods. Two kinds of results were obtained from the ISA project: sequence specific and more general findings. The sequence specific results are discussed together with each sequence description. The general lessons are discussed under a separate chapter by using comparisons of different case studies. These lessons include areas ranging from plant safety management (design, procedures, instrumentation, operations, maintenance and safety practices) to methodological findings (ISA methodology, PSA,HRA, physical analyses, behavioural analyses and uncertainty assessment). Finally follows a discussion about the project and conclusions are presented. An interdisciplinary study of complex phenomena is a natural way to produce valuable and innovative results. This project came up with structured ways to perform ISA and managed to apply the in practice. The project also highlighted some areas where more work is needed. In the HRA work, development is required for the use of simulators and expert judgement as

  12. Question-answer sequences in survey interviews

    NARCIS (Netherlands)

    Dijkstra, W.; Ongena, Y.P.

    2006-01-01

    Interaction analysis was used to analyze a total of 14,265 question-answer sequences of (Q-A Sequences) 80 questions that originated from two face-to-face and three telephone surveys. The analysis was directed towards the causes and effects of particular interactional problems. Our results showed

  13. Source coherence impairments in a direct detection direct sequence optical code-division multiple-access system.

    Science.gov (United States)

    Fsaifes, Ihsan; Lepers, Catherine; Lourdiane, Mounia; Gallion, Philippe; Beugin, Vincent; Guignard, Philippe

    2007-02-01

    We demonstrate that direct sequence optical code- division multiple-access (DS-OCDMA) encoders and decoders using sampled fiber Bragg gratings (S-FBGs) behave as multipath interferometers. In that case, chip pulses of the prime sequence codes generated by spreading in time-coherent data pulses can result from multiple reflections in the interferometers that can superimpose within a chip time duration. We show that the autocorrelation function has to be considered as the sum of complex amplitudes of the combined chip as the laser source coherence time is much greater than the integration time of the photodetector. To reduce the sensitivity of the DS-OCDMA system to the coherence time of the laser source, we analyze the use of sparse and nonperiodic quadratic congruence and extended quadratic congruence codes.

  14. Source coherence impairments in a direct detection direct sequence optical code-division multiple-access system

    Science.gov (United States)

    Fsaifes, Ihsan; Lepers, Catherine; Lourdiane, Mounia; Gallion, Philippe; Beugin, Vincent; Guignard, Philippe

    2007-02-01

    We demonstrate that direct sequence optical code- division multiple-access (DS-OCDMA) encoders and decoders using sampled fiber Bragg gratings (S-FBGs) behave as multipath interferometers. In that case, chip pulses of the prime sequence codes generated by spreading in time-coherent data pulses can result from multiple reflections in the interferometers that can superimpose within a chip time duration. We show that the autocorrelation function has to be considered as the sum of complex amplitudes of the combined chip as the laser source coherence time is much greater than the integration time of the photodetector. To reduce the sensitivity of the DS-OCDMA system to the coherence time of the laser source, we analyze the use of sparse and nonperiodic quadratic congruence and extended quadratic congruence codes.

  15. Identification of rat genes by TWINSCAN gene prediction, RT-PCR, and direct sequencing

    DEFF Research Database (Denmark)

    Wu, Jia Qian; Shteynberg, David; Arumugam, Manimozhiyan

    2004-01-01

    an alternative approach: reverse transcription-polymerase chain reaction (RT-PCR) and direct sequencing based on dual-genome de novo predictions from TWINSCAN. We tested 444 TWINSCAN-predicted rat genes that showed significant homology to known human genes implicated in disease but that were partially...... in the single-intron experiment. Spliced sequences were amplified in 46 cases (34%). We conclude that this procedure for elucidating gene structures with native cDNA sequences is cost-effective and will become even more so as it is further optimized.......The publication of a draft sequence of a third mammalian genome--that of the rat--suggests a need to rethink genome annotation. New mammalian sequences will not receive the kind of labor-intensive annotation efforts that are currently being devoted to human. In this paper, we demonstrate...

  16. Chimira: analysis of small RNA sequencing data and microRNA modifications.

    Science.gov (United States)

    Vitsios, Dimitrios M; Enright, Anton J

    2015-10-15

    Chimira is a web-based system for microRNA (miRNA) analysis from small RNA-Seq data. Sequences are automatically cleaned, trimmed, size selected and mapped directly to miRNA hairpin sequences. This generates count-based miRNA expression data for subsequent statistical analysis. Moreover, it is capable of identifying epi-transcriptomic modifications in the input sequences. Supported modification types include multiple types of 3'-modifications (e.g. uridylation, adenylation), 5'-modifications and also internal modifications or variation (ADAR editing or single nucleotide polymorphisms). Besides cleaning and mapping of input sequences to miRNAs, Chimira provides a simple and intuitive set of tools for the analysis and interpretation of the results (see also Supplementary Material). These allow the visual study of the differential expression between two specific samples or sets of samples, the identification of the most highly expressed miRNAs within sample pairs (or sets of samples) and also the projection of the modification profile for specific miRNAs across all samples. Other tools have already been published in the past for various types of small RNA-Seq analysis, such as UEA workbench, seqBuster, MAGI, OASIS and CAP-miRSeq, CPSS for modifications identification. A comprehensive comparison of Chimira with each of these tools is provided in the Supplementary Material. Chimira outperforms all of these tools in total execution speed and aims to facilitate simple, fast and reliable analysis of small RNA-Seq data allowing also, for the first time, identification of global microRNA modification profiles in a simple intuitive interface. Chimira has been developed as a web application and it is accessible here: http://www.ebi.ac.uk/research/enright/software/chimira. aje@ebi.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  17. Image sequence analysis workstation for multipoint motion analysis

    Science.gov (United States)

    Mostafavi, Hassan

    1990-08-01

    This paper describes an application-specific engineering workstation designed and developed to analyze motion of objects from video sequences. The system combines the software and hardware environment of a modem graphic-oriented workstation with the digital image acquisition, processing and display techniques. In addition to automation and Increase In throughput of data reduction tasks, the objective of the system Is to provide less invasive methods of measurement by offering the ability to track objects that are more complex than reflective markers. Grey level Image processing and spatial/temporal adaptation of the processing parameters is used for location and tracking of more complex features of objects under uncontrolled lighting and background conditions. The applications of such an automated and noninvasive measurement tool include analysis of the trajectory and attitude of rigid bodies such as human limbs, robots, aircraft in flight, etc. The system's key features are: 1) Acquisition and storage of Image sequences by digitizing and storing real-time video; 2) computer-controlled movie loop playback, freeze frame display, and digital Image enhancement; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored Image sequence; 4) model-based estimation and tracking of the six degrees of freedom of a rigid body: 5) field-of-view and spatial calibration: 6) Image sequence and measurement data base management; and 7) offline analysis software for trajectory plotting and statistical analysis.

  18. UGT1A1 (TA)n genotyping in sickle-cell disease: high resolution melting (HRM) curve analysis or direct sequencing, what is the best way?

    Science.gov (United States)

    Thomas, Vincent; Mazard, Blandine; Garcia, Caroline; Lacan, Philippe; Gagnieu, Marie-Claude; Joly, Philippe

    2013-09-23

    Minucci et al. have proposed in 2010 a rapid, simple and cost-effective HRM method on the LightCycler 480® apparatus (Roche) for the determination of the 6/6, 6/7 and 7/7 genotypes of the (TA)n UGT1A1 promoter polymorphism. However, they have not studied the n=5 and n=8 alleles which can be quite frequent in sickle-cell disease patients. The aim of our study was to test this HRM protocol to all the 10 possible (TA)n UGT1A1 genotypes (i.e. 5/5, 5/6, 5/7, 5/8, 6/6, 6/7, 6/8, 7/7, 7/8 and 8/8) by using our SCD cohort of patients. All genotypes could be unambiguously identified except 6/7 and 6/8 which give a similar HRM profile. For those two genotypes, the differentiation necessitates either a direct Sanger sequencing or a second PCR protocol followed by a 3% agarose gel migration. For the (TA)n UGT1A1 promoter genotyping of African patients, each lab has to wonder what is the best way between (i) direct Sanger sequencing of all patients and (ii) HRM protocol for all patients followed by a complementary analysis to differentiate the 6/7 and 6/8 genotypes. © 2013. Published by Elsevier B.V. All rights reserved.

  19. Importance of Viral Sequence Length and Number of Variable and Informative Sites in Analysis of HIV Clustering.

    Science.gov (United States)

    Novitsky, Vlad; Moyo, Sikhulile; Lei, Quanhong; DeGruttola, Victor; Essex, M

    2015-05-01

    To improve the methodology of HIV cluster analysis, we addressed how analysis of HIV clustering is associated with parameters that can affect the outcome of viral clustering. The extent of HIV clustering and tree certainty was compared between 401 HIV-1C near full-length genome sequences and subgenomic regions retrieved from the LANL HIV Database. Sliding window analysis was based on 99 windows of 1,000 bp and 45 windows of 2,000 bp. Potential associations between the extent of HIV clustering and sequence length and the number of variable and informative sites were evaluated. The near full-length genome HIV sequences showed the highest extent of HIV clustering and the highest tree certainty. At the bootstrap threshold of 0.80 in maximum likelihood (ML) analysis, 58.9% of near full-length HIV-1C sequences but only 15.5% of partial pol sequences (ViroSeq) were found in clusters. Among HIV-1 structural genes, pol showed the highest extent of clustering (38.9% at a bootstrap threshold of 0.80), although it was significantly lower than in the near full-length genome sequences. The extent of HIV clustering was significantly higher for sliding windows of 2,000 bp than 1,000 bp. We found a strong association between the sequence length and proportion of HIV sequences in clusters, and a moderate association between the number of variable and informative sites and the proportion of HIV sequences in clusters. In HIV cluster analysis, the extent of detectable HIV clustering is directly associated with the length of viral sequences used, as well as the number of variable and informative sites. Near full-length genome sequences could provide the most informative HIV cluster analysis. Selected subgenomic regions with a high extent of HIV clustering and high tree certainty could also be considered as a second choice.

  20. Preliminary hazard analysis using sequence tree method

    International Nuclear Information System (INIS)

    Huang Huiwen; Shih Chunkuan; Hung Hungchih; Chen Minghuei; Yih Swu; Lin Jiinming

    2007-01-01

    A system level PHA using sequence tree method was developed to perform Safety Related digital I and C system SSA. The conventional PHA is a brainstorming session among experts on various portions of the system to identify hazards through discussions. However, this conventional PHA is not a systematic technique, the analysis results strongly depend on the experts' subjective opinions. The analysis quality cannot be appropriately controlled. Thereby, this research developed a system level sequence tree based PHA, which can clarify the relationship among the major digital I and C systems. Two major phases are included in this sequence tree based technique. The first phase uses a table to analyze each event in SAR Chapter 15 for a specific safety related I and C system, such as RPS. The second phase uses sequence tree to recognize what I and C systems are involved in the event, how the safety related systems work, and how the backup systems can be activated to mitigate the consequence if the primary safety systems fail. In the sequence tree, the defense-in-depth echelons, including Control echelon, Reactor trip echelon, ESFAS echelon, and Indication and display echelon, are arranged to construct the sequence tree structure. All the related I and C systems, include digital system and the analog back-up systems are allocated in their specific echelon. By this system centric sequence tree based analysis, not only preliminary hazard can be identified systematically, the vulnerability of the nuclear power plant can also be recognized. Therefore, an effective simplified D3 evaluation can be performed as well. (author)

  1. DeepProbe: Information Directed Sequence Understanding and Chatbot Design via Recurrent Neural Networks

    OpenAIRE

    Yin, Zi; Chang, Keng-hao; Zhang, Ruofei

    2017-01-01

    Information extraction and user intention identification are central topics in modern query understanding and recommendation systems. In this paper, we propose DeepProbe, a generic information-directed interaction framework which is built around an attention-based sequence to sequence (seq2seq) recurrent neural network. DeepProbe can rephrase, evaluate, and even actively ask questions, leveraging the generative ability and likelihood estimation made possible by seq2seq models. DeepProbe makes...

  2. Sequence analysis by iterated maps, a review.

    Science.gov (United States)

    Almeida, Jonas S

    2014-05-01

    Among alignment-free methods, Iterated Maps (IMs) are on a particular extreme: they are also scale free (order free). The use of IMs for sequence analysis is also distinct from other alignment-free methodologies in being rooted in statistical mechanics instead of computational linguistics. Both of these roots go back over two decades to the use of fractal geometry in the characterization of phase-space representations. The time series analysis origin of the field is betrayed by the title of the manuscript that started this alignment-free subdomain in 1990, 'Chaos Game Representation'. The clash between the analysis of sequences as continuous series and the better established use of Markovian approaches to discrete series was almost immediate, with a defining critique published in same journal 2 years later. The rest of that decade would go by before the scale-free nature of the IM space was uncovered. The ensuing decade saw this scalability generalized for non-genomic alphabets as well as an interest in its use for graphic representation of biological sequences. Finally, in the past couple of years, in step with the emergence of BigData and MapReduce as a new computational paradigm, there is a surprising third act in the IM story. Multiple reports have described gains in computational efficiency of multiple orders of magnitude over more conventional sequence analysis methodologies. The stage appears to be now set for a recasting of IMs with a central role in processing nextgen sequencing results.

  3. Establishing a framework for comparative analysis of genome sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, A.K.

    1995-06-01

    This paper describes a framework and a high-level language toolkit for comparative analysis of genome sequence alignment The framework integrates the information derived from multiple sequence alignment and phylogenetic tree (hypothetical tree of evolution) to derive new properties about sequences. Multiple sequence alignments are treated as an abstract data type. Abstract operations have been described to manipulate a multiple sequence alignment and to derive mutation related information from a phylogenetic tree by superimposing parsimonious analysis. The framework has been applied on protein alignments to derive constrained columns (in a multiple sequence alignment) that exhibit evolutionary pressure to preserve a common property in a column despite mutation. A Prolog toolkit based on the framework has been implemented and demonstrated on alignments containing 3000 sequences and 3904 columns.

  4. Google matrix analysis of directed networks

    Science.gov (United States)

    Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.

    2015-10-01

    In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.

  5. Analysis of 16S rRNA amplicon sequencing options on the Roche/454 next-generation titanium sequencing platform.

    Directory of Open Access Journals (Sweden)

    Hideyuki Tamaki

    Full Text Available BACKGROUND: 16S rRNA gene pyrosequencing approach has revolutionized studies in microbial ecology. While primer selection and short read length can affect the resulting microbial community profile, little is known about the influence of pyrosequencing methods on the sequencing throughput and the outcome of microbial community analyses. The aim of this study is to compare differences in output, ease, and cost among three different amplicon pyrosequencing methods for the Roche/454 Titanium platform METHODOLOGY/PRINCIPAL FINDINGS: The following three pyrosequencing methods for 16S rRNA genes were selected in this study: Method-1 (standard method is the recommended method for bi-directional sequencing using the LIB-A kit; Method-2 is a new option designed in this study for unidirectional sequencing with the LIB-A kit; and Method-3 uses the LIB-L kit for unidirectional sequencing. In our comparison among these three methods using 10 different environmental samples, Method-2 and Method-3 produced 1.5-1.6 times more useable reads than the standard method (Method-1, after quality-based trimming, and did not compromise the outcome of microbial community analyses. Specifically, Method-3 is the most cost-effective unidirectional amplicon sequencing method as it provided the most reads and required the least effort in consumables management. CONCLUSIONS: Our findings clearly demonstrated that alternative pyrosequencing methods for 16S rRNA genes could drastically affect sequencing output (e.g. number of reads before and after trimming but have little effect on the outcomes of microbial community analysis. This finding is important for both researchers and sequencing facilities utilizing 16S rRNA gene pyrosequencing for microbial ecological studies.

  6. Genotype, phenotype and in silico pathogenicity analysis of HEXB mutations: Panel based sequencing for differential diagnosis of gangliosidosis.

    Science.gov (United States)

    Mahdieh, Nejat; Mikaeeli, Sahar; Tavasoli, Ali Reza; Rezaei, Zahra; Maleki, Majid; Rabbani, Bahareh

    2018-04-01

    Gangliosidosis is an inherited metabolic disorder causing neurodegeneration and motor regression. Preventive diagnosis is the first choice for the affected families due to lack of straightforward therapy. Genetic studies could confirm the diagnosis and help families for carrier screening and prenatal diagnosis. An update of HEXB gene variants concerning genotype, phenotype and in silico analysis are presented. Panel based next generation sequencing and direct sequencing of four cases were performed to confirm the clinical diagnosis and for reproductive planning. Bioinformatic analyses of the HEXB mutation database were also performed. Direct sequencing of HEXA and HEXB genes showed recurrent homozygous variants at c.509G>A (p.Arg170Gln) and c.850C>T (p.Arg284Ter), respectively. A novel variant at c.416T>A (p.Leu139Gln) was identified in the GLB1 gene. Panel based next generation sequencing was performed for an undiagnosed patient which showed a novel mutation at c.1602C>A (p.Cys534Ter) of HEXB gene. Bioinformatic analysis of the HEXB mutation database showed 97% consistency of in silico genotype analysis with the phenotype. Bioinformatic analysis of the novel variants predicted to be disease causing. In silico structural and functional analysis of the novel variants showed structural effect of HEXB and functional effect of GLB1 variants which would provide fast analysis of novel variants. Panel based studies could be performed for overlapping symptomatic patients. Consequently, genetic testing would help affected families for patients' management, carrier detection, and family planning's. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Analysis of mutations in the entire coding sequence of the factor VIII gene

    Energy Technology Data Exchange (ETDEWEB)

    Bidichadani, S.I.; Lanyon, W.G.; Connor, J.M. [Glascow Univ. (United Kingdom)] [and others

    1994-09-01

    Hemophilia A is a common X-linked recessive disorder of bleeding caused by deleterious mutations in the gene for clotting factor VIII. The large size of the factor VIII gene, the high frequency of de novo mutations and its tissue-specific expression complicate the detection of mutations. We have used a combination of RT-PCR of ectopic factor VIII transcripts and genomic DNA-PCRs to amplify the entire essential sequence of the factor VIII gene. This is followed by chemical mismatch cleavage analysis and direct sequencing in order to facilitate a comprehensive search for mutations. We describe the characterization of nine potentially pathogenic mutations, six of which are novel. In each case, a correlation of the genotype with the observed phenotype is presented. In order to evaluate the pathogenicity of the five missense mutations detected, we have analyzed them for evolutionary sequence conservation and for their involvement of sequence motifs catalogued in the PROSITE database of protein sites and patterns.

  8. Direct whole-genome sequencing of Plasmodium falciparum specimens from dried erythrocyte spots

    DEFF Research Database (Denmark)

    Nag, Sidsel; Kofoed, Poul Erik; Ursing, Johan

    2018-01-01

    -infected individuals living in rural areas, away from main infrastructure and the electrical grid. The aim of this study was to describe a low-tech procedure to sample P. falciparum specimens for direct whole genome sequencing (WGS), without use of electricity and cold-chain. Methods: Venous blood samples were...

  9. mESAdb: microRNA expression and sequence analysis database.

    Science.gov (United States)

    Kaya, Koray D; Karakülah, Gökhan; Yakicier, Cengiz M; Acar, Aybar C; Konu, Ozlen

    2011-01-01

    microRNA expression and sequence analysis database (http://konulab.fen.bilkent.edu.tr/mirna/) (mESAdb) is a regularly updated database for the multivariate analysis of sequences and expression of microRNAs from multiple taxa. mESAdb is modular and has a user interface implemented in PHP and JavaScript and coupled with statistical analysis and visualization packages written for the R language. The database primarily comprises mature microRNA sequences and their target data, along with selected human, mouse and zebrafish expression data sets. mESAdb analysis modules allow (i) mining of microRNA expression data sets for subsets of microRNAs selected manually or by motif; (ii) pair-wise multivariate analysis of expression data sets within and between taxa; and (iii) association of microRNA subsets with annotation databases, HUGE Navigator, KEGG and GO. The use of existing and customized R packages facilitates future addition of data sets and analysis tools. Furthermore, the ability to upload and analyze user-specified data sets makes mESAdb an interactive and expandable analysis tool for microRNA sequence and expression data.

  10. An Extended Multilocus Sequence Typing (MLST) Scheme for Rapid Direct Typing of Leptospira from Clinical Samples

    OpenAIRE

    Weiss, Sabrina; Menezes, Angela; Woods, Kate; Chanthongthip, Anisone; Dittrich, Sabine; Opoku-Boateng, Agatha; Kimuli, Maimuna; Chalker, Victoria

    2016-01-01

    Background Rapid typing of Leptospira is currently impaired by requiring time consuming culture of leptospires. The objective of this study was to develop an assay that provides multilocus sequence typing (MLST) data direct from patient specimens while minimising costs for subsequent sequencing. Methodology and Findings An existing PCR based MLST scheme was modified by designing nested primers including anchors for facilitated subsequent sequencing. The assay was applied to various specimen t...

  11. Domain fusion analysis by applying relational algebra to protein sequence and domain databases.

    Science.gov (United States)

    Truong, Kevin; Ikura, Mitsuhiko

    2003-05-06

    Domain fusion analysis is a useful method to predict functionally linked proteins that may be involved in direct protein-protein interactions or in the same metabolic or signaling pathway. As separate domain databases like BLOCKS, PROSITE, Pfam, SMART, PRINTS-S, ProDom, TIGRFAMs, and amalgamated domain databases like InterPro continue to grow in size and quality, a computational method to perform domain fusion analysis that leverages on these efforts will become increasingly powerful. This paper proposes a computational method employing relational algebra to find domain fusions in protein sequence databases. The feasibility of this method was illustrated on the SWISS-PROT+TrEMBL sequence database using domain predictions from the Pfam HMM (hidden Markov model) database. We identified 235 and 189 putative functionally linked protein partners in H. sapiens and S. cerevisiae, respectively. From scientific literature, we were able to confirm many of these functional linkages, while the remainder offer testable experimental hypothesis. Results can be viewed at http://calcium.uhnres.utoronto.ca/pi. As the analysis can be computed quickly on any relational database that supports standard SQL (structured query language), it can be dynamically updated along with the sequence and domain databases, thereby improving the quality of predictions over time.

  12. RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis.

    Science.gov (United States)

    Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab

    2012-01-01

    RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. http://www.cemb.edu.pk/sw.html RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language.

  13. Mixed Sequence Reader: A Program for Analyzing DNA Sequences with Heterozygous Base Calling

    Science.gov (United States)

    Chang, Chun-Tien; Tsai, Chi-Neu; Tang, Chuan Yi; Chen, Chun-Houh; Lian, Jang-Hau; Hu, Chi-Yu; Tsai, Chia-Lung; Chao, Angel; Lai, Chyong-Huey; Wang, Tzu-Hao; Lee, Yun-Shien

    2012-01-01

    The direct sequencing of PCR products generates heterozygous base-calling fluorescence chromatograms that are useful for identifying single-nucleotide polymorphisms (SNPs), insertion-deletions (indels), short tandem repeats (STRs), and paralogous genes. Indels and STRs can be easily detected using the currently available Indelligent or ShiftDetector programs, which do not search reference sequences. However, the detection of other genomic variants remains a challenge due to the lack of appropriate tools for heterozygous base-calling fluorescence chromatogram data analysis. In this study, we developed a free web-based program, Mixed Sequence Reader (MSR), which can directly analyze heterozygous base-calling fluorescence chromatogram data in .abi file format using comparisons with reference sequences. The heterozygous sequences are identified as two distinct sequences and aligned with reference sequences. Our results showed that MSR may be used to (i) physically locate indel and STR sequences and determine STR copy number by searching NCBI reference sequences; (ii) predict combinations of microsatellite patterns using the Federal Bureau of Investigation Combined DNA Index System (CODIS); (iii) determine human papilloma virus (HPV) genotypes by searching current viral databases in cases of double infections; (iv) estimate the copy number of paralogous genes, such as β-defensin 4 (DEFB4) and its paralog HSPDP3. PMID:22778697

  14. An Extended Multilocus Sequence Typing (MLST Scheme for Rapid Direct Typing of Leptospira from Clinical Samples.

    Directory of Open Access Journals (Sweden)

    Sabrina Weiss

    2016-09-01

    Full Text Available Rapid typing of Leptospira is currently impaired by requiring time consuming culture of leptospires. The objective of this study was to develop an assay that provides multilocus sequence typing (MLST data direct from patient specimens while minimising costs for subsequent sequencing.An existing PCR based MLST scheme was modified by designing nested primers including anchors for facilitated subsequent sequencing. The assay was applied to various specimen types from patients diagnosed with leptospirosis between 2014 and 2015 in the United Kingdom (UK and the Lao Peoples Democratic Republic (Lao PDR. Of 44 clinical samples (23 serum, 6 whole blood, 3 buffy coat, 12 urine PCR positive for pathogenic Leptospira spp. at least one allele was amplified in 22 samples (50% and used for phylogenetic inference. Full allelic profiles were obtained from ten specimens, representing all sample types (23%. No nonspecific amplicons were observed in any of the samples. Of twelve PCR positive urine specimens three gave full allelic profiles (25% and two a partial profile. Phylogenetic analysis allowed for species assignment. The predominant species detected was L. interrogans (10/14 and 7/8 from UK and Lao PDR, respectively. All other species were detected in samples from only one country (Lao PDR: L. borgpetersenii [1/8]; UK: L. kirschneri [1/14], L. santarosai [1/14], L. weilii [2/14].Typing information of pathogenic Leptospira spp. was obtained directly from a variety of clinical samples using a modified MLST assay. This assay negates the need for time-consuming culture of Leptospira prior to typing and will be of use both in surveillance, as single alleles enable species determination, and outbreaks for the rapid identification of clusters.

  15. The Swiss-Army-Knife Approach to the Nearly Automatic Analysis for Microearthquake Sequences.

    Science.gov (United States)

    Kraft, T.; Simon, V.; Tormann, T.; Diehl, T.; Herrmann, M.

    2017-12-01

    check these are directly fed into hypoDD. Using this procedure we usually improve the number of well-relocated events by a factor 2-5. We demonstrate the successful application of the workflow at the example of natural sequences in Switzerland and present first results of the advanced analysis the was possible with the enhanced catalogs.

  16. Scalable Kernel Methods and Algorithms for General Sequence Analysis

    Science.gov (United States)

    Kuksa, Pavel

    2011-01-01

    Analysis of large-scale sequential data has become an important task in machine learning and pattern recognition, inspired in part by numerous scientific and technological applications such as the document and text classification or the analysis of biological sequences. However, current computational methods for sequence comparison still lack…

  17. Verona Coding Definitions of Emotional Sequences (VR-CoDES): Conceptual framework and future directions.

    Science.gov (United States)

    Piccolo, Lidia Del; Finset, Arnstein; Mellblom, Anneli V; Figueiredo-Braga, Margarida; Korsvold, Live; Zhou, Yuefang; Zimmermann, Christa; Humphris, Gerald

    2017-12-01

    To discuss the theoretical and empirical framework of VR-CoDES and potential future direction in research based on the coding system. The paper is based on selective review of papers relevant to the construction and application of VR-CoDES. VR-CoDES system is rooted in patient-centered and biopsychosocial model of healthcare consultations and on a functional approach to emotion theory. According to the VR-CoDES, emotional interaction is studied in terms of sequences consisting of an eliciting event, an emotional expression by the patient and the immediate response by the clinician. The rationale for the emphasis on sequences, on detailed classification of cues and concerns, and on the choices of explicit vs. non-explicit responses and providing vs. reducing room for further disclosure, as basic categories of the clinician responses, is described. Results from research on VR-CoDES may help raise awareness of emotional sequences. Future directions in applying VR-CoDES in research may include studies on predicting patient and clinician behavior within the consultation, qualitative analyses of longer sequences including several VR-CoDES triads, and studies of effects of emotional communication on health outcomes. VR-CoDES may be applied to develop interventions to promote good handling of patients' emotions in healthcare encounters. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Development of a Single Locus Sequence Typing (SLST) Scheme for Typing Bacterial Species Directly from Complex Communities.

    Science.gov (United States)

    Scholz, Christian F P; Jensen, Anders

    2017-01-01

    The protocol describes a computational method to develop a Single Locus Sequence Typing (SLST) scheme for typing bacterial species. The resulting scheme can be used to type bacterial isolates as well as bacterial species directly from complex communities using next-generation sequencing technologies.

  19. Accident sequence analysis of human-computer interface design

    International Nuclear Information System (INIS)

    Fan, C.-F.; Chen, W.-H.

    2000-01-01

    It is important to predict potential accident sequences of human-computer interaction in a safety-critical computing system so that vulnerable points can be disclosed and removed. We address this issue by proposing a Multi-Context human-computer interaction Model along with its analysis techniques, an Augmented Fault Tree Analysis, and a Concurrent Event Tree Analysis. The proposed augmented fault tree can identify the potential weak points in software design that may induce unintended software functions or erroneous human procedures. The concurrent event tree can enumerate possible accident sequences due to these weak points

  20. Characterization and sequence analysis of cysteine and glycine-rich ...

    African Journals Online (AJOL)

    Primers specific for CSRP3 were designed using known cDNA sequences of Bos taurus published in database with different accession numbers. Polymerase chain reaction (PCR) was performed and products were purified and sequenced. Sequence analysis and alignment were carried out using CLUSTAL W (1.83).

  1. Static multiplicities in heterogeneous azeotropic distillation sequences

    DEFF Research Database (Denmark)

    Esbjerg, Klavs; Andersen, Torben Ravn; Jørgensen, Sten Bay

    1998-01-01

    In this paper the results of a bifurcation analysis on heterogeneous azeotropic distillation sequences are given. Two sequences suitable for ethanol dehydration are compared: The 'direct' and the 'indirect' sequence. It is shown, that the two sequences, despite their similarities, exhibit very...... different static behavior. The method of Petlyuk and Avet'yan (1971), Bekiaris et al. (1993), which assumes infinite reflux and infinite number of stages, is extended to and applied on heterogeneous azeotropic distillation sequences. The predictions are substantiated through simulations. The static sequence...

  2. Long-read sequencing data analysis for yeasts.

    Science.gov (United States)

    Yue, Jia-Xing; Liti, Gianni

    2018-06-01

    Long-read sequencing technologies have become increasingly popular due to their strengths in resolving complex genomic regions. As a leading model organism with small genome size and great biotechnological importance, the budding yeast Saccharomyces cerevisiae has many isolates currently being sequenced with long reads. However, analyzing long-read sequencing data to produce high-quality genome assembly and annotation remains challenging. Here, we present a modular computational framework named long-read sequencing data analysis for yeasts (LRSDAY), the first one-stop solution that streamlines this process. Starting from the raw sequencing reads, LRSDAY can produce chromosome-level genome assembly and comprehensive genome annotation in a highly automated manner with minimal manual intervention, which is not possible using any alternative tool available to date. The annotated genomic features include centromeres, protein-coding genes, tRNAs, transposable elements (TEs), and telomere-associated elements. Although tailored for S. cerevisiae, we designed LRSDAY to be highly modular and customizable, making it adaptable to virtually any eukaryotic organism. When applying LRSDAY to an S. cerevisiae strain, it takes ∼41 h to generate a complete and well-annotated genome from ∼100× Pacific Biosciences (PacBio) running the basic workflow with four threads. Basic experience working within the Linux command-line environment is recommended for carrying out the analysis using LRSDAY.

  3. Maximum likelihood sequence estimation for optical complex direct modulation.

    Science.gov (United States)

    Che, Di; Yuan, Feng; Shieh, William

    2017-04-17

    Semiconductor lasers are versatile optical transmitters in nature. Through the direct modulation (DM), the intensity modulation is realized by the linear mapping between the injection current and the light power, while various angle modulations are enabled by the frequency chirp. Limited by the direct detection, DM lasers used to be exploited only as 1-D (intensity or angle) transmitters by suppressing or simply ignoring the other modulation. Nevertheless, through the digital coherent detection, simultaneous intensity and angle modulations (namely, 2-D complex DM, CDM) can be realized by a single laser diode. The crucial technique of CDM is the joint demodulation of intensity and differential phase with the maximum likelihood sequence estimation (MLSE), supported by a closed-form discrete signal approximation of frequency chirp to characterize the MLSE transition probability. This paper proposes a statistical method for the transition probability to significantly enhance the accuracy of the chirp model. Using the statistical estimation, we demonstrate the first single-channel 100-Gb/s PAM-4 transmission over 1600-km fiber with only 10G-class DM lasers.

  4. Computer-aided visualization and analysis system for sequence evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Chee, Mark S.; Wang, Chunwei; Jevons, Luis C.; Bernhart, Derek H.; Lipshutz, Robert J.

    2004-05-11

    A computer system for analyzing nucleic acid sequences is provided. The computer system is used to perform multiple methods for determining unknown bases by analyzing the fluorescence intensities of hybridized nucleic acid probes. The results of individual experiments are improved by processing nucleic acid sequences together. Comparative analysis of multiple experiments is also provided by displaying reference sequences in one area and sample sequences in another area on a display device.

  5. DSAP: deep-sequencing small RNA analysis pipeline.

    Science.gov (United States)

    Huang, Po-Jung; Liu, Yi-Chung; Lee, Chi-Ching; Lin, Wei-Chen; Gan, Richie Ruei-Chi; Lyu, Ping-Chiang; Tang, Petrus

    2010-07-01

    DSAP is an automated multiple-task web service designed to provide a total solution to analyzing deep-sequencing small RNA datasets generated by next-generation sequencing technology. DSAP uses a tab-delimited file as an input format, which holds the unique sequence reads (tags) and their corresponding number of copies generated by the Solexa sequencing platform. The input data will go through four analysis steps in DSAP: (i) cleanup: removal of adaptors and poly-A/T/C/G/N nucleotides; (ii) clustering: grouping of cleaned sequence tags into unique sequence clusters; (iii) non-coding RNA (ncRNA) matching: sequence homology mapping against a transcribed sequence library from the ncRNA database Rfam (http://rfam.sanger.ac.uk/); and (iv) known miRNA matching: detection of known miRNAs in miRBase (http://www.mirbase.org/) based on sequence homology. The expression levels corresponding to matched ncRNAs and miRNAs are summarized in multi-color clickable bar charts linked to external databases. DSAP is also capable of displaying miRNA expression levels from different jobs using a log(2)-scaled color matrix. Furthermore, a cross-species comparative function is also provided to show the distribution of identified miRNAs in different species as deposited in miRBase. DSAP is available at http://dsap.cgu.edu.tw.

  6. Direct sequencing of mitochondrial DNA detects highly divergent haplotypes in blue marlin (Makaira nigricans).

    Science.gov (United States)

    Finnerty, J R; Block, B A

    1992-06-01

    We were able to differentiate between species of billfish (Istiophoridae family) and to detect considerable intraspecific variation in the blue marlin (Makaira nigricans) by directly sequencing a polymerase chain reaction (PCR)-amplified, 612-bp fragment of the mitochondrial cytochrome b gene. Thirteen variable nucleotide sites separated blue marlin (n = 26) into 7 genotypes. On average, these genotypes differed by 5.7 base substitutions. A smaller sample of swordfish from an equally broad geographic distribution displayed relatively little intraspecific variation, with an average of 1.3 substitutions separating different genotypes. A cladistic analysis of blue marlin cytochrome b variants indicates two major divergent evolutionary lines within the species. The frequencies of these two major evolutionary lines differ significantly between Atlantic and Pacific ocean basins. This finding is important given that the Atlantic stocks of blue marlin are considered endangered. Migration from the Pacific can help replenish the numbers of blue marlin in the Atlantic, but the loss of certain mitochondrial DNA haplotypes in the Atlantic due to overfishing probably could not be remedied by an influx of Pacific fish because of their absence in the Pacific population. Fishery management strategies should attempt to preserve the genetic diversity within the species. The detection of DNA sequence polymorphism indicates the utility of PCR technology in pelagic fishery genetics.

  7. Incident sequence analysis; event trees, methods and graphical symbols

    International Nuclear Information System (INIS)

    1980-11-01

    When analyzing incident sequences, unwanted events resulting from a certain cause are looked for. Graphical symbols and explanations of graphical representations are presented. The method applies to the analysis of incident sequences in all types of facilities. By means of the incident sequence diagram, incident sequences, i.e. the logical and chronological course of repercussions initiated by the failure of a component or by an operating error, can be presented and analyzed simply and clearly

  8. CAFE: aCcelerated Alignment-FrEe sequence analysis.

    Science.gov (United States)

    Lu, Yang Young; Tang, Kujin; Ren, Jie; Fuhrman, Jed A; Waterman, Michael S; Sun, Fengzhu

    2017-07-03

    Alignment-free genome and metagenome comparisons are increasingly important with the development of next generation sequencing (NGS) technologies. Recently developed state-of-the-art k-mer based alignment-free dissimilarity measures including CVTree, $d_2^*$ and $d_2^S$ are more computationally expensive than measures based solely on the k-mer frequencies. Here, we report a standalone software, aCcelerated Alignment-FrEe sequence analysis (CAFE), for efficient calculation of 28 alignment-free dissimilarity measures. CAFE allows for both assembled genome sequences and unassembled NGS shotgun reads as input, and wraps the output in a standard PHYLIP format. In downstream analyses, CAFE can also be used to visualize the pairwise dissimilarity measures, including dendrograms, heatmap, principal coordinate analysis and network display. CAFE serves as a general k-mer based alignment-free analysis platform for studying the relationships among genomes and metagenomes, and is freely available at https://github.com/younglululu/CAFE. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Multiplexed resequencing analysis to identify rare variants in pooled DNA with barcode indexing using next-generation sequencer.

    Science.gov (United States)

    Mitsui, Jun; Fukuda, Yoko; Azuma, Kyo; Tozaki, Hirokazu; Ishiura, Hiroyuki; Takahashi, Yuji; Goto, Jun; Tsuji, Shoji

    2010-07-01

    We have recently found that multiple rare variants of the glucocerebrosidase gene (GBA) confer a robust risk for Parkinson disease, supporting the 'common disease-multiple rare variants' hypothesis. To develop an efficient method of identifying rare variants in a large number of samples, we applied multiplexed resequencing using a next-generation sequencer to identification of rare variants of GBA. Sixteen sets of pooled DNAs from six pooled DNA samples were prepared. Each set of pooled DNAs was subjected to polymerase chain reaction to amplify the target gene (GBA) covering 6.5 kb, pooled into one tube with barcode indexing, and then subjected to extensive sequence analysis using the SOLiD System. Individual samples were also subjected to direct nucleotide sequence analysis. With the optimization of data processing, we were able to extract all the variants from 96 samples with acceptable rates of false-positive single-nucleotide variants.

  10. galaxie--CGI scripts for sequence identification through automated phylogenetic analysis.

    Science.gov (United States)

    Nilsson, R Henrik; Larsson, Karl-Henrik; Ursing, Björn M

    2004-06-12

    The prevalent use of similarity searches like BLAST to identify sequences and species implicitly assumes the reference database to be of extensive sequence sampling. This is often not the case, restraining the correctness of the outcome as a basis for sequence identification. Phylogenetic inference outperforms similarity searches in retrieving correct phylogenies and consequently sequence identities, and a project was initiated to design a freely available script package for sequence identification through automated Web-based phylogenetic analysis. Three CGI scripts were designed to facilitate qualified sequence identification from a Web interface. Query sequences are aligned to pre-made alignments or to alignments made by ClustalW with entries retrieved from a BLAST search. The subsequent phylogenetic analysis is based on the PHYLIP package for inferring neighbor-joining and parsimony trees. The scripts are highly configurable. A service installation and a version for local use are found at http://andromeda.botany.gu.se/galaxiewelcome.html and http://galaxie.cgb.ki.se

  11. Rapid identification and recovery of ENU-induced mutations with next-generation sequencing and Paired-End Low-Error analysis.

    Science.gov (United States)

    Pan, Luyuan; Shah, Arish N; Phelps, Ian G; Doherty, Dan; Johnson, Eric A; Moens, Cecilia B

    2015-02-14

    Targeting Induced Local Lesions IN Genomes (TILLING) is a reverse genetics approach to directly identify point mutations in specific genes of interest in genomic DNA from a large chemically mutagenized population. Classical TILLING processes, based on enzymatic detection of mutations in heteroduplex PCR amplicons, are slow and labor intensive. Here we describe a new TILLING strategy in zebrafish using direct next generation sequencing (NGS) of 250 bp amplicons followed by Paired-End Low-Error (PELE) sequence analysis. By pooling a genomic DNA library made from over 9,000 N-ethyl-N-nitrosourea (ENU) mutagenized F1 fish into 32 equal pools of 288 fish, each with a unique Illumina barcode, we reduce the complexity of the template to a level at which we can detect mutations that occur in a single heterozygous fish in the entire library. MiSeq sequencing generates 250 base-pair overlapping paired-end reads, and PELE analysis aligns the overlapping sequences to each other and filters out any imperfect matches, thereby eliminating variants introduced during the sequencing process. We find that this filtering step reduces the number of false positive calls 50-fold without loss of true variant calls. After PELE we were able to validate 61.5% of the mutant calls that occurred at a frequency between 1 mutant call:100 wildtype calls and 1 mutant call:1000 wildtype calls in a pool of 288 fish. We then use high-resolution melt analysis to identify the single heterozygous mutation carrier in the 288-fish pool in which the mutation was identified. Using this NGS-TILLING protocol we validated 28 nonsense or splice site mutations in 20 genes, at a two-fold higher efficiency than using traditional Cel1 screening. We conclude that this approach significantly increases screening efficiency and accuracy at reduced cost and can be applied in a wide range of organisms.

  12. Sequence Quality Analysis Tool for HIV Type 1 Protease and Reverse Transcriptase

    OpenAIRE

    DeLong, Allison K.; Wu, Mingham; Bennett, Diane; Parkin, Neil; Wu, Zhijin; Hogan, Joseph W.; Kantor, Rami

    2012-01-01

    Access to antiretroviral therapy is increasing globally and drug resistance evolution is anticipated. Currently, protease (PR) and reverse transcriptase (RT) sequence generation is increasing, including the use of in-house sequencing assays, and quality assessment prior to sequence analysis is essential. We created a computational HIV PR/RT Sequence Quality Analysis Tool (SQUAT) that runs in the R statistical environment. Sequence quality thresholds are calculated from a large dataset (46,802...

  13. Sequence Matching Analysis for Curriculum Development

    Directory of Open Access Journals (Sweden)

    Liem Yenny Bendatu

    2015-06-01

    Full Text Available Many organizations apply information technologies to support their business processes. Using the information technologies, the actual events are recorded and utilized to conform with predefined model. Conformance checking is an approach to measure the fitness and appropriateness between process model and actual events. However, when there are multiple events with the same timestamp, the traditional approach unfit to result such measures. This study attempts to develop a sequence matching analysis. Considering conformance checking as the basis of this approach, this proposed approach utilizes the current control flow technique in process mining domain. A case study in the field of educational process has been conducted. This study also proposes a curriculum analysis framework to test the proposed approach. By considering the learning sequence of students, it results some measurements for curriculum development. Finally, the result of the proposed approach has been verified by relevant instructors for further development.

  14. Analysis of xylem formation in pine by cDNA sequencing

    Science.gov (United States)

    Allona, I.; Quinn, M.; Shoop, E.; Swope, K.; St Cyr, S.; Carlis, J.; Riedl, J.; Retzel, E.; Campbell, M. M.; Sederoff, R.; hide

    1998-01-01

    Secondary xylem (wood) formation is likely to involve some genes expressed rarely or not at all in herbaceous plants. Moreover, environmental and developmental stimuli influence secondary xylem differentiation, producing morphological and chemical changes in wood. To increase our understanding of xylem formation, and to provide material for comparative analysis of gymnosperm and angiosperm sequences, ESTs were obtained from immature xylem of loblolly pine (Pinus taeda L.). A total of 1,097 single-pass sequences were obtained from 5' ends of cDNAs made from gravistimulated tissue from bent trees. Cluster analysis detected 107 groups of similar sequences, ranging in size from 2 to 20 sequences. A total of 361 sequences fell into these groups, whereas 736 sequences were unique. About 55% of the pine EST sequences show similarity to previously described sequences in public databases. About 10% of the recognized genes encode factors involved in cell wall formation. Sequences similar to cell wall proteins, most known lignin biosynthetic enzymes, and several enzymes of carbohydrate metabolism were found. A number of putative regulatory proteins also are represented. Expression patterns of several of these genes were studied in various tissues and organs of pine. Sequencing novel genes expressed during xylem formation will provide a powerful means of identifying mechanisms controlling this important differentiation pathway.

  15. MiSeq: A Next Generation Sequencing Platform for Genomic Analysis.

    Science.gov (United States)

    Ravi, Rupesh Kanchi; Walton, Kendra; Khosroheidari, Mahdieh

    2018-01-01

    MiSeq, Illumina's integrated next generation sequencing instrument, uses reversible-terminator sequencing-by-synthesis technology to provide end-to-end sequencing solutions. The MiSeq instrument is one of the smallest benchtop sequencers that can perform onboard cluster generation, amplification, genomic DNA sequencing, and data analysis, including base calling, alignment and variant calling, in a single run. It performs both single- and paired-end runs with adjustable read lengths from 1 × 36 base pairs to 2 × 300 base pairs. A single run can produce output data of up to 15 Gb in as little as 4 h of runtime and can output up to 25 M single reads and 50 M paired-end reads. Thus, MiSeq provides an ideal platform for rapid turnaround time. MiSeq is also a cost-effective tool for various analyses focused on targeted gene sequencing (amplicon sequencing and target enrichment), metagenomics, and gene expression studies. For these reasons, MiSeq has become one of the most widely used next generation sequencing platforms. Here, we provide a protocol to prepare libraries for sequencing using the MiSeq instrument and basic guidelines for analysis of output data from the MiSeq sequencing run.

  16. The Role of the Y-Chromosome in the Establishment of Murine Hybrid Dysgenesis and in the Analysis of the Nucleotide Sequence Organization, Genetic Transmission and Evolution of Repeated Sequences.

    Science.gov (United States)

    Nallaseth, Ferez Soli

    The Y-chromosome presents a unique cytogenetic framework for the evolution of nucleotide sequences. Alignment of nine Y-chromosomal fragments in their increasing Y-specific/non Y-specific (male/female) sequence divergence ratios was directly and inversely related to their interspersion on these two respective genomic fractions. Sequence analysis confirmed a direct relationship between divergence ratios and the Alu, LINE-1, Satellite and their derivative oligonucleotide contents. Thus their relocation on the Y-chromosome is followed by sequence divergence rather than the well documented concerted evolution of these non-coding progenitor repeated sequences. Five of the nine Y-chromosomal fragments are non-pseudoautosomal and transcribed into heterogeneous PolyA^+ RNA and thus can be retrotransposed. Evolutionary and computer analysis identified homologous oligonucleotide tracts in several human loci suggesting common and random mechanistic origins. Dysgenic genomes represent the accelerated evolution driving sequence divergence (McClintock, 1984). Sex reversal and sterility characterizing dysgenesis occurs in C57BL/6JY ^{rm Pos} but not in 129/SvY^{rm Pos} derivative strains. High frequency, random, multi-locus deletion products of the feral Y^{ rm Pos}-chromosome are generated in the germlines of F1(C57BL/6J X 129/SvY^{ rm Pos})(male) and C57BL/6JY ^{rm Pos}(male) but not in 129/SvY^{rm Pos}(male). Equal, 10^{-1}, 10^ {-2}, and 0 copies (relative to males) of Y^{rm Pos}-specific deletion products respectively characterize C57BL/6JY ^{rm Pos} (HC), (LC), (T) and (F) females. The testes determining loci of inactive Y^{rm Pos}-chromosomes in C57BL/6JY^{rm Pos} HC females are the preferentially deleted/rearranged Y ^{rm Pos}-sequences. Disruption of regulation of plasma testosterone and hepatic MUP-A mRNA levels, TRD of a 4.7 Kbp EcoR1 fragment suggest disruption of autosomal/X-chromosomal sequences. These data and the highly repeated progenitor (Alu, GATA, LINE-1

  17. Gradient-recalled echo sequences in direct shoulder MR arthrography for evaluating the labrum

    International Nuclear Information System (INIS)

    Lee, Marc J.; Motamedi, Kambiz; Chow, Kira; Seeger, Leanne L.

    2008-01-01

    The purpose of this study was to determine the utility of fat-suppressed gradient-recalled echo (GRE) compared with conventional spin echo T1-weighted (T1W) sequences in direct shoulder MR arthrography for evaluating labral tears. Three musculoskeletal radiologists retrospectively reviewed MR arthrograms performed over a 12-month period for which surgical correlation was available. Of 180 serial arthrograms, 31 patients had surgery with a mean of 48 days following imaging. Paired coronal oblique and axial T1W or GRE sequences were analyzed by consensus for labral tear (coronal oblique two-dimensional multi-echo data image combination, 2D MEDIC; and axial three-dimensional double-echo steady-state, 3D DESS; Siemens MAGNETOM Sonata 1.5-T MR system). Interpretations were correlated with operative reports. Of 31 shoulders, 25 had labral tears at surgery. The GRE sequences depicted labral tears in 22, while T1W images depicted tears in 16 (sensitivity 88% versus 64%; p 0.7). Specificities were somewhat lower for GRE. Thin section GRE sequences are more sensitive than T1W for the detection of anterior and posterior labral tears. As the specificity of GRE was lower, it should be considered as an adjunctive imaging sequence that may improve depiction of labral tears, particularly smaller tears, in routine MR arthrography protocols. (orig.)

  18. Direct selection of expressed sequences on a YAC clone revealed proline-rich-like genes and BARE-1 sequences physically linked to the complex ¤Mla¤ powdery mildew resistance locus of barley (¤Hordeum vulgare¤ L.)

    DEFF Research Database (Denmark)

    Schwarz, G.; Michalek, W.; Jahoor, A.

    2002-01-01

    homology to the copia-like retroelement BA REI of barley, putatively involved in evolution of disease resistance loci. The high degree of clones representing barley rRNA sequences or false positives is a major disadvantage of direct selection of cDNAs in barley. (C) 2002 Elsevier Science Ireland Ltd. All...... gene. Of 22 selected cDNA clones, six were re-located on the YAC by southern analysis. Two of these clones are predicted to encode members of the hydroxyproline-rich glycoprotein and proline-rich protein gene families which have been implicated in plant defense response. Four sequences showed high...

  19. Clinical and molecular characterization of a cohort of patients with novel nucleotide alterations of the Dystrophin gene detected by direct sequencing

    Directory of Open Access Journals (Sweden)

    Corti Stefania

    2011-03-01

    Full Text Available Abstract Background Duchenne and Becker Muscular dystrophies (DMD/BMD are allelic disorders caused by mutations in the dystrophin gene, which encodes a sarcolemmal protein responsible for muscle integrity. Deletions and duplications account for approximately 75% of mutations in DMD and 85% in BMD. The implementation of techniques allowing complete gene sequencing has focused attention on small point mutations and other mechanisms underlying complex rearrangements. Methods We selected 47 patients (41 families; 35 DMD, 6 BMD without deletions and duplications in DMD gene (excluded by multiplex ligation-dependent probe amplification and multiplex polymerase chain reaction analysis. This cohort was investigated by systematic direct sequence analysis to study sequence variation. We focused our attention on rare mutational events which were further studied through transcript analysis. Results We identified 40 different nucleotide alterations in DMD gene and their clinical correlates; altogether, 16 mutations were novel. DMD probands carried 9 microinsertions/microdeletions, 19 nonsense mutations, and 7 splice-site mutations. BMD patients carried 2 nonsense mutations, 2 splice-site mutations, 1 missense substitution, and 1 single base insertion. The most frequent stop codon was TGA (n = 10 patients, followed by TAG (n = 7 and TAA (n = 4. We also analyzed the molecular mechanisms of five rare mutational events. They are two frame-shifting mutations in the DMD gene 3'end in BMD and three novel splicing defects: IVS42: c.6118-3C>A, which causes a leaky splice-site; c.9560A>G, which determines a cryptic splice-site activation and c.9564-426 T>G, which creates pseudoexon retention within IVS65. Conclusion The analysis of our patients' sample, carrying point mutations or complex rearrangements in DMD gene, contributes to the knowledge on phenotypic correlations in dystrophinopatic patients and can provide a better understanding of pre-mRNA maturation defects

  20. Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq)-A Method for High-Throughput Analysis of Differentially Methylated CCGG Sites in Plants with Large Genomes.

    Science.gov (United States)

    Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw

    2017-01-01

    Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare . However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop

  1. Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq—A Method for High-Throughput Analysis of Differentially Methylated CCGG Sites in Plants with Large Genomes

    Directory of Open Access Journals (Sweden)

    Karolina Chwialkowska

    2017-11-01

    Full Text Available Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq. We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare. However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation

  2. An adaptive digital suppression filter for direct-sequence spread-spectrum communications

    Science.gov (United States)

    Saulnier, G. J.; Das, P. K.; Milstein, L. B.

    1985-09-01

    This paper describes the structure of a digital implementation of the Widrow-Hoff LMS algorithm which uses a burst processing technique to obtain some hardware simplification. This adaptive system is used to suppress narrow-band interference in a direct-sequence spread-spectrum communication system. Several different narrow-band interferers are considered, and probability of error results are presented for all cases. While, in general, the results show significant improvement in performance when the LMS algorithm is used, certain disadvantages are also present and are discussed in this paper.

  3. Identification of succinimide sites in proteins by N-terminal sequence analysis after alkaline hydroxylamine cleavage.

    Science.gov (United States)

    Kwong, M. Y.; Harris, R. J.

    1994-01-01

    Under favorable conditions, Asp or Asn residues can undergo rearrangement to a succinimide (cyclic imide), which may also serve as an intermediate for deamidation and/or isoaspartate formation. Direct identification of such succinimides by peptide mapping is hampered by their lability at neutral and alkaline pH. We determined that incubation in 2 M hydroxylamine, 0.2 M Tris buffer, pH 9, for 2 h at 45 degrees C will specifically cleave on the C-terminal side of succinimides without cleavage at Asn-Gly bonds; yields are typically approximately 50%. N-terminal sequence analysis can then be used to identify an internal sequence generated by cleavage of the succinimide, hence identifying the succinimide site. PMID:8142891

  4. Digital image sequence processing, compression, and analysis

    CERN Document Server

    Reed, Todd R

    2004-01-01

    IntroductionTodd R. ReedCONTENT-BASED IMAGE SEQUENCE REPRESENTATIONPedro M. Q. Aguiar, Radu S. Jasinschi, José M. F. Moura, andCharnchai PluempitiwiriyawejTHE COMPUTATION OF MOTIONChristoph Stiller, Sören Kammel, Jan Horn, and Thao DangMOTION ANALYSIS AND DISPLACEMENT ESTIMATION IN THE FREQUENCY DOMAINLuca Lucchese and Guido Maria CortelazzoQUALITY OF SERVICE ASSESSMENT IN NEW GENERATION WIRELESS VIDEO COMMUNICATIONSGaetano GiuntaERROR CONCEALMENT IN DIGITAL VIDEOFrancesco G.B. De NataleIMAGE SEQUENCE RESTORATION: A WIDER PERSPECTIVEAnil KokaramVIDEO SUMMARIZATIONCuneyt M. Taskiran and Edward

  5. Cloning and sequence analysis of benzo-a-pyreneinducible ...

    African Journals Online (AJOL)

    The phylogenetic tree based on the amino acid sequences clearly shows tilapia CYP1A and killifish CYP1A to be more closely related to each other than to the other CYP1A subfamilies. Sequence analysis of 3727 bp of genomic DNA showed that the clone obtained was the structural gene of CYP1A which consists of ...

  6. System-level hazard analysis using the sequence-tree method

    International Nuclear Information System (INIS)

    Huang, H.-W.; Shih Chunkuan; Yih Swu; Chen, M.-H.

    2008-01-01

    A system-level PHA using the sequence-tree method is presented to perform safety-related digital I and C system SSA. The conventional PHA involves brainstorming among experts on various portions of the system to identify hazards through discussions. However, since the conventional PHA is not a systematic technique, the analysis results depend strongly on the experts' subjective opinions. The quality of analysis cannot be appropriately controlled. Therefore, this study presents a system-level sequence tree based PHA, which can clarify the relationship among the major digital I and C systems. This sequence-tree-based technique has two major phases. The first phase adopts a table to analyze each event in SAR Chapter 15 for a specific safety-related I and C system, such as RPS. The second phase adopts a sequence tree to recognize the I and C systems involved in the event, the working of the safety-related systems and how the backup systems can be activated to mitigate the consequence if the primary safety systems fail. The defense-in-depth echelons, namely the Control echelon, Reactor trip echelon, ESFAS echelon and Monitoring and indicator echelon, are arranged to build the sequence-tree structure. All the related I and C systems, including the digital systems and the analog back-up systems, are allocated in their specific echelons. This system-centric sequence-tree analysis not only systematically identifies preliminary hazards, but also vulnerabilities in a nuclear power plant. Hence, an effective simplified D3 evaluation can also be conducted

  7. WebMGA: a customizable web server for fast metagenomic sequence analysis.

    Science.gov (United States)

    Wu, Sitao; Zhu, Zhengwei; Fu, Liming; Niu, Beifang; Li, Weizhong

    2011-09-07

    The new field of metagenomics studies microorganism communities by culture-independent sequencing. With the advances in next-generation sequencing techniques, researchers are facing tremendous challenges in metagenomic data analysis due to huge quantity and high complexity of sequence data. Analyzing large datasets is extremely time-consuming; also metagenomic annotation involves a wide range of computational tools, which are difficult to be installed and maintained by common users. The tools provided by the few available web servers are also limited and have various constraints such as login requirement, long waiting time, inability to configure pipelines etc. We developed WebMGA, a customizable web server for fast metagenomic analysis. WebMGA includes over 20 commonly used tools such as ORF calling, sequence clustering, quality control of raw reads, removal of sequencing artifacts and contaminations, taxonomic analysis, functional annotation etc. WebMGA provides users with rapid metagenomic data analysis using fast and effective tools, which have been implemented to run in parallel on our local computer cluster. Users can access WebMGA through web browsers or programming scripts to perform individual analysis or to configure and run customized pipelines. WebMGA is freely available at http://weizhongli-lab.org/metagenomic-analysis. WebMGA offers to researchers many fast and unique tools and great flexibility for complex metagenomic data analysis.

  8. WebMGA: a customizable web server for fast metagenomic sequence analysis

    Directory of Open Access Journals (Sweden)

    Niu Beifang

    2011-09-01

    Full Text Available Abstract Background The new field of metagenomics studies microorganism communities by culture-independent sequencing. With the advances in next-generation sequencing techniques, researchers are facing tremendous challenges in metagenomic data analysis due to huge quantity and high complexity of sequence data. Analyzing large datasets is extremely time-consuming; also metagenomic annotation involves a wide range of computational tools, which are difficult to be installed and maintained by common users. The tools provided by the few available web servers are also limited and have various constraints such as login requirement, long waiting time, inability to configure pipelines etc. Results We developed WebMGA, a customizable web server for fast metagenomic analysis. WebMGA includes over 20 commonly used tools such as ORF calling, sequence clustering, quality control of raw reads, removal of sequencing artifacts and contaminations, taxonomic analysis, functional annotation etc. WebMGA provides users with rapid metagenomic data analysis using fast and effective tools, which have been implemented to run in parallel on our local computer cluster. Users can access WebMGA through web browsers or programming scripts to perform individual analysis or to configure and run customized pipelines. WebMGA is freely available at http://weizhongli-lab.org/metagenomic-analysis. Conclusions WebMGA offers to researchers many fast and unique tools and great flexibility for complex metagenomic data analysis.

  9. Noncoding sequence classification based on wavelet transform analysis: part I

    Science.gov (United States)

    Paredes, O.; Strojnik, M.; Romo-Vázquez, R.; Vélez Pérez, H.; Ranta, R.; Garcia-Torales, G.; Scholl, M. K.; Morales, J. A.

    2017-09-01

    DNA sequences in human genome can be divided into the coding and noncoding ones. Coding sequences are those that are read during the transcription. The identification of coding sequences has been widely reported in literature due to its much-studied periodicity. Noncoding sequences represent the majority of the human genome. They play an important role in gene regulation and differentiation among the cells. However, noncoding sequences do not exhibit periodicities that correlate to their functions. The ENCODE (Encyclopedia of DNA elements) and Epigenomic Roadmap Project projects have cataloged the human noncoding sequences into specific functions. We study characteristics of noncoding sequences with wavelet analysis of genomic signals.

  10. Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq)—A Method for High-Throughput Analysis of Differentially Methylated CCGG Sites in Plants with Large Genomes

    Science.gov (United States)

    Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw

    2017-01-01

    Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare. However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop

  11. Recurrence time statistics: versatile tools for genomic DNA sequence analysis.

    Science.gov (United States)

    Cao, Yinhe; Tung, Wen-Wen; Gao, J B

    2004-01-01

    With the completion of the human and a few model organisms' genomes, and the genomes of many other organisms waiting to be sequenced, it has become increasingly important to develop faster computational tools which are capable of easily identifying the structures and extracting features from DNA sequences. One of the more important structures in a DNA sequence is repeat-related. Often they have to be masked before protein coding regions along a DNA sequence are to be identified or redundant expressed sequence tags (ESTs) are to be sequenced. Here we report a novel recurrence time based method for sequence analysis. The method can conveniently study all kinds of periodicity and exhaustively find all repeat-related features from a genomic DNA sequence. An efficient codon index is also derived from the recurrence time statistics, which has the salient features of being largely species-independent and working well on very short sequences. Efficient codon indices are key elements of successful gene finding algorithms, and are particularly useful for determining whether a suspected EST belongs to a coding or non-coding region. We illustrate the power of the method by studying the genomes of E. coli, the yeast S. cervisivae, the nematode worm C. elegans, and the human, Homo sapiens. Computationally, our method is very efficient. It allows us to carry out analysis of genomes on the whole genomic scale by a PC.

  12. RNA-Pareto: interactive analysis of Pareto-optimal RNA sequence-structure alignments.

    Science.gov (United States)

    Schnattinger, Thomas; Schöning, Uwe; Marchfelder, Anita; Kestler, Hans A

    2013-12-01

    Incorporating secondary structure information into the alignment process improves the quality of RNA sequence alignments. Instead of using fixed weighting parameters, sequence and structure components can be treated as different objectives and optimized simultaneously. The result is not a single, but a Pareto-set of equally optimal solutions, which all represent different possible weighting parameters. We now provide the interactive graphical software tool RNA-Pareto, which allows a direct inspection of all feasible results to the pairwise RNA sequence-structure alignment problem and greatly facilitates the exploration of the optimal solution set.

  13. RESEARCH NOTE Genome-based exome-sequencing analysis ...

    Indian Academy of Sciences (India)

    Navya

    2017-02-22

    Feb 22, 2017 ... Genome-based exome-sequencing analysis identifies GYG1, DIS3L, DDRGK1 genes ... Cardiology Division, Department of Internal Medicine, Severance .... with p values of <0.05 byanalyzing differences in allele distribution.

  14. Comparison of direct boiling method with commercial kits for extracting fecal microbiome DNA by Illumina sequencing of 16S rRNA tags.

    Science.gov (United States)

    Peng, Xin; Yu, Ke-Qiang; Deng, Guan-Hua; Jiang, Yun-Xia; Wang, Yu; Zhang, Guo-Xia; Zhou, Hong-Wei

    2013-12-01

    Low cost and high throughput capacity are major advantages of using next generation sequencing (NGS) techniques to determine metagenomic 16S rRNA tag sequences. These methods have significantly changed our view of microorganisms in the fields of human health and environmental science. However, DNA extraction using commercial kits has shortcomings of high cost and time constraint. In the present study, we evaluated the determination of fecal microbiomes using a direct boiling method compared with 5 different commercial extraction methods, e.g., Qiagen and MO BIO kits. Principal coordinate analysis (PCoA) using UniFrac distances and clustering showed that direct boiling of a wide range of feces concentrations gave a similar pattern of bacterial communities as those obtained from most of the commercial kits, with the exception of the MO BIO method. Fecal concentration by boiling method affected the estimation of α-diversity indices, otherwise results were generally comparable between boiling and commercial methods. The operational taxonomic units (OTUs) determined through direct boiling showed highly consistent frequencies with those determined through most of the commercial methods. Even those for the MO BIO kit were also obtained by the direct boiling method with high confidence. The present study suggested that direct boiling could be used to determine the fecal microbiome and using this method would significantly reduce the cost and improve the efficiency of the sample preparation for studying gut microbiome diversity. © 2013 Elsevier B.V. All rights reserved.

  15. Human genome sequencing with direct x-ray holographic imaging

    International Nuclear Information System (INIS)

    Rhodes, C.K.

    1993-01-01

    Direct holographic imaging of biological materials is widely applicable to the study of the structure, properties and action of genetic material. This particular application involves the sequencing of the human genome where prospective genomic imaging technology is composed of three subtechnologies, name an x-ray holographic camera, suitable chemistry and enzymology for the preparation of tagged DNA samples, and the illuminator in the form of an x-ray laser. We report appropriate x-ray camera, embodied by the instrument developed by MCR, is available and that suitable chemical and enzymatic procedures exist for the preparation of the necessary tagged DNA strands. Concerning the future development of the x-ray illuminator. We find that a practical small scale x-ray light source is indeed feasible. This outcome requires the use of unconventional physical processes in order to achieve the necessary power-compression in the amplifying medium. The understanding of these new physical mechanisms is developing rapidly. Importantly, although the x-ray source does not currently exist, the understanding of these new physical mechanisms is developing rapidly and the research has established the basic scaling laws that will determine the properties of the x-ray illuminator. When this x-ray source becomes available, an extremely rapid and cost effective instrument for 3-D imaging of biological materials can be applied to a wide range of biological structural assays, including the base-pair sequencing of the human genome and many questions regarding its higher levels of organization

  16. The impact of cerebellar transcranial direct current stimulation (tDCS) on learning fine-motor sequences.

    Science.gov (United States)

    Shimizu, Renee E; Wu, Allan D; Samra, Jasmine K; Knowlton, Barbara J

    2017-01-05

    The cerebellum has been shown to be important for skill learning, including the learning of motor sequences. We investigated whether cerebellar transcranial direct current stimulation (tDCS) would enhance learning of fine motor sequences. Because the ability to generalize or transfer to novel task variations or circumstances is a crucial goal of real world training, we also examined the effect of tDCS on performance of novel sequences after training. In Study 1, participants received either anodal, cathodal or sham stimulation while simultaneously practising three eight-element key press sequences in a non-repeating, interleaved order. Immediately after sequence practice with concurrent tDCS, a transfer session was given in which participants practised three interleaved novel sequences. No stimulation was given during transfer. An inhibitory effect of cathodal tDCS was found during practice, such that the rate of learning was slowed in comparison to the anodal and sham groups. In Study 2, participants received anodal or sham stimulation and a 24 h delay was added between the practice and transfer sessions to reduce mental fatigue. Although this consolidation period benefitted subsequent transfer for both tDCS groups, anodal tDCS enhanced transfer performance. Together, these studies demonstrate polarity-specific effects on fine motor sequence learning and generalization.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Author(s).

  17. Analysis and Visualization Tool for Targeted Amplicon Bisulfite Sequencing on Ion Torrent Sequencers.

    Directory of Open Access Journals (Sweden)

    Stephan Pabinger

    Full Text Available Targeted sequencing of PCR amplicons generated from bisulfite deaminated DNA is a flexible, cost-effective way to study methylation of a sample at single CpG resolution and perform subsequent multi-target, multi-sample comparisons. Currently, no platform specific protocol, support, or analysis solution is provided to perform targeted bisulfite sequencing on a Personal Genome Machine (PGM. Here, we present a novel tool, called TABSAT, for analyzing targeted bisulfite sequencing data generated on Ion Torrent sequencers. The workflow starts with raw sequencing data, performs quality assessment, and uses a tailored version of Bismark to map the reads to a reference genome. The pipeline visualizes results as lollipop plots and is able to deduce specific methylation-patterns present in a sample. The obtained profiles are then summarized and compared between samples. In order to assess the performance of the targeted bisulfite sequencing workflow, 48 samples were used to generate 53 different Bisulfite-Sequencing PCR amplicons from each sample, resulting in 2,544 amplicon targets. We obtained a mean coverage of 282X using 1,196,822 aligned reads. Next, we compared the sequencing results of these targets to the methylation level of the corresponding sites on an Illumina 450k methylation chip. The calculated average Pearson correlation coefficient of 0.91 confirms the sequencing results with one of the industry-leading CpG methylation platforms and shows that targeted amplicon bisulfite sequencing provides an accurate and cost-efficient method for DNA methylation studies, e.g., to provide platform-independent confirmation of Illumina Infinium 450k methylation data. TABSAT offers a novel way to analyze data generated by Ion Torrent instruments and can also be used with data from the Illumina MiSeq platform. It can be easily accessed via the Platomics platform, which offers a web-based graphical user interface along with sample and parameter storage

  18. Rapid whole genome sequencing for the detection and characterization of microorganisms directly from clinical samples

    DEFF Research Database (Denmark)

    Hasman, Henrik; Saputra, Dhany; Sicheritz-Pontén, Thomas

    2014-01-01

    Whole genome sequencing (WGS) is becoming available as a routine tool for clinical microbiology. If applied directly on clinical samples this could further reduce diagnostic time and thereby improve control and treatment. A major bottle-neck is the availability of fast and reliable bioinformatics...

  19. mPUMA: a computational approach to microbiota analysis by de novo assembly of operational taxonomic units based on protein-coding barcode sequences.

    Science.gov (United States)

    Links, Matthew G; Chaban, Bonnie; Hemmingsen, Sean M; Muirhead, Kevin; Hill, Janet E

    2013-08-15

    Formation of operational taxonomic units (OTU) is a common approach to data aggregation in microbial ecology studies based on amplification and sequencing of individual gene targets. The de novo assembly of OTU sequences has been recently demonstrated as an alternative to widely used clustering methods, providing robust information from experimental data alone, without any reliance on an external reference database. Here we introduce mPUMA (microbial Profiling Using Metagenomic Assembly, http://mpuma.sourceforge.net), a software package for identification and analysis of protein-coding barcode sequence data. It was developed originally for Cpn60 universal target sequences (also known as GroEL or Hsp60). Using an unattended process that is independent of external reference sequences, mPUMA forms OTUs by DNA sequence assembly and is capable of tracking OTU abundance. mPUMA processes microbial profiles both in terms of the direct DNA sequence as well as in the translated amino acid sequence for protein coding barcodes. By forming OTUs and calculating abundance through an assembly approach, mPUMA is capable of generating inputs for several popular microbiota analysis tools. Using SFF data from sequencing of a synthetic community of Cpn60 sequences derived from the human vaginal microbiome, we demonstrate that mPUMA can faithfully reconstruct all expected OTU sequences and produce compositional profiles consistent with actual community structure. mPUMA enables analysis of microbial communities while empowering the discovery of novel organisms through OTU assembly.

  20. Third-Generation Sequencing and Analysis of Four Complete Pig Liver Esterase Gene Sequences in Clones Identified by Screening BAC Library.

    Science.gov (United States)

    Zhou, Qiongqiong; Sun, Wenjuan; Liu, Xiyan; Wang, Xiliang; Xiao, Yuncai; Bi, Dingren; Yin, Jingdong; Shi, Deshi

    2016-01-01

    Pig liver carboxylesterase (PLE) gene sequences in GenBank are incomplete, which has led to difficulties in studying the genetic structure and regulation mechanisms of gene expression of PLE family genes. The aim of this study was to obtain and analysis of complete gene sequences of PLE family by screening from a Rongchang pig BAC library and third-generation PacBio gene sequencing. After a number of existing incomplete PLE isoform gene sequences were analysed, primers were designed based on conserved regions in PLE exons, and the whole pig genome used as a template for Polymerase chain reaction (PCR) amplification. Specific primers were then selected based on the PCR amplification results. A three-step PCR screening method was used to identify PLE-positive clones by screening a Rongchang pig BAC library and PacBio third-generation sequencing was performed. BLAST comparisons and other bioinformatics methods were applied for sequence analysis. Five PLE-positive BAC clones, designated BAC-10, BAC-70, BAC-75, BAC-119 and BAC-206, were identified. Sequence analysis yielded the complete sequences of four PLE genes, PLE1, PLE-B9, PLE-C4, and PLE-G2. Complete PLE gene sequences were defined as those containing regulatory sequences, exons, and introns. It was found that, not only did the PLE exon sequences of the four genes show a high degree of homology, but also that the intron sequences were highly similar. Additionally, the regulatory region of the genes contained two 720bps reverse complement sequences that may have an important function in the regulation of PLE gene expression. This is the first report to confirm the complete sequences of four PLE genes. In addition, the study demonstrates that each PLE isoform is encoded by a single gene and that the various genes exhibit a high degree of sequence homology, suggesting that the PLE family evolved from a single ancestral gene. Obtaining the complete sequences of these PLE genes provides the necessary foundation for

  1. Multilocus Sequence Analysis and rpoB Sequencing of Mycobacterium abscessus (Sensu Lato) Strains▿

    Science.gov (United States)

    Macheras, Edouard; Roux, Anne-Laure; Bastian, Sylvaine; Leão, Sylvia Cardoso; Palaci, Moises; Sivadon-Tardy, Valérie; Gutierrez, Cristina; Richter, Elvira; Rüsch-Gerdes, Sabine; Pfyffer, Gaby; Bodmer, Thomas; Cambau, Emmanuelle; Gaillard, Jean-Louis; Heym, Beate

    2011-01-01

    Mycobacterium abscessus, Mycobacterium bolletii, and Mycobacterium massiliense (Mycobacterium abscessus sensu lato) are closely related species that currently are identified by the sequencing of the rpoB gene. However, recent studies show that rpoB sequencing alone is insufficient to discriminate between these species, and some authors have questioned their current taxonomic classification. We studied here a large collection of M. abscessus (sensu lato) strains by partial rpoB sequencing (752 bp) and multilocus sequence analysis (MLSA). The final MLSA scheme developed was based on the partial sequences of eight housekeeping genes: argH, cya, glpK, gnd, murC, pgm, pta, and purH. The strains studied included the three type strains (M. abscessus CIP 104536T, M. massiliense CIP 108297T, and M. bolletii CIP 108541T) and 120 isolates recovered between 1997 and 2007 in France, Germany, Switzerland, and Brazil. The rpoB phylogenetic tree confirmed the existence of three main clusters, each comprising the type strain of one species. However, divergence values between the M. massiliense and M. bolletii clusters all were below 3% and between the M. abscessus and M. massiliense clusters were from 2.66 to 3.59%. The tree produced using the concatenated MLSA gene sequences (4,071 bp) also showed three main clusters, each comprising the type strain of one species. The M. abscessus cluster had a bootstrap value of 100% and was mostly compact. Bootstrap values for the M. massiliense and M. bolletii branches were much lower (71 and 61%, respectively), with the M. massiliense cluster having a fuzzy aspect. Mean (range) divergence values were 2.17% (1.13 to 2.58%) between the M. abscessus and M. massiliense clusters, 2.37% (1.5 to 2.85%) between the M. abscessus and M. bolletii clusters, and 2.28% (0.86 to 2.68%) between the M. massiliense and M. bolletii clusters. Adding the rpoB sequence to the MLSA-concatenated sequence (total sequence, 4,823 bp) had little effect on the clustering

  2. Multilocus sequence analysis and rpoB sequencing of Mycobacterium abscessus (sensu lato) strains.

    Science.gov (United States)

    Macheras, Edouard; Roux, Anne-Laure; Bastian, Sylvaine; Leão, Sylvia Cardoso; Palaci, Moises; Sivadon-Tardy, Valérie; Gutierrez, Cristina; Richter, Elvira; Rüsch-Gerdes, Sabine; Pfyffer, Gaby; Bodmer, Thomas; Cambau, Emmanuelle; Gaillard, Jean-Louis; Heym, Beate

    2011-02-01

    Mycobacterium abscessus, Mycobacterium bolletii, and Mycobacterium massiliense (Mycobacterium abscessus sensu lato) are closely related species that currently are identified by the sequencing of the rpoB gene. However, recent studies show that rpoB sequencing alone is insufficient to discriminate between these species, and some authors have questioned their current taxonomic classification. We studied here a large collection of M. abscessus (sensu lato) strains by partial rpoB sequencing (752 bp) and multilocus sequence analysis (MLSA). The final MLSA scheme developed was based on the partial sequences of eight housekeeping genes: argH, cya, glpK, gnd, murC, pgm, pta, and purH. The strains studied included the three type strains (M. abscessus CIP 104536(T), M. massiliense CIP 108297(T), and M. bolletii CIP 108541(T)) and 120 isolates recovered between 1997 and 2007 in France, Germany, Switzerland, and Brazil. The rpoB phylogenetic tree confirmed the existence of three main clusters, each comprising the type strain of one species. However, divergence values between the M. massiliense and M. bolletii clusters all were below 3% and between the M. abscessus and M. massiliense clusters were from 2.66 to 3.59%. The tree produced using the concatenated MLSA gene sequences (4,071 bp) also showed three main clusters, each comprising the type strain of one species. The M. abscessus cluster had a bootstrap value of 100% and was mostly compact. Bootstrap values for the M. massiliense and M. bolletii branches were much lower (71 and 61%, respectively), with the M. massiliense cluster having a fuzzy aspect. Mean (range) divergence values were 2.17% (1.13 to 2.58%) between the M. abscessus and M. massiliense clusters, 2.37% (1.5 to 2.85%) between the M. abscessus and M. bolletii clusters, and 2.28% (0.86 to 2.68%) between the M. massiliense and M. bolletii clusters. Adding the rpoB sequence to the MLSA-concatenated sequence (total sequence, 4,823 bp) had little effect on the

  3. DNAApp: a mobile application for sequencing data analysis.

    Science.gov (United States)

    Nguyen, Phi-Vu; Verma, Chandra Shekhar; Gan, Samuel Ken-En

    2014-11-15

    There have been numerous applications developed for decoding and visualization of ab1 DNA sequencing files for Windows and MAC platforms, yet none exists for the increasingly popular smartphone operating systems. The ability to decode sequencing files cannot easily be carried out using browser accessed Web tools. To overcome this hurdle, we have developed a new native app called DNAApp that can decode and display ab1 sequencing file on Android and iOS. In addition to in-built analysis tools such as reverse complementation, protein translation and searching for specific sequences, we have incorporated convenient functions that would facilitate the harnessing of online Web tools for a full range of analysis. Given the high usage of Android/iOS tablets and smartphones, such bioinformatics apps would raise productivity and facilitate the high demand for analyzing sequencing data in biomedical research. The Android version of DNAApp is available in Google Play Store as 'DNAApp', and the iOS version is available in the App Store. More details on the app can be found at www.facebook.com/APDLab; www.bii.a-star.edu.sg/research/trd/apd.php The DNAApp user guide is available at http://tinyurl.com/DNAAppuser, and a video tutorial is available on Google Play Store and App Store, as well as on the Facebook page. samuelg@bii.a-star.edu.sg. © The Author 2014. Published by Oxford University Press.

  4. DNAApp: a mobile application for sequencing data analysis

    Science.gov (United States)

    Nguyen, Phi-Vu; Verma, Chandra Shekhar; Gan, Samuel Ken-En

    2014-01-01

    Summary: There have been numerous applications developed for decoding and visualization of ab1 DNA sequencing files for Windows and MAC platforms, yet none exists for the increasingly popular smartphone operating systems. The ability to decode sequencing files cannot easily be carried out using browser accessed Web tools. To overcome this hurdle, we have developed a new native app called DNAApp that can decode and display ab1 sequencing file on Android and iOS. In addition to in-built analysis tools such as reverse complementation, protein translation and searching for specific sequences, we have incorporated convenient functions that would facilitate the harnessing of online Web tools for a full range of analysis. Given the high usage of Android/iOS tablets and smartphones, such bioinformatics apps would raise productivity and facilitate the high demand for analyzing sequencing data in biomedical research. Availability and implementation: The Android version of DNAApp is available in Google Play Store as ‘DNAApp’, and the iOS version is available in the App Store. More details on the app can be found at www.facebook.com/APDLab; www.bii.a-star.edu.sg/research/trd/apd.php The DNAApp user guide is available at http://tinyurl.com/DNAAppuser, and a video tutorial is available on Google Play Store and App Store, as well as on the Facebook page. Contact: samuelg@bii.a-star.edu.sg PMID:25095882

  5. Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area.

    Science.gov (United States)

    Nakano, Kazuma; Shiroma, Akino; Shimoji, Makiko; Tamotsu, Hinako; Ashimine, Noriko; Ohki, Shun; Shinzato, Misuzu; Minami, Maiko; Nakanishi, Tetsuhiro; Teruya, Kuniko; Satou, Kazuhito; Hirano, Takashi

    2017-07-01

    PacBio RS II is the first commercialized third-generation DNA sequencer able to sequence a single molecule DNA in real-time without amplification. PacBio RS II's sequencing technology is novel and unique, enabling the direct observation of DNA synthesis by DNA polymerase. PacBio RS II confers four major advantages compared to other sequencing technologies: long read lengths, high consensus accuracy, a low degree of bias, and simultaneous capability of epigenetic characterization. These advantages surmount the obstacle of sequencing genomic regions such as high/low G+C, tandem repeat, and interspersed repeat regions. Moreover, PacBio RS II is ideal for whole genome sequencing, targeted sequencing, complex population analysis, RNA sequencing, and epigenetics characterization. With PacBio RS II, we have sequenced and analyzed the genomes of many species, from viruses to humans. Herein, we summarize and review some of our key genome sequencing projects, including full-length viral sequencing, complete bacterial genome and almost-complete plant genome assemblies, and long amplicon sequencing of a disease-associated gene region. We believe that PacBio RS II is not only an effective tool for use in the basic biological sciences but also in the medical/clinical setting.

  6. Utility of RNA Sequencing for Analysis of Maize Reproductive Transcriptomes

    Directory of Open Access Journals (Sweden)

    Rebecca M. Davidson

    2011-11-01

    Full Text Available Transcriptome sequencing is a powerful method for studying global expression patterns in large, complex genomes. Evaluation of sequence-based expression profiles during reproductive development would provide functional annotation to genes underlying agronomic traits. We generated transcriptome profiles for 12 diverse maize ( L. reproductive tissues representing male, female, developing seed, and leaf tissues using high throughput transcriptome sequencing. Overall, ∼80% of annotated genes were expressed. Comparative analysis between sequence and hybridization-based methods demonstrated the utility of ribonucleic acid sequencing (RNA-seq for expression determination and differentiation of paralagous genes (∼85% of maize genes. Analysis of 4975 gene families across reproductive tissues revealed expression divergence is proportional to family size. In all pairwise comparisons between tissues, 7 (pre- vs. postemergence cobs to 48% (pollen vs. ovule of genes were differentially expressed. Genes with expression restricted to a single tissue within this study were identified with the highest numbers observed in leaves, endosperm, and pollen. Coexpression network analysis identified 17 gene modules with complex and shared expression patterns containing many previously described maize genes. The data and analyses in this study provide valuable tools through improved gene annotation, gene family characterization, and a core set of candidate genes to further characterize maize reproductive development and improve grain yield potential.

  7. MultiSeq: unifying sequence and structure data for evolutionary analysis

    Directory of Open Access Journals (Sweden)

    Wright Dan

    2006-08-01

    Full Text Available Abstract Background Since the publication of the first draft of the human genome in 2000, bioinformatic data have been accumulating at an overwhelming pace. Currently, more than 3 million sequences and 35 thousand structures of proteins and nucleic acids are available in public databases. Finding correlations in and between these data to answer critical research questions is extremely challenging. This problem needs to be approached from several directions: information science to organize and search the data; information visualization to assist in recognizing correlations; mathematics to formulate statistical inferences; and biology to analyze chemical and physical properties in terms of sequence and structure changes. Results Here we present MultiSeq, a unified bioinformatics analysis environment that allows one to organize, display, align and analyze both sequence and structure data for proteins and nucleic acids. While special emphasis is placed on analyzing the data within the framework of evolutionary biology, the environment is also flexible enough to accommodate other usage patterns. The evolutionary approach is supported by the use of predefined metadata, adherence to standard ontological mappings, and the ability for the user to adjust these classifications using an electronic notebook. MultiSeq contains a new algorithm to generate complete evolutionary profiles that represent the topology of the molecular phylogenetic tree of a homologous group of distantly related proteins. The method, based on the multidimensional QR factorization of multiple sequence and structure alignments, removes redundancy from the alignments and orders the protein sequences by increasing linear dependence, resulting in the identification of a minimal basis set of sequences that spans the evolutionary space of the homologous group of proteins. Conclusion MultiSeq is a major extension of the Multiple Alignment tool that is provided as part of VMD, a structural

  8. Direct sequencing of FAH gene in Pakistani tyrosinemia type 1 families reveals a novel mutation.

    Science.gov (United States)

    Ijaz, Sadaqat; Zahoor, Muhammad Yasir; Imran, Muhammad; Afzal, Sibtain; Bhinder, Munir A; Ullah, Ihsan; Cheema, Huma Arshad; Ramzan, Khushnooda; Shehzad, Wasim

    2016-03-01

    Hereditary tyrosinemia type 1 (HT1) is a rare inborn error of tyrosine catabolism with a worldwide prevalence of one out of 100,000 live births. HT1 is clinically characterized by hepatic and renal dysfunction resulting from the deficiency of fumarylacetoacetate hydrolase (FAH) enzyme, caused by recessive mutations in the FAH gene. We present here the first report on identification of FAH mutations in HT1 patients from Pakistan with a novel one. Three Pakistani families, each having one child affected with HT1, were enrolled over a period of 1.5 years. Two of the affected children had died as they were presented late with acute form. All regions of the FAH gene spanning exons and splicing sites were amplified by polymerase chain reaction (PCR) and mutation analysis was carried out by direct sequencing. Results of sequencing were confirmed by restriction fragment length polymorphism (PCR-RFLP) analysis. Three different FAH mutations, one in each family, were found to co-segregate with the disease phenotype. Two of these FAH mutations have been known (c.192G>T and c.1062+5G>A [IVS12+5G>A]), while c.67T>C (p.Ser23Pro) was a novel mutation. The novel variant was not detected in any of 120 chromosomes from normal ethnically matched individuals. Most of the HT1 patients die before they present to hospitals in Pakistan, as is indicated by enrollment of only three families in 1.5 years. Most of those with late clinical presentation do not survive due to delayed diagnosis followed by untimely treatment. This tragic condition advocates the establishment of expanded newborn screening program for HT1 within Pakistan.

  9. Software for rapid time dependent ChIP-sequencing analysis (TDCA).

    Science.gov (United States)

    Myschyshyn, Mike; Farren-Dai, Marco; Chuang, Tien-Jui; Vocadlo, David

    2017-11-25

    Chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) and associated methods are widely used to define the genome wide distribution of chromatin associated proteins, post-translational epigenetic marks, and modifications found on DNA bases. An area of emerging interest is to study time dependent changes in the distribution of such proteins and marks by using serial ChIP-seq experiments performed in a time resolved manner. Despite such time resolved studies becoming increasingly common, software to facilitate analysis of such data in a robust automated manner is limited. We have designed software called Time-Dependent ChIP-Sequencing Analyser (TDCA), which is the first program to automate analysis of time-dependent ChIP-seq data by fitting to sigmoidal curves. We provide users with guidance for experimental design of TDCA for modeling of time course (TC) ChIP-seq data using two simulated data sets. Furthermore, we demonstrate that this fitting strategy is widely applicable by showing that automated analysis of three previously published TC data sets accurately recapitulates key findings reported in these studies. Using each of these data sets, we highlight how biologically relevant findings can be readily obtained by exploiting TDCA to yield intuitive parameters that describe behavior at either a single locus or sets of loci. TDCA enables customizable analysis of user input aligned DNA sequencing data, coupled with graphical outputs in the form of publication-ready figures that describe behavior at either individual loci or sets of loci sharing common traits defined by the user. TDCA accepts sequencing data as standard binary alignment map (BAM) files and loci of interest in browser extensible data (BED) file format. TDCA accurately models the number of sequencing reads, or coverage, at loci from TC ChIP-seq studies or conceptually related TC sequencing experiments. TC experiments are reduced to intuitive parametric values that facilitate biologically

  10. Blind sequence-length estimation of low-SNR cyclostationary sequences

    CSIR Research Space (South Africa)

    Vlok, JD

    2014-06-01

    Full Text Available Several existing direct-sequence spread spectrum (DSSS) detection and estimation algorithms assume prior knowledge of the symbol period or sequence length, although very few sequence-length estimation techniques are available in the literature...

  11. Comparing methods of classifying life courses: Sequence analysis and latent class analysis

    NARCIS (Netherlands)

    Elzinga, C.H.; Liefbroer, Aart C.; Han, Sapphire

    2017-01-01

    We compare life course typology solutions generated by sequence analysis (SA) and latent class analysis (LCA). First, we construct an analytic protocol to arrive at typology solutions for both methodologies and present methods to compare the empirical quality of alternative typologies. We apply this

  12. Comparing methods of classifying life courses: sequence analysis and latent class analysis

    NARCIS (Netherlands)

    Han, Y.; Liefbroer, A.C.; Elzinga, C.

    2017-01-01

    We compare life course typology solutions generated by sequence analysis (SA) and latent class analysis (LCA). First, we construct an analytic protocol to arrive at typology solutions for both methodologies and present methods to compare the empirical quality of alternative typologies. We apply this

  13. Accurate Local-Ancestry Inference in Exome-Sequenced Admixed Individuals via Off-Target Sequence Reads

    Science.gov (United States)

    Hu, Youna; Willer, Cristen; Zhan, Xiaowei; Kang, Hyun Min; Abecasis, Gonçalo R.

    2013-01-01

    Estimates of the ancestry of specific chromosomal regions in admixed individuals are useful for studies of human evolutionary history and for genetic association studies. Previously, this ancestry inference relied on high-quality genotypes from genome-wide association study (GWAS) arrays. These high-quality genotypes are not always available when samples are exome sequenced, and exome sequencing is the strategy of choice for many ongoing genetic studies. Here we show that off-target reads generated during exome-sequencing experiments can be combined with on-target reads to accurately estimate the ancestry of each chromosomal segment in an admixed individual. To reconstruct local ancestry, our method SEQMIX models aligned bases directly instead of relying on hard genotype calls. We evaluate the accuracy of our method through simulations and analysis of samples sequenced by the 1000 Genomes Project and the NHLBI Grand Opportunity Exome Sequencing Project. In African Americans, we show that local-ancestry estimates derived by our method are very similar to those derived with Illumina’s Omni 2.5M genotyping array and much improved in relation to estimates that use only exome genotypes and ignore off-target sequencing reads. Software implementing this method, SEQMIX, can be applied to analysis of human population history or used for genetic association studies in admixed individuals. PMID:24210252

  14. Spectroscopic and asteroseismic analysis of the remarkable main-sequence A star KIC 11145123

    DEFF Research Database (Denmark)

    Takada-Hidai, Masahide; Kurtz, Donald W.; Shibahashi, Hiromoto

    2017-01-01

    A spectroscopic analysis was carried out to clarify the properties of KIC 11145123 - the first main-sequence star with a directly measured core-to-surface rotation profile - based on spectra observed with the High Dispersion Spectrograph (HDS) of the Subaru telescope. The atmospheric parameters (T......-eff = 7600 K, log g = 4.2, xi = 3.1 kms(-1) and [Fe/H] = -0.71 dex), the radial and rotation velocities, and elemental abundances were obtained by analysing line strengths and fitting line profiles, which were calculated with a 1D LTE model atmosphere. The main properties of KIC 11145123 are: (1) a low [Fe...

  15. CSReport: A New Computational Tool Designed for Automatic Analysis of Class Switch Recombination Junctions Sequenced by High-Throughput Sequencing.

    Science.gov (United States)

    Boyer, François; Boutouil, Hend; Dalloul, Iman; Dalloul, Zeinab; Cook-Moreau, Jeanne; Aldigier, Jean-Claude; Carrion, Claire; Herve, Bastien; Scaon, Erwan; Cogné, Michel; Péron, Sophie

    2017-05-15

    B cells ensure humoral immune responses due to the production of Ag-specific memory B cells and Ab-secreting plasma cells. In secondary lymphoid organs, Ag-driven B cell activation induces terminal maturation and Ig isotype class switch (class switch recombination [CSR]). CSR creates a virtually unique IgH locus in every B cell clone by intrachromosomal recombination between two switch (S) regions upstream of each C region gene. Amount and structural features of CSR junctions reveal valuable information about the CSR mechanism, and analysis of CSR junctions is useful in basic and clinical research studies of B cell functions. To provide an automated tool able to analyze large data sets of CSR junction sequences produced by high-throughput sequencing (HTS), we designed CSReport, a software program dedicated to support analysis of CSR recombination junctions sequenced with a HTS-based protocol (Ion Torrent technology). CSReport was assessed using simulated data sets of CSR junctions and then used for analysis of Sμ-Sα and Sμ-Sγ1 junctions from CH12F3 cells and primary murine B cells, respectively. CSReport identifies junction segment breakpoints on reference sequences and junction structure (blunt-ended junctions or junctions with insertions or microhomology). Besides the ability to analyze unprecedentedly large libraries of junction sequences, CSReport will provide a unified framework for CSR junction studies. Our results show that CSReport is an accurate tool for analysis of sequences from our HTS-based protocol for CSR junctions, thereby facilitating and accelerating their study. Copyright © 2017 by The American Association of Immunologists, Inc.

  16. Complete Genome Sequence of the Goatpox Virus Strain Gorgan Obtained Directly from a Commercial Live Attenuated Vaccine

    Science.gov (United States)

    Mathijs, Elisabeth; Vandenbussche, Frank; Haegeman, Andy; Al-Majali, Ahmad; De Clercq, Kris

    2016-01-01

    This is a report of the complete genome sequence of the goatpox virus strain Gorgan, which was obtained directly from a commercial live attenuated vaccine (Caprivac, Jordan Bio-Industries Centre). PMID:27738031

  17. Harnessing Whole Genome Sequencing in Medical Mycology.

    Science.gov (United States)

    Cuomo, Christina A

    2017-01-01

    Comparative genome sequencing studies of human fungal pathogens enable identification of genes and variants associated with virulence and drug resistance. This review describes current approaches, resources, and advances in applying whole genome sequencing to study clinically important fungal pathogens. Genomes for some important fungal pathogens were only recently assembled, revealing gene family expansions in many species and extreme gene loss in one obligate species. The scale and scope of species sequenced is rapidly expanding, leveraging technological advances to assemble and annotate genomes with higher precision. By using iteratively improved reference assemblies or those generated de novo for new species, recent studies have compared the sequence of isolates representing populations or clinical cohorts. Whole genome approaches provide the resolution necessary for comparison of closely related isolates, for example, in the analysis of outbreaks or sampled across time within a single host. Genomic analysis of fungal pathogens has enabled both basic research and diagnostic studies. The increased scale of sequencing can be applied across populations, and new metagenomic methods allow direct analysis of complex samples.

  18. Direct metagenomic detection of viral pathogens in nasal and fecal specimens using an unbiased high-throughput sequencing approach.

    Directory of Open Access Journals (Sweden)

    Shota Nakamura

    Full Text Available With the severe acute respiratory syndrome epidemic of 2003 and renewed attention on avian influenza viral pandemics, new surveillance systems are needed for the earlier detection of emerging infectious diseases. We applied a "next-generation" parallel sequencing platform for viral detection in nasopharyngeal and fecal samples collected during seasonal influenza virus (Flu infections and norovirus outbreaks from 2005 to 2007 in Osaka, Japan. Random RT-PCR was performed to amplify RNA extracted from 0.1-0.25 ml of nasopharyngeal aspirates (N = 3 and fecal specimens (N = 5, and more than 10 microg of cDNA was synthesized. Unbiased high-throughput sequencing of these 8 samples yielded 15,298-32,335 (average 24,738 reads in a single 7.5 h run. In nasopharyngeal samples, although whole genome analysis was not available because the majority (>90% of reads were host genome-derived, 20-460 Flu-reads were detected, which was sufficient for subtype identification. In fecal samples, bacteria and host cells were removed by centrifugation, resulting in gain of 484-15,260 reads of norovirus sequence (78-98% of the whole genome was covered, except for one specimen that was under-detectable by RT-PCR. These results suggest that our unbiased high-throughput sequencing approach is useful for directly detecting pathogenic viruses without advance genetic information. Although its cost and technological availability make it unlikely that this system will very soon be the diagnostic standard worldwide, this system could be useful for the earlier discovery of novel emerging viruses and bioterrorism, which are difficult to detect with conventional procedures.

  19. Sequence analysis of putative swrW gene required for surfactant ...

    African Journals Online (AJOL)

    Serratia marcescens produces biosurfactant serrawettin, essential for its population migration behavior. Serrawettin W1 was revealed to be an antibiotic serratamolide that makes it significant for deoxyribonucleic acid (DNA) and protein sequence analysis. Four nucleotide and amino-acid sequences from local strains ...

  20. Phylogenetic analysis of the genus Hordeum using repetitive DNA sequences

    DEFF Research Database (Denmark)

    Svitashev, S.; Bryngelsson, T.; Vershinin, A.

    1994-01-01

    A set of six cloned barley (Hordeum vulgare) repetitive DNA sequences was used for the analysis of phylogenetic relationships among 31 species (46 taxa) of the genus Hordeum, using molecular hybridization techniques. In situ hybridization experiments showed dispersed organization of the sequences...

  1. Comparative analysis of catfish BAC end sequences with the zebrafish genome

    Directory of Open Access Journals (Sweden)

    Abernathy Jason

    2009-12-01

    Full Text Available Abstract Background Comparative mapping is a powerful tool to transfer genomic information from sequenced genomes to closely related species for which whole genome sequence data are not yet available. However, such an approach is still very limited in catfish, the most important aquaculture species in the United States. This project was initiated to generate additional BAC end sequences and demonstrate their applications in comparative mapping in catfish. Results We reported the generation of 43,000 BAC end sequences and their applications for comparative genome analysis in catfish. Using these and the additional 20,000 existing BAC end sequences as a resource along with linkage mapping and existing physical map, conserved syntenic regions were identified between the catfish and zebrafish genomes. A total of 10,943 catfish BAC end sequences (17.3% had significant BLAST hits to the zebrafish genome (cutoff value ≤ e-5, of which 3,221 were unique gene hits, providing a platform for comparative mapping based on locations of these genes in catfish and zebrafish. Genetic linkage mapping of microsatellites associated with contigs allowed identification of large conserved genomic segments and construction of super scaffolds. Conclusion BAC end sequences and their associated polymorphic markers are great resources for comparative genome analysis in catfish. Highly conserved chromosomal regions were identified to exist between catfish and zebrafish. However, it appears that the level of conservation at local genomic regions are high while a high level of chromosomal shuffling and rearrangements exist between catfish and zebrafish genomes. Orthologous regions established through comparative analysis should facilitate both structural and functional genome analysis in catfish.

  2. Gradient-recalled echo sequences in direct shoulder MR arthrography for evaluating the labrum

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Marc J.; Motamedi, Kambiz; Chow, Kira; Seeger, Leanne L. [David Geffen School of Medicine at UCLA, Department of Radiology, 200 UCLA Medical Plaza, Suite 165-59, Box 956952, Los Angeles, CA (United States)

    2008-01-15

    The purpose of this study was to determine the utility of fat-suppressed gradient-recalled echo (GRE) compared with conventional spin echo T1-weighted (T1W) sequences in direct shoulder MR arthrography for evaluating labral tears. Three musculoskeletal radiologists retrospectively reviewed MR arthrograms performed over a 12-month period for which surgical correlation was available. Of 180 serial arthrograms, 31 patients had surgery with a mean of 48 days following imaging. Paired coronal oblique and axial T1W or GRE sequences were analyzed by consensus for labral tear (coronal oblique two-dimensional multi-echo data image combination, 2D MEDIC; and axial three-dimensional double-echo steady-state, 3D DESS; Siemens MAGNETOM Sonata 1.5-T MR system). Interpretations were correlated with operative reports. Of 31 shoulders, 25 had labral tears at surgery. The GRE sequences depicted labral tears in 22, while T1W images depicted tears in 16 (sensitivity 88% versus 64%; p < 0.05). Subdividing the labrum, GRE was significantly more sensitive for the posterior labrum (75% versus 25%; p < 0.05) with a trend toward greater sensitivity at the anterior labrum (78% versus 56%; p = 0.157) but not significantly different for the superior labrum (50% versus 57%; p > 0.7). Specificities were somewhat lower for GRE. Thin section GRE sequences are more sensitive than T1W for the detection of anterior and posterior labral tears. As the specificity of GRE was lower, it should be considered as an adjunctive imaging sequence that may improve depiction of labral tears, particularly smaller tears, in routine MR arthrography protocols. (orig.)

  3. Putting instruction sequences into effect

    NARCIS (Netherlands)

    Bergstra, J.A.

    2011-01-01

    An attempt is made to define the concept of execution of an instruction sequence. It is found to be a special case of directly putting into effect of an instruction sequence. Directly putting into effect of an instruction sequences comprises interpretation as well as execution. Directly putting into

  4. A SOM clustering pattern sequence-based next symbol prediction method for day-ahead direct electricity load and price forecasting

    International Nuclear Information System (INIS)

    Jin, Cheng Hao; Pok, Gouchol; Lee, Yongmi; Park, Hyun-Woo; Kim, Kwang Deuk; Yun, Unil; Ryu, Keun Ho

    2015-01-01

    Highlights: • A novel pattern sequence-based direct time series forecasting method was proposed. • Due to the use of SOM’s topology preserving property, only SOM can be applied. • SCPSNSP only deals with the cluster patterns not each specific time series value. • SCPSNSP performs better than recently developed forecasting algorithms. - Abstract: In this paper, we propose a new day-ahead direct time series forecasting method for competitive electricity markets based on clustering and next symbol prediction. In the clustering step, pattern sequence and their topology relations are obtained from self organizing map time series clustering. In the next symbol prediction step, with each cluster label in the pattern sequence represented as a pair of its topologically identical coordinates, artificial neural network is used to predict the topological coordinates of next day by training the relationship between previous daily pattern sequence and its next day pattern. According to the obtained topology relations, the nearest nonzero hits pattern is assigned to next day so that the whole time series values can be directly forecasted from the assigned cluster pattern. The proposed method was evaluated on Spanish, Australian and New York electricity markets and compared with PSF and some of the most recently published forecasting methods. Experimental results show that the proposed method outperforms the best forecasting methods at least 3.64%

  5. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing

    Science.gov (United States)

    Manske, Magnus; Miotto, Olivo; Campino, Susana; Auburn, Sarah; Almagro-Garcia, Jacob; Maslen, Gareth; O’Brien, Jack; Djimde, Abdoulaye; Doumbo, Ogobara; Zongo, Issaka; Ouedraogo, Jean-Bosco; Michon, Pascal; Mueller, Ivo; Siba, Peter; Nzila, Alexis; Borrmann, Steffen; Kiara, Steven M.; Marsh, Kevin; Jiang, Hongying; Su, Xin-Zhuan; Amaratunga, Chanaki; Fairhurst, Rick; Socheat, Duong; Nosten, Francois; Imwong, Mallika; White, Nicholas J.; Sanders, Mandy; Anastasi, Elisa; Alcock, Dan; Drury, Eleanor; Oyola, Samuel; Quail, Michael A.; Turner, Daniel J.; Rubio, Valentin Ruano; Jyothi, Dushyanth; Amenga-Etego, Lucas; Hubbart, Christina; Jeffreys, Anna; Rowlands, Kate; Sutherland, Colin; Roper, Cally; Mangano, Valentina; Modiano, David; Tan, John C.; Ferdig, Michael T.; Amambua-Ngwa, Alfred; Conway, David J.; Takala-Harrison, Shannon; Plowe, Christopher V.; Rayner, Julian C.; Rockett, Kirk A.; Clark, Taane G.; Newbold, Chris I.; Berriman, Matthew; MacInnis, Bronwyn; Kwiatkowski, Dominic P.

    2013-01-01

    Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. 1,2 Here we describe methods for large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short term culture. Analysis of 86,158 exonic SNPs that passed genotyping quality control in 227 samples from Africa, Asia and Oceania provides genome-wide estimates of allele frequency distribution, population structure and linkage disequilibrium. By comparing the genetic diversity of individual infections with that of the local parasite population, we derive a metric of within-host diversity that is related to the level of inbreeding in the population. An open-access web application has been established for exploration of regional differences in allele frequency and of highly differentiated loci in the P. falciparum genome. PMID:22722859

  6. An Imaging And Graphics Workstation For Image Sequence Analysis

    Science.gov (United States)

    Mostafavi, Hassan

    1990-01-01

    This paper describes an application-specific engineering workstation designed and developed to analyze imagery sequences from a variety of sources. The system combines the software and hardware environment of the modern graphic-oriented workstations with the digital image acquisition, processing and display techniques. The objective is to achieve automation and high throughput for many data reduction tasks involving metric studies of image sequences. The applications of such an automated data reduction tool include analysis of the trajectory and attitude of aircraft, missile, stores and other flying objects in various flight regimes including launch and separation as well as regular flight maneuvers. The workstation can also be used in an on-line or off-line mode to study three-dimensional motion of aircraft models in simulated flight conditions such as wind tunnels. The system's key features are: 1) Acquisition and storage of image sequences by digitizing real-time video or frames from a film strip; 2) computer-controlled movie loop playback, slow motion and freeze frame display combined with digital image sharpening, noise reduction, contrast enhancement and interactive image magnification; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored image sequence; 4) automatic and manual field-of-view and spatial calibration; 5) image sequence data base generation and management, including the measurement data products; 6) off-line analysis software for trajectory plotting and statistical analysis; 7) model-based estimation and tracking of object attitude angles; and 8) interface to a variety of video players and film transport sub-systems.

  7. Detection of nucleic acid sequences by invader-directed cleavage

    Science.gov (United States)

    Brow, Mary Ann D.; Hall, Jeff Steven Grotelueschen; Lyamichev, Victor; Olive, David Michael; Prudent, James Robert

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The 5' nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based by charge.

  8. De novo transcriptome sequencing and sequence analysis of the malaria vector Anopheles sinensis (Diptera: Culicidae)

    Science.gov (United States)

    2014-01-01

    Background Anopheles sinensis is the major malaria vector in China and Southeast Asia. Vector control is one of the most effective measures to prevent malaria transmission. However, there is little transcriptome information available for the malaria vector. To better understand the biological basis of malaria transmission and to develop novel and effective means of vector control, there is a need to build a transcriptome dataset for functional genomics analysis by large-scale RNA sequencing (RNA-seq). Methods To provide a more comprehensive and complete transcriptome of An. sinensis, eggs, larvae, pupae, male adults and female adults RNA were pooled together for cDNA preparation, sequenced using the Illumina paired-end sequencing technology and assembled into unigenes. These unigenes were then analyzed in their genome mapping, functional annotation, homology, codon usage bias and simple sequence repeats (SSRs). Results Approximately 51.6 million clean reads were obtained, trimmed, and assembled into 38,504 unigenes with an average length of 571 bp, an N50 of 711 bp, and an average GC content 51.26%. Among them, 98.4% of unigenes could be mapped onto the reference genome, and 69% of unigenes could be annotated with known biological functions. Homology analysis identified certain numbers of An. sinensis unigenes that showed homology or being putative 1:1 orthologues with genomes of other Dipteran species. Codon usage bias was analyzed and 1,904 SSRs were detected, which will provide effective molecular markers for the population genetics of this species. Conclusions Our data and analysis provide the most comprehensive transcriptomic resource and characteristics currently available for An. sinensis, and will facilitate genetic, genomic studies, and further vector control of An. sinensis. PMID:25000941

  9. Viral metagenomics: Analysis of begomoviruses by illumina high-throughput sequencing

    KAUST Repository

    Idris, Ali

    2014-03-12

    Traditional DNA sequencing methods are inefficient, lack the ability to discern the least abundant viral sequences, and ineffective for determining the extent of variability in viral populations. Here, populations of single-stranded DNA plant begomoviral genomes and their associated beta- and alpha-satellite molecules (virus-satellite complexes) (genus, Begomovirus; family, Geminiviridae) were enriched from total nucleic acids isolated from symptomatic, field-infected plants, using rolling circle amplification (RCA). Enriched virus-satellite complexes were subjected to Illumina-Next Generation Sequencing (NGS). CASAVA and SeqMan NGen programs were implemented, respectively, for quality control and for de novo and reference-guided contig assembly of viral-satellite sequences. The authenticity of the begomoviral sequences, and the reproducibility of the Illumina-NGS approach for begomoviral deep sequencing projects, were validated by comparing NGS results with those obtained using traditional molecular cloning and Sanger sequencing of viral components and satellite DNAs, also enriched by RCA or amplified by polymerase chain reaction. As the use of NGS approaches, together with advances in software development, make possible deep sequence coverage at a lower cost; the approach described herein will streamline the exploration of begomovirus diversity and population structure from naturally infected plants, irrespective of viral abundance. This is the first report of the implementation of Illumina-NGS to explore the diversity and identify begomoviral-satellite SNPs directly from plants naturally-infected with begomoviruses under field conditions. 2014 by the authors; licensee MDPI, Basel, Switzerland.

  10. Viral Metagenomics: Analysis of Begomoviruses by Illumina High-Throughput Sequencing

    Directory of Open Access Journals (Sweden)

    Ali Idris

    2014-03-01

    Full Text Available Traditional DNA sequencing methods are inefficient, lack the ability to discern the least abundant viral sequences, and ineffective for determining the extent of variability in viral populations. Here, populations of single-stranded DNA plant begomoviral genomes and their associated beta- and alpha-satellite molecules (virus-satellite complexes (genus, Begomovirus; family, Geminiviridae were enriched from total nucleic acids isolated from symptomatic, field-infected plants, using rolling circle amplification (RCA. Enriched virus-satellite complexes were subjected to Illumina-Next Generation Sequencing (NGS. CASAVA and SeqMan NGen programs were implemented, respectively, for quality control and for de novo and reference-guided contig assembly of viral-satellite sequences. The authenticity of the begomoviral sequences, and the reproducibility of the Illumina-NGS approach for begomoviral deep sequencing projects, were validated by comparing NGS results with those obtained using traditional molecular cloning and Sanger sequencing of viral components and satellite DNAs, also enriched by RCA or amplified by polymerase chain reaction. As the use of NGS approaches, together with advances in software development, make possible deep sequence coverage at a lower cost; the approach described herein will streamline the exploration of begomovirus diversity and population structure from naturally infected plants, irrespective of viral abundance. This is the first report of the implementation of Illumina-NGS to explore the diversity and identify begomoviral-satellite SNPs directly from plants naturally-infected with begomoviruses under field conditions.

  11. Sequence analysis of dolphin ferritin H and L subunits and possible iron-dependent translational control of dolphin ferritin gene

    Directory of Open Access Journals (Sweden)

    Sasaki Yukako

    2008-10-01

    Full Text Available Abstract Background Iron-storage protein, ferritin plays a central role in iron metabolism. Ferritin has dual function to store iron and segregate iron for protection of iron-catalyzed reactive oxygen species. Tissue ferritin is composed of two kinds of subunits (H: heavy chain or heart-type subunit; L: light chain or liver-type subunit. Ferritin gene expression is controlled at translational level in iron-dependent manner or at transcriptional level in iron-independent manner. However, sequencing analysis of marine mammalian ferritin subunits has not yet been performed fully. The purpose of this study is to reveal cDNA-derived amino acid sequences of cetacean ferritin H and L subunits, and demonstrate the possibility of expression of these subunits, especially H subunit, by iron. Methods Sequence analyses of cetacean ferritin H and L subunits were performed by direct sequencing of polymerase chain reaction (PCR fragments from cDNAs generated via reverse transcription-PCR of leukocyte total RNA prepared from blood samples of six different dolphin species (Pseudorca crassidens, Lagenorhynchus obliquidens, Grampus griseus, Globicephala macrorhynchus, Tursiops truncatus, and Delphinapterus leucas. The putative iron-responsive element sequence in the 5'-untranslated region of the six different dolphin species was revealed by direct sequencing of PCR fragments obtained using leukocyte genomic DNA. Results Dolphin H and L subunits consist of 182 and 174 amino acids, respectively, and amino acid sequence identities of ferritin subunits among these dolphins are highly conserved (H: 99–100%, (99→98 ; L: 98–100%. The conserved 28 bp IRE sequence was located -144 bp upstream from the initiation codon in the six different dolphin species. Conclusion These results indicate that six different dolphin species have conserved ferritin sequences, and suggest that these genes are iron-dependently expressed.

  12. Regularized rare variant enrichment analysis for case-control exome sequencing data.

    Science.gov (United States)

    Larson, Nicholas B; Schaid, Daniel J

    2014-02-01

    Rare variants have recently garnered an immense amount of attention in genetic association analysis. However, unlike methods traditionally used for single marker analysis in GWAS, rare variant analysis often requires some method of aggregation, since single marker approaches are poorly powered for typical sequencing study sample sizes. Advancements in sequencing technologies have rendered next-generation sequencing platforms a realistic alternative to traditional genotyping arrays. Exome sequencing in particular not only provides base-level resolution of genetic coding regions, but also a natural paradigm for aggregation via genes and exons. Here, we propose the use of penalized regression in combination with variant aggregation measures to identify rare variant enrichment in exome sequencing data. In contrast to marginal gene-level testing, we simultaneously evaluate the effects of rare variants in multiple genes, focusing on gene-based least absolute shrinkage and selection operator (LASSO) and exon-based sparse group LASSO models. By using gene membership as a grouping variable, the sparse group LASSO can be used as a gene-centric analysis of rare variants while also providing a penalized approach toward identifying specific regions of interest. We apply extensive simulations to evaluate the performance of these approaches with respect to specificity and sensitivity, comparing these results to multiple competing marginal testing methods. Finally, we discuss our findings and outline future research. © 2013 WILEY PERIODICALS, INC.

  13. Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii genome.

    Directory of Open Access Journals (Sweden)

    Byrappa Venkatesh

    2007-04-01

    Full Text Available Owing to their phylogenetic position, cartilaginous fishes (sharks, rays, skates, and chimaeras provide a critical reference for our understanding of vertebrate genome evolution. The relatively small genome of the elephant shark, Callorhinchus milii, a chimaera, makes it an attractive model cartilaginous fish genome for whole-genome sequencing and comparative analysis. Here, the authors describe survey sequencing (1.4x coverage and comparative analysis of the elephant shark genome, one of the first cartilaginous fish genomes to be sequenced to this depth. Repetitive sequences, represented mainly by a novel family of short interspersed element-like and long interspersed element-like sequences, account for about 28% of the elephant shark genome. Fragments of approximately 15,000 elephant shark genes reveal specific examples of genes that have been lost differentially during the evolution of tetrapod and teleost fish lineages. Interestingly, the degree of conserved synteny and conserved sequences between the human and elephant shark genomes are higher than that between human and teleost fish genomes. Elephant shark contains putative four Hox clusters indicating that, unlike teleost fish genomes, the elephant shark genome has not experienced an additional whole-genome duplication. These findings underscore the importance of the elephant shark as a critical reference vertebrate genome for comparative analysis of the human and other vertebrate genomes. This study also demonstrates that a survey-sequencing approach can be applied productively for comparative analysis of distantly related vertebrate genomes.

  14. Apples and oranges: avoiding different priors in Bayesian DNA sequence analysis

    Directory of Open Access Journals (Sweden)

    Posch Stefan

    2010-03-01

    Full Text Available Abstract Background One of the challenges of bioinformatics remains the recognition of short signal sequences in genomic DNA such as donor or acceptor splice sites, splicing enhancers or silencers, translation initiation sites, transcription start sites, transcription factor binding sites, nucleosome binding sites, miRNA binding sites, or insulator binding sites. During the last decade, a wealth of algorithms for the recognition of such DNA sequences has been developed and compared with the goal of improving their performance and to deepen our understanding of the underlying cellular processes. Most of these algorithms are based on statistical models belonging to the family of Markov random fields such as position weight matrix models, weight array matrix models, Markov models of higher order, or moral Bayesian networks. While in many comparative studies different learning principles or different statistical models have been compared, the influence of choosing different prior distributions for the model parameters when using different learning principles has been overlooked, and possibly lead to questionable conclusions. Results With the goal of allowing direct comparisons of different learning principles for models from the family of Markov random fields based on the same a-priori information, we derive a generalization of the commonly-used product-Dirichlet prior. We find that the derived prior behaves like a Gaussian prior close to the maximum and like a Laplace prior in the far tails. In two case studies, we illustrate the utility of the derived prior for a direct comparison of different learning principles with different models for the recognition of binding sites of the transcription factor Sp1 and human donor splice sites. Conclusions We find that comparisons of different learning principles using the same a-priori information can lead to conclusions different from those of previous studies in which the effect resulting from different

  15. [Complete genome sequencing and sequence analysis of BCG Tice].

    Science.gov (United States)

    Wang, Zhiming; Pan, Yuanlong; Wu, Jun; Zhu, Baoli

    2012-10-04

    The objective of this study is to obtain the complete genome sequence of Bacillus Calmette-Guerin Tice (BCG Tice), in order to provide more information about the molecular biology of BCG Tice and design more reasonable vaccines to prevent tuberculosis. We assembled the data from high-throughput sequencing with SOAPdenovo software, with many contigs and scaffolds obtained. There are many sequence gaps and physical gaps remained as a result of regional low coverage and low quality. We designed primers at the end of contigs and performed PCR amplification in order to link these contigs and scaffolds. With various enzymes to perform PCR amplification, adjustment of PCR reaction conditions, and combined with clone construction to sequence, all the gaps were finished. We obtained the complete genome sequence of BCG Tice and submitted it to GenBank of National Center for Biotechnology Information (NCBI). The genome of BCG Tice is 4334064 base pairs in length, with GC content 65.65%. The problems and strategies during the finishing step of BCG Tice sequencing are illuminated here, with the hope of affording some experience to those who are involved in the finishing step of genome sequencing. The microarray data were verified by our results.

  16. FAST: FAST Analysis of Sequences Toolbox

    Directory of Open Access Journals (Sweden)

    Travis J. Lawrence

    2015-05-01

    Full Text Available FAST (FAST Analysis of Sequences Toolbox provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU’s Not Unix Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics makes FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format. Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought.

  17. Analysis of high-throughput sequencing and annotation strategies for phage genomes.

    Directory of Open Access Journals (Sweden)

    Matthew R Henn

    Full Text Available BACKGROUND: Bacterial viruses (phages play a critical role in shaping microbial populations as they influence both host mortality and horizontal gene transfer. As such, they have a significant impact on local and global ecosystem function and human health. Despite their importance, little is known about the genomic diversity harbored in phages, as methods to capture complete phage genomes have been hampered by the lack of knowledge about the target genomes, and difficulties in generating sufficient quantities of genomic DNA for sequencing. Of the approximately 550 phage genomes currently available in the public domain, fewer than 5% are marine phage. METHODOLOGY/PRINCIPAL FINDINGS: To advance the study of phage biology through comparative genomic approaches we used marine cyanophage as a model system. We compared DNA preparation methodologies (DNA extraction directly from either phage lysates or CsCl purified phage particles, and sequencing strategies that utilize either Sanger sequencing of a linker amplification shotgun library (LASL or of a whole genome shotgun library (WGSL, or 454 pyrosequencing methods. We demonstrate that genomic DNA sample preparation directly from a phage lysate, combined with 454 pyrosequencing, is best suited for phage genome sequencing at scale, as this method is capable of capturing complete continuous genomes with high accuracy. In addition, we describe an automated annotation informatics pipeline that delivers high-quality annotation and yields few false positives and negatives in ORF calling. CONCLUSIONS/SIGNIFICANCE: These DNA preparation, sequencing and annotation strategies enable a high-throughput approach to the burgeoning field of phage genomics.

  18. A DNA Structure-Based Bionic Wavelet Transform and Its Application to DNA Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2003-01-01

    Full Text Available DNA sequence analysis is of great significance for increasing our understanding of genomic functions. An important task facing us is the exploration of hidden structural information stored in the DNA sequence. This paper introduces a DNA structure-based adaptive wavelet transform (WT – the bionic wavelet transform (BWT – for DNA sequence analysis. The symbolic DNA sequence can be separated into four channels of indicator sequences. An adaptive symbol-to-number mapping, determined from the structural feature of the DNA sequence, was introduced into WT. It can adjust the weight value of each channel to maximise the useful energy distribution of the whole BWT output. The performance of the proposed BWT was examined by analysing synthetic and real DNA sequences. Results show that BWT performs better than traditional WT in presenting greater energy distribution. This new BWT method should be useful for the detection of the latent structural features in future DNA sequence analysis.

  19. OTU analysis using metagenomic shotgun sequencing data.

    Directory of Open Access Journals (Sweden)

    Xiaolin Hao

    Full Text Available Because of technological limitations, the primer and amplification biases in targeted sequencing of 16S rRNA genes have veiled the true microbial diversity underlying environmental samples. However, the protocol of metagenomic shotgun sequencing provides 16S rRNA gene fragment data with natural immunity against the biases raised during priming and thus the potential of uncovering the true structure of microbial community by giving more accurate predictions of operational taxonomic units (OTUs. Nonetheless, the lack of statistically rigorous comparison between 16S rRNA gene fragments and other data types makes it difficult to interpret previously reported results using 16S rRNA gene fragments. Therefore, in the present work, we established a standard analysis pipeline that would help confirm if the differences in the data are true or are just due to potential technical bias. This pipeline is built by using simulated data to find optimal mapping and OTU prediction methods. The comparison between simulated datasets revealed a relationship between 16S rRNA gene fragments and full-length 16S rRNA sequences that a 16S rRNA gene fragment having a length >150 bp provides the same accuracy as a full-length 16S rRNA sequence using our proposed pipeline, which could serve as a good starting point for experimental design and making the comparison between 16S rRNA gene fragment-based and targeted 16S rRNA sequencing-based surveys possible.

  20. Pseudogene of dihydrolipoyl succinyltransferase (E2k) found by PCR amplification and direct sequencing of rodent-human cell hybrid DNAs

    Energy Technology Data Exchange (ETDEWEB)

    Cai, X.; Ali, G.; Blass, J.P. [Cornell Univ. Medical College, White Plains, NY (United States); Szabo, P. [Cornell Univ. Medical College, New York, NY (United States); Tanzi, R.E. [Massachusetts General Hospital, Boston, MA (United States)

    1994-07-01

    Previous studies have indicated that the cDNA for the E2k component of the human {alpha}-ketoglutarate dehydrogenase complex (KGDHC) hybridized not only to a major locus on chromosome 14q24.3 in a region associated with familial Alzheimer`s disease and with Joseph-Machado disease, but also to another locus on chromosome 1p31. The authors now report that PCR of genomic DNA and direct sequencing indicated that the chromosome 1 locus is an intronless pseudogene. PCR of genomic DNA amplified E2k fragments from mouse-human cell hybrids containing human chromosome 1 DNA but not from hybrids containing human chromosome 14 DNA. The resulting amplicons were of comparable sizes to those when the cDNA was used to template. The direct sequencing of these amplicons confirmed the lack of introns and indicated a frame shift, which led to the presence of four termination codons early in the coding region. PCR followed by direct sequencing of the amplicons appears to be a convenient method for identifying intronless pseudogenes.

  1. Sequence quality analysis tool for HIV type 1 protease and reverse transcriptase.

    Science.gov (United States)

    Delong, Allison K; Wu, Mingham; Bennett, Diane; Parkin, Neil; Wu, Zhijin; Hogan, Joseph W; Kantor, Rami

    2012-08-01

    Access to antiretroviral therapy is increasing globally and drug resistance evolution is anticipated. Currently, protease (PR) and reverse transcriptase (RT) sequence generation is increasing, including the use of in-house sequencing assays, and quality assessment prior to sequence analysis is essential. We created a computational HIV PR/RT Sequence Quality Analysis Tool (SQUAT) that runs in the R statistical environment. Sequence quality thresholds are calculated from a large dataset (46,802 PR and 44,432 RT sequences) from the published literature ( http://hivdb.Stanford.edu ). Nucleic acid sequences are read into SQUAT, identified, aligned, and translated. Nucleic acid sequences are flagged if with >five 1-2-base insertions; >one 3-base insertion; >one deletion; >six PR or >18 RT ambiguous bases; >three consecutive PR or >four RT nucleic acid mutations; >zero stop codons; >three PR or >six RT ambiguous amino acids; >three consecutive PR or >four RT amino acid mutations; >zero unique amino acids; or 15% genetic distance from another submitted sequence. Thresholds are user modifiable. SQUAT output includes a summary report with detailed comments for troubleshooting of flagged sequences, histograms of pairwise genetic distances, neighbor joining phylogenetic trees, and aligned nucleic and amino acid sequences. SQUAT is a stand-alone, free, web-independent tool to ensure use of high-quality HIV PR/RT sequences in interpretation and reporting of drug resistance, while increasing awareness and expertise and facilitating troubleshooting of potentially problematic sequences.

  2. REFGEN and TREENAMER: Automated Sequence Data Handling for Phylogenetic Analysis in the Genomic Era

    Science.gov (United States)

    Leonard, Guy; Stevens, Jamie R.; Richards, Thomas A.

    2009-01-01

    The phylogenetic analysis of nucleotide sequences and increasingly that of amino acid sequences is used to address a number of biological questions. Access to extensive datasets, including numerous genome projects, means that standard phylogenetic analyses can include many hundreds of sequences. Unfortunately, most phylogenetic analysis programs do not tolerate the sequence naming conventions of genome databases. Managing large numbers of sequences and standardizing sequence labels for use in phylogenetic analysis programs can be a time consuming and laborious task. Here we report the availability of an online resource for the management of gene sequences recovered from public access genome databases such as GenBank. These web utilities include the facility for renaming every sequence in a FASTA alignment file, with each sequence label derived from a user-defined combination of the species name and/or database accession number. This facility enables the user to keep track of the branching order of the sequences/taxa during multiple tree calculations and re-optimisations. Post phylogenetic analysis, these webpages can then be used to rename every label in the subsequent tree files (with a user-defined combination of species name and/or database accession number). Together these programs drastically reduce the time required for managing sequence alignments and labelling phylogenetic figures. Additional features of our platform include the automatic removal of identical accession numbers (recorded in the report file) and generation of species and accession number lists for use in supplementary materials or figure legends. PMID:19812722

  3. Mitochondrial DNA sequence variation in the Anatolian Peninsula ...

    Indian Academy of Sciences (India)

    Unknown

    necting the Middle East, Europe and Central Asia, and, thus, has been subject to major population movements. The ... from different parts of Anatolia by direct sequencing. Analysis of the two ... the country, samples were obtained from individuals com- ing from ..... Arlequin: a software environment for the analysis of popula-.

  4. Biological sequence analysis: probabilistic models of proteins and nucleic acids

    National Research Council Canada - National Science Library

    Durbin, Richard

    1998-01-01

    ... analysis methods are now based on principles of probabilistic modelling. Examples of such methods include the use of probabilistically derived score matrices to determine the significance of sequence alignments, the use of hidden Markov models as the basis for profile searches to identify distant members of sequence families, and the inference...

  5. Total RNA Sequencing Analysis of DCIS Progressing to Invasive Breast Cancer

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-14-1-0080 TITLE: Total RNA Sequencing Analysis of DCIS Progressing to Invasive Breast Cancer . PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE Total RNA Sequencing Analysis of DCIS Progressing to Invasive Breast Cancer . 5a. CONTRACT NUMBER 5b. GRANT NUMBER GRANT11489...institutional, NIH-funded study of genetic and epigenetic alterations of pre-invasive DCIS that did or did not progress to invasive breast cancer , with an

  6. Cloning and sequence analysis of hyaluronoglucosaminidase (nagH gene of Clostridium chauvoei

    Directory of Open Access Journals (Sweden)

    Saroj K. Dangi

    2017-09-01

    Full Text Available Aim: Blackleg disease is caused by Clostridium chauvoei in ruminants. Although virulence factors such as C. chauvoei toxin A, sialidase, and flagellin are well characterized, hyaluronidases of C. chauvoei are not characterized. The present study was aimed at cloning and sequence analysis of hyaluronoglucosaminidase (nagH gene of C. chauvoei. Materials and Methods: C. chauvoei strain ATCC 10092 was grown in ATCC 2107 media and confirmed by polymerase chain reaction (PCR using the primers specific for 16-23S rDNA spacer region. nagH gene of C. chauvoei was amplified and cloned into pRham-SUMO vector and transformed into Escherichia cloni 10G cells. The construct was then transformed into E. cloni cells. Colony PCR was carried out to screen the colonies followed by sequencing of nagH gene in the construct. Results: PCR amplification yielded nagH gene of 1143 bp product, which was cloned in prokaryotic expression system. Colony PCR, as well as sequencing of nagH gene, confirmed the presence of insert. Sequence was then subjected to BLAST analysis of NCBI, which confirmed that the sequence was indeed of nagH gene of C. chauvoei. Phylogenetic analysis of the sequence showed that it is closely related to Clostridium perfringens and Clostridium paraputrificum. Conclusion: The gene for virulence factor nagH was cloned into a prokaryotic expression vector and confirmed by sequencing.

  7. DELIMINATE--a fast and efficient method for loss-less compression of genomic sequences: sequence analysis.

    Science.gov (United States)

    Mohammed, Monzoorul Haque; Dutta, Anirban; Bose, Tungadri; Chadaram, Sudha; Mande, Sharmila S

    2012-10-01

    An unprecedented quantity of genome sequence data is currently being generated using next-generation sequencing platforms. This has necessitated the development of novel bioinformatics approaches and algorithms that not only facilitate a meaningful analysis of these data but also aid in efficient compression, storage, retrieval and transmission of huge volumes of the generated data. We present a novel compression algorithm (DELIMINATE) that can rapidly compress genomic sequence data in a loss-less fashion. Validation results indicate relatively higher compression efficiency of DELIMINATE when compared with popular general purpose compression algorithms, namely, gzip, bzip2 and lzma. Linux, Windows and Mac implementations (both 32 and 64-bit) of DELIMINATE are freely available for download at: http://metagenomics.atc.tcs.com/compression/DELIMINATE. sharmila@atc.tcs.com Supplementary data are available at Bioinformatics online.

  8. Combining protein sequence, structure, and dynamics: A novel approach for functional evolution analysis of PAS domain superfamily.

    Science.gov (United States)

    Dong, Zheng; Zhou, Hongyu; Tao, Peng

    2018-02-01

    PAS domains are widespread in archaea, bacteria, and eukaryota, and play important roles in various functions. In this study, we aim to explore functional evolutionary relationship among proteins in the PAS domain superfamily in view of the sequence-structure-dynamics-function relationship. We collected protein sequences and crystal structure data from RCSB Protein Data Bank of the PAS domain superfamily belonging to three biological functions (nucleotide binding, photoreceptor activity, and transferase activity). Protein sequences were aligned and then used to select sequence-conserved residues and build phylogenetic tree. Three-dimensional structure alignment was also applied to obtain structure-conserved residues. The protein dynamics were analyzed using elastic network model (ENM) and validated by molecular dynamics (MD) simulation. The result showed that the proteins with same function could be grouped by sequence similarity, and proteins in different functional groups displayed statistically significant difference in their vibrational patterns. Interestingly, in all three functional groups, conserved amino acid residues identified by sequence and structure conservation analysis generally have a lower fluctuation than other residues. In addition, the fluctuation of conserved residues in each biological function group was strongly correlated with the corresponding biological function. This research suggested a direct connection in which the protein sequences were related to various functions through structural dynamics. This is a new attempt to delineate functional evolution of proteins using the integrated information of sequence, structure, and dynamics. © 2017 The Protein Society.

  9. A basic analysis toolkit for biological sequences

    Directory of Open Access Journals (Sweden)

    Siragusa Enrico

    2007-09-01

    Full Text Available Abstract This paper presents a software library, nicknamed BATS, for some basic sequence analysis tasks. Namely, local alignments, via approximate string matching, and global alignments, via longest common subsequence and alignments with affine and concave gap cost functions. Moreover, it also supports filtering operations to select strings from a set and establish their statistical significance, via z-score computation. None of the algorithms is new, but although they are generally regarded as fundamental for sequence analysis, they have not been implemented in a single and consistent software package, as we do here. Therefore, our main contribution is to fill this gap between algorithmic theory and practice by providing an extensible and easy to use software library that includes algorithms for the mentioned string matching and alignment problems. The library consists of C/C++ library functions as well as Perl library functions. It can be interfaced with Bioperl and can also be used as a stand-alone system with a GUI. The software is available at http://www.math.unipa.it/~raffaele/BATS/ under the GNU GPL.

  10. REFGEN and TREENAMER: Automated Sequence Data Handling for Phylogenetic Analysis in the Genomic Era

    Directory of Open Access Journals (Sweden)

    Guy Leonard

    2009-01-01

    Full Text Available The phylogenetic analysis of nucleotide sequences and increasingly that of amino acid sequences is used to address a number of biological questions. Access to extensive datasets, including numerous genome projects, means that standard phylogenetic analyses can include many hundreds of sequences. Unfortunately, most phylogenetic analysis programs do not tolerate the sequence naming conventions of genome databases. Managing large numbers of sequences and standardizing sequence labels for use in phylogenetic analysis programs can be a time consuming and laborious task. Here we report the availability of an online resource for the management of gene sequences recovered from public access genome databases such as GenBank. These web utilities include the facility for renaming every sequence in a FASTA alignment fi le, with each sequence label derived from a user-defined combination of the species name and/or database accession number. This facility enables the user to keep track of the branching order of the sequences/taxa during multiple tree calculations and re-optimisations. Post phylogenetic analysis, these webpages can then be used to rename every label in the subsequent tree fi les (with a user-defined combination of species name and/or database accession number. Together these programs drastically reduce the time required for managing sequence alignments and labelling phylogenetic figures. Additional features of our platform include the automatic removal of identical accession numbers (recorded in the report file and generation of species and accession number lists for use in supplementary materials or figure legends.

  11. Sequence analysis of PROTEOLYSIS 6 from Solanum lycopersicum

    Science.gov (United States)

    Roslan, Nur Farhana; Chew, Bee Lyn; Goh, Hoe-Han; Isa, Nurulhikma Md

    2018-04-01

    The N-end rule pathway is a protein degradation pathway that relates the protein half-life with the identity of its N-terminal residues. A destabilizing N-terminal residues is created by enzymatic reaction or chemical modifications. This destabilized substrate will be recognized by PROTEOLYSIS 6 (PRT6) protein, which encodes an E3 ligase enzyme and resulted in substrate degradation by proteasome. PRT6 has been studied in Arabidopsis thaliana and barley but not yet been studied in fleshy fruit plants. Hence, this study was carried out in tomato that is known as the model for fleshy fruit plants. BLASTX analysis identified that Solyc09g010830 which encodes for a PRT6 gene in tomato based on its sequence similarity with PRT6 in A. thaliana. In silico gene expression analysis shows that PRT6 gene was highly expressed in tomato fruits breaker +5. Co-expression analysis shows that PRT6 may not only involved in abiotic stresses but also in biotic stresses. The objective is to analyze the sequence and characterize PRT6 gene in tomato.

  12. Identification of similar regions of protein structures using integrated sequence and structure analysis tools

    Directory of Open Access Journals (Sweden)

    Heiland Randy

    2006-03-01

    Full Text Available Abstract Background Understanding protein function from its structure is a challenging problem. Sequence based approaches for finding homology have broad use for annotation of both structure and function. 3D structural information of protein domains and their interactions provide a complementary view to structure function relationships to sequence information. We have developed a web site http://www.sblest.org/ and an API of web services that enables users to submit protein structures and identify statistically significant neighbors and the underlying structural environments that make that match using a suite of sequence and structure analysis tools. To do this, we have integrated S-BLEST, PSI-BLAST and HMMer based superfamily predictions to give a unique integrated view to prediction of SCOP superfamilies, EC number, and GO term, as well as identification of the protein structural environments that are associated with that prediction. Additionally, we have extended UCSF Chimera and PyMOL to support our web services, so that users can characterize their own proteins of interest. Results Users are able to submit their own queries or use a structure already in the PDB. Currently the databases that a user can query include the popular structural datasets ASTRAL 40 v1.69, ASTRAL 95 v1.69, CLUSTER50, CLUSTER70 and CLUSTER90 and PDBSELECT25. The results can be downloaded directly from the site and include function prediction, analysis of the most conserved environments and automated annotation of query proteins. These results reflect both the hits found with PSI-BLAST, HMMer and with S-BLEST. We have evaluated how well annotation transfer can be performed on SCOP ID's, Gene Ontology (GO ID's and EC Numbers. The method is very efficient and totally automated, generally taking around fifteen minutes for a 400 residue protein. Conclusion With structural genomics initiatives determining structures with little, if any, functional characterization

  13. A functional U-statistic method for association analysis of sequencing data.

    Science.gov (United States)

    Jadhav, Sneha; Tong, Xiaoran; Lu, Qing

    2017-11-01

    Although sequencing studies hold great promise for uncovering novel variants predisposing to human diseases, the high dimensionality of the sequencing data brings tremendous challenges to data analysis. Moreover, for many complex diseases (e.g., psychiatric disorders) multiple related phenotypes are collected. These phenotypes can be different measurements of an underlying disease, or measurements characterizing multiple related diseases for studying common genetic mechanism. Although jointly analyzing these phenotypes could potentially increase the power of identifying disease-associated genes, the different types of phenotypes pose challenges for association analysis. To address these challenges, we propose a nonparametric method, functional U-statistic method (FU), for multivariate analysis of sequencing data. It first constructs smooth functions from individuals' sequencing data, and then tests the association of these functions with multiple phenotypes by using a U-statistic. The method provides a general framework for analyzing various types of phenotypes (e.g., binary and continuous phenotypes) with unknown distributions. Fitting the genetic variants within a gene using a smoothing function also allows us to capture complexities of gene structure (e.g., linkage disequilibrium, LD), which could potentially increase the power of association analysis. Through simulations, we compared our method to the multivariate outcome score test (MOST), and found that our test attained better performance than MOST. In a real data application, we apply our method to the sequencing data from Minnesota Twin Study (MTS) and found potential associations of several nicotine receptor subunit (CHRN) genes, including CHRNB3, associated with nicotine dependence and/or alcohol dependence. © 2017 WILEY PERIODICALS, INC.

  14. Sequence symmetry analysis in pharmacovigilance and pharmacoepidemiologic studies

    DEFF Research Database (Denmark)

    Lai, Edward Chia Cheng; Pratt, Nicole; Hsieh, Cheng Yang

    2017-01-01

    Sequence symmetry analysis (SSA) is a method for detecting adverse drug events by utilizing computerized claims data. The method has been increasingly used to investigate safety concerns of medications and as a pharmacovigilance tool to identify unsuspected side effects. Validation studies have i...

  15. Tools for integrated sequence-structure analysis with UCSF Chimera

    Directory of Open Access Journals (Sweden)

    Huang Conrad C

    2006-07-01

    Full Text Available Abstract Background Comparing related structures and viewing the structures in the context of sequence alignments are important tasks in protein structure-function research. While many programs exist for individual aspects of such work, there is a need for interactive visualization tools that: (a provide a deep integration of sequence and structure, far beyond mapping where a sequence region falls in the structure and vice versa; (b facilitate changing data of one type based on the other (for example, using only sequence-conserved residues to match structures, or adjusting a sequence alignment based on spatial fit; (c can be used with a researcher's own data, including arbitrary sequence alignments and annotations, closely or distantly related sets of proteins, etc.; and (d interoperate with each other and with a full complement of molecular graphics features. We describe enhancements to UCSF Chimera to achieve these goals. Results The molecular graphics program UCSF Chimera includes a suite of tools for interactive analyses of sequences and structures. Structures automatically associate with sequences in imported alignments, allowing many kinds of crosstalk. A novel method is provided to superimpose structures in the absence of a pre-existing sequence alignment. The method uses both sequence and secondary structure, and can match even structures with very low sequence identity. Another tool constructs structure-based sequence alignments from superpositions of two or more proteins. Chimera is designed to be extensible, and mechanisms for incorporating user-specific data without Chimera code development are also provided. Conclusion The tools described here apply to many problems involving comparison and analysis of protein structures and their sequences. Chimera includes complete documentation and is intended for use by a wide range of scientists, not just those in the computational disciplines. UCSF Chimera is free for non-commercial use and is

  16. Specificity of N-terminal methionyl peptidase: analysis by site-directed mutagenesis

    International Nuclear Information System (INIS)

    Kasper, T.J.; Boissel, J.P.; Bunn, H.F.

    1987-01-01

    The start site of eukaryotic translation is normally an AUG codon. The corresponding N-terminal methionine is most often removed when the nascent chain reaches about 30 residues. Data from a survey of 1764 eukaryotic protein sequences suggest that the residue adjacent to the initiator Met determines Met cleavage. In order to investigate the mechanism of this reaction, the authors have prepared oligonucleotide-directed mutants of human β-globin from gapped heteroduplexes of a T3/T7 plasmid containing a globin cDNA clone. To date, the authors have produced mutants encoding for 15 of 19 possible amino acid replacements at position 1 in the β-globin chain. These mutants have been confirmed by dideoxy sequencing, transcribed in vitro, and translated in a rabbit reticulocyte lysate in the presence of 35 S-methionine. Labeled translation products were then isolated by cation exchange HPLC, and tryptic peptides were analyzed by RP-HPLC. Thus far, this structural analysis has shown that for β-1 Val, Ala, and Ser, the initiator Met is cleaved, whereas for β-1 Lys, Met, Glu, Trp, Asn, Tyr, and Glu, initiator Met is retained. For β-1 Leu initiator Met is cleaved with a frequency of about 50%. These results are consistent with the data obtained from the previous survey. The expression of site-directed mutants in a cell-free system can also be used to investigate other N-terminal processing events, such as acetylation and myristylation

  17. High-resolution melt PCR analysis for genotyping of Ureaplasma parvum isolates directly from clinical samples.

    Science.gov (United States)

    Payne, Matthew S; Tabone, Tania; Kemp, Matthew W; Keelan, Jeffrey A; Spiller, O Brad; Newnham, John P

    2014-02-01

    Ureaplasma sp. infection in neonates and adults underlies a variety of disease pathologies. Of the two human Ureaplasma spp., Ureaplasma parvum is clinically the most common. We have developed a high-resolution melt (HRM) PCR assay for the differentiation of the four serovars of U. parvum in a single step. Currently U. parvum strains are separated into four serovars by sequencing the promoter and coding region of the multiple-banded antigen (MBA) gene. We designed primers to conserved sequences within this region for PCR amplification and HRM analysis to generate reproducible and distinct melt profiles that distinguish clonal representatives of serovars 1, 3, 6, and 14. Furthermore, our HRM PCR assay could classify DNA extracted from 74 known (MBA-sequenced) test strains with 100% accuracy. Importantly, HRM PCR was also able to identify U. parvum serovars directly from 16 clinical swabs. HRM PCR performed with DNA consisting of mixtures of combined known serovars yielded profiles that were easily distinguished from those for single-serovar controls. These profiles mirrored clinical samples that contained mixed serovars. Unfortunately, melt curve analysis software is not yet robust enough to identify the composition of mixed serovar samples, only that more than one serovar is present. HRM PCR provides a single-step, rapid, cost-effective means to differentiate the four serovars of U. parvum that did not amplify any of the known 10 serovars of Ureaplasma urealyticum tested in parallel. Choice of reaction reagents was found to be crucial to allow sufficient sensitivity to differentiate U. parvum serovars directly from clinical swabs rather than requiring cell enrichment using microbial culture techniques.

  18. Sirius PSB: a generic system for analysis of biological sequences.

    Science.gov (United States)

    Koh, Chuan Hock; Lin, Sharene; Jedd, Gregory; Wong, Limsoon

    2009-12-01

    Computational tools are essential components of modern biological research. For example, BLAST searches can be used to identify related proteins based on sequence homology, or when a new genome is sequenced, prediction models can be used to annotate functional sites such as transcription start sites, translation initiation sites and polyadenylation sites and to predict protein localization. Here we present Sirius Prediction Systems Builder (PSB), a new computational tool for sequence analysis, classification and searching. Sirius PSB has four main operations: (1) Building a classifier, (2) Deploying a classifier, (3) Search for proteins similar to query proteins, (4) Preliminary and post-prediction analysis. Sirius PSB supports all these operations via a simple and interactive graphical user interface. Besides being a convenient tool, Sirius PSB has also introduced two novelties in sequence analysis. Firstly, genetic algorithm is used to identify interesting features in the feature space. Secondly, instead of the conventional method of searching for similar proteins via sequence similarity, we introduced searching via features' similarity. To demonstrate the capabilities of Sirius PSB, we have built two prediction models - one for the recognition of Arabidopsis polyadenylation sites and another for the subcellular localization of proteins. Both systems are competitive against current state-of-the-art models based on evaluation of public datasets. More notably, the time and effort required to build each model is greatly reduced with the assistance of Sirius PSB. Furthermore, we show that under certain conditions when BLAST is unable to find related proteins, Sirius PSB can identify functionally related proteins based on their biophysical similarities. Sirius PSB and its related supplements are available at: http://compbio.ddns.comp.nus.edu.sg/~sirius.

  19. Bayesian Correlation Analysis for Sequence Count Data.

    Directory of Open Access Journals (Sweden)

    Daniel Sánchez-Taltavull

    Full Text Available Evaluating the similarity of different measured variables is a fundamental task of statistics, and a key part of many bioinformatics algorithms. Here we propose a Bayesian scheme for estimating the correlation between different entities' measurements based on high-throughput sequencing data. These entities could be different genes or miRNAs whose expression is measured by RNA-seq, different transcription factors or histone marks whose expression is measured by ChIP-seq, or even combinations of different types of entities. Our Bayesian formulation accounts for both measured signal levels and uncertainty in those levels, due to varying sequencing depth in different experiments and to varying absolute levels of individual entities, both of which affect the precision of the measurements. In comparison with a traditional Pearson correlation analysis, we show that our Bayesian correlation analysis retains high correlations when measurement confidence is high, but suppresses correlations when measurement confidence is low-especially for entities with low signal levels. In addition, we consider the influence of priors on the Bayesian correlation estimate. Perhaps surprisingly, we show that naive, uniform priors on entities' signal levels can lead to highly biased correlation estimates, particularly when different experiments have widely varying sequencing depths. However, we propose two alternative priors that provably mitigate this problem. We also prove that, like traditional Pearson correlation, our Bayesian correlation calculation constitutes a kernel in the machine learning sense, and thus can be used as a similarity measure in any kernel-based machine learning algorithm. We demonstrate our approach on two RNA-seq datasets and one miRNA-seq dataset.

  20. Universal sequence map (USM of arbitrary discrete sequences

    Directory of Open Access Journals (Sweden)

    Almeida Jonas S

    2002-02-01

    Full Text Available Abstract Background For over a decade the idea of representing biological sequences in a continuous coordinate space has maintained its appeal but not been fully realized. The basic idea is that any sequence of symbols may define trajectories in the continuous space conserving all its statistical properties. Ideally, such a representation would allow scale independent sequence analysis – without the context of fixed memory length. A simple example would consist on being able to infer the homology between two sequences solely by comparing the coordinates of any two homologous units. Results We have successfully identified such an iterative function for bijective mappingψ of discrete sequences into objects of continuous state space that enable scale-independent sequence analysis. The technique, named Universal Sequence Mapping (USM, is applicable to sequences with an arbitrary length and arbitrary number of unique units and generates a representation where map distance estimates sequence similarity. The novel USM procedure is based on earlier work by these and other authors on the properties of Chaos Game Representation (CGR. The latter enables the representation of 4 unit type sequences (like DNA as an order free Markov Chain transition table. The properties of USM are illustrated with test data and can be verified for other data by using the accompanying web-based tool:http://bioinformatics.musc.edu/~jonas/usm/. Conclusions USM is shown to enable a statistical mechanics approach to sequence analysis. The scale independent representation frees sequence analysis from the need to assume a memory length in the investigation of syntactic rules.

  1. Network clustering coefficient approach to DNA sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gerhardt, Guenther J.L. [Universidade Federal do Rio Grande do Sul-Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos 2350/sala 2040/90035-003 Porto Alegre (Brazil); Departamento de Fisica e Quimica da Universidade de Caxias do Sul, Rua Francisco Getulio Vargas 1130, 95001-970 Caxias do Sul (Brazil); Lemke, Ney [Programa Interdisciplinar em Computacao Aplicada, Unisinos, Av. Unisinos, 950, 93022-000 Sao Leopoldo, RS (Brazil); Corso, Gilberto [Departamento de Biofisica e Farmacologia, Centro de Biociencias, Universidade Federal do Rio Grande do Norte, Campus Universitario, 59072 970 Natal, RN (Brazil)]. E-mail: corso@dfte.ufrn.br

    2006-05-15

    In this work we propose an alternative DNA sequence analysis tool based on graph theoretical concepts. The methodology investigates the path topology of an organism genome through a triplet network. In this network, triplets in DNA sequence are vertices and two vertices are connected if they occur juxtaposed on the genome. We characterize this network topology by measuring the clustering coefficient. We test our methodology against two main bias: the guanine-cytosine (GC) content and 3-bp (base pairs) periodicity of DNA sequence. We perform the test constructing random networks with variable GC content and imposed 3-bp periodicity. A test group of some organisms is constructed and we investigate the methodology in the light of the constructed random networks. We conclude that the clustering coefficient is a valuable tool since it gives information that is not trivially contained in 3-bp periodicity neither in the variable GC content.

  2. Sequence determination and analysis of the NSs genes of two tospoviruses.

    Science.gov (United States)

    Hallwass, Mariana; Leastro, Mikhail O; Lima, Mirtes F; Inoue-Nagata, Alice K; Resende, Renato O

    2012-03-01

    The tospoviruses groundnut ringspot virus (GRSV) and zucchini lethal chlorosis virus (ZLCV) cause severe losses in many crops, especially in solanaceous and cucurbit species. In this study, the non-structural NSs gene and the 5'UTRs of these two biologically distinct tospoviruses were cloned and sequenced. The NSs sequence of GRSV and ZLCV were both 1,404 nucleotides long. Pairwise comparison showed that the NSs amino acid sequence of GRSV shared 69.6% identity with that of ZLCV and 75.9% identity with that of TSWV, while the NSs sequence of ZLCV and TSWV shared 67.9% identity. Phylogenetic analysis based on NSs sequences confirmed that these viruses cluster in the American clade.

  3. Peptide Pattern Recognition for high-throughput protein sequence analysis and clustering

    DEFF Research Database (Denmark)

    Busk, Peter Kamp

    2017-01-01

    Large collections of protein sequences with divergent sequences are tedious to analyze for understanding their phylogenetic or structure-function relation. Peptide Pattern Recognition is an algorithm that was developed to facilitate this task but the previous version does only allow a limited...... number of sequences as input. I implemented Peptide Pattern Recognition as a multithread software designed to handle large numbers of sequences and perform analysis in a reasonable time frame. Benchmarking showed that the new implementation of Peptide Pattern Recognition is twenty times faster than...... the previous implementation on a small protein collection with 673 MAP kinase sequences. In addition, the new implementation could analyze a large protein collection with 48,570 Glycosyl Transferase family 20 sequences without reaching its upper limit on a desktop computer. Peptide Pattern Recognition...

  4. A genome-wide analysis of lentivector integration sites using targeted sequence capture and next generation sequencing technology.

    Science.gov (United States)

    Ustek, Duran; Sirma, Sema; Gumus, Ergun; Arikan, Muzaffer; Cakiris, Aris; Abaci, Neslihan; Mathew, Jaicy; Emrence, Zeliha; Azakli, Hulya; Cosan, Fulya; Cakar, Atilla; Parlak, Mahmut; Kursun, Olcay

    2012-10-01

    One application of next-generation sequencing (NGS) is the targeted resequencing of interested genes which has not been used in viral integration site analysis of gene therapy applications. Here, we combined targeted sequence capture array and next generation sequencing to address the whole genome profiling of viral integration sites. Human 293T and K562 cells were transduced with a HIV-1 derived vector. A custom made DNA probe sets targeted pLVTHM vector used to capture lentiviral vector/human genome junctions. The captured DNA was sequenced using GS FLX platform. Seven thousand four hundred and eighty four human genome sequences flanking the long terminal repeats (LTR) of pLVTHM fragment sequences matched with an identity of at least 98% and minimum 50 bp criteria in both cells. In total, 203 unique integration sites were identified. The integrations in both cell lines were totally distant from the CpG islands and from the transcription start sites and preferentially located in introns. A comparison between the two cell lines showed that the lentiviral-transduced DNA does not have the same preferred regions in the two different cell lines. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Novel approaches for bioinformatic analysis of salivary RNA sequencing data for development.

    Science.gov (United States)

    Kaczor-Urbanowicz, Karolina Elzbieta; Kim, Yong; Li, Feng; Galeev, Timur; Kitchen, Rob R; Gerstein, Mark; Koyano, Kikuye; Jeong, Sung-Hee; Wang, Xiaoyan; Elashoff, David; Kang, So Young; Kim, Su Mi; Kim, Kyoung; Kim, Sung; Chia, David; Xiao, Xinshu; Rozowsky, Joel; Wong, David T W

    2018-01-01

    Analysis of RNA sequencing (RNA-Seq) data in human saliva is challenging. Lack of standardization and unification of the bioinformatic procedures undermines saliva's diagnostic potential. Thus, it motivated us to perform this study. We applied principal pipelines for bioinformatic analysis of small RNA-Seq data of saliva of 98 healthy Korean volunteers including either direct or indirect mapping of the reads to the human genome using Bowtie1. Analysis of alignments to exogenous genomes by another pipeline revealed that almost all of the reads map to bacterial genomes. Thus, salivary exRNA has fundamental properties that warrant the design of unique additional steps while performing the bioinformatic analysis. Our pipelines can serve as potential guidelines for processing of RNA-Seq data of human saliva. Processing and analysis results of the experimental data generated by the exceRpt (v4.6.3) small RNA-seq pipeline (github.gersteinlab.org/exceRpt) are available from exRNA atlas (exrna-atlas.org). Alignment to exogenous genomes and their quantification results were used in this paper for the analyses of small RNAs of exogenous origin. dtww@ucla.edu. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  6. Sequence analysis of serum albumins reveals the molecular evolution of ligand recognition properties.

    Science.gov (United States)

    Fanali, Gabriella; Ascenzi, Paolo; Bernardi, Giorgio; Fasano, Mauro

    2012-01-01

    Serum albumin (SA) is a circulating protein providing a depot and carrier for many endogenous and exogenous compounds. At least seven major binding sites have been identified by structural and functional investigations mainly in human SA. SA is conserved in vertebrates, with at least 49 entries in protein sequence databases. The multiple sequence analysis of this set of entries leads to the definition of a cladistic tree for the molecular evolution of SA orthologs in vertebrates, thus showing the clustering of the considered species, with lamprey SAs (Lethenteron japonicum and Petromyzon marinus) in a separate outgroup. Sequence analysis aimed at searching conserved domains revealed that most SA sequences are made up by three repeated domains (about 600 residues), as extensively characterized for human SA. On the contrary, lamprey SAs are giant proteins (about 1400 residues) comprising seven repeated domains. The phylogenetic analysis of the SA family reveals a stringent correlation with the taxonomic classification of the species available in sequence databases. A focused inspection of the sequences of ligand binding sites in SA revealed that in all sites most residues involved in ligand binding are conserved, although the versatility towards different ligands could be peculiar of higher organisms. Moreover, the analysis of molecular links between the different sites suggests that allosteric modulation mechanisms could be restricted to higher vertebrates.

  7. OPTSDNA: Performance evaluation of an efficient distributed bioinformatics system for DNA sequence analysis.

    Science.gov (United States)

    Khan, Mohammad Ibrahim; Sheel, Chotan

    2013-01-01

    Storage of sequence data is a big concern as the amount of data generated is exponential in nature at several locations. Therefore, there is a need to develop techniques to store data using compression algorithm. Here we describe optimal storage algorithm (OPTSDNA) for storing large amount of DNA sequences of varying length. This paper provides performance analysis of optimal storage algorithm (OPTSDNA) of a distributed bioinformatics computing system for analysis of DNA sequences. OPTSDNA algorithm is used for storing various sizes of DNA sequences into database. DNA sequences of different lengths were stored by using this algorithm. These input DNA sequences are varied in size from very small to very large. Storage size is calculated by this algorithm. Response time is also calculated in this work. The efficiency and performance of the algorithm is high (in size calculation with percentage) when compared with other known with sequential approach.

  8. Multiple aspects of ATP-dependent nucleosome translocation by RSC and Mi-2 are directed by the underlying DNA sequence.

    Directory of Open Access Journals (Sweden)

    Joke J F A van Vugt

    Full Text Available BACKGROUND: Chromosome structure, DNA metabolic processes and cell type identity can all be affected by changing the positions of nucleosomes along chromosomal DNA, a reaction that is catalysed by SNF2-type ATP-driven chromatin remodelers. Recently it was suggested that in vivo, more than 50% of the nucleosome positions can be predicted simply by DNA sequence, especially within promoter regions. This seemingly contrasts with remodeler induced nucleosome mobility. The ability of remodeling enzymes to mobilise nucleosomes over short DNA distances is well documented. However, the nucleosome translocation processivity along DNA remains elusive. Furthermore, it is unknown what determines the initial direction of movement and how new nucleosome positions are adopted. METHODOLOGY/PRINCIPAL FINDINGS: We have used AFM imaging and high resolution PAGE of mononucleosomes on 600 and 2500 bp DNA molecules to analyze ATP-dependent nucleosome repositioning by native and recombinant SNF2-type enzymes. We report that the underlying DNA sequence can control the initial direction of translocation, translocation distance, as well as the new positions adopted by nucleosomes upon enzymatic mobilization. Within a strong nucleosomal positioning sequence both recombinant Drosophila Mi-2 (CHD-type and native RSC from yeast (SWI/SNF-type repositioned the nucleosome at 10 bp intervals, which are intrinsic to the positioning sequence. Furthermore, RSC-catalyzed nucleosome translocation was noticeably more efficient when beyond the influence of this sequence. Interestingly, under limiting ATP conditions RSC preferred to position the nucleosome with 20 bp intervals within the positioning sequence, suggesting that native RSC preferentially translocates nucleosomes with 15 to 25 bp DNA steps. CONCLUSIONS/SIGNIFICANCE: Nucleosome repositioning thus appears to be influenced by both remodeler intrinsic and DNA sequence specific properties that interplay to define ATPase

  9. Deep sequencing reveals double mutations in cis of MPL exon 10 in myeloproliferative neoplasms.

    Science.gov (United States)

    Pietra, Daniela; Brisci, Angela; Rumi, Elisa; Boggi, Sabrina; Elena, Chiara; Pietrelli, Alessandro; Bordoni, Roberta; Ferrari, Maurizio; Passamonti, Francesco; De Bellis, Gianluca; Cremonesi, Laura; Cazzola, Mario

    2011-04-01

    Somatic mutations of MPL exon 10, mainly involving a W515 substitution, have been described in JAK2 (V617F)-negative patients with essential thrombocythemia and primary myelofibrosis. We used direct sequencing and high-resolution melt analysis to identify mutations of MPL exon 10 in 570 patients with myeloproliferative neoplasms, and allele specific PCR and deep sequencing to further characterize a subset of mutated patients. Somatic mutations were detected in 33 of 221 patients (15%) with JAK2 (V617F)-negative essential thrombocythemia or primary myelofibrosis. Only one patient with essential thrombocythemia carried both JAK2 (V617F) and MPL (W515L). High-resolution melt analysis identified abnormal patterns in all the MPL mutated cases, while direct sequencing did not detect the mutant MPL in one fifth of them. In 3 cases carrying double MPL mutations, deep sequencing analysis showed identical load and location in cis of the paired lesions, indicating their simultaneous occurrence on the same chromosome.

  10. The Use of Next Generation Sequencing and Junction Sequence Analysis Bioinformatics to Achieve Molecular Characterization of Crops Improved Through Modern Biotechnology

    Directory of Open Access Journals (Sweden)

    David Kovalic

    2012-11-01

    Full Text Available The assessment of genetically modified (GM crops for regulatory approval currently requires a detailed molecular characterization of the DNA sequence and integrity of the transgene locus. In addition, molecular characterization is a critical component of event selection and advancement during product development. Typically, molecular characterization has relied on Southern blot analysis to establish locus and copy number along with targeted sequencing of polymerase chain reaction products spanning any inserted DNA to complete the characterization process. Here we describe the use of next generation (NexGen sequencing and junction sequence analysis bioinformatics in a new method for achieving full molecular characterization of a GM event without the need for Southern blot analysis. In this study, we examine a typical GM soybean [ (L. Merr.] line and demonstrate that this new method provides molecular characterization equivalent to the current Southern blot-based method. We also examine an event containing in vivo DNA rearrangement of multiple transfer DNA inserts to demonstrate that the new method is effective at identifying complex cases. Next generation sequencing and bioinformatics offers certain advantages over current approaches, most notably the simplicity, efficiency, and consistency of the method, and provides a viable alternative for efficiently and robustly achieving molecular characterization of GM crops.

  11. IdentiCS – Identification of coding sequence and in silico reconstruction of the metabolic network directly from unannotated low-coverage bacterial genome sequence

    Directory of Open Access Journals (Sweden)

    Zeng An-Ping

    2004-08-01

    Full Text Available Abstract Background A necessary step for a genome level analysis of the cellular metabolism is the in silico reconstruction of the metabolic network from genome sequences. The available methods are mainly based on the annotation of genome sequences including two successive steps, the prediction of coding sequences (CDS and their function assignment. The annotation process takes time. The available methods often encounter difficulties when dealing with unfinished error-containing genomic sequence. Results In this work a fast method is proposed to use unannotated genome sequence for predicting CDSs and for an in silico reconstruction of metabolic networks. Instead of using predicted genes or CDSs to query public databases, entries from public DNA or protein databases are used as queries to search a local database of the unannotated genome sequence to predict CDSs. Functions are assigned to the predicted CDSs simultaneously. The well-annotated genome of Salmonella typhimurium LT2 is used as an example to demonstrate the applicability of the method. 97.7% of the CDSs in the original annotation are correctly identified. The use of SWISS-PROT-TrEMBL databases resulted in an identification of 98.9% of CDSs that have EC-numbers in the published annotation. Furthermore, two versions of sequences of the bacterium Klebsiella pneumoniae with different genome coverage (3.9 and 7.9 fold, respectively are examined. The results suggest that a 3.9-fold coverage of the bacterial genome could be sufficiently used for the in silico reconstruction of the metabolic network. Compared to other gene finding methods such as CRITICA our method is more suitable for exploiting sequences of low genome coverage. Based on the new method, a program called IdentiCS (Identification of Coding Sequences from Unfinished Genome Sequences is delivered that combines the identification of CDSs with the reconstruction, comparison and visualization of metabolic networks (free to download

  12. DNA-directed alkylating ligands as potential antitumor agents: sequence specificity of alkylation by intercalating aniline mustards.

    Science.gov (United States)

    Prakash, A S; Denny, W A; Gourdie, T A; Valu, K K; Woodgate, P D; Wakelin, L P

    1990-10-23

    The sequence preferences for alkylation of a series of novel parasubstituted aniline mustards linked to the DNA-intercalating chromophore 9-aminoacridine by an alkyl chain of variable length were studied by using procedures analogous to Maxam-Gilbert reactions. The compounds alkylate DNA at both guanine and adenine sites. For mustards linked to the acridine by a short alkyl chain through a para O- or S-link group, 5'-GT sequences are the most preferred sites at which N7-guanine alkylation occurs. For analogues with longer chain lengths, the preference of 5'-GT sequences diminishes in favor of N7-adenine alkylation at the complementary 5'-AC sequence. Magnesium ions are shown to selectively inhibit alkylation at the N7 of adenine (in the major groove) by these compounds but not the alkylation at the N3 of adenine (in the minor groove) by the antitumor antibiotic CC-1065. Effects of chromophore variation were also studied by using aniline mustards linked to quinazoline and sterically hindered tert-butyl-9-aminoacridine chromophores. The results demonstrate that in this series of DNA-directed mustards the noncovalent interactions of the carrier chromophores with DNA significantly modify the sequence selectivity of alkylation by the mustard. Relationships between the DNA alkylation patterns of these compounds and their biological activities are discussed.

  13. Food Fish Identification from DNA Extraction through Sequence Analysis

    Science.gov (United States)

    Hallen-Adams, Heather E.

    2015-01-01

    This experiment exposed 3rd and 4th y undergraduates and graduate students taking a course in advanced food analysis to DNA extraction, polymerase chain reaction (PCR), and DNA sequence analysis. Students provided their own fish sample, purchased from local grocery stores, and the class as a whole extracted DNA, which was then subjected to PCR,…

  14. Sequence assembly

    DEFF Research Database (Denmark)

    Scheibye-Alsing, Karsten; Hoffmann, S.; Frankel, Annett Maria

    2009-01-01

    Despite the rapidly increasing number of sequenced and re-sequenced genomes, many issues regarding the computational assembly of large-scale sequencing data have remain unresolved. Computational assembly is crucial in large genome projects as well for the evolving high-throughput technologies and...... in genomic DNA, highly expressed genes and alternative transcripts in EST sequences. We summarize existing comparisons of different assemblers and provide a detailed descriptions and directions for download of assembly programs at: http://genome.ku.dk/resources/assembly/methods.html....

  15. Analysis of Multiple Genomic Sequence Alignments: A Web Resource, Online Tools, and Lessons Learned From Analysis of Mammalian SCL Loci

    Science.gov (United States)

    Chapman, Michael A.; Donaldson, Ian J.; Gilbert, James; Grafham, Darren; Rogers, Jane; Green, Anthony R.; Göttgens, Berthold

    2004-01-01

    Comparative analysis of genomic sequences is becoming a standard technique for studying gene regulation. However, only a limited number of tools are currently available for the analysis of multiple genomic sequences. An extensive data set for the testing and training of such tools is provided by the SCL gene locus. Here we have expanded the data set to eight vertebrate species by sequencing the dog SCL locus and by annotating the dog and rat SCL loci. To provide a resource for the bioinformatics community, all SCL sequences and functional annotations, comprising a collation of the extensive experimental evidence pertaining to SCL regulation, have been made available via a Web server. A Web interface to new tools specifically designed for the display and analysis of multiple sequence alignments was also implemented. The unique SCL data set and new sequence comparison tools allowed us to perform a rigorous examination of the true benefits of multiple sequence comparisons. We demonstrate that multiple sequence alignments are, overall, superior to pairwise alignments for identification of mammalian regulatory regions. In the search for individual transcription factor binding sites, multiple alignments markedly increase the signal-to-noise ratio compared to pairwise alignments. PMID:14718377

  16. Using SQL Databases for Sequence Similarity Searching and Analysis.

    Science.gov (United States)

    Pearson, William R; Mackey, Aaron J

    2017-09-13

    Relational databases can integrate diverse types of information and manage large sets of similarity search results, greatly simplifying genome-scale analyses. By focusing on taxonomic subsets of sequences, relational databases can reduce the size and redundancy of sequence libraries and improve the statistical significance of homologs. In addition, by loading similarity search results into a relational database, it becomes possible to explore and summarize the relationships between all of the proteins in an organism and those in other biological kingdoms. This unit describes how to use relational databases to improve the efficiency of sequence similarity searching and demonstrates various large-scale genomic analyses of homology-related data. It also describes the installation and use of a simple protein sequence database, seqdb_demo, which is used as a basis for the other protocols. The unit also introduces search_demo, a database that stores sequence similarity search results. The search_demo database is then used to explore the evolutionary relationships between E. coli proteins and proteins in other organisms in a large-scale comparative genomic analysis. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  17. Molecular cloning, expression analysis and sequence prediction of ...

    African Journals Online (AJOL)

    CCAAT/enhancer-binding protein beta as an essential transcriptional factor, regulates the differentiation of adipocytes and the deposition of fat. Herein, we cloned the whole open reading frame (ORF) of bovine C/EBPβ gene and analyzed its putative protein structures via DNA cloning and sequence analysis. Then, the ...

  18. Phylogenomics of Phrynosomatid Lizards: Conflicting Signals from Sequence Capture versus Restriction Site Associated DNA Sequencing

    Science.gov (United States)

    Leaché, Adam D.; Chavez, Andreas S.; Jones, Leonard N.; Grummer, Jared A.; Gottscho, Andrew D.; Linkem, Charles W.

    2015-01-01

    Sequence capture and restriction site associated DNA sequencing (RADseq) are popular methods for obtaining large numbers of loci for phylogenetic analysis. These methods are typically used to collect data at different evolutionary timescales; sequence capture is primarily used for obtaining conserved loci, whereas RADseq is designed for discovering single nucleotide polymorphisms (SNPs) suitable for population genetic or phylogeographic analyses. Phylogenetic questions that span both “recent” and “deep” timescales could benefit from either type of data, but studies that directly compare the two approaches are lacking. We compared phylogenies estimated from sequence capture and double digest RADseq (ddRADseq) data for North American phrynosomatid lizards, a species-rich and diverse group containing nine genera that began diversifying approximately 55 Ma. Sequence capture resulted in 584 loci that provided a consistent and strong phylogeny using concatenation and species tree inference. However, the phylogeny estimated from the ddRADseq data was sensitive to the bioinformatics steps used for determining homology, detecting paralogs, and filtering missing data. The topological conflicts among the SNP trees were not restricted to any particular timescale, but instead were associated with short internal branches. Species tree analysis of the largest SNP assembly, which also included the most missing data, supported a topology that matched the sequence capture tree. This preferred phylogeny provides strong support for the paraphyly of the earless lizard genera Holbrookia and Cophosaurus, suggesting that the earless morphology either evolved twice or evolved once and was subsequently lost in Callisaurus. PMID:25663487

  19. Time fluctuation analysis of forest fire sequences

    Science.gov (United States)

    Vega Orozco, Carmen D.; Kanevski, Mikhaïl; Tonini, Marj; Golay, Jean; Pereira, Mário J. G.

    2013-04-01

    Forest fires are complex events involving both space and time fluctuations. Understanding of their dynamics and pattern distribution is of great importance in order to improve the resource allocation and support fire management actions at local and global levels. This study aims at characterizing the temporal fluctuations of forest fire sequences observed in Portugal, which is the country that holds the largest wildfire land dataset in Europe. This research applies several exploratory data analysis measures to 302,000 forest fires occurred from 1980 to 2007. The applied clustering measures are: Morisita clustering index, fractal and multifractal dimensions (box-counting), Ripley's K-function, Allan Factor, and variography. These algorithms enable a global time structural analysis describing the degree of clustering of a point pattern and defining whether the observed events occur randomly, in clusters or in a regular pattern. The considered methods are of general importance and can be used for other spatio-temporal events (i.e. crime, epidemiology, biodiversity, geomarketing, etc.). An important contribution of this research deals with the analysis and estimation of local measures of clustering that helps understanding their temporal structure. Each measure is described and executed for the raw data (forest fires geo-database) and results are compared to reference patterns generated under the null hypothesis of randomness (Poisson processes) embedded in the same time period of the raw data. This comparison enables estimating the degree of the deviation of the real data from a Poisson process. Generalizations to functional measures of these clustering methods, taking into account the phenomena, were also applied and adapted to detect time dependences in a measured variable (i.e. burned area). The time clustering of the raw data is compared several times with the Poisson processes at different thresholds of the measured function. Then, the clustering measure value

  20. Estimation of a Killer Whale (Orcinus orca Population's Diet Using Sequencing Analysis of DNA from Feces.

    Directory of Open Access Journals (Sweden)

    Michael J Ford

    Full Text Available Estimating diet composition is important for understanding interactions between predators and prey and thus illuminating ecosystem function. The diet of many species, however, is difficult to observe directly. Genetic analysis of fecal material collected in the field is therefore a useful tool for gaining insight into wild animal diets. In this study, we used high-throughput DNA sequencing to quantitatively estimate the diet composition of an endangered population of wild killer whales (Orcinus orca in their summer range in the Salish Sea. We combined 175 fecal samples collected between May and September from five years between 2006 and 2011 into 13 sample groups. Two known DNA composition control groups were also created. Each group was sequenced at a ~330bp segment of the 16s gene in the mitochondrial genome using an Illumina MiSeq sequencing system. After several quality controls steps, 4,987,107 individual sequences were aligned to a custom sequence database containing 19 potential fish prey species and the most likely species of each fecal-derived sequence was determined. Based on these alignments, salmonids made up >98.6% of the total sequences and thus of the inferred diet. Of the six salmonid species, Chinook salmon made up 79.5% of the sequences, followed by coho salmon (15%. Over all years, a clear pattern emerged with Chinook salmon dominating the estimated diet early in the summer, and coho salmon contributing an average of >40% of the diet in late summer. Sockeye salmon appeared to be occasionally important, at >18% in some sample groups. Non-salmonids were rarely observed. Our results are consistent with earlier results based on surface prey remains, and confirm the importance of Chinook salmon in this population's summer diet.

  1. Computational analysis of sequence selection mechanisms.

    Science.gov (United States)

    Meyerguz, Leonid; Grasso, Catherine; Kleinberg, Jon; Elber, Ron

    2004-04-01

    Mechanisms leading to gene variations are responsible for the diversity of species and are important components of the theory of evolution. One constraint on gene evolution is that of protein foldability; the three-dimensional shapes of proteins must be thermodynamically stable. We explore the impact of this constraint and calculate properties of foldable sequences using 3660 structures from the Protein Data Bank. We seek a selection function that receives sequences as input, and outputs survival probability based on sequence fitness to structure. We compute the number of sequences that match a particular protein structure with energy lower than the native sequence, the density of the number of sequences, the entropy, and the "selection" temperature. The mechanism of structure selection for sequences longer than 200 amino acids is approximately universal. For shorter sequences, it is not. We speculate on concrete evolutionary mechanisms that show this behavior.

  2. Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR.

    Science.gov (United States)

    Bulgari, Daniela; Casati, Paola; Brusetti, Lorenzo; Quaglino, Fabio; Brasca, Milena; Daffonchio, Daniele; Bianco, Piero Attilio

    2009-08-01

    Diversity of bacterial endophytes associated with grapevine leaf tissues was analyzed by cultivation and cultivation-independent methods. In order to identify bacterial endophytes directly from metagenome, a protocol for bacteria enrichment and DNA extraction was optimized. Sequence analysis of 16S rRNA gene libraries underscored five diverse Operational Taxonomic Units (OTUs), showing best sequence matches with gamma-Proteobacteria, family Enterobacteriaceae, with a dominance of the genus Pantoea. Bacteria isolation through cultivation revealed the presence of six OTUs, showing best sequence matches with Actinobacteria, genus Curtobacterium, and with Firmicutes genera Bacillus and Enterococcus. Length Heterogeneity-PCR (LH-PCR) electrophoretic peaks from single bacterial clones were used to setup a database representing the bacterial endophytes identified in association with grapevine tissues. Analysis of healthy and phytoplasma-infected grapevine plants showed that LH-PCR could be a useful complementary tool for examining the diversity of bacterial endophytes especially for diversity survey on a large number of samples.

  3. MetaSeq: privacy preserving meta-analysis of sequencing-based association studies.

    Science.gov (United States)

    Singh, Angad Pal; Zafer, Samreen; Pe'er, Itsik

    2013-01-01

    Human genetics recently transitioned from GWAS to studies based on NGS data. For GWAS, small effects dictated large sample sizes, typically made possible through meta-analysis by exchanging summary statistics across consortia. NGS studies groupwise-test for association of multiple potentially-causal alleles along each gene. They are subject to similar power constraints and therefore likely to resort to meta-analysis as well. The problem arises when considering privacy of the genetic information during the data-exchange process. Many scoring schemes for NGS association rely on the frequency of each variant thus requiring the exchange of identity of the sequenced variant. As such variants are often rare, potentially revealing the identity of their carriers and jeopardizing privacy. We have thus developed MetaSeq, a protocol for meta-analysis of genome-wide sequencing data by multiple collaborating parties, scoring association for rare variants pooled per gene across all parties. We tackle the challenge of tallying frequency counts of rare, sequenced alleles, for metaanalysis of sequencing data without disclosing the allele identity and counts, thereby protecting sample identity. This apparent paradoxical exchange of information is achieved through cryptographic means. The key idea is that parties encrypt identity of genes and variants. When they transfer information about frequency counts in cases and controls, the exchanged data does not convey the identity of a mutation and therefore does not expose carrier identity. The exchange relies on a 3rd party, trusted to follow the protocol although not trusted to learn about the raw data. We show applicability of this method to publicly available exome-sequencing data from multiple studies, simulating phenotypic information for powerful meta-analysis. The MetaSeq software is publicly available as open source.

  4. XplorSeq: a software environment for integrated management and phylogenetic analysis of metagenomic sequence data.

    Science.gov (United States)

    Frank, Daniel N

    2008-10-07

    Advances in automated DNA sequencing technology have accelerated the generation of metagenomic DNA sequences, especially environmental ribosomal RNA gene (rDNA) sequences. As the scale of rDNA-based studies of microbial ecology has expanded, need has arisen for software that is capable of managing, annotating, and analyzing the plethora of diverse data accumulated in these projects. XplorSeq is a software package that facilitates the compilation, management and phylogenetic analysis of DNA sequences. XplorSeq was developed for, but is not limited to, high-throughput analysis of environmental rRNA gene sequences. XplorSeq integrates and extends several commonly used UNIX-based analysis tools by use of a Macintosh OS-X-based graphical user interface (GUI). Through this GUI, users may perform basic sequence import and assembly steps (base-calling, vector/primer trimming, contig assembly), perform BLAST (Basic Local Alignment and Search Tool; 123) searches of NCBI and local databases, create multiple sequence alignments, build phylogenetic trees, assemble Operational Taxonomic Units, estimate biodiversity indices, and summarize data in a variety of formats. Furthermore, sequences may be annotated with user-specified meta-data, which then can be used to sort data and organize analyses and reports. A document-based architecture permits parallel analysis of sequence data from multiple clones or amplicons, with sequences and other data stored in a single file. XplorSeq should benefit researchers who are engaged in analyses of environmental sequence data, especially those with little experience using bioinformatics software. Although XplorSeq was developed for management of rDNA sequence data, it can be applied to most any sequencing project. The application is available free of charge for non-commercial use at http://vent.colorado.edu/phyloware.

  5. The Matrix Method of Representation, Analysis and Classification of Long Genetic Sequences

    Directory of Open Access Journals (Sweden)

    Ivan V. Stepanyan

    2017-01-01

    Full Text Available The article is devoted to a matrix method of comparative analysis of long nucleotide sequences by means of presenting each sequence in the form of three digital binary sequences. This method uses a set of symmetries of biochemical attributes of nucleotides. It also uses the possibility of presentation of every whole set of N-mers as one of the members of a Kronecker family of genetic matrices. With this method, a long nucleotide sequence can be visually represented as an individual fractal-like mosaic or another regular mosaic of binary type. In contrast to natural nucleotide sequences, artificial random sequences give non-regular patterns. Examples of binary mosaics of long nucleotide sequences are shown, including cases of human chromosomes and penicillins. The obtained results are then discussed.

  6. CISAPS: Complex Informational Spectrum for the Analysis of Protein Sequences

    Directory of Open Access Journals (Sweden)

    Charalambos Chrysostomou

    2015-01-01

    Full Text Available Complex informational spectrum analysis for protein sequences (CISAPS and its web-based server are developed and presented. As recent studies show, only the use of the absolute spectrum in the analysis of protein sequences using the informational spectrum analysis is proven to be insufficient. Therefore, CISAPS is developed to consider and provide results in three forms including absolute, real, and imaginary spectrum. Biologically related features to the analysis of influenza A subtypes as presented as a case study in this study can also appear individually either in the real or imaginary spectrum. As the results presented, protein classes can present similarities or differences according to the features extracted from CISAPS web server. These associations are probable to be related with the protein feature that the specific amino acid index represents. In addition, various technical issues such as zero-padding and windowing that may affect the analysis are also addressed. CISAPS uses an expanded list of 611 unique amino acid indices where each one represents a different property to perform the analysis. This web-based server enables researchers with little knowledge of signal processing methods to apply and include complex informational spectrum analysis to their work.

  7. Removing the bottleneck in whole genome sequencing of Mycobacterium tuberculosis for rapid drug resistance analysis: a call to action

    Directory of Open Access Journals (Sweden)

    Ruth McNerney

    2017-03-01

    Full Text Available Whole genome sequencing (WGS can provide a comprehensive analysis of Mycobacterium tuberculosis mutations that cause resistance to anti-tuberculosis drugs. With the deployment of bench-top sequencers and rapid analytical software, WGS is poised to become a useful tool to guide treatment. However, direct sequencing from clinical specimens to provide a full drug resistance profile remains a serious challenge. This article reviews current practices for extracting M. tuberculosis DNA and possible solutions for sampling sputum. Techniques under consideration include enzymatic digestion, physical disruption, chemical degradation, detergent solubilization, solvent extraction, ligand-coated magnetic beads, silica columns, and oligonucleotide pull-down baits. Selective amplification of genomic bacterial DNA in sputum prior to WGS may provide a solution, and differential lysis to reduce the levels of contaminating human DNA is also being explored. To remove this bottleneck and accelerate access to WGS for patients with suspected drug-resistant tuberculosis, it is suggested that a coordinated and collaborative approach be taken to more rapidly optimize, compare, and validate methodologies for sequencing from patient samples.

  8. CPSS: a computational platform for the analysis of small RNA deep sequencing data.

    Science.gov (United States)

    Zhang, Yuanwei; Xu, Bo; Yang, Yifan; Ban, Rongjun; Zhang, Huan; Jiang, Xiaohua; Cooke, Howard J; Xue, Yu; Shi, Qinghua

    2012-07-15

    Next generation sequencing (NGS) techniques have been widely used to document the small ribonucleic acids (RNAs) implicated in a variety of biological, physiological and pathological processes. An integrated computational tool is needed for handling and analysing the enormous datasets from small RNA deep sequencing approach. Herein, we present a novel web server, CPSS (a computational platform for the analysis of small RNA deep sequencing data), designed to completely annotate and functionally analyse microRNAs (miRNAs) from NGS data on one platform with a single data submission. Small RNA NGS data can be submitted to this server with analysis results being returned in two parts: (i) annotation analysis, which provides the most comprehensive analysis for small RNA transcriptome, including length distribution and genome mapping of sequencing reads, small RNA quantification, prediction of novel miRNAs, identification of differentially expressed miRNAs, piwi-interacting RNAs and other non-coding small RNAs between paired samples and detection of miRNA editing and modifications and (ii) functional analysis, including prediction of miRNA targeted genes by multiple tools, enrichment of gene ontology terms, signalling pathway involvement and protein-protein interaction analysis for the predicted genes. CPSS, a ready-to-use web server that integrates most functions of currently available bioinformatics tools, provides all the information wanted by the majority of users from small RNA deep sequencing datasets. CPSS is implemented in PHP/PERL+MySQL+R and can be freely accessed at http://mcg.ustc.edu.cn/db/cpss/index.html or http://mcg.ustc.edu.cn/sdap1/cpss/index.html.

  9. An overview of the Phalaenopsis orchid genome through BAC end sequence analysis

    Directory of Open Access Journals (Sweden)

    Hsiao Yu-Yun

    2011-01-01

    Full Text Available Abstract Background Phalaenopsis orchids are popular floral crops, and development of new cultivars is economically important to floricultural industries worldwide. Analysis of orchid genes could facilitate orchid improvement. Bacterial artificial chromosome (BAC end sequences (BESs can provide the first glimpses into the sequence composition of a novel genome and can yield molecular markers for use in genetic mapping and breeding. Results We used two BAC libraries (constructed using the BamHI and HindIII restriction enzymes of Phalaenopsis equestris to generate pair-end sequences from 2,920 BAC clones (71.4% and 28.6% from the BamHI and HindIII libraries, respectively, at a success rate of 95.7%. A total of 5,535 BESs were generated, representing 4.5 Mb, or about 0.3% of the Phalaenopsis genome. The trimmed sequences ranged from 123 to 1,397 base pairs (bp in size, with an average edited read length of 821 bp. When these BESs were subjected to sequence homology searches, it was found that 641 (11.6% were predicted to represent protein-encoding regions, whereas 1,272 (23.0% contained repetitive DNA. Most of the repetitive DNA sequences were gypsy- and copia-like retrotransposons (41.9% and 12.8%, respectively, whereas only 10.8% were DNA transposons. Further, 950 potential simple sequence repeats (SSRs were discovered. Dinucleotides were the most abundant repeat motifs; AT/TA dimer repeats were the most frequent SSRs, representing 253 (26.6% of all identified SSRs. Microsynteny analysis revealed that more BESs mapped to the whole-genome sequences of poplar than to those of grape or Arabidopsis, and even fewer mapped to the rice genome. This work will facilitate analysis of the Phalaenopsis genome, and will help clarify similarities and differences in genome composition between orchids and other plant species. Conclusion Using BES analysis, we obtained an overview of the Phalaenopsis genome in terms of gene abundance, the presence of repetitive

  10. VisRseq: R-based visual framework for analysis of sequencing data.

    Science.gov (United States)

    Younesy, Hamid; Möller, Torsten; Lorincz, Matthew C; Karimi, Mohammad M; Jones, Steven J M

    2015-01-01

    Several tools have been developed to enable biologists to perform initial browsing and exploration of sequencing data. However the computational tool set for further analyses often requires significant computational expertise to use and many of the biologists with the knowledge needed to interpret these data must rely on programming experts. We present VisRseq, a framework for analysis of sequencing datasets that provides a computationally rich and accessible framework for integrative and interactive analyses without requiring programming expertise. We achieve this aim by providing R apps, which offer a semi-auto generated and unified graphical user interface for computational packages in R and repositories such as Bioconductor. To address the interactivity limitation inherent in R libraries, our framework includes several native apps that provide exploration and brushing operations as well as an integrated genome browser. The apps can be chained together to create more powerful analysis workflows. To validate the usability of VisRseq for analysis of sequencing data, we present two case studies performed by our collaborators and report their workflow and insights.

  11. Molecular characterization of long direct repeat (LDR) sequences expressing a stable mRNA encoding for a 35-amino-acid cell-killing peptide and a cis-encoded small antisense RNA in Escherichia coli.

    Science.gov (United States)

    Kawano, Mitsuoki; Oshima, Taku; Kasai, Hiroaki; Mori, Hirotada

    2002-07-01

    Genome sequence analyses of Escherichia coli K-12 revealed four copies of long repetitive elements. These sequences are designated as long direct repeat (LDR) sequences. Three of the repeats (LDR-A, -B, -C), each approximately 500 bp in length, are located as tandem repeats at 27.4 min on the genetic map. Another copy (LDR-D), 450 bp in length and nearly identical to LDR-A, -B and -C, is located at 79.7 min, a position that is directly opposite the position of LDR-A, -B and -C. In this study, we demonstrate that LDR-D encodes a 35-amino-acid peptide, LdrD, the overexpression of which causes rapid cell killing and nucleoid condensation of the host cell. Northern blot and primer extension analysis showed constitutive transcription of a stable mRNA (approximately 370 nucleotides) encoding LdrD and an unstable cis-encoded antisense RNA (approximately 60 nucleotides), which functions as a trans-acting regulator of ldrD translation. We propose that LDR encodes a toxin-antitoxin module. LDR-homologous sequences are not pre-sent on any known plasmids but are conserved in Salmonella and other enterobacterial species.

  12. Assessing Mitochondrial DNA Variation and Copy Number in Lymphocytes of ~2,000 Sardinians Using Tailored Sequencing Analysis Tools.

    Directory of Open Access Journals (Sweden)

    Jun Ding

    2015-07-01

    Full Text Available DNA sequencing identifies common and rare genetic variants for association studies, but studies typically focus on variants in nuclear DNA and ignore the mitochondrial genome. In fact, analyzing variants in mitochondrial DNA (mtDNA sequences presents special problems, which we resolve here with a general solution for the analysis of mtDNA in next-generation sequencing studies. The new program package comprises 1 an algorithm designed to identify mtDNA variants (i.e., homoplasmies and heteroplasmies, incorporating sequencing error rates at each base in a likelihood calculation and allowing allele fractions at a variant site to differ across individuals; and 2 an estimation of mtDNA copy number in a cell directly from whole-genome sequencing data. We also apply the methods to DNA sequence from lymphocytes of ~2,000 SardiNIA Project participants. As expected, mothers and offspring share all homoplasmies but a lesser proportion of heteroplasmies. Both homoplasmies and heteroplasmies show 5-fold higher transition/transversion ratios than variants in nuclear DNA. Also, heteroplasmy increases with age, though on average only ~1 heteroplasmy reaches the 4% level between ages 20 and 90. In addition, we find that mtDNA copy number averages ~110 copies/lymphocyte and is ~54% heritable, implying substantial genetic regulation of the level of mtDNA. Copy numbers also decrease modestly but significantly with age, and females on average have significantly more copies than males. The mtDNA copy numbers are significantly associated with waist circumference (p-value = 0.0031 and waist-hip ratio (p-value = 2.4×10-5, but not with body mass index, indicating an association with central fat distribution. To our knowledge, this is the largest population analysis to date of mtDNA dynamics, revealing the age-imposed increase in heteroplasmy, the relatively high heritability of copy number, and the association of copy number with metabolic traits.

  13. Expressed sequence tags as a tool for phylogenetic analysis of placental mammal evolution.

    Directory of Open Access Journals (Sweden)

    Morgan Kullberg

    Full Text Available BACKGROUND: We investigate the usefulness of expressed sequence tags, ESTs, for establishing divergences within the tree of placental mammals. This is done on the example of the established relationships among primates (human, lagomorphs (rabbit, rodents (rat and mouse, artiodactyls (cow, carnivorans (dog and proboscideans (elephant. METHODOLOGY/PRINCIPAL FINDINGS: We have produced 2000 ESTs (1.2 mega bases from a marsupial mouse and characterized the data for their use in phylogenetic analysis. The sequences were used to identify putative orthologous sequences from whole genome projects. Although most ESTs stem from single sequence reads, the frequency of potential sequencing errors was found to be lower than allelic variation. Most of the sequences represented slowly evolving housekeeping-type genes, with an average amino acid distance of 6.6% between human and mouse. Positive Darwinian selection was identified at only a few single sites. Phylogenetic analyses of the EST data yielded trees that were consistent with those established from whole genome projects. CONCLUSIONS: The general quality of EST sequences and the general absence of positive selection in these sequences make ESTs an attractive tool for phylogenetic analysis. The EST approach allows, at reasonable costs, a fast extension of data sampling from species outside the genome projects.

  14. A priori Considerations When Conducting High-Throughput Amplicon-Based Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Aditi Sengupta

    2016-03-01

    Full Text Available Amplicon-based sequencing strategies that include 16S rRNA and functional genes, alongside “meta-omics” analyses of communities of microorganisms, have allowed researchers to pose questions and find answers to “who” is present in the environment and “what” they are doing. Next-generation sequencing approaches that aid microbial ecology studies of agricultural systems are fast gaining popularity among agronomy, crop, soil, and environmental science researchers. Given the rapid development of these high-throughput sequencing techniques, researchers with no prior experience will desire information about the best practices that can be used before actually starting high-throughput amplicon-based sequence analyses. We have outlined items that need to be carefully considered in experimental design, sampling, basic bioinformatics, sequencing of mock communities and negative controls, acquisition of metadata, and in standardization of reaction conditions as per experimental requirements. Not all considerations mentioned here may pertain to a particular study. The overall goal is to inform researchers about considerations that must be taken into account when conducting high-throughput microbial DNA sequencing and sequences analysis.

  15. An Ambystoma mexicanum EST sequencing project: analysis of 17,352 expressed sequence tags from embryonic and regenerating blastema cDNA libraries

    Science.gov (United States)

    Habermann, Bianca; Bebin, Anne-Gaelle; Herklotz, Stephan; Volkmer, Michael; Eckelt, Kay; Pehlke, Kerstin; Epperlein, Hans Henning; Schackert, Hans Konrad; Wiebe, Glenis; Tanaka, Elly M

    2004-01-01

    Background The ambystomatid salamander, Ambystoma mexicanum (axolotl), is an important model organism in evolutionary and regeneration research but relatively little sequence information has so far been available. This is a major limitation for molecular studies on caudate development, regeneration and evolution. To address this lack of sequence information we have generated an expressed sequence tag (EST) database for A. mexicanum. Results Two cDNA libraries, one made from stage 18-22 embryos and the other from day-6 regenerating tail blastemas, generated 17,352 sequences. From the sequenced ESTs, 6,377 contigs were assembled that probably represent 25% of the expressed genes in this organism. Sequence comparison revealed significant homology to entries in the NCBI non-redundant database. Further examination of this gene set revealed the presence of genes involved in important cell and developmental processes, including cell proliferation, cell differentiation and cell-cell communication. On the basis of these data, we have performed phylogenetic analysis of key cell-cycle regulators. Interestingly, while cell-cycle proteins such as the cyclin B family display expected evolutionary relationships, the cyclin-dependent kinase inhibitor 1 gene family shows an unusual evolutionary behavior among the amphibians. Conclusions Our analysis reveals the importance of a comprehensive sequence set from a representative of the Caudata and illustrates that the EST sequence database is a rich source of molecular, developmental and regeneration studies. To aid in data mining, the ESTs have been organized into an easily searchable database that is freely available online. PMID:15345051

  16. Molecular characterization, sequence analysis and tissue expression of a porcine gene – MOSPD2

    Directory of Open Access Journals (Sweden)

    Yang Jie

    2017-01-01

    Full Text Available The full-length cDNA sequence of a porcine gene, MOSPD2, was amplified using the rapid amplification of cDNA ends method based on a pig expressed sequence tag sequence which was highly homologous to the coding sequence of the human MOSPD2 gene. Sequence prediction analysis revealed that the open reading frame of this gene encodes a protein of 491 amino acids that has high homology with the motile sperm domain-containing protein 2 (MOSPD2 of five species: horse (89%, human (90%, chimpanzee (89%, rhesus monkey (89% and mouse (85%; thus, it could be defined as a porcine MOSPD2 gene. This novel porcine gene was assigned GeneID: 100153601. This gene is structured in 15 exons and 14 introns as revealed by computer-assisted analysis. The phylogenetic analysis revealed that the porcine MOSPD2 gene has a closer genetic relationship with the MOSPD2 gene of horse. Tissue expression analysis indicated that the porcine MOSPD2 gene is generally and differentially expressed in the spleen, muscle, skin, kidney, lung, liver, fat and heart. Our experiment is the first to establish the primary foundation for further research on the porcine MOSPD2 gene.

  17. Improvements and impacts of GRCh38 human reference on high throughput sequencing data analysis.

    Science.gov (United States)

    Guo, Yan; Dai, Yulin; Yu, Hui; Zhao, Shilin; Samuels, David C; Shyr, Yu

    2017-03-01

    Analyses of high throughput sequencing data starts with alignment against a reference genome, which is the foundation for all re-sequencing data analyses. Each new release of the human reference genome has been augmented with improved accuracy and completeness. It is presumed that the latest release of human reference genome, GRCh38 will contribute more to high throughput sequencing data analysis by providing more accuracy. But the amount of improvement has not yet been quantified. We conducted a study to compare the genomic analysis results between the GRCh38 reference and its predecessor GRCh37. Through analyses of alignment, single nucleotide polymorphisms, small insertion/deletions, copy number and structural variants, we show that GRCh38 offers overall more accurate analysis of human sequencing data. More importantly, GRCh38 produced fewer false positive structural variants. In conclusion, GRCh38 is an improvement over GRCh37 not only from the genome assembly aspect, but also yields more reliable genomic analysis results. Copyright © 2017. Published by Elsevier Inc.

  18. Fungal communities in mycorrhizal roots of conifer seedlings in forest nurseries under different cultivation systems, assessed by morphotyping, direct sequencing and mycelial isolation.

    Science.gov (United States)

    Menkis, Audrius; Vasiliauskas, Rimvydas; Taylor, Andrew F S; Stenlid, Jan; Finlay, Roger

    2005-12-01

    Fungi colonising root tips of Pinus sylvestris and Picea abies grown under four different seedling cultivation systems were assessed by morphotyping, direct sequencing and isolation methods. Roots were morphotyped using two approaches: (1) 10% of the whole root system from 30 seedlings of each species and (2) 20 randomly selected tips per plant from 300 seedlings of each species. The first approach yielded 15 morphotypes, the second yielded 27, including 18 new morphotypes. The overall community consisted of 33 morphotypes. The level of mycorrhizal colonisation of roots determined by each approach was about 50%. The cultivation system had a marked effect on the level of mycorrhizal colonisation. In pine, the highest level of colonisation (48%) was observed in bare-root systems, while in spruce, colonisation was highest in polyethylene rolls (71%). Direct internal transcribed spacer ribosomal DNA sequencing and isolation detected a total of 93 fungal taxa, including 27 mycorrhizal. A total of 71 (76.3%) fungi were identified at least to a genus level. The overlap between the two methods was low. Only 13 (13.9%) of taxa were both sequenced and isolated, 47 (50.5%) were detected exclusively by sequencing and 33 (35.5%) exclusively by isolation. All isolated mycorrhizal fungi were also detected by direct sequencing. Characteristic mycorrhizas were Phialophora finlandia, Amphinema byssoides, Rhizopogon rubescens, Suillus luteus and Thelephora terrestris. There was a moderate similarity in mycorrhizal communities between pine and spruce and among different cultivation systems.

  19. Transcriptome sequencing of the Microarray Quality Control (MAQC RNA reference samples using next generation sequencing

    Directory of Open Access Journals (Sweden)

    Thierry-Mieg Danielle

    2009-06-01

    Full Text Available Abstract Background Transcriptome sequencing using next-generation sequencing platforms will soon be competing with DNA microarray technologies for global gene expression analysis. As a preliminary evaluation of these promising technologies, we performed deep sequencing of cDNA synthesized from the Microarray Quality Control (MAQC reference RNA samples using Roche's 454 Genome Sequencer FLX. Results We generated more that 3.6 million sequence reads of average length 250 bp for the MAQC A and B samples and introduced a data analysis pipeline for translating cDNA read counts into gene expression levels. Using BLAST, 90% of the reads mapped to the human genome and 64% of the reads mapped to the RefSeq database of well annotated genes with e-values ≤ 10-20. We measured gene expression levels in the A and B samples by counting the numbers of reads that mapped to individual RefSeq genes in multiple sequencing runs to evaluate the MAQC quality metrics for reproducibility, sensitivity, specificity, and accuracy and compared the results with DNA microarrays and Quantitative RT-PCR (QRTPCR from the MAQC studies. In addition, 88% of the reads were successfully aligned directly to the human genome using the AceView alignment programs with an average 90% sequence similarity to identify 137,899 unique exon junctions, including 22,193 new exon junctions not yet contained in the RefSeq database. Conclusion Using the MAQC metrics for evaluating the performance of gene expression platforms, the ExpressSeq results for gene expression levels showed excellent reproducibility, sensitivity, and specificity that improved systematically with increasing shotgun sequencing depth, and quantitative accuracy that was comparable to DNA microarrays and QRTPCR. In addition, a careful mapping of the reads to the genome using the AceView alignment programs shed new light on the complexity of the human transcriptome including the discovery of thousands of new splice variants.

  20. Multilocus sequence analysis of Treponema denticola strains of diverse origin

    Directory of Open Access Journals (Sweden)

    Mo Sisu

    2013-02-01

    Full Text Available Abstract Background The oral spirochete bacterium Treponema denticola is associated with both the incidence and severity of periodontal disease. Although the biological or phenotypic properties of a significant number of T. denticola isolates have been reported in the literature, their genetic diversity or phylogeny has never been systematically investigated. Here, we describe a multilocus sequence analysis (MLSA of 20 of the most highly studied reference strains and clinical isolates of T. denticola; which were originally isolated from subgingival plaque samples taken from subjects from China, Japan, the Netherlands, Canada and the USA. Results The sequences of the 16S ribosomal RNA gene, and 7 conserved protein-encoding genes (flaA, recA, pyrH, ppnK, dnaN, era and radC were successfully determined for each strain. Sequence data was analyzed using a variety of bioinformatic and phylogenetic software tools. We found no evidence of positive selection or DNA recombination within the protein-encoding genes, where levels of intraspecific sequence polymorphism varied from 18.8% (flaA to 8.9% (dnaN. Phylogenetic analysis of the concatenated protein-encoding gene sequence data (ca. 6,513 nucleotides for each strain using Bayesian and maximum likelihood approaches indicated that the T. denticola strains were monophyletic, and formed 6 well-defined clades. All analyzed T. denticola strains appeared to have a genetic origin distinct from that of ‘Treponema vincentii’ or Treponema pallidum. No specific geographical relationships could be established; but several strains isolated from different continents appear to be closely related at the genetic level. Conclusions Our analyses indicate that previous biological and biophysical investigations have predominantly focused on a subset of T. denticola strains with a relatively narrow range of genetic diversity. Our methodology and results establish a genetic framework for the discrimination and phylogenetic

  1. Capillary electrophoresis fragment analysis and clone sequencing in detection of dynamic mutations of spinocerebellar ataxia

    Directory of Open Access Journals (Sweden)

    Yuan-yuan CHEN

    2018-04-01

    Full Text Available Objective To estimate the accuracy and stability of capillary electrophoresis fragment analysis and clone sequencing in detecting dynamic mutations of spinocerebellar ataxia (SCA. Methods Capillary electrophoresis fragment analysis and clone sequencing were used in detecting trinucleotide repeated sequence of 14 SCA patients (3 cases of SCA2, 2 cases of SCA7, 7 cases of SCA8 and 2 cases of SCA17. Results Capillary electrophoresis fragment analysis of 3 SCA2 cases showed the expanded cytosine-adenine-guanine (CAG repeats were 31, 30 and 32, and the copy numbers of 3 clone sequencing for 3 colonies in each case were 37/40/40, 37/38/39 and 38/39/40 respectively. Capillary electrophoresis fragment analysis of 2 SCA7 cases showed the expanded CAG repeats were 57 and 34, and the copy numbers of repeats were 69, 74, 75 in 3 colonies of one case, and was 45 in the other case. For the 7 SCA8 cases with the expanded cytosine-thymine-adenine (CTA/cytosine-thymine-guanine (CTG repeats of 99, 111, 104, 92, 89, 104 and 75, the results of clone sequencing were 97, 116, 104, 90, 90, 102 and 76 respectively. For 2 SCA17 cases with the short/expanded CAG repeats of 37/50 and 36/45, the results of clone sequencing were 51/50/52 and 45/44 for 3 and 2 colonies. Conclusions Although the higher mobility of polymerase chain reaction (PCR products containing dynamic mutation in the capillary electrophoresis fragment analysis might cause the deviation for analysis of copy numbers, the deviation was predictable and the results were repeatable. The clone sequencing results showed obvious instability, especially for SCA2 and SCA7 genes, which might owing to their simple CAG repeats. Consequently, clone sequencing is not suited for detection of dynamic mutation, not to mention the quantitative criteria of dynamic mutation sequencing. DOI: 10.3969/j.issn.1672-6731.2018.03.008

  2. Editorial: Special Issue on Algorithms for Sequence Analysis and Storage

    Directory of Open Access Journals (Sweden)

    Veli Mäkinen

    2014-03-01

    Full Text Available This special issue of Algorithms is dedicated to approaches to biological sequence analysis that have algorithmic novelty and potential for fundamental impact in methods used for genome research.

  3. Sequence analysis of Leukemia DNA

    Science.gov (United States)

    Nacong, Nasria; Lusiyanti, Desy; Irawan, Muhammad. Isa

    2018-03-01

    Cancer is a very deadly disease, one of which is leukemia disease or better known as blood cancer. The cancer cell can be detected by taking DNA in laboratory test. This study focused on local alignment of leukemia and non leukemia data resulting from NCBI in the form of DNA sequences by using Smith-Waterman algorithm. SmithWaterman algorithm was invented by TF Smith and MS Waterman in 1981. These algorithms try to find as much as possible similarity of a pair of sequences, by giving a negative value to the unequal base pair (mismatch), and positive values on the same base pair (match). So that will obtain the maximum positive value as the end of the alignment, and the minimum value as the initial alignment. This study will use sequences of leukemia and 3 sequences of non leukemia.

  4. miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments.

    Science.gov (United States)

    Hackenberg, Michael; Sturm, Martin; Langenberger, David; Falcón-Pérez, Juan Manuel; Aransay, Ana M

    2009-07-01

    Next-generation sequencing allows now the sequencing of small RNA molecules and the estimation of their expression levels. Consequently, there will be a high demand of bioinformatics tools to cope with the several gigabytes of sequence data generated in each single deep-sequencing experiment. Given this scene, we developed miRanalyzer, a web server tool for the analysis of deep-sequencing experiments for small RNAs. The web server tool requires a simple input file containing a list of unique reads and its copy numbers (expression levels). Using these data, miRanalyzer (i) detects all known microRNA sequences annotated in miRBase, (ii) finds all perfect matches against other libraries of transcribed sequences and (iii) predicts new microRNAs. The prediction of new microRNAs is an especially important point as there are many species with very few known microRNAs. Therefore, we implemented a highly accurate machine learning algorithm for the prediction of new microRNAs that reaches AUC values of 97.9% and recall values of up to 75% on unseen data. The web tool summarizes all the described steps in a single output page, which provides a comprehensive overview of the analysis, adding links to more detailed output pages for each analysis module. miRanalyzer is available at http://web.bioinformatics.cicbiogune.es/microRNA/.

  5. Next-generation DNA sequencing of HEXA: a step in the right direction for carrier screening

    OpenAIRE

    Hoffman, Jodi D; Greger, Valerie; Strovel, Erin T; Blitzer, Miriam G; Umbarger, Mark A; Kennedy, Caleb; Bishop, Brian; Saunders, Patrick; Porreca, Gregory J; Schienda, Jaclyn; Davie, Jocelyn; Hallam, Stephanie; Towne, Charles

    2013-01-01

    Tay-Sachs disease (TSD) is the prototype for ethnic-based carrier screening, with a carrier rate of ∼1/27 in Ashkenazi Jews and French Canadians. HexA enzyme analysis is the current gold standard for TSD carrier screening (detection rate ∼98%), but has technical limitations. We compared DNA analysis by next-generation DNA sequencing (NGS) plus an assay for the 7.6 kb deletion to enzyme analysis for TSD carrier screening using 74 samples collected from participants at a TSD family conference. ...

  6. Direct olive oil analysis

    Directory of Open Access Journals (Sweden)

    Peña, F.

    2002-03-01

    Full Text Available The practical impact of “direct analysis” is undeniable as it strong contributes to enhance the so-called productive analytical features such as expeditiousness, reduction of costs and minimisation of risks for the analysts and environment. The main objective is to establish a reliable bypass to the conventional preliminary operations of the analytical process. This paper offers a systematic approach in this context and emphasises the great field of action of direct methodologies in the routine analysis of olive oil. Two main types of methodologies are considered. On the one hand, the direct determination of volatile components is systematically considered. On the other hand, simple procedures to automatically implement the preliminary operations of the oil analysis using simple devices in which the sample is directly introduced with/without a simple dilution are present and discussed.El impacto práctico del análisis directo es tan innegable como que el contribuye decisivamente a mejorar las denominadas características analíticas relacionadas con la productividad como la rapidez, la reducción de costes y la minimización de riesgos para los analistas y el ambiente. El principal objetivo es establecer un adecuado "bypass" a las operaciones convencionales preliminares del proceso analítico. Este artículo ofrece una propuesta sistemática en este contexto y resalta el gran campo de acción de las metodologías directas en los análisis de rutina del aceite de oliva. Se analizan los dos tipos principales de metodologías. Por una lado, se analiza la determinación directa de los compuestos volátiles. Por el otro, se presentan y discuten los procedimientos simples para implementar automáticamente las operaciones preliminares del análisis del aceite usando sistemas simples en los que la muestra se introduce directamente con/sin un dilución simple.

  7. Electrochemical direct immobilization of DNA sequences for label-free herpes virus detection

    Science.gov (United States)

    Tam, Phuong Dinh; Trung, Tran; Tuan, Mai Anh; Chien, Nguyen Duc

    2009-09-01

    DNA sequences/bio-macromolecules of herpes virus (5'-AT CAC CGA CCC GGA GAG GGA C-3') were directly immobilized into polypyrrole matrix by using the cyclic voltammetry method, and grafted onto arrays of interdigitated platinum microelectrodes. The morphology surface of the obtained PPy/DNA of herpes virus composite films was investigated by a FESEM Hitachi-S 4800. Fourier transform infrared spectroscopy (FTIR) was used to characterize the PPy/DNA film and to study the specific interactions that may exist between DNA biomacromolecules and PPy chains. Attempts are made to use these PPy/DNA composite films for label-free herpes virus detection revealed a response time of 60 s in solutions containing as low as 2 nM DNA concentration, and self life of six months when immerged in double distilled water and kept refrigerated.

  8. Electrochemical direct immobilization of DNA sequences for label-free herpes virus detection

    International Nuclear Information System (INIS)

    Phuong Dinh Tam; Mai Anh Tuan; Tran Trung; Nguyen Duc Chien

    2009-01-01

    DNA sequences/bio-macromolecules of herpes virus (5'-AT CAC CGA CCC GGA GAG GGA C-3') were directly immobilized into polypyrrole matrix by using the cyclic voltammetry method, and grafted onto arrays of interdigitated platinum microelectrodes. The morphology surface of the obtained PPy/DNA of herpes virus composite films was investigated by a FESEM Hitachi-S 4800. Fourier transform infrared spectroscopy (FTIR) was used to characterize the PPy/DNA film and to study the specific interactions that may exist between DNA biomacromolecules and PPy chains. Attempts are made to use these PPy/DNA composite films for label-free herpes virus detection revealed a response time of 60 s in solutions containing as low as 2 nM DNA concentration, and self life of six months when emerged in double distilled water and kept refrigerated.

  9. A novel RNA sequencing data analysis method for cell line authentication.

    Directory of Open Access Journals (Sweden)

    Erik Fasterius

    Full Text Available We have developed a novel analysis method that can interrogate the authenticity of biological samples used for generation of transcriptome profiles in public data repositories. The method uses RNA sequencing information to reveal mutations in expressed transcripts and subsequently confirms the identity of analysed cells by comparison with publicly available cell-specific mutational profiles. Cell lines constitute key model systems widely used within cancer research, but their identity needs to be confirmed in order to minimise the influence of cell contaminations and genetic drift on the analysis. Using both public and novel data, we demonstrate the use of RNA-sequencing data analysis for cell line authentication by examining the validity of COLO205, DLD1, HCT15, HCT116, HKE3, HT29 and RKO colorectal cancer cell lines. We successfully authenticate the studied cell lines and validate previous reports indicating that DLD1 and HCT15 are synonymous. We also show that the analysed HKE3 cells harbour an unexpected KRAS-G13D mutation and confirm that this cell line is a genuine KRAS dosage mutant, rather than a true isogenic derivative of HCT116 expressing only the wild type KRAS. This authentication method could be used to revisit the numerous cell line based RNA sequencing experiments available in public data repositories, analyse new experiments where whole genome sequencing is not available, as well as facilitate comparisons of data from different experiments, platforms and laboratories.

  10. Analysis of Sequence Diagram Layout in Advanced UML Modelling Tools

    Directory of Open Access Journals (Sweden)

    Ņikiforova Oksana

    2016-05-01

    Full Text Available System modelling using Unified Modelling Language (UML is the task that should be solved for software development. The more complex software becomes the higher requirements are stated to demonstrate the system to be developed, especially in its dynamic aspect, which in UML is offered by a sequence diagram. To solve this task, the main attention is devoted to the graphical presentation of the system, where diagram layout plays the central role in information perception. The UML sequence diagram due to its specific structure is selected for a deeper analysis on the elements’ layout. The authors research represents the abilities of modern UML modelling tools to offer automatic layout of the UML sequence diagram and analyse them according to criteria required for the diagram perception.

  11. An integrative variant analysis suite for whole exome next-generation sequencing data

    Directory of Open Access Journals (Sweden)

    Challis Danny

    2012-01-01

    Full Text Available Abstract Background Whole exome capture sequencing allows researchers to cost-effectively sequence the coding regions of the genome. Although the exome capture sequencing methods have become routine and well established, there is currently a lack of tools specialized for variant calling in this type of data. Results Using statistical models trained on validated whole-exome capture sequencing data, the Atlas2 Suite is an integrative variant analysis pipeline optimized for variant discovery on all three of the widely used next generation sequencing platforms (SOLiD, Illumina, and Roche 454. The suite employs logistic regression models in conjunction with user-adjustable cutoffs to accurately separate true SNPs and INDELs from sequencing and mapping errors with high sensitivity (96.7%. Conclusion We have implemented the Atlas2 Suite and applied it to 92 whole exome samples from the 1000 Genomes Project. The Atlas2 Suite is available for download at http://sourceforge.net/projects/atlas2/. In addition to a command line version, the suite has been integrated into the Genboree Workbench, allowing biomedical scientists with minimal informatics expertise to remotely call, view, and further analyze variants through a simple web interface. The existing genomic databases displayed via the Genboree browser also streamline the process from variant discovery to functional genomics analysis, resulting in an off-the-shelf toolkit for the broader community.

  12. Molecular characterization of Giardia psittaci by multilocus sequence analysis.

    Science.gov (United States)

    Abe, Niichiro; Makino, Ikuko; Kojima, Atsushi

    2012-12-01

    Multilocus sequence analyses targeting small subunit ribosomal DNA (SSU rDNA), elongation factor 1 alpha (ef1α), glutamate dehydrogenase (gdh), and beta giardin (β-giardin) were performed on Giardia psittaci isolates from three Budgerigars (Melopsittacus undulates) and four Barred parakeets (Bolborhynchus lineola) kept in individual households or imported from overseas. Nucleotide differences and phylogenetic analyses at four loci indicate the distinction of G. psittaci from the other known Giardia species: Giardia muris, Giardia microti, Giardia ardeae, and Giardia duodenalis assemblages. Furthermore, G. psittaci was related more closely to G. duodenalis than to the other known Giardia species, except for G. microti. Conflicting signals regarded as "double peaks" were found at the same nucleotide positions of the ef1α in all isolates. However, the sequences of the other three loci, including gdh and β-giardin, which are known to be highly variable, from all isolates were also mutually identical at every locus. They showed no double peaks. These results suggest that double peaks found in the ef1α sequences are caused not by mixed infection with genetically different G. psittaci isolates but by allelic sequence heterogeneity (ASH), which is observed in diplomonad lineages including G. duodenalis. No sequence difference was found in any G. psittaci isolates at the gdh and β-giardin, suggesting that G. psittaci is indeed not more diverse genetically than other Giardia species. This report is the first to provide evidence related to the genetic characteristics of G. psittaci obtained using multilocus sequence analysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Genome cluster database. A sequence family analysis platform for Arabidopsis and rice.

    Science.gov (United States)

    Horan, Kevin; Lauricha, Josh; Bailey-Serres, Julia; Raikhel, Natasha; Girke, Thomas

    2005-05-01

    The genome-wide protein sequences from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) spp. japonica were clustered into families using sequence similarity and domain-based clustering. The two fundamentally different methods resulted in separate cluster sets with complementary properties to compensate the limitations for accurate family analysis. Functional names for the identified families were assigned with an efficient computational approach that uses the description of the most common molecular function gene ontology node within each cluster. Subsequently, multiple alignments and phylogenetic trees were calculated for the assembled families. All clustering results and their underlying sequences were organized in the Web-accessible Genome Cluster Database (http://bioinfo.ucr.edu/projects/GCD) with rich interactive and user-friendly sequence family mining tools to facilitate the analysis of any given family of interest for the plant science community. An automated clustering pipeline ensures current information for future updates in the annotations of the two genomes and clustering improvements. The analysis allowed the first systematic identification of family and singlet proteins present in both organisms as well as those restricted to one of them. In addition, the established Web resources for mining these data provide a road map for future studies of the composition and structure of protein families between the two species.

  14. Genomic Sequence Variation Markup Language (GSVML).

    Science.gov (United States)

    Nakaya, Jun; Kimura, Michio; Hiroi, Kaei; Ido, Keisuke; Yang, Woosung; Tanaka, Hiroshi

    2010-02-01

    With the aim of making good use of internationally accumulated genomic sequence variation data, which is increasing rapidly due to the explosive amount of genomic research at present, the development of an interoperable data exchange format and its international standardization are necessary. Genomic Sequence Variation Markup Language (GSVML) will focus on genomic sequence variation data and human health applications, such as gene based medicine or pharmacogenomics. We developed GSVML through eight steps, based on case analysis and domain investigations. By focusing on the design scope to human health applications and genomic sequence variation, we attempted to eliminate ambiguity and to ensure practicability. We intended to satisfy the requirements derived from the use case analysis of human-based clinical genomic applications. Based on database investigations, we attempted to minimize the redundancy of the data format, while maximizing the data covering range. We also attempted to ensure communication and interface ability with other Markup Languages, for exchange of omics data among various omics researchers or facilities. The interface ability with developing clinical standards, such as the Health Level Seven Genotype Information model, was analyzed. We developed the human health-oriented GSVML comprising variation data, direct annotation, and indirect annotation categories; the variation data category is required, while the direct and indirect annotation categories are optional. The annotation categories contain omics and clinical information, and have internal relationships. For designing, we examined 6 cases for three criteria as human health application and 15 data elements for three criteria as data formats for genomic sequence variation data exchange. The data format of five international SNP databases and six Markup Languages and the interface ability to the Health Level Seven Genotype Model in terms of 317 items were investigated. GSVML was developed as

  15. Analysis and prediction of stacking sequences in intercalated lamellar vanadium phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, Romain [Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS - Ecole Nationale Superieure de Chimie de Rennes (France); Centre Nationale de la Recherche Scientifique (CNRS), Institut des Materiaux Jean Rouxel (IMN), Universite de Nantes (France); Fourre, Yoann; Furet, Eric; Gautier, Regis; Le Fur, Eric [Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS - Ecole Nationale Superieure de Chimie de Rennes (France)

    2015-04-15

    An approach is presented that enables the analysis and prediction of stacking sequences in intercalated lamellar vanadium phosphates. A comparison of previously reported vanadium phosphates reveals two modes of intercalation: (i) 3d transition metal ions intercalated between VOPO{sub 4} layers and (ii) alkali/alkaline earth metal ions between VOPO{sub 4}.H{sub 2}O layers. Both intercalations were investigated using DFT calculations in order to understand the relative shifts of the vanadium phosphate layers. These calculations in addition to an analysis of the stacking sequences in previously reported materials enable the prediction of the crystal structures of M{sub x}(VOPO{sub 4}).yH{sub 2}O (M = Cs{sup +}, Cd{sup 2+} and Sn{sup 2+}). Experimental realization and structural determination of Cd(VOPO{sub 4}){sub 2}.4H{sub 2}O by single-crystal X-ray diffraction confirmed the predicted stacking sequences. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Genomic sequence around butterfly wing development genes: annotation and comparative analysis.

    Directory of Open Access Journals (Sweden)

    Inês C Conceição

    Full Text Available BACKGROUND: Analysis of genomic sequence allows characterization of genome content and organization, and access beyond gene-coding regions for identification of functional elements. BAC libraries, where relatively large genomic regions are made readily available, are especially useful for species without a fully sequenced genome and can increase genomic coverage of phylogenetic and biological diversity. For example, no butterfly genome is yet available despite the unique genetic and biological properties of this group, such as diversified wing color patterns. The evolution and development of these patterns is being studied in a few target species, including Bicyclus anynana, where a whole-genome BAC library allows targeted access to large genomic regions. METHODOLOGY/PRINCIPAL FINDINGS: We characterize ∼1.3 Mb of genomic sequence around 11 selected genes expressed in B. anynana developing wings. Extensive manual curation of in silico predictions, also making use of a large dataset of expressed genes for this species, identified repetitive elements and protein coding sequence, and highlighted an expansion of Alcohol dehydrogenase genes. Comparative analysis with orthologous regions of the lepidopteran reference genome allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations and of DNA sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental genes. CONCLUSIONS: The general properties and organization of the available B. anynana genomic sequence are similar to the lepidopteran reference, despite the more than 140 MY divergence. Our results lay the groundwork for further studies of new interesting findings in relation to both coding and non-coding sequence: 1 the Alcohol dehydrogenase expansion with higher similarity between the five tandemly-repeated B. anynana paralogs than with the corresponding B. mori orthologs, and 2 the high

  17. Characterising the CRISPR immune system in Archaea using genome sequence analysis

    DEFF Research Database (Denmark)

    Shah, Shiraz Ali

    Archaea, a group of microorganisms distinct from bacteria and eukaryotes, are equipped with an adaptive immune system called the CRISPR system, which relies on an RNA interference mechanism to combat invading viruses and plasmids. Using a genome sequence analysis approach, the four components...... of archaeal genomic CRISPR loci were analysed, namely, repeats, spacers, leaders and cas genes. Based on analysis of spacer sequences it was predicted that the immune system combats viruses and plasmids by targeting their DNA. Furthermore, analysis of repeats, leaders and cas genes revealed that CRISPR...... systems exist as distinct families which have key differences between themselves. Closely related organisms were seen harbouring different CRISPR systems, while some distantly related species carried similar systems, indicating frequent horizontal exchange. Moreover, it was found that cas genes of Type I...

  18. Generation and analysis of expressed sequence tags from the ciliate protozoan parasite Ichthyophthirius multifiliis

    Directory of Open Access Journals (Sweden)

    Arias Covadonga

    2007-06-01

    Full Text Available Abstract Background The ciliate protozoan Ichthyophthirius multifiliis (Ich is an important parasite of freshwater fish that causes 'white spot disease' leading to significant losses. A genomic resource for large-scale studies of this parasite has been lacking. To study gene expression involved in Ich pathogenesis and virulence, our goal was to generate expressed sequence tags (ESTs for the development of a powerful microarray platform for the analysis of global gene expression in this species. Here, we initiated a project to sequence and analyze over 10,000 ESTs. Results We sequenced 10,368 EST clones using a normalized cDNA library made from pooled samples of the trophont, tomont, and theront life-cycle stages, and generated 9,769 sequences (94.2% success rate. Post-sequencing processing led to 8,432 high quality sequences. Clustering analysis of these ESTs allowed identification of 4,706 unique sequences containing 976 contigs and 3,730 singletons. These unique sequences represent over two million base pairs (~10% of Plasmodium falciparum genome, a phylogenetically related protozoan. BLASTX searches produced 2,518 significant (E-value -5 hits and further Gene Ontology (GO analysis annotated 1,008 of these genes. The ESTs were analyzed comparatively against the genomes of the related protozoa Tetrahymena thermophila and P. falciparum, allowing putative identification of additional genes. All the EST sequences were deposited by dbEST in GenBank (GenBank: EG957858–EG966289. Gene discovery and annotations are presented and discussed. Conclusion This set of ESTs represents a significant proportion of the Ich transcriptome, and provides a material basis for the development of microarrays useful for gene expression studies concerning Ich development, pathogenesis, and virulence.

  19. A symbolic dynamics approach for the complexity analysis of chaotic pseudo-random sequences

    International Nuclear Information System (INIS)

    Xiao Fanghong

    2004-01-01

    By considering a chaotic pseudo-random sequence as a symbolic sequence, authors present a symbolic dynamics approach for the complexity analysis of chaotic pseudo-random sequences. The method is applied to the cases of Logistic map and one-way coupled map lattice to demonstrate how it works, and a comparison is made between it and the approximate entropy method. The results show that this method is applicable to distinguish the complexities of different chaotic pseudo-random sequences, and it is superior to the approximate entropy method

  20. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture

    Directory of Open Access Journals (Sweden)

    Chintan A Trivedi

    2013-05-01

    Full Text Available Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed towards the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim-triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback.

  1. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture

    Science.gov (United States)

    Trivedi, Chintan A.; Bollmann, Johann H.

    2013-01-01

    Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach, and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed toward the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback. PMID:23675322

  2. Detection and Resolution of Cryptosporidium Species and Species Mixtures by Genus-Specific Nested PCR-Restriction Fragment Length Polymorphism Analysis, Direct Sequencing, and Cloning ▿

    Science.gov (United States)

    Ruecker, Norma J.; Hoffman, Rebecca M.; Chalmers, Rachel M.; Neumann, Norman F.

    2011-01-01

    Molecular methods incorporating nested PCR-restriction fragment length polymorphism (RFLP) analysis of the 18S rRNA gene of Cryptosporidium species were validated to assess performance based on limit of detection (LoD) and for detecting and resolving mixtures of species and genotypes within a single sample. The 95% LoD was determined for seven species (Cryptosporidium hominis, C. parvum, C. felis, C. meleagridis, C. ubiquitum, C. muris, and C. andersoni) and ranged from 7 to 11 plasmid template copies with overlapping 95% confidence limits. The LoD values for genomic DNA from oocysts on microscope slides were 7 and 10 template copies for C. andersoni and C. parvum, respectively. The repetitive nested PCR-RFLP slide protocol had an LoD of 4 oocysts per slide. When templates of two species were mixed in equal ratios in the nested PCR-RFLP reaction mixture, there was no amplification bias toward one species over another. At high ratios of template mixtures (>1:10), there was a reduction or loss of detection of the less abundant species by RFLP analysis, most likely due to heteroduplex formation in the later cycles of the PCR. Replicate nested PCR was successful at resolving many mixtures of Cryptosporidium at template concentrations near or below the LoD. The cloning of nested PCR products resulted in 17% of the cloned sequences being recombinants of the two original templates. Limiting-dilution nested PCR followed by the sequencing of PCR products resulted in no sequence anomalies, suggesting that this method is an effective and accurate way to study the species diversity of Cryptosporidium, particularly for environmental water samples, in which mixtures of parasites are common. PMID:21498746

  3. Multifractal analysis of 2001 Mw 7 . 7 Bhuj earthquake sequence in Gujarat, Western India

    Science.gov (United States)

    Aggarwal, Sandeep Kumar; Pastén, Denisse; Khan, Prosanta Kumar

    2017-12-01

    The 2001 Mw 7 . 7 Bhuj mainshock seismic sequence in the Kachchh area, occurring during 2001 to 2012, has been analyzed using mono-fractal and multi-fractal dimension spectrum analysis technique. This region was characterized by frequent moderate shocks of Mw ≥ 5 . 0 for more than a decade since the occurrence of 2001 Bhuj earthquake. The present study is therefore important for precursory analysis using this sequence. The selected long-sequence has been investigated first time for completeness magnitude Mc 3.0 using the maximum curvature method. Multi-fractal Dq spectrum (Dq ∼ q) analysis was carried out using effective window-length of 200 earthquakes with a moving window of 20 events overlapped by 180 events. The robustness of the analysis has been tested by considering the magnitude completeness correction term of 0.2 to Mc 3.0 as Mc 3.2 and we have tested the error in the calculus of Dq for each magnitude threshold. On the other hand, the stability of the analysis has been investigated down to the minimum magnitude of Mw ≥ 2 . 6 in the sequence. The analysis shows the multi-fractal dimension spectrum Dq decreases with increasing of clustering of events with time before a moderate magnitude earthquake in the sequence, which alternatively accounts for non-randomness in the spatial distribution of epicenters and its self-organized criticality. Similar behavior is ubiquitous elsewhere around the globe, and warns for proximity of a damaging seismic event in an area. OS: Please confirm math roman or italics in abs.

  4. Probabilistic topic modeling for the analysis and classification of genomic sequences

    Science.gov (United States)

    2015-01-01

    Background Studies on genomic sequences for classification and taxonomic identification have a leading role in the biomedical field and in the analysis of biodiversity. These studies are focusing on the so-called barcode genes, representing a well defined region of the whole genome. Recently, alignment-free techniques are gaining more importance because they are able to overcome the drawbacks of sequence alignment techniques. In this paper a new alignment-free method for DNA sequences clustering and classification is proposed. The method is based on k-mers representation and text mining techniques. Methods The presented method is based on Probabilistic Topic Modeling, a statistical technique originally proposed for text documents. Probabilistic topic models are able to find in a document corpus the topics (recurrent themes) characterizing classes of documents. This technique, applied on DNA sequences representing the documents, exploits the frequency of fixed-length k-mers and builds a generative model for a training group of sequences. This generative model, obtained through the Latent Dirichlet Allocation (LDA) algorithm, is then used to classify a large set of genomic sequences. Results and conclusions We performed classification of over 7000 16S DNA barcode sequences taken from Ribosomal Database Project (RDP) repository, training probabilistic topic models. The proposed method is compared to the RDP tool and Support Vector Machine (SVM) classification algorithm in a extensive set of trials using both complete sequences and short sequence snippets (from 400 bp to 25 bp). Our method reaches very similar results to RDP classifier and SVM for complete sequences. The most interesting results are obtained when short sequence snippets are considered. In these conditions the proposed method outperforms RDP and SVM with ultra short sequences and it exhibits a smooth decrease of performance, at every taxonomic level, when the sequence length is decreased. PMID:25916734

  5. Whole-exome sequencing identifies USH2A mutations in a pseudo-dominant Usher syndrome family.

    Science.gov (United States)

    Zheng, Sui-Lian; Zhang, Hong-Liang; Lin, Zhen-Lang; Kang, Qian-Yan

    2015-10-01

    Usher syndrome (USH) is an autosomal recessive (AR) multi-sensory degenerative disorder leading to deaf-blindness. USH is clinically subdivided into three subclasses, and 10 genes have been identified thus far. Clinical and genetic heterogeneities in USH make a precise diagnosis difficult. A dominant‑like USH family in successive generations was identified, and the present study aimed to determine the genetic predisposition of this family. Whole‑exome sequencing was performed in two affected patients and an unaffected relative. Systematic data were analyzed by bioinformatic analysis to remove the candidate mutations via step‑wise filtering. Direct Sanger sequencing and co‑segregation analysis were performed in the pedigree. One novel and two known mutations in the USH2A gene were identified, and were further confirmed by direct sequencing and co‑segregation analysis. The affected mother carried compound mutations in the USH2A gene, while the unaffected father carried a heterozygous mutation. The present study demonstrates that whole‑exome sequencing is a robust approach for the molecular diagnosis of disorders with high levels of genetic heterogeneity.

  6. The BsaHI restriction-modification system: Cloning, sequencing and analysis of conserved motifs

    Directory of Open Access Journals (Sweden)

    Roberts Richard J

    2008-05-01

    Full Text Available Abstract Background Restriction and modification enzymes typically recognise short DNA sequences of between two and eight bases in length. Understanding the mechanism of this recognition represents a significant challenge that we begin to address for the BsaHI restriction-modification system, which recognises the six base sequence GRCGYC. Results The DNA sequences of the genes for the BsaHI methyltransferase, bsaHIM, and restriction endonuclease, bsaHIR, have been determined (GenBank accession #EU386360, cloned and expressed in E. coli. Both the restriction endonuclease and methyltransferase enzymes share significant similarity with a group of 6 other enzymes comprising the restriction-modification systems HgiDI and HgiGI and the putative HindVP, NlaCORFDP, NpuORFC228P and SplZORFNP restriction-modification systems. A sequence alignment of these homologues shows that their amino acid sequences are largely conserved and highlights several motifs of interest. We target one such conserved motif, reading SPERRFD, at the C-terminal end of the bsaHIR gene. A mutational analysis of these amino acids indicates that the motif is crucial for enzymatic activity. Sequence alignment of the methyltransferase gene reveals a short motif within the target recognition domain that is conserved among enzymes recognising the same sequences. Thus, this motif may be used as a diagnostic tool to define the recognition sequences of the cytosine C5 methyltransferases. Conclusion We have cloned and sequenced the BsaHI restriction and modification enzymes. We have identified a region of the R. BsaHI enzyme that is crucial for its activity. Analysis of the amino acid sequence of the BsaHI methyltransferase enzyme led us to propose two new motifs that can be used in the diagnosis of the recognition sequence of the cytosine C5-methyltransferases.

  7. A base composition analysis of natural patterns for the preprocessing of metagenome sequences.

    Science.gov (United States)

    Bonham-Carter, Oliver; Ali, Hesham; Bastola, Dhundy

    2013-01-01

    On the pretext that sequence reads and contigs often exhibit the same kinds of base usage that is also observed in the sequences from which they are derived, we offer a base composition analysis tool. Our tool uses these natural patterns to determine relatedness across sequence data. We introduce spectrum sets (sets of motifs) which are permutations of bacterial restriction sites and the base composition analysis framework to measure their proportional content in sequence data. We suggest that this framework will increase the efficiency during the pre-processing stages of metagenome sequencing and assembly projects. Our method is able to differentiate organisms and their reads or contigs. The framework shows how to successfully determine the relatedness between these reads or contigs by comparison of base composition. In particular, we show that two types of organismal-sequence data are fundamentally different by analyzing their spectrum set motif proportions (coverage). By the application of one of the four possible spectrum sets, encompassing all known restriction sites, we provide the evidence to claim that each set has a different ability to differentiate sequence data. Furthermore, we show that the spectrum set selection having relevance to one organism, but not to the others of the data set, will greatly improve performance of sequence differentiation even if the fragment size of the read, contig or sequence is not lengthy. We show the proof of concept of our method by its application to ten trials of two or three freshly selected sequence fragments (reads and contigs) for each experiment across the six organisms of our set. Here we describe a novel and computationally effective pre-processing step for metagenome sequencing and assembly tasks. Furthermore, our base composition method has applications in phylogeny where it can be used to infer evolutionary distances between organisms based on the notion that related organisms often have much conserved code.

  8. Core genome conservation of Staphylococcus haemolyticus limits sequence based population structure analysis.

    Science.gov (United States)

    Cavanagh, Jorunn Pauline; Klingenberg, Claus; Hanssen, Anne-Merethe; Fredheim, Elizabeth Aarag; Francois, Patrice; Schrenzel, Jacques; Flægstad, Trond; Sollid, Johanna Ericson

    2012-06-01

    The notoriously multi-resistant Staphylococcus haemolyticus is an emerging pathogen causing serious infections in immunocompromised patients. Defining the population structure is important to detect outbreaks and spread of antimicrobial resistant clones. Currently, the standard typing technique is pulsed-field gel electrophoresis (PFGE). In this study we describe novel molecular typing schemes for S. haemolyticus using multi locus sequence typing (MLST) and multi locus variable number of tandem repeats (VNTR) analysis. Seven housekeeping genes (MLST) and five VNTR loci (MLVF) were selected for the novel typing schemes. A panel of 45 human and veterinary S. haemolyticus isolates was investigated. The collection had diverse PFGE patterns (38 PFGE types) and was sampled over a 20 year-period from eight countries. MLST resolved 17 sequence types (Simpsons index of diversity [SID]=0.877) and MLVF resolved 14 repeat types (SID=0.831). We found a low sequence diversity. Phylogenetic analysis clustered the isolates in three (MLST) and one (MLVF) clonal complexes, respectively. Taken together, neither the MLST nor the MLVF scheme was suitable to resolve the population structure of this S. haemolyticus collection. Future MLVF and MLST schemes will benefit from addition of more variable core genome sequences identified by comparing different fully sequenced S. haemolyticus genomes. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. QTL analysis by sequencing of Water Use Efficiency (WUE) in potato

    DEFF Research Database (Denmark)

    Kaminski, Kacper Piotr; Sønderkær, Mads; Sørensen, Kirsten Kørup

    2013-01-01

    The traditional approach to potato breeding, the classical “mate and phenotype” approach is relatively costly and because phenotyping and growth capacity is limited, this are being slowly replaced by Marker Assisted Selection (MAS) breeding schemes. MAS is based on the presence of DNA polymorphic.......sparsipilum), phenotyped for water use efficiency. This population has also previously been phenotyped for the total glycoalkaloid (TGA) content....... and time consuming process. Here, a novel method for Quantitative Trait Locus (QTL) analysis has been developed, that allows for development of specific markers by use of genomic sequence reads and the recently published reference genome sequence for potato. Prior to sequencing the mapping population...

  10. Now and next-generation sequencing techniques: future of sequence analysis using cloud computing.

    Science.gov (United States)

    Thakur, Radhe Shyam; Bandopadhyay, Rajib; Chaudhary, Bratati; Chatterjee, Sourav

    2012-01-01

    Advances in the field of sequencing techniques have resulted in the greatly accelerated production of huge sequence datasets. This presents immediate challenges in database maintenance at datacenters. It provides additional computational challenges in data mining and sequence analysis. Together these represent a significant overburden on traditional stand-alone computer resources, and to reach effective conclusions quickly and efficiently, the virtualization of the resources and computation on a pay-as-you-go concept (together termed "cloud computing") has recently appeared. The collective resources of the datacenter, including both hardware and software, can be available publicly, being then termed a public cloud, the resources being provided in a virtual mode to the clients who pay according to the resources they employ. Examples of public companies providing these resources include Amazon, Google, and Joyent. The computational workload is shifted to the provider, which also implements required hardware and software upgrades over time. A virtual environment is created in the cloud corresponding to the computational and data storage needs of the user via the internet. The task is then performed, the results transmitted to the user, and the environment finally deleted after all tasks are completed. In this discussion, we focus on the basics of cloud computing, and go on to analyze the prerequisites and overall working of clouds. Finally, the applications of cloud computing in biological systems, particularly in comparative genomics, genome informatics, and SNP detection are discussed with reference to traditional workflows.

  11. Exact combinatorial reliability analysis of dynamic systems with sequence-dependent failures

    International Nuclear Information System (INIS)

    Xing Liudong; Shrestha, Akhilesh; Dai Yuanshun

    2011-01-01

    Many real-life fault-tolerant systems are subjected to sequence-dependent failure behavior, in which the order in which the fault events occur is important to the system reliability. Such systems can be modeled by dynamic fault trees (DFT) with priority-AND (pAND) gates. Existing approaches for the reliability analysis of systems subjected to sequence-dependent failures are typically state-space-based, simulation-based or inclusion-exclusion-based methods. Those methods either suffer from the state-space explosion problem or require long computation time especially when results with high degree of accuracy are desired. In this paper, an analytical method based on sequential binary decision diagrams is proposed. The proposed approach can analyze the exact reliability of non-repairable dynamic systems subjected to the sequence-dependent failure behavior. Also, the proposed approach is combinatorial and is applicable for analyzing systems with any arbitrary component time-to-failure distributions. The application and advantages of the proposed approach are illustrated through analysis of several examples. - Highlights: → We analyze the sequence-dependent failure behavior using combinatorial models. → The method has no limitation on the type of time-to-failure distributions. → The method is analytical and based on sequential binary decision diagrams (SBDD). → The method is computationally more efficient than existing methods.

  12. Construction of an integrated database to support genomic sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, W.; Overbeek, R.

    1994-11-01

    The central goal of this project is to develop an integrated database to support comparative analysis of genomes including DNA sequence data, protein sequence data, gene expression data and metabolism data. In developing the logic-based system GenoBase, a broader integration of available data was achieved due to assistance from collaborators. Current goals are to easily include new forms of data as they become available and to easily navigate through the ensemble of objects described within the database. This report comments on progress made in these areas.

  13. Sequence analysis of the genome of carnation (Dianthus caryophyllus L.).

    Science.gov (United States)

    Yagi, Masafumi; Kosugi, Shunichi; Hirakawa, Hideki; Ohmiya, Akemi; Tanase, Koji; Harada, Taro; Kishimoto, Kyutaro; Nakayama, Masayoshi; Ichimura, Kazuo; Onozaki, Takashi; Yamaguchi, Hiroyasu; Sasaki, Nobuhiro; Miyahara, Taira; Nishizaki, Yuzo; Ozeki, Yoshihiro; Nakamura, Noriko; Suzuki, Takamasa; Tanaka, Yoshikazu; Sato, Shusei; Shirasawa, Kenta; Isobe, Sachiko; Miyamura, Yoshinori; Watanabe, Akiko; Nakayama, Shinobu; Kishida, Yoshie; Kohara, Mitsuyo; Tabata, Satoshi

    2014-06-01

    The whole-genome sequence of carnation (Dianthus caryophyllus L.) cv. 'Francesco' was determined using a combination of different new-generation multiplex sequencing platforms. The total length of the non-redundant sequences was 568,887,315 bp, consisting of 45,088 scaffolds, which covered 91% of the 622 Mb carnation genome estimated by k-mer analysis. The N50 values of contigs and scaffolds were 16,644 bp and 60,737 bp, respectively, and the longest scaffold was 1,287,144 bp. The average GC content of the contig sequences was 36%. A total of 1050, 13, 92 and 143 genes for tRNAs, rRNAs, snoRNA and miRNA, respectively, were identified in the assembled genomic sequences. For protein-encoding genes, 43 266 complete and partial gene structures excluding those in transposable elements were deduced. Gene coverage was ∼ 98%, as deduced from the coverage of the core eukaryotic genes. Intensive characterization of the assigned carnation genes and comparison with those of other plant species revealed characteristic features of the carnation genome. The results of this study will serve as a valuable resource for fundamental and applied research of carnation, especially for breeding new carnation varieties. Further information on the genomic sequences is available at http://carnation.kazusa.or.jp. © The Author 2013. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  14. Analysis of expressed sequence tags from Prunus mume flower and fruit and development of simple sequence repeat markers

    Directory of Open Access Journals (Sweden)

    Gao Zhihong

    2010-07-01

    Full Text Available Abstract Background Expressed Sequence Tag (EST has been a cost-effective tool in molecular biology and represents an abundant valuable resource for genome annotation, gene expression, and comparative genomics in plants. Results In this study, we constructed a cDNA library of Prunus mume flower and fruit, sequenced 10,123 clones of the library, and obtained 8,656 expressed sequence tag (EST sequences with high quality. The ESTs were assembled into 4,473 unigenes composed of 1,492 contigs and 2,981 singletons and that have been deposited in NCBI (accession IDs: GW868575 - GW873047, among which 1,294 unique ESTs were with known or putative functions. Furthermore, we found 1,233 putative simple sequence repeats (SSRs in the P. mume unigene dataset. We randomly tested 42 pairs of PCR primers flanking potential SSRs, and 14 pairs were identified as true-to-type SSR loci and could amplify polymorphic bands from 20 individual plants of P. mume. We further used the 14 EST-SSR primer pairs to test the transferability on peach and plum. The result showed that nearly 89% of the primer pairs produced target PCR bands in the two species. A high level of marker polymorphism was observed in the plum species (65% and low in the peach (46%, and the clustering analysis of the three species indicated that these SSR markers were useful in the evaluation of genetic relationships and diversity between and within the Prunus species. Conclusions We have constructed the first cDNA library of P. mume flower and fruit, and our data provide sets of molecular biology resources for P. mume and other Prunus species. These resources will be useful for further study such as genome annotation, new gene discovery, gene functional analysis, molecular breeding, evolution and comparative genomics between Prunus species.

  15. A single session of prefrontal cortex transcranial direct current stimulation does not modulate implicit task sequence learning and consolidation.

    Science.gov (United States)

    Savic, Branislav; Müri, René; Meier, Beat

    Transcranial direct current stimulation (tDCS) is assumed to affect cortical excitability and dependent on the specific stimulation conditions either to increase or decrease learning. The purpose of this study was to modulate implicit task sequence learning with tDCS. As cortico-striatal loops are critically involved in implicit task sequence learning, tDCS was applied above the dorsolateral prefrontal cortex (DLPFC). In Experiment 1, anodal, cathodal, or sham tDCS was applied before the start of the sequence learning task. In Experiment 2, stimulation was applied during the sequence learning task. Consolidation of learning was assessed after 24 h. The results of both experiments showed that implicit task sequence learning occurred consistently but it was not modulated by different tDCS conditions. Similarly, consolidation measured after a 24 h-interval including sleep was also not affected by stimulation. These results indicate that a single session of DLPFC tDCS is not sufficient to modulate implicit task sequence learning. This study adds to the accumulating evidence that tDCS may not be as effective as originally thought. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Characterization of expressed sequence tag-derived simple sequence repeat markers for Aspergillus flavus: emphasis on variability of isolates from the southern United States.

    Science.gov (United States)

    Wang, Xinwang; Wadl, Phillip A; Wood-Jones, Alicia; Windham, Gary; Trigiano, Robert N; Scruggs, Mary; Pilgrim, Candace; Baird, Richard

    2012-12-01

    Simple sequence repeat (SSR) markers were developed from Aspergillus flavus expressed sequence tag (EST) database to conduct an analysis of genetic relationships of Aspergillus isolates from numerous host species and geographical regions, but primarily from the United States. Twenty-nine primers were designed from 362 tri-nucleotide EST-SSR sequences. Eighteen polymorphic loci were used to genotype 96 Aspergillus species isolates. The number of alleles detected per locus ranged from 2 to 24 with a mean of 8.2 alleles. Haploid diversity ranged from 0.28 to 0.91. Genetic distance matrix was used to perform principal coordinates analysis (PCA) and to generate dendrograms using unweighted pair group method with arithmetic mean (UPGMA). Two principal coordinates explained more than 75 % of the total variation among the isolates. One clade was identified for A. flavus isolates (n = 87) with the other Aspergillus species (n = 7) using PCA, but five distinct clusters were present when the others taxa were excluded from the analysis. Six groups were noted when the EST-SSR data were compared using UPGMA. However, the latter PCA or UPGMA comparison resulted in no direct associations with host species, geographical region or aflatoxin production. Furthermore, there was no direct correlation to visible morphological features such as sclerotial types. The isolates from Mississippi Delta region, which contained the largest percentage of isolates, did not show any unusual clustering except for isolates K32, K55, and 199. Further studies of these three isolates are warranted to evaluate their pathogenicity, aflatoxin production potential, additional gene sequences (e.g., RPB2), and morphological comparisons.

  17. VisRseq: R-based visual framework for analysis of sequencing data

    OpenAIRE

    Younesy, Hamid; Möller, Torsten; Lorincz, Matthew C; Karimi, Mohammad M; Jones, Steven JM

    2015-01-01

    Background Several tools have been developed to enable biologists to perform initial browsing and exploration of sequencing data. However the computational tool set for further analyses often requires significant computational expertise to use and many of the biologists with the knowledge needed to interpret these data must rely on programming experts. Results We present VisRseq, a framework for analysis of sequencing datasets that provides a computationally rich and accessible framework for ...

  18. Electrochemical direct immobilization of DNA sequences for label-free herpes virus detection

    Energy Technology Data Exchange (ETDEWEB)

    Phuong Dinh Tam; Mai Anh Tuan [International Training Institute for Materials Science (Viet Nam); Tran Trung [Department of Electrochemistry, Hung-Yen University of Technology and Education (Viet Nam); Nguyen Duc Chien [Institute of Engineering Physics, Hanoi University of Technology, 1 Dai Co Viet Road, Hanoi (Viet Nam)], E-mail: tr_trunghut@yahoo.com

    2009-09-01

    DNA sequences/bio-macromolecules of herpes virus (5'-AT CAC CGA CCC GGA GAG GGA C-3') were directly immobilized into polypyrrole matrix by using the cyclic voltammetry method, and grafted onto arrays of interdigitated platinum microelectrodes. The morphology surface of the obtained PPy/DNA of herpes virus composite films was investigated by a FESEM Hitachi-S 4800. Fourier transform infrared spectroscopy (FTIR) was used to characterize the PPy/DNA film and to study the specific interactions that may exist between DNA biomacromolecules and PPy chains. Attempts are made to use these PPy/DNA composite films for label-free herpes virus detection revealed a response time of 60 s in solutions containing as low as 2 nM DNA concentration, and self life of six months when emerged in double distilled water and kept refrigerated.

  19. Genomic insight into the common carp (Cyprinus carpio genome by sequencing analysis of BAC-end sequences

    Directory of Open Access Journals (Sweden)

    Wang Jintu

    2011-04-01

    Full Text Available Abstract Background Common carp is one of the most important aquaculture teleost fish in the world. Common carp and other closely related Cyprinidae species provide over 30% aquaculture production in the world. However, common carp genomic resources are still relatively underdeveloped. BAC end sequences (BES are important resources for genome research on BAC-anchored genetic marker development, linkage map and physical map integration, and whole genome sequence assembling and scaffolding. Result To develop such valuable resources in common carp (Cyprinus carpio, a total of 40,224 BAC clones were sequenced on both ends, generating 65,720 clean BES with an average read length of 647 bp after sequence processing, representing 42,522,168 bp or 2.5% of common carp genome. The first survey of common carp genome was conducted with various bioinformatics tools. The common carp genome contains over 17.3% of repetitive elements with GC content of 36.8% and 518 transposon ORFs. To identify and develop BAC-anchored microsatellite markers, a total of 13,581 microsatellites were detected from 10,355 BES. The coding region of 7,127 genes were recognized from 9,443 BES on 7,453 BACs, with 1,990 BACs have genes on both ends. To evaluate the similarity to the genome of closely related zebrafish, BES of common carp were aligned against zebrafish genome. A total of 39,335 BES of common carp have conserved homologs on zebrafish genome which demonstrated the high similarity between zebrafish and common carp genomes, indicating the feasibility of comparative mapping between zebrafish and common carp once we have physical map of common carp. Conclusion BAC end sequences are great resources for the first genome wide survey of common carp. The repetitive DNA was estimated to be approximate 28% of common carp genome, indicating the higher complexity of the genome. Comparative analysis had mapped around 40,000 BES to zebrafish genome and established over 3

  20. Genomic insight into the common carp (Cyprinus carpio) genome by sequencing analysis of BAC-end sequences

    Science.gov (United States)

    2011-01-01

    Background Common carp is one of the most important aquaculture teleost fish in the world. Common carp and other closely related Cyprinidae species provide over 30% aquaculture production in the world. However, common carp genomic resources are still relatively underdeveloped. BAC end sequences (BES) are important resources for genome research on BAC-anchored genetic marker development, linkage map and physical map integration, and whole genome sequence assembling and scaffolding. Result To develop such valuable resources in common carp (Cyprinus carpio), a total of 40,224 BAC clones were sequenced on both ends, generating 65,720 clean BES with an average read length of 647 bp after sequence processing, representing 42,522,168 bp or 2.5% of common carp genome. The first survey of common carp genome was conducted with various bioinformatics tools. The common carp genome contains over 17.3% of repetitive elements with GC content of 36.8% and 518 transposon ORFs. To identify and develop BAC-anchored microsatellite markers, a total of 13,581 microsatellites were detected from 10,355 BES. The coding region of 7,127 genes were recognized from 9,443 BES on 7,453 BACs, with 1,990 BACs have genes on both ends. To evaluate the similarity to the genome of closely related zebrafish, BES of common carp were aligned against zebrafish genome. A total of 39,335 BES of common carp have conserved homologs on zebrafish genome which demonstrated the high similarity between zebrafish and common carp genomes, indicating the feasibility of comparative mapping between zebrafish and common carp once we have physical map of common carp. Conclusion BAC end sequences are great resources for the first genome wide survey of common carp. The repetitive DNA was estimated to be approximate 28% of common carp genome, indicating the higher complexity of the genome. Comparative analysis had mapped around 40,000 BES to zebrafish genome and established over 3,100 microsyntenies, covering over 50% of

  1. Collective properties of injection-induced earthquake sequences: 1. Model description and directivity bias

    Science.gov (United States)

    Dempsey, David; Suckale, Jenny

    2016-05-01

    Induced seismicity is of increasing concern for oil and gas, geothermal, and carbon sequestration operations, with several M > 5 events triggered in recent years. Modeling plays an important role in understanding the causes of this seismicity and in constraining seismic hazard. Here we study the collective properties of induced earthquake sequences and the physics underpinning them. In this first paper of a two-part series, we focus on the directivity ratio, which quantifies whether fault rupture is dominated by one (unilateral) or two (bilateral) propagating fronts. In a second paper, we focus on the spatiotemporal and magnitude-frequency distributions of induced seismicity. We develop a model that couples a fracture mechanics description of 1-D fault rupture with fractal stress heterogeneity and the evolving pore pressure distribution around an injection well that triggers earthquakes. The extent of fault rupture is calculated from the equations of motion for two tips of an expanding crack centered at the earthquake hypocenter. Under tectonic loading conditions, our model exhibits a preference for unilateral rupture and a normal distribution of hypocenter locations, two features that are consistent with seismological observations. On the other hand, catalogs of induced events when injection occurs directly onto a fault exhibit a bias toward ruptures that propagate toward the injection well. This bias is due to relatively favorable conditions for rupture that exist within the high-pressure plume. The strength of the directivity bias depends on a number of factors including the style of pressure buildup, the proximity of the fault to failure and event magnitude. For injection off a fault that triggers earthquakes, the modeled directivity bias is small and may be too weak for practical detection. For two hypothetical injection scenarios, we estimate the number of earthquake observations required to detect directivity bias.

  2. Always look on both sides: phylogenetic information conveyed by simple sequence repeat allele sequences.

    Directory of Open Access Journals (Sweden)

    Stéphanie Barthe

    Full Text Available Simple sequence repeat (SSR markers are widely used tools for inferences about genetic diversity, phylogeography and spatial genetic structure. Their applications assume that variation among alleles is essentially caused by an expansion or contraction of the number of repeats and that, accessorily, mutations in the target sequences follow the stepwise mutation model (SMM. Generally speaking, PCR amplicon sizes are used as direct indicators of the number of SSR repeats composing an allele with the data analysis either ignoring the extent of allele size differences or assuming that there is a direct correlation between differences in amplicon size and evolutionary distance. However, without precisely knowing the kind and distribution of polymorphism within an allele (SSR and the associated flanking region (FR sequences, it is hard to say what kind of evolutionary message is conveyed by such a synthetic descriptor of polymorphism as DNA amplicon size. In this study, we sequenced several SSR alleles in multiple populations of three divergent tree genera and disentangled the types of polymorphisms contained in each portion of the DNA amplicon containing an SSR. The patterns of diversity provided by amplicon size variation, SSR variation itself, insertions/deletions (indels, and single nucleotide polymorphisms (SNPs observed in the FRs were compared. Amplicon size variation largely reflected SSR repeat number. The amount of variation was as large in FRs as in the SSR itself. The former contributed significantly to the phylogenetic information and sometimes was the main source of differentiation among individuals and populations contained by FR and SSR regions of SSR markers. The presence of mutations occurring at different rates within a marker's sequence offers the opportunity to analyse evolutionary events occurring on various timescales, but at the same time calls for caution in the interpretation of SSR marker data when the distribution of within

  3. High Throughput Sample Preparation and Analysis for DNA Sequencing, PCR and Combinatorial Screening of Catalysis Based on Capillary Array Technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yonghua [Iowa State Univ., Ames, IA (United States)

    2000-01-01

    Sample preparation has been one of the major bottlenecks for many high throughput analyses. The purpose of this research was to develop new sample preparation and integration approach for DNA sequencing, PCR based DNA analysis and combinatorial screening of homogeneous catalysis based on multiplexed capillary electrophoresis with laser induced fluorescence or imaging UV absorption detection. The author first introduced a method to integrate the front-end tasks to DNA capillary-array sequencers. protocols for directly sequencing the plasmids from a single bacterial colony in fused-silica capillaries were developed. After the colony was picked, lysis was accomplished in situ in the plastic sample tube using either a thermocycler or heating block. Upon heating, the plasmids were released while chromsomal DNA and membrane proteins were denatured and precipitated to the bottom of the tube. After adding enzyme and Sanger reagents, the resulting solution was aspirated into the reaction capillaries by a syringe pump, and cycle sequencing was initiated. No deleterious effect upon the reaction efficiency, the on-line purification system, or the capillary electrophoresis separation was observed, even though the crude lysate was used as the template. Multiplexed on-line DNA sequencing data from 8 parallel channels allowed base calling up to 620 bp with an accuracy of 98%. The entire system can be automatically regenerated for repeated operation. For PCR based DNA analysis, they demonstrated that capillary electrophoresis with UV detection can be used for DNA analysis starting from clinical sample without purification. After PCR reaction using cheek cell, blood or HIV-1 gag DNA, the reaction mixtures was injected into the capillary either on-line or off-line by base stacking. The protocol was also applied to capillary array electrophoresis. The use of cheaper detection, and the elimination of purification of DNA sample before or after PCR reaction, will make this approach an

  4. Direct analysis of quantal radiation response data

    International Nuclear Information System (INIS)

    Thames, H.D. Jr.; Rozell, M.E.; Tucker, S.L.; Ang, K.K.; Travis, E.L.; Fisher, D.R.

    1986-01-01

    A direct analysis is proposed for quantal (all-or-nothing) responses to fractionated radiation and endpoint-dilution assays of cell survival. As opposed to two-step methods such as the reciprocal-dose technique, in which ED 50 values are first estimated for different fractionation schemes and then fit (as reciprocals) against dose per fraction, all raw data are included in a single maximum-likelihood treatment. The method accommodates variations such as short-interval fractionation regimens designed to determine tissue repair kinetics, tissue response to continuous exposures, and data obtained using endpoint-dilution assays of cell survival after fractionated doses. Monte-Carlo techniques were used to compare the direct and reciprocal-dose methods for analysis of small-scale and large-scale studies of response to fractionated doses. Both methods tended toward biased estimates in the analysis of small-scale (3 fraction numbers) studies. The α/β ratios showed less scatter when estimated by the direct method. The 95% confidence intervals determined by the direct method were more appropriate than those determined by reciprocal-dose analysis, for which 18% (small-scale study) or 8% (large-scale study) of the confidence intervals did not include the 'true' value of α/β. (author)

  5. SEQUENCING AND SEQUENCE ANALYSIS OF MYOSTATIN GENE IN THE EXON 1 OF THE CAMEL (CAMELUS DROMEDARIUS

    Directory of Open Access Journals (Sweden)

    M. G. SHAH, A. S. QURESHI1, M. REISSMANN2 AND H. J. SCHWARTZ3

    2006-10-01

    Full Text Available Myostatin, also called growth differentiation factor-8 (GDF-8, is a member of the mammalian growth transforming family (TGF-beta superfamily, which is expressed specifically in developing an adult skeletal muscle. Muscular hypertrophy allele (mh allele in the double muscle breeds involved mutation within the myostatin gene. Genomic DNA was isolated from the camel hair using NucleoSpin Tissue kit. Two animals of each of the six breeds namely, Marecha, Dhatti, Larri, Kohi, Sakrai and Cambelpuri were used for sequencing. For PCR amplification of the gene, a primer pair was designed from homolog regions of already published sequences of farm animals from GenBank. Results showed that camel myostatin possessed more than 90% homology with that of cattle, sheep and pig. Camel formed separate cluster from the pig in spite of having high homology (98% and showed 94% homology with cattle and sheep as reported in literature. Sequence analysis of the PCR amplified part of exon 1 (256 bp of the camel myostatin was identical among six camel breeds.

  6. Sequence Tree Modeling for Combined Accident and Feed-and-Bleed Operation

    International Nuclear Information System (INIS)

    Kim, Bo Gyung; Kang Hyun Gook; Yoon, Ho Joon

    2016-01-01

    In order to address this issue, this study suggests the sequence tree model to analyze accident sequence systematically. Using the sequence tree model, all possible scenarios which need a specific safety action to prevent the core damage can be identified and success conditions of safety action under complicated situation such as combined accident will be also identified. Sequence tree is branch model to divide plant condition considering the plant dynamics. Since sequence tree model can reflect the plant dynamics, arising from interaction of different accident timing and plant condition and from the interaction between the operator action, mitigation system, and the indicators for operation, sequence tree model can be used to develop the dynamic event tree model easily. Target safety action for this study is a feed-and-bleed (F and B) operation. A F and B operation directly cools down the reactor cooling system (RCS) using the primary cooling system when residual heat removal by the secondary cooling system is not available. In this study, a TLOFW accident and a TLOFW accident with LOCA were the target accidents. Based on the conventional PSA model and indicators, the sequence tree model for a TLOFW accident was developed. If sampling analysis is performed, practical accident sequences can be identified based on the sequence analysis. If a realistic distribution for the variables can be obtained for sampling analysis, much more realistic accident sequences can be described. Moreover, if the initiating event frequency under a combined accident can be quantified, the sequence tree model can translate into a dynamic event tree model based on the sampling analysis results

  7. Sequence Tree Modeling for Combined Accident and Feed-and-Bleed Operation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Gyung; Kang Hyun Gook [KAIST, Daejeon (Korea, Republic of); Yoon, Ho Joon [Khalifa University of Science, Abu Dhabi (United Arab Emirates)

    2016-05-15

    In order to address this issue, this study suggests the sequence tree model to analyze accident sequence systematically. Using the sequence tree model, all possible scenarios which need a specific safety action to prevent the core damage can be identified and success conditions of safety action under complicated situation such as combined accident will be also identified. Sequence tree is branch model to divide plant condition considering the plant dynamics. Since sequence tree model can reflect the plant dynamics, arising from interaction of different accident timing and plant condition and from the interaction between the operator action, mitigation system, and the indicators for operation, sequence tree model can be used to develop the dynamic event tree model easily. Target safety action for this study is a feed-and-bleed (F and B) operation. A F and B operation directly cools down the reactor cooling system (RCS) using the primary cooling system when residual heat removal by the secondary cooling system is not available. In this study, a TLOFW accident and a TLOFW accident with LOCA were the target accidents. Based on the conventional PSA model and indicators, the sequence tree model for a TLOFW accident was developed. If sampling analysis is performed, practical accident sequences can be identified based on the sequence analysis. If a realistic distribution for the variables can be obtained for sampling analysis, much more realistic accident sequences can be described. Moreover, if the initiating event frequency under a combined accident can be quantified, the sequence tree model can translate into a dynamic event tree model based on the sampling analysis results.

  8. Examining inter-family differences in intra-family (parent-adolescent) dynamics using grid-sequence analysis.

    Science.gov (United States)

    Brinberg, Miriam; Fosco, Gregory M; Ram, Nilam

    2017-12-01

    Family systems theorists have forwarded a set of theoretical principles meant to guide family scientists and practitioners in their conceptualization of patterns of family interaction-intra-family dynamics-that, over time, give rise to family and individual dysfunction and/or adaptation. In this article, we present an analytic approach that merges state space grid methods adapted from the dynamic systems literature with sequence analysis methods adapted from molecular biology into a "grid-sequence" method for studying inter-family differences in intra-family dynamics. Using dyadic data from 86 parent-adolescent dyads who provided up to 21 daily reports about connectedness, we illustrate how grid-sequence analysis can be used to identify a typology of intrafamily dynamics and to inform theory about how specific types of intrafamily dynamics contribute to adolescent behavior problems and family members' mental health. Methodologically, grid-sequence analysis extends the toolbox of techniques for analysis of family experience sampling and daily diary data. Substantively, we identify patterns of family level microdynamics that may serve as new markers of risk/protective factors and potential points for intervention in families. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  9. Genome Sequence Databases (Overview): Sequencing and Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, Alla L.

    2009-01-01

    From the date its role in heredity was discovered, DNA has been generating interest among scientists from different fields of knowledge: physicists have studied the three dimensional structure of the DNA molecule, biologists tried to decode the secrets of life hidden within these long molecules, and technologists invent and improve methods of DNA analysis. The analysis of the nucleotide sequence of DNA occupies a special place among the methods developed. Thanks to the variety of sequencing technologies available, the process of decoding the sequence of genomic DNA (or whole genome sequencing) has become robust and inexpensive. Meanwhile the assembly of whole genome sequences remains a challenging task. In addition to the need to assemble millions of DNA fragments of different length (from 35 bp (Solexa) to 800 bp (Sanger)), great interest in analysis of microbial communities (metagenomes) of different complexities raises new problems and pushes some new requirements for sequence assembly tools to the forefront. The genome assembly process can be divided into two steps: draft assembly and assembly improvement (finishing). Despite the fact that automatically performed assembly (or draft assembly) is capable of covering up to 98% of the genome, in most cases, it still contains incorrectly assembled reads. The error rate of the consensus sequence produced at this stage is about 1/2000 bp. A finished genome represents the genome assembly of much higher accuracy (with no gaps or incorrectly assembled areas) and quality ({approx}1 error/10,000 bp), validated through a number of computer and laboratory experiments.

  10. Analysis of the Macaca mulatta transcriptome and the sequence divergence between Macaca and human.

    Science.gov (United States)

    Magness, Charles L; Fellin, P Campion; Thomas, Matthew J; Korth, Marcus J; Agy, Michael B; Proll, Sean C; Fitzgibbon, Matthew; Scherer, Christina A; Miner, Douglas G; Katze, Michael G; Iadonato, Shawn P

    2005-01-01

    We report the initial sequencing and comparative analysis of the Macaca mulatta transcriptome. Cloned sequences from 11 tissues, nine animals, and three species (M. mulatta, M. fascicularis, and M. nemestrina) were sampled, resulting in the generation of 48,642 sequence reads. These data represent an initial sampling of the putative rhesus orthologs for 6,216 human genes. Mean nucleotide diversity within M. mulatta and sequence divergence among M. fascicularis, M. nemestrina, and M. mulatta are also reported.

  11. Combined DECS Analysis and Next-Generation Sequencing Enable Efficient Detection of Novel Plant RNA Viruses

    Directory of Open Access Journals (Sweden)

    Hironobu Yanagisawa

    2016-03-01

    Full Text Available The presence of high molecular weight double-stranded RNA (dsRNA within plant cells is an indicator of infection with RNA viruses as these possess genomic or replicative dsRNA. DECS (dsRNA isolation, exhaustive amplification, cloning, and sequencing analysis has been shown to be capable of detecting unknown viruses. We postulated that a combination of DECS analysis and next-generation sequencing (NGS would improve detection efficiency and usability of the technique. Here, we describe a model case in which we efficiently detected the presumed genome sequence of Blueberry shoestring virus (BSSV, a member of the genus Sobemovirus, which has not so far been reported. dsRNAs were isolated from BSSV-infected blueberry plants using the dsRNA-binding protein, reverse-transcribed, amplified, and sequenced using NGS. A contig of 4,020 nucleotides (nt that shared similarities with sequences from other Sobemovirus species was obtained as a candidate of the BSSV genomic sequence. Reverse transcription (RT-PCR primer sets based on sequences from this contig enabled the detection of BSSV in all BSSV-infected plants tested but not in healthy controls. A recombinant protein encoded by the putative coat protein gene was bound by the BSSV-antibody, indicating that the candidate sequence was that of BSSV itself. Our results suggest that a combination of DECS analysis and NGS, designated here as “DECS-C,” is a powerful method for detecting novel plant viruses.

  12. ANCAC: amino acid, nucleotide, and codon analysis of COGs--a tool for sequence bias analysis in microbial orthologs.

    Science.gov (United States)

    Meiler, Arno; Klinger, Claudia; Kaufmann, Michael

    2012-09-08

    The COG database is the most popular collection of orthologous proteins from many different completely sequenced microbial genomes. Per definition, a cluster of orthologous groups (COG) within this database exclusively contains proteins that most likely achieve the same cellular function. Recently, the COG database was extended by assigning to every protein both the corresponding amino acid and its encoding nucleotide sequence resulting in the NUCOCOG database. This extended version of the COG database is a valuable resource connecting sequence features with the functionality of the respective proteins. Here we present ANCAC, a web tool and MySQL database for the analysis of amino acid, nucleotide, and codon frequencies in COGs on the basis of freely definable phylogenetic patterns. We demonstrate the usefulness of ANCAC by analyzing amino acid frequencies, codon usage, and GC-content in a species- or function-specific context. With respect to amino acids we, at least in part, confirm the cognate bias hypothesis by using ANCAC's NUCOCOG dataset as the largest one available for that purpose thus far. Using the NUCOCOG datasets, ANCAC connects taxonomic, amino acid, and nucleotide sequence information with the functional classification via COGs and provides a GUI for flexible mining for sequence-bias. Thereby, to our knowledge, it is the only tool for the analysis of sequence composition in the light of physiological roles and phylogenetic context without requirement of substantial programming-skills.

  13. sRNAnalyzer-a flexible and customizable small RNA sequencing data analysis pipeline.

    Science.gov (United States)

    Wu, Xiaogang; Kim, Taek-Kyun; Baxter, David; Scherler, Kelsey; Gordon, Aaron; Fong, Olivia; Etheridge, Alton; Galas, David J; Wang, Kai

    2017-12-01

    Although many tools have been developed to analyze small RNA sequencing (sRNA-Seq) data, it remains challenging to accurately analyze the small RNA population, mainly due to multiple sequence ID assignment caused by short read length. Additional issues in small RNA analysis include low consistency of microRNA (miRNA) measurement results across different platforms, miRNA mapping associated with miRNA sequence variation (isomiR) and RNA editing, and the origin of those unmapped reads after screening against all endogenous reference sequence databases. To address these issues, we built a comprehensive and customizable sRNA-Seq data analysis pipeline-sRNAnalyzer, which enables: (i) comprehensive miRNA profiling strategies to better handle isomiRs and summarization based on each nucleotide position to detect potential SNPs in miRNAs, (ii) different sequence mapping result assignment approaches to simulate results from microarray/qRT-PCR platforms and a local probabilistic model to assign mapping results to the most-likely IDs, (iii) comprehensive ribosomal RNA filtering for accurate mapping of exogenous RNAs and summarization based on taxonomy annotation. We evaluated our pipeline on both artificial samples (including synthetic miRNA and Escherichia coli cultures) and biological samples (human tissue and plasma). sRNAnalyzer is implemented in Perl and available at: http://srnanalyzer.systemsbiology.net/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. sRNAnalyzer—a flexible and customizable small RNA sequencing data analysis pipeline

    Science.gov (United States)

    Kim, Taek-Kyun; Baxter, David; Scherler, Kelsey; Gordon, Aaron; Fong, Olivia; Etheridge, Alton; Galas, David J.

    2017-01-01

    Abstract Although many tools have been developed to analyze small RNA sequencing (sRNA-Seq) data, it remains challenging to accurately analyze the small RNA population, mainly due to multiple sequence ID assignment caused by short read length. Additional issues in small RNA analysis include low consistency of microRNA (miRNA) measurement results across different platforms, miRNA mapping associated with miRNA sequence variation (isomiR) and RNA editing, and the origin of those unmapped reads after screening against all endogenous reference sequence databases. To address these issues, we built a comprehensive and customizable sRNA-Seq data analysis pipeline—sRNAnalyzer, which enables: (i) comprehensive miRNA profiling strategies to better handle isomiRs and summarization based on each nucleotide position to detect potential SNPs in miRNAs, (ii) different sequence mapping result assignment approaches to simulate results from microarray/qRT-PCR platforms and a local probabilistic model to assign mapping results to the most-likely IDs, (iii) comprehensive ribosomal RNA filtering for accurate mapping of exogenous RNAs and summarization based on taxonomy annotation. We evaluated our pipeline on both artificial samples (including synthetic miRNA and Escherichia coli cultures) and biological samples (human tissue and plasma). sRNAnalyzer is implemented in Perl and available at: http://srnanalyzer.systemsbiology.net/. PMID:29069500

  15. Comparative analysis of the prion protein gene sequences in African lion.

    Science.gov (United States)

    Wu, Chang-De; Pang, Wan-Yong; Zhao, De-Ming

    2006-10-01

    The prion protein gene of African lion (Panthera Leo) was first cloned and polymorphisms screened. The results suggest that the prion protein gene of eight African lions is highly homogenous. The amino acid sequences of the prion protein (PrP) of all samples tested were identical. Four single nucleotide polymorphisms (C42T, C81A, C420T, T600C) in the prion protein gene (Prnp) of African lion were found, but no amino acid substitutions. Sequence analysis showed that the higher homology is observed to felis catus AF003087 (96.7%) and to sheep number M31313.1 (96.2%) Genbank accessed. With respect to all the mammalian prion protein sequences compared, the African lion prion protein sequence has three amino acid substitutions. The homology might in turn affect the potential intermolecular interactions critical for cross species transmission of prion disease.

  16. Streaming support for data intensive cloud-based sequence analysis.

    Science.gov (United States)

    Issa, Shadi A; Kienzler, Romeo; El-Kalioby, Mohamed; Tonellato, Peter J; Wall, Dennis; Bruggmann, Rémy; Abouelhoda, Mohamed

    2013-01-01

    Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS) technology. Based on the concepts of "resources-on-demand" and "pay-as-you-go", scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client's site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation.

  17. Streaming Support for Data Intensive Cloud-Based Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Shadi A. Issa

    2013-01-01

    Full Text Available Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS technology. Based on the concepts of “resources-on-demand” and “pay-as-you-go”, scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client’s site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation.

  18. Streaming Support for Data Intensive Cloud-Based Sequence Analysis

    Science.gov (United States)

    Issa, Shadi A.; Kienzler, Romeo; El-Kalioby, Mohamed; Tonellato, Peter J.; Wall, Dennis; Bruggmann, Rémy; Abouelhoda, Mohamed

    2013-01-01

    Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS) technology. Based on the concepts of “resources-on-demand” and “pay-as-you-go”, scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client's site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation. PMID:23710461

  19. Whole genome sequence phylogenetic analysis of four Mexican rabies viruses isolated from cattle.

    Science.gov (United States)

    Bárcenas-Reyes, I; Loza-Rubio, E; Cantó-Alarcón, G J; Luna-Cozar, J; Enríquez-Vázquez, A; Barrón-Rodríguez, R J; Milián-Suazo, F

    2017-08-01

    Phylogenetic analysis of the rabies virus in molecular epidemiology has been traditionally performed on partial sequences of the genome, such as the N, G, and P genes; however, that approach raises concerns about the discriminatory power compared to whole genome sequencing. In this study we characterized four strains of the rabies virus isolated from cattle in Querétaro, Mexico by comparing the whole genome sequence to that of strains from the American, European and Asian continents. Four cattle brain samples positive to rabies and characterized as AgV11, genotype 1, were used in the study. A cDNA sequence was generated by reverse transcription PCR (RT-PCR) using oligo dT. cDNA samples were sequenced in an Illumina NextSeq 500 platform. The phylogenetic analysis was performed with MEGA 6.0. Minimum evolution phylogenetic trees were constructed with the Neighbor-Joining method and bootstrapped with 1000 replicates. Three large and seven small clusters were formed with the 26 sequences used. The largest cluster grouped strains from different species in South America: Brazil, and the French Guyana. The second cluster grouped five strains from Mexico. A Mexican strain reported in a different study was highly related to our four strains, suggesting common source of infection. The phylogenetic analysis shows that the type of host is different for the different regions in the American Continent; rabies is more related to bats. It was concluded that the rabies virus in central Mexico is genetically stable and that it is transmitted by the vampire bat Desmodus rotundus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Now And Next Generation Sequencing Techniques: Future of Sequence Analysis using Cloud Computing

    Directory of Open Access Journals (Sweden)

    Radhe Shyam Thakur

    2012-12-01

    Full Text Available Advancements in the field of sequencing techniques resulted in the huge sequenced data to be produced at a very faster rate. It is going cumbersome for the datacenter to maintain the databases. Data mining and sequence analysis approaches needs to analyze the databases several times to reach any efficient conclusion. To cope with such overburden on computer resources and to reach efficient and effective conclusions quickly, the virtualization of the resources and computation on pay as you go concept was introduced and termed as cloud computing. The datacenter’s hardware and software is collectively known as cloud which when available publicly is termed as public cloud. The datacenter’s resources are provided in a virtual mode to the clients via a service provider like Amazon, Google and Joyent which charges on pay as you go manner. The workload is shifted to the provider which is maintained by the required hardware and software upgradation. The service provider manages it by upgrading the requirements in the virtual mode. Basically a virtual environment is created according to the need of the user by taking permission from datacenter via internet, the task is performed and the environment is deleted after the task is over. In this discussion, we are focusing on the basics of cloud computing, the prerequisites and overall working of clouds. Furthermore, briefly the applications of cloud computing in biological systems, especially in comparative genomics, genome informatics and SNP detection with reference to traditional workflow are discussed.

  1. Next-generation sequence analysis of cancer xenograft models.

    Directory of Open Access Journals (Sweden)

    Fernando J Rossello

    Full Text Available Next-generation sequencing (NGS studies in cancer are limited by the amount, quality and purity of tissue samples. In this situation, primary xenografts have proven useful preclinical models. However, the presence of mouse-derived stromal cells represents a technical challenge to their use in NGS studies. We examined this problem in an established primary xenograft model of small cell lung cancer (SCLC, a malignancy often diagnosed from small biopsy or needle aspirate samples. Using an in silico strategy that assign reads according to species-of-origin, we prospectively compared NGS data from primary xenograft models with matched cell lines and with published datasets. We show here that low-coverage whole-genome analysis demonstrated remarkable concordance between published genome data and internal controls, despite the presence of mouse genomic DNA. Exome capture sequencing revealed that this enrichment procedure was highly species-specific, with less than 4% of reads aligning to the mouse genome. Human-specific expression profiling with RNA-Seq replicated array-based gene expression experiments, whereas mouse-specific transcript profiles correlated with published datasets from human cancer stroma. We conclude that primary xenografts represent a useful platform for complex NGS analysis in cancer research for tumours with limited sample resources, or those with prominent stromal cell populations.

  2. Analysis of Lithuanian Direct Investment into European Union Countries

    Directory of Open Access Journals (Sweden)

    Evelina Zigmantavičiūtė

    2015-05-01

    Full Text Available In this paper the valuation of macroeconomic factors influencing the Lithuanian direct investment into European Union was conducted. The problem of this paper is the different chosen macroeconomic factors influencing foreign direct investment. The object of this paper is Lithuanian direct investment. The methods of this paper include: comparative literature analysis, correlation regression analysis, paired regression analysis. After conducting a research of dependency of Lithuanian direct investment to EU countries from price changes, government sector income, gross domestic product, inflation, jobless rate results, it is found that gross domestic product and government sector income have the most influence on the changes of Lithuanian direct investment.

  3. Multilocus sequence analysis of phytopathogenic species of the genus Streptomyces

    Science.gov (United States)

    The identification and classification of species within the genus Streptomyces is difficult because there are presently 576 validly described species and this number increases every year. The value of the application of multilocus sequence analysis scheme to the systematics of Streptomyces species h...

  4. Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting

    Energy Technology Data Exchange (ETDEWEB)

    Winston Chen, C.H.; Taranenko, N.I.; Zhu, Y.F.; Chung, C.N.; Allman, S.L.

    1997-03-01

    Since laser mass spectrometry has the potential for achieving very fast DNA analysis, the authors recently applied it to DNA sequencing, DNA typing for fingerprinting, and DNA screening for disease diagnosis. Two different approaches for sequencing DNA have been successfully demonstrated. One is to sequence DNA with DNA ladders produced from Snager`s enzymatic method. The other is to do direct sequencing without DNA ladders. The need for quick DNA typing for identification purposes is critical for forensic application. The preliminary results indicate laser mass spectrometry can possibly be used for rapid DNA fingerprinting applications at a much lower cost than gel electrophoresis. Population screening for certain genetic disease can be a very efficient step to reducing medical costs through prevention. Since laser mass spectrometry can provide very fast DNA analysis, the authors applied laser mass spectrometry to disease diagnosis. Clinical samples with both base deletion and point mutation have been tested with complete success.

  5. Underground localization using dual magnetic field sequence measurement and pose graph SLAM for directional drilling

    International Nuclear Information System (INIS)

    Park, Byeolteo; Myung, Hyun

    2014-01-01

    With the development of unconventional gas, the technology of directional drilling has become more advanced. Underground localization is the key technique of directional drilling for real-time path following and system control. However, there are problems such as vibration, disconnection with external infrastructure, and magnetic field distortion. Conventional methods cannot solve these problems in real time or in various environments. In this paper, a novel underground localization algorithm using a re-measurement of the sequence of the magnetic field and pose graph SLAM (simultaneous localization and mapping) is introduced. The proposed algorithm exploits the property of the drilling system that the body passes through the previous pass. By comparing the recorded measurement from one magnetic sensor and the current re-measurement from another magnetic sensor, the proposed algorithm predicts the pose of the drilling system. The performance of the algorithm is validated through simulations and experiments. (paper)

  6. Underground localization using dual magnetic field sequence measurement and pose graph SLAM for directional drilling

    Science.gov (United States)

    Park, Byeolteo; Myung, Hyun

    2014-12-01

    With the development of unconventional gas, the technology of directional drilling has become more advanced. Underground localization is the key technique of directional drilling for real-time path following and system control. However, there are problems such as vibration, disconnection with external infrastructure, and magnetic field distortion. Conventional methods cannot solve these problems in real time or in various environments. In this paper, a novel underground localization algorithm using a re-measurement of the sequence of the magnetic field and pose graph SLAM (simultaneous localization and mapping) is introduced. The proposed algorithm exploits the property of the drilling system that the body passes through the previous pass. By comparing the recorded measurement from one magnetic sensor and the current re-measurement from another magnetic sensor, the proposed algorithm predicts the pose of the drilling system. The performance of the algorithm is validated through simulations and experiments.

  7. A Remote Direct Sequence Spread Spectrum Communications Lab Utilising the Emona DATEx

    Directory of Open Access Journals (Sweden)

    Cosmas Mwikirize

    2012-12-01

    Full Text Available Remote labs have become popular learning aids due to their versatility and considerable ease of utilisation as compared to their physical counterparts. At Makerere University, the remote labs are based on the standard Massachusetts Institute of Technology (MIT iLabs Shared Architecture (ISA - a scalable and generic platform. Presented in this paper is such a lab, addressing the key practical aspects of Direct Sequence Spread Spectrum (DSSS communication. The lab is built on the National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS with the Emona Digital and Analog Telecommunications Experimenter (DATEx add-on board. It also incorporates switching hardware. The lab facilitates real-time control of the equipment, with users able to set, manipulate and observe signal parameters in both the frequency and the time domains. Simulation and data Acquisition modes of the experiment are supported to provide a richer learning experience.

  8. Evolutionary analysis of hepatitis C virus gene sequences from 1953

    Science.gov (United States)

    Gray, Rebecca R.; Tanaka, Yasuhito; Takebe, Yutaka; Magiorkinis, Gkikas; Buskell, Zelma; Seeff, Leonard; Alter, Harvey J.; Pybus, Oliver G.

    2013-01-01

    Reconstructing the transmission history of infectious diseases in the absence of medical or epidemiological records often relies on the evolutionary analysis of pathogen genetic sequences. The precision of evolutionary estimates of epidemic history can be increased by the inclusion of sequences derived from ‘archived’ samples that are genetically distinct from contemporary strains. Historical sequences are especially valuable for viral pathogens that circulated for many years before being formally identified, including HIV and the hepatitis C virus (HCV). However, surprisingly few HCV isolates sampled before discovery of the virus in 1989 are currently available. Here, we report and analyse two HCV subgenomic sequences obtained from infected individuals in 1953, which represent the oldest genetic evidence of HCV infection. The pairwise genetic diversity between the two sequences indicates a substantial period of HCV transmission prior to the 1950s, and their inclusion in evolutionary analyses provides new estimates of the common ancestor of HCV in the USA. To explore and validate the evolutionary information provided by these sequences, we used a new phylogenetic molecular clock method to estimate the date of sampling of the archived strains, plus the dates of four more contemporary reference genomes. Despite the short fragments available, we conclude that the archived sequences are consistent with a proposed sampling date of 1953, although statistical uncertainty is large. Our cross-validation analyses suggest that the bias and low statistical power observed here likely arise from a combination of high evolutionary rate heterogeneity and an unstructured, star-like phylogeny. We expect that attempts to date other historical viruses under similar circumstances will meet similar problems. PMID:23938759

  9. Cloning and sequence analysis of cDNA coding for rat nucleolar protein C23

    International Nuclear Information System (INIS)

    Ghaffari, S.H.; Olson, M.O.J.

    1986-01-01

    Using synthetic oligonucleotides as primers and probes, the authors have isolated and sequenced cDNA clones encoding protein C23, a putative nucleolus organizer protein. Poly(A + ) RNA was isolated from rat Novikoff hepatoma cells and enriched in C23 mRNA by sucrose density gradient ultracentrifugation. Two deoxyoligonuleotides, a 48- and a 27-mer, were synthesized on the basis of amino acid sequence from the C-terminal half of protein C23 and cDNA sequence data from CHO cell protein. The 48-mer was used a primer for synthesis of cDNA which was then inserted into plasmid pUC9. Transformed bacterial colonies were screened by hybridization with 32 P labeled 27-mer. Two clones among 5000 gave a strong positive signal. Plasmid DNAs from these clones were purified and characterized by blotting and nucleotide sequence analysis. The length of C23 mRNA was estimated to be 3200 bases in a northern blot analysis. The sequence of a 267 b.p. insert shows high homology with the CHO cDNA with only 9 nucleotide differences and an identical amino acid sequence. These studies indicate that this region of the protein is highly conserved

  10. On avoided words, absent words, and their application to biological sequence analysis.

    Science.gov (United States)

    Almirantis, Yannis; Charalampopoulos, Panagiotis; Gao, Jia; Iliopoulos, Costas S; Mohamed, Manal; Pissis, Solon P; Polychronopoulos, Dimitris

    2017-01-01

    The deviation of the observed frequency of a word w from its expected frequency in a given sequence x is used to determine whether or not the word is avoided . This concept is particularly useful in DNA linguistic analysis. The value of the deviation of w , denoted by [Formula: see text], effectively characterises the extent of a word by its edge contrast in the context in which it occurs. A word w of length [Formula: see text] is a [Formula: see text]-avoided word in x if [Formula: see text], for a given threshold [Formula: see text]. Notice that such a word may be completely absent from x . Hence, computing all such words naïvely can be a very time-consuming procedure, in particular for large k . In this article, we propose an [Formula: see text]-time and [Formula: see text]-space algorithm to compute all [Formula: see text]-avoided words of length k in a given sequence of length n over a fixed-sized alphabet. We also present a time-optimal [Formula: see text]-time algorithm to compute all [Formula: see text]-avoided words (of any length) in a sequence of length n over an integer alphabet of size [Formula: see text]. In addition, we provide a tight asymptotic upper bound for the number of [Formula: see text]-avoided words over an integer alphabet and the expected length of the longest one. We make available an implementation of our algorithm. Experimental results, using both real and synthetic data, show the efficiency and applicability of our implementation in biological sequence analysis. The systematic search for avoided words is particularly useful for biological sequence analysis. We present a linear-time and linear-space algorithm for the computation of avoided words of length k in a given sequence x . We suggest a modification to this algorithm so that it computes all avoided words of x , irrespective of their length, within the same time complexity. We also present combinatorial results with regards to avoided words and absent words.

  11. SeqAn An efficient, generic C++ library for sequence analysis

    Directory of Open Access Journals (Sweden)

    Rausch Tobias

    2008-01-01

    Full Text Available Abstract Background The use of novel algorithmic techniques is pivotal to many important problems in life science. For example the sequencing of the human genome 1 would not have been possible without advanced assembly algorithms. However, owing to the high speed of technological progress and the urgent need for bioinformatics tools, there is a widening gap between state-of-the-art algorithmic techniques and the actual algorithmic components of tools that are in widespread use. Results To remedy this trend we propose the use of SeqAn, a library of efficient data types and algorithms for sequence analysis in computational biology. SeqAn comprises implementations of existing, practical state-of-the-art algorithmic components to provide a sound basis for algorithm testing and development. In this paper we describe the design and content of SeqAn and demonstrate its use by giving two examples. In the first example we show an application of SeqAn as an experimental platform by comparing different exact string matching algorithms. The second example is a simple version of the well-known MUMmer tool rewritten in SeqAn. Results indicate that our implementation is very efficient and versatile to use. Conclusion We anticipate that SeqAn greatly simplifies the rapid development of new bioinformatics tools by providing a collection of readily usable, well-designed algorithmic components which are fundamental for the field of sequence analysis. This leverages not only the implementation of new algorithms, but also enables a sound analysis and comparison of existing algorithms.

  12. NeSSM: a Next-generation Sequencing Simulator for Metagenomics.

    Directory of Open Access Journals (Sweden)

    Ben Jia

    Full Text Available BACKGROUND: Metagenomics can reveal the vast majority of microbes that have been missed by traditional cultivation-based methods. Due to its extremely wide range of application areas, fast metagenome sequencing simulation systems with high fidelity are in great demand to facilitate the development and comparison of metagenomics analysis tools. RESULTS: We present here a customizable metagenome simulation system: NeSSM (Next-generation Sequencing Simulator for Metagenomics. Combining complete genomes currently available, a community composition table, and sequencing parameters, it can simulate metagenome sequencing better than existing systems. Sequencing error models based on the explicit distribution of errors at each base and sequencing coverage bias are incorporated in the simulation. In order to improve the fidelity of simulation, tools are provided by NeSSM to estimate the sequencing error models, sequencing coverage bias and the community composition directly from existing metagenome sequencing data. Currently, NeSSM supports single-end and pair-end sequencing for both 454 and Illumina platforms. In addition, a GPU (graphics processing units version of NeSSM is also developed to accelerate the simulation. By comparing the simulated sequencing data from NeSSM with experimental metagenome sequencing data, we have demonstrated that NeSSM performs better in many aspects than existing popular metagenome simulators, such as MetaSim, GemSIM and Grinder. The GPU version of NeSSM is more than one-order of magnitude faster than MetaSim. CONCLUSIONS: NeSSM is a fast simulation system for high-throughput metagenome sequencing. It can be helpful to develop tools and evaluate strategies for metagenomics analysis and it's freely available for academic users at http://cbb.sjtu.edu.cn/~ccwei/pub/software/NeSSM.php.

  13. Algorithms for optimal sequencing of dynamic multileaf collimators

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, Srijit [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Sahni, Sartaj [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ranka, Sanjay [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States)

    2004-01-07

    Dynamic multileaf collimator (DMLC) intensity modulated radiation therapy (IMRT) is used to deliver intensity modulated beams using a multileaf collimator (MLC), with the leaves in motion. DMLC-IMRT requires the conversion of a radiation intensity map into a leaf sequence file that controls the movement of the MLC while the beam is on. It is imperative that the intensity map delivered using the leaf sequence file be as close as possible to the intensity map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf-sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf-sequencing algorithms for dynamic multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under the most common leaf movement constraints that include leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bi-directional movement of the MLC leaves.

  14. Algorithms for optimal sequencing of dynamic multileaf collimators

    International Nuclear Information System (INIS)

    Kamath, Srijit; Sahni, Sartaj; Palta, Jatinder; Ranka, Sanjay

    2004-01-01

    Dynamic multileaf collimator (DMLC) intensity modulated radiation therapy (IMRT) is used to deliver intensity modulated beams using a multileaf collimator (MLC), with the leaves in motion. DMLC-IMRT requires the conversion of a radiation intensity map into a leaf sequence file that controls the movement of the MLC while the beam is on. It is imperative that the intensity map delivered using the leaf sequence file be as close as possible to the intensity map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf-sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf-sequencing algorithms for dynamic multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under the most common leaf movement constraints that include leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bi-directional movement of the MLC leaves

  15. Evaluation of next generation sequencing for the analysis of Eimeria communities in wildlife.

    Science.gov (United States)

    Vermeulen, Elke T; Lott, Matthew J; Eldridge, Mark D B; Power, Michelle L

    2016-05-01

    Next-generation sequencing (NGS) techniques are well-established for studying bacterial communities but not yet for microbial eukaryotes. Parasite communities remain poorly studied, due in part to the lack of reliable and accessible molecular methods to analyse eukaryotic communities. We aimed to develop and evaluate a methodology to analyse communities of the protozoan parasite Eimeria from populations of the Australian marsupial Petrogale penicillata (brush-tailed rock-wallaby) using NGS. An oocyst purification method for small sample sizes and polymerase chain reaction (PCR) protocol for the 18S rRNA locus targeting Eimeria was developed and optimised prior to sequencing on the Illumina MiSeq platform. A data analysis approach was developed by modifying methods from bacterial metagenomics and utilising existing Eimeria sequences in GenBank. Operational taxonomic unit (OTU) assignment at a high similarity threshold (97%) was more accurate at assigning Eimeria contigs into Eimeria OTUs but at a lower threshold (95%) there was greater resolution between OTU consensus sequences. The assessment of two amplification PCR methods prior to Illumina MiSeq, single and nested PCR, determined that single PCR was more sensitive to Eimeria as more Eimeria OTUs were detected in single amplicons. We have developed a simple and cost-effective approach to a data analysis pipeline for community analysis of eukaryotic organisms using Eimeria communities as a model. The pipeline provides a basis for evaluation using other eukaryotic organisms and potential for diverse community analysis studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Sequence analysis of the N-acetyltransferase 2 gene (NAT2) among ...

    African Journals Online (AJOL)

    Yazun Bashir Jarrar

    2017-11-26

    Nov 26, 2017 ... Sequence analysis of the N-acetyltransferase 2 gene (NAT2) among Jordanian volunteers, Libyan. Journal of Medicine .... For molecular modeling of NAT2 protein, visualized ..... cal clustering. .... cular dynamics simulation.

  17. An analysis of multislot directional coupler

    International Nuclear Information System (INIS)

    Arai, Hiroyuki; Goto, Naohisa; Yamamoto, Takumi.

    1986-03-01

    This paper presents an analysis of multislot directional coupler for monitoring the gyrotron output. We solved the boundary value problem of the directional coupler to investigate the detailed effect of finite thickness slot and mutual coupling between slots. Numerical data of coupler design is presented for non-resonant a pair slot, and mode sensitivity in overmoded waveguide is also evaluated. (author)

  18. SNP Analysis and Whole Exome Sequencing: Their Application in the Analysis of a Consanguineous Pedigree Segregating Ataxia

    Directory of Open Access Journals (Sweden)

    Sarah L. Nickerson

    2015-10-01

    Full Text Available Autosomal recessive cerebellar ataxia encompasses a large and heterogeneous group of neurodegenerative disorders. We employed single nucleotide polymorphism (SNP analysis and whole exome sequencing to investigate a consanguineous Maori pedigree segregating ataxia. We identified a novel mutation in exon 10 of the SACS gene: c.7962T>G p.(Tyr2654*, establishing the diagnosis of autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS. Our findings expand both the genetic and phenotypic spectrum of this rare disorder, and highlight the value of high-density SNP analysis and whole exome sequencing as powerful and cost-effective tools in the diagnosis of genetically heterogeneous disorders such as the hereditary ataxias.

  19. Identifying Corneal Infections in Formalin-Fixed Specimens Using Next Generation Sequencing.

    Science.gov (United States)

    Li, Zhigang; Breitwieser, Florian P; Lu, Jennifer; Jun, Albert S; Asnaghi, Laura; Salzberg, Steven L; Eberhart, Charles G

    2018-01-01

    We test the ability of next-generation sequencing, combined with computational analysis, to identify a range of organisms causing infectious keratitis. This retrospective study evaluated 16 cases of infectious keratitis and four control corneas in formalin-fixed tissues from the pathology laboratory. Infectious cases also were analyzed in the microbiology laboratory using culture, polymerase chain reaction, and direct staining. Classified sequence reads were analyzed with two different metagenomics classification engines, Kraken and Centrifuge, and visualized using the Pavian software tool. Sequencing generated 20 to 46 million reads per sample. On average, 96% of the reads were classified as human, 0.3% corresponded to known vectors or contaminant sequences, 1.7% represented microbial sequences, and 2.4% could not be classified. The two computational strategies successfully identified the fungal, bacterial, and amoebal pathogens in most patients, including all four bacterial and mycobacterial cases, five of six fungal cases, three of three Acanthamoeba cases, and one of three herpetic keratitis cases. In several cases, additional potential pathogens also were identified. In one case with cytomegalovirus identified by Kraken and Centrifuge, the virus was confirmed by direct testing, while two where Staphylococcus aureus or cytomegalovirus were identified by Centrifuge but not Kraken could not be confirmed. Confirmation was not attempted for an additional three potential pathogens identified by Kraken and 11 identified by Centrifuge. Next generation sequencing combined with computational analysis can identify a wide range of pathogens in formalin-fixed corneal specimens, with potential applications in clinical diagnostics and research.

  20. Sequence analysis of DBL2β domain of vargene of Indonesian Plasmodium falciparum

    Science.gov (United States)

    Sulistyaningsih, E.; Romadhon, B. D.; Palupi, I.; Hidayah, F.; Dewi, R.; Prasetyo, A.

    2018-03-01

    Malaria is a major health problem in tropical countries including Indonesia. The most deadly agent is Plasmodium falciparum. In P. falciparum infection, PfEMP1 is supposed to play an important role in the pathogenesis of malaria. PfEMP1 is encoded by var gene family, it is a polymorphic protein where the extra-cellular portion contains of three distinct binding domains: Duffy binding-like (DBL), Cysteine-rich interdomain regions (CIDR) and C2. PfEMP1 varies in domain composition and binding specificity. The study explored the characteristic of Indonesian DBL2β-var genes and investigated its role to the malaria outcome. Twenty blood samples from clinically mild to severe malaria patients in Jember, East Java were collected for DNA extraction. Diagnosis was confirmed by Giemsa-stained thick blood smear. PCR was conducted using specific primer targeting on the full-length of DBL2ß and resulted approximately single band of 1,7 kb in a sample. This band was observed only from severe malaria sample. Sequence analysis directly from PCR product showed 74-99% similarities with previous sequences in Gene Bank. In conclusion, the DBL2β domain of vargene of Indonesian isolates was 1603 nucleotides in length and there was a possible association of the existence of DBL2β domain with the severity of malaria outcome.

  1. Reproducible analysis of sequencing-based RNA structure probing data with user-friendly tools

    DEFF Research Database (Denmark)

    Kielpinski, Lukasz Jan; Sidiropoulos, Nikos; Vinther, Jeppe

    2015-01-01

    time also made analysis of the data challenging for scientists without formal training in computational biology. Here, we discuss different strategies for data analysis of massive parallel sequencing-based structure-probing data. To facilitate reproducible and standardized analysis of this type of data...

  2. Comparative sequence analysis of Sordaria macrospora and Neurospora crassa as a means to improve genome annotation.

    Science.gov (United States)

    Nowrousian, Minou; Würtz, Christian; Pöggeler, Stefanie; Kück, Ulrich

    2004-03-01

    One of the most challenging parts of large scale sequencing projects is the identification of functional elements encoded in a genome. Recently, studies of genomes of up to six different Saccharomyces species have demonstrated that a comparative analysis of genome sequences from closely related species is a powerful approach to identify open reading frames and other functional regions within genomes [Science 301 (2003) 71, Nature 423 (2003) 241]. Here, we present a comparison of selected sequences from Sordaria macrospora to their corresponding Neurospora crassa orthologous regions. Our analysis indicates that due to the high degree of sequence similarity and conservation of overall genomic organization, S. macrospora sequence information can be used to simplify the annotation of the N. crassa genome.

  3. Isolation and sequence analysis of a cDNA clone encoding the fifth complement component

    DEFF Research Database (Denmark)

    Lundwall, Åke B; Wetsel, Rick A; Kristensen, Torsten

    1985-01-01

    DNA clone of 1.85 kilobase pairs was isolated. Hybridization of the mixed-sequence probe to the complementary strand of the plasmid insert and sequence analysis by the dideoxy method predicted the expected protein sequence of C5a (positions 1-12), amino-terminal to the anticipated priming site. The sequence......, subcloned into M13 mp8, and sequenced at random by the dideoxy technique, thereby generating a contiguous sequence of 1703 base pairs. This clone contained coding sequence for the C-terminal 262 amino acid residues of the beta-chain, the entire C5a fragment, and the N-terminal 98 residues of the alpha......'-chain. The 3' end of the clone had a polyadenylated tail preceded by a polyadenylation recognition site, a 3'-untranslated region, and base pairs homologous to the human Alu concensus sequence. Comparison of the derived partial human C5 protein sequence with that previously determined for murine C3 and human...

  4. Sequence analysis corresponding to the PPE and PE proteins in ...

    Indian Academy of Sciences (India)

    Unknown

    AB repeats; Mycobacterium tuberculosis genome; PE-PPE domain; PPE, PE proteins; sequence analysis; surface antigens. J. Biosci. | Vol. ... bacterium tuberculosis genomes resulted in the identification of a previously uncharacterized 225 amino acid- ...... Vega Lopez F, Brooks L A, Dockrell H M, De Smet K A,. Thompson ...

  5. Library Design-Facilitated High-Throughput Sequencing of Synthetic Peptide Libraries.

    Science.gov (United States)

    Vinogradov, Alexander A; Gates, Zachary P; Zhang, Chi; Quartararo, Anthony J; Halloran, Kathryn H; Pentelute, Bradley L

    2017-11-13

    A methodology to achieve high-throughput de novo sequencing of synthetic peptide mixtures is reported. The approach leverages shotgun nanoliquid chromatography coupled with tandem mass spectrometry-based de novo sequencing of library mixtures (up to 2000 peptides) as well as automated data analysis protocols to filter away incorrect assignments, noise, and synthetic side-products. For increasing the confidence in the sequencing results, mass spectrometry-friendly library designs were developed that enabled unambiguous decoding of up to 600 peptide sequences per hour while maintaining greater than 85% sequence identification rates in most cases. The reliability of the reported decoding strategy was additionally confirmed by matching fragmentation spectra for select authentic peptides identified from library sequencing samples. The methods reported here are directly applicable to screening techniques that yield mixtures of active compounds, including particle sorting of one-bead one-compound libraries and affinity enrichment of synthetic library mixtures performed in solution.

  6. Quantitative analysis of the anti-noise performance of an m-sequence in an electromagnetic method

    Science.gov (United States)

    Yuan, Zhe; Zhang, Yiming; Zheng, Qijia

    2018-02-01

    An electromagnetic method with a transmitted waveform coded by an m-sequence achieved better anti-noise performance compared to the conventional manner with a square-wave. The anti-noise performance of the m-sequence varied with multiple coding parameters; hence, a quantitative analysis of the anti-noise performance for m-sequences with different coding parameters was required to optimize them. This paper proposes the concept of an identification system, with the identified Earth impulse response obtained by measuring the system output with the input of the voltage response. A quantitative analysis of the anti-noise performance of the m-sequence was achieved by analyzing the amplitude-frequency response of the corresponding identification system. The effects of the coding parameters on the anti-noise performance are summarized by numerical simulation, and their optimization is further discussed in our conclusions; the validity of the conclusions is further verified by field experiment. The quantitative analysis method proposed in this paper provides a new insight into the anti-noise mechanism of the m-sequence, and could be used to evaluate the anti-noise performance of artificial sources in other time-domain exploration methods, such as the seismic method.

  7. EFL LEARNERS REPAIR SEQUENCE TYPES ANALYSIS AS PEER- ASSESSMENT IN ORAL PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Novia Trisanti

    2017-04-01

    Full Text Available There are certain concerns that EFL teacher needs to observe in assessing students oral performance, such as the amount of words which the learners utter, the grammatical errors that they make, the hesitation and certain expression that they produce. This paper attempts to give overview of research results using qualitative method which show the impacts of repair sequence types analysis on those elements needed to be observed as students peer and self-assessment to enhance their speaking ability. The subject was tertiary level learners of English Department, State University of Semarang, Indonesia in 2012. Concerning the repair types, there are four repair sequences as reviewed by Buckwalter (2001, they are Self-Initiated Self Repair (SISR, Self-Initiated Other Repair (SIOR, Other-Initiated Self Repair (OISR, and Other-Initiated Other Repair (OIOR. Having the repair sequences types anaysis, the students investigated the repair sequence of their peers while they performed in class conversation. The modified peer- assessment guideline as proposed by Brown (2004 was used in identifying, categorizing and classifying the types of repair sequences in their peers oral performance. While, the peer-assessment can be a valuable additional means to improve students speaking since it is one of the motives that drive peer- evaluation, along with peer- verification, also peer and self- enhancement. The analysis results were then interpreted to see whether there was significant finding related to the students’ oral performance enhancement.

  8. Sequencing and phylogenetic analysis of tobacco virus 2, a polerovirus from Nicotiana tabacum.

    Science.gov (United States)

    Zhou, Benguo; Wang, Fang; Zhang, Xuesong; Zhang, Lina; Lin, Huafeng

    2017-07-01

    The complete genome sequence of a new virus, provisionally named tobacco virus 2 (TV2), was determined and identified from leaves of tobacco (Nicotiana tabacum) exhibiting leaf mosaic, yellowing, and deformity, in Anhui Province, China. The genome sequence of TV2 comprises 5,979 nucleotides, with 87% nucleotide sequence identity to potato leafroll virus (PLRV). Its genome organization is similar to that of PLRV, containing six open reading frames (ORFs) that potentially encode proteins with putative functions in cell-to-cell movement and suppression of RNA silencing. Phylogenetic analysis of the nucleotide sequence placed TV2 alongside members of the genus Polerovirus in the family Luteoviridae. To the best our knowledge, this study is the first report of a complete genome sequence of a new polerovirus identified in tobacco.

  9. RNA2 of grapevine fanleaf virus: sequence analysis and coat protein cistron location.

    Science.gov (United States)

    Serghini, M A; Fuchs, M; Pinck, M; Reinbolt, J; Walter, B; Pinck, L

    1990-07-01

    The nucleotide sequence of the genomic RNA2 (3774 nucleotides) of grapevine fanleaf virus strain F13 was determined from overlapping cDNA clones and its genetic organization was deduced. Two rapid and efficient methods were used for cDNA cloning of the 5' region of RNA2. The complete sequence contained only one long open reading frame of 3555 nucleotides (1184 codons, 131K product). The analysis of the N-terminal sequence of purified coat protein (CP) and identification of its C-terminal residue have allowed the CP cistron to be precisely positioned within the polyprotein. The CP produced by proteolytic cleavage at the Arg/Gly site between residues 680 and 681 contains 504 amino acids (Mr 56019) and has hydrophobic properties. The Arg/Gly cleavage site deduced by N-terminal amino acid sequence analysis is the first for a nepovirus coat protein and for plant viruses expressing their genomic RNAs by polyprotein synthesis. Comparison of GFLV RNA2 with M RNA of cowpea mosaic comovirus and with RNA2 of two closely related nepoviruses, tomato black ring virus and Hungarian grapevine chrome mosaic virus, showed strong similarities among the 3' non-coding regions but less similarity among the 5' end non-coding sequences than reported among other nepovirus RNAs.

  10. Temporal characteristics of some aftershock sequences in Bulgaria

    Directory of Open Access Journals (Sweden)

    D. Solakov

    1999-06-01

    Full Text Available We apply statistical analysis to study the temporal distribution of aftershocks in aftershock sequences of five earthquakes which occurred in Bulgaria. We use the maximum likelihood method to estimate the parameters of the modified Omori formula for aftershock sequences which is directly based on a time series. We find that: the maximum likelihood estimates of the parameter p show a regional variation, with lower values of the decay rate in North Bulgaria; the modified Omori formula provides an appropriate representation of temporal variation of the aftershock activity in North Bulgaria; the aftershock sequences in South Bulgaria are best modeled by the combination of an ordinary aftershock sequence with secondary aftershock activity. A plot of the cumulative number of events versus the frequency-linearized time t clearly demonstrates a transition from aftershock to foreshock activity prior to the second 1986 Strazhitsa (North Bulgaria earthquake.

  11. Complete motif analysis of sequence requirements for translation initiation at non-AUG start codons.

    Science.gov (United States)

    Diaz de Arce, Alexander J; Noderer, William L; Wang, Clifford L

    2018-01-25

    The initiation of mRNA translation from start codons other than AUG was previously believed to be rare and of relatively low impact. More recently, evidence has suggested that as much as half of all translation initiation utilizes non-AUG start codons, codons that deviate from AUG by a single base. Furthermore, non-AUG start codons have been shown to be involved in regulation of expression and disease etiology. Yet the ability to gauge expression based on the sequence of a translation initiation site (start codon and its flanking bases) has been limited. Here we have performed a comprehensive analysis of translation initiation sites that utilize non-AUG start codons. By combining genetic-reporter, cell-sorting, and high-throughput sequencing technologies, we have analyzed the expression associated with all possible variants of the -4 to +4 positions of non-AUG translation initiation site motifs. This complete motif analysis revealed that 1) with the right sequence context, certain non-AUG start codons can generate expression comparable to that of AUG start codons, 2) sequence context affects each non-AUG start codon differently, and 3) initiation at non-AUG start codons is highly sensitive to changes in the flanking sequences. Complete motif analysis has the potential to be a key tool for experimental and diagnostic genomics. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Survey of methods for integrated sequence analysis with emphasis on man-machine interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kahlbom, U; Holmgren, P [RELCON, Stockholm (Sweden)

    1995-05-01

    This report presents a literature study concerning recently developed monotonic methodologies in the human reliability area. The work was performed by RELCON AB on commission by NKS/RAK-1, subproject 3. The topic of subproject 3 is `Integrated Sequence Analysis with Emphasis on Man-Machine Interaction`. The purpose with the study was to compile recently developed methodologies and to propose some of these methodologies for use in the sequence analysis task. The report describes mainly non-dynamic (monotonic) methodologies. One exception is HITLINE, which is a semi-dynamic method. Reference provides a summary of approaches to dynamic analysis of man-machine-interaction, and explains the differences between monotonic and dynamic methodologies. (au) 21 refs.

  13. Survey of methods for integrated sequence analysis with emphasis on man-machine interaction

    International Nuclear Information System (INIS)

    Kahlbom, U.; Holmgren, P.

    1995-05-01

    This report presents a literature study concerning recently developed monotonic methodologies in the human reliability area. The work was performed by RELCON AB on commission by NKS/RAK-1, subproject 3. The topic of subproject 3 is 'Integrated Sequence Analysis with Emphasis on Man-Machine Interaction'. The purpose with the study was to compile recently developed methodologies and to propose some of these methodologies for use in the sequence analysis task. The report describes mainly non-dynamic (monotonic) methodologies. One exception is HITLINE, which is a semi-dynamic method. Reference provides a summary of approaches to dynamic analysis of man-machine-interaction, and explains the differences between monotonic and dynamic methodologies. (au) 21 refs

  14. Massively parallel DNA sequencing facilitates diagnosis of patients with Usher syndrome type 1.

    Directory of Open Access Journals (Sweden)

    Hidekane Yoshimura

    Full Text Available Usher syndrome is an autosomal recessive disorder manifesting hearing loss, retinitis pigmentosa and vestibular dysfunction, and having three clinical subtypes. Usher syndrome type 1 is the most severe subtype due to its profound hearing loss, lack of vestibular responses, and retinitis pigmentosa that appears in prepuberty. Six of the corresponding genes have been identified, making early diagnosis through DNA testing possible, with many immediate and several long-term advantages for patients and their families. However, the conventional genetic techniques, such as direct sequence analysis, are both time-consuming and expensive. Targeted exon sequencing of selected genes using the massively parallel DNA sequencing technology will potentially enable us to systematically tackle previously intractable monogenic disorders and improve molecular diagnosis. Using this technique combined with direct sequence analysis, we screened 17 unrelated Usher syndrome type 1 patients and detected probable pathogenic variants in the 16 of them (94.1% who carried at least one mutation. Seven patients had the MYO7A mutation (41.2%, which is the most common type in Japanese. Most of the mutations were detected by only the massively parallel DNA sequencing. We report here four patients, who had probable pathogenic mutations in two different Usher syndrome type 1 genes, and one case of MYO7A/PCDH15 digenic inheritance. This is the first report of Usher syndrome mutation analysis using massively parallel DNA sequencing and the frequency of Usher syndrome type 1 genes in Japanese. Mutation screening using this technique has the power to quickly identify mutations of many causative genes while maintaining cost-benefit performance. In addition, the simultaneous mutation analysis of large numbers of genes is useful for detecting mutations in different genes that are possibly disease modifiers or of digenic inheritance.

  15. Massively parallel DNA sequencing facilitates diagnosis of patients with Usher syndrome type 1.

    Science.gov (United States)

    Yoshimura, Hidekane; Iwasaki, Satoshi; Nishio, Shin-Ya; Kumakawa, Kozo; Tono, Tetsuya; Kobayashi, Yumiko; Sato, Hiroaki; Nagai, Kyoko; Ishikawa, Kotaro; Ikezono, Tetsuo; Naito, Yasushi; Fukushima, Kunihiro; Oshikawa, Chie; Kimitsuki, Takashi; Nakanishi, Hiroshi; Usami, Shin-Ichi

    2014-01-01

    Usher syndrome is an autosomal recessive disorder manifesting hearing loss, retinitis pigmentosa and vestibular dysfunction, and having three clinical subtypes. Usher syndrome type 1 is the most severe subtype due to its profound hearing loss, lack of vestibular responses, and retinitis pigmentosa that appears in prepuberty. Six of the corresponding genes have been identified, making early diagnosis through DNA testing possible, with many immediate and several long-term advantages for patients and their families. However, the conventional genetic techniques, such as direct sequence analysis, are both time-consuming and expensive. Targeted exon sequencing of selected genes using the massively parallel DNA sequencing technology will potentially enable us to systematically tackle previously intractable monogenic disorders and improve molecular diagnosis. Using this technique combined with direct sequence analysis, we screened 17 unrelated Usher syndrome type 1 patients and detected probable pathogenic variants in the 16 of them (94.1%) who carried at least one mutation. Seven patients had the MYO7A mutation (41.2%), which is the most common type in Japanese. Most of the mutations were detected by only the massively parallel DNA sequencing. We report here four patients, who had probable pathogenic mutations in two different Usher syndrome type 1 genes, and one case of MYO7A/PCDH15 digenic inheritance. This is the first report of Usher syndrome mutation analysis using massively parallel DNA sequencing and the frequency of Usher syndrome type 1 genes in Japanese. Mutation screening using this technique has the power to quickly identify mutations of many causative genes while maintaining cost-benefit performance. In addition, the simultaneous mutation analysis of large numbers of genes is useful for detecting mutations in different genes that are possibly disease modifiers or of digenic inheritance.

  16. Stratigraphical analysis of the neoproterozoic sedimentary sequences of the Sao Francisco Basin

    International Nuclear Information System (INIS)

    Martins, Mariela; Lemos, Valesca Brasil

    2007-01-01

    A stratigraphic analysis was performed under the principles of Sequence Stratigraphy on the neoproterozoic sedimentary sequences of the Sao Francisco Basin (Central Brazil). Three periods of deposition separated by unconformities were recognized in the Sao Francisco Megasequence: (1) Sequences 1 and 2, a cryogenian glaciogenic sequence, followed by a distal scarp carbonate ramp, developed during stable conditions, (2) Sequence 3, a Upper Cryogenian stack homoclinal ramps with mixed carbonate-siliciclastic sedimentation, deposited under a progressive influence of compressional stresses of the Brasiliano Cycle, (3) Sequence 4, a Lower Ediacaran shallow platform dominated by siliciclastic sedimentation of molassic nature, the erosion product of the nearby uplifted thrust sheets. Each of the carbonate-bearing sequences presents a distinct δ 13 C isotopic signature. The superposition to the global curve for carbon isotopic variation allowed the recognition of a major depositional hiatus between the Paranoa and Sao Francisco Megasequences, and suggested that the glacial diamictite deposition (Jequitai Formation) took place most probably around 800 Ma. This constrains the Sao Francisco Megasequence deposition to the interval between 800 and 600 Ma (the known ages of the Brasiliano Orogeny defines the upper limit). A minor depositional hiatus (700.680 Ma) was also identified separating sequences 2 and 3. Isotopic analyses suggest that from then on, more restricted environmental conditions were established in the basin, probably associated with a first order global event, which prevailed throughout deposition of the Sequence 3. (author)

  17. Whole-Genome Sequencing and Variant Analysis of Human Papillomavirus 16 Infections.

    Science.gov (United States)

    van der Weele, Pascal; Meijer, Chris J L M; King, Audrey J

    2017-10-01

    Human papillomavirus (HPV) is a strongly conserved DNA virus, high-risk types of which can cause cervical cancer in persistent infections. The most common type found in HPV-attributable cancer is HPV16, which can be subdivided into four lineages (A to D) with different carcinogenic properties. Studies have shown HPV16 sequence diversity in different geographical areas, but only limited information is available regarding HPV16 diversity within a population, especially at the whole-genome level. We analyzed HPV16 major variant diversity and conservation in persistent infections and performed a single nucleotide polymorphism (SNP) comparison between persistent and clearing infections. Materials were obtained in the Netherlands from a cohort study with longitudinal follow-up for up to 3 years. Our analysis shows a remarkably large variant diversity in the population. Whole-genome sequences were obtained for 57 persistent and 59 clearing HPV16 infections, resulting in 109 unique variants. Interestingly, persistent infections were completely conserved through time. One reinfection event was identified where the initial and follow-up samples clustered differently. Non-A1/A2 variants seemed to clear preferentially ( P = 0.02). Our analysis shows that population-wide HPV16 sequence diversity is very large. In persistent infections, the HPV16 sequence was fully conserved. Sequencing can identify HPV16 reinfections, although occurrence is rare. SNP comparison identified no strongly acting effect of the viral genome affecting HPV16 infection clearance or persistence in up to 3 years of follow-up. These findings suggest the progression of an early HPV16 infection could be host related. IMPORTANCE Human papillomavirus 16 (HPV16) is the predominant type found in cervical cancer. Progression of initial infection to cervical cancer has been linked to sequence properties; however, knowledge of variants circulating in European populations, especially with longitudinal follow-up, is

  18. Genetic mutation analysis of human gastric adenocarcinomas using ion torrent sequencing platform.

    Directory of Open Access Journals (Sweden)

    Zhi Xu

    Full Text Available Gastric cancer is the one of the major causes of cancer-related death, especially in Asia. Gastric adenocarcinoma, the most common type of gastric cancer, is heterogeneous and its incidence and cause varies widely with geographical regions, gender, ethnicity, and diet. Since unique mutations have been observed in individual human cancer samples, identification and characterization of the molecular alterations underlying individual gastric adenocarcinomas is a critical step for developing more effective, personalized therapies. Until recently, identifying genetic mutations on an individual basis by DNA sequencing remained a daunting task. Recent advances in new next-generation DNA sequencing technologies, such as the semiconductor-based Ion Torrent sequencing platform, makes DNA sequencing cheaper, faster, and more reliable. In this study, we aim to identify genetic mutations in the genes which are targeted by drugs in clinical use or are under development in individual human gastric adenocarcinoma samples using Ion Torrent sequencing. We sequenced 737 loci from 45 cancer-related genes in 238 human gastric adenocarcinoma samples using the Ion Torrent Ampliseq Cancer Panel. The sequencing analysis revealed a high occurrence of mutations along the TP53 locus (9.7% in our sample set. Thus, this study indicates the utility of a cost and time efficient tool such as Ion Torrent sequencing to screen cancer mutations for the development of personalized cancer therapy.

  19. Estimation of physiological parameters using knowledge-based factor analysis of dynamic nuclear medicine image sequences

    International Nuclear Information System (INIS)

    Yap, J.T.; Chen, C.T.; Cooper, M.

    1995-01-01

    The authors have previously developed a knowledge-based method of factor analysis to analyze dynamic nuclear medicine image sequences. In this paper, the authors analyze dynamic PET cerebral glucose metabolism and neuroreceptor binding studies. These methods have shown the ability to reduce the dimensionality of the data, enhance the image quality of the sequence, and generate meaningful functional images and their corresponding physiological time functions. The new information produced by the factor analysis has now been used to improve the estimation of various physiological parameters. A principal component analysis (PCA) is first performed to identify statistically significant temporal variations and remove the uncorrelated variations (noise) due to Poisson counting statistics. The statistically significant principal components are then used to reconstruct a noise-reduced image sequence as well as provide an initial solution for the factor analysis. Prior knowledge such as the compartmental models or the requirement of positivity and simple structure can be used to constrain the analysis. These constraints are used to rotate the factors to the most physically and physiologically realistic solution. The final result is a small number of time functions (factors) representing the underlying physiological processes and their associated weighting images representing the spatial localization of these functions. Estimation of physiological parameters can then be performed using the noise-reduced image sequence generated from the statistically significant PCs and/or the final factor images and time functions. These results are compared to the parameter estimation using standard methods and the original raw image sequences. Graphical analysis was performed at the pixel level to generate comparable parametric images of the slope and intercept (influx constant and distribution volume)

  20. CloVR-Comparative: automated, cloud-enabled comparative microbial genome sequence analysis pipeline

    OpenAIRE

    Agrawal, Sonia; Arze, Cesar; Adkins, Ricky S.; Crabtree, Jonathan; Riley, David; Vangala, Mahesh; Galens, Kevin; Fraser, Claire M.; Tettelin, Herv?; White, Owen; Angiuoli, Samuel V.; Mahurkar, Anup; Fricke, W. Florian

    2017-01-01

    Background The benefit of increasing genomic sequence data to the scientific community depends on easy-to-use, scalable bioinformatics support. CloVR-Comparative combines commonly used bioinformatics tools into an intuitive, automated, and cloud-enabled analysis pipeline for comparative microbial genomics. Results CloVR-Comparative runs on annotated complete or draft genome sequences that are uploaded by the user or selected via a taxonomic tree-based user interface and downloaded from NCBI. ...

  1. Hunting down frame shifts: Ecological analysis of diverse functional gene sequences

    Directory of Open Access Journals (Sweden)

    Michal eStrejcek

    2015-11-01

    Full Text Available Functional gene ecological analyses using amplicon sequencing can be challenging as translated sequences are often burdened with shifted reading frames. The aim of this work was to evaluate several bioinformatics tools designed to correct errors which arise during sequencing in an effort to reduce the number of frame-shifts (FS. Genes encoding for alpha subunits of biphenyl (bphA and benzoate (benA dioxygenases were used as model sequences. FrameBot, a FS correction tool, was able to reduce the number of detected FS to zero. However, up to 43.1% of sequences were discarded by FrameBot as non-specific targets. Therefore, we proposed a de novo mode of FrameBot for FS correction, which works on a similar basis as common chimera identifying platforms and is not dependent on reference sequences. By nature of FrameBot de novo design, it is crucial to provide it with data as error free as possible. We tested the ability of several publicly available correction tools to decrease the number of errors in the data sets. The combination of Maximum Expected Error (MEE filtering and single linkage pre-clustering (SLP proved the most efficient read procession. Applying FrameBot de novo on the processed data enabled analysis of BphA sequences with minimal losses of potentially functional sequences not homologous to those previously known. This experiment also demonstrated the extensive diversity of dioxygenases in soil. A script which performs FrameBot de novo is presented in the supplementary material to the study and the tool was implemented into FunGene Pipeline available at http://fungene.cme.msu.edu/FunGenePipeline/ and https://github.com/rdpstaff/Framebot.

  2. Movement Pattern Analysis Based on Sequence Signatures

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Chavoshi

    2015-09-01

    Full Text Available Increased affordability and deployment of advanced tracking technologies have led researchers from various domains to analyze the resulting spatio-temporal movement data sets for the purpose of knowledge discovery. Two different approaches can be considered in the analysis of moving objects: quantitative analysis and qualitative analysis. This research focuses on the latter and uses the qualitative trajectory calculus (QTC, a type of calculus that represents qualitative data on moving point objects (MPOs, and establishes a framework to analyze the relative movement of multiple MPOs. A visualization technique called sequence signature (SESI is used, which enables to map QTC patterns in a 2D indexed rasterized space in order to evaluate the similarity of relative movement patterns of multiple MPOs. The applicability of the proposed methodology is illustrated by means of two practical examples of interacting MPOs: cars on a highway and body parts of a samba dancer. The results show that the proposed method can be effectively used to analyze interactions of multiple MPOs in different domains.

  3. Swab-to-Sequence: Real-time Data Analysis Platform for the Biomolecule Sequencer

    Data.gov (United States)

    National Aeronautics and Space Administration — DNA was successfully sequenced on the ISS in 2016, but the DNA sequenced was prepared on the ground. With FY’16 IRAD funds, the same team developed a...

  4. Different Somatic Hypermutation Levels among Antibody Subclasses Disclosed by a New Next-Generation Sequencing-Based Antibody Repertoire Analysis

    Directory of Open Access Journals (Sweden)

    Kazutaka Kitaura

    2017-05-01

    Full Text Available A diverse antibody repertoire is primarily generated by the rearrangement of V, D, and J genes and subsequent somatic hypermutation (SHM. Class-switch recombination (CSR produces various isotypes and subclasses with different functional properties. Although antibody isotypes and subclasses are considered to be produced by both direct and sequential CSR, it is still not fully understood how SHMs accumulate during the process in which antibody subclasses are generated. Here, we developed a new next-generation sequencing (NGS-based antibody repertoire analysis capable of identifying all antibody isotype and subclass genes and used it to examine the peripheral blood mononuclear cells of 12 healthy individuals. Using a total of 5,480,040 sequences, we compared percentage frequency of variable (V, junctional (J sequence, and a combination of V and J, diversity, length, and amino acid compositions of CDR3, SHM, and shared clones in the IgM, IgD, IgG3, IgG1, IgG2, IgG4, IgA1, IgE, and IgA2 genes. The usage and diversity were similar among the immunoglobulin (Ig subclasses. Clonally related sequences sharing identical V, D, J, and CDR3 amino acid sequences were frequently found within multiple Ig subclasses, especially between IgG1 and IgG2 or IgA1 and IgA2. SHM occurred most frequently in IgG4, while IgG3 genes were the least mutated among all IgG subclasses. The shared clones had almost the same SHM levels among Ig subclasses, while subclass-specific clones had different levels of SHM dependent on the genomic location. Given the sequential CSR, these results suggest that CSR occurs sequentially over multiple subclasses in the order corresponding to the genomic location of IGHCs, but CSR is likely to occur more quickly than SHMs accumulate within Ig genes under physiological conditions. NGS-based antibody repertoire analysis should provide critical information on how various antibodies are generated in the immune system.

  5. Direct detection of RNA in vitro and in situ by target-primed RCA: The impact of E. coli RNase III on the detection efficiency of RNA sequences distanced far from the 3'-end.

    Science.gov (United States)

    Merkiene, Egle; Gaidamaviciute, Edita; Riauba, Laurynas; Janulaitis, Arvydas; Lagunavicius, Arunas

    2010-08-01

    We improved the target RNA-primed RCA technique for direct detection and analysis of RNA in vitro and in situ. Previously we showed that the 3' --> 5' single-stranded RNA exonucleolytic activity of Phi29 DNA polymerase converts the target RNA into a primer and uses it for RCA initiation. However, in some cases, the single-stranded RNA exoribonucleolytic activity of the polymerase is hindered by strong double-stranded structures at the 3'-end of target RNAs. We demonstrate that in such hampered cases, the double-stranded RNA-specific Escherichia coli RNase III efficiently assists Phi29 DNA polymerase in converting the target RNA into a primer. These observations extend the target RNA-primed RCA possibilities to test RNA sequences distanced far from the 3'-end and customize this technique for the inner RNA sequence analysis.

  6. Cloning, analysis and functional annotation of expressed sequence tags from the Earthworm Eisenia fetida

    Science.gov (United States)

    Pirooznia, Mehdi; Gong, Ping; Guan, Xin; Inouye, Laura S; Yang, Kuan; Perkins, Edward J; Deng, Youping

    2007-01-01

    Background Eisenia fetida, commonly known as red wiggler or compost worm, belongs to the Lumbricidae family of the Annelida phylum. Little is known about its genome sequence although it has been extensively used as a test organism in terrestrial ecotoxicology. In order to understand its gene expression response to environmental contaminants, we cloned 4032 cDNAs or expressed sequence tags (ESTs) from two E. fetida libraries enriched with genes responsive to ten ordnance related compounds using suppressive subtractive hybridization-PCR. Results A total of 3144 good quality ESTs (GenBank dbEST accession number EH669363–EH672369 and EL515444–EL515580) were obtained from the raw clone sequences after cleaning. Clustering analysis yielded 2231 unique sequences including 448 contigs (from 1361 ESTs) and 1783 singletons. Comparative genomic analysis showed that 743 or 33% of the unique sequences shared high similarity with existing genes in the GenBank nr database. Provisional function annotation assigned 830 Gene Ontology terms to 517 unique sequences based on their homology with the annotated genomes of four model organisms Drosophila melanogaster, Mus musculus, Saccharomyces cerevisiae, and Caenorhabditis elegans. Seven percent of the unique sequences were further mapped to 99 Kyoto Encyclopedia of Genes and Genomes pathways based on their matching Enzyme Commission numbers. All the information is stored and retrievable at a highly performed, web-based and user-friendly relational database called EST model database or ESTMD version 2. Conclusion The ESTMD containing the sequence and annotation information of 4032 E. fetida ESTs is publicly accessible at . PMID:18047730

  7. Whole genome sequence analysis of Mycobacterium suricattae

    KAUST Repository

    Dippenaar, Anzaan; Parsons, Sven David Charles; Sampson, Samantha Leigh; Van Der Merwe, Ruben Gerhard; Drewe, Julian Ashley; Abdallah, Abdallah; Siame, Kabengele Keith; Gey Van Pittius, Nicolaas Claudius; Van Helden, Paul David; Pain, Arnab; Warren, Robin Mark

    2015-01-01

    Tuberculosis occurs in various mammalian hosts and is caused by a range of different lineages of the Mycobacterium tuberculosis complex (MTBC). A recently described member, Mycobacterium suricattae, causes tuberculosis in meerkats (Suricata suricatta) in Southern Africa and preliminary genetic analysis showed this organism to be closely related to an MTBC pathogen of rock hyraxes (Procavia capensis), the dassie bacillus. Here we make use of whole genome sequencing to describe the evolution of the genome of M. suricattae, including known and novel regions of difference, SNPs and IS6110 insertion sites. We used genome-wide phylogenetic analysis to show that M. suricattae clusters with the chimpanzee bacillus, previously isolated from a chimpanzee (Pan troglodytes) in West Africa. We propose an evolutionary scenario for the Mycobacterium africanum lineage 6 complex, showing the evolutionary relationship of M. africanum and chimpanzee bacillus, and the closely related members M. suricattae, dassie bacillus and Mycobacterium mungi.

  8. Whole genome sequence analysis of Mycobacterium suricattae

    KAUST Repository

    Dippenaar, Anzaan

    2015-10-21

    Tuberculosis occurs in various mammalian hosts and is caused by a range of different lineages of the Mycobacterium tuberculosis complex (MTBC). A recently described member, Mycobacterium suricattae, causes tuberculosis in meerkats (Suricata suricatta) in Southern Africa and preliminary genetic analysis showed this organism to be closely related to an MTBC pathogen of rock hyraxes (Procavia capensis), the dassie bacillus. Here we make use of whole genome sequencing to describe the evolution of the genome of M. suricattae, including known and novel regions of difference, SNPs and IS6110 insertion sites. We used genome-wide phylogenetic analysis to show that M. suricattae clusters with the chimpanzee bacillus, previously isolated from a chimpanzee (Pan troglodytes) in West Africa. We propose an evolutionary scenario for the Mycobacterium africanum lineage 6 complex, showing the evolutionary relationship of M. africanum and chimpanzee bacillus, and the closely related members M. suricattae, dassie bacillus and Mycobacterium mungi.

  9. Implementing reverse genetics in Rosaceae: analysis of T-DNA flanking sequences of insertional mutant lines in the diploid strawberry, Fragaria vesca.

    Science.gov (United States)

    Oosumi, Teruko; Ruiz-Rojas, Juan Jairo; Veilleux, Richard E; Dickerman, Allan; Shulaev, Vladimir

    2010-09-01

    Reverse genetics is used for functional genomics research in model plants. To establish a model system for the systematic reverse genetics research in the Rosaceae family, we analyzed genomic DNA flanking the T-DNA insertions in 191 transgenic plants of the diploid strawberry, Fragaria vesca. One hundred and seventy-six T-DNA flanking sequences were amplified from the right border (RB) and 37 from the left border (LB) by thermal asymmetric interlaced PCR. Analysis of the T-DNA nick positions revealed that T-DNA was most frequently nicked at the cleavage sites. Analysis of 11 T-DNA integration sites indicated that T-DNA was integrated into the F. vesca genome by illegitimate recombination, as reported in other model plants: Arabidopsis, rice and tobacco. First, deletion of DNA was found at T-DNA integration target sites in all transgenic plants tested. Second, microsimilarities of a few base pairs between the left and/or right ends of the T-DNA and genomic sites were found in all transgenic plants tested. Finally, filler DNA was identified in four break-points. Out of 191 transgenic plants, T-DNA flanking sequences of 79 plants (41%) showed significant similarity to genes, elements or proteins of other plant species and 67 (35%) of the sequences are still unknown strawberry gene fragments. T-DNA flanking sequences of 126 plants (66%) showed homology to plant ESTs. This is the first report of T-DNA integration in a sizeable population of a rosaceous species. We have shown in this paper that T-DNA integration in strawberry is not random but directed by sequence microsimilarities in the host genome.

  10. Systematic analysis of coding and noncoding DNA sequences using methods of statistical linguistics

    Science.gov (United States)

    Mantegna, R. N.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Peng, C. K.; Simons, M.; Stanley, H. E.

    1995-01-01

    We compare the statistical properties of coding and noncoding regions in eukaryotic and viral DNA sequences by adapting two tests developed for the analysis of natural languages and symbolic sequences. The data set comprises all 30 sequences of length above 50 000 base pairs in GenBank Release No. 81.0, as well as the recently published sequences of C. elegans chromosome III (2.2 Mbp) and yeast chromosome XI (661 Kbp). We find that for the three chromosomes we studied the statistical properties of noncoding regions appear to be closer to those observed in natural languages than those of coding regions. In particular, (i) a n-tuple Zipf analysis of noncoding regions reveals a regime close to power-law behavior while the coding regions show logarithmic behavior over a wide interval, while (ii) an n-gram entropy measurement shows that the noncoding regions have a lower n-gram entropy (and hence a larger "n-gram redundancy") than the coding regions. In contrast to the three chromosomes, we find that for vertebrates such as primates and rodents and for viral DNA, the difference between the statistical properties of coding and noncoding regions is not pronounced and therefore the results of the analyses of the investigated sequences are less conclusive. After noting the intrinsic limitations of the n-gram redundancy analysis, we also briefly discuss the failure of the zeroth- and first-order Markovian models or simple nucleotide repeats to account fully for these "linguistic" features of DNA. Finally, we emphasize that our results by no means prove the existence of a "language" in noncoding DNA.

  11. Plastome Sequence Determination and Comparative Analysis for Members of the Lolium-Festuca Grass Species Complex

    Science.gov (United States)

    Hand, Melanie L.; Spangenberg, German C.; Forster, John W.; Cogan, Noel O. I.

    2013-01-01

    Chloroplast genome sequences are of broad significance in plant biology, due to frequent use in molecular phylogenetics, comparative genomics, population genetics, and genetic modification studies. The present study used a second-generation sequencing approach to determine and assemble the plastid genomes (plastomes) of four representatives from the agriculturally important Lolium-Festuca species complex of pasture grasses (Lolium multiflorum, Festuca pratensis, Festuca altissima, and Festuca ovina). Total cellular DNA was extracted from either roots or leaves, was sequenced, and the output was filtered for plastome-related reads. A comparison between sources revealed fewer plastome-related reads from root-derived template but an increase in incidental bacterium-derived sequences. Plastome assembly and annotation indicated high levels of sequence identity and a conserved organization and gene content between species. However, frequent deletions within the F. ovina plastome appeared to contribute to a smaller plastid genome size. Comparative analysis with complete plastome sequences from other members of the Poaceae confirmed conservation of most grass-specific features. Detailed analysis of the rbcL–psaI intergenic region, however, revealed a “hot-spot” of variation characterized by independent deletion events. The evolutionary implications of this observation are discussed. The complete plastome sequences are anticipated to provide the basis for potential organelle-specific genetic modification of pasture grasses. PMID:23550121

  12. CloVR: a virtual machine for automated and portable sequence analysis from the desktop using cloud computing.

    Science.gov (United States)

    Angiuoli, Samuel V; Matalka, Malcolm; Gussman, Aaron; Galens, Kevin; Vangala, Mahesh; Riley, David R; Arze, Cesar; White, James R; White, Owen; Fricke, W Florian

    2011-08-30

    Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing.

  13. The evolution and utility of ribosomal ITS sequences in Bambusinae ...

    Indian Academy of Sciences (India)

    2012-08-09

    Aug 9, 2012 ... both direct sequencing and cloning of PCR products were used for ITS analysis, with only one clone ... woody bamboos belonging to this subtribe. The recent availability of molecular data enabled tax- ..... Gigantochloa species occur mainly in Malaysia, and they can be distinguished upon flowering by the ...

  14. Seismic analysis of clinoform depositional sequences and shelf-margin trajectories in Lower Cretaceous (Albian) strata, Alaska North Slope

    Science.gov (United States)

    Houseknecht, D.W.; Bird, K.J.; Schenk, C.J.

    2009-01-01

    Lower Cretaceous strata beneath the Alaska North Slope include clinoform depositional sequences that filled the western Colville foreland basin and overstepped the Beaufort rift shoulder. Analysis of Albian clinoform sequences with two-dimensional (2D) seismic data resulted in the recognition of seismic facies inferred to represent lowstand, transgressive and highstand systems tracts. These are stacked to produce shelf-margin trajectories that appear in low-resolution seismic data to alternate between aggradational and progradational. Higher-resolution seismic data reveal shelf-margin trajectories that are more complex, particularly in net-aggradational areas, where three patterns commonly are observed: (1) a negative (downward) step across the sequence boundary followed by mostly aggradation in the lowstand systems tract (LST), (2) a positive (upward) step across the sequence boundary followed by mostly progradation in the LST and (3) an upward backstep across a mass-failure d??collement. These different shelf-margin trajectories are interpreted as (1) fall of relative sea level below the shelf edge, (2) fall of relative sea level to above the shelf edge and (3) mass-failure removal of shelf-margin sediment. Lowstand shelf margins mapped using these criteria are oriented north-south in the foreland basin, indicating longitudinal filling from west to east. The shelf margins turn westward in the north, where the clinoform depositional system overstepped the rift shoulder, and turn eastward in the south, suggesting progradation of depositional systems from the ancestral Brooks Range into the foredeep. Lowstand shelf-margin orientations are consistently perpendicular to clinoform-foreset-dip directions. Although the Albian clinoform sequences of the Alaska North Slope are generally similar in stratal geometry to clinoform sequences elsewhere, they are significantly thicker. Clinoform-sequence thickness ranges from 600-1000 m in the north to 1700-2000 m in the south

  15. Whole-genome sequencing and genetic variant analysis of a Quarter Horse mare.

    KAUST Repository

    Doan, Ryan; Cohen, Noah D; Sawyer, Jason; Ghaffari, Noushin; Johnson, Charlie D; Dindot, Scott V

    2012-01-01

    BACKGROUND: The catalog of genetic variants in the horse genome originates from a few select animals, the majority originating from the Thoroughbred mare used for the equine genome sequencing project. The purpose of this study was to identify genetic variants, including single nucleotide polymorphisms (SNPs), insertion/deletion polymorphisms (INDELs), and copy number variants (CNVs) in the genome of an individual Quarter Horse mare sequenced by next-generation sequencing. RESULTS: Using massively parallel paired-end sequencing, we generated 59.6 Gb of DNA sequence from a Quarter Horse mare resulting in an average of 24.7X sequence coverage. Reads were mapped to approximately 97% of the reference Thoroughbred genome. Unmapped reads were de novo assembled resulting in 19.1 Mb of new genomic sequence in the horse. Using a stringent filtering method, we identified 3.1 million SNPs, 193 thousand INDELs, and 282 CNVs. Genetic variants were annotated to determine their impact on gene structure and function. Additionally, we genotyped this Quarter Horse for mutations of known diseases and for variants associated with particular traits. Functional clustering analysis of genetic variants revealed that most of the genetic variation in the horse's genome was enriched in sensory perception, signal transduction, and immunity and defense pathways. CONCLUSIONS: This is the first sequencing of a horse genome by next-generation sequencing and the first genomic sequence of an individual Quarter Horse mare. We have increased the catalog of genetic variants for use in equine genomics by the addition of novel SNPs, INDELs, and CNVs. The genetic variants described here will be a useful resource for future studies of genetic variation regulating performance traits and diseases in equids.

  16. Whole-genome sequencing and genetic variant analysis of a Quarter Horse mare.

    KAUST Repository

    Doan, Ryan

    2012-02-17

    BACKGROUND: The catalog of genetic variants in the horse genome originates from a few select animals, the majority originating from the Thoroughbred mare used for the equine genome sequencing project. The purpose of this study was to identify genetic variants, including single nucleotide polymorphisms (SNPs), insertion/deletion polymorphisms (INDELs), and copy number variants (CNVs) in the genome of an individual Quarter Horse mare sequenced by next-generation sequencing. RESULTS: Using massively parallel paired-end sequencing, we generated 59.6 Gb of DNA sequence from a Quarter Horse mare resulting in an average of 24.7X sequence coverage. Reads were mapped to approximately 97% of the reference Thoroughbred genome. Unmapped reads were de novo assembled resulting in 19.1 Mb of new genomic sequence in the horse. Using a stringent filtering method, we identified 3.1 million SNPs, 193 thousand INDELs, and 282 CNVs. Genetic variants were annotated to determine their impact on gene structure and function. Additionally, we genotyped this Quarter Horse for mutations of known diseases and for variants associated with particular traits. Functional clustering analysis of genetic variants revealed that most of the genetic variation in the horse\\'s genome was enriched in sensory perception, signal transduction, and immunity and defense pathways. CONCLUSIONS: This is the first sequencing of a horse genome by next-generation sequencing and the first genomic sequence of an individual Quarter Horse mare. We have increased the catalog of genetic variants for use in equine genomics by the addition of novel SNPs, INDELs, and CNVs. The genetic variants described here will be a useful resource for future studies of genetic variation regulating performance traits and diseases in equids.

  17. Masking as an effective quality control method for next-generation sequencing data analysis.

    Science.gov (United States)

    Yun, Sajung; Yun, Sijung

    2014-12-13

    Next generation sequencing produces base calls with low quality scores that can affect the accuracy of identifying simple nucleotide variation calls, including single nucleotide polymorphisms and small insertions and deletions. Here we compare the effectiveness of two data preprocessing methods, masking and trimming, and the accuracy of simple nucleotide variation calls on whole-genome sequence data from Caenorhabditis elegans. Masking substitutes low quality base calls with 'N's (undetermined bases), whereas trimming removes low quality bases that results in a shorter read lengths. We demonstrate that masking is more effective than trimming in reducing the false-positive rate in single nucleotide polymorphism (SNP) calling. However, both of the preprocessing methods did not affect the false-negative rate in SNP calling with statistical significance compared to the data analysis without preprocessing. False-positive rate and false-negative rate for small insertions and deletions did not show differences between masking and trimming. We recommend masking over trimming as a more effective preprocessing method for next generation sequencing data analysis since masking reduces the false-positive rate in SNP calling without sacrificing the false-negative rate although trimming is more commonly used currently in the field. The perl script for masking is available at http://code.google.com/p/subn/. The sequencing data used in the study were deposited in the Sequence Read Archive (SRX450968 and SRX451773).

  18. Novel algorithms for protein sequence analysis

    NARCIS (Netherlands)

    Ye, Kai

    2008-01-01

    Each protein is characterized by its unique sequential order of amino acids, the so-called protein sequence. Biology”s paradigm is that this order of amino acids determines the protein”s architecture and function. In this thesis, we introduce novel algorithms to analyze protein sequences. Chapter 1

  19. De novo transcriptome sequence assembly from coconut leaves and seeds with a focus on factors involved in RNA-directed DNA methylation.

    Science.gov (United States)

    Huang, Ya-Yi; Lee, Chueh-Pai; Fu, Jason L; Chang, Bill Chia-Han; Matzke, Antonius J M; Matzke, Marjori

    2014-09-04

    Coconut palm (Cocos nucifera) is a symbol of the tropics and a source of numerous edible and nonedible products of economic value. Despite its nutritional and industrial significance, coconut remains under-represented in public repositories for genomic and transcriptomic data. We report de novo transcript assembly from RNA-seq data and analysis of gene expression in seed tissues (embryo and endosperm) and leaves of a dwarf coconut variety. Assembly of 10 GB sequencing data for each tissue resulted in 58,211 total unigenes in embryo, 61,152 in endosperm, and 33,446 in leaf. Within each unigene pool, 24,857 could be annotated in embryo, 29,731 could be annotated in endosperm, and 26,064 could be annotated in leaf. A KEGG analysis identified 138, 138, and 139 pathways, respectively, in transcriptomes of embryo, endosperm, and leaf tissues. Given the extraordinarily large size of coconut seeds and the importance of small RNA-mediated epigenetic regulation during seed development in model plants, we used homology searches to identify putative homologs of factors required for RNA-directed DNA methylation in coconut. The findings suggest that RNA-directed DNA methylation is important during coconut seed development, particularly in maturing endosperm. This dataset will expand the genomics resources available for coconut and provide a foundation for more detailed analyses that may assist molecular breeding strategies aimed at improving this major tropical crop. Copyright © 2014 Huang et al.

  20. In Silico Genome Comparison and Distribution Analysis of Simple Sequences Repeats in Cassava

    Directory of Open Access Journals (Sweden)

    Andrea Vásquez

    2014-01-01

    Full Text Available We conducted a SSRs density analysis in different cassava genomic regions. The information obtained was useful to establish comparisons between cassava’s SSRs genomic distribution and those of poplar, flax, and Jatropha. In general, cassava has a low SSR density (~50 SSRs/Mbp and has a high proportion of pentanucleotides, (24,2 SSRs/Mbp. It was found that coding sequences have 15,5 SSRs/Mbp, introns have 82,3 SSRs/Mbp, 5′ UTRs have 196,1 SSRs/Mbp, and 3′ UTRs have 50,5 SSRs/Mbp. Through motif analysis of cassava’s genome SSRs, the most abundant motif was AT/AT while in intron sequences and UTRs regions it was AG/CT. In addition, in coding sequences the motif AAG/CTT was also found to occur most frequently; in fact, it is the third most used codon in cassava. Sequences containing SSRs were classified according to their functional annotation of Gene Ontology categories. The identified SSRs here may be a valuable addition for genetic mapping and future studies in phylogenetic analyses and genomic evolution.

  1. Implementation of Cloud based next generation sequencing data analysis in a clinical laboratory.

    Science.gov (United States)

    Onsongo, Getiria; Erdmann, Jesse; Spears, Michael D; Chilton, John; Beckman, Kenneth B; Hauge, Adam; Yohe, Sophia; Schomaker, Matthew; Bower, Matthew; Silverstein, Kevin A T; Thyagarajan, Bharat

    2014-05-23

    The introduction of next generation sequencing (NGS) has revolutionized molecular diagnostics, though several challenges remain limiting the widespread adoption of NGS testing into clinical practice. One such difficulty includes the development of a robust bioinformatics pipeline that can handle the volume of data generated by high-throughput sequencing in a cost-effective manner. Analysis of sequencing data typically requires a substantial level of computing power that is often cost-prohibitive to most clinical diagnostics laboratories. To address this challenge, our institution has developed a Galaxy-based data analysis pipeline which relies on a web-based, cloud-computing infrastructure to process NGS data and identify genetic variants. It provides additional flexibility, needed to control storage costs, resulting in a pipeline that is cost-effective on a per-sample basis. It does not require the usage of EBS disk to run a sample. We demonstrate the validation and feasibility of implementing this bioinformatics pipeline in a molecular diagnostics laboratory. Four samples were analyzed in duplicate pairs and showed 100% concordance in mutations identified. This pipeline is currently being used in the clinic and all identified pathogenic variants confirmed using Sanger sequencing further validating the software.

  2. Microarray and cDNA sequence analysis of transcription during nerve-dependent limb regeneration

    Directory of Open Access Journals (Sweden)

    Bryant Susan V

    2009-01-01

    Full Text Available Abstract Background Microarray analysis and 454 cDNA sequencing were used to investigate a centuries-old problem in regenerative biology: the basis of nerve-dependent limb regeneration in salamanders. Innervated (NR and denervated (DL forelimbs of Mexican axolotls were amputated and transcripts were sampled after 0, 5, and 14 days of regeneration. Results Considerable similarity was observed between NR and DL transcriptional programs at 5 and 14 days post amputation (dpa. Genes with extracellular functions that are critical to wound healing were upregulated while muscle-specific genes were downregulated. Thus, many processes that are regulated during early limb regeneration do not depend upon nerve-derived factors. The majority of the transcriptional differences between NR and DL limbs were correlated with blastema formation; cell numbers increased in NR limbs after 5 dpa and this yielded distinct transcriptional signatures of cell proliferation in NR limbs at 14 dpa. These transcriptional signatures were not observed in DL limbs. Instead, gene expression changes within DL limbs suggest more diverse and protracted wound-healing responses. 454 cDNA sequencing complemented the microarray analysis by providing deeper sampling of transcriptional programs and associated biological processes. Assembly of new 454 cDNA sequences with existing expressed sequence tag (EST contigs from the Ambystoma EST database more than doubled (3935 to 9411 the number of non-redundant human-A. mexicanum orthologous sequences. Conclusion Many new candidate gene sequences were discovered for the first time and these will greatly enable future studies of wound healing, epigenetics, genome stability, and nerve-dependent blastema formation and outgrowth using the axolotl model.

  3. The complete chloroplast genome sequence of Taxus chinensis var. mairei (Taxaceae): loss of an inverted repeat region and comparative analysis with related species.

    Science.gov (United States)

    Zhang, Yanzhen; Ma, Ji; Yang, Bingxian; Li, Ruyi; Zhu, Wei; Sun, Lianli; Tian, Jingkui; Zhang, Lin

    2014-05-01

    Taxus chinensis var. mairei (Taxaceae) is a domestic variety of yew species in local China. This plant is one of the sources for paclitaxel, which is a promising antineoplastic chemotherapy drugs during the last decade. We have sequenced the complete nucleotide sequence of the chloroplast (cp) genome of T. chinensis var. mairei. The T. chinensis var. mairei cp genome is 129,513 bp in length, with 113 single copy genes and two duplicated genes (trnI-CAU, trnQ-UUG). Among the 113 single copy genes, 9 are intron-containing. Compared to other land plant cp genomes, the T. chinensis var. mairei cp genome has lost one of the large inverted repeats (IRs) found in angiosperms, fern, liverwort, and gymnosperm such as Cycas revoluta and Ginkgo biloba L. Compared to related species, the gene order of T. chinensis var. mairei has a large inversion of ~110kb including 91 genes (from rps18 to accD) with gene contents unarranged. Repeat analysis identified 48 direct and 2 inverted repeats 30 bp long or longer with a sequence identity greater than 90%. Repeated short segments were found in genes rps18, rps19 and clpP. Analysis also revealed 22 simple sequence repeat (SSR) loci and almost all are composed of A or T. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Mechanisms and direction of allocation bias in randomised clinical trials

    DEFF Research Database (Denmark)

    Paludan-Müller, Asger; Teindl Laursen, David Ruben; Hróbjartsson, A.

    2016-01-01

    clinical trials. Methods: Two systematic reviews and a theoretical analysis. We conducted one systematic review of empirical studies of motives/methods for deciphering patient allocation sequences; and another review of methods publications commenting on allocation bias. We theoretically analysed...... the mechanisms of allocation bias and hypothesised which main factors predicts its direction. Results: Three empirical studies addressed motives/methods for deciphering allocation sequences. Main motives included ensuring best care for patients and ensuring best outcome for the trial. Main methods included...... various manipulations with randomisation envelopes. Out of 57 methods publications 11 (19 %) mentioned explicitly that allocation bias can go in either direction. We hypothesised that the direction of allocation bias is mainly decided by the interaction between the patient allocators’ motives...

  5. Analysis of foreign direct investment in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Marcela Domesová

    2011-01-01

    Full Text Available The foreign direct investments are joined with the process of world globalisation. Foreign direct investments are carried out especially by multinational companies. The basic forms of the foreign direct investments are “greenfield” investments and “brownfield“ investments in the form of the privatization. The Czech Republic has shown mass inflow of foreign direct investments since 1998. The aim of the paper is to evaluate the inflow of foreign direct investments in the context of the balance of payments and the evaluation their impact on the outside economic equilibrium and gross value added in the Czech Republic. The subject of the analysis is the identification of the most important factors of foreign direct investments inflow and the classification of foreign direct investments inflow from the point of view of branches and technological intensity of production as well. The aim is fulfilled by analysis of selected indicators of the balance of payments, analysis of gross value added and international comparison of foreign direct investments inflow in countries of Visegrad Group. The results show the part of privatization in foreign capital inflow, increasing import intensity and export efficiency linked with foreign direct investments. The results are subject of research focused on the process of world globalisation and regional development.

  6. Direct detection of hemophilia B F9 gene mutation using multiplex PCR and conformation sensitive gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Ki Young Yoo

    2010-03-01

    Full Text Available Purpose : The F9 gene is known to be the causative gene for hemophilia B, but unfortunately the detection rate for restriction fragment length polymorphism-based linkage analysis is only 55.6%. Direct DNA sequencing can detect 98% of mutations, but this alternative procedure is very costly. Here, we conducted multiplex polymerase chain reactions (PCRs and conformation sensitive gel electrophoresis (CSGE to perform a screened DNA sequencing for the F9 gene, and we compared the results with direct sequencing in terms of accuracy, cost, simplicity, and time consumption. Methods : A total of 27 unrelated hemophilia B patients were enrolled. Direct DNA sequencing was performed for 27 patients by a separate institute, and multiplex PCR-CSGE screened sequencing was done in our laboratory. Results of the direct DNA sequencing were used as a reference, to which the results of the multiplex PCR-CSGE screened sequencing were compared. For the patients whose mutation was not detected by the 2 methods, multiplex ligation-dependent probe amplification (MLPA was conducted. Results : With direct sequencing, the mutations could be identified from 26 patients (96.3%, whereas for multiplex PCR- CSGE screened sequencing, the mutations could be detected in 23 (85.2%. One patient’s mutation was identified by MLPA. A total of 21 different mutations were found among the 27 patients. Conclusion : Multiplex PCR-CSGE screened DNA sequencing detected 88.9% of mutations and reduced costs by 55.7% compared with direct DNA sequencing. However, it was more labor-intensive and time-consuming.

  7. HTSstation: a web application and open-access libraries for high-throughput sequencing data analysis.

    Science.gov (United States)

    David, Fabrice P A; Delafontaine, Julien; Carat, Solenne; Ross, Frederick J; Lefebvre, Gregory; Jarosz, Yohan; Sinclair, Lucas; Noordermeer, Daan; Rougemont, Jacques; Leleu, Marion

    2014-01-01

    The HTSstation analysis portal is a suite of simple web forms coupled to modular analysis pipelines for various applications of High-Throughput Sequencing including ChIP-seq, RNA-seq, 4C-seq and re-sequencing. HTSstation offers biologists the possibility to rapidly investigate their HTS data using an intuitive web application with heuristically pre-defined parameters. A number of open-source software components have been implemented and can be used to build, configure and run HTS analysis pipelines reactively. Besides, our programming framework empowers developers with the possibility to design their own workflows and integrate additional third-party software. The HTSstation web application is accessible at http://htsstation.epfl.ch.

  8. Comparison of Boolean analysis and standard phylogenetic methods using artificially evolved and natural mt-tRNA sequences from great apes.

    Science.gov (United States)

    Ari, Eszter; Ittzés, Péter; Podani, János; Thi, Quynh Chi Le; Jakó, Eena

    2012-04-01

    Boolean analysis (or BOOL-AN; Jakó et al., 2009. BOOL-AN: A method for comparative sequence analysis and phylogenetic reconstruction. Mol. Phylogenet. Evol. 52, 887-97.), a recently developed method for sequence comparison uses the Iterative Canonical Form of Boolean functions. It considers sequence information in a way entirely different from standard phylogenetic methods (i.e. Maximum Parsimony, Maximum-Likelihood, Neighbor-Joining, and Bayesian analysis). The performance and reliability of Boolean analysis were tested and compared with the standard phylogenetic methods, using artificially evolved - simulated - nucleotide sequences and the 22 mitochondrial tRNA genes of the great apes. At the outset, we assumed that the phylogeny of Hominidae is generally well established, and the guide tree of artificial sequence evolution can also be used as a benchmark. These offer a possibility to compare and test the performance of different phylogenetic methods. Trees were reconstructed by each method from 2500 simulated sequences and 22 mitochondrial tRNA sequences. We also introduced a special re-sampling method for Boolean analysis on permuted sequence sites, the P-BOOL-AN procedure. Considering the reliability values (branch support values of consensus trees and Robinson-Foulds distances) we used for simulated sequence trees produced by different phylogenetic methods, BOOL-AN appeared as the most reliable method. Although the mitochondrial tRNA sequences of great apes are relatively short (59-75 bases long) and the ratio of their constant characters is about 75%, BOOL-AN, P-BOOL-AN and the Bayesian approach produced the same tree-topology as the established phylogeny, while the outcomes of Maximum Parsimony, Maximum-Likelihood and Neighbor-Joining methods were equivocal. We conclude that Boolean analysis is a promising alternative to existing methods of sequence comparison for phylogenetic reconstruction and congruence analysis. Copyright © 2012 Elsevier Inc. All

  9. Multilocus Sequence Analysis of Cercospora spp. from Different Host Plant Families

    Directory of Open Access Journals (Sweden)

    Floreta Fiska Yuliarni

    2014-06-01

    Full Text Available Identification of the genus Cercospora is still complicated due to the host preferences often being used as the main criteria to propose a new name. We determined the relationship between host plants and multilocus sequence variations (ITS rDNA including 5.8S rDNA, elongation factor 1-α, and calmodulin in Cercospora spp. to investigate the host specificity. We used 53 strains of Cercospora spp. infecting 12 plant families for phylogenetic analysis. The sequences of 23 strains of Cercospora spp. infecting the plant families of Asteraceae, Cucurbitaceae, and Solanaceae were determined in this study. The sequences of 30 strains of Cercospora spp. infecting the plant families of Fabaceae, Amaranthaceae, Apiaceae, Plumbaginaceae, Malvaceae, Cistaceae, Plantaginaceae, Lamiaceae, and Poaceae were obtained from GenBank. The molecular phylogenetic analysis revealed that the majority of Cercospora species lack host specificity, and only C. zinniicola, C. zeina, C. zeae-maydis, C. cocciniae, and C. mikaniicola were found to be host-specific. Closely related species of Cercospora could not be distinguished using molecular analyses of ITS, EF, and CAL gene regions. The topology of the phylogenetic tree based on the CAL gene showed a better topology and Cercospora species separation than the trees developed based on the ITS rDNA region or the EF gene.

  10. Sequence and transcription analysis of the human cytomegalovirus DNA polymerase gene

    International Nuclear Information System (INIS)

    Kouzarides, T.; Bankier, A.T.; Satchwell, S.C.; Weston, K.; Tomlinson, P.; Barrell, B.G.

    1987-01-01

    DNA sequence analysis has revealed that the gene coding for the human cytomegalovirus (HCMV) DNA polymerase is present within the long unique region of the virus genome. Identification is based on extensive amino acid homology between the predicted HCMV open reading frame HFLF2 and the DNA polymerase of herpes simplex virus type 1. The authors present here a 5280 base-pair DNA sequence containing the HCMV pol gene, along with the analysis of transcripts encoded within this region. Since HCMV pol also shows homology to the predicted Epstein-Barr virus pol, they were able to analyze the extent of homology between the DNA polymerases of three distantly related herpes viruses, HCMV, Epstein-Barr virus, and herpes simplex virus. The comparison shows that these DNA polymerases exhibit considerable amino acid homology and highlights a number of highly conserved regions; two such regions show homology to sequences within the adenovirus type 2 DNA polymerase. The HCMV pol gene is flanked by open reading frames with homology to those of other herpes viruses; upstream, there is a reading frame homologous to the glycoprotein B gene of herpes simplex virus type I and Epstein-Barr virus, and downstream there is a reading frame homologous to BFLF2 of Epstein-Barr virus

  11. Direct sequencing for rapid detection of multidrug resistant Mycobacterium tuberculosis strains in Morocco.

    Science.gov (United States)

    Zakham, Fathiah; Chaoui, Imane; Echchaoui, Amina Hadbae; Chetioui, Fouad; Elmessaoudi, My Driss; Ennaji, My Mustapha; Abid, Mohammed; Mzibri, Mohammed El

    2013-01-01

    Tuberculosis (TB) is a major public health problem with high mortality and morbidity rates, especially in low-income countries. Disturbingly, the emergence of multidrug resistant (MDR) and extensively drug resistant (XDR) TB cases has worsened the situation, raising concerns of a future epidemic of virtually untreatable TB. Indeed, the rapid diagnosis of MDR TB is a critical issue for TB management. This study is an attempt to establish a rapid diagnosis of MDR TB by sequencing the target fragments of the rpoB gene which linked to resistance against rifampicin and the katG gene and inhA promoter region, which are associated with resistance to isoniazid. For this purpose, 133 sputum samples of TB patients from Morocco were enrolled in this study. One hundred samples were collected from new cases, and the remaining 33 were from previously treated patients (drug relapse or failure, chronic cases) and did not respond to anti-TB drugs after a sufficient duration of treatment. All samples were subjected to rpoB, katG and pinhA mutation analysis by polymerase chain reaction and DNA sequencing. Molecular analysis showed that seven strains were isoniazid-monoresistant and 17 were rifampicin-monoresistant. MDR TB strains were identified in nine cases (6.8%). Among them, eight were traditionally diagnosed as critical cases, comprising four chronic and four drug-relapse cases. The last strain was isolated from a new case. The most recorded mutation in the rpoB gene was the substitution TCG > TTG at codon 531 (Ser531 Leu), accounting for 46.15%. Significantly, the only mutation found in the katG gene was at codon 315 (AGC to ACC) with a Ser315Thr amino acid change. Only one sample harbored mutation in the inhA promoter region and was a point mutation at the -15p position (C > T). The polymerase chain reaction sequencing approach is an accurate and rapid method for detection of drug-resistant TB in clinical specimens, and could be of great interest in the management of TB in

  12. ANCAC: amino acid, nucleotide, and codon analysis of COGs – a tool for sequence bias analysis in microbial orthologs

    Directory of Open Access Journals (Sweden)

    Meiler Arno

    2012-09-01

    Full Text Available Abstract Background The COG database is the most popular collection of orthologous proteins from many different completely sequenced microbial genomes. Per definition, a cluster of orthologous groups (COG within this database exclusively contains proteins that most likely achieve the same cellular function. Recently, the COG database was extended by assigning to every protein both the corresponding amino acid and its encoding nucleotide sequence resulting in the NUCOCOG database. This extended version of the COG database is a valuable resource connecting sequence features with the functionality of the respective proteins. Results Here we present ANCAC, a web tool and MySQL database for the analysis of amino acid, nucleotide, and codon frequencies in COGs on the basis of freely definable phylogenetic patterns. We demonstrate the usefulness of ANCAC by analyzing amino acid frequencies, codon usage, and GC-content in a species- or function-specific context. With respect to amino acids we, at least in part, confirm the cognate bias hypothesis by using ANCAC’s NUCOCOG dataset as the largest one available for that purpose thus far. Conclusions Using the NUCOCOG datasets, ANCAC connects taxonomic, amino acid, and nucleotide sequence information with the functional classification via COGs and provides a GUI for flexible mining for sequence-bias. Thereby, to our knowledge, it is the only tool for the analysis of sequence composition in the light of physiological roles and phylogenetic context without requirement of substantial programming-skills.

  13. ANCAC: amino acid, nucleotide, and codon analysis of COGs – a tool for sequence bias analysis in microbial orthologs

    Science.gov (United States)

    2012-01-01

    Background The COG database is the most popular collection of orthologous proteins from many different completely sequenced microbial genomes. Per definition, a cluster of orthologous groups (COG) within this database exclusively contains proteins that most likely achieve the same cellular function. Recently, the COG database was extended by assigning to every protein both the corresponding amino acid and its encoding nucleotide sequence resulting in the NUCOCOG database. This extended version of the COG database is a valuable resource connecting sequence features with the functionality of the respective proteins. Results Here we present ANCAC, a web tool and MySQL database for the analysis of amino acid, nucleotide, and codon frequencies in COGs on the basis of freely definable phylogenetic patterns. We demonstrate the usefulness of ANCAC by analyzing amino acid frequencies, codon usage, and GC-content in a species- or function-specific context. With respect to amino acids we, at least in part, confirm the cognate bias hypothesis by using ANCAC’s NUCOCOG dataset as the largest one available for that purpose thus far. Conclusions Using the NUCOCOG datasets, ANCAC connects taxonomic, amino acid, and nucleotide sequence information with the functional classification via COGs and provides a GUI for flexible mining for sequence-bias. Thereby, to our knowledge, it is the only tool for the analysis of sequence composition in the light of physiological roles and phylogenetic context without requirement of substantial programming-skills. PMID:22958836

  14. Planarian homeobox genes: cloning, sequence analysis, and expression.

    Science.gov (United States)

    Garcia-Fernàndez, J; Baguñà, J; Saló, E

    1991-01-01

    Freshwater planarians (Platyhelminthes, Turbellaria, and Tricladida) are acoelomate, triploblastic, unsegmented, and bilaterally symmetrical organisms that are mainly known for their ample power to regenerate a complete organism from a small piece of their body. To identify potential pattern-control genes in planarian regeneration, we have isolated two homeobox-containing genes, Dth-1 and Dth-2 [Dugesia (Girardia) tigrina homeobox], by using degenerate oligonucleotides corresponding to the most conserved amino acid sequence from helix-3 of the homeodomain. Dth-1 and Dth-2 homeodomains are closely related (68% at the nucleotide level and 78% at the protein level) and show the conserved residues characteristic of the homeodomains identified to data. Similarity with most homeobox sequences is low (30-50%), except with Drosophila NK homeodomains (80-82% with NK-2) and the rodent TTF-1 homeodomain (77-87%). Some unusual amino acid residues specific to NK-2, TTF-1, Dth-1, and Dth-2 can be observed in the recognition helix (helix-3) and may define a family of homeodomains. The deduced amino acid sequences from the cDNAs contain, in addition to the homeodomain, other domains also present in various homeobox-containing genes. The expression of both genes, detected by Northern blot analysis, appear slightly higher in cephalic regions than in the rest of the intact organism, while a slight increase is detected in the central period (5 days) or regeneration. Images PMID:1714599

  15. Sequence analysis of putative swrW gene required for surfactant ...

    African Journals Online (AJOL)

    owner

    2012-07-17

    Jul 17, 2012 ... These nucleotide and protein sequence analysis of the putative swrW gene provides vital information on the versatility .... chain reaction (PCR) products were stored at 4°C. Presence of ... identical to the same gene with an E-value of 0.0. .... The Prokaryotes-A Handbook on the Biol. of Bacteria:Ecophysiol.

  16. Improved Efficiency and Reliability of NGS Amplicon Sequencing Data Analysis for Genetic Diagnostic Procedures Using AGSA Software

    Directory of Open Access Journals (Sweden)

    Axel Poulet

    2016-01-01

    Full Text Available Screening for BRCA mutations in women with familial risk of breast or ovarian cancer is an ideal situation for high-throughput sequencing, providing large amounts of low cost data. However, 454, Roche, and Ion Torrent, Thermo Fisher, technologies produce homopolymer-associated indel errors, complicating their use in routine diagnostics. We developed software, named AGSA, which helps to detect false positive mutations in homopolymeric sequences. Seventy-two familial breast cancer cases were analysed in parallel by amplicon 454 pyrosequencing and Sanger dideoxy sequencing for genetic variations of the BRCA genes. All 565 variants detected by dideoxy sequencing were also detected by pyrosequencing. Furthermore, pyrosequencing detected 42 variants that were missed with Sanger technique. Six amplicons contained homopolymer tracts in the coding sequence that were systematically misread by the software supplied by Roche. Read data plotted as histograms by AGSA software aided the analysis considerably and allowed validation of the majority of homopolymers. As an optimisation, additional 250 patients were analysed using microfluidic amplification of regions of interest (Access Array Fluidigm of the BRCA genes, followed by 454 sequencing and AGSA analysis. AGSA complements a complete line of high-throughput diagnostic sequence analysis, reducing time and costs while increasing reliability, notably for homopolymer tracts.

  17. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences

    Science.gov (United States)

    2012-01-01

    Background The complete sequences of chloroplast genomes provide wealthy information regarding the evolutionary history of species. With the advance of next-generation sequencing technology, the number of completely sequenced chloroplast genomes is expected to increase exponentially, powerful computational tools annotating the genome sequences are in urgent need. Results We have developed a web server CPGAVAS. The server accepts a complete chloroplast genome sequence as input. First, it predicts protein-coding and rRNA genes based on the identification and mapping of the most similar, full-length protein, cDNA and rRNA sequences by integrating results from Blastx, Blastn, protein2genome and est2genome programs. Second, tRNA genes and inverted repeats (IR) are identified using tRNAscan, ARAGORN and vmatch respectively. Third, it calculates the summary statistics for the annotated genome. Fourth, it generates a circular map ready for publication. Fifth, it can create a Sequin file for GenBank submission. Last, it allows the extractions of protein and mRNA sequences for given list of genes and species. The annotation results in GFF3 format can be edited using any compatible annotation editing tools. The edited annotations can then be uploaded to CPGAVAS for update and re-analyses repeatedly. Using known chloroplast genome sequences as test set, we show that CPGAVAS performs comparably to another application DOGMA, while having several superior functionalities. Conclusions CPGAVAS allows the semi-automatic and complete annotation of a chloroplast genome sequence, and the visualization, editing and analysis of the annotation results. It will become an indispensible tool for researchers studying chloroplast genomes. The software is freely accessible from http://www.herbalgenomics.org/cpgavas. PMID:23256920

  18. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences

    Directory of Open Access Journals (Sweden)

    Liu Chang

    2012-12-01

    Full Text Available Abstract Background The complete sequences of chloroplast genomes provide wealthy information regarding the evolutionary history of species. With the advance of next-generation sequencing technology, the number of completely sequenced chloroplast genomes is expected to increase exponentially, powerful computational tools annotating the genome sequences are in urgent need. Results We have developed a web server CPGAVAS. The server accepts a complete chloroplast genome sequence as input. First, it predicts protein-coding and rRNA genes based on the identification and mapping of the most similar, full-length protein, cDNA and rRNA sequences by integrating results from Blastx, Blastn, protein2genome and est2genome programs. Second, tRNA genes and inverted repeats (IR are identified using tRNAscan, ARAGORN and vmatch respectively. Third, it calculates the summary statistics for the annotated genome. Fourth, it generates a circular map ready for publication. Fifth, it can create a Sequin file for GenBank submission. Last, it allows the extractions of protein and mRNA sequences for given list of genes and species. The annotation results in GFF3 format can be edited using any compatible annotation editing tools. The edited annotations can then be uploaded to CPGAVAS for update and re-analyses repeatedly. Using known chloroplast genome sequences as test set, we show that CPGAVAS performs comparably to another application DOGMA, while having several superior functionalities. Conclusions CPGAVAS allows the semi-automatic and complete annotation of a chloroplast genome sequence, and the visualization, editing and analysis of the annotation results. It will become an indispensible tool for researchers studying chloroplast genomes. The software is freely accessible from http://www.herbalgenomics.org/cpgavas.

  19. A strategic stakeholder approach for addressing further analysis requests in whole genome sequencing research.

    Science.gov (United States)

    Thornock, Bradley Steven O

    2016-01-01

    Whole genome sequencing (WGS) can be a cost-effective and efficient means of diagnosis for some children, but it also raises a number of ethical concerns. One such concern is how researchers derive and communicate results from WGS, including future requests for further analysis of stored sequences. The purpose of this paper is to think about what is at stake, and for whom, in any solution that is developed to deal with such requests. To accomplish this task, this paper will utilize stakeholder theory, a common method used in business ethics. Several scenarios that connect stakeholder concerns and WGS will also posited and analyzed. This paper concludes by developing criteria composed of a series of questions that researchers can answer in order to more effectively address requests for further analysis of stored sequences.

  20. Multilocus sequence typing and rtxA toxin gene sequencing analysis of Kingella kingae isolates demonstrates genetic diversity and international clones.

    Directory of Open Access Journals (Sweden)

    Romain Basmaci

    Full Text Available BACKGROUND: Kingella kingae, a normal component of the upper respiratory flora, is being increasingly recognized as an important invasive pathogen in young children. Genetic diversity of this species has not been studied. METHODS: We analyzed 103 strains from different countries and clinical origins by a new multilocus sequence-typing (MLST schema. Putative virulence gene rtxA, encoding an RTX toxin, was also sequenced, and experimental virulence of representative strains was assessed in a juvenile-rat model. RESULTS: Thirty-six sequence-types (ST and nine ST-complexes (STc were detected. The main STc 6, 14 and 23 comprised 23, 17 and 20 strains respectively, and were internationally distributed. rtxA sequencing results were mostly congruent with MLST, and showed horizontal transfer events. Of interest, all members of the distantly related ST-6 (n = 22 and ST-5 (n = 4 harboured a 33 bp duplication or triplication in their rtxA sequence, suggesting that this genetic trait arose through selective advantage. The animal model revealed significant differences in virulence among strains of the species. CONCLUSION: MLST analysis reveals international spread of ST-complexes and will help to decipher acquisition and evolution of virulence traits and diversity of pathogenicity among K. kingae strains, for which an experimental animal model is now available.

  1. Establishment of screening technique for mutant cell and analysis of base sequence in the mutation

    International Nuclear Information System (INIS)

    Sofuni, Toshio; Nomi, Takehiko; Yamada, Masami; Masumura, Kenichi

    2000-01-01

    This research project aimed to establish an easy and quick detection method for radiation-induced mutation using molecular-biological techniques and an effective analyzing method for the molecular changes in base sequence. In this year, Spi mutants derived from γ-radiation exposed mouse were analyzed by PCR method and DNA sequence method. Male transgenic mice were exposed to γ-ray at 5,10, 50 Gy and the transgene was taken out from the genome DNA from the spleen in vivo packaging method. Spi mutant plaques were obtained by infecting the recovered phage to E. coli. Sequence analysis for the mutants was made using ALFred DNA sequencer and SequiTherm TM Long-Red Cycle sequencing kit. Sequence analysis was carried out for 41 of 50 independent Spi mutants obtained. The deletions were classified into 4 groups; Group 1 included 15 mutants that were characterized with a large deletion (43 bp-10 kb) with a short homologous sequence. Group 2 included 11 mutants of a large deletion having no homologous sequence at the connecting region. Group 3 included 11 mutants having a short deletion of less than 20 bp, which occurred in the non-repetitive sequence of gam gene and possibly caused by oxidative breakage of DNA or recombination of DNA fragment produced by the breakage. Group 4 included 4 mutants having deletions as short as 20 bp or less in the repetitive sequence of gam gene, resulting in an alteration of the reading frame. Thus, the synthesis of Gam protein was terminated by the appearance of TGA between code 13 and 14 of redB gene, leading to inactivation of gam gene and redBA gene. These results indicated that most of Spi mutants had a deletion in red/gam region and the deletions in more than half mutants occurred in homologous sequences as short as 8 bp. (M.N.)

  2. Analysis of T-DNA/Host-Plant DNA Junction Sequences in Single-Copy Transgenic Barley Lines

    Directory of Open Access Journals (Sweden)

    Joanne G. Bartlett

    2014-01-01

    Full Text Available Sequencing across the junction between an integrated transfer DNA (T-DNA and a host plant genome provides two important pieces of information. The junctions themselves provide information regarding the proportion of T-DNA which has integrated into the host plant genome, whilst the transgene flanking sequences can be used to study the local genetic environment of the integrated transgene. In addition, this information is important in the safety assessment of GM crops and essential for GM traceability. In this study, a detailed analysis was carried out on the right-border T-DNA junction sequences of single-copy independent transgenic barley lines. T-DNA truncations at the right-border were found to be relatively common and affected 33.3% of the lines. In addition, 14.3% of lines had rearranged construct sequence after the right border break-point. An in depth analysis of the host-plant flanking sequences revealed that a significant proportion of the T-DNAs integrated into or close to known repetitive elements. However, this integration into repetitive DNA did not have a negative effect on transgene expression.

  3. The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081.

    Directory of Open Access Journals (Sweden)

    Nicholas R Thomson

    2006-12-01

    Full Text Available The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8; biotype 1B and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y. enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations looking at the patterns of gene loss and gain in the Yersinia have highlighted common

  4. Linear discriminant analysis of character sequences using occurrences of words

    KAUST Repository

    Dutta, Subhajit; Chaudhuri, Probal; Ghosh, Anil

    2014-01-01

    Classification of character sequences, where the characters come from a finite set, arises in disciplines such as molecular biology and computer science. For discriminant analysis of such character sequences, the Bayes classifier based on Markov models turns out to have class boundaries defined by linear functions of occurrences of words in the sequences. It is shown that for such classifiers based on Markov models with unknown orders, if the orders are estimated from the data using cross-validation, the resulting classifier has Bayes risk consistency under suitable conditions. Even when Markov models are not valid for the data, we develop methods for constructing classifiers based on linear functions of occurrences of words, where the word length is chosen by cross-validation. Such linear classifiers are constructed using ideas of support vector machines, regression depth, and distance weighted discrimination. We show that classifiers with linear class boundaries have certain optimal properties in terms of their asymptotic misclassification probabilities. The performance of these classifiers is demonstrated in various simulated and benchmark data sets.

  5. Analysis of correlations between sites in models of protein sequences

    International Nuclear Information System (INIS)

    Giraud, B.G.; Lapedes, A.; Liu, L.C.

    1998-01-01

    A criterion based on conditional probabilities, related to the concept of algorithmic distance, is used to detect correlated mutations at noncontiguous sites on sequences. We apply this criterion to the problem of analyzing correlations between sites in protein sequences; however, the analysis applies generally to networks of interacting sites with discrete states at each site. Elementary models, where explicit results can be derived easily, are introduced. The number of states per site considered ranges from 2, illustrating the relation to familiar classical spin systems, to 20 states, suitable for representing amino acids. Numerical simulations show that the criterion remains valid even when the genetic history of the data samples (e.g., protein sequences), as represented by a phylogenetic tree, introduces nonindependence between samples. Statistical fluctuations due to finite sampling are also investigated and do not invalidate the criterion. A subsidiary result is found: The more homogeneous a population, the more easily its average properties can drift from the properties of its ancestor. copyright 1998 The American Physical Society

  6. Linear discriminant analysis of character sequences using occurrences of words

    KAUST Repository

    Dutta, Subhajit

    2014-02-01

    Classification of character sequences, where the characters come from a finite set, arises in disciplines such as molecular biology and computer science. For discriminant analysis of such character sequences, the Bayes classifier based on Markov models turns out to have class boundaries defined by linear functions of occurrences of words in the sequences. It is shown that for such classifiers based on Markov models with unknown orders, if the orders are estimated from the data using cross-validation, the resulting classifier has Bayes risk consistency under suitable conditions. Even when Markov models are not valid for the data, we develop methods for constructing classifiers based on linear functions of occurrences of words, where the word length is chosen by cross-validation. Such linear classifiers are constructed using ideas of support vector machines, regression depth, and distance weighted discrimination. We show that classifiers with linear class boundaries have certain optimal properties in terms of their asymptotic misclassification probabilities. The performance of these classifiers is demonstrated in various simulated and benchmark data sets.

  7. Magnetic resonance visualization of conductive structures by sequence-triggered direct currents and spin-echo phase imaging

    Energy Technology Data Exchange (ETDEWEB)

    Eibofner, Frank; Wojtczyk, Hanne; Graf, Hansjörg, E-mail: hansjoerg.graf@med.uni-tuebingen.de, E-mail: drGraf@t-online.de [Section on Experimental Radiology, University Hospital Tübingen, Tübingen D-72076 (Germany); Clasen, Stephan [Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen D-72076 (Germany)

    2014-06-15

    Purpose: Instrument visualization in interventional magnetic resonance imaging (MRI) is commonly performed via susceptibility artifacts. Unfortunately, this approach suffers from limited conspicuity in inhomogeneous tissue and disturbed spatial encoding. Also, susceptibility artifacts are controllable only by sequence parameters. This work presents the basics of a new visualization method overcoming such problems by applying sequence-triggered direct current (DC) pulses in spin-echo (SE) imaging. SE phase images allow for background free current path localization. Methods: Application of a sequence-triggered DC pulse in SE imaging, e.g., during a time period between radiofrequency excitation and refocusing, results in transient field inhomogeneities. Dependent on the additional z-magnetic field from the DC, a phase offset results despite the refocusing pulse. False spatial encoding is avoided by DC application during periods when read-out or slice-encoding gradients are inactive. A water phantom containing a brass conductor (water equivalent susceptibility) and a titanium needle (serving as susceptibility source) was used to demonstrate the feasibility. Artifact dependence on current strength and orientation was examined. Results: Without DC, the brass conductor was only visible due to its water displacement. The titanium needle showed typical susceptibility artifacts. Applying triggered DC pulses, the phase offset of spins near the conductor appeared. Because SE phase images are homogenous also in regions of persistent field inhomogeneities, the position of the conductor could be determined with high reliability. Artifact characteristic could be easily controlled by amperage leaving sequence parameters unchanged. For an angle of 30° between current and static field visualization was still possible. Conclusions: SE phase images display the position of a conductor carrying pulsed DC free from artifacts caused by persistent field inhomogeneities. Magnitude and phase

  8. Sub-wavelength plasmonic readout for direct linear analysis of optically tagged DNA

    Science.gov (United States)

    Varsanik, Jonathan; Teynor, William; LeBlanc, John; Clark, Heather; Krogmeier, Jeffrey; Yang, Tian; Crozier, Kenneth; Bernstein, Jonathan

    2010-02-01

    This work describes the development and fabrication of a novel nanofluidic flow-through sensing chip that utilizes a plasmonic resonator to excite fluorescent tags with sub-wavelength resolution. We cover the design of the microfluidic chip and simulation of the plasmonic resonator using Finite Difference Time Domain (FDTD) software. The fabrication methods are presented, with testing procedures and preliminary results. This research is aimed at improving the resolution limits of the Direct Linear Analysis (DLA) technique developed by US Genomics [1]. In DLA, intercalating dyes which tag a specific 8 base-pair sequence are inserted in a DNA sample. This sample is pumped though a nano-fluidic channel, where it is stretched into a linear geometry and interrogated with light which excites the fluorescent tags. The resulting sequence of optical pulses produces a characteristic "fingerprint" of the sample which uniquely identifies any sample of DNA. Plasmonic confinement of light to a 100 nm wide metallic nano-stripe enables resolution of a higher tag density compared to free space optics. Prototype devices have been fabricated and are being tested with fluorophore solutions and tagged DNA. Preliminary results show evanescent coupling to the plasmonic resonator is occurring with 0.1 micron resolution, however light scattering limits the S/N of the detector. Two methods to reduce scattered light are presented: index matching and curved waveguides.

  9. CloVR: A virtual machine for automated and portable sequence analysis from the desktop using cloud computing

    Science.gov (United States)

    2011-01-01

    Background Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. Results We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. Conclusion The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing. PMID:21878105

  10. Characterization of shark complement factor I gene(s): genomic analysis of a novel shark-specific sequence.

    Science.gov (United States)

    Shin, Dong-Ho; Webb, Barbara M; Nakao, Miki; Smith, Sylvia L

    2009-07-01

    Complement factor I is a crucial regulator of mammalian complement activity. Very little is known of complement regulators in non-mammalian species. We isolated and sequenced four highly similar complement factor I cDNAs from the liver of the nurse shark (Ginglymostoma cirratum), designated as GcIf-1, GcIf-2, GcIf-3 and GcIf-4 (previously referred to as nsFI-a, -b, -c and -d) which encode 689, 673, 673 and 657 amino acid residues, respectively. They share 95% (shark-specific sequence between the leader peptide (LP) and the factor I membrane attack complex (FIMAC) domain. The cDNA sequences differ only in the size and composition of the shark-specific region (SSR). Sequence analysis of each SSR has identified within the region two novel short sequences (SS1 and SS2) and three repeat sequences (RS1-3). Genomic analysis has revealed the existence of three introns between the leader peptide and the FIMAC domain, tentatively designated intron 1, intron 2, and intron 3 which span 4067, 2293 and 2082bp, respectively. Southern blot analysis suggests the presence of a single gene copy for each cDNA type. Phylogenetic analysis suggests that complement factor I of cartilaginous fish diverged prior to the emergence of mammals. All four GcIf cDNA species are expressed in four different tissues and the liver is the main tissue in which expression level of all four is high. This suggests that the expression of GcIf isotypes is tissue-dependent.

  11. Re-Analysis of Metagenomic Sequences from Acute Flaccidmyelitis Patients Reveals Alternatives to Enterovirus D68 Infection

    Science.gov (United States)

    2015-07-13

    caused in some cases by infection with enterovirus D68. We found that among the patients whose symptoms were previously attributed to enterovirus D68...distribution is unlimited. Re-analysis of metagenomic sequences from acute flaccidmyelitis patients reveals alternatives to enterovirus D68...Street Baltimore, MD 21218 -2685 ABSTRACT Re-analysis of metagenomic sequences from acute flaccidmyelitis patients reveals alternatives to enterovirus

  12. Foundations of Sequence-to-Sequence Modeling for Time Series

    OpenAIRE

    Kuznetsov, Vitaly; Mariet, Zelda

    2018-01-01

    The availability of large amounts of time series data, paired with the performance of deep-learning algorithms on a broad class of problems, has recently led to significant interest in the use of sequence-to-sequence models for time series forecasting. We provide the first theoretical analysis of this time series forecasting framework. We include a comparison of sequence-to-sequence modeling to classical time series models, and as such our theory can serve as a quantitative guide for practiti...

  13. Genomic localization, sequence analysis, and transcription of the putative human cytomegalovirus DNA polymerase gene

    International Nuclear Information System (INIS)

    Heilbronn, T.; Jahn, G.; Buerkle, A.; Freese, U.K.; Fleckenstein, B.; Zur Hausen, H.

    1987-01-01

    The human cytomegalovirus (HCMV)-induced DNA polymerase has been well characterized biochemically and functionally, but its genomic location has not yet been assigned. To identify the coding sequence, cross-hybridization with the herpes simplex virus type 1 (HSV-1) polymerase gene was used, as suggested by the close similarity of the herpes group virus-induced DNA polymerases to the HCMV DNA polymerase. A cosmid and plasmid library of the entire HCMV genome was screened with the BamHI Q fragment of HSF-1 at different stringency conditions. One PstI-HincII restriction fragment of 850 base pairs mapping within the EcoRI M fragment of HCMV cross-hybridized at T/sub m/ - 25/degrees/C. Sequence analysis revealed one open reading frame spanning the entire sequence. The amino acid sequence showed a highly conserved domain of 133 amino acids shared with the HSV and putative Esptein-Barr virus polymerase sequences. This domain maps within the C-terminal part of the HSV polymerase gene, which has been suggested to contain part of the catalytic center of the enzyme. Transcription analysis revealed one 5.4-kilobase early transcript in the sense orientation with respect to the open reading frame identified. This transcript appears to code for the 140-kilodalton HCMV polymerase protein

  14. Characterization of the genomic organization of the region bordering the centromere of chromosome V of Podospora anserina by direct sequencing.

    Science.gov (United States)

    Silar, Philippe; Barreau, Christian; Debuchy, Robert; Kicka, Sébastien; Turcq, Béatrice; Sainsard-Chanet, Annie; Sellem, Carole H; Billault, Alain; Cattolico, Laurence; Duprat, Simone; Weissenbach, Jean

    2003-08-01

    A Podospora anserina BAC library of 4800 clones has been constructed in the vector pBHYG allowing direct selection in fungi. Screening of the BAC collection for centromeric sequences of chromosome V allowed the recovery of clones localized on either sides of the centromere, but no BAC clone was found to contain the centromere. Seven BAC clones containing 322,195 and 156,244bp from either sides of the centromeric region were sequenced and annotated. One 5S rRNA gene, 5 tRNA genes, and 163 putative coding sequences (CDS) were identified. Among these, only six CDS seem specific to P. anserina. The gene density in the centromeric region is approximately one gene every 2.8kb. Extrapolation of this gene density to the whole genome of P. anserina suggests that the genome contains about 11,000 genes. Synteny analyses between P. anserina and Neurospora crassa show that co-linearity extends at the most to a few genes, suggesting rapid genome rearrangements between these two species.

  15. Finite-size effects in transcript sequencing count distribution: its power-law correction necessarily precedes downstream normalization and comparative analysis.

    Science.gov (United States)

    Wong, Wing-Cheong; Ng, Hong-Kiat; Tantoso, Erwin; Soong, Richie; Eisenhaber, Frank

    2018-02-12

    signal-to-noise ratio by 50% and the statistical/detection sensitivity by as high as 30% regardless of the downstream mapping and normalization methods. Most importantly, the power-law correction improves concordance in significant calls among different normalization methods of a data series averagely by 22%. When presented with a higher sequence depth (4 times difference), the improvement in concordance is asymmetrical (32% for the higher sequencing depth instance versus 13% for the lower instance) and demonstrates that the simple power-law correction can increase significant detection with higher sequencing depths. Finally, the correction dramatically enhances the statistical conclusions and eludes the metastasis potential of the NUGC3 cell line against AGS of our dilution analysis. The finite-size effects due to undersampling generally plagues transcript count data with reproducibility issues but can be minimized through a simple power-law correction of the count distribution. This distribution correction has direct implication on the biological interpretation of the study and the rigor of the scientific findings. This article was reviewed by Oliviero Carugo, Thomas Dandekar and Sandor Pongor.

  16. A Unified Theoretical Framework for Cognitive Sequencing.

    Science.gov (United States)

    Savalia, Tejas; Shukla, Anuj; Bapi, Raju S

    2016-01-01

    The capacity to sequence information is central to human performance. Sequencing ability forms the foundation stone for higher order cognition related to language and goal-directed planning. Information related to the order of items, their timing, chunking and hierarchical organization are important aspects in sequencing. Past research on sequencing has emphasized two distinct and independent dichotomies: implicit vs. explicit and goal-directed vs. habits. We propose a theoretical framework unifying these two streams. Our proposal relies on brain's ability to implicitly extract statistical regularities from the stream of stimuli and with attentional engagement organizing sequences explicitly and hierarchically. Similarly, sequences that need to be assembled purposively to accomplish a goal require engagement of attentional processes. With repetition, these goal-directed plans become habits with concomitant disengagement of attention. Thus, attention and awareness play a crucial role in the implicit-to-explicit transition as well as in how goal-directed plans become automatic habits. Cortico-subcortical loops basal ganglia-frontal cortex and hippocampus-frontal cortex loops mediate the transition process. We show how the computational principles of model-free and model-based learning paradigms, along with a pivotal role for attention and awareness, offer a unifying framework for these two dichotomies. Based on this framework, we make testable predictions related to the potential influence of response-to-stimulus interval (RSI) on developing awareness in implicit learning tasks.

  17. A Unified Theoretical Framework for Cognitive Sequencing

    Directory of Open Access Journals (Sweden)

    Tejas Savalia

    2016-11-01

    Full Text Available The capacity to sequence information is central to human performance. Sequencing ability forms the foundation stone for higher order cognition related to language and goal-directed planning. Information related to the order of items, their timing, chunking and hierarchical organization are important aspects in sequencing. Past research on sequencing has emphasized two distinct and independent dichotomies: implicit versus explicit and goal-directed versus habits. We propose a theoretical framework unifying these two streams. Our proposal relies on brain's ability to implicitly extract statistical regularities from the stream of stimuli and with attentional engagement organizing sequences explicitly and hierarchically. Similarly, sequences that need to be assembled purposively to accomplish a goal require engagement of attentional processes. With repetition, these goal-directed plans become habits with concomitant disengagement of attention. Thus attention and awareness play a crucial role in the implicit-to-explicit transition as well as in how goal-directed plans become automatic habits. Cortico-subcortical loops ─ basal ganglia-frontal cortex and hippocampus-frontal cortex loops ─ mediate the transition process. We show how the computational principles of model-free and model-based learning paradigms, along with a pivotal role for attention and awareness, offer a unifying framework for these two dichotomies. Based on this framework, we make testable predictions related to the potential influence of response-to-stimulus interval (RSI on developing awareness in implicit learning tasks.

  18. A Reference Viral Database (RVDB) To Enhance Bioinformatics Analysis of High-Throughput Sequencing for Novel Virus Detection.

    Science.gov (United States)

    Goodacre, Norman; Aljanahi, Aisha; Nandakumar, Subhiksha; Mikailov, Mike; Khan, Arifa S

    2018-01-01

    Detection of distantly related viruses by high-throughput sequencing (HTS) is bioinformatically challenging because of the lack of a public database containing all viral sequences, without abundant nonviral sequences, which can extend runtime and obscure viral hits. Our reference viral database (RVDB) includes all viral, virus-related, and virus-like nucleotide sequences (excluding bacterial viruses), regardless of length, and with overall reduced cellular sequences. Semantic selection criteria (SEM-I) were used to select viral sequences from GenBank, resulting in a first-generation viral database (VDB). This database was manually and computationally reviewed, resulting in refined, semantic selection criteria (SEM-R), which were applied to a new download of updated GenBank sequences to create a second-generation VDB. Viral entries in the latter were clustered at 98% by CD-HIT-EST to reduce redundancy while retaining high viral sequence diversity. The viral identity of the clustered representative sequences (creps) was confirmed by BLAST searches in NCBI databases and HMMER searches in PFAM and DFAM databases. The resulting RVDB contained a broad representation of viral families, sequence diversity, and a reduced cellular content; it includes full-length and partial sequences and endogenous nonretroviral elements, endogenous retroviruses, and retrotransposons. Testing of RVDBv10.2, with an in-house HTS transcriptomic data set indicated a significantly faster run for virus detection than interrogating the entirety of the NCBI nonredundant nucleotide database, which contains all viral sequences but also nonviral sequences. RVDB is publically available for facilitating HTS analysis, particularly for novel virus detection. It is meant to be updated on a regular basis to include new viral sequences added to GenBank. IMPORTANCE To facilitate bioinformatics analysis of high-throughput sequencing (HTS) data for the detection of both known and novel viruses, we have

  19. Analysis and comparison of fragrant gene sequence in some rice cultivars

    Directory of Open Access Journals (Sweden)

    Karami Noushafarin

    2016-01-01

    Full Text Available It is known that the fragrant trait in rice (Oryza sativa L. is largely controlled by fgr gene on chromosome 8 and it has been specified that the existence of an 8 bp deletion and three single nucleotide polymorphism (SNP in exon 7 is effective on this trait. In this study, sequence alignment analysis of fgr exon7 on chromosome 8 for 11 different fragrant and non-fragrant cultivars revealed that 5 aromatic rice cultivars carried 3 SNPs and 8 bp deletion in exon7 which terminates prematurely at a TAA stop codon. However, 5 of the non-aromatics showed a sequence identical to the published Nipponbare, being non-fragrant Japonica variety sequence. An exception among them was Bejar, which had 8 bp deletion and 3SNPs but it was non-aromatic. Sequencing can determine nucleotide alignment of a gene and give beneficial information about gene function. In silico prediction showed proteins sequences alignment of fgr gene for Khazar and Domsiah genotypes were different. Betaine aldehyde dehydrogenase complete enzyme belongs to Khazar non-fragrant genotype that has complete length and 503 amino acids while non-functional BADH2 enzyme for Domsiah fragrant genotype has 251 amino acids that result in accumulate 2-acetyl-1-pyrroline (2AP and produces aroma in fragrant genotypes.

  20. Illumina MiSeq Sequencing for Preliminary Analysis of Microbiome Causing Primary Endodontic Infections in Egypt

    Directory of Open Access Journals (Sweden)

    Sally Ali Tawfik

    2018-01-01

    Full Text Available The use of high throughput next generation technologies has allowed more comprehensive analysis than traditional Sanger sequencing. The specific aim of this study was to investigate the microbial diversity of primary endodontic infections using Illumina MiSeq sequencing platform in Egyptian patients. Samples were collected from 19 patients in Suez Canal University Hospital (Endodontic Department using sterile # 15K file and paper points. DNA was extracted using Mo Bio power soil DNA isolation extraction kit followed by PCR amplification and agarose gel electrophoresis. The microbiome was characterized on the basis of the V3 and V4 hypervariable region of the 16S rRNA gene by using paired-end sequencing on Illumina MiSeq device. MOTHUR software was used in sequence filtration and analysis of sequenced data. A total of 1858 operational taxonomic units at 97% similarity were assigned to 26 phyla, 245 families, and 705 genera. Four main phyla Firmicutes, Bacteroidetes, Proteobacteria, and Synergistetes were predominant in all samples. At genus level, Prevotella, Bacillus, Porphyromonas, Streptococcus, and Bacteroides were the most abundant. Illumina MiSeq platform sequencing can be used to investigate oral microbiome composition of endodontic infections. Elucidating the ecology of endodontic infections is a necessary step in developing effective intracanal antimicrobials.

  1. Antibody-based screening for hereditary nonpolyposis colorectal carcinoma compared with microsatellite analysis and sequencing

    DEFF Research Database (Denmark)

    Christensen, Mariann; Katballe, Niels; Wikman, Friedrik

    2002-01-01

    BACKGROUND: Germline mutations in the DNA mismatch repair genes, MSH2, MLH1, and others are associated with hereditary nonpolyposis colorectal cancer (HNPCC). Due to the high costs of sequencing, cheaper screening methods are needed to identify HNPCC cases. Ideally, these methods should have a high...... carcinoma of whom 11 met the Amsterdam criteria and 31 were suspected to belong to HNPCC families. Thirty-five patients were examined by microsatellite analysis, 40 by immunohistochemical staining, and in 31 patients both the MLH1 and MSH2 genes were sequenced. RESULTS: Ninety-two percent of patients...... the three methods was found in 74 % of the tumors. CONCLUSIONS: The authors suggest that immunohistochemistry should be used in combination with microsatellite analysis to prescreen suspected HNPCC patients for the selection of cases where sequencing of the MLH1 and MSH2 mismatch repair genes is indicated....

  2. HIERARCHICAL ADAPTIVE ROOD PATTERN SEARCH FOR MOTION ESTIMATION AT VIDEO SEQUENCE ANALYSIS

    Directory of Open Access Journals (Sweden)

    V. T. Nguyen

    2016-05-01

    Full Text Available Subject of Research.The paper deals with the motion estimation algorithms for the analysis of video sequences in compression standards MPEG-4 Visual and H.264. Anew algorithm has been offered based on the analysis of the advantages and disadvantages of existing algorithms. Method. Thealgorithm is called hierarchical adaptive rood pattern search (Hierarchical ARPS, HARPS. This new algorithm includes the classic adaptive rood pattern search ARPS and hierarchical search MP (Hierarchical search or Mean pyramid. All motion estimation algorithms have been implemented using MATLAB package and tested with several video sequences. Main Results. The criteria for evaluating the algorithms were: speed, peak signal to noise ratio, mean square error and mean absolute deviation. The proposed method showed a much better performance at a comparable error and deviation. The peak signal to noise ratio in different video sequences shows better and worse results than characteristics of known algorithms so it requires further investigation. Practical Relevance. Application of this algorithm in MPEG-4 and H.264 codecs instead of the standard can significantly reduce compression time. This feature enables to recommend it in telecommunication systems for multimedia data storing, transmission and processing.

  3. Multi-objective Analysis for a Sequencing Planning of Mixed-model Assembly Line

    Science.gov (United States)

    Shimizu, Yoshiaki; Waki, Toshiya; Yoo, Jae Kyu

    Diversified customer demands are raising importance of just-in-time and agile manufacturing much more than before. Accordingly, introduction of mixed-model assembly lines becomes popular to realize the small-lot-multi-kinds production. Since it produces various kinds on the same assembly line, a rational management is of special importance. With this point of view, this study focuses on a sequencing problem of mixed-model assembly line including a paint line as its preceding process. By taking into account the paint line together, reducing work-in-process (WIP) inventory between these heterogeneous lines becomes a major concern of the sequencing problem besides improving production efficiency. Finally, we have formulated the sequencing problem as a bi-objective optimization problem to prevent various line stoppages, and to reduce the volume of WIP inventory simultaneously. Then we have proposed a practical method for the multi-objective analysis. For this purpose, we applied the weighting method to derive the Pareto front. Actually, the resulting problem is solved by a meta-heuristic method like SA (Simulated Annealing). Through numerical experiments, we verified the validity of the proposed approach, and discussed the significance of trade-off analysis between the conflicting objectives.

  4. Multilocus Sequence Analysis for Typing Leptospira interrogans and Leptospira kirschneri▿ †

    OpenAIRE

    Leon, Albertine; Pronost, Stéphane; Fortier, Guillaume; Andre-Fontaine, Geneviève; Leclercq, Roland

    2009-01-01

    Fifty-three strains belonging to the pathogenic species Leptospira interrogans and Leptospira kirschneri were analyzed by multilocus sequence analysis. The species formed two distinct branches. In the L. interrogans branch, the phylogenetic tree clustered the strains into three subgroups. Genogroups and serogroups were superimposed but not strictly.

  5. Sequence analysis of the N-acetyltransferase 2 gene (NAT2) among ...

    African Journals Online (AJOL)

    Yazun Bashir Jarrar

    2017-11-26

    Nov 26, 2017 ... Sequence analysis of the N-acetyltransferase 2 gene (NAT2) among Jordanian volunteers. Yazun Bashir Jarrar, Ayat Ahmed Balasmeh and Wassan Jarrar. Department of Pharmacy, College of Pharmacy, AlZaytoonah University of Jordan, Amman, Jordan. ABSTRACT. The present study aimed to identify ...

  6. Automatic knowledge extraction in sequencing analysis with multiagent system and grid computing.

    Science.gov (United States)

    González, Roberto; Zato, Carolina; Benito, Rocío; Bajo, Javier; Hernández, Jesús M; De Paz, Juan F; Vera, Vicente; Corchado, Juan M

    2012-12-01

    Advances in bioinformatics have contributed towards a significant increase in available information. Information analysis requires the use of distributed computing systems to best engage the process of data analysis. This study proposes a multiagent system that incorporates grid technology to facilitate distributed data analysis by dynamically incorporating the roles associated to each specific case study. The system was applied to genetic sequencing data to extract relevant information about insertions, deletions or polymorphisms.

  7. Automatic knowledge extraction in sequencing analysis with multiagent system and grid computing

    Directory of Open Access Journals (Sweden)

    González Roberto

    2012-12-01

    Full Text Available Advances in bioinformatics have contributed towards a significant increase in available information. Information analysis requires the use of distributed computing systems to best engage the process of data analysis. This study proposes a multiagent system that incorporates grid technology to facilitate distributed data analysis by dynamically incorporating the roles associated to each specific case study. The system was applied to genetic sequencing data to extract relevant information about insertions, deletions or polymorphisms.

  8. Biosensors for DNA sequence detection

    Science.gov (United States)

    Vercoutere, Wenonah; Akeson, Mark

    2002-01-01

    DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.

  9. PNA Directed Sequence Addressed Self-Assembly of DNA Nanostructures

    DEFF Research Database (Denmark)

    Nielsen, Peter E.

    2008-01-01

    sequence specifically recognize another PNA oligomer. We describe how such three domain PNAs have utility for assembling dsDNA grid and clover leaf structures, and in combination with SNAP-tag technol. of protein dsDNA structures. (c) 2008 American Institute of Physics. [on SciFinder (R)] Udgivelsesdato...

  10. Site directed recombination

    Science.gov (United States)

    Jurka, Jerzy W.

    1997-01-01

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  11. Genome-wide analysis of codon usage bias in four sequenced cotton species.

    Science.gov (United States)

    Wang, Liyuan; Xing, Huixian; Yuan, Yanchao; Wang, Xianlin; Saeed, Muhammad; Tao, Jincai; Feng, Wei; Zhang, Guihua; Song, Xianliang; Sun, Xuezhen

    2018-01-01

    Codon usage bias (CUB) is an important evolutionary feature in a genome which provides important information for studying organism evolution, gene function and exogenous gene expression. The CUB and its shaping factors in the nuclear genomes of four sequenced cotton species, G. arboreum (A2), G. raimondii (D5), G. hirsutum (AD1) and G. barbadense (AD2) were analyzed in the present study. The effective number of codons (ENC) analysis showed the CUB was weak in these four species and the four subgenomes of the two tetraploids. Codon composition analysis revealed these four species preferred to use pyrimidine-rich codons more frequently than purine-rich codons. Correlation analysis indicated that the base content at the third position of codons affect the degree of codon preference. PR2-bias plot and ENC-plot analyses revealed that the CUB patterns in these genomes and subgenomes were influenced by combined effects of translational selection, directional mutation and other factors. The translational selection (P2) analysis results, together with the non-significant correlation between GC12 and GC3, further revealed that translational selection played the dominant role over mutation pressure in the codon usage bias. Through relative synonymous codon usage (RSCU) analysis, we detected 25 high frequency codons preferred to end with T or A, and 31 low frequency codons inclined to end with C or G in these four species and four subgenomes. Finally, 19 to 26 optimal codons with 19 common ones were determined for each species and subgenomes, which preferred to end with A or T. We concluded that the codon usage bias was weak and the translation selection was the main shaping factor in nuclear genes of these four cotton genomes and four subgenomes.

  12. Targeted DNA Methylation Analysis by High Throughput Sequencing in Porcine Peri-attachment Embryos

    OpenAIRE

    MORRILL, Benson H.; COX, Lindsay; WARD, Anika; HEYWOOD, Sierra; PRATHER, Randall S.; ISOM, S. Clay

    2013-01-01

    Abstract The purpose of this experiment was to implement and evaluate the effectiveness of a next-generation sequencing-based method for DNA methylation analysis in porcine embryonic samples. Fourteen discrete genomic regions were amplified by PCR using bisulfite-converted genomic DNA derived from day 14 in vivo-derived (IVV) and parthenogenetic (PA) porcine embryos as template DNA. Resulting PCR products were subjected to high-throughput sequencing using the Illumina Genome Analyzer IIx plat...

  13. Analysis of common SHOX gene sequence variants and ∼4.9-kb ...

    Indian Academy of Sciences (India)

    [Solc R., Hirschfeldova K., Kebrdlova V. and Baxova A. 2014 Analysis of common SHOX gene sequence variants ... based on a Gibbs sampling strategy were done using .... SHOX (short stature homeobox) are an important cause of growth.

  14. Importance of the Sequence-Directed DNA Shape for Specific Binding Site Recognition by the Estrogen-Related Receptor

    Directory of Open Access Journals (Sweden)

    Kareem Mohideen-Abdul

    2017-06-01

    Full Text Available Most nuclear receptors (NRs bind DNA as dimers, either as hetero- or as homodimers on DNA sequences organized as two half-sites with specific orientation and spacing. The dimerization of NRs on their cognate response elements (REs involves specific protein–DNA and protein–protein interactions. The estrogen-related receptor (ERR belongs to the steroid hormone nuclear receptor (SHR family and shares strong similarity in its DNA-binding domain (DBD with that of the estrogen receptor (ER. In vitro, ERR binds with high affinity inverted repeat REs with a 3-bps spacing (IR3, but in vivo, it preferentially binds to single half-site REs extended at the 5′-end by 3 bp [estrogen-related response element (ERREs], thus explaining why ERR was often inferred as a purely monomeric receptor. Since its C-terminal ligand-binding domain is known to homodimerize with a strong dimer interface, we investigated the binding behavior of the isolated DBDs to different REs using electrophoretic migration, multi-angle static laser light scattering (MALLS, non-denaturing mass spectrometry, and nuclear magnetic resonance. In contrast to ER DBD, ERR DBD binds as a monomer to EREs (IR3, such as the tff1 ERE-IR3, but we identified a DNA sequence composed of an extended half-site embedded within an IR3 element (embedded ERRE/IR3, where stable dimer binding is observed. Using a series of chimera and mutant DNA sequences of ERREs and IR3 REs, we have found the key determinants for the binding of ERR DBD as a dimer. Our results suggest that the sequence-directed DNA shape is more important than the exact nucleotide sequence for the binding of ERR DBD to DNA as a dimer. Our work underlines the importance of the shape-driven DNA readout mechanisms based on minor groove recognition and electrostatic potential. These conclusions may apply not only to ERR but also to other members of the SHR family, such as androgen or glucocorticoid, for which a strong well-conserved half

  15. Multilocus Sequence Analysis for Typing Leptospira interrogans and Leptospira kirschneri▿ †

    Science.gov (United States)

    Leon, Albertine; Pronost, Stéphane; Fortier, Guillaume; Andre-Fontaine, Geneviève; Leclercq, Roland

    2010-01-01

    Fifty-three strains belonging to the pathogenic species Leptospira interrogans and Leptospira kirschneri were analyzed by multilocus sequence analysis. The species formed two distinct branches. In the L. interrogans branch, the phylogenetic tree clustered the strains into three subgroups. Genogroups and serogroups were superimposed but not strictly. PMID:19955271

  16. Sequence analysis of the L protein of the Ebola 2014 outbreak: Insight into conserved regions and mutations.

    Science.gov (United States)

    Ayub, Gohar; Waheed, Yasir

    2016-06-01

    The 2014 Ebola outbreak was one of the largest that have occurred; it started in Guinea and spread to Nigeria, Liberia and Sierra Leone. Phylogenetic analysis of the current virus species indicated that this outbreak is the result of a divergent lineage of the Zaire ebolavirus. The L protein of Ebola virus (EBOV) is the catalytic subunit of the RNA‑dependent RNA polymerase complex, which, with VP35, is key for the replication and transcription of viral RNA. Earlier sequence analysis demonstrated that the L protein of all non‑segmented negative‑sense (NNS) RNA viruses consists of six domains containing conserved functional motifs. The aim of the present study was to analyze the presence of these motifs in 2014 EBOV isolates, highlight their function and how they may contribute to the overall pathogenicity of the isolates. For this purpose, 81 2014 EBOV L protein sequences were aligned with 475 other NNS RNA viruses, including Paramyxoviridae and Rhabdoviridae viruses. Phylogenetic analysis of all EBOV outbreak L protein sequences was also performed. Analysis of the amino acid substitutions in the 2014 EBOV outbreak was conducted using sequence analysis. The alignment demonstrated the presence of previously conserved motifs in the 2014 EBOV isolates and novel residues. Notably, all the mutations identified in the 2014 EBOV isolates were tolerant, they were pathogenic with certain examples occurring within previously determined functional conserved motifs, possibly altering viral pathogenicity, replication and virulence. The phylogenetic analysis demonstrated that all sequences with the exception of the 2014 EBOV sequences were clustered together. The 2014 EBOV outbreak has acquired a great number of mutations, which may explain the reasons behind this unprecedented outbreak. Certain residues critical to the function of the polymerase remain conserved and may be targets for the development of antiviral therapeutic agents.

  17. Direct evidence for sequence-dependent attraction between double-stranded DNA controlled by methylation.

    Science.gov (United States)

    Yoo, Jejoong; Kim, Hajin; Aksimentiev, Aleksei; Ha, Taekjip

    2016-03-22

    Although proteins mediate highly ordered DNA organization in vivo, theoretical studies suggest that homologous DNA duplexes can preferentially associate with one another even in the absence of proteins. Here we combine molecular dynamics simulations with single-molecule fluorescence resonance energy transfer experiments to examine the interactions between duplex DNA in the presence of spermine, a biological polycation. We find that AT-rich DNA duplexes associate more strongly than GC-rich duplexes, regardless of the sequence homology. Methyl groups of thymine acts as a steric block, relocating spermine from major grooves to interhelical regions, thereby increasing DNA-DNA attraction. Indeed, methylation of cytosines makes attraction between GC-rich DNA as strong as that between AT-rich DNA. Recent genome-wide chromosome organization studies showed that remote contact frequencies are higher for AT-rich and methylated DNA, suggesting that direct DNA-DNA interactions that we report here may play a role in the chromosome organization and gene regulation.

  18. Event Sequence Analysis of the Air Intelligence Agency Information Operations Center Flight Operations

    National Research Council Canada - National Science Library

    Larsen, Glen

    1998-01-01

    This report applies Event Sequence Analysis, methodology adapted from aircraft mishap investigation, to an investigation of the performance of the Air Intelligence Agency's Information Operations Center (IOC...

  19. Metagenomic and near full-length 16S rRNA sequence data in support of the phylogenetic analysis of the rumen bacterial community in steers

    Directory of Open Access Journals (Sweden)

    Phillip R. Myer

    2016-09-01

    Full Text Available Amplicon sequencing utilizing next-generation platforms has significantly transformed how research is conducted, specifically microbial ecology. However, primer and sequencing platform biases can confound or change the way scientists interpret these data. The Pacific Biosciences RSII instrument may also preferentially load smaller fragments, which may also be a function of PCR product exhaustion during sequencing. To further examine theses biases, data is provided from 16S rRNA rumen community analyses. Specifically, data from the relative phylum-level abundances for the ruminal bacterial community are provided to determine between-sample variability. Direct sequencing of metagenomic DNA was conducted to circumvent primer-associated biases in 16S rRNA reads and rarefaction curves were generated to demonstrate adequate coverage of each amplicon. PCR products were also subjected to reduced amplification and pooling to reduce the likelihood of PCR product exhaustion during sequencing on the Pacific Biosciences platform. The taxonomic profiles for the relative phylum-level and genus-level abundance of rumen microbiota as a function of PCR pooling for sequencing on the Pacific Biosciences RSII platform were provided. For more information, see “Evaluation of 16S rRNA amplicon sequencing using two next-generation sequencing technologies for phylogenetic analysis of the rumen bacterial community in steers” P.R. Myer, M. Kim, H.C. Freetly, T.P.L. Smith (2016 [1]. Keywords: 16S rRNA gene, MiSeq, Pacific Biosciences, Rumen microbiome

  20. Direct analysis of biological samples by total reflection X-ray fluorescence

    International Nuclear Information System (INIS)

    Lue M, Marco P.; Hernandez-Caraballo, Edwin A.

    2004-01-01

    The technique of total reflection X-ray fluorescence (TXRF) is well suited for the direct analysis of biological samples due to the low matrix interferences and simultaneous multi-element nature. Nevertheless, biological organic samples are frequently analysed after digestion procedures. The direct determination of analytes requires shorter analysis time, low reactive consumption and simplifies the whole analysis process. On the other hand, the biological/clinical samples are often available in minimal amounts and routine studies require the analysis of large number of samples. To overcome the difficulties associated with the analysis of organic samples, particularly of solid ones, different procedures of sample preparation and calibration to approach the direct analysis have been evaluated: (1) slurry sampling, (2) Compton peak standardization, (3) in situ microwave digestion, (4) in situ chemical modification and (5) direct analysis with internal standardization. Examples of analytical methods developed by our research group are discussed. Some of them have not been previously published, illustrating alternative strategies for coping with various problems that may be encountered in the direct analysis by total reflection X-ray fluorescence spectrometry

  1. Sequence conservation and combinatorial complexity of Drosophila neural precursor cell enhancers

    Directory of Open Access Journals (Sweden)

    Kuzin Alexander

    2008-08-01

    Full Text Available Abstract Background The presence of highly conserved sequences within cis-regulatory regions can serve as a valuable starting point for elucidating the basis of enhancer function. This study focuses on regulation of gene expression during the early events of Drosophila neural development. We describe the use of EvoPrinter and cis-Decoder, a suite of interrelated phylogenetic footprinting and alignment programs, to characterize highly conserved sequences that are shared among co-regulating enhancers. Results Analysis of in vivo characterized enhancers that drive neural precursor gene expression has revealed that they contain clusters of highly conserved sequence blocks (CSBs made up of shorter shared sequence elements which are present in different combinations and orientations within the different co-regulating enhancers; these elements contain either known consensus transcription factor binding sites or consist of novel sequences that have not been functionally characterized. The CSBs of co-regulated enhancers share a large number of sequence elements, suggesting that a diverse repertoire of transcription factors may interact in a highly combinatorial fashion to coordinately regulate gene expression. We have used information gained from our comparative analysis to discover an enhancer that directs expression of the nervy gene in neural precursor cells of the CNS and PNS. Conclusion The combined use EvoPrinter and cis-Decoder has yielded important insights into the combinatorial appearance of fundamental sequence elements required for neural enhancer function. Each of the 30 enhancers examined conformed to a pattern of highly conserved blocks of sequences containing shared constituent elements. These data establish a basis for further analysis and understanding of neural enhancer function.

  2. Protein domain analysis of genomic sequence data reveals regulation of LRR related domains in plant transpiration in Ficus.

    Science.gov (United States)

    Lang, Tiange; Yin, Kangquan; Liu, Jinyu; Cao, Kunfang; Cannon, Charles H; Du, Fang K

    2014-01-01

    Predicting protein domains is essential for understanding a protein's function at the molecular level. However, up till now, there has been no direct and straightforward method for predicting protein domains in species without a reference genome sequence. In this study, we developed a functionality with a set of programs that can predict protein domains directly from genomic sequence data without a reference genome. Using whole genome sequence data, the programming functionality mainly comprised DNA assembly in combination with next-generation sequencing (NGS) assembly methods and traditional methods, peptide prediction and protein domain prediction. The proposed new functionality avoids problems associated with de novo assembly due to micro reads and small single repeats. Furthermore, we applied our functionality for the prediction of leucine rich repeat (LRR) domains in four species of Ficus with no reference genome, based on NGS genomic data. We found that the LRRNT_2 and LRR_8 domains are related to plant transpiration efficiency, as indicated by the stomata index, in the four species of Ficus. The programming functionality established in this study provides new insights for protein domain prediction, which is particularly timely in the current age of NGS data expansion.

  3. Bacterial identification and subtyping using DNA microarray and DNA sequencing.

    Science.gov (United States)

    Al-Khaldi, Sufian F; Mossoba, Magdi M; Allard, Marc M; Lienau, E Kurt; Brown, Eric D

    2012-01-01

    The era of fast and accurate discovery of biological sequence motifs in prokaryotic and eukaryotic cells is here. The co-evolution of direct genome sequencing and DNA microarray strategies not only will identify, isotype, and serotype pathogenic bacteria, but also it will aid in the discovery of new gene functions by detecting gene expressions in different diseases and environmental conditions. Microarray bacterial identification has made great advances in working with pure and mixed bacterial samples. The technological advances have moved beyond bacterial gene expression to include bacterial identification and isotyping. Application of new tools such as mid-infrared chemical imaging improves detection of hybridization in DNA microarrays. The research in this field is promising and future work will reveal the potential of infrared technology in bacterial identification. On the other hand, DNA sequencing by using 454 pyrosequencing is so cost effective that the promise of $1,000 per bacterial genome sequence is becoming a reality. Pyrosequencing technology is a simple to use technique that can produce accurate and quantitative analysis of DNA sequences with a great speed. The deposition of massive amounts of bacterial genomic information in databanks is creating fingerprint phylogenetic analysis that will ultimately replace several technologies such as Pulsed Field Gel Electrophoresis. In this chapter, we will review (1) the use of DNA microarray using fluorescence and infrared imaging detection for identification of pathogenic bacteria, and (2) use of pyrosequencing in DNA cluster analysis to fingerprint bacterial phylogenetic trees.

  4. RNA Sequencing and Coexpression Analysis Reveal Key Genes Involved in α-Linolenic Acid Biosynthesis in Perilla frutescens Seed

    Directory of Open Access Journals (Sweden)

    Tianyuan Zhang

    2017-11-01

    Full Text Available Perilla frutescen is used as traditional food and medicine in East Asia. Its seeds contain high levels of α-linolenic acid (ALA, which is important for health, but is scarce in our daily meals. Previous reports on RNA-seq of perilla seed had identified fatty acid (FA and triacylglycerol (TAG synthesis genes, but the underlying mechanism of ALA biosynthesis and its regulation still need to be further explored. So we conducted Illumina RNA-sequencing in seven temporal developmental stages of perilla seeds. Sequencing generated a total of 127 million clean reads, containing 15.88 Gb of valid data. The de novo assembly of sequence reads yielded 64,156 unigenes with an average length of 777 bp. A total of 39,760 unigenes were annotated and 11,693 unigenes were found to be differentially expressed in all samples. According to Kyoto Encyclopedia of Genes and Genomes (KEGG pathway analysis, 486 unigenes were annotated in the “lipid metabolism” pathway. Of these, 150 unigenes were found to be involved in fatty acid (FA biosynthesis and triacylglycerol (TAG assembly in perilla seeds. A coexpression analysis showed that a total of 104 genes were highly coexpressed (r > 0.95. The coexpression network could be divided into two main subnetworks showing over expression in the medium or earlier and late phases, respectively. In order to identify the putative regulatory genes, a transcription factor (TF analysis was performed. This led to the identification of 45 gene families, mainly including the AP2-EREBP, bHLH, MYB, and NAC families, etc. After coexpression analysis of TFs with highly expression of FAD2 and FAD3 genes, 162 TFs were found to be significantly associated with two FAD genes (r > 0.95. Those TFs were predicted to be the key regulatory factors in ALA biosynthesis in perilla seed. The qRT-PCR analysis also verified the relevance of expression pattern between two FAD genes and partial candidate TFs. Although it has been reported that some TFs

  5. Direct repeat sequences are essential for function of the cis-acting locus of transfer (clt) of Streptomyces phaeochromogenes plasmid pJV1.

    Science.gov (United States)

    Franco, Bernardo; González-Cerón, Gabriela; Servín-González, Luis

    2003-11-01

    The functionality of direct and inverted repeat sequences inside the cis acting locus of transfer (clt) of the Streptomyces plasmid pJV1 was determined by testing the effect of different deletions on plasmid transfer. The results show that the single most important element for pJV1 clt function is a series of evenly spaced 9 bp long direct repeats which match the consensus CCGCACA(C/G)(C/G), since their deletion caused a dramatic reduction in plasmid transfer. The presence of these repeats in the absence of any other clt sequences allowed plasmid transfer to occur at a frequency that was at least two orders of magnitude higher than that obtained in the complete absence of clt. A database search revealed regions with a similar organization, and in the same position, in Streptomyces plasmids pSN22 and pSLS, which have transfer proteins homologous to those of pJV1.

  6. Unbiased Strain-Typing of Arbovirus Directly from Mosquitoes Using Nanopore Sequencing: A Field-forward Biosurveillance Protocol.

    Science.gov (United States)

    Russell, Joseph A; Campos, Brittany; Stone, Jennifer; Blosser, Erik M; Burkett-Cadena, Nathan; Jacobs, Jonathan L

    2018-04-03

    The future of infectious disease surveillance and outbreak response is trending towards smaller hand-held solutions for point-of-need pathogen detection. Here, samples of Culex cedecei mosquitoes collected in Southern Florida, USA were tested for Venezuelan Equine Encephalitis Virus (VEEV), a previously-weaponized arthropod-borne RNA-virus capable of causing acute and fatal encephalitis in animal and human hosts. A single 20-mosquito pool tested positive for VEEV by quantitative reverse transcription polymerase chain reaction (RT-qPCR) on the Biomeme two3. The virus-positive sample was subjected to unbiased metatranscriptome sequencing on the Oxford Nanopore MinION and shown to contain Everglades Virus (EVEV), an alphavirus in the VEEV serocomplex. Our results demonstrate, for the first time, the use of unbiased sequence-based detection and subtyping of a high-consequence biothreat pathogen directly from an environmental sample using field-forward protocols. The development and validation of methods designed for field-based diagnostic metagenomics and pathogen discovery, such as those suitable for use in mobile "pocket laboratories", will address a growing demand for public health teams to carry out their mission where it is most urgent: at the point-of-need.

  7. Phenomenological uncertainty analysis of containment building pressure load caused by severe accident sequences

    International Nuclear Information System (INIS)

    Park, S.Y.; Ahn, K.I.

    2014-01-01

    Highlights: • Phenomenological uncertainty analysis has been applied to level 2 PSA. • The methodology provides an alternative to simple deterministic analyses and sensitivity studies. • A realistic evaluation provides a more complete characterization of risks. • Uncertain parameters of MAAP code for the early containment failure were identified. - Abstract: This paper illustrates an application of a severe accident analysis code, MAAP, to the uncertainty evaluation of early containment failure scenarios employed in the containment event tree (CET) model of a reference plant. An uncertainty analysis of containment pressure behavior during severe accidents has been performed for an optimum assessment of an early containment failure model. The present application is mainly focused on determining an estimate of the containment building pressure load caused by severe accident sequences of a nuclear power plant. Key modeling parameters and phenomenological models employed for the present uncertainty analysis are closely related to the in-vessel hydrogen generation, direct containment heating, and gas combustion. The basic approach of this methodology is to (1) develop severe accident scenarios for which containment pressure loads should be performed based on a level 2 PSA, (2) identify severe accident phenomena relevant to an early containment failure, (3) identify the MAAP input parameters, sensitivity coefficients, and modeling options that describe or influence the early containment failure phenomena, (4) prescribe the likelihood descriptions of the potential range of these parameters, and (5) evaluate the code predictions using a number of random combinations of parameter inputs sampled from the likelihood distributions

  8. Markov model plus k-word distributions: a synergy that produces novel statistical measures for sequence comparison.

    Science.gov (United States)

    Dai, Qi; Yang, Yanchun; Wang, Tianming

    2008-10-15

    Many proposed statistical measures can efficiently compare biological sequences to further infer their structures, functions and evolutionary information. They are related in spirit because all the ideas for sequence comparison try to use the information on the k-word distributions, Markov model or both. Motivated by adding k-word distributions to Markov model directly, we investigated two novel statistical measures for sequence comparison, called wre.k.r and S2.k.r. The proposed measures were tested by similarity search, evaluation on functionally related regulatory sequences and phylogenetic analysis. This offers the systematic and quantitative experimental assessment of our measures. Moreover, we compared our achievements with these based on alignment or alignment-free. We grouped our experiments into two sets. The first one, performed via ROC (receiver operating curve) analysis, aims at assessing the intrinsic ability of our statistical measures to search for similar sequences from a database and discriminate functionally related regulatory sequences from unrelated sequences. The second one aims at assessing how well our statistical measure is used for phylogenetic analysis. The experimental assessment demonstrates that our similarity measures intending to incorporate k-word distributions into Markov model are more efficient.

  9. First Complete Genomic Sequence of a Rabies Virus from the Republic of Tajikistan Obtained Directly from a Flinders Technology Associates Card

    OpenAIRE

    Goharriz, H.; Marston, D. A.; Sharifzoda, F.; Ellis, R. J.; Horton, D. L.; Khakimov, T.; Whatmore, A.; Khamroev, K.; Makhmadshoev, A. N.; Bazarov, M.; Fooks, A. R.; Banyard, A. C.

    2017-01-01

    ABSTRACT A brain homogenate derived from a rabid dog in the district of Tojikobod, Republic of Tajikistan, was applied to a Flinders Technology Associates (FTA) card. A full-genome sequence of rabies virus (RABV) was generated from the FTA card directly without extraction, demonstrating the utility of these cards for readily obtaining genetic data.

  10. Cloning and sequence analysis of putative type II fatty acid synthase ...

    Indian Academy of Sciences (India)

    Prakash

    Cloning and sequence analysis of putative type II fatty acid synthase genes from Arachis hypogaea L. ... acyl carrier protein (ACP), malonyl-CoA:ACP transacylase, β-ketoacyl-ACP .... Helix II plays a dominant role in the interaction ... main distinguishing features of plant ACPs in plastids and ..... synthase component; J. Biol.

  11. Genotypic tropism testing by massively parallel sequencing: qualitative and quantitative analysis

    Directory of Open Access Journals (Sweden)

    Thiele Bernhard

    2011-05-01

    Full Text Available Abstract Background Inferring viral tropism from genotype is a fast and inexpensive alternative to phenotypic testing. While being highly predictive when performed on clonal samples, sensitivity of predicting CXCR4-using (X4 variants drops substantially in clinical isolates. This is mainly attributed to minor variants not detected by standard bulk-sequencing. Massively parallel sequencing (MPS detects single clones thereby being much more sensitive. Using this technology we wanted to improve genotypic prediction of coreceptor usage. Methods Plasma samples from 55 antiretroviral-treated patients tested for coreceptor usage with the Monogram Trofile Assay were sequenced with standard population-based approaches. Fourteen of these samples were selected for further analysis with MPS. Tropism was predicted from each sequence with geno2pheno[coreceptor]. Results Prediction based on bulk-sequencing yielded 59.1% sensitivity and 90.9% specificity compared to the trofile assay. With MPS, 7600 reads were generated on average per isolate. Minorities of sequences with high confidence in CXCR4-usage were found in all samples, irrespective of phenotype. When using the default false-positive-rate of geno2pheno[coreceptor] (10%, and defining a minority cutoff of 5%, the results were concordant in all but one isolate. Conclusions The combination of MPS and coreceptor usage prediction results in a fast and accurate alternative to phenotypic assays. The detection of X4-viruses in all isolates suggests that coreceptor usage as well as fitness of minorities is important for therapy outcome. The high sensitivity of this technology in combination with a quantitative description of the viral population may allow implementing meaningful cutoffs for predicting response to CCR5-antagonists in the presence of X4-minorities.

  12. Genotypic tropism testing by massively parallel sequencing: qualitative and quantitative analysis.

    Science.gov (United States)

    Däumer, Martin; Kaiser, Rolf; Klein, Rolf; Lengauer, Thomas; Thiele, Bernhard; Thielen, Alexander

    2011-05-13

    Inferring viral tropism from genotype is a fast and inexpensive alternative to phenotypic testing. While being highly predictive when performed on clonal samples, sensitivity of predicting CXCR4-using (X4) variants drops substantially in clinical isolates. This is mainly attributed to minor variants not detected by standard bulk-sequencing. Massively parallel sequencing (MPS) detects single clones thereby being much more sensitive. Using this technology we wanted to improve genotypic prediction of coreceptor usage. Plasma samples from 55 antiretroviral-treated patients tested for coreceptor usage with the Monogram Trofile Assay were sequenced with standard population-based approaches. Fourteen of these samples were selected for further analysis with MPS. Tropism was predicted from each sequence with geno2pheno[coreceptor]. Prediction based on bulk-sequencing yielded 59.1% sensitivity and 90.9% specificity compared to the trofile assay. With MPS, 7600 reads were generated on average per isolate. Minorities of sequences with high confidence in CXCR4-usage were found in all samples, irrespective of phenotype. When using the default false-positive-rate of geno2pheno[coreceptor] (10%), and defining a minority cutoff of 5%, the results were concordant in all but one isolate. The combination of MPS and coreceptor usage prediction results in a fast and accurate alternative to phenotypic assays. The detection of X4-viruses in all isolates suggests that coreceptor usage as well as fitness of minorities is important for therapy outcome. The high sensitivity of this technology in combination with a quantitative description of the viral population may allow implementing meaningful cutoffs for predicting response to CCR5-antagonists in the presence of X4-minorities.

  13. Cloning, nucleotide sequence and transcriptional analysis of the uvrA gene from Neisseria gonorrhoeae

    International Nuclear Information System (INIS)

    Black, C.G.; Fyfe, J.A.M.; Davies, J.K.

    1997-01-01

    A recombinant plasmid capable of restoring UV resistance to an Escherichia coli uvrA mutant was isolated from a genomic library of Neisseria gonorrhoeae. Sequence analysis revealed an open reading frame whose deduced amino acid sequence displayed significant similarity to those of the UvrA proteins of other bacterial species. A second open reading frame (ORF259) was identified upstream from, and in the opposite orientation to the gonococcal uvrA gene. Transcriptional fusions between portions of the gonococcal uvrA upstream region and a reporter gene were used to localise promoter activity in both E. coli and N. gonorrhoeae. The transcriptional starting points of uvrA and ORF259 were mapped in E. coli by primer extension analysis, and corresponding σ 70 promoters were identified. The arrangement of the uvrA-ORF259 intergenic region is similar to that of the gonococcal recA-aroD intergenic region. Both contain inverted copies of the 10 bp neisserial DNA uptake sequence situated between divergently transcribed genes. However, there is no evidence that either the uptake sequence or the proximity of the promoters influences expression of these genes. (author)

  14. [The use of 16S rDNA sequencing in species diversity analysis for sputum of patients with ventilator-associated pneumonia].

    Science.gov (United States)

    Yang, Xiaojun; Wang, Xiaohong; Liang, Zhijuan; Zhang, Xiaoya; Wang, Yanbo; Wang, Zhenhai

    2014-05-01

    To study the species and amount of bacteria in sputum of patients with ventilator-associated pneumonia (VAP) by using 16S rDNA sequencing analysis, and to explore the new method for etiologic diagnosis of VAP. Bronchoalveolar lavage sputum samples were collected from 31 patients with VAP. Bacterial DNA of the samples were extracted and identified by polymerase chain reaction (PCR). At the same time, sputum specimens were processed for routine bacterial culture. The high flux sequencing experiment was conducted on PCR positive samples with 16S rDNA macro genome sequencing technology, and sequencing results were analyzed using bioinformatics, then the results between the sequencing and bacteria culture were compared. (1) 550 bp of specific DNA sequences were amplified in sputum specimens from 27 cases of the 31 patients with VAP, and they were used for sequencing analysis. 103 856 sequences were obtained from those sputum specimens using 16S rDNA sequencing, yielding approximately 39 Mb of raw data. Tag sequencing was able to inform genus level in all 27 samples. (2) Alpha-diversity analysis showed that sputum samples of patients with VAP had significantly higher variability and richness in bacterial species (Shannon index values 1.20, Simpson index values 0.48). Rarefaction curve analysis showed that there were more species that were not detected by sequencing from some VAP sputum samples. (3) Analysis of 27 sputum samples with VAP by using 16S rDNA sequences yielded four phyla: namely Acitinobacteria, Bacteroidetes, Firmicutes, Proteobacteria. With genus as a classification, it was found that the dominant species included Streptococcus 88.9% (24/27), Limnohabitans 77.8% (21/27), Acinetobacter 70.4% (19/27), Sphingomonas 63.0% (17/27), Prevotella 63.0% (17/27), Klebsiella 55.6% (15/27), Pseudomonas 55.6% (15/27), Aquabacterium 55.6% (15/27), and Corynebacterium 55.6% (15/27). (4) Pyrophosphate sequencing discovered that Prevotella, Limnohabitans, Aquabacterium

  15. Environmental impact analysis for the main accidental sequences of ignitor

    International Nuclear Information System (INIS)

    Carpignano, A.; Francabandiera, S.; Vella, R.; Zucchetti, M.

    1996-01-01

    A safety analysis study has been applied to the Ignitor machine using Probabilistic Safety Assessment. The main initiating events have been identified, and accident sequences have been studied by means of traditional methods such as Failure Mode and Effect Analysis (FMEA), Fault Trees (FT) and Event Trees (ET). The consequences of the radioactive environmental releases have been assessed in terms of Effective Dose Equivalent (EDEs) to the Most Exposed Individuals (MEI) of the chosen site, by means of a population dose code. Results point out the low enviromental impact of the machine. 13 refs., 1 fig., 3 tabs

  16. New PN Even Balanced Sequences for Spread-Spectrum Systems

    Directory of Open Access Journals (Sweden)

    Inácio JAL

    2005-01-01

    Full Text Available A new class of pseudonoise even balanced (PN-EB binary spreading sequences is derived from existing classical odd-length families of maximum-length sequences, such as those proposed by Gold, by appending or inserting one extra-zero element (chip to the original sequences. The incentive to generate large families of PN-EB spreading sequences is motivated by analyzing the spreading effect of these sequences from a natural sampling point of view. From this analysis a new definition for PG is established, from which it becomes clear that very high processing gains (PGs can be achieved in band-limited direct-sequence spread-spectrum (DSSS applications by using spreading sequences with zero mean, given that certain conditions regarding spectral aliasing are met. To obtain large families of even balanced (i.e., equal number of ones and zeros sequences, two design criteria are proposed, namely the ranging criterion (RC and the generating ranging criterion (GRC. PN-EB sequences in the polynomial range are derived using these criteria, and it is shown that they exhibit secondary autocorrelation and cross-correlation peaks comparable to the sequences they are derived from. The methods proposed not only facilitate the generation of large numbers of new PN-EB spreading sequences required for CDMA applications, but simultaneously offer high processing gains and good despreading characteristics in multiuser SS scenarios with band-limited noise and interference spectra. Simulation results are presented to confirm the respective claims made.

  17. Genetic Barrier to Direct Acting Antivirals in HCV Sequences Deposited in the European Databank.

    Directory of Open Access Journals (Sweden)

    Dimas Alexandre Kliemann

    /N/R positions required only one transition for up to 98.8% of the sequences analyzed. A single variant in position 448 in genotype 1a is less likely to become the resistance variant 448H because it requires two transversions. Also, in the position 559D a transversion and a transition were necessary to generate the resistance mutant D559H.Results revealed that in 14 out of 16 positions, conversion to a drug-resistant variant of HCV required only one single nucleotide substitutions threatening direct acting antivirals from all three classes.

  18. Characterization of X chromosome inactivation using integrated analysis of whole-exome and mRNA sequencing.

    Directory of Open Access Journals (Sweden)

    Szabolcs Szelinger

    Full Text Available In females, X chromosome inactivation (XCI is an epigenetic, gene dosage compensatory mechanism by inactivation of one copy of X in cells. Random XCI of one of the parental chromosomes results in an approximately equal proportion of cells expressing alleles from either the maternally or paternally inherited active X, and is defined by the XCI ratio. Skewed XCI ratio is suggestive of non-random inactivation, which can play an important role in X-linked genetic conditions. Current methods rely on indirect, semi-quantitative DNA methylation-based assay to estimate XCI ratio. Here we report a direct approach to estimate XCI ratio by integrated, family-trio based whole-exome and mRNA sequencing using phase-by-transmission of alleles coupled with allele-specific expression analysis. We applied this method to in silico data and to a clinical patient with mild cognitive impairment but no clear diagnosis or understanding molecular mechanism underlying the phenotype. Simulation showed that phased and unphased heterozygous allele expression can be used to estimate XCI ratio. Segregation analysis of the patient's exome uncovered a de novo, interstitial, 1.7 Mb deletion on Xp22.31 that originated on the paternally inherited X and previously been associated with heterogeneous, neurological phenotype. Phased, allelic expression data suggested an 83∶20 moderately skewed XCI that favored the expression of the maternally inherited, cytogenetically normal X and suggested that the deleterious affect of the de novo event on the paternal copy may be offset by skewed XCI that favors expression of the wild-type X. This study shows the utility of integrated sequencing approach in XCI ratio estimation.

  19. Molecular cloning and sequence analysis of VP6 gene of giant ...

    African Journals Online (AJOL)

    Jane

    2011-10-24

    Oct 24, 2011 ... G), and the major structural protein of inner capsid particles (ICP), and also specific antigen of mucosa immunization that mediate specific immunological reaction. In this report, sequence analysis of VP6 gene of giant panda rotavirus was carried out. Full-length VP6 gene encoding for ICP of giant panda.

  20. First Complete Genomic Sequence of a Rabies Virus from the Republic of Tajikistan Obtained Directly from a Flinders Technology Associates Card.

    Science.gov (United States)

    Goharriz, H; Marston, D A; Sharifzoda, F; Ellis, R J; Horton, D L; Khakimov, T; Whatmore, A; Khamroev, K; Makhmadshoev, A N; Bazarov, M; Fooks, A R; Banyard, A C

    2017-07-06

    A brain homogenate derived from a rabid dog in the district of Tojikobod, Republic of Tajikistan, was applied to a Flinders Technology Associates (FTA) card. A full-genome sequence of rabies virus (RABV) was generated from the FTA card directly without extraction, demonstrating the utility of these cards for readily obtaining genetic data. © Crown copyright 2017.

  1. Analysis of sequence diversity through internal transcribed spacers and simple sequence repeats to identify Dendrobium species.

    Science.gov (United States)

    Liu, Y T; Chen, R K; Lin, S J; Chen, Y C; Chin, S W; Chen, F C; Lee, C Y

    2014-04-08

    The Orchidaceae is one of the largest and most diverse families of flowering plants. The Dendrobium genus has high economic potential as ornamental plants and for medicinal purposes. In addition, the species of this genus are able to produce large crops. However, many Dendrobium varieties are very similar in outward appearance, making it difficult to distinguish one species from another. This study demonstrated that the 12 Dendrobium species used in this study may be divided into 2 groups by internal transcribed spacer (ITS) sequence analysis. Red and yellow flowers may also be used to separate these species into 2 main groups. In particular, the deciduous characteristic is associated with the ITS genetic diversity of the A group. Of 53 designed simple sequence repeat (SSR) primer pairs, 7 pairs were polymorphic for polymerase chain reaction products that were amplified from a specific band. The results of this study demonstrate that these 7 SSR primer pairs may potentially be used to identify Dendrobium species and their progeny in future studies.

  2. Sequencing and analysis of the gene-rich space of cowpea

    Directory of Open Access Journals (Sweden)

    Cheung Foo

    2008-02-01

    Full Text Available Abstract Background Cowpea, Vigna unguiculata (L. Walp., is one of the most important food and forage legumes in the semi-arid tropics because of its drought tolerance and ability to grow on poor quality soils. Approximately 80% of cowpea production takes place in the dry savannahs of tropical West and Central Africa, mostly by poor subsistence farmers. Despite its economic and social importance in the developing world, cowpea remains to a large extent an underexploited crop. Among the major goals of cowpea breeding and improvement programs is the stacking of desirable agronomic traits, such as disease and pest resistance and response to abiotic stresses. Implementation of marker-assisted selection and breeding programs is severely limited by a paucity of trait-linked markers and a general lack of information on gene structure and organization. With a nuclear genome size estimated at ~620 Mb, the cowpea genome is an ideal target for reduced representation sequencing. Results We report here the sequencing and analysis of the gene-rich, hypomethylated portion of the cowpea genome selectively cloned by methylation filtration (MF technology. Over 250,000 gene-space sequence reads (GSRs with an average length of 610 bp were generated, yielding ~160 Mb of sequence information. The GSRs were assembled, annotated by BLAST homology searches of four public protein annotation databases and four plant proteomes (A. thaliana, M. truncatula, O. sativa, and P. trichocarpa, and analyzed using various domain and gene modeling tools. A total of 41,260 GSR assemblies and singletons were annotated, of which 19,786 have unique GenBank accession numbers. Within the GSR dataset, 29% of the sequences were annotated using the Arabidopsis Gene Ontology (GO with the largest categories of assigned function being catalytic activity and metabolic processes, groups that include the majority of cellular enzymes and components of amino acid, carbohydrate and lipid metabolism. A

  3. Partial nucleotide sequence analysis of 18S ribosomal RNA gene of the four genotypes of Trypanosoma congolense

    International Nuclear Information System (INIS)

    Osanya, A.; Majiwa, P.A.O.; Kinyanjui, P.W.

    2006-01-01

    Specific oligonucleotide primers based on conserved nucleotide sequences of 18s ribisomal RNA (18s rRNA) gene of Trypanosoma brucei, Leishmania donovani, Triponema aequale and Lagenidium gigantum have been designed and used in the ploymerase chain reaction (PCR) to amplify genomic DNA from four different clones each representing a different genotypic group of T. congolence. PCR products of approximately 1Kb were generated using as template DNA from each of the trypanosomes. The PCR products cross-hybridized with genomic DNA from T.brucei, T. simiae and the four genotypes of T.congolense implying significant sequence homology of 18S rRNA gene among trypanosomes. The nucleotide sequence of a segment of the PCR products were determined by direct sequencing to provide partial nucleotide sequence of the 18s rRNA gene in each T.congolense genotypic group. The sequences obtained together with those that have been published for T.brucei reveals that although most regions show inter and intra species nucleotide identity, there are several sites where deletions, insertions and base changes have occured in nucleotide sequence of of T.brucei and the four genotypes of T.congolense.(author)

  4. Chimera: construction of chimeric sequences for phylogenetic analysis

    NARCIS (Netherlands)

    Leunissen, J.A.M.

    2003-01-01

    Chimera allows the construction of chimeric protein or nucleic acid sequence files by concatenating sequences from two or more sequence files in PHYLIP formats. It allows the user to interactively select genes and species from the input files. The concatenated result is stored to one single output

  5. BrAD-seq: Breath Adapter Directional sequencing: a streamlined, ultra-simple and fast library preparation protocol for strand specific mRNA library construction.

    Directory of Open Access Journals (Sweden)

    Brad Thomas Townsley

    2015-05-01

    Full Text Available Next Generation Sequencing (NGS is driving rapid advancement in biological understanding and RNA-sequencing (RNA-seq has become an indispensable tool for biology and medicine. There is a growing need for access to these technologies although preparation of NGS libraries remains a bottleneck to wider adoption. Here we report a novel method for the production of strand specific RNA-seq libraries utilizing inherent properties of double-stranded cDNA to capture and incorporate a sequencing adapter. Breath Adapter Directional sequencing (BrAD-seq reduces sample handling and requires far fewer enzymatic steps than most available methods to produce high quality strand-specific RNA-seq libraries. The method we present is optimized for 3-prime Digital Gene Expression (DGE libraries and can easily extend to full transcript coverage shotgun (SHO type strand-specific libraries and is modularized to accommodate a diversity of RNA and DNA input materials. BrAD-seq offers a highly streamlined and inexpensive option for RNA-seq libraries.

  6. Internal event analysis for Laguna Verde Unit 1 Nuclear Power Plant. Accident sequence quantification and results

    International Nuclear Information System (INIS)

    Huerta B, A.; Aguilar T, O.; Nunez C, A.; Lopez M, R.

    1994-01-01

    The Level 1 results of Laguna Verde Nuclear Power Plant PRA are presented in the I nternal Event Analysis for Laguna Verde Unit 1 Nuclear Power Plant, CNSNS-TR 004, in five volumes. The reports are organized as follows: CNSNS-TR 004 Volume 1: Introduction and Methodology. CNSNS-TR4 Volume 2: Initiating Event and Accident Sequences. CNSNS-TR 004 Volume 3: System Analysis. CNSNS-TR 004 Volume 4: Accident Sequence Quantification and Results. CNSNS-TR 005 Volume 5: Appendices A, B and C. This volume presents the development of the dependent failure analysis, the treatment of the support system dependencies, the identification of the shared-components dependencies, and the treatment of the common cause failure. It is also presented the identification of the main human actions considered along with the possible recovery actions included. The development of the data base and the assumptions and limitations in the data base are also described in this volume. The accident sequences quantification process and the resolution of the core vulnerable sequences are presented. In this volume, the source and treatment of uncertainties associated with failure rates, component unavailabilities, initiating event frequencies, and human error probabilities are also presented. Finally, the main results and conclusions for the Internal Event Analysis for Laguna Verde Nuclear Power Plant are presented. The total core damage frequency calculated is 9.03x 10-5 per year for internal events. The most dominant accident sequences found are the transients involving the loss of offsite power, the station blackout accidents, and the anticipated transients without SCRAM (ATWS). (Author)

  7. Molecular cloning and sequencing analysis of the interferon receptor (IFNAR-1) from Columba livia.

    Science.gov (United States)

    Li, Chao; Chang, Wei Shan

    2014-01-01

    Partial sequence cloning of interferon receptor (IFNAR-1) of Columba livia. In order to obtain a certain length (630 bp) of gene, a pair of primers was designed according to the conserved nucleotide sequence of Gallus (EU477527.1) and Taeniopygia guttata (XM_002189232.1) IFNAR-1 gene fragment that was published by GenBank. Special primers were designed by the Race method to amplify the 3'terminal cDNA. The Columba livia IFNAR-1 displayed 88.5%, 80.5% and 73.8% nucleotide identity to Falco peregrinus, Gallus and Taeniopygia guttata, respectively. Phylogenetic analysis of the IFNAR1 gene showed that the relationship of Columba livia, Falco peregrinus and chicken had high homology. We successfully obtained a Columba livia IFNAR-1 gene partial sequence. Analysis of the genetic tree showed that the relationship of Columba livia and Falco peregrinus IFNAR-1 had high homology. This result can be used as reference for further research and practical application.

  8. Sequence Directionality Dramatically Affects LCST Behavior of Elastin-Like Polypeptides.

    Science.gov (United States)

    Li, Nan K; Roberts, Stefan; Quiroz, Felipe Garcia; Chilkoti, Ashutosh; Yingling, Yaroslava G

    2018-04-30

    Elastin-like polypeptides (ELP) exhibit an inverse temperature transition or lower critical solution temperature (LCST) transition phase behavior in aqueous solutions. In this paper, the thermal responsive properties of the canonical ELP, poly(VPGVG), and its reverse sequence poly(VGPVG) were investigated by turbidity measurements of the cloud point behavior, circular dichroism (CD) measurements, and all-atom molecular dynamics (MD) simulations to gain a molecular understanding of mechanism that controls hysteretic phase behavior. It was shown experimentally that both poly(VPGVG) and poly(VGPVG) undergo a transition from soluble to insoluble in aqueous solution upon heating above the transition temperature ( T t ). However, poly(VPGVG) resolubilizes upon cooling below its T t , whereas the reverse sequence, poly(VGPVG), remains aggregated despite significant undercooling below the T t . The results from MD simulations indicated that a change in sequence order results in significant differences in the dynamics of the specific residues, especially valines, which lead to extensive changes in the conformations of VPGVG and VGPVG pentamers and, consequently, dissimilar propensities for secondary structure formation and overall structure of polypeptides. These changes affected the relative hydrophilicities of polypeptides above T t , where poly(VGPVG) is more hydrophilic than poly(VPGVG) with more extended conformation and larger surface area, which led to formation of strong interchain hydrogen bonds responsible for stabilization of the aggregated phase and the observed thermal hysteresis for poly(VGPVG).

  9. Analysis of quality raw data of second generation sequencers with Quality Assessment Software.

    Science.gov (United States)

    Ramos, Rommel Tj; Carneiro, Adriana R; Baumbach, Jan; Azevedo, Vasco; Schneider, Maria Pc; Silva, Artur

    2011-04-18

    Second generation technologies have advantages over Sanger; however, they have resulted in new challenges for the genome construction process, especially because of the small size of the reads, despite the high degree of coverage. Independent of the program chosen for the construction process, DNA sequences are superimposed, based on identity, to extend the reads, generating contigs; mismatches indicate a lack of homology and are not included. This process improves our confidence in the sequences that are generated. We developed Quality Assessment Software, with which one can review graphs showing the distribution of quality values from the sequencing reads. This software allow us to adopt more stringent quality standards for sequence data, based on quality-graph analysis and estimated coverage after applying the quality filter, providing acceptable sequence coverage for genome construction from short reads. Quality filtering is a fundamental step in the process of constructing genomes, as it reduces the frequency of incorrect alignments that are caused by measuring errors, which can occur during the construction process due to the size of the reads, provoking misassemblies. Application of quality filters to sequence data, using the software Quality Assessment, along with graphing analyses, provided greater precision in the definition of cutoff parameters, which increased the accuracy of genome construction.

  10. Citrate synthase gene sequence: a new tool for phylogenetic analysis and identification of Ehrlichia.

    Science.gov (United States)

    Inokuma, H; Brouqui, P; Drancourt, M; Raoult, D

    2001-09-01

    The sequence of the citrate synthase gene (gltA) of 13 ehrlichial species (Ehrlichia chaffeensis, Ehrlichia canis, Ehrlichia muris, an Ehrlichia species recently detected from Ixodes ovatus, Cowdria ruminantium, Ehrlichia phagocytophila, Ehrlichia equi, the human granulocytic ehrlichiosis [HGE] agent, Anaplasma marginale, Anaplasma centrale, Ehrlichia sennetsu, Ehrlichia risticii, and Neorickettsia helminthoeca) have been determined by degenerate PCR and the Genome Walker method. The ehrlichial gltA genes are 1,197 bp (E. sennetsu and E. risticii) to 1,254 bp (A. marginale and A. centrale) long, and GC contents of the gene vary from 30.5% (Ehrlichia sp. detected from I. ovatus) to 51.0% (A. centrale). The percent identities of the gltA nucleotide sequences among ehrlichial species were 49.7% (E. risticii versus A. centrale) to 99.8% (HGE agent versus E. equi). The percent identities of deduced amino acid sequences were 44.4% (E. sennetsu versus E. muris) to 99.5% (HGE agent versus E. equi), whereas the homology range of 16S rRNA genes was 83.5% (E. risticii versus the Ehrlichia sp. detected from I. ovatus) to 99.9% (HGE agent, E. equi, and E. phagocytophila). The architecture of the phylogenetic trees constructed by gltA nucleotide sequences or amino acid sequences was similar to that derived from the 16S rRNA gene sequences but showed more-significant bootstrap values. Based upon the alignment analysis of the ehrlichial gltA sequences, two sets of primers were designed to amplify tick-borne Ehrlichia and Neorickettsia genogroup Ehrlichia (N. helminthoeca, E. sennetsu, and E. risticii), respectively. Tick-borne Ehrlichia species were specifically identified by restriction fragment length polymorphism (RFLP) patterns of AcsI and XhoI with the exception of E. muris and the very closely related ehrlichia derived from I. ovatus for which sequence analysis of the PCR product is needed. Similarly, Neorickettsia genogroup Ehrlichia species were specifically identified by

  11. MIToS.jl: mutual information tools for protein sequence analysis in the Julia language

    DEFF Research Database (Denmark)

    Zea, Diego J.; Anfossi, Diego; Nielsen, Morten

    2017-01-01

    Motivation: MIToS is an environment for mutual information analysis and a framework for protein multiple sequence alignments (MSAs) and protein structures (PDB) management in Julia language. It integrates sequence and structural information through SIFTS, making Pfam MSAs analysis straightforward....... MIToS streamlines the implementation of any measure calculated from residue contingency tables and its optimization and testing in terms of protein contact prediction. As an example, we implemented and tested a BLOSUM62-based pseudo-count strategy in mutual information analysis. Availability...... and Implementation: The software is totally implemented in Julia and supported for Linux, OS X and Windows. It’s freely available on GitHub under MIT license: http://mitos.leloir.org.ar. Contacts:diegozea@gmail.com or cmb@leloir.org.ar Supplementary information: Supplementary data are available at Bioinformatics...

  12. Genetic Code Analysis Toolkit: A novel tool to explore the coding properties of the genetic code and DNA sequences

    Science.gov (United States)

    Kraljić, K.; Strüngmann, L.; Fimmel, E.; Gumbel, M.

    2018-01-01

    The genetic code is degenerated and it is assumed that redundancy provides error detection and correction mechanisms in the translation process. However, the biological meaning of the code's structure is still under current research. This paper presents a Genetic Code Analysis Toolkit (GCAT) which provides workflows and algorithms for the analysis of the structure of nucleotide sequences. In particular, sets or sequences of codons can be transformed and tested for circularity, comma-freeness, dichotomic partitions and others. GCAT comes with a fertile editor custom-built to work with the genetic code and a batch mode for multi-sequence processing. With the ability to read FASTA files or load sequences from GenBank, the tool can be used for the mathematical and statistical analysis of existing sequence data. GCAT is Java-based and provides a plug-in concept for extensibility. Availability: Open source Homepage:http://www.gcat.bio/

  13. Analysis of whole genome sequencing for the Escherichia coli O157:H7 typing phages.

    Science.gov (United States)

    Cowley, Lauren A; Beckett, Stephen J; Chase-Topping, Margo; Perry, Neil; Dallman, Tim J; Gally, David L; Jenkins, Claire

    2015-04-08

    Shiga toxin producing Escherichia coli O157 can cause severe bloody diarrhea and haemolytic uraemic syndrome. Phage typing of E. coli O157 facilitates public health surveillance and outbreak investigations, certain phage types are more likely to occupy specific niches and are associated with specific age groups and disease severity. The aim of this study was to analyse the genome sequences of 16 (fourteen T4 and two T7) E. coli O157 typing phages and to determine the genes responsible for the subtle differences in phage type profiles. The typing phages were sequenced using paired-end Illumina sequencing at The Genome Analysis Centre and the Animal Health and Veterinary Laboratories Agency and bioinformatics programs including Velvet, Brig and Easyfig were used to analyse them. A two-way Euclidian cluster analysis highlighted the associations between groups of phage types and typing phages. The analysis showed that the T7 typing phages (9 and 10) differed by only three genes and that the T4 typing phages formed three distinct groups of similar genomic sequences: Group 1 (1, 8, 11, 12 and 15, 16), Group 2 (3, 6, 7 and 13) and Group 3 (2, 4, 5 and 14). The E. coli O157 phage typing scheme exhibited a significantly modular network linked to the genetic similarity of each group showing that these groups are specialised to infect a subset of phage types. Sequencing the typing phage has enabled us to identify the variable genes within each group and to determine how this corresponds to changes in phage type.

  14. An Analysis of Delay-based and Integrator-based Sequence Detectors for Grid-Connected Converters

    DEFF Research Database (Denmark)

    Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2017-01-01

    -signal cancellation operators are the main members of the delay-based sequence detectors. The aim of this paper is to provide a theoretical and experimental comparative study between integrator and delay based sequence detectors. The theoretical analysis is conducted based on the small-signal modelling......Detecting and separating positive and negative sequence components of the grid voltage or current is of vital importance in the control of grid-connected power converters, HVDC systems, etc. To this end, several techniques have been proposed in recent years. These techniques can be broadly...... classified into two main classes: The integrator-based techniques and Delay-based techniques. The complex-coefficient filter-based technique, dual second-order generalized integrator-based method, multiple reference frame approach are the main members of the integrator-based sequence detector and the delay...

  15. Genetic diversity analysis of Leuconostoc mesenteroides from Korean vegetables and food products by multilocus sequence typing.

    Science.gov (United States)

    Sharma, Anshul; Kaur, Jasmine; Lee, Sulhee; Park, Young-Seo

    2018-06-01

    In the present study, 35 Leuconostoc mesenteroides strains isolated from vegetables and food products from South Korea were studied by multilocus sequence typing (MLST) of seven housekeeping genes (atpA, groEL, gyrB, pheS, pyrG, rpoA, and uvrC). The fragment sizes of the seven amplified housekeeping genes ranged in length from 366 to 1414 bp. Sequence analysis indicated 27 different sequence types (STs) with 25 of them being represented by a single strain indicating high genetic diversity, whereas the remaining 2 were characterized by five strains each. In total, 220 polymorphic nucleotide sites were detected among seven housekeeping genes. The phylogenetic analysis based on the STs of the seven loci indicated that the 35 strains belonged to two major groups, A (28 strains) and B (7 strains). Split decomposition analysis showed that intraspecies recombination played a role in generating diversity among strains. The minimum spanning tree showed that the evolution of the STs was not correlated with food source. This study signifies that the multilocus sequence typing is a valuable tool to access the genetic diversity among L. mesenteroides strains from South Korea and can be used further to monitor the evolutionary changes.

  16. Quantitative phenotyping via deep barcode sequencing.

    Science.gov (United States)

    Smith, Andrew M; Heisler, Lawrence E; Mellor, Joseph; Kaper, Fiona; Thompson, Michael J; Chee, Mark; Roth, Frederick P; Giaever, Guri; Nislow, Corey

    2009-10-01

    Next-generation DNA sequencing technologies have revolutionized diverse genomics applications, including de novo genome sequencing, SNP detection, chromatin immunoprecipitation, and transcriptome analysis. Here we apply deep sequencing to genome-scale fitness profiling to evaluate yeast strain collections in parallel. This method, Barcode analysis by Sequencing, or "Bar-seq," outperforms the current benchmark barcode microarray assay in terms of both dynamic range and throughput. When applied to a complex chemogenomic assay, Bar-seq quantitatively identifies drug targets, with performance superior to the benchmark microarray assay. We also show that Bar-seq is well-suited for a multiplex format. We completely re-sequenced and re-annotated the yeast deletion collection using deep sequencing, found that approximately 20% of the barcodes and common priming sequences varied from expectation, and used this revised list of barcode sequences to improve data quality. Together, this new assay and analysis routine provide a deep-sequencing-based toolkit for identifying gene-environment interactions on a genome-wide scale.

  17. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis.

    Science.gov (United States)

    Patil, Gunvant; Valliyodan, Babu; Deshmukh, Rupesh; Prince, Silvas; Nicander, Bjorn; Zhao, Mingzhe; Sonah, Humira; Song, Li; Lin, Li; Chaudhary, Juhi; Liu, Yang; Joshi, Trupti; Xu, Dong; Nguyen, Henry T

    2015-07-11

    SWEET (MtN3_saliva) domain proteins, a recently identified group of efflux transporters, play an indispensable role in sugar efflux, phloem loading, plant-pathogen interaction and reproductive tissue development. The SWEET gene family is predominantly studied in Arabidopsis and members of the family are being investigated in rice. To date, no transcriptome or genomics analysis of soybean SWEET genes has been reported. In the present investigation, we explored the evolutionary aspect of the SWEET gene family in diverse plant species including primitive single cell algae to angiosperms with a major emphasis on Glycine max. Evolutionary features showed expansion and duplication of the SWEET gene family in land plants. Homology searches with BLAST tools and Hidden Markov Model-directed sequence alignments identified 52 SWEET genes that were mapped to 15 chromosomes in the soybean genome as tandem duplication events. Soybean SWEET (GmSWEET) genes showed a wide range of expression profiles in different tissues and developmental stages. Analysis of public transcriptome data and expression profiling using quantitative real time PCR (qRT-PCR) showed that a majority of the GmSWEET genes were confined to reproductive tissue development. Several natural genetic variants (non-synonymous SNPs, premature stop codons and haplotype) were identified in the GmSWEET genes using whole genome re-sequencing data analysis of 106 soybean genotypes. A significant association was observed between SNP-haplogroup and seed sucrose content in three gene clusters on chromosome 6. Present investigation utilized comparative genomics, transcriptome profiling and whole genome re-sequencing approaches and provided a systematic description of soybean SWEET genes and identified putative candidates with probable roles in the reproductive tissue development. Gene expression profiling at different developmental stages and genomic variation data will aid as an important resource for the soybean research

  18. Pig genome sequence - analysis and publication strategy

    DEFF Research Database (Denmark)

    Archibald, Alan L.; Bolund, Lars; Churcher, Carol

    2010-01-01

    preferentially selected for sequencing. In accordance with the Bermuda and Fort Lauderdale agreements and the more recent Toronto Statement the data have been released into public sequence repositories (Genbank/EMBL, NCBI/Ensembl trace repositories) in a timely manner and in advance of publication. CONCLUSIONS...

  19. RNA-Seq analysis and gene discovery of Andrias davidianus using Illumina short read sequencing.

    Directory of Open Access Journals (Sweden)

    Fenggang Li

    Full Text Available The Chinese giant salamander, Andrias davidianus, is an important species in the course of evolution; however, there is insufficient genomic data in public databases for understanding its immunologic mechanisms. High-throughput transcriptome sequencing is necessary to generate an enormous number of transcript sequences from A. davidianus for gene discovery. In this study, we generated more than 40 million reads from samples of spleen and skin tissue using the Illumina paired-end sequencing technology. De novo assembly yielded 87,297 transcripts with a mean length of 734 base pairs (bp. Based on the sequence similarities, searching with known proteins, 38,916 genes were identified. Gene enrichment analysis determined that 981 transcripts were assigned to the immune system. Tissue-specific expression analysis indicated that 443 of transcripts were specifically expressed in the spleen and skin. Among these transcripts, 147 transcripts were found to be involved in immune responses and inflammatory reactions, such as fucolectin, β-defensins and lymphotoxin beta. Eight tissue-specific genes were selected for validation using real time reverse transcription quantitative PCR (qRT-PCR. The results showed that these genes were significantly more expressed in spleen and skin than in other tissues, suggesting that these genes have vital roles in the immune response. This work provides a comprehensive genomic sequence resource for A. davidianus and lays the foundation for future research on the immunologic and disease resistance mechanisms of A. davidianus and other amphibians.

  20. Site-directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins.

    Science.gov (United States)

    Subburaj, Saminathan; Chung, Sung Jin; Lee, Choongil; Ryu, Seuk-Min; Kim, Duk Hyoung; Kim, Jin-Soo; Bae, Sangsu; Lee, Geung-Joo

    2016-07-01

    Site-directed mutagenesis of nitrate reductase genes using direct delivery of purified Cas9 protein preassembled with guide RNA produces mutations efficiently in Petunia × hybrida protoplast system. The clustered, regularly interspaced, short palindromic repeat (CRISPR)-CRISPR associated endonuclease 9 (CRISPR/Cas9) system has been recently announced as a powerful molecular breeding tool for site-directed mutagenesis in higher plants. Here, we report a site-directed mutagenesis method targeting Petunia nitrate reductase (NR) gene locus. This method could create mutations efficiently using direct delivery of purified Cas9 protein and single guide RNA (sgRNA) into protoplast cells. After transient introduction of RNA-guided endonuclease (RGEN) ribonucleoproteins (RNPs) with different sgRNAs targeting NR genes, mutagenesis at the targeted loci was detected by T7E1 assay and confirmed by targeted deep sequencing. T7E1 assay showed that RGEN RNPs induced site-specific mutations at frequencies ranging from 2.4 to 21 % at four different sites (NR1, 2, 4 and 6) in the PhNR gene locus with average mutation efficiency of 14.9 ± 2.2 %. Targeted deep DNA sequencing revealed mutation rates of 5.3-17.8 % with average mutation rate of 11.5 ± 2 % at the same NR gene target sites in DNA fragments of analyzed protoplast transfectants. Further analysis from targeted deep sequencing showed that the average ratio of deletion to insertion produced collectively by the four NR-RGEN target sites (NR1, 2, 4, and 6) was about 63:37. Our results demonstrated that direct delivery of RGEN RNPs into protoplast cells of Petunia can be exploited as an efficient tool for site-directed mutagenesis of genes or genome editing in plant systems.

  1. Extra-binomial variation approach for analysis of pooled DNA sequencing data

    Science.gov (United States)

    Wallace, Chris

    2012-01-01

    Motivation: The invention of next-generation sequencing technology has made it possible to study the rare variants that are more likely to pinpoint causal disease genes. To make such experiments financially viable, DNA samples from several subjects are often pooled before sequencing. This induces large between-pool variation which, together with other sources of experimental error, creates over-dispersed data. Statistical analysis of pooled sequencing data needs to appropriately model this additional variance to avoid inflating the false-positive rate. Results: We propose a new statistical method based on an extra-binomial model to address the over-dispersion and apply it to pooled case-control data. We demonstrate that our model provides a better fit to the data than either a standard binomial model or a traditional extra-binomial model proposed by Williams and can analyse both rare and common variants with lower or more variable pool depths compared to the other methods. Availability: Package ‘extraBinomial’ is on http://cran.r-project.org/ Contact: chris.wallace@cimr.cam.ac.uk Supplementary information: Supplementary data are available at Bioinformatics Online. PMID:22976083

  2. Search Engine for Antimicrobial Resistance: A Cloud Compatible Pipeline and Web Interface for Rapidly Detecting Antimicrobial Resistance Genes Directly from Sequence Data.

    Science.gov (United States)

    Rowe, Will; Baker, Kate S; Verner-Jeffreys, David; Baker-Austin, Craig; Ryan, Jim J; Maskell, Duncan; Pearce, Gareth

    2015-01-01

    Antimicrobial resistance remains a growing and significant concern in human and veterinary medicine. Current laboratory methods for the detection and surveillance of antimicrobial resistant bacteria are limited in their effectiveness and scope. With the rapidly developing field of whole genome sequencing beginning to be utilised in clinical practice, the ability to interrogate sequencing data quickly and easily for the presence of antimicrobial resistance genes will become increasingly important and useful for informing clinical decisions. Additionally, use of such tools will provide insight into the dynamics of antimicrobial resistance genes in metagenomic samples such as those used in environmental monitoring. Here we present the Search Engine for Antimicrobial Resistance (SEAR), a pipeline and web interface for detection of horizontally acquired antimicrobial resistance genes in raw sequencing data. The pipeline provides gene information, abundance estimation and the reconstructed sequence of antimicrobial resistance genes; it also provides web links to additional information on each gene. The pipeline utilises clustering and read mapping to annotate full-length genes relative to a user-defined database. It also uses local alignment of annotated genes to a range of online databases to provide additional information. We demonstrate SEAR's application in the detection and abundance estimation of antimicrobial resistance genes in two novel environmental metagenomes, 32 human faecal microbiome datasets and 126 clinical isolates of Shigella sonnei. We have developed a pipeline that contributes to the improved capacity for antimicrobial resistance detection afforded by next generation sequencing technologies, allowing for rapid detection of antimicrobial resistance genes directly from sequencing data. SEAR uses raw sequencing data via an intuitive interface so can be run rapidly without requiring advanced bioinformatic skills or resources. Finally, we show that SEAR

  3. Genomic sequencing in clinical trials

    OpenAIRE

    Mestan, Karen K; Ilkhanoff, Leonard; Mouli, Samdeep; Lin, Simon

    2011-01-01

    Abstract Human genome sequencing is the process by which the exact order of nucleic acid base pairs in the 24 human chromosomes is determined. Since the completion of the Human Genome Project in 2003, genomic sequencing is rapidly becoming a major part of our translational research efforts to understand and improve human health and disease. This article reviews the current and future directions of clinical research with respect to genomic sequencing, a technology that is just beginning to fin...

  4. Accident sequence quantification with KIRAP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Un; Han, Sang Hoon; Kim, Kil You; Yang, Jun Eon; Jeong, Won Dae; Chang, Seung Cheol; Sung, Tae Yong; Kang, Dae Il; Park, Jin Hee; Lee, Yoon Hwan; Hwang, Mi Jeong

    1997-01-01

    The tasks of probabilistic safety assessment(PSA) consists of the identification of initiating events, the construction of event tree for each initiating event, construction of fault trees for event tree logics, the analysis of reliability data and finally the accident sequence quantification. In the PSA, the accident sequence quantification is to calculate the core damage frequency, importance analysis and uncertainty analysis. Accident sequence quantification requires to understand the whole model of the PSA because it has to combine all event tree and fault tree models, and requires the excellent computer code because it takes long computation time. Advanced Research Group of Korea Atomic Energy Research Institute(KAERI) has developed PSA workstation KIRAP(Korea Integrated Reliability Analysis Code Package) for the PSA work. This report describes the procedures to perform accident sequence quantification, the method to use KIRAP`s cut set generator, and method to perform the accident sequence quantification with KIRAP. (author). 6 refs.

  5. Accident sequence quantification with KIRAP

    International Nuclear Information System (INIS)

    Kim, Tae Un; Han, Sang Hoon; Kim, Kil You; Yang, Jun Eon; Jeong, Won Dae; Chang, Seung Cheol; Sung, Tae Yong; Kang, Dae Il; Park, Jin Hee; Lee, Yoon Hwan; Hwang, Mi Jeong.

    1997-01-01

    The tasks of probabilistic safety assessment(PSA) consists of the identification of initiating events, the construction of event tree for each initiating event, construction of fault trees for event tree logics, the analysis of reliability data and finally the accident sequence quantification. In the PSA, the accident sequence quantification is to calculate the core damage frequency, importance analysis and uncertainty analysis. Accident sequence quantification requires to understand the whole model of the PSA because it has to combine all event tree and fault tree models, and requires the excellent computer code because it takes long computation time. Advanced Research Group of Korea Atomic Energy Research Institute(KAERI) has developed PSA workstation KIRAP(Korea Integrated Reliability Analysis Code Package) for the PSA work. This report describes the procedures to perform accident sequence quantification, the method to use KIRAP's cut set generator, and method to perform the accident sequence quantification with KIRAP. (author). 6 refs

  6. Galaxy Workflows for Web-based Bioinformatics Analysis of Aptamer High-throughput Sequencing Data

    Directory of Open Access Journals (Sweden)

    William H Thiel

    2016-01-01

    Full Text Available Development of RNA and DNA aptamers for diagnostic and therapeutic applications is a rapidly growing field. Aptamers are identified through iterative rounds of selection in a process termed SELEX (Systematic Evolution of Ligands by EXponential enrichment. High-throughput sequencing (HTS revolutionized the modern SELEX process by identifying millions of aptamer sequences across multiple rounds of aptamer selection. However, these vast aptamer HTS datasets necessitated bioinformatics techniques. Herein, we describe a semiautomated approach to analyze aptamer HTS datasets using the Galaxy Project, a web-based open source collection of bioinformatics tools that were originally developed to analyze genome, exome, and transcriptome HTS data. Using a series of Workflows created in the Galaxy webserver, we demonstrate efficient processing of aptamer HTS data and compilation of a database of unique aptamer sequences. Additional Workflows were created to characterize the abundance and persistence of aptamer sequences within a selection and to filter sequences based on these parameters. A key advantage of this approach is that the online nature of the Galaxy webserver and its graphical interface allow for the analysis of HTS data without the need to compile code or install multiple programs.

  7. A systematic identification of Kolobok superfamily transposons in Trichomonas vaginalis and sequence analysis on related transposases

    Institute of Scientific and Technical Information of China (English)

    Qingshu Meng; Kaifu Chen; Lina Ma; Songnian Hu; Jun Yu

    2011-01-01

    Transposons are sequence elements widely distributed among genomes of all three kingdoms of life, providing genomic changes and playing significant roles in genome evolution. Trichomonas vaginalis is an excellent model system for transposon study since its genome ( ~ 160 Mb) has been sequenced and is composed of ~65% transposons and other repetitive elements. In this study, we primarily report the identification of Kolobok-type transposons (termed tvBac) in T. vaginalis and the results of transposase sequence analysis. We categorized 24 novel subfamilies of the Kolobok element, including one autonomous subfamily and 23 non-autonomous subfamilies. We also identified a novel H2CH motif in tvBac transposases based on multiple sequence alignment. In addition, we supposed that tvBac and Mutator transposons may have evolved independently from a common ancestor according to our phylogenetic analysis. Our results provide basic information for the understanding of the function and evolution of tvBac transposons in particular and other related transposon families in general.

  8. Segment-specific terminal sequences of Bunyamwera bunyavirus regulate genome replication

    International Nuclear Information System (INIS)

    Barr, John N.; Elliott, Richard M.; Dunn, Ewan F.; Wertz, Gail W.

    2003-01-01

    Bunyamwera virus (BUNV) is the prototype of both the Orthobunyavirus genus and the Bunyaviridae family of segmented negative sense RNA viruses. The tripartite BUNV genome consists of small (S), medium (M), and large (L) segments that are transcribed to give a single mRNA and replicated to generate an antigenome that is the template for synthesis of further genomic RNA strands. We modified an existing cDNA-derived RNA synthesis system to allow identification of BUNV RNA replication and transcription products by direct metabolic labeling. Direct RNA analysis allowed us to distinguish between template activities that affected either RNA replication or mRNA transcription, an ability that was not possible using previous reporter gene expression assays. We generated genome analogs containing the entire nontranslated terminal sequences of the S, M, and L BUNV segments surrounding a common sequence. Analysis of RNAs synthesized from these templates revealed that the relative abilities of BUNV segments to perform RNA replication was M > L > S. Exchange of segment-specific terminal nucleotides identified a 12-nt region located within both the 3' and 5' termini of the M segment that correlated with its high replication ability

  9. Differentially Private Event Histogram Publication on Sequences over Graphs

    Institute of Scientific and Technical Information of China (English)

    Ning Wang; Yu Gu; Jia Xu; Fang-Fang Li; Ge Yu

    2017-01-01

    The big data era is coming with strong and ever-growing demands on analyzing personal information and footprints in the cyber world. To enable such analysis without privacy leak risk, differential privacy (DP) has been quickly rising in recent years, as the first practical privacy protection model with rigorous theoretical guarantee. This paper discusses how to publish differentially private histograms on events in time series domain, with sequences of personal events over graphs with events as edges. Such individual-generated sequences commonly appear in formalized industrial workflows, online game logs, and spatial-temporal trajectories. Directly publishing the statistics of sequences may compromise personal privacy. While existing DP mechanisms mainly target at normalized domains with fixed and aligned dimensions, our problem raises new challenges when the sequences could follow arbitrary paths on the graph. To tackle the problem, we reformulate the problem with a three-step framework, which 1) carefully truncates the original sequences, trading off errors introduced by the truncation with those introduced by the noise added to guarantee privacy, 2) decomposes the event graph into path sub-domains based on a group of event pivots, and 3) employs a deeply optimized tree-based histogram construction approach for each sub-domain to benefit with less noise addition. We present a careful analysis on our framework to support thorough optimizations over each step of the framework, and verify the huge improvements of our proposals over state-of-the-art solutions.

  10. An analysis of LOCA sequences in the development of severe accident analysis DB

    International Nuclear Information System (INIS)

    Choi, Young; Park, Soo Yong; Ahn, Kwang-Il; Kim, D.H.

    2006-01-01

    Although a Level 2 PSA was performed for the Korean Standard Power Plants (KSNPs), and it considered the necessary sequences for an assessment of the containment integrity and source term analysis. In terms of an accident management, however, more cases causing severe core damage need to be analyzed and arranged systematically for an easy access to the results. At present, KAERI is calculating the severe accident sequences intensively for various initiating events and generating a database for the accident progression including thermal hydraulic and source term behaviours. The developed Database (DB) system includes a graphical display for a plant and equipment status, previous research results by knowledge-base technique, and the expected plant behaviour. The plant model used in this paper is oriented to the case of LOCAs related severe accident phenomena and thus can simulate the plant behaviours for a severe accident. Therefore the developed system may play a central role as an information source for decision-making for a severe accident management, and will be used as a training simulator for a severe accident management. (author)

  11. Data Analysis of Sequences and qPCR for Microbial Communities during Algal Blooms

    Science.gov (United States)

    A training opportunity is open to a highly microbial-research-motivated student to conduct sequence analysis, explore novel genes and metabolic pathways, validate resultant findings using qPCR/RT-qPCR and summarize the findings

  12. Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx

    Directory of Open Access Journals (Sweden)

    Colbourne John K

    2009-05-01

    Full Text Available Abstract Background New methods are needed for genomic-scale analysis of emerging model organisms that exemplify important biological questions but lack fully sequenced genomes. For example, there is an urgent need to understand the potential for corals to adapt to climate change, but few molecular resources are available for studying these processes in reef-building corals. To facilitate genomics studies in corals and other non-model systems, we describe methods for transcriptome sequencing using 454, as well as strategies for assembling a useful catalog of genes from the output. We have applied these methods to sequence the transcriptome of planulae larvae from the coral Acropora millepora. Results More than 600,000 reads produced in a single 454 sequencing run were assembled into ~40,000 contigs with five-fold average sequencing coverage. Based on sequence similarity with known proteins, these analyses identified ~11,000 different genes expressed in a range of conditions including thermal stress and settlement induction. Assembled sequences were annotated with gene names, conserved domains, and Gene Ontology terms. Targeted searches using these annotations identified the majority of genes associated with essential metabolic pathways and conserved signaling pathways, as well as novel candidate genes for stress-related processes. Comparisons with the genome of the anemone Nematostella vectensis revealed ~8,500 pairs of orthologs and ~100 candidate coral-specific genes. More than 30,000 SNPs were detected in the coral sequences, and a subset of these validated by re-sequencing. Conclusion The methods described here for deep sequencing of the transcriptome should be widely applicable to generate catalogs of genes and genetic markers in emerging model organisms. Our data provide the most comprehensive sequence resource currently available for reef-building corals, and include an extensive collection of potential genetic markers for association and

  13. Analysis of Pre-Analytic Factors Affecting the Success of Clinical Next-Generation Sequencing of Solid Organ Malignancies

    International Nuclear Information System (INIS)

    Chen, Hui; Luthra, Rajyalakshmi; Goswami, Rashmi S.; Singh, Rajesh R.; Roy-Chowdhuri, Sinchita

    2015-01-01

    Application of next-generation sequencing (NGS) technology to routine clinical practice has enabled characterization of personalized cancer genomes to identify patients likely to have a response to targeted therapy. The proper selection of tumor sample for downstream NGS based mutational analysis is critical to generate accurate results and to guide therapeutic intervention. However, multiple pre-analytic factors come into play in determining the success of NGS testing. In this review, we discuss pre-analytic requirements for AmpliSeq PCR-based sequencing using Ion Torrent Personal Genome Machine (PGM) (Life Technologies), a NGS sequencing platform that is often used by clinical laboratories for sequencing solid tumors because of its low input DNA requirement from formalin fixed and paraffin embedded tissue. The success of NGS mutational analysis is affected not only by the input DNA quantity but also by several other factors, including the specimen type, the DNA quality, and the tumor cellularity. Here, we review tissue requirements for solid tumor NGS based mutational analysis, including procedure types, tissue types, tumor volume and fraction, decalcification, and treatment effects

  14. Analysis of Pre-Analytic Factors Affecting the Success of Clinical Next-Generation Sequencing of Solid Organ Malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hui [Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); Luthra, Rajyalakshmi, E-mail: rluthra@mdanderson.org; Goswami, Rashmi S.; Singh, Rajesh R. [Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); Roy-Chowdhuri, Sinchita [Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States)

    2015-08-28

    Application of next-generation sequencing (NGS) technology to routine clinical practice has enabled characterization of personalized cancer genomes to identify patients likely to have a response to targeted therapy. The proper selection of tumor sample for downstream NGS based mutational analysis is critical to generate accurate results and to guide therapeutic intervention. However, multiple pre-analytic factors come into play in determining the success of NGS testing. In this review, we discuss pre-analytic requirements for AmpliSeq PCR-based sequencing using Ion Torrent Personal Genome Machine (PGM) (Life Technologies), a NGS sequencing platform that is often used by clinical laboratories for sequencing solid tumors because of its low input DNA requirement from formalin fixed and paraffin embedded tissue. The success of NGS mutational analysis is affected not only by the input DNA quantity but also by several other factors, including the specimen type, the DNA quality, and the tumor cellularity. Here, we review tissue requirements for solid tumor NGS based mutational analysis, including procedure types, tissue types, tumor volume and fraction, decalcification, and treatment effects.

  15. Analysis of Pre-Analytic Factors Affecting the Success of Clinical Next-Generation Sequencing of Solid Organ Malignancies

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2015-08-01

    Full Text Available Application of next-generation sequencing (NGS technology to routine clinical practice has enabled characterization of personalized cancer genomes to identify patients likely to have a response to targeted therapy. The proper selection of tumor sample for downstream NGS based mutational analysis is critical to generate accurate results and to guide therapeutic intervention. However, multiple pre-analytic factors come into play in determining the success of NGS testing. In this review, we discuss pre-analytic requirements for AmpliSeq PCR-based sequencing using Ion Torrent Personal Genome Machine (PGM (Life Technologies, a NGS sequencing platform that is often used by clinical laboratories for sequencing solid tumors because of its low input DNA requirement from formalin fixed and paraffin embedded tissue. The success of NGS mutational analysis is affected not only by the input DNA quantity but also by several other factors, including the specimen type, the DNA quality, and the tumor cellularity. Here, we review tissue requirements for solid tumor NGS based mutational analysis, including procedure types, tissue types, tumor volume and fraction, decalcification, and treatment effects.

  16. Context based computational analysis and characterization of ARS consensus sequences (ACS of Saccharomyces cerevisiae genome

    Directory of Open Access Journals (Sweden)

    Vinod Kumar Singh

    2016-09-01

    Full Text Available Genome-wide experimental studies in Saccharomyces cerevisiae reveal that autonomous replicating sequence (ARS requires an essential consensus sequence (ACS for replication activity. Computational studies identified thousands of ACS like patterns in the genome. However, only a few hundreds of these sites act as replicating sites and the rest are considered as dormant or evolving sites. In a bid to understand the sequence makeup of replication sites, a content and context-based analysis was performed on a set of replicating ACS sequences that binds to origin-recognition complex (ORC denoted as ORC-ACS and non-replicating ACS sequences (nrACS, that are not bound by ORC. In this study, DNA properties such as base composition, correlation, sequence dependent thermodynamic and DNA structural profiles, and their positions have been considered for characterizing ORC-ACS and nrACS. Analysis reveals that ORC-ACS depict marked differences in nucleotide composition and context features in its vicinity compared to nrACS. Interestingly, an A-rich motif was also discovered in ORC-ACS sequences within its nucleosome-free region. Profound changes in the conformational features, such as DNA helical twist, inclination angle and stacking energy between ORC-ACS and nrACS were observed. Distribution of ACS motifs in the non-coding segments points to the locations of ORC-ACS which are found far away from the adjacent gene start position compared to nrACS thereby enabling an accessible environment for ORC-proteins. Our attempt is novel in considering the contextual view of ACS and its flanking region along with nucleosome positioning in the S. cerevisiae genome and may be useful for any computational prediction scheme.

  17. Using Behavior Sequence Analysis to Map Serial Killers' Life Histories.

    Science.gov (United States)

    Keatley, David A; Golightly, Hayley; Shephard, Rebecca; Yaksic, Enzo; Reid, Sasha

    2018-03-01

    The aim of the current research was to provide a novel method for mapping the developmental sequences of serial killers' life histories. An in-depth biographical account of serial killers' lives, from birth through to conviction, was gained and analyzed using Behavior Sequence Analysis. The analyses highlight similarities in behavioral events across the serial killers' lives, indicating not only which risk factors occur, but the temporal order of these factors. Results focused on early childhood environment, indicating the role of parental abuse; behaviors and events surrounding criminal histories of serial killers, showing that many had previous convictions and were known to police for other crimes; behaviors surrounding their murders, highlighting differences in victim choice and modus operandi; and, finally, trial pleas and convictions. The present research, therefore, provides a novel approach to synthesizing large volumes of data on criminals and presenting results in accessible, understandable outcomes.

  18. Maturity onset diabetes of youth (MODY) in Turkish children: sequence analysis of 11 causative genes by next generation sequencing.

    Science.gov (United States)

    Ağladıoğlu, Sebahat Yılmaz; Aycan, Zehra; Çetinkaya, Semra; Baş, Veysel Nijat; Önder, Aşan; Peltek Kendirci, Havva Nur; Doğan, Haldun; Ceylaner, Serdar

    2016-04-01

    Maturity-onset diabetes of the youth (MODY), is a genetically and clinically heterogeneous group of diseasesand is often misdiagnosed as type 1 or type 2 diabetes. The aim of this study is to investigate both novel and proven mutations of 11 MODY genes in Turkish children by using targeted next generation sequencing. A panel of 11 MODY genes were screened in 43 children with MODY diagnosed by clinical criterias. Studies of index cases was done with MISEQ-ILLUMINA, and family screenings and confirmation studies of mutations was done by Sanger sequencing. We identified 28 (65%) point mutations among 43 patients. Eighteen patients have GCK mutations, four have HNF1A, one has HNF4A, one has HNF1B, two have NEUROD1, one has PDX1 gene variations and one patient has both HNF1A and HNF4A heterozygote mutations. This is the first study including molecular studies of 11 MODY genes in Turkish children. GCK is the most frequent type of MODY in our study population. Very high frequency of novel mutations (42%) in our study population, supports that in heterogenous disorders like MODY sequence analysis provides rapid, cost effective and accurate genetic diagnosis.

  19. Whole Exome Sequencing Reveals Genetic Predisposition in a Large Family with Retinitis Pigmentosa

    Directory of Open Access Journals (Sweden)

    Juan Wu

    2014-01-01

    Full Text Available Next-generation sequencing has become more widely used to reveal genetic defect in monogenic disorders. Retinitis pigmentosa (RP, the leading cause of hereditary blindness worldwide, has been attributed to more than 67 disease-causing genes. Due to the extreme genetic heterogeneity, using general molecular screening alone is inadequate for identifying genetic predispositions in susceptible individuals. In order to identify underlying mutation rapidly, we utilized next-generation sequencing in a four-generation Chinese family with RP. Two affected patients and an unaffected sibling were subjected to whole exome sequencing. Through bioinformatics analysis and direct sequencing confirmation, we identified p.R135W transition in the rhodopsin gene. The mutation was subsequently confirmed to cosegregate with the disease in the family. In this study, our results suggest that whole exome sequencing is a robust method in diagnosing familial hereditary disease.

  20. DNA Barcoding: Amplification and sequence analysis of rbcl and matK genome regions in three divergent plant species

    Directory of Open Access Journals (Sweden)

    Javed Iqbal Wattoo

    2016-11-01

    Full Text Available Background: DNA barcoding is a novel method of species identification based on nucleotide diversity of conserved sequences. The establishment and refining of plant DNA barcoding systems is more challenging due to high genetic diversity among different species. Therefore, targeting the conserved nuclear transcribed regions would be more reliable for plant scientists to reveal genetic diversity, species discrimination and phylogeny. Methods: In this study, we amplified and sequenced the chloroplast DNA regions (matk+rbcl of Solanum nigrum, Euphorbia helioscopia and Dalbergia sissoo to study the functional annotation, homology modeling and sequence analysis to allow a more efficient utilization of these sequences among different plant species. These three species represent three families; Solanaceae, Euphorbiaceae and Fabaceae respectively. Biological sequence homology and divergence of amplified sequences was studied using Basic Local Alignment Tool (BLAST. Results: Both primers (matk+rbcl showed good amplification in three species. The sequenced regions reveled conserved genome information for future identification of different medicinal plants belonging to these species. The amplified conserved barcodes revealed different levels of biological homology after sequence analysis. The results clearly showed that the use of these conserved DNA sequences as barcode primers would be an accurate way for species identification and discrimination. Conclusion: The amplification and sequencing of conserved genome regions identified a novel sequence of matK in native species of Solanum nigrum. The findings of the study would be applicable in medicinal industry to establish DNA based identification of different medicinal plant species to monitor adulteration.

  1. Yeast genome sequencing:

    DEFF Research Database (Denmark)

    Piskur, Jure; Langkjær, Rikke Breinhold

    2004-01-01

    For decades, unicellular yeasts have been general models to help understand the eukaryotic cell and also our own biology. Recently, over a dozen yeast genomes have been sequenced, providing the basis to resolve several complex biological questions. Analysis of the novel sequence data has shown...... of closely related species helps in gene annotation and to answer how many genes there really are within the genomes. Analysis of non-coding regions among closely related species has provided an example of how to determine novel gene regulatory sequences, which were previously difficult to analyse because...... they are short and degenerate and occupy different positions. Comparative genomics helps to understand the origin of yeasts and points out crucial molecular events in yeast evolutionary history, such as whole-genome duplication and horizontal gene transfer(s). In addition, the accumulating sequence data provide...

  2. PipeCraft: Flexible open-source toolkit for bioinformatics analysis of custom high-throughput amplicon sequencing data.

    Science.gov (United States)

    Anslan, Sten; Bahram, Mohammad; Hiiesalu, Indrek; Tedersoo, Leho

    2017-11-01

    High-throughput sequencing methods have become a routine analysis tool in environmental sciences as well as in public and private sector. These methods provide vast amount of data, which need to be analysed in several steps. Although the bioinformatics may be applied using several public tools, many analytical pipelines allow too few options for the optimal analysis for more complicated or customized designs. Here, we introduce PipeCraft, a flexible and handy bioinformatics pipeline with a user-friendly graphical interface that links several public tools for analysing amplicon sequencing data. Users are able to customize the pipeline by selecting the most suitable tools and options to process raw sequences from Illumina, Pacific Biosciences, Ion Torrent and Roche 454 sequencing platforms. We described the design and options of PipeCraft and evaluated its performance by analysing the data sets from three different sequencing platforms. We demonstrated that PipeCraft is able to process large data sets within 24 hr. The graphical user interface and the automated links between various bioinformatics tools enable easy customization of the workflow. All analytical steps and options are recorded in log files and are easily traceable. © 2017 John Wiley & Sons Ltd.

  3. Complete genome sequence analysis of novel human bocavirus reveals genetic recombination between human bocavirus 2 and human bocavirus 4.

    Science.gov (United States)

    Khamrin, Pattara; Okitsu, Shoko; Ushijima, Hiroshi; Maneekarn, Niwat

    2013-07-01

    Epidemiological surveillance of human bocavirus (HBoV) was conducted on fecal specimens collected from hospitalized children with diarrhea in Chiang Mai, Thailand in 2011. By partial sequence analysis of VP1 gene, an unusual strain of HBoV (CMH-S011-11), was initially identified as HBoV4. The complete genome sequence of CMH-S011-11 was performed and analyzed further to clarify whether it was a recombinant strain or a new HBoV variant. Analysis of complete genome sequence revealed that the coding sequence starting from NS1, NP1 to VP1/VP2 was 4795 nucleotides long. Interestingly, the nucleotide sequence of NS1 gene of CMH-S011-11 was most closely related to the HBoV2 reference strains detected in Pakistan, which contradicted to the initial genotyping result of the partial VP1 region in the previous study. In addition, comparison of NP1 nucleotide sequence of CMH-S011-11 with those of other HBoV1-4 reference strains also revealed a high level of sequence identity with HBoV2. On the other hand, nucleotide sequence of VP1/VP2 gene of CMH-S011-11 was most closely related to those of HBoV4 reference strains detected in Nigeria. The overall full-length sequence analysis revealed that this CMH-S011-11 was grouped within HBoV4 species, but located in a separate branch from other HBoV4 prototype strains. Recombination analysis revealed that CMH-S011-11 was the result of recombination between HBoV2 and HBoV4 strains with the break point located near the start codon of VP2. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Frame sequences analysis technique of linear objects movement

    Science.gov (United States)

    Oshchepkova, V. Y.; Berg, I. A.; Shchepkin, D. V.; Kopylova, G. V.

    2017-12-01

    Obtaining data by noninvasive methods are often needed in many fields of science and engineering. This is achieved through video recording in various frame rate and light spectra. In doing so quantitative analysis of movement of the objects being studied becomes an important component of the research. This work discusses analysis of motion of linear objects on the two-dimensional plane. The complexity of this problem increases when the frame contains numerous objects whose images may overlap. This study uses a sequence containing 30 frames at the resolution of 62 × 62 pixels and frame rate of 2 Hz. It was required to determine the average velocity of objects motion. This velocity was found as an average velocity for 8-12 objects with the error of 15%. After processing dependencies of the average velocity vs. control parameters were found. The processing was performed in the software environment GMimPro with the subsequent approximation of the data obtained using the Hill equation.

  5. A few Smarandache Integer Sequences

    OpenAIRE

    Ibstedt, Henry

    2010-01-01

    This paper deals with the analysis of a few Smarandache Integer Sequences which first appeared in Properties or the Numbers, F. Smarandache, University or Craiova Archives, 1975. The first four sequences are recurrence generated sequences while the last three are concatenation sequences.

  6. Sequence and phylogenetic analysis of chicken anaemia virus obtained from backyard and commercial chickens in Nigeria.

    Science.gov (United States)

    Oluwayelu, D O; Todd, D; Olaleye, O D

    2008-12-01

    This work reports the first molecular analysis study of chicken anaemia virus (CAV) in backyard chickens in Africa using molecular cloning and sequence analysis to characterize CAV strains obtained from commercial chickens and Nigerian backyard chickens. Partial VP1 gene sequences were determined for three CAVs from commercial chickens and for six CAV variants present in samples from a backyard chicken. Multiple alignment analysis revealed that the 6% and 4% nucleotide diversity obtained respectively for the commercial and backyard chicken strains translated to only 2% amino acid diversity for each breed. Overall, the amino acid composition of Nigerian CAVs was found to be highly conserved. Since the partial VP1 gene sequence of two backyard chicken cloned CAV strains (NGR/CI-8 and NGR/CI-9) were almost identical and evolutionarily closely related to the commercial chicken strains NGR-1, and NGR-4 and NGR-5, respectively, we concluded that CAV infections had crossed the farm boundary.

  7. The Pathogenomic Sequence Analysis of B. cereus and B.thuringiensis Isolates Closely Related to Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Cliff S.; Xie, Gary; Challacombe, Jean F.; Altherr, MichaelR.; Smriti, B.; Bruce, David; Campbell, Connie S.; Campbell, Mary L.; Chen, Jin; Chertkov, Olga; Cleland, Cathy; Dimitrijevic-Bussod, M.; Doggett, Norman A.; Fawcett, John J.; Glavina, Tijana; Goodwin, Lynne A.; Hill, Karen K.; Hitchcock, Penny; Jackson, Paul J.; Keim, Paul; Kewalramani, Avinash Ramesh; Longmire, Jon; Lucas, Susan; Malfatti,Stephanie; McMurry, Kim; Meincke, Linda J.; Misra, Monica; Moseman,Bernice L.; Mundt, Mark; Munk, A. Christine; Okinaka, Richard T.; Parson-Quintana, B.; Reilly, Lee P.; Richardson, Paul; Robinson, DonnaL.; Rubin, Eddy; Saunders, Elizabeth; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Ticknor, Lawrence O.; Wills, Patti L.; Gilna, Payl; Brettin, Thomas S.

    2005-08-18

    The sequencing and analysis of two close relatives of Bacillus anthracis are reported. AFLP analysis of over 300 isolates of B.cereus, B. thuringiensis and B. anthracis identified two isolates as being very closely related to B. anthracis. One, a B. cereus, BcE33L, was isolated from a zebra carcass in Nambia; the second, a B. thuringiensis, 97-27, was isolated from a necrotic human wound. The B. cereus appears to be the closest anthracis relative sequenced to date. A core genome of over 3,900 genes was compiled for the Bacillus cereus group, including Banthracis. Comparative analysis of these two genomes with other members of the B. cereus group provides insight into the evolutionary relationships among these organisms. Evidence is presented that differential regulation modulates virulence, rather than simple acquisition of virulence factors. These genome sequences provide insight into the molecular mechanisms contributing to the host range and virulence of this group of organisms.

  8. Chromosome-scale comparative sequence analysis unravels molecular mechanisms of genome evolution between two wheat cultivars

    KAUST Repository

    Thind, Anupriya Kaur

    2018-02-08

    Background: Recent improvements in DNA sequencing and genome scaffolding have paved the way to generate high-quality de novo assemblies of pseudomolecules representing complete chromosomes of wheat and its wild relatives. These assemblies form the basis to compare the evolutionary dynamics of wheat genomes on a megabase-scale. Results: Here, we provide a comparative sequence analysis of the 700-megabase chromosome 2D between two bread wheat genotypes, the old landrace Chinese Spring and the elite Swiss spring wheat line CH Campala Lr22a. There was a high degree of sequence conservation between the two chromosomes. Analysis of large structural variations revealed four large insertions/deletions (InDels) of >100 kb. Based on the molecular signatures at the breakpoints, unequal crossing over and double-strand break repair were identified as the evolutionary mechanisms that caused these InDels. Three of the large InDels affected copy number of NLRs, a gene family involved in plant immunity. Analysis of single nucleotide polymorphism (SNP) density revealed three haploblocks of 8 Mb, 9 Mb and 48 Mb with a 35-fold increased SNP density compared to the rest of the chromosome. Conclusions: This comparative analysis of two high-quality chromosome assemblies enabled a comprehensive assessment of large structural variations. The insight obtained from this analysis will form the basis of future wheat pan-genome studies.

  9. Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon

    Directory of Open Access Journals (Sweden)

    Bendahmane Abdelhafid

    2011-05-01

    Full Text Available Abstract Background Melon (Cucumis melo, an economically important vegetable crop, belongs to the Cucurbitaceae family which includes several other important crops such as watermelon, cucumber, and pumpkin. It has served as a model system for sex determination and vascular biology studies. However, genomic resources currently available for melon are limited. Result We constructed eleven full-length enriched and four standard cDNA libraries from fruits, flowers, leaves, roots, cotyledons, and calluses of four different melon genotypes, and generated 71,577 and 22,179 ESTs from full-length enriched and standard cDNA libraries, respectively. These ESTs, together with ~35,000 ESTs available in public domains, were assembled into 24,444 unigenes, which were extensively annotated by comparing their sequences to different protein and functional domain databases, assigning them Gene Ontology (GO terms, and mapping them onto metabolic pathways. Comparative analysis of melon unigenes and other plant genomes revealed that 75% to 85% of melon unigenes had homologs in other dicot plants, while approximately 70% had homologs in monocot plants. The analysis also identified 6,972 gene families that were conserved across dicot and monocot plants, and 181, 1,192, and 220 gene families specific to fleshy fruit-bearing plants, the Cucurbitaceae family, and melon, respectively. Digital expression analysis identified a total of 175 tissue-specific genes, which provides a valuable gene sequence resource for future genomics and functional studies. Furthermore, we identified 4,068 simple sequence repeats (SSRs and 3,073 single nucleotide polymorphisms (SNPs in the melon EST collection. Finally, we obtained a total of 1,382 melon full-length transcripts through the analysis of full-length enriched cDNA clones that were sequenced from both ends. Analysis of these full-length transcripts indicated that sizes of melon 5' and 3' UTRs were similar to those of tomato, but

  10. Microbiological profile of chicken carcasses: A comparative analysis using shotgun metagenomic sequencing

    Directory of Open Access Journals (Sweden)

    Alessandra De Cesare

    2018-04-01

    Full Text Available In the last few years metagenomic and 16S rRNA sequencing have completly changed the microbiological investigations of food products. In this preliminary study, the microbiological profile of chicken carcasses collected from animals fed with different diets were tested by using shotgun metagenomic sequencing. A total of 15 carcasses have been collected at the slaughetrhouse at the end of the refrigeration tunnel from chickens reared for 35 days and fed with a control diet (n=5, a diet supplemented with 1500 FTU/kg of commercial phytase (n=5 and a diet supplemented with 1500 FTU/kg of commercial phytase and 3g/kg of inositol (n=5. Ten grams of neck and breast skin were obtained from each carcass and submited to total DNA extraction by using the DNeasy Blood & Tissue Kit (Qiagen. Sequencing libraries have been prepared by using the Nextera XT DNA Library Preparation Kit (Illumina and sequenced in a HiScanSQ (Illumina at 100 bp in paired ends. A number of sequences ranging between 5 and 9 million was obtained for each sample. Sequence analysis showed that Proteobacteria and Firmicutes represented more than 98% of whole bacterial populations associated to carcass skin in all groups but their abundances were different between groups. Moraxellaceae and other degradative bacteria showed a significantly higher abundance in the control compared to the treated groups. Furthermore, Clostridium perfringens showed a relative frequency of abundance significantly higher in the group fed with phytase and Salmonella enterica in the group fed with phytase plus inositol. The results of this preliminary study showed that metagenome sequencing is suitable to investigate and monitor carcass microbiota in order to detect specific pathogenic and/or degradative populations.

  11. An integrated semiconductor device enabling non-optical genome sequencing.

    Science.gov (United States)

    Rothberg, Jonathan M; Hinz, Wolfgang; Rearick, Todd M; Schultz, Jonathan; Mileski, William; Davey, Mel; Leamon, John H; Johnson, Kim; Milgrew, Mark J; Edwards, Matthew; Hoon, Jeremy; Simons, Jan F; Marran, David; Myers, Jason W; Davidson, John F; Branting, Annika; Nobile, John R; Puc, Bernard P; Light, David; Clark, Travis A; Huber, Martin; Branciforte, Jeffrey T; Stoner, Isaac B; Cawley, Simon E; Lyons, Michael; Fu, Yutao; Homer, Nils; Sedova, Marina; Miao, Xin; Reed, Brian; Sabina, Jeffrey; Feierstein, Erika; Schorn, Michelle; Alanjary, Mohammad; Dimalanta, Eileen; Dressman, Devin; Kasinskas, Rachel; Sokolsky, Tanya; Fidanza, Jacqueline A; Namsaraev, Eugeni; McKernan, Kevin J; Williams, Alan; Roth, G Thomas; Bustillo, James

    2011-07-20

    The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.

  12. Porcine MYF6 gene: sequence, homology analysis, and variation in the promoter region.

    Science.gov (United States)

    Wyszyńska-Koko, J; Kurył, J

    2004-01-01

    MYF6 gene codes for the bHLH transcription factor belonging to MyoD family. Its expression accompanies the processes of differentiation and maturation of myotubes during embriogenesis and continues on a relatively high level after birth, affecting the muscle phenotype. The porcine MYF6 gene was amplified and sequenced and compared with MYF6 gene sequences of other species. The amino acid sequence was deduced and an interspecies homology analysis was performed. Myf-6 protein shows a high conservation among species of 99 and 97% identity when comparing pig with cow and human, respectively, and of 93% when comparing pig with mouse and rat. The single nucleotide polymorphism (SNP) was revealed within the promoter region, which appeared to be T --> C transition recognized by a MspI restriction enzyme.

  13. Comparison of DNA Quantification Methods for Next Generation Sequencing.

    Science.gov (United States)

    Robin, Jérôme D; Ludlow, Andrew T; LaRanger, Ryan; Wright, Woodring E; Shay, Jerry W

    2016-04-06

    Next Generation Sequencing (NGS) is a powerful tool that depends on loading a precise amount of DNA onto a flowcell. NGS strategies have expanded our ability to investigate genomic phenomena by referencing mutations in cancer and diseases through large-scale genotyping, developing methods to map rare chromatin interactions (4C; 5C and Hi-C) and identifying chromatin features associated with regulatory elements (ChIP-seq, Bis-Seq, ChiA-PET). While many methods are available for DNA library quantification, there is no unambiguous gold standard. Most techniques use PCR to amplify DNA libraries to obtain sufficient quantities for optical density measurement. However, increased PCR cycles can distort the library's heterogeneity and prevent the detection of rare variants. In this analysis, we compared new digital PCR technologies (droplet digital PCR; ddPCR, ddPCR-Tail) with standard methods for the titration of NGS libraries. DdPCR-Tail is comparable to qPCR and fluorometry (QuBit) and allows sensitive quantification by analysis of barcode repartition after sequencing of multiplexed samples. This study provides a direct comparison between quantification methods throughout a complete sequencing experiment and provides the impetus to use ddPCR-based quantification for improvement of NGS quality.

  14. Sequence-dependent DNA deformability studied using molecular dynamics simulations.

    Science.gov (United States)

    Fujii, Satoshi; Kono, Hidetoshi; Takenaka, Shigeori; Go, Nobuhiro; Sarai, Akinori

    2007-01-01

    Proteins recognize specific DNA sequences not only through direct contact between amino acids and bases, but also indirectly based on the sequence-dependent conformation and deformability of the DNA (indirect readout). We used molecular dynamics simulations to analyze the sequence-dependent DNA conformations of all 136 possible tetrameric sequences sandwiched between CGCG sequences. The deformability of dimeric steps obtained by the simulations is consistent with that by the crystal structures. The simulation results further showed that the conformation and deformability of the tetramers can highly depend on the flanking base pairs. The conformations of xATx tetramers show the most rigidity and are not affected by the flanking base pairs and the xYRx show by contrast the greatest flexibility and change their conformations depending on the base pairs at both ends, suggesting tetramers with the same central dimer can show different deformabilities. These results suggest that analysis of dimeric steps alone may overlook some conformational features of DNA and provide insight into the mechanism of indirect readout during protein-DNA recognition. Moreover, the sequence dependence of DNA conformation and deformability may be used to estimate the contribution of indirect readout to the specificity of protein-DNA recognition as well as nucleosome positioning and large-scale behavior of nucleic acids.

  15. Finishing and Special Motifs: Lessons Learned from CRISPR Analysis Using Next-Generation Draft Sequences (7th Annual SFAF Meeting, 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Catherine

    2012-06-01

    Catherine Campbell on "Finishing and Special Motifs: Lessons learned from CRISPR analysis using next-generation draft sequences" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  16. Accident Sequence Evaluation Program: Human reliability analysis procedure

    International Nuclear Information System (INIS)

    Swain, A.D.

    1987-02-01

    This document presents a shortened version of the procedure, models, and data for human reliability analysis (HRA) which are presented in the Handbook of Human Reliability Analysis With emphasis on Nuclear Power Plant Applications (NUREG/CR-1278, August 1983). This shortened version was prepared and tried out as part of the Accident Sequence Evaluation Program (ASEP) funded by the US Nuclear Regulatory Commission and managed by Sandia National Laboratories. The intent of this new HRA procedure, called the ''ASEP HRA Procedure,'' is to enable systems analysts, with minimal support from experts in human reliability analysis, to make estimates of human error probabilities and other human performance characteristics which are sufficiently accurate for many probabilistic risk assessments. The ASEP HRA Procedure consists of a Pre-Accident Screening HRA, a Pre-Accident Nominal HRA, a Post-Accident Screening HRA, and a Post-Accident Nominal HRA. The procedure in this document includes changes made after tryout and evaluation of the procedure in four nuclear power plants by four different systems analysts and related personnel, including human reliability specialists. The changes consist of some additional explanatory material (including examples), and more detailed definitions of some of the terms. 42 refs

  17. Expert cognition in the production sequence of Acheulian cleavers at Gesher Benot Ya'aqov, Israel: A lithic and cognitive analysis.

    Science.gov (United States)

    Herzlinger, Gadi; Wynn, Thomas; Goren-Inbar, Naama

    2017-01-01

    Stone cleavers are one of the most distinctive components of the Acheulian toolkit. These tools were produced as part of a long and complex reduction sequence and they provide indications for planning and remarkable knapping skill. These aspects hold implications regarding the cognitive complexity and abilities of their makers and users. In this study we have analyzed a cleaver assemblage originating from the Acheulian site of Gesher Benot Ya'aqov, Israel, to provide a reconstruction of the chaîne opératoire which structured their production. This reduction sequence was taken as the basis for a cognitive analysis which allowed us to draw conclusion regarding numerous behavioral and cognitive aspects of the GBY hominins. The results indicate that the cleavers production incorporated a highly specific sequence of decisions and actions which resulted in three distinct modes of cleavers modification. Furthermore, the decision to produce a cleaver must have been taken very early in the sequence, thus differentiating its production from that of handaxes. The substantial predetermination and the specific reduction sequence provide evidence that the Gesher Benot Ya'aqov hominins had a number of cognitive categories such as a general 'tool concept' and a more specific 'cleaver concept', setting them apart from earlier tool-producing hominins and extant tool-using non-human primates. Furthermore, it appears that the Gesher Benot Ya'aqov lithic technology was governed by expert cognition, which is the kind of thinking typical of modern human experts in their various domains. Thus, the results provide direct indications that important components of modern cognition have been well established in the minds of the Gesher Benot Ya'aqov hominins.

  18. Allele Re-sequencing Technologies

    DEFF Research Database (Denmark)

    Byrne, Stephen; Farrell, Jacqueline Danielle; Asp, Torben

    2013-01-01

    The development of next-generation sequencing technologies has made sequencing an affordable approach for detection of genetic variations associated with various traits. However, the cost of whole genome re-sequencing still remains too high to be feasible for many plant species with large...... alternative to whole genome re-sequencing to identify causative genetic variations in plants. One challenge, however, will be efficient bioinformatics strategies for data handling and analysis from the increasing amount of sequence information....

  19. Direct analysis of traditional Chinese medicines by mass spectrometry.

    Science.gov (United States)

    Wong, Melody Yee-Man; So, Pui-Kin; Yao, Zhong-Ping

    2016-07-15

    Analysis of traditional Chinese medicines (TCMs) plays important roles in quality control of TCMs and understanding their pharmacological effects. Mass spectrometry (MS) is a technique of choice for analysis of TCMs due to its superiority in speed, sensitivity and specificity. However, conventional MS analysis of TCMs typically requires extensive sample pretreatment and chromatographic separation, which could be time-consuming and laborious, prior to the analysis. The expanding usage of TCMs worldwide demands development of rapid, cost-effective and reliable methods for analysis of TCMs. In recent years, new sample preparation and ionization techniques have been developed to enable direct analysis of TCMs by MS, significantly reducing the analysis time and cost. In this review, various MS-based techniques, mainly including ambient ionization-MS and MALDI-MS based techniques, applied for direct analysis of TCMs are summarized and their applicability and future prospects are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Comparative analysis of full genomic sequences among different genotypes of dengue virus type 3

    Directory of Open Access Journals (Sweden)

    Lin Ting-Hsiang

    2008-05-01

    Full Text Available Abstract Background Although the previous study demonstrated the envelope protein of dengue viruses is under purifying selection pressure, little is known about the genetic differences of full-length viral genomes of DENV-3. In our study, complete genomic sequencing of DENV-3 strains collected from different geographical locations and isolation years were determined and the sequence diversity as well as selection pressure sites in the DENV genome other than within the E gene were also analyzed. Results Using maximum likelihood and Bayesian approaches, our phylogenetic analysis revealed that the Taiwan's indigenous DENV-3 isolated from 1994 and 1998 dengue/DHF epidemics and one 1999 sporadic case were of the three different genotypes – I, II, and III, each associated with DENV-3 circulating in Indonesia, Thailand and Sri Lanka, respectively. Sequence diversity and selection pressure of different genomic regions among DENV-3 different genotypes was further examined to understand the global DENV-3 evolution. The highest nucleotide sequence diversity among the fully sequenced DENV-3 strains was found in the nonstructural protein 2A (mean ± SD: 5.84 ± 0.54 and envelope protein gene regions (mean ± SD: 5.04 ± 0.32. Further analysis found that positive selection pressure of DENV-3 may occur in the non-structural protein 1 gene region and the positive selection site was detected at position 178 of the NS1 gene. Conclusion Our study confirmed that the envelope protein is under purifying selection pressure although it presented higher sequence diversity. The detection of positive selection pressure in the non-structural protein along genotype II indicated that DENV-3 originated from Southeast Asia needs to monitor the emergence of DENV strains with epidemic potential for better epidemic prevention and vaccine development.

  1. Unified Sequence-Based Association Tests Allowing for Multiple Functional Annotations and Meta-analysis of Noncoding Variation in Metabochip Data.

    Science.gov (United States)

    He, Zihuai; Xu, Bin; Lee, Seunggeun; Ionita-Laza, Iuliana

    2017-09-07

    Substantial progress has been made in the functional annotation of genetic variation in the human genome. Integrative analysis that incorporates such functional annotations into sequencing studies can aid the discovery of disease-associated genetic variants, especially those with unknown function and located outside protein-coding regions. Direct incorporation of one functional annotation as weight in existing dispersion and burden tests can suffer substantial loss of power when the functional annotation is not predictive of the risk status of a variant. Here, we have developed unified tests that can utilize multiple functional annotations simultaneously for integrative association analysis with efficient computational techniques. We show that the proposed tests significantly improve power when variant risk status can be predicted by functional annotations. Importantly, when functional annotations are not predictive of risk status, the proposed tests incur only minimal loss of power in relation to existing dispersion and burden tests, and under certain circumstances they can even have improved power by learning a weight that better approximates the underlying disease model in a data-adaptive manner. The tests can be constructed with summary statistics of existing dispersion and burden tests for sequencing data, therefore allowing meta-analysis of multiple studies without sharing individual-level data. We applied the proposed tests to a meta-analysis of noncoding rare variants in Metabochip data on 12,281 individuals from eight studies for lipid traits. By incorporating the Eigen functional score, we detected significant associations between noncoding rare variants in SLC22A3 and low-density lipoprotein and total cholesterol, associations that are missed by standard dispersion and burden tests. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  2. Mining dynamic noteworthy functions in software execution sequences.

    Science.gov (United States)

    Zhang, Bing; Huang, Guoyan; Wang, Yuqian; He, Haitao; Ren, Jiadong

    2017-01-01

    As the quality of crucial entities can directly affect that of software, their identification and protection become an important premise for effective software development, management, maintenance and testing, which thus contribute to improving the software quality and its attack-defending ability. Most analysis and evaluation on important entities like codes-based static structure analysis are on the destruction of the actual software running. In this paper, from the perspective of software execution process, we proposed an approach to mine dynamic noteworthy functions (DNFM)in software execution sequences. First, according to software decompiling and tracking stack changes, the execution traces composed of a series of function addresses were acquired. Then these traces were modeled as execution sequences and then simplified so as to get simplified sequences (SFS), followed by the extraction of patterns through pattern extraction (PE) algorithm from SFS. After that, evaluating indicators inner-importance and inter-importance were designed to measure the noteworthiness of functions in DNFM algorithm. Finally, these functions were sorted by their noteworthiness. Comparison and contrast were conducted on the experiment results from two traditional complex network-based node mining methods, namely PageRank and DegreeRank. The results show that the DNFM method can mine noteworthy functions in software effectively and precisely.

  3. Roche genome sequencer FLX based high-throughput sequencing of ancient DNA

    DEFF Research Database (Denmark)

    Alquezar-Planas, David E; Fordyce, Sarah Louise

    2012-01-01

    Since the development of so-called "next generation" high-throughput sequencing in 2005, this technology has been applied to a variety of fields. Such applications include disease studies, evolutionary investigations, and ancient DNA. Each application requires a specialized protocol to ensure...... that the data produced is optimal. Although much of the procedure can be followed directly from the manufacturer's protocols, the key differences lie in the library preparation steps. This chapter presents an optimized protocol for the sequencing of fossil remains and museum specimens, commonly referred...

  4. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments.

    Science.gov (United States)

    Huber, Thomas; Faulkner, Geoffrey; Hugenholtz, Philip

    2004-09-22

    Bellerophon is a program for detecting chimeric sequences in multiple sequence datasets by an adaption of partial treeing analysis. Bellerophon was specifically developed to detect 16S rRNA gene chimeras in PCR-clone libraries of environmental samples but can be applied to other nucleotide sequence alignments. Bellerophon is available as an interactive web server at http://foo.maths.uq.edu.au/~huber/bellerophon.pl

  5. An optimized protocol for generation and analysis of Ion Proton sequencing reads for RNA-Seq.

    Science.gov (United States)

    Yuan, Yongxian; Xu, Huaiqian; Leung, Ross Ka-Kit

    2016-05-26

    Previous studies compared running cost, time and other performance measures of popular sequencing platforms. However, comprehensive assessment of library construction and analysis protocols for Proton sequencing platform remains unexplored. Unlike Illumina sequencing platforms, Proton reads are heterogeneous in length and quality. When sequencing data from different platforms are combined, this can result in reads with various read length. Whether the performance of the commonly used software for handling such kind of data is satisfactory is unknown. By using universal human reference RNA as the initial material, RNaseIII and chemical fragmentation methods in library construction showed similar result in gene and junction discovery number and expression level estimated accuracy. In contrast, sequencing quality, read length and the choice of software affected mapping rate to a much larger extent. Unspliced aligner TMAP attained the highest mapping rate (97.27 % to genome, 86.46 % to transcriptome), though 47.83 % of mapped reads were clipped. Long reads could paradoxically reduce mapping in junctions. With reference annotation guide, the mapping rate of TopHat2 significantly increased from 75.79 to 92.09 %, especially for long (>150 bp) reads. Sailfish, a k-mer based gene expression quantifier attained highly consistent results with that of TaqMan array and highest sensitivity. We provided for the first time, the reference statistics of library preparation methods, gene detection and quantification and junction discovery for RNA-Seq by the Ion Proton platform. Chemical fragmentation performed equally well with the enzyme-based one. The optimal Ion Proton sequencing options and analysis software have been evaluated.

  6. Alu polymerase chain reaction: A method for rapid isolation of human-specific sequences from complex DNA sources

    International Nuclear Information System (INIS)

    Nelson, D.L.; Ledbetter, S.A.; Corbo, L.; Victoria, M.F.; Ramirez-Solis, R.; Webster, T.D.; Ledbetter, D.H.; Caskey, C.T.

    1989-01-01

    Current efforts to map the human genome are focused on individual chromosomes or smaller regions and frequently rely on the use of somatic cell hybrids. The authors report the application of the polymerase chain reaction to direct amplification of human DNA from hybrid cells containing regions of the human genome in rodent cell backgrounds using primers directed to the human Alu repeat element. They demonstrate Alu-directed amplification of a fragment of the human HPRT gene from both hybrid cell and cloned DNA and identify through sequence analysis the Alu repeats involved in this amplification. They also demonstrate the application of this technique to identify the chromosomal locations of large fragments of the human X chromosome cloned in a yeast artificial chromosome and the general applicability of the method to the preparation of DNA probes from cloned human sequences. The technique allows rapid gene mapping and provides a simple method for the isolation and analysis of specific chromosomal regions

  7. Secure and robust cloud computing for high-throughput forensic microsatellite sequence analysis and databasing.

    Science.gov (United States)

    Bailey, Sarah F; Scheible, Melissa K; Williams, Christopher; Silva, Deborah S B S; Hoggan, Marina; Eichman, Christopher; Faith, Seth A

    2017-11-01

    Next-generation Sequencing (NGS) is a rapidly evolving technology with demonstrated benefits for forensic genetic applications, and the strategies to analyze and manage the massive NGS datasets are currently in development. Here, the computing, data storage, connectivity, and security resources of the Cloud were evaluated as a model for forensic laboratory systems that produce NGS data. A complete front-to-end Cloud system was developed to upload, process, and interpret raw NGS data using a web browser dashboard. The system was extensible, demonstrating analysis capabilities of autosomal and Y-STRs from a variety of NGS instrumentation (Illumina MiniSeq and MiSeq, and Oxford Nanopore MinION). NGS data for STRs were concordant with standard reference materials previously characterized with capillary electrophoresis and Sanger sequencing. The computing power of the Cloud was implemented with on-demand auto-scaling to allow multiple file analysis in tandem. The system was designed to store resulting data in a relational database, amenable to downstream sample interpretations and databasing applications following the most recent guidelines in nomenclature for sequenced alleles. Lastly, a multi-layered Cloud security architecture was tested and showed that industry standards for securing data and computing resources were readily applied to the NGS system without disadvantageous effects for bioinformatic analysis, connectivity or data storage/retrieval. The results of this study demonstrate the feasibility of using Cloud-based systems for secured NGS data analysis, storage, databasing, and multi-user distributed connectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Short read sequence typing (SRST: multi-locus sequence types from short reads

    Directory of Open Access Journals (Sweden)

    Inouye Michael

    2012-07-01

    Full Text Available Abstract Background Multi-locus sequence typing (MLST has become the gold standard for population analyses of bacterial pathogens. This method focuses on the sequences of a small number of loci (usually seven to divide the population and is simple, robust and facilitates comparison of results between laboratories and over time. Over the last decade, researchers and population health specialists have invested substantial effort in building up public MLST databases for nearly 100 different bacterial species, and these databases contain a wealth of important information linked to MLST sequence types such as time and place of isolation, host or niche, serotype and even clinical or drug resistance profiles. Recent advances in sequencing technology mean it is increasingly feasible to perform bacterial population analysis at the whole genome level. This offers massive gains in resolving power and genetic profiling compared to MLST, and will eventually replace MLST for bacterial typing and population analysis. However given the wealth of data currently available in MLST databases, it is crucial to maintain backwards compatibility with MLST schemes so that new genome analyses can be understood in their proper historical context. Results We present a software tool, SRST, for quick and accurate retrieval of sequence types from short read sets, using inputs easily downloaded from public databases. SRST uses read mapping and an allele assignment score incorporating sequence coverage and variability, to determine the most likely allele at each MLST locus. Analysis of over 3,500 loci in more than 500 publicly accessible Illumina read sets showed SRST to be highly accurate at allele assignment. SRST output is compatible with common analysis tools such as eBURST, Clonal Frame or PhyloViz, allowing easy comparison between novel genome data and MLST data. Alignment, fastq and pileup files can also be generated for novel alleles. Conclusions SRST is a novel

  9. Differentiation of sheep pox and goat poxviruses by sequence analysis and PCR-RFLP of P32 gene.

    Science.gov (United States)

    Hosamani, Madhusudan; Mondal, Bimalendu; Tembhurne, Prabhakar A; Bandyopadhyay, Santanu Kumar; Singh, Raj Kumar; Rasool, Thaha Jamal

    2004-08-01

    Sheep pox and Goat pox are highly contagious viral diseases of small ruminants. These diseases were earlier thought to be caused by a single species of virus, as they are serologically indistinguishable. P32, one of the major immunogenic genes of Capripoxvirus, was isolated and Sequenced from two Indian isolates of goat poxvirus (GPV) and a vaccine strain of sheep poxvirus (SPV). The sequences were compared with other P32 sequences of capripoxviruses available in the database. Sequence analysis revealed that sheep pox and goat poxviruses share 97.5 and 94.7% homology at nucleotide and amino acid level, respectively. A major difference between them is the presence of an additional aspartic acid at 55th position of P32 of sheep poxvirus that is absent in both goat poxvirus and lumpy skin disease virus. Further, six unique neutral nucleotide substitutions were observed at positions 77, 275, 403, 552, 867 and 964 in the sequence of goat poxvirus, which can be taken as GPV signature residues. Similar unique nucleotide signatures could be identified in SPV and LSDV sequences also. Phylogenetic analysis showed that members of the Capripoxvirus could be delineated into three distinct clusters of GPV, SPV and LSDV based on the P32 genomic sequence. Using this information, a PCR-RFLP method has been developed for unequivocal genomic differentiation of SPV and GPV.

  10. ASSET: Analysis of Sequences of Synchronous Events in Massively Parallel Spike Trains

    Science.gov (United States)

    Canova, Carlos; Denker, Michael; Gerstein, George; Helias, Moritz

    2016-01-01

    With the ability to observe the activity from large numbers of neurons simultaneously using modern recording technologies, the chance to identify sub-networks involved in coordinated processing increases. Sequences of synchronous spike events (SSEs) constitute one type of such coordinated spiking that propagates activity in a temporally precise manner. The synfire chain was proposed as one potential model for such network processing. Previous work introduced a method for visualization of SSEs in massively parallel spike trains, based on an intersection matrix that contains in each entry the degree of overlap of active neurons in two corresponding time bins. Repeated SSEs are reflected in the matrix as diagonal structures of high overlap values. The method as such, however, leaves the task of identifying these diagonal structures to visual inspection rather than to a quantitative analysis. Here we present ASSET (Analysis of Sequences of Synchronous EvenTs), an improved, fully automated method which determines diagonal structures in the intersection matrix by a robust mathematical procedure. The method consists of a sequence of steps that i) assess which entries in the matrix potentially belong to a diagonal structure, ii) cluster these entries into individual diagonal structures and iii) determine the neurons composing the associated SSEs. We employ parallel point processes generated by stochastic simulations as test data to demonstrate the performance of the method under a wide range of realistic scenarios, including different types of non-stationarity of the spiking activity and different correlation structures. Finally, the ability of the method to discover SSEs is demonstrated on complex data from large network simulations with embedded synfire chains. Thus, ASSET represents an effective and efficient tool to analyze massively parallel spike data for temporal sequences of synchronous activity. PMID:27420734

  11. Micropathogen Community Analysis in Hyalomma rufipes via High-Throughput Sequencing of Small RNAs

    Science.gov (United States)

    Luo, Jin; Liu, Min-Xuan; Ren, Qiao-Yun; Chen, Ze; Tian, Zhan-Cheng; Hao, Jia-Wei; Wu, Feng; Liu, Xiao-Cui; Luo, Jian-Xun; Yin, Hong; Wang, Hui; Liu, Guang-Yuan

    2017-01-01

    Ticks are important vectors in the transmission of a broad range of micropathogens to vertebrates, including humans. Because of the role of ticks in disease transmission, identifying and characterizing the micropathogen profiles of tick populations have become increasingly important. The objective of this study was to survey the micropathogens of Hyalomma rufipes ticks. Illumina HiSeq2000 technology was utilized to perform deep sequencing of small RNAs (sRNAs) extracted from field-collected H. rufipes ticks in Gansu Province, China. The resultant sRNA library data revealed that the surveyed tick populations produced reads that were homologous to St. Croix River Virus (SCRV) sequences. We also observed many reads that were homologous to microbial and/or pathogenic isolates, including bacteria, protozoa, and fungi. As part of this analysis, a phylogenetic tree was constructed to display the relationships among the homologous sequences that were identified. The study offered a unique opportunity to gain insight into the micropathogens of H. rufipes ticks. The effective control of arthropod vectors in the future will require knowledge of the micropathogen composition of vectors harboring infectious agents. Understanding the ecological factors that regulate vector propagation in association with the prevalence and persistence of micropathogen lineages is also imperative. These interactions may affect the evolution of micropathogen lineages, especially if the micropathogens rely on the vector or host for dispersal. The sRNA deep-sequencing approach used in this analysis provides an intuitive method to survey micropathogen prevalence in ticks and other vector species. PMID:28861401

  12. Likelihood functions for the analysis of single-molecule binned photon sequences

    Energy Technology Data Exchange (ETDEWEB)

    Gopich, Irina V., E-mail: irinag@niddk.nih.gov [Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 (United States)

    2012-03-02

    Graphical abstract: Folding of a protein with attached fluorescent dyes, the underlying conformational trajectory of interest, and the observed binned photon trajectory. Highlights: Black-Right-Pointing-Pointer A sequence of photon counts can be analyzed using a likelihood function. Black-Right-Pointing-Pointer The exact likelihood function for a two-state kinetic model is provided. Black-Right-Pointing-Pointer Several approximations are considered for an arbitrary kinetic model. Black-Right-Pointing-Pointer Improved likelihood functions are obtained to treat sequences of FRET efficiencies. - Abstract: We consider the analysis of a class of experiments in which the number of photons in consecutive time intervals is recorded. Sequence of photon counts or, alternatively, of FRET efficiencies can be studied using likelihood-based methods. For a kinetic model of the conformational dynamics and state-dependent Poisson photon statistics, the formalism to calculate the exact likelihood that this model describes such sequences of photons or FRET efficiencies is developed. Explicit analytic expressions for the likelihood function for a two-state kinetic model are provided. The important special case when conformational dynamics are so slow that at most a single transition occurs in a time bin is considered. By making a series of approximations, we eventually recover the likelihood function used in hidden Markov models. In this way, not only is insight gained into the range of validity of this procedure, but also an improved likelihood function can be obtained.

  13. Analysis of loss of decay heat removal sequences at Browns Ferry Unit One: Chapter 17

    International Nuclear Information System (INIS)

    Harrington, R.M.

    1983-01-01

    This paper summarizes the Oak Ridge National Laboratory (ORNL) report ''Loss of DHR Sequences at Browns Ferry Unit One - Accident Sequence Analysis'' (NUREG/CR-2973). The Loss of DHR investigation is the third in a series of accident studies concerning the BWR 4 - MK I containment plant design. These studies, sponsored by the Nuclear Regulatory Commission Severe Accident Sequence Analysis (SASA) program, have been conducted at ORNL with the full cooperation of the Tennessee Valley Authority (TVA), using Unit One of the Browns Ferry Nuclear Plant as the model design. Each unit of this three-unit plant has a maximum authorized power of 3293 MW(t) or 1067 net MW(e). The primary containments are of the Mark I pressure suppression pool type and the three units share a secondary containment of the controlled leakage, elevated release design. Each unit occupies a separate reactor building located in one structure underneath the common refueling floor

  14. Molecular phylogeny of grey mullets (Teleostei: Mugilidae) in Greece: evidence from sequence analysis of mtDNA segments.

    Science.gov (United States)

    Papasotiropoulos, Vasilis; Klossa-Kilia, Elena; Alahiotis, Stamatis N; Kilias, George

    2007-08-01

    Mitochondrial DNA sequence analysis has been used to explore genetic differentiation and phylogenetic relationships among five species of the Mugilidae family, Mugil cephalus, Chelon labrosus, Liza aurata, Liza ramada, and Liza saliens. DNA was isolated from samples originating from the Messolongi Lagoon in Greece. Three mtDNA segments (12s rRNA, 16s rRNA, and CO I) were PCR amplified and sequenced. Sequencing analysis revealed that the greatest genetic differentiation was observed between M. cephalus and all the other species studied, while C. labrosus and L. aurata were the closest taxa. Dendrograms obtained by the neighbor-joining method and Bayesian inference analysis exhibited the same topology. According to this topology, M. cephalus is the most distinct species and the remaining taxa are clustered together, with C. labrosus and L. aurata forming a single group. The latter result brings into question the monophyletic origin of the genus Liza.

  15. Sequence comparison and phylogenetic analysis of core gene of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-07-19

    Jul 19, 2010 ... and antisense primers, a single band of 573 base pairs .... Amino acid sequence alignment of Cluster I and Cluster II of phylogenetic tree. First ten sequences ... sequence weighting, postion-spiecific gap penalties and weight.

  16. Google matrix analysis of DNA sequences.

    Science.gov (United States)

    Kandiah, Vivek; Shepelyansky, Dima L

    2013-01-01

    For DNA sequences of various species we construct the Google matrix [Formula: see text] of Markov transitions between nearby words composed of several letters. The statistical distribution of matrix elements of this matrix is shown to be described by a power law with the exponent being close to those of outgoing links in such scale-free networks as the World Wide Web (WWW). At the same time the sum of ingoing matrix elements is characterized by the exponent being significantly larger than those typical for WWW networks. This results in a slow algebraic decay of the PageRank probability determined by the distribution of ingoing elements. The spectrum of [Formula: see text] is characterized by a large gap leading to a rapid relaxation process on the DNA sequence networks. We introduce the PageRank proximity correlator between different species which determines their statistical similarity from the view point of Markov chains. The properties of other eigenstates of the Google matrix are also discussed. Our results establish scale-free features of DNA sequence networks showing their similarities and distinctions with the WWW and linguistic networks.

  17. Google matrix analysis of DNA sequences.

    Directory of Open Access Journals (Sweden)

    Vivek Kandiah

    Full Text Available For DNA sequences of various species we construct the Google matrix [Formula: see text] of Markov transitions between nearby words composed of several letters. The statistical distribution of matrix elements of this matrix is shown to be described by a power law with the exponent being close to those of outgoing links in such scale-free networks as the World Wide Web (WWW. At the same time the sum of ingoing matrix elements is characterized by the exponent being significantly larger than those typical for WWW networks. This results in a slow algebraic decay of the PageRank probability determined by the distribution of ingoing elements. The spectrum of [Formula: see text] is characterized by a large gap leading to a rapid relaxation process on the DNA sequence networks. We introduce the PageRank proximity correlator between different species which determines their statistical similarity from the view point of Markov chains. The properties of other eigenstates of the Google matrix are also discussed. Our results establish scale-free features of DNA sequence networks showing their similarities and distinctions with the WWW and linguistic networks.

  18. Genome sequence diversity and clues to the evolution of variola (smallpox) virus.

    Science.gov (United States)

    Esposito, Joseph J; Sammons, Scott A; Frace, A Michael; Osborne, John D; Olsen-Rasmussen, Melissa; Zhang, Ming; Govil, Dhwani; Damon, Inger K; Kline, Richard; Laker, Miriam; Li, Yu; Smith, Geoffrey L; Meyer, Hermann; Leduc, James W; Wohlhueter, Robert M

    2006-08-11

    Comparative genomics of 45 epidemiologically varied variola virus isolates from the past 30 years of the smallpox era indicate low sequence diversity, suggesting that there is probably little difference in the isolates' functional gene content. Phylogenetic clustering inferred three clades coincident with their geographical origin and case-fatality rate; the latter implicated putative proteins that mediate viral virulence differences. Analysis of the viral linear DNA genome suggests that its evolution involved direct descent and DNA end-region recombination events. Knowing the sequences will help understand the viral proteome and improve diagnostic test precision, therapeutics, and systems for their assessment.

  19. Multilocus Sequence Analysis of Nectar Pseudomonads Reveals High Genetic Diversity and Contrasting Recombination Patterns

    Science.gov (United States)

    Álvarez-Pérez, Sergio; de Vega, Clara; Herrera, Carlos M.

    2013-01-01

    The genetic and evolutionary relationships among floral nectar-dwelling Pseudomonas ‘sensu stricto’ isolates associated to South African and Mediterranean plants were investigated by multilocus sequence analysis (MLSA) of four core housekeeping genes (rrs, gyrB, rpoB and rpoD). A total of 35 different sequence types were found for the 38 nectar bacterial isolates characterised. Phylogenetic analyses resulted in the identification of three main clades [nectar groups (NGs) 1, 2 and 3] of nectar pseudomonads, which were closely related to five intrageneric groups: Pseudomonas oryzihabitans (NG 1); P. fluorescens, P. lutea and P. syringae (NG 2); and P. rhizosphaerae (NG 3). Linkage disequilibrium analysis pointed to a mostly clonal population structure, even when the analysis was restricted to isolates from the same floristic region or belonging to the same NG. Nevertheless, signatures of recombination were observed for NG 3, which exclusively included isolates retrieved from the floral nectar of insect-pollinated Mediterranean plants. In contrast, the other two NGs comprised both South African and Mediterranean isolates. Analyses relating diversification to floristic region and pollinator type revealed that there has been more unique evolution of the nectar pseudomonads within the Mediterranean region than would be expected by chance. This is the first work analysing the sequence of multiple loci to reveal geno- and ecotypes of nectar bacteria. PMID:24116076

  20. Multilocus sequence analysis of nectar pseudomonads reveals high genetic diversity and contrasting recombination patterns.

    Science.gov (United States)

    Alvarez-Pérez, Sergio; de Vega, Clara; Herrera, Carlos M

    2013-01-01

    The genetic and evolutionary relationships among floral nectar-dwelling Pseudomonas 'sensu stricto' isolates associated to South African and Mediterranean plants were investigated by multilocus sequence analysis (MLSA) of four core housekeeping genes (rrs, gyrB, rpoB and rpoD). A total of 35 different sequence types were found for the 38 nectar bacterial isolates characterised. Phylogenetic analyses resulted in the identification of three main clades [nectar groups (NGs) 1, 2 and 3] of nectar pseudomonads, which were closely related to five intrageneric groups: Pseudomonas oryzihabitans (NG 1); P. fluorescens, P. lutea and P. syringae (NG 2); and P. rhizosphaerae (NG 3). Linkage disequilibrium analysis pointed to a mostly clonal population structure, even when the analysis was restricted to isolates from the same floristic region or belonging to the same NG. Nevertheless, signatures of recombination were observed for NG 3, which exclusively included isolates retrieved from the floral nectar of insect-pollinated Mediterranean plants. In contrast, the other two NGs comprised both South African and Mediterranean isolates. Analyses relating diversification to floristic region and pollinator type revealed that there has been more unique evolution of the nectar pseudomonads within the Mediterranean region than would be expected by chance. This is the first work analysing the sequence of multiple loci to reveal geno- and ecotypes of nectar bacteria.