WorldWideScience

Sample records for direct scattering trapping

  1. Ultrasonic trap for light scattering measurement

    Science.gov (United States)

    Barton, Petr; Pavlu, Jiri

    2017-04-01

    Light scattering is complex phenomenon occurring widely in space environments, including the dense dusty clouds, nebulas or even the upper atmosphere of the Earth. However, when the size of the dust (or of other scattering center) is close to the incident light wavelength, theoretical determination is difficult. In such case, Mie theory is to be used but there is a lack of the material constants for most space-related materials. For experimental measurement of light scattering, we designed unique apparatus, based on ultrasonic trap. Using acoustic levitation we are able to capture the dust grain in midair, irradiate it with laser, and observe scattering directly with goniometer-mounted photodiode. Advantage of this approach is ability to measure directly in the air (thus, no need for the carrier medium) and possibility to study non-spherical particles. Since the trap development is nearly finished and initial experiments are carried out, the paper presents first tests on water droplets.

  2. Particle trapping in stimulated scattering processes

    International Nuclear Information System (INIS)

    Karttunen, S.J.; Heikkinen, J.A.

    1981-01-01

    Particle trapping effects on stimulated Brillouin and Raman scattering are investigated. A time and space dependent model assumes a Maxwellian plasma which is taken to be homogeneous in the interaction region. Ion trapping has a rather weak effect on stimulated Brillouin scattering and large reflectivities are obtained even in strong trapping regime. Stimulated Raman scattering is considerably reduced by electron trapping. Typically 15-20 times larger laser intensities are required to obtain same reflectivity levels than without trapping. (author)

  3. Electron scattering by trapped fermionic atoms

    International Nuclear Information System (INIS)

    Wang Haijun; Jhe, Wonho

    2002-01-01

    Considering the Fermi gases of alkali-metal atoms that are trapped in a harmonic potential, we study theoretically the elastic and inelastic scattering of the electrons by the trapped Fermi atoms and present the corresponding differential cross sections. We also obtain the stopping power for the cases that the electronic state as well as the center-of-mass state are excited both separately and simultaneously. It is shown that the elastic scattering process is no longer coherent in contrast to the electron scattering by the atomic Bose-Einstein condensate (BEC). For the inelastic scattering process, on the other hand, the differential cross section is found to be proportional to the 2/3 power of the number of the trapped atoms. In particular, the trapped fermionic atoms display the effect of ''Fermi surface,'' that is, only the energy levels near the Fermi energy have dominant contributions to the scattering process. Moreover, it is found that the stopping power scales as the 7/6 power of the atomic number. These results are fundamentally different from those of the electron scattering by the atomic BEC, mainly due to the different statistics obeyed by the trapped atomic systems

  4. An axis-specific rotational rainbow in the direct scatter of formaldehyde from Au(111) and its influence on trapping probability.

    Science.gov (United States)

    Park, G Barratt; Krüger, Bastian C; Meyer, Sven; Kandratsenka, Alexander; Wodtke, Alec M; Schäfer, Tim

    2017-08-02

    The conversion of translational to rotational motion often plays a major role in the trapping of small molecules at surfaces, a crucial first step for a wide variety chemical processes that occur at gas-surface interfaces. However, to date most quantum-state resolved surface scattering experiments have been performed on diatomic molecules, and little detailed information is available about how the structure of nonlinear polyatomic molecules influences the mechanisms for energy exchange with surfaces. In the current work, we employ a new rotationally resolved 1 + 1' resonance-enhanced multiphoton ionization (REMPI) scheme to measure the rotational distribution in formaldehyde molecules directly scattered from the Au(111) surface at incidence kinetic energies in the range 0.3-1.2 eV. The results indicate a pronounced propensity to excite a-axis rotation (twirling) rather than b- or c-axis rotation (tumbling or cartwheeling), and are consistent with a rotational rainbow scattering model. Classical trajectory calculations suggest that the effect arises-to zeroth order-from the three-dimensional shape of the molecule (steric effects). Analysis suggests that the high degree of rotational excitation has a substantial influence on the trapping probability of formaldehyde at incidence translational energies above 0.5 eV.

  5. Raman scattering in condensed media placed in photon traps

    Science.gov (United States)

    Goncharov, A. P.; Gorelik, V. S.; Krawtsow, A. V.

    2007-11-01

    A new type of resonator cells (photon traps) has been worked out, which ensures the Raman opalescence regime (i.e., the conditions under which the relative Raman scattering intensity at the outlet of the cells increases significantly as compared to the exciting line intensity. The Raman scattering spectra of a number of organic and inorganic compounds placed in photon traps are studied under pulse-periodic excitation by a copper-vapor laser.

  6. Direct inelastic scattering of oriented NO from Ag(111) and Pt(111)

    International Nuclear Information System (INIS)

    Tenner, M.G.; Kuipers, E.W.; Kleyn, A.W.; Stolte, S.

    1991-01-01

    A pulsed supersonic and cold oriented beam of NO molecules is incident upon the (111) face of clean Ag and Pt single crystal surfaces. The steric effect in the scattered density distributions is determined by a quadrupole mass spectrometer. It is found that the steric effect in the peak in the distribution of direct inelastically scattered molecules depends linearly on the reflection angle. In all circumstances O-end collisions lead to scattering angles more inclined towards the surface than N-end collisions. For the Pt(111) surface a much stronger steric effect is measured than for the Ag(111) surface. The steric effect seems to scale with the incident normal velocity. These strong steric effects can be explained by the larger trapping probability for the N-end orientation and a leverage effect due to the high trapping probability

  7. Measurement of elastic light scattering from two optically trapped microspheres and red blood cells in a transparent medium.

    Science.gov (United States)

    Kinnunen, Matti; Kauppila, Antti; Karmenyan, Artashes; Myllylä, Risto

    2011-09-15

    Optical tweezers can be used to manipulate small objects and cells. A trap can be used to fix the position of a particle during light scattering measurements. The places of two separately trapped particles can also be changed. In this Letter we present elastic light scattering measurements as a function of scattering angle when two trapped spheres are illuminated with a He-Ne laser. This setup is suitable for trapping noncharged homogeneous spheres. We also demonstrate measurement of light scattering patterns from two separately trapped red blood cells. Two different illumination schemes are used for both samples.

  8. Quantum translator-rotator: inelastic neutron scattering of dihydrogen molecules trapped inside anisotropic fullerene cages.

    Science.gov (United States)

    Horsewill, A J; Panesar, K S; Rols, S; Johnson, M R; Murata, Y; Komatsu, K; Mamone, S; Danquigny, A; Cuda, F; Maltsev, S; Grossel, M C; Carravetta, M; Levitt, M H

    2009-01-09

    We report an inelastic neutron scattering investigation of the quantum dynamics of hydrogen molecules trapped inside anisotropic fullerene cages. Transitions among the manifold of quantized rotational and translational states are directly observed. The spectra recorded as a function of energy and momentum transfer are interpreted in terms of the rotational potential and the cage dimensions. The thermodynamics of orthohydrogen and parahydrogen are investigated through temperature dependence measurements.

  9. An efficient method for the creation of tunable optical line traps via control of gradient and scattering forces.

    Science.gov (United States)

    Tietjen, Gregory T; Kong, Yupeng; Parthasarathy, Raghuveer

    2008-07-07

    Interparticle interaction energies and other useful physical characteristics can be extracted from the statistical properties of the motion of particles confined by an optical line trap. In practice, however, the potential energy landscape, U(x), imposed by the line provides an extra, and in general unknown, influence on particle dynamics. We describe a new class of line traps in which both the optical gradient and scattering forces acting on a trapped particle are designed to be linear functions of the line coordinate and in which their magnitude can be counterbalanced to yield a flat U(x). These traps are formed using approximate solutions to general relations concerning non-conservative optical forces that have been the subject of recent investigations [Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, Phys. Rev. Lett. 100, 013602-4 (2008).]. We implement the lines using holographic optical trapping and measure the forces acting on silica microspheres, demonstrating the tunability of the confining potential energy landscape. Furthermore, we show that our approach efficiently directs available laser power to the trap, in contrast to other methods.

  10. Effect of Coulomb scattering from trapped charges on the mobility in an organic field-effect transistor

    NARCIS (Netherlands)

    Sharma, A.; Janssen, N.M.A.; Matthijssen, S.J.G.; de Leeuw, D.M.; Kemerink, M.; Bobbert, P.A.

    2011-01-01

    We investigate the effect of Coulomb scattering from trapped charges on the mobility in the two-dimensional channel of an organic field-effect transistor. The number of trapped charges can be tuned by applying a prolonged gate bias. Surprisingly, after increasing the number of trapped charges to a

  11. Trapped-Particle Instability Leading to Bursting in Stimulated Raman Scattering Simulations

    International Nuclear Information System (INIS)

    Brunner, S.; Valeo, E.

    2001-01-01

    Nonlinear, kinetic simulations of Stimulated Raman Scattering (SRS) for laser-fusion-relevant conditions present a bursting behavior. Different explanations for this regime has been given in previous studies: Saturation of SRS by increased nonlinear Landau damping [K. Estabrook et al., Phys. Fluids B 1 (1989) 1282] and detuning due to the nonlinear frequency shift of the plasma wave [H.X. Vu et al., Phys. Rev. Lett. 86 (2001) 4306]. Another mechanism, also assigning a key role to the trapped electrons, is proposed here: The break-up of the plasma wave through the trapped-particle instability

  12. Dust grain characterization — Direct measurement of light scattering

    Science.gov (United States)

    BartoÅ, P.; Pavlů, J.

    2018-01-01

    Dust grains play a key role in dusty plasma since they interact with the plasma we can use them to study plasma itself. The grains are illuminated by visible light (e.g., a laser sheet) and the situation is captured with camera. Despite of simplicity, light scattering on similar-to-wavelength sized grains is complex phenomenon. Interaction of the electromagnetic wave with material has to be computed with respect to Maxwell equations — analytic solution is nowadays available only for several selected shapes like sphere, coated sphere, or infinite cylinder. Moreover, material constants needed for computations are usually unknown. For computation result verification and material constant determination, we designed and developed a device directly measur­ing light scattering profiles. Single dust grains are trapped in the ultrasonic field (so called "acoustic levitation") and illuminated by the laser beam. Scattered light is then measured by a photodiode mounted on rotating platform. Synchronous detection is employed for a noise reduction. This setup brings several benefits against conventional methods: (1) it works in the free air, (2) the measured grain is captured for a long time, and (3) the grain could be of arbitrary shape.

  13. Asymptotic behaviour of the scattering phase for non-trapping metrics

    International Nuclear Information System (INIS)

    Popov, G.S.

    1982-01-01

    The asymptotic behaviour of the scattering phase is considered at infinity for an elliptic, self-adjoint, second order differential operator H, defined either in Rsup(n) or in an unbounded domain Ω contains Rsup(n) with Dirichlet or Neumann boundary conditions. The operator H has the form H=- δsub(g)+hD+V where δsub(g) is the Laplace-Beltrami operator related to a Riemann metric g in anti Ω. Provided a non-trapping hypothesis is fulfilled and H coincides with the Laplace operator δ in a neighbourhood of infinity, an asymptotic development of the scattering phase s(lambda) is obtained for lambda → infinity. The first coefficients in this development are found

  14. DIRECT TUNNELLING AND MOSFET BORDER TRAPS

    Directory of Open Access Journals (Sweden)

    Vladimir Drach

    2015-09-01

    Full Text Available The border traps, in particular slow border traps, are being investigated in metal-oxide-semiconductor structures, utilizing n-channel MOSFET as a test sample. The industrial process technology of test samples manufacturing is described. The automated experimental setup is discussed, the implementation of the experimental setup had made it possible to complete the entire set of measurements. The schematic diagram of automated experimental setup is shown. The charging time characteristic of the ID-VG shift reveals that the charging process is a direct tunnelling process and highly bias dependent.

  15. Secondary scattering on the intensity dependence of the capture velocity in a magneto-optical trap

    International Nuclear Information System (INIS)

    Loos, M.R.; Massardo, S.B.; Zanon, R.A. de S; Oliveira, A.L. de

    2005-01-01

    In this work, we consider a three-dimensional model to simulate the capture velocity behavior in a sample of cold-trapped sodium atoms as a function of the trapping laser intensity. We expand on previous work [V. S. Bagnato, L. G. Marcassa, S. G. Miranda, S. R. Muniz, and A. L. de Oliveira, Phys. Rev. A 62, 013404 (2000)] by calculating the capture velocity over a broad range of light intensities considering the secondary scattering in a magneto-optical trap. Our calculations are in a good agreement with recent measured values [S. R. Muniz et al., Phys. Rev. A 65, 015402 (2001)

  16. Secondary scattering on the intensity dependence of the capture velocity in a magneto-optical trap

    Science.gov (United States)

    Loos, M. R.; Massardo, S. B.; de S. Zanon, R. A.; de Oliveira, A. L.

    2005-08-01

    In this work, we consider a three-dimensional model to simulate the capture velocity behavior in a sample of cold-trapped sodium atoms as a function of the trapping laser intensity. We expand on previous work [V. S. Bagnato, L. G. Marcassa, S. G. Miranda, S. R. Muniz, and A. L. de Oliveira, Phys. Rev. A 62, 013404 (2000)] by calculating the capture velocity over a broad range of light intensities considering the secondary scattering in a magneto-optical trap. Our calculations are in a good agreement with recent measured values [S. R. Muniz , Phys. Rev. A 65, 015402 (2001)].

  17. Dielectric Scattering Patterns for Efficient Light Trapping in Thin-Film Solar Cells.

    Science.gov (United States)

    van Lare, Claire; Lenzmann, Frank; Verschuuren, Marc A; Polman, Albert

    2015-08-12

    We demonstrate an effective light trapping geometry for thin-film solar cells that is composed of dielectric light scattering nanocavities at the interface between the metal back contact and the semiconductor absorber layer. The geometry is based on resonant Mie scattering. It avoids the Ohmic losses found in metallic (plasmonic) nanopatterns, and the dielectric scatterers are well compatible with nearly all types of thin-film solar cells, including cells produced using high temperature processes. The external quantum efficiency of thin-film a-Si:H solar cells grown on top of a nanopatterned Al-doped ZnO, made using soft imprint lithography, is strongly enhanced in the 550-800 nm spectral band by the dielectric nanoscatterers. Numerical simulations are in good agreement with experimental data and show that resonant light scattering from both the AZO nanostructures and the embedded Si nanostructures are important. The results are generic and can be applied on nearly all thin-film solar cells.

  18. Femtosecond pulse-width dependent trapping and directional ejection dynamics of dielectric nanoparticles

    KAUST Repository

    Chiang, Weiyi

    2013-09-19

    We demonstrate that laser pulse duration, which determines its impulsive peak power, is an effective parameter to control the number of optically trapped dielectric nanoparticles, their ejections along the directions perpendicular to polarization vector, and their migration distances from the trapping site. This ability to controllably confine and eject the nanoparticle is explained by pulse width-dependent optical forces exerted on nanoparticles in the trapping site and ratio between the repulsive and attractive forces. We also show that the directional ejections occur only when the number of nanoparticles confined in the trapping site exceeds a definite threshold. We interpret our data by considering the formation of transient assembly of the optically confined nanoparticles, partial ejection of the assembly, and subsequent filling of the trapping site. The understanding of optical trapping and directional ejections by ultrashort laser pulses paves the way to optically controlled manipulation and sorting of nanoparticles. © 2013 American Chemical Society.

  19. The β-decay Paul trap: A radiofrequency-quadrupole ion trap for precision β-decay studies

    International Nuclear Information System (INIS)

    Scielzo, N.D.; Li, G.; Sternberg, M.G.; Savard, G.; Bertone, P.F.; Buchinger, F.; Caldwell, S.; Clark, J.A.; Crawford, J.; Deibel, C.M.; Fallis, J.; Greene, J.P.

    2012-01-01

    The β-decay Paul trap is a linear radiofrequency-quadrupole ion trap that has been developed for precision β-decay studies. The design of the trap electrodes allows a variety of radiation detectors to surround the cloud of trapped ions. The momentum of the low-energy recoiling daughter nuclei following β decay is negligibly perturbed by scattering and is available for study. This advantageous property of traps allows the kinematics of particles that are difficult or even impossible to directly detect to be precisely reconstructed using conservation of energy and momentum. An ion-trap system offers several advantages over atom traps, such as higher trapping efficiencies and element-independent capabilities. The first precision experiment using this system is a measurement of β-decay angular correlations in the decay of 8 Li performed by inferring the momentum of the neutrino from the kinematic shifts imparted to the breakup α particles. Many other β-decay studies that would benefit from a determination of the nuclear recoil can be performed with this system.

  20. The {beta}-decay Paul trap: A radiofrequency-quadrupole ion trap for precision {beta}-decay studies

    Energy Technology Data Exchange (ETDEWEB)

    Scielzo, N.D., E-mail: scielzo1@llnl.gov [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Li, G. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8 (Canada); Sternberg, M.G.; Savard, G. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics, University of Chicago, Chicago, Illinois 60637 (United States); Bertone, P.F. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Buchinger, F. [Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8 (Canada); Caldwell, S. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics, University of Chicago, Chicago, Illinois 60637 (United States); Clark, J.A. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Crawford, J. [Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8 (Canada); Deibel, C.M. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824 (United States); Fallis, J. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (Canada); Greene, J.P. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); and others

    2012-07-21

    The {beta}-decay Paul trap is a linear radiofrequency-quadrupole ion trap that has been developed for precision {beta}-decay studies. The design of the trap electrodes allows a variety of radiation detectors to surround the cloud of trapped ions. The momentum of the low-energy recoiling daughter nuclei following {beta} decay is negligibly perturbed by scattering and is available for study. This advantageous property of traps allows the kinematics of particles that are difficult or even impossible to directly detect to be precisely reconstructed using conservation of energy and momentum. An ion-trap system offers several advantages over atom traps, such as higher trapping efficiencies and element-independent capabilities. The first precision experiment using this system is a measurement of {beta}-decay angular correlations in the decay of {sup 8}Li performed by inferring the momentum of the neutrino from the kinematic shifts imparted to the breakup {alpha} particles. Many other {beta}-decay studies that would benefit from a determination of the nuclear recoil can be performed with this system.

  1. Progress towards magnetic trapping of ultra-cold neutrons

    CERN Document Server

    Huffman, P R; Butterworth, J S; Coakley, K J; Dewey, M S; Dzhosyuk, S N; Gilliam, D M; Golub, R; Greene, G L; Habicht, K; Lamoreaux, S K; Mattoni, C E H; McKinsey, D N; Wietfeldt, F E; Doyle, J M

    2000-01-01

    We report progress towards magnetic trapping of ultra-cold neutrons (UCN) in preparation for a neutron lifetime measurement. UCN will be produced by inelastic scattering of cold (0.89 nm) neutrons in a reservoir of superfluid sup 4 He and confined in a three-dimensional magnetic trap. As the trapped neutrons decay, recoil electrons will generate scintillations in the liquid He, which should be detectable with nearly 100% efficiency. This direct measure of the number of UCN decays vs. time can be used to determine the neutron beta-decay lifetime.

  2. Interactive directional subsurface scattering and transport of emergent light

    DEFF Research Database (Denmark)

    Dal Corso, Alessandro; Frisvad, Jeppe Revall; Mosegaard, Jesper

    2016-01-01

    need to store elements of irradiance from specific directions. To include changes in subsurface scattering due to changes in the direction of the incident light, we instead sample incident radiance and store scattered radiosity. This enables us to accommodate not only the common distance....... To build our maps of scattered radiosity, we progressively render the model from different directions using an importance sampling pattern based on the optical properties of the material. We obtain interactive frame rates, our subsurface scattering results are close to ground truth, and our technique...

  3. Calculation of the transport processes in an ambipolar trap by direct statistic simulation

    International Nuclear Information System (INIS)

    Lysyanskij, P.B.; Tiunov, M.A.; Fomel', B.M.

    1982-01-01

    Plasma of an open magnetic trap is simulated with a set of test particles. Transverse drift movement of particles in axial-asymmetric magnetic fields is described with the method of finite transformations. Effects of collisions are simulated with arbitrary changes of velocity vectors of test particles which corresponds to their scattering with ''background'' plasma. The model takes account of longitudinal and transverse losses as well as atomic beam injection. The simulation permitted to obtain values and characteristics of longitudinal and transverse loss flows, ion temperature and radial profile of ma density in the central part of the ''AMBALplas'' ambipolar trap

  4. Centrifugal trapping in the magnetotail

    Directory of Open Access Journals (Sweden)

    D. C. Delcourt

    1995-03-01

    Full Text Available Particles leaving the neutral sheet in the distant magnetotail at times display adiabatic trajectory sequences characterized by an inflection toward the equator and subsequent mirroring in its vicinity. We demonstrate that this low-latitude mirroring results primarily from a centrifugal deceleration due to the fast direction-changing E×B drift. This effect which we refer to as "centrifugal trapping" appears both in guiding centre and full particle treatments. It thus does not directly relate to nonadiabatic motion. However, pitch angle scattering due to nonadiabatic neutral sheet interaction does play a role in reducing the parallel speed of the particles. We show that centrifugal trapping is an important mechanism for the confinement of the slowest (typically below the equatorial E×B drift speed plasma sheet populations to the midplane vicinity.

  5. Multidimensional and interference effects in atom trapping by a cavity field

    International Nuclear Information System (INIS)

    Vukics, A; Domokos, P; Ritsch, H

    2004-01-01

    We study the trapping of a driven two-level atom in a strongly coupled single-mode cavity field. The cavity can significantly enhance the cooling in the direction perpendicular to the cavity axis and thus the standard Doppler-cooling scheme together with a transverse high-finesse resonator yields long trapping times up to the range of seconds. By the addition of a weak cavity pump, trapping can be achieved in the direction of the cavity axis as well. The system is sensitive to the relative phase of the atomic and cavity pumps due to the interference of the fields injected and scattered into the cavity mode. Variation of the phase difference leads to a switching between two possible trap positions along the cavity axis

  6. The construction of TRIGA-TRAP and direct high-precision Penning trap mass measurements on rare-earth elements and americium

    Energy Technology Data Exchange (ETDEWEB)

    Ketelaer, Jens

    2010-06-14

    The construction of TRIGA-TRAP and direct high-precision Penning trap mass measurements on rare-earth elements and americium: Nuclear masses are an important quantity to study nuclear structure since they reflect the sum of all nucleonic interactions. Many experimental possibilities exist to precisely measure masses, out of which the Penning trap is the tool to reach the highest precision. Moreover, absolute mass measurements can be performed using carbon, the atomic-mass standard, as a reference. The new double-Penning trap mass spectrometer TRIGA-TRAP has been installed and commissioned within this thesis work, which is the very first experimental setup of this kind located at a nuclear reactor. New technical developments have been carried out such as a reliable non-resonant laser ablation ion source for the production of carbon cluster ions and are still continued, like a non-destructive ion detection technique for single-ion measurements. Neutron-rich fission products will be available by the reactor that are important for nuclear astrophysics, especially the r-process. Prior to the on-line coupling to the reactor, TRIGA-TRAP already performed off-line mass measurements on stable and long-lived isotopes and will continue this program. The main focus within this thesis was on certain rare-earth nuclides in the well-established region of deformation around N {proportional_to} 90. Another field of interest are mass measurements on actinoids to test mass models and to provide direct links to the mass standard. Within this thesis, the mass of {sup 241}Am could be measured directly for the first time. (orig.)

  7. The construction of TRIGA-TRAP and direct high-precision Penning trap mass measurements on rare-earth elements and americium

    International Nuclear Information System (INIS)

    Ketelaer, Jens

    2010-01-01

    The construction of TRIGA-TRAP and direct high-precision Penning trap mass measurements on rare-earth elements and americium: Nuclear masses are an important quantity to study nuclear structure since they reflect the sum of all nucleonic interactions. Many experimental possibilities exist to precisely measure masses, out of which the Penning trap is the tool to reach the highest precision. Moreover, absolute mass measurements can be performed using carbon, the atomic-mass standard, as a reference. The new double-Penning trap mass spectrometer TRIGA-TRAP has been installed and commissioned within this thesis work, which is the very first experimental setup of this kind located at a nuclear reactor. New technical developments have been carried out such as a reliable non-resonant laser ablation ion source for the production of carbon cluster ions and are still continued, like a non-destructive ion detection technique for single-ion measurements. Neutron-rich fission products will be available by the reactor that are important for nuclear astrophysics, especially the r-process. Prior to the on-line coupling to the reactor, TRIGA-TRAP already performed off-line mass measurements on stable and long-lived isotopes and will continue this program. The main focus within this thesis was on certain rare-earth nuclides in the well-established region of deformation around N ∝ 90. Another field of interest are mass measurements on actinoids to test mass models and to provide direct links to the mass standard. Within this thesis, the mass of 241 Am could be measured directly for the first time. (orig.)

  8. Curious behavior of optically trapped neutral atoms

    International Nuclear Information System (INIS)

    Wieman, C.; Walker, T.; Sesko, D.; Monroe, C.

    1991-01-01

    We have studied the behavior of clouds of neutral atoms contained in a spontaneous force optical trap. Because of the low temperatures of the atoms ( 5 atoms. These include the expansion of the cloud as the number is increased and dramatic changes in the distribution of the atoms at higher numbers. We can explain much of the collective behavior using a simple model that includes a 1/r 2 force between the atoms arising from the multiple scattering of photons. Finally, we discuss the optical trapping of atoms directly from a low pressure vapor in a small glass cell. We have used these optically trapped atoms to load a magnetostatic trap in the same cell. This provided a high density sample of atoms with a temperature of less than 2 μK

  9. Ion trap architectures and new directions

    Science.gov (United States)

    Siverns, James D.; Quraishi, Qudsia

    2017-12-01

    Trapped ion technology has seen advances in performance, robustness and versatility over the last decade. With increasing numbers of trapped ion groups worldwide, a myriad of trap architectures are currently in use. Applications of trapped ions include: quantum simulation, computing and networking, time standards and fundamental studies in quantum dynamics. Design of such traps is driven by these various research aims, but some universally desirable properties have lead to the development of ion trap foundries. Additionally, the excellent control achievable with trapped ions and the ability to do photonic readout has allowed progress on quantum networking using entanglement between remotely situated ion-based nodes. Here, we present a selection of trap architectures currently in use by the community and present their most salient characteristics, identifying features particularly suited for quantum networking. We also discuss our own in-house research efforts aimed at long-distance trapped ion networking.

  10. Centrifugal trapping in the magnetotail

    Directory of Open Access Journals (Sweden)

    D. C. Delcourt

    Full Text Available Particles leaving the neutral sheet in the distant magnetotail at times display adiabatic trajectory sequences characterized by an inflection toward the equator and subsequent mirroring in its vicinity. We demonstrate that this low-latitude mirroring results primarily from a centrifugal deceleration due to the fast direction-changing E×B drift. This effect which we refer to as "centrifugal trapping" appears both in guiding centre and full particle treatments. It thus does not directly relate to nonadiabatic motion. However, pitch angle scattering due to nonadiabatic neutral sheet interaction does play a role in reducing the parallel speed of the particles. We show that centrifugal trapping is an important mechanism for the confinement of the slowest (typically below the equatorial E×B drift speed plasma sheet populations to the midplane vicinity.

  11. A direct sampling method for inverse electromagnetic medium scattering

    KAUST Repository

    Ito, Kazufumi

    2013-09-01

    In this paper, we study the inverse electromagnetic medium scattering problem of estimating the support and shape of medium scatterers from scattered electric/magnetic near-field data. We shall develop a novel direct sampling method based on an analysis of electromagnetic scattering and the behavior of the fundamental solution. It is applicable to a few incident fields and needs only to compute inner products of the measured scattered field with the fundamental solutions located at sampling points. Hence, it is strictly direct, computationally very efficient and highly robust to the presence of data noise. Two- and three-dimensional numerical experiments indicate that it can provide reliable support estimates for multiple scatterers in the case of both exact and highly noisy data. © 2013 IOP Publishing Ltd.

  12. Multiple scattering processes: inverse and direct

    International Nuclear Information System (INIS)

    Kagiwada, H.H.; Kalaba, R.; Ueno, S.

    1975-01-01

    The purpose of the work is to formulate inverse problems in radiative transfer, to introduce the functions b and h as parameters of internal intensity in homogeneous slabs, and to derive initial value problems to replace the more traditional boundary value problems and integral equations of multiple scattering with high computational efficiency. The discussion covers multiple scattering processes in a one-dimensional medium; isotropic scattering in homogeneous slabs illuminated by parallel rays of radiation; the theory of functions b and h in homogeneous slabs illuminated by isotropic sources of radiation either at the top or at the bottom; inverse and direct problems of multiple scattering in slabs including internal sources; multiple scattering in inhomogeneous media, with particular reference to inverse problems for estimation of layers and total thickness of inhomogeneous slabs and to multiple scattering problems with Lambert's law and specular reflectors underlying slabs; and anisotropic scattering with reduction of the number of relevant arguments through axially symmetric fields and expansion in Legendre functions. Gaussian quadrature data for a seven point formula, a FORTRAN program for computing the functions b and h, and tables of these functions supplement the text

  13. Direct nn-scattering at the YAGUAR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, B.E. [Gettysburg College, Department of Physics, Gettysburg, PA 17325 (United States)]. E-mail: bcrawfor@gettysburg.edu; Furman, W.I. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Howell, C.R. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Lychagin, E.V. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Levakov, B.G. [Russian Federal Nuclear Center-All Russian Research Institute of Technical Physics, P.O. Box 245, Snezhinsk 456770 (Russian Federation); Litvin, V.I. [Russian Federal Nuclear Center-All Russian Research Institute of Technical Physics, P.O. Box 245, Snezhinsk 456770 (Russian Federation); Lyzhin, A.E. [Russian Federal Nuclear Center-All Russian Research Institute of Technical Physics, P.O. Box 245, Snezhinsk 456770 (Russian Federation); Magda, E.P. [Russian Federal Nuclear Center-All Russian Research Institute of Technical Physics, P.O. Box 245, Snezhinsk 456770 (Russian Federation); Mitchell, G.E. [North Carolina State University, Raleigh, NC 27695-8202 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Muzichka, A.Yu. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Nekhaev, G.V. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Sharapov, E.I. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Shvetsov, V.N. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Stephenson, S.L. [Gettysburg College, Department of Physics, Gettysburg, PA 17325 (United States); Strelkov, A.V. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Tornow, W. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    2005-12-15

    The Direct Investigation of a {sub nn} Association (DIANNA) is finalizing the design of a direct measurement of the nn-scattering length to be performed at the YAGUAR reactor in Snezhinsk, Russia. Extensive modeling of the neutron field, nn-scattering kinematics, and sources of detector background have verified the plan for a 3% measurement of a {sub nn}. Measurements of the neutron flux support the neutron field modeling. Initial test measurements of the neutron field inside the underground channel have confirmed calculations of the thermal neutron background.

  14. A direct sampling method for inverse electromagnetic medium scattering

    KAUST Repository

    Ito, Kazufumi; Jin, Bangti; Zou, Jun

    2013-01-01

    In this paper, we study the inverse electromagnetic medium scattering problem of estimating the support and shape of medium scatterers from scattered electric/magnetic near-field data. We shall develop a novel direct sampling method based

  15. New apparatus of single particle trap system for aerosol visualization

    Science.gov (United States)

    Higashi, Hidenori; Fujioka, Tomomi; Endo, Tetsuo; Kitayama, Chiho; Seto, Takafumi; Otani, Yoshio

    2014-08-01

    Control of transport and deposition of charged aerosol particles is important in various manufacturing processes. Aerosol visualization is an effective method to directly observe light scattering signal from laser-irradiated single aerosol particle trapped in a visualization cell. New single particle trap system triggered by light scattering pulse signal was developed in this study. The performance of the device was evaluated experimentally. Experimental setup consisted of an aerosol generator, a differential mobility analyzer (DMA), an optical particle counter (OPC) and the single particle trap system. Polystylene latex standard (PSL) particles (0.5, 1.0 and 2.0 μm) were generated and classified according to the charge by the DMA. Singly charged 0.5 and 1.0 μm particles and doubly charged 2.0 μm particles were used as test particles. The single particle trap system was composed of a light scattering signal detector and a visualization cell. When the particle passed through the detector, trigger signal with a given delay time sent to the solenoid valves upstream and downstream of the visualization cell for trapping the particle in the visualization cell. The motion of particle in the visualization cell was monitored by CCD camera and the gravitational settling velocity and the electrostatic migration velocity were measured from the video image. The aerodynamic diameter obtained from the settling velocity was in good agreement with Stokes diameter calculated from the electrostatic migration velocity for individual particles. It was also found that the aerodynamic diameter obtained from the settling velocity was a one-to-one function of the scattered light intensity of individual particles. The applicability of this system will be discussed.

  16. Direct and inverse scattering for viscoelastic media

    International Nuclear Information System (INIS)

    Ammicht, E.; Corones, J.P.; Krueger, R.J.

    1987-01-01

    A time domain approach to direct and inverse scattering problems for one-dimensional viscoelastic media is presented. Such media can be characterized as having a constitutive relation between stress and strain which involves the past history of the strain through a memory function, the relaxation modulus. In the approach in this article, the relaxation modulus of a material is shown to be related to the reflection properties of the material. This relation provides a constructive algorithm for direct and inverse scattering problems. A numerical implementation of this algorithm is tested on several problems involving realistic relaxation moduli

  17. Measuring spatially- and directionally-varying light scattering from biological material.

    Science.gov (United States)

    Harvey, Todd Alan; Bostwick, Kimberly S; Marschner, Steve

    2013-05-20

    Light interacts with an organism's integument on a variety of spatial scales. For example in an iridescent bird: nano-scale structures produce color; the milli-scale structure of barbs and barbules largely determines the directional pattern of reflected light; and through the macro-scale spatial structure of overlapping, curved feathers, these directional effects create the visual texture. Milli-scale and macro-scale effects determine where on the organism's body, and from what viewpoints and under what illumination, the iridescent colors are seen. Thus, the highly directional flash of brilliant color from the iridescent throat of a hummingbird is inadequately explained by its nano-scale structure alone and questions remain. From a given observation point, which milli-scale elements of the feather are oriented to reflect strongly? Do some species produce broader "windows" for observation of iridescence than others? These and similar questions may be asked about any organisms that have evolved a particular surface appearance for signaling, camouflage, or other reasons. In order to study the directional patterns of light scattering from feathers, and their relationship to the bird's milli-scale morphology, we developed a protocol for measuring light scattered from biological materials using many high-resolution photographs taken with varying illumination and viewing directions. Since we measure scattered light as a function of direction, we can observe the characteristic features in the directional distribution of light scattered from that particular feather, and because barbs and barbules are resolved in our images, we can clearly attribute the directional features to these different milli-scale structures. Keeping the specimen intact preserves the gross-scale scattering behavior seen in nature. The method described here presents a generalized protocol for analyzing spatially- and directionally-varying light scattering from complex biological materials at multiple

  18. Direct sampling methods for inverse elastic scattering problems

    Science.gov (United States)

    Ji, Xia; Liu, Xiaodong; Xi, Yingxia

    2018-03-01

    We consider the inverse elastic scattering of incident plane compressional and shear waves from the knowledge of the far field patterns. Specifically, three direct sampling methods for location and shape reconstruction are proposed using the different component of the far field patterns. Only inner products are involved in the computation, thus the novel sampling methods are very simple and fast to be implemented. With the help of the factorization of the far field operator, we give a lower bound of the proposed indicator functionals for sampling points inside the scatterers. While for the sampling points outside the scatterers, we show that the indicator functionals decay like the Bessel functions as the sampling point goes away from the boundary of the scatterers. We also show that the proposed indicator functionals continuously dependent on the far field patterns, which further implies that the novel sampling methods are extremely stable with respect to data error. For the case when the observation directions are restricted into the limited aperture, we firstly introduce some data retrieval techniques to obtain those data that can not be measured directly and then use the proposed direct sampling methods for location and shape reconstructions. Finally, some numerical simulations in two dimensions are conducted with noisy data, and the results further verify the effectiveness and robustness of the proposed sampling methods, even for multiple multiscale cases and limited-aperture problems.

  19. Optical analysis of trapped Gas—Gas in Scattering Media Absorption Spectroscopy

    Science.gov (United States)

    Svanberg, S.

    2010-01-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. The technique investigates sharp gas spectral signatures, typically 10000 times sharper than those of the host material, in which the gas is trapped in pores or cavities. The presence of pores causes strong multiple scattering. GASMAS combines narrow-band diode-laser spectroscopy, developed for atmospheric gas monitoring, with diffuse media optical propagation, well-known from biomedical optics. Several applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, and this is also true for haemoglobin, making propagation possible in many natural materials. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities (frontal, maxillary and mastoideal) have been studied, demonstrating new possibilities for characterization and diagnostics. Transport of gas in porous media (diffusion) can be studied by first subjecting the material to, e.g., pure nitrogen, and then observing the rate at which normal, oxygen-containing air, reinvades the material. The conductance of the passages connecting a sinus with the nasal cavity can be objectively assessed by observing the oxygen gas dynamics when flushing the nose with nitrogen. Drying of materials, when liquid water is replaced by air and water vapour, is another example of dynamic processes which can be studied. The technique has also been extended to remote-sensing applications (LIDAR-GASMAS or Multiple-Scattering LIDAR).

  20. Intensity dependent waiting time for strong electron trapping events in speckle stimulated raman scatter

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Harvey [Los Alamos National Laboratory; Daughton, W [Los Alamos National Laboratory; Yin, L [Los Alamos National Laboratory

    2009-01-01

    The onset of Stimulated Raman scatter from an intense laser speckle is the simplest experimentally realizable laser-plasma-interaction environment. Despite this data and recent 3D particle simulations, the controlling mechanism at the onset of backscatter in the kinetic regime when strong electron trapping in the daughter Langmuir wave is a dominant nonlinearity is not understood. This paper explores the consequences of assuming that onset is controlled by large thermal fluctuations. A super exponential dependence of mean reflectivity on speckle intensity in the onset regime is predicted.

  1. Coulomb scatter of diamagnetic dust particles in a cusp magnetic trap under microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Myasnikov, M. I., E-mail: miasnikovmi@mail.ru; D’yachkov, L. G.; Petrov, O. F.; Vasiliev, M. M., E-mail: mixxy@mail.ru; Fortov, V. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Savin, S. F.; Serova, E. O. [Korolev Rocket and Space Corporation Energia, ul. Lenina 4A (Russian Federation)

    2017-02-15

    The effect of a dc electric field on strongly nonideal Coulomb systems consisting of a large number (~10{sup 4}) of charged diamagnetic dust particles in a cusp magnetic trap are carried out aboard the Russian segment of the International Space Station (ISS) within the Coulomb Crystal experiment. Graphite particles of 100–400 μm in size are used in the experiments. Coulomb scatter of a dust cluster and the formation of threadlike chains of dust particles are observed experimentally. The processes observed are simulated by the molecular dynamics (MD) method.

  2. Scattered light characterization of FORTIS

    Science.gov (United States)

    McCandliss, Stephan R.; Carter, Anna; Redwine, Keith; Teste, Stephane; Pelton, Russell; Hagopian, John; Kutyrev, Alexander; Li, Mary J.; Moseley, S. Harvey

    2017-08-01

    We describe our efforts to build a Wide-Field Lyman alpha Geocoronal simulator (WFLaGs) for characterizing the end-to-end sensitivity of FORTIS (Far-UV Off Rowland-circle Telescope for Imaging and Spectroscopy) to scattered Lyman α emission from outside of the nominal (1/2 degree)2 field-of-view. WFLaGs is a 50 mm diameter F/1 aluminum parabolic collimator fed by a hollow cathode discharge lamp with a 80 mm clear MgF2 window housed in a vacuum skin. It creates emission over a 10 degree FOV. WFLaGS will allow us to validate and refine a recently developed scattered light model and verify our scatter light mitigation strategies, which will incorporate low scatter baffle materials, and possibly 3-d printed light traps, covering exposed scatter centers. We present measurements of scattering intensity of Lyman alpha as a function of angle with respect to the specular reflectance direction for several candidate baffle materials. Initial testing of WFLaGs will be described.

  3. Optically resonant magneto-electric cubic nanoantennas for ultra-directional light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sikdar, Debabrata, E-mail: debabrata.sikdar@monash.edu; Premaratne, Malin [Advanced Computing and Simulation Laboratory (A chi L), Department of Electrical and Computer Systems Engineering, Monash University, Clayton 3800, Victoria (Australia); Cheng, Wenlong [Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria (Australia); The Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton 3168, Victoria (Australia)

    2015-02-28

    Cubic dielectric nanoparticles are promising candidates for futuristic low-loss, ultra-compact, nanophotonic applications owing to their larger optical coefficients, greater packing density, and relative ease of fabrication as compared to spherical nanoparticles; besides possessing negligible heating at nanoscale in contrast to their metallic counterparts. Here, we present the first theoretical demonstration of azimuthally symmetric, ultra-directional Kerker's-type scattering of simple dielectric nanocubes in visible and near-infrared regions via simultaneous excitation and interference of optically induced electric- and magnetic-resonances up to quadrupolar modes. Unidirectional forward-scattering by individual nanocubes is observed at the first generalized-Kerker's condition for backward-scattering suppression, having equal electric- and magnetic-dipolar responses. Both directionality and magnitude of these unidirectional-scattering patterns get enhanced where matching electric- and magnetic-quadrupolar responses spectrally overlap. While preserving azimuthal-symmetry and backscattering suppression, a nanocube homodimer provides further directionality improvement for increasing interparticle gap, but with reduced main-lobe magnitude due to emergence of side-scattering lobes from diffraction-grating effect. We thoroughly investigate the influence of interparticle gap on scattering patterns and propose optimal range of gap for minimizing side-scattering lobes. Besides suppressing undesired side-lobes, significant enhancement in scattering magnitude and directionality is attained with increasing number of nanocubes forming a linear chain. Optimal directionality, i.e., the narrowest main-scattering lobe, is found at the wavelength of interfering quadrupolar resonances; whereas the largest main-lobe magnitude is observed at the wavelength satisfying the first Kerker's condition. These unique optical properties of dielectric nanocubes thus can

  4. Quasi-one-dimensional scattering in a discrete model

    DEFF Research Database (Denmark)

    Valiente, Manuel; Mølmer, Klaus

    2011-01-01

    We study quasi-one-dimensional scattering of one and two particles with short-range interactions on a discrete lattice model in two dimensions. One of the directions is tightly confined by an arbitrary trapping potential. We obtain the collisional properties of these systems both at finite and zero...

  5. Dynamics of Bose-Einstein condensates in a time-dependent trap

    International Nuclear Information System (INIS)

    Kumar, V. Ramesh; Radha, R.; Panigrahi, Prasanta K.

    2008-01-01

    In this paper, we generate the Lax pair for the one-dimensional Gross-Pitaevskii equation with time-dependent scattering length in the presence of a confining or expulsive harmonic time-dependent trap. We then exploit the Lax pair profitably to construct multisoliton solutions using gauge transformation from a trivial input solution. In particular, we have investigated the effect of both expulsive and confining traps on soliton interaction. Even though we find that the amplitude of the bright soliton relies upon the time-dependent scattering length and the external time-dependent trap with the velocity being dictated by the external trap alone, the observation of interdependence of the scattering length on the trap shows that the bright solitons not only can be compressed into a desirable width and amplitude but also can be remote controlled and driven anywhere in the plane by suitably maneuvering the external time-dependent trap alone

  6. Directional Scattering of Semiconductor Nanoparticles Embedded in a Liquid Crystal

    Directory of Open Access Journals (Sweden)

    Braulio García-Cámara

    2014-04-01

    Full Text Available Light scattering by semiconductor nanoparticles has been shown to be more complex than was believed until now. Both electric and magnetic responses emerge in the visible range. In addition, directional effects on light scattering of these nanoparticles were recently obtained. In particular, zero backward and minimum-forward scattering are observed. These phenomena are very interesting for several applications such as, for instance, optical switches or modulators. The strong dependence of these phenomena on the properties of both the particle and the surrounding medium can be used to tune them. The electrical control on the optical properties of liquid crystals could be used to control the directional effects of embedded semiconductor nanoparticles. In this work, we theoretically analyze the effects on the directional distribution of light scattering by these particles when the refractive index of a surrounded liquid crystal changes from the ordinary to the extraordinary configuration. Several semiconductor materials and liquid crystals are studied in order to optimize the contrast between the two states.

  7. A direct sampling method to an inverse medium scattering problem

    KAUST Repository

    Ito, Kazufumi

    2012-01-10

    In this work we present a novel sampling method for time harmonic inverse medium scattering problems. It provides a simple tool to directly estimate the shape of the unknown scatterers (inhomogeneous media), and it is applicable even when the measured data are only available for one or two incident directions. A mathematical derivation is provided for its validation. Two- and three-dimensional numerical simulations are presented, which show that the method is accurate even with a few sets of scattered field data, computationally efficient, and very robust with respect to noises in the data. © 2012 IOP Publishing Ltd.

  8. Impurity Trapping of Positive Muons in Metals

    CERN Multimedia

    2002-01-01

    Polarized positive muons are implanted into metal samples. In an applied magnetic field the muon spin precession is studied. The line width in the precession frequency spectrum gives information about the static and dynamic properties of muons in a metal lattice. At temperatures where the muon is immobile within its lifetime the line width gives information about the site of location. At temperatures where the muon is mobile, the line width gives information on the diffusion process. It is known from experiments on quasi-elastic neutron scattering on hydrogen in niobium that interstitial impurities like nitrogen tend to act as traps for hydrogen. These trapping effects have now been studied systematically for muons in both f.c.c. metals (aluminium and copper) and b.c.c. metals (mainly niobium). Direct information on the trapping rates and the nature of the diffusion processes can be obtained since the muonic lifetime covers a time range where many of these processes occur.\\\\ \\\\ Mathematical models are set up ...

  9. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles

    Science.gov (United States)

    Redding, Brandon; Schwab, Mark J.; Pan, Yong-le

    2015-01-01

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field. PMID:26247952

  10. Direct exchange between silicon nanocrystals and tunnel oxide traps under illumination on single electron photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Chatbouri, S., E-mail: Samir.chatbouri@yahoo.com; Troudi, M.; Sghaier, N.; Kalboussi, A. [Avenue de I’environnement, Université de Monastir, Laboratoire de Micro électronique et Instrumentation (LR13ES12), Faculté des Sciences de Monastir (Tunisia); Aimez, V. [Université de Sherbrooke, Laboratoire Nanotechnologies et Nanosystémes (UMI-LN2 3463), Université de Sherbrooke—CNRS—INSA de Lyon-ECL-UJF-CPE Lyon, Institut Interdisciplinaire d’Innovation Technologique (Canada); Drouin, D. [Avenue de I’environnement, Université de Monastir, Laboratoire de Micro électronique et Instrumentation (LR13ES12), Faculté des Sciences de Monastir (Tunisia); Souifi, A. [Institut des Nanotechnologies de Lyon—site INSA de Lyon, UMR CNRS 5270 (France)

    2016-09-15

    In this paper we present the trapping of photogenerated charge carriers for 300 s resulted by their direct exchange under illumination between a few silicon nanocrystals (ncs-Si) embedded in an oxide tunnel layer (SiO{sub x} = 1.5) and the tunnel oxide traps levels for a single electron photodetector (photo-SET or nanopixel). At first place, the presence of a photocurrent limited in the inversion zone under illumination in the I–V curves confirms the creation of a pair electron/hole (e–h) at high energy. This photogenerated charge carriers can be trapped in the oxide. Using the capacitance-voltage under illumination (the photo-CV measurements) we show a hysteresis chargement limited in the inversion area, indicating that the photo-generated charge carriers are stored at traps levels at the interface and within ncs-Si. The direct exchange of the photogenerated charge carriers between the interface traps levels and the ncs-Si contributed on the photomemory effect for 300 s for our nanopixel at room temperature.

  11. A direct sampling method to an inverse medium scattering problem

    KAUST Repository

    Ito, Kazufumi; Jin, Bangti; Zou, Jun

    2012-01-01

    In this work we present a novel sampling method for time harmonic inverse medium scattering problems. It provides a simple tool to directly estimate the shape of the unknown scatterers (inhomogeneous media), and it is applicable even when

  12. Microscopic description of elastic and direct inelastic nucleon scattering off spherical nuclei

    Science.gov (United States)

    Dupuis, M.

    2017-05-01

    The purpose of this study is to improve the modeling of nucleon direct inelastic scattering to the continuum using a microscopic and parameter-free approach. For the first time, direct elastic scattering, inelastic scattering to discrete excitations and to the continuum are described within a microscopic approach without adjustable parameters. Proton scattering off 90Zr and 208Pb are the reactions used as test case examples of the calculations. The model uses the Melbourne g-matrix and the Random Phase Approximation description of nuclear states, implemented with the Gogny D1S interaction. The relevant optical and transition potentials in a finite nucleus are calculated within a local density approximation. As we use the nuclear matter approach we limit our study to incident energies above 40 MeV. We first checked that this model provides an accurate account of measured cross sections for elastic scattering and inelastic scattering to discrete states. It is then applied to the direct inelastic scattering to the continuum considering all one-phonon excitations predicted within the RPA approach. This accounts for a part of the direct pre-equilibrium emission, often labeled as the one-step direct process in quantum-based approaches. Our approach provides a very accurate description of angular distributions where the one-step process dominates. The impact of collective excitations is shown to be non negligible for energy transfer to the target up to 20 MeV, decreasing as the incident energy increases. For incident energies above 80 MeV, our modeling provides a good account of direct proton emission for an energy transfer to the target up to 30 MeV. However, the proton emission we predict underestimates the measured cross sections for incident energies below 80 MeV. We compare our prediction to those of the phenomenological exciton model to help interpret this result. Directions that may improve our modeling are discussed.

  13. Directional Dipole Model for Subsurface Scattering

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Hachisuka, Toshiya; Kjeldsen, Thomas Kim

    2014-01-01

    Rendering translucent materials using Monte Carlo ray tracing is computationally expensive due to a large number of subsurface scattering events. Faster approaches are based on analytical models derived from diffusion theory. While such analytical models are efficient, they miss out on some...... point source diffusion. A ray source corresponds better to the light that refracts through the surface of a translucent material. Using this ray source, we are able to take the direction of the incident light ray and the direction toward the point of emergence into account. We use a dipole construction...

  14. Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor

    International Nuclear Information System (INIS)

    Jiang Zhi; Zhuang Yi-Qi; Li Cong; Wang Ping; Liu Yu-Qi

    2016-01-01

    Trap-assisted tunneling (TAT) has attracted more and more attention, because it seriously affects the sub-threshold characteristic of tunnel field-effect transistor (TFET). In this paper, we assess subthreshold performance of double gate TFET (DG-TFET) through a band-to-band tunneling (BTBT) model, including phonon-assisted scattering and acoustic surface phonons scattering. Interface state density profile (D it ) and the trap level are included in the simulation to analyze their effects on TAT current and the mechanism of gate leakage current. (paper)

  15. Direct computation of scattering matrices for general quantum graphs

    International Nuclear Information System (INIS)

    Caudrelier, V.; Ragoucy, E.

    2010-01-01

    We present a direct and simple method for the computation of the total scattering matrix of an arbitrary finite noncompact connected quantum graph given its metric structure and local scattering data at each vertex. The method is inspired by the formalism of Reflection-Transmission algebras and quantum field theory on graphs though the results hold independently of this formalism. It yields a simple and direct algebraic derivation of the formula for the total scattering and has a number of advantages compared to existing recursive methods. The case of loops (or tadpoles) is easily incorporated in our method. This provides an extension of recent similar results obtained in a completely different way in the context of abstract graph theory. It also allows us to discuss briefly the inverse scattering problem in the presence of loops using an explicit example to show that the solution is not unique in general. On top of being conceptually very easy, the computational advantage of the method is illustrated on two examples of 'three-dimensional' graphs (tetrahedron and cube) for which other methods are rather heavy or even impractical.

  16. Single Particle Differentiation through 2D Optical Fiber Trapping and Back-Scattered Signal Statistical Analysis: An Exploratory Approach.

    Science.gov (United States)

    Paiva, Joana S; Ribeiro, Rita S R; Cunha, João P S; Rosa, Carla C; Jorge, Pedro A S

    2018-02-27

    Recent trends on microbiology point out the urge to develop optical micro-tools with multifunctionalities such as simultaneous manipulation and sensing. Considering that miniaturization has been recognized as one of the most important paradigms of emerging sensing biotechnologies, optical fiber tools, including Optical Fiber Tweezers (OFTs), are suitable candidates for developing multifunctional small sensors for Medicine and Biology. OFTs are flexible and versatile optotools based on fibers with one extremity patterned to form a micro-lens. These are able to focus laser beams and exert forces onto microparticles strong enough (piconewtons) to trap and manipulate them. In this paper, through an exploratory analysis of a 45 features set, including time and frequency-domain parameters of the back-scattered signal of particles trapped by a polymeric lens, we created a novel single feature able to differentiate synthetic particles (PMMA and Polystyrene) from living yeasts cells. This single statistical feature can be useful for the development of label-free hybrid optical fiber sensors with applications in infectious diseases detection or cells sorting. It can also contribute, by revealing the most significant information that can be extracted from the scattered signal, to the development of a simpler method for particles characterization (in terms of composition, heterogeneity degree) than existent technologies.

  17. Microscopic description of elastic and direct inelastic nucleon scattering off spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis, M. [CEA, DAM, DIF, Arpajon (France)

    2017-05-15

    The purpose of this study is to improve the modeling of nucleon direct inelastic scattering to the continuum using a microscopic and parameter-free approach. For the first time, direct elastic scattering, inelastic scattering to discrete excitations and to the continuum are described within a microscopic approach without adjustable parameters. Proton scattering off {sup 90}Zr and {sup 208}Pb are the reactions used as test case examples of the calculations. The model uses the Melbourne g-matrix and the Random Phase Approximation description of nuclear states, implemented with the Gogny D1S interaction. The relevant optical and transition potentials in a finite nucleus are calculated within a local density approximation. As we use the nuclear matter approach we limit our study to incident energies above 40 MeV. We first checked that this model provides an accurate account of measured cross sections for elastic scattering and inelastic scattering to discrete states. It is then applied to the direct inelastic scattering to the continuum considering all one-phonon excitations predicted within the RPA approach. This accounts for a part of the direct pre-equilibrium emission, often labeled as the one-step direct process in quantum-based approaches. Our approach provides a very accurate description of angular distributions where the one-step process dominates. The impact of collective excitations is shown to be non negligible for energy transfer to the target up to 20 MeV, decreasing as the incident energy increases. For incident energies above 80 MeV, our modeling provides a good account of direct proton emission for an energy transfer to the target up to 30 MeV. However, the proton emission we predict underestimates the measured cross sections for incident energies below 80 MeV. We compare our prediction to those of the phenomenological exciton model to help interpret this result. Directions that may improve our modeling are discussed. (orig.)

  18. Hydrogen trapping by VC precipitates and structural defects in a high strength Fe–Mn–C steel studied by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Malard, B.; Remy, B.; Scott, C.; Deschamps, A.; Chêne, J.; Dieudonné, T.; Mathon, M.H.

    2012-01-01

    Highlights: ► SANS was used to study the interaction between H and a Fe–Mn–C steel containing V. ► No interaction between H and V in solid solution has been detected. ► A reversible interaction between H and structural defects has been measured. ► 5 ppm wt. of H can be trapped in the VC nanoprecipitates. - Abstract: The trapping of hydrogen by VC precipitates and structural defects in high strength Fe–Mn–C steel was studied by small angle neutron scattering. No interaction between H and V in solid solution has been detected but a significant interaction between H and structural defects introduced by plastic deformation has been measured. This last effect was reversible upon outgassing of the H. Moreover a significant interaction between H and VC precipitates has been measured; 5 ppm wt. of H could be trapped in the precipitates. This is consistent with the homogeneous trapping of H within the precipitates rather than at the precipitate/matrix interface.

  19. Experiment on direct nn scattering - The radiation-induced outgassing complication

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, S.L., E-mail: sstephen@gettysburg.edu [Gettysburg College, Gettysburg, PA 17325 (United States); Crawford, B.E. [Gettysburg College, Gettysburg, PA 17325 (United States); Furman, W.I.; Lychagin, E.V.; Muzichka, A.Yu.; Nekhaev, G.V.; Sharapov, E.I.; Shvetsov, V.N.; Strelkov, A.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Levakov, B.G.; Lyzhin, A.E.; Chernukhin, Yu.I. [Russian Federal Nuclear Center - All Russian Research Institute of Technical Physics, P.O. Box 245, 456770 Snezhinsk (Russian Federation); Howell, C.R. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Mitchell, G.E. [North Carolina State University, Raleigh, NC 27695-8202 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Tornow, W. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Showalter-Bucher, R.A. [Northeastern University, Boston, MA 02115 (United States)

    2012-12-01

    The first direct neutron-neutron scattering experiment using the YAGUAR pulsed reactor has yielded initial results. They show a unforeseen significant thermal neutron background as a result of radiation-induced desorption within the scattering chamber. Thermal neutrons are mostly scattering not from other neutrons but instead from the desorbed gas molecules. Analysis of the obtained neutron time-of-flight spectra suggests neutron scattering from H{sub 2} molecules. The presented desorption model agrees with our experimental value of the desorption yield {eta}{sub {gamma}}=0.02 molecules/gamma. Possible techniques to reduce the effect of the desorption background are presented.

  20. Femtosecond pulse-width dependent trapping and directional ejection dynamics of dielectric nanoparticles

    KAUST Repository

    Chiang, Weiyi; Usman, Anwar; Masuhara, Hiroshi

    2013-01-01

    the repulsive and attractive forces. We also show that the directional ejections occur only when the number of nanoparticles confined in the trapping site exceeds a definite threshold. We interpret our data by considering the formation of transient assembly

  1. Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor

    Science.gov (United States)

    Zhi, Jiang; Yi-Qi, Zhuang; Cong, Li; Ping, Wang; Yu-Qi, Liu

    2016-02-01

    Trap-assisted tunneling (TAT) has attracted more and more attention, because it seriously affects the sub-threshold characteristic of tunnel field-effect transistor (TFET). In this paper, we assess subthreshold performance of double gate TFET (DG-TFET) through a band-to-band tunneling (BTBT) model, including phonon-assisted scattering and acoustic surface phonons scattering. Interface state density profile (Dit) and the trap level are included in the simulation to analyze their effects on TAT current and the mechanism of gate leakage current. Project supported by the National Natural Science Foundation of China (Grant Nos. 61574109 and 61204092).

  2. Workshop report on new directions in x-ray scattering

    International Nuclear Information System (INIS)

    Brown, G.; Del Grande, N.K.; Fuoss, P.; Mallett, J.H.; Pratt, R.; Templeton, D.

    1987-01-01

    This report is a summary of the Workshop on New Directions in X-Ray Scattering held at the Asilomar Conference Center, Pacific Grove, California, April 2-5, 1985. The report primarily consists of the edited transcript of the final review session of the workshop, in which members of a panel summarized the proceedings. It is clear that we are close to achieving an accurate theory of scattering in independent particle approximation, but for edge regions, there is need to go beyond this approach. Much of what is experimentally interesting in scattering is occurring between the photoabsorption edge and the photoelectric threshold. Applications in condensed matter and biological and chemical material studies are expanding, exploiting higher intensity sources and faster time resolution as in magnetic scattering and surface studies. Storage rings are now conventional sources, and new high-intensity beam lines are under development; the free electron laser is one of the more speculative sources. Recent work in x-ray scattering has led to advances in x-ray optics, and conversely, advances in x-ray optics have benefitted our understanding of x-ray scattering

  3. Direct numerical reconstruction of conductivities in three dimensions using scattering transforms

    DEFF Research Database (Denmark)

    Bikowski, Jutta; Knudsen, Kim; Mueller, Jennifer L

    2011-01-01

    A direct three-dimensional EIT reconstruction algorithm based on complex geometrical optics solutions and a nonlinear scattering transform is presented and implemented for spherically symmetric conductivity distributions. The scattering transform is computed both with a Born approximation and from...

  4. Direct probing of electron and hole trapping into nano-floating-gate in organic field-effect transistor nonvolatile memories

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ze-Qun; Wang, Shun; Chen, Jian-Mei; Gao, Xu; Dong, Bin, E-mail: wangsd@suda.edu.cn, E-mail: chilf@suda.edu.cn, E-mail: bdong@suda.edu.cn; Chi, Li-Feng, E-mail: wangsd@suda.edu.cn, E-mail: chilf@suda.edu.cn, E-mail: bdong@suda.edu.cn; Wang, Sui-Dong, E-mail: wangsd@suda.edu.cn, E-mail: chilf@suda.edu.cn, E-mail: bdong@suda.edu.cn [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China)

    2015-03-23

    Electron and hole trapping into the nano-floating-gate of a pentacene-based organic field-effect transistor nonvolatile memory is directly probed by Kelvin probe force microscopy. The probing is straightforward and non-destructive. The measured surface potential change can quantitatively profile the charge trapping, and the surface characterization results are in good accord with the corresponding device behavior. Both electrons and holes can be trapped into the nano-floating-gate, with a preference of electron trapping than hole trapping. The trapped charge quantity has an approximately linear relation with the programming/erasing gate bias, indicating that the charge trapping in the device is a field-controlled process.

  5. Direct probing of electron and hole trapping into nano-floating-gate in organic field-effect transistor nonvolatile memories

    International Nuclear Information System (INIS)

    Cui, Ze-Qun; Wang, Shun; Chen, Jian-Mei; Gao, Xu; Dong, Bin; Chi, Li-Feng; Wang, Sui-Dong

    2015-01-01

    Electron and hole trapping into the nano-floating-gate of a pentacene-based organic field-effect transistor nonvolatile memory is directly probed by Kelvin probe force microscopy. The probing is straightforward and non-destructive. The measured surface potential change can quantitatively profile the charge trapping, and the surface characterization results are in good accord with the corresponding device behavior. Both electrons and holes can be trapped into the nano-floating-gate, with a preference of electron trapping than hole trapping. The trapped charge quantity has an approximately linear relation with the programming/erasing gate bias, indicating that the charge trapping in the device is a field-controlled process

  6. Onset and saturation of backward stimulated Raman scattering of laser in trapping regime in three spatial dimensions

    International Nuclear Information System (INIS)

    Yin, L.; Albright, B. J.; Rose, H. A.; Bowers, K. J.; Bergen, B.; Montgomery, D. S.; Kline, J. L.; Fernandez, J. C.

    2009-01-01

    A suite of three-dimensional (3D) VPIC[K. J. Bowers et al., Phys. Plasmas 15, 055703 (2008)] particle-in-cell simulations of backward stimulated Raman scattering (SRS) in inertial confinement fusion hohlraum plasma has been performed on the heterogeneous multicore supercomputer, Roadrunner, presently the world's most powerful supercomputer. These calculations reveal the complex nonlinear behavior of SRS and point to a new era of 'at scale' 3D modeling of SRS in solitary and multiple laser speckles. The physics governing nonlinear saturation of SRS in a laser speckle in 3D is consistent with that of prior two-dimensional (2D) studies [L. Yin et al., Phys. Rev. Lett. 99, 265004 (2007)], but with important differences arising from enhanced diffraction and side loss in 3D compared with 2D. In addition to wave front bowing of electron plasma waves (EPWs) due to trapped electron nonlinear frequency shift and amplitude-dependent damping, we find for the first time that EPW self-focusing, which evolved from trapped particle modulational instability [H. A. Rose and L. Yin, Phys. Plasmas 15, 042311 (2008)], also exhibits loss of angular coherence by formation of a filament necklace, a process not available in 2D. These processes in 2D and 3D increase the side-loss rate of trapped electrons, increase wave damping, decrease source coherence for backscattered light, and fundamentally limit how much backscatter can occur from a laser speckle. For both SRS onset and saturation, the nonlinear trapping induced physics is not captured in linear gain modeling of SRS. A simple metric is described for using single-speckle reflectivities obtained from VPIC simulations to infer the total reflectivity from the population of laser speckles of amplitude sufficient for significant trapping-induced nonlinearity to arise.

  7. Improved light trapping in polymer solar cells by light diffusion ink

    International Nuclear Information System (INIS)

    Chao, Yu-Chiang; Lin, Yun-Hsuan; Lin, Ching-Yi; Li, Husan-De; Zhan, Fu-Min; Huang, Yu-Zhang

    2014-01-01

    Light trapping is an important issue for solar cells to increase optical path length and optical absorption. In this work, a light trapping structure was realized for polymer solar cells by utilizing light diffusion ink which is conventionally used in display backlighting. The light scattering particles in the ink cause the deflection of light, and the number of these particles coated on a glass substrate determines the light transmission and scattering characteristics. It was observed that the short-circuit current density did not decrease with decreasing transmittance, but it increased to a highest value at an optimized transmittance. This behaviour is attributed to the trapping of scattered light in the photoactive layer. (paper)

  8. Paul Trapping of Radioactive 6He+ Ions and Direct Observation of Their β Decay

    International Nuclear Information System (INIS)

    Flechard, X.; Lienard, E.; Mery, A.; Rodriguez, D.; Ban, G.; Durand, D.; Duval, F.; Herbane, M.; Labalme, M.; Mauger, F.; Naviliat-Cuncic, O.; Velten, Ph.; Thomas, J. C.

    2008-01-01

    We demonstrate that abundant quantities of short-lived β unstable ions can be trapped in a novel transparent Paul trap and that their decay products can directly be detected in coincidence. Low energy 6 He + (807 ms half-life) ions were extracted from the SPIRAL source at GANIL, then decelerated, cooled, and bunched by means of the buffer gas cooling technique. More than 10 8 ions have been stored over a measuring period of six days, and about 10 5 decay coincidences between the beta particles and the 6 Li ++ recoiling ions have been recorded. The technique can be extended to other short-lived species, opening new possibilities for trap assisted decay experiments

  9. Particle levitation and laboratory scattering

    International Nuclear Information System (INIS)

    Reid, Jonathan P.

    2009-01-01

    Measurements of light scattering from aerosol particles can provide a non-intrusive in situ method for characterising particle size distributions, composition, refractive index, phase and morphology. When coupled with techniques for isolating single particles, considerable information on the evolution of the properties of a single particle can be gained during changes in environmental conditions or chemical processing. Electrostatic, acoustic and optical techniques have been developed over many decades for capturing and levitating single particles. In this review, we will focus on studies of particles in the Mie size regime and consider the complimentarity of electrostatic and optical techniques for levitating particles and elastic and inelastic light scattering methods for characterising particles. In particular, we will review the specific advantages of establishing a single-beam gradient force optical trap (optical tweezers) for manipulating single particles or arrays of particles. Recent developments in characterising the nature of the optical trap, in applying elastic and inelastic light scattering measurements for characterising trapped particles, and in manipulating particles will be considered.

  10. Directional Stand-off Detection of Fast Neutrons and Gammas Using Angular Scattering Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Vanier P. e.; Dioszegi, I.; Salwen, C.; Forman, L.

    2009-10-25

    We have investigated the response of a DoubleScatter Neutron Spectrometer (DSNS) for sources at long distances (gr than 200 meters). We find that an alternative method for analyzing double scatter data avoids some uncertainties introduced by amplitude measurements in plastic scintillators.Time of flight is used to discriminate between gamma and neutron events, and the kinematic distributions of scattering angles are assumed to apply. Non-relativistic neutrons are most likely to scatter at 45°, while gammas with energies greater than 2 MeV are most likely to be forward scattered. The distribution of scattering angles of fission neutrons arriving from a distant point source generates a 45° cone, which can be back-projected to give the source direction. At the same time, the distribution of Compton-scattered gammas has a maximum in the forward direction, and can be made narrower by selecting events that deposit minimal energy in the first scattering event. We have further determined that the shape of spontaneous fission neutron spectra at ranges gr than 110 m is still significantly different from thecosmic ray background.

  11. Particle trapping induced by the interplay between coherence and decoherence

    International Nuclear Information System (INIS)

    Yi Sangyong; Choi, Mahn-Soo; Kim, Sang Wook

    2009-01-01

    We propose a novel scheme to trap a particle based on a delicate interplay between coherence and decoherence. If the decoherence occurs as a particle is located in the scattering region and subsequently the appropriate destructive interference takes place, the particle can be trapped in the scattering area. We consider two possible experimental realizations of such trapping: a ring attached to a single lead and a ring attached to two leads. Our scheme has nothing to do with a quasi-bound state of the system, but has a close analogy with the weak localization phenomena in disordered conductors.

  12. Combining Single-Molecule Optical Trapping and Small-Angle X-Ray Scattering Measurements to Compute the Persistence Length of a Protein ER/K alpha-Helix

    DEFF Research Database (Denmark)

    Sivaramakrishnan, S.; Sung, J.; Ali, M.

    2009-01-01

    as a force transducer, rigid spacer, or flexible linker in proteins. In this study, we quantity this flexibility in terms of persistence length, namely the length scale over which it is rigid. We use single-molecule optical trapping and small-angle x-ray scattering, combined with Monte Carlo simulations...

  13. A microfluidic chip for direct and rapid trapping of white blood cells from whole blood

    Science.gov (United States)

    Chen, Jingdong; Chen, Di; Yuan, Tao; Xie, Yao; Chen, Xiang

    2013-01-01

    Blood analysis plays a major role in medical and science applications and white blood cells (WBCs) are an important target of analysis. We proposed an integrated microfluidic chip for direct and rapid trapping WBCs from whole blood. The microfluidic chip consists of two basic functional units: a winding channel to mix and arrays of two-layer trapping structures to trap WBCs. Red blood cells (RBCs) were eliminated through moving the winding channel and then WBCs were trapped by the arrays of trapping structures. We fabricated the PDMS (polydimethylsiloxane) chip using soft lithography and determined the critical flow velocities of tartrazine and brilliant blue water mixing and whole blood and red blood cell lysis buffer mixing in the winding channel. They are 0.25 μl/min and 0.05 μl/min, respectively. The critical flow velocity of the whole blood and red blood cell lysis buffer is lower due to larger volume of the RBCs and higher kinematic viscosity of the whole blood. The time taken for complete lysis of whole blood was about 85 s under the flow velocity 0.05 μl/min. The RBCs were lysed completely by mixing and the WBCs were trapped by the trapping structures. The chip trapped about 2.0 × 103 from 3.3 × 103 WBCs. PMID:24404026

  14. An optical trap for relativistic plasma

    International Nuclear Information System (INIS)

    Zhang Ping; Saleh, Ned; Chen Shouyuan; Sheng Zhengming; Umstadter, Donald

    2003-01-01

    The first optical trap capable of confining relativistic electrons, with kinetic energy ≤350 keV was created by the interference of spatially and temporally overlapping terawatt power, 400 fs duration laser pulses (≤2.4x10 18 W/cm 2 ) in plasma. Analysis and computer simulation predicted that the plasma density was greatly modulated, reaching a peak density up to 10 times the background density (n e /n 0 ∼10) at the interference minima. Associated with this charge displacement, a direct-current electrostatic field of strength of ∼2x10 11 eV/m was excited. These predictions were confirmed experimentally by Thomson and Raman scattering diagnostics. Also confirmed were predictions that the electron density grating acted as a multi-layer mirror to transfer energy between the crossed laser beams, resulting in the power of the weaker laser beam being nearly 50% increased. Furthermore, it was predicted that the optical trap acted to heat electrons, increasing their temperature by two orders of magnitude. The experimental results showed that the number of high energy electrons accelerated along the direction of one of the laser beams was enhanced by a factor of 3 and electron temperature was increased ∼100 keV as compared with single-beam illumination

  15. Design Study for Direction Variable Compton Scattering Gamma Ray

    Science.gov (United States)

    Kii, T.; Omer, M.; Negm, H.; Choi, Y. W.; Kinjo, R.; Yoshida, K.; Konstantin, T.; Kimura, N.; Ishida, K.; Imon, H.; Shibata, M.; Shimahashi, K.; Komai, T.; Okumura, K.; Zen, H.; Masuda, K.; Hori, T.; Ohgaki, H.

    2013-03-01

    A monochromatic gamma ray beam is attractive for isotope-specific material/medical imaging or non-destructive inspection. A laser Compton scattering (LCS) gamma ray source which is based on the backward Compton scattering of laser light on high-energy electrons can generate energy variable quasi-monochromatic gamma ray. Due to the principle of the LCS gamma ray, the direction of the gamma beam is limited to the direction of the high-energy electrons. Then the target object is placed on the beam axis, and is usually moved if spatial scanning is required. In this work, we proposed an electron beam transport system consisting of four bending magnets which can stick the collision point and control the electron beam direction, and a laser system consisting of a spheroidal mirror and a parabolic mirror which can also stick the collision point. Then the collision point can be placed on one focus of the spheroid. Thus gamma ray direction and collision angle between the electron beam and the laser beam can be easily controlled. As the results, travelling direction of the LCS gamma ray can be controlled under the limitation of the beam transport system, energy of the gamma ray can be controlled by controlling incident angle of the colliding beams, and energy spread can be controlled by changing the divergence of the laser beam.

  16. Saturation of backward stimulated scattering of laser in kinetic regime: Wavefront bowing, trapped particle modulational instability, and trapped particle self-focusing of plasma waves

    International Nuclear Information System (INIS)

    Yin, L.; Albright, B. J.; Bowers, K. J.; Daughton, W.; Rose, H. A.

    2008-01-01

    Backward stimulated Raman and Brillouin scattering (SRS and SBS) of laser are examined in the kinetic regime using particle-in-cell simulations. The SRS reflectivity measured as a function of the laser intensity in a single hot spot from two-dimensional (2D) simulations shows a sharp onset at a threshold laser intensity and a saturated level at higher intensities, as obtained previously in Trident experiments [D. S. Montgomery et al., Phys. Plasmas 9, 2311 (2002)]. In these simulations, wavefront bowing of electron plasma waves (ion acoustic waves) due to the trapped particle nonlinear frequency shift, which increases with laser intensity, is observed in the SRS (SBS) regime for the first time. Self-focusing from trapped particle modulational instability (TPMI) [H. A. Rose, Phys. Plasmas 12, 12318 (2005)] is shown to occur in both two- and three-dimensional SRS simulations. The key physics underlying nonlinear saturation of SRS is identified as a combination of wavefront bowing, TPMI, and self-focusing of electron plasma waves. The wavefront bowing marks the beginning of SRS saturation and self-focusing alone is sufficient to terminate the SRS reflectivity, both effects resulting from cancellation of the source term for SRS and from greatly increased dissipation rate of the electron plasm waves. Ion acoustic wave bowing also contributes to the SBS saturation. Velocity diffusion by transverse modes and rapid loss of hot electrons in regions of small transverse extent formed from self-focusing lead to dissipation of the wave energy and an increase in the Landau damping rate in spite of strong electron trapping that reduces Landau damping initially. The ranges of wavelength and growth rate associated with transverse breakup of the electron-plasma wave are also examined in 2D speckle simulations as well as in 2D periodic systems from Bernstein-Greene-Kruskal equilibrium and are compared with theory predictions

  17. Direct Detection of Polarized, Scattered Light from Exoplanets

    Science.gov (United States)

    Laughlin, Gregory

    We propose to radically advance the state of exoplanet characterization, which lags dramatically behind exoplanet discovery. We propose to directly detect scattered light from the atmospheres of close-in, highly eccentric, and extended/non-spherical exoplanets and thereby determine the following: orbital inclination (and therefore masses free of the M sin i mass ambiguity), geometric albedo, presence or lack of hazes and cloud layers, and scattering particle size and composition. Such measurements are crucial to the understanding of exoplanet atmospheres, because observations with NASA s Hubble, Spitzer, and Kepler space telescopes present the following questions: 1) Do exoplanets have highly reflective haze layers? 2) How does the upper atmospheric composition differ between exoplanets with and without thermal inversions? 3) What are the optical manifestations of the extreme heating of highly eccentric exoplanets? 4) Are the atmospheres of certain exoplanets truly escaping their Roche lobes? Using the POLISH2 polarimeter developed by the Postdoctoral Associate (Wiktorowicz) for the Lick 3-m telescope, we propose to monitor the linear polarization state of exoplanet host stars at the part per million level. POLISH2 consistently delivers nearly photon shot noise limited measurements with this precision. In addition, the simultaneous full-Stokes measurements of POLISH2 and the equatorial mount of the Lick 3-m telescope ensure that systematic effects are mitigated to the part per million level. Indeed, we find the accuracy of the POLISH2 polarimeter to be 0.1 parts per million. This instrument and telescope represent the highest precision polarimeter in the world for exoplanet research. We present potential detection of polarized, scattered light from the HD 189733b, Tau Boo b, and WASP-12b exoplanets. We propose to observe hot Jupiters on circular orbits, highly eccentric exoplanets, exoplanets with extended or non-spherical scattering surfaces, and 55 Cnc e, the

  18. Signatures of Earth-scattering in the direct detection of Dark Matter

    DEFF Research Database (Denmark)

    Kavanagh, Bradley J.; Catena, Riccardo; Kouvaris, Chris

    2017-01-01

    Direct detection experiments search for the interactions of Dark Matter (DM) particles with nuclei in terrestrial detectors. But if these interactions are sufficiently strong, DM particles may scatter in the Earth, affecting their distribution in the lab. We present a new analytic calculation...... of this 'Earth-scattering' effect in the regime where DM particles scatter at most once before reaching the detector. We perform the calculation self-consistently, taking into account not only those particles which are scattered away from the detector, but also those particles which are deflected towards...... the detector. Taking into account a realistic model of the Earth and allowing for a range of DM-nucleon interactions, we present the EarthShadow code, which we make publicly available, for calculating the DM velocity distribution after Earth-scattering. Focusing on low-mass DM, we find that Earth...

  19. Measurement of Rank and Other Properties of Direct and Scattered Signals

    Directory of Open Access Journals (Sweden)

    Svante Björklund

    2016-01-01

    Full Text Available We have designed an experiment for low-cost indoor measurements of rank and other properties of direct and scattered signals with radar interference suppression in mind. The signal rank is important also in many other applications, for example, DOA (Direction of Arrival estimation, estimation of the number of and location of transmitters in electronic warfare, and increasing the capacity in wireless communications. In real radar applications, such measurements can be very expensive, for example, involving airborne radars with array antennas. We have performed the measurements in an anechoic chamber with several transmitters, a receiving array antenna, and a moving reflector. Our experiment takes several aspects into account: transmitted signals with different correlation, decorrelation of the signals during the acquisition interval, covariance matrix estimation, noise eigenvalue spread, calibration, near-field compensation, scattering in a rough surface, and good control of the influencing factors. With our measurements we have observed rank, DOA spectrum, and eigenpatterns of direct and scattered signals. The agreement of our measured properties with theoretic and simulated results in the literature shows that our experiment is realistic and sound. The detailed description of our experiment could serve as help for conducting other well-controlled experiments.

  20. MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES

    International Nuclear Information System (INIS)

    Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry; Ford, K. E. Saavik

    2016-01-01

    Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign, trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R g , where R g  = 2GM/c 2 is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations

  1. Trapping mechanisms in scattering of beams at grazing incidence from crystals

    International Nuclear Information System (INIS)

    Smith, R.; O'Connor, D.J.; Felsobuki, E.I. von-Nagy

    1993-01-01

    The trajectories of grazing incidence, 1 keV beams of Si incident on Cu{111} are investigated by means of molecular dynamics (MD) simulations and the conditions under which atoms in the beam can be trapped in the surface binding potential are investigated. The binding potentials for the Cu-Si dimers are calculated using ab initio methods for the neutral, anion and cation. These calculations estimate the binding potential and equilibrium separation for the potential used for the MD calculations. It is found that at 4 o incidence to the Cu{111} face, no trapping occurs for a perfect crystal surface undergoing no thermal vibrations. Trapping can occur for the Si neutral if thermal vibrations are included in the model. Trapping is predicted to occur near steps on the Cu{111} face but these are fairly rare events for the Si - particles. (Author)

  2. Theory of direct scattering of neutral and charged atoms

    Science.gov (United States)

    Franco, V.

    1979-01-01

    The theory for direct elastic and inelastic collisions between composite atomic systems formulated within the framework of the Glauber approximation is presented. It is shown that the phase-shift function is the sum of a point Coulomb contribution and of an expression in terms of the known electron-hydrogen-atom and proton-hydrogen-atom phase shift function. The scattering amplitude is reexpressed, the pure Coulomb scattering in the case of elastic collisions between ions is isolated, and the exact optical profile function is approximated by a first-order expansion in Glauber theory which takes into account some multiple collisions. The approximate optical profile function terms corresponding to interactions involving one and two electrons are obtained in forms of Meijer G functions and as a one-dimensional integral, and for collisions involving one or two neutral atoms, the scattering amplitude is further reduced to a simple closed-form expression.

  3. Advanced methods for light trapping in optically thin silicon solar cells

    Science.gov (United States)

    Nagel, James Richard

    2011-12-01

    The field of light trapping is the study of how best to absorb light in a thin film of material when most light either reflects away at the surface or transmits straight through to the other side. This has tremendous application to the field of photovoltaics where thin silicon films can be manufactured cheaply, but also fail to capture all of the available photons in the solar spectrum. Advancements in light trapping therefore bring us closer to the day when photovoltaic devices may reach grid parity with traditional fossil fuels on the electrical energy market. This dissertation advances our understanding of light trapping by first modeling the effects of loss in planar dielectric waveguides. The mathematical framework developed here can be used to model any arbitrary three-layer structure with mixed gain or loss and then extract the total field solution for the guided modes. It is found that lossy waveguides possess a greater number of eigenmodes than their lossless counterparts, and that these "loss guided" modes attenuate much more rapidly than conventional modes. Another contribution from this dissertation is the exploration of light trapping through the use of dielectric nanospheres embedded directly within the active layer of a thin silicon film. The primary benefit to this approach is that the device can utilize a surface nitride layer serving as an antireflective coating while still retaining the benefits of light trapping within the film. The end result is that light trapping and light injection are effectively decoupled from each other and may be independently optimized within a single photovoltaic device. The final contribution from this work is a direct numerical comparison between multiple light trapping schemes. This allows us to quantify the relative performances of various design techniques against one another and objectively determine which ideas tend to capture the most light. Using numerical simulation, this work directly compares the absorption

  4. Direct imaging of turbid media using long-time back-scattered photons, a numerical study

    International Nuclear Information System (INIS)

    Boulanger, Joan; Liu, Fengshan; El Akel, Azad; Charette, Andre

    2006-01-01

    Direct imaging is a convenient way to obtain information on the interior of a semi-transparent turbid material by non-invasive probing using laser beams. The major difficulty is linked to scattering which scrambles the directional information coming from the laser beam. It is found in this paper that the long-term multiple-scattered reflected photons may provide structural information on the inside of a material, which offers an interesting alternative to using information only from un-scattered or least-scattered photons as obtained from current direct imaging set-ups for thin media. Based on some observations on a non-homogeneous three layered 1-D slab irradiated by a laser pulse, a direct probing methodology making use of the long-term back-scattered photons is illustrated to recover inclusions positions in a turbid 2-D medium. First, the numerical model is presented. Second, an extended parametrical study is conducted on 1-D homogeneous and non-homogeneous slabs with different laser pulse durations. It is found that the reflected asymptotic logarithmic slope carries information about the presence of the inclusion and that short laser pulses are not necessary since only the decaying parts of the remanent optical signature is important. Longer laser pulses allow a higher level of energy injection and signal to noise ratio. Third, those observations are used for the probing of a 2-D non-homogeneous phantom. (author)

  5. Multi-frequency direct sampling method in inverse scattering problem

    Science.gov (United States)

    Kang, Sangwoo; Lambert, Marc; Park, Won-Kwang

    2017-10-01

    We consider the direct sampling method (DSM) for the two-dimensional inverse scattering problem. Although DSM is fast, stable, and effective, some phenomena remain unexplained by the existing results. We show that the imaging function of the direct sampling method can be expressed by a Bessel function of order zero. We also clarify the previously unexplained imaging phenomena and suggest multi-frequency DSM to overcome traditional DSM. Our method is evaluated in simulation studies using both single and multiple frequencies.

  6. Enhancement of phase space density by increasing trap anisotropy in a magneto-optical trap with a large number of atoms

    International Nuclear Information System (INIS)

    Vengalattore, M.; Conroy, R.S.; Prentiss, M.G.

    2004-01-01

    The phase space density of dense, cylindrical clouds of atoms in a 2D magneto-optic trap is investigated. For a large number of trapped atoms (>10 8 ), the density of a spherical cloud is limited by photon reabsorption. However, as the atom cloud is deformed to reduce the radial optical density, the temperature of the atoms decreases due to the suppression of multiple scattering leading to an increase in the phase space density. A density of 2x10 -4 has been achieved in a magneto-optic trap containing 2x10 8 atoms

  7. Efficient optical trapping of CdTe quantum dots by femtosecond laser pulses

    KAUST Repository

    Chiang, Weiyi

    2014-12-11

    The development in optical trapping and manipulation has been showing rapid progress, most of it is in the small particle sizes in nanometer scales, substituting the conventional continuous-wave lasers with high-repetition-rate ultrashort laser pulse train and nonlinear optical effects. Here, we evaluate two-photon absorption in optical trapping of 2.7 nm-sized CdTe quantum dots (QDs) with high-repetition-rate femtosecond pulse train by probing laser intensity dependence of both Rayleigh scattering image and the two-photon-induced luminescence spectrum of the optically trapped QDs. The Rayleigh scattering imaging indicates that the two-photon absorption (TPA) process enhances trapping ability of the QDs. Similarly, a nonlinear increase of the two-photon-induced luminescence with the incident laser intensity fairly indicates the existence of the TPA process.

  8. Scattering resonances in a degenerate Fermi gas

    DEFF Research Database (Denmark)

    Challis, Katharine; Nygaard, Nicolai; Mølmer, Klaus

    2009-01-01

    We consider elastic single-particle scattering from a one-dimensional trapped two-component superfluid Fermi gas when the incoming projectile particle is identical to one of the confined species. Our theoretical treatment is based on the Hartree-Fock ground state of the trapped gas...

  9. Progress on calculation of direct inelastic scattering cross section of neutron

    Energy Technology Data Exchange (ETDEWEB)

    Zhenpeng, Chen [Qinghua Univ., Beijing, BJ (China). Dept. of Physics

    1996-06-01

    For n+ {sup 238}U inelastic scattering cross, there exist discrepancies among the available evaluations in various libraries. This is partly duo to the difference of direct inelastic scattering cross section calculated with coupled channel optical model (CCOM). The research on the level frame used in CCOM calculation, the research on used parameters of spherical optical model in CCOM calculation and the research on the amplitude of octupole phonon {beta}{sub 3} were presented. (2 figs.).

  10. Hot electron attenuation of direct and scattered carriers across an epitaxial Schottky interface

    NARCIS (Netherlands)

    Parui, S.; Klandermans, P. S.; Venkatesan, S.; Scheu, C.; Banerjee, T.

    2013-01-01

    Hot electron transport of direct and scattered carriers across an epitaxial NiSi2/n-Si(111) interface, for different NiSi2 thickness, is studied using ballistic electron emission microscopy (BEEM). We find the BEEM transmission for the scattered hot electrons in NiSi2 to be significantly lower than

  11. Optical trapping and manipulation of Mie particles with Airy beam

    International Nuclear Information System (INIS)

    Zhao, Ziyu; Zang, Weiping; Tian, Jianguo

    2016-01-01

    In this paper we calculate the radiation forces and moving trajectories of Mie particles induced by 1D Airy beams using the plane wave spectrum method and arbitrary beam theory. Numerical results show that both the transverse and the longitudinal radiation forces are deeply dependent on the relative refractive index, radii and positions of the scattering particles illuminated by the Airy beam. Due to the radiation forces, Mie particles with different radii and initial positions can be dragged into the nearest main intensity lobes, and move along parabolic trajectories in the direction of the Poynting vector. At the ends of these trajectories, in the presence of Brownian force, the trapped scattering particles show irregular Brownian movement near their equilibrium positions. This characteristic property of Airy beams enables optical sorting to be used more easily in the colloidal and biological sciences. (paper)

  12. Nonlinear Scattering of VLF Waves in the Radiation Belts

    Science.gov (United States)

    Crabtree, Chris; Rudakov, Leonid; Ganguli, Guru; Mithaiwala, Manish

    2014-10-01

    Electromagnetic VLF waves, such as whistler mode waves, control the lifetime of trapped electrons in the radiation belts by pitch-angle scattering. Since the pitch-angle scattering rate is a strong function of the wave properties, a solid understanding of VLF wave sources and propagation in the magnetosphere is critical to accurately calculate electron lifetimes. Nonlinear scattering (Nonlinear Landau Damping) is a mechanism that can strongly alter VLF wave propagation [Ganguli et al. 2010], primarily by altering the direction of propagation, and has not been accounted for in previous models of radiation belt dynamics. Laboratory results have confirmed the dramatic change in propagation direction when the pump wave has sufficient amplitude to exceed the nonlinear threshold [Tejero et al. 2014]. Recent results show that the threshold for nonlinear scattering can often be met by naturally occurring VLF waves in the magnetosphere, with wave magnetic fields of the order of 50-100 pT inside the plasmapause. Nonlinear scattering can then dramatically alter the macroscopic dynamics of waves in the radiation belts leading to the formation of a long-lasting wave-cavity [Crabtree et al. 2012] and, when amplification is present, a multi-pass amplifier [Ganguli et al. 2012]. By considering these effects, the lifetimes of electrons can be dramatically reduced. This work is supported by the Naval Research Laboratory base program.

  13. MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry; Ford, K. E. Saavik [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, NY 10024 (United States)

    2016-03-10

    Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign, trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R{sub g}, where R{sub g} = 2GM/c{sup 2} is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations.

  14. Developing optical traps for ultra-sensitive analysis

    International Nuclear Information System (INIS)

    Zhao, X.; Vieira, D.J.; Guckert, R.; Crane, S.

    1998-01-01

    The authors describe the coupling of a magneto-optical trap to a mass separator for the ultra-sensitive detection of selected radioactive species. As a proof of principle test, they have demonstrated the trapping of ∼ 6 million 82 Rb (t 1/2 = 75 s) atoms using an ion implantation and heated foil release method for introducing the sample into a trapping cell with minimal gas loading. Gamma-ray counting techniques were used to determine the efficiencies of each step in the process. By far the weakest step in the process is the efficiency of the optical trap itself (0.3%). Further improvements in the quality of the nonstick dryfilm coating on the inside of the trapping cell and the possible use of larger diameter laser beams are indicated. In the presence of a large background of scattered light, this initial work achieved a detection sensitivity of ∼ 4,000 trapped atoms. Improved detection schemes using a pulsed trap and gated photon detection method are outlined. Application of this technology to the areas of environmental monitoring and nuclear proliferation are foreseen

  15. Boson-fermion demixing in a cloud of lithium atoms in a pancake trap

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Vignolo, P.; Tosi, M.P.

    2004-01-01

    We evaluate the equilibrium state of a mixture of 7 Li and 6 Li atoms with repulsive interactions, confined inside a pancake-shaped trap under conditions such that the thickness of the bosonic and fermionic clouds is approaching the values of the s-wave scattering lengths. In this regime the effective couplings depend on the axial confinement and full demixing can become observable by merely squeezing the trap, without enhancing the scattering lengths through recourse to a Feshbach resonance

  16. Models of direct reactions and quantum pre-equilibrium for nucleon scattering on spherical nuclei

    International Nuclear Information System (INIS)

    Dupuis, M.

    2006-01-01

    When a nucleon collides with a target nucleus, several reactions may occur: elastic and inelastic scatterings, charge exchange... In order to describe these reactions, different models are involved: the direct reactions, pre-equilibrium and compound nucleus models. Our goal is to study, within a quantum framework and without any adjustable parameter, the direct and pre-equilibrium reactions for nucleons scatterings off double closed-shell nuclei. We first consider direct reactions: we are studying nucleon scattering with the Melbourne G-matrix, which represents the interaction between the projectile and one target nucleon, and with random phase approximation (RPA) wave functions which describe all target states. This is a fully microscopic approach since no adjustable parameters are involved. A second part is dedicated to the study of nucleon inelastic scattering for large energy transfer which necessarily involves the pre-equilibrium mechanism. Several models have been developed in the past to deal with pre-equilibrium. They start from the Born expansion of the transition amplitude which is associated to the inelastic process and they use several approximations which have not yet been tested. We have achieved some comparisons between second order cross sections which have been calculated with and without these approximations. Our results allow us to criticize some of these approximations and give several directions to improve the quantum pre-equilibrium models. (author)

  17. Optical resonator for a standing wave dipole trap for fermionic lithium atoms

    International Nuclear Information System (INIS)

    Elsaesser, T.

    2000-01-01

    This thesis reports on the the construction of an optical resonator for a new resonator dipole trap to store the fermionic 6 Li-isotope and to investigate its scattering properties. It was demonstrated that the resonator enhances the energy density of a (1064 nm and 40 mW) laser beam by a factor of more than 100. A fused silica vacuum cell is positioned inside the resonator under Brewster's angle. The losses of the resonator depend mainly on the optical quality of the cell. The expected trap depth of the dipole trap is 200 μK and the photon scattering rate is expected to be about 0.4 s -1 . The resonator is stabilized by means of a polarization spectroscopy method. Due to high trap frequencies, which are produced by the tight enclosure of the standing wave in the resonator, the axial motion must be quantized. A simple model to describe this quantization has been developed. A magneto-optical trap, which serves as a source of cold lithium atoms, was put in operation. (orig.)

  18. Optical trapping of carbon nanotubes and graphene

    Directory of Open Access Journals (Sweden)

    S. Vasi

    2011-09-01

    Full Text Available We study optical trapping of nanotubes and graphene. We extract the distribution of both centre-of-mass and angular fluctuations from three-dimensional tracking of these optically trapped carbon nanostructures. The optical force and torque constants are measured from auto and cross-correlation of the tracking signals. We demonstrate that nanotubes enable nanometer spatial, and femto-Newton force resolution in photonic force microscopy by accurately measuring the radiation pressure in a double frequency optical tweezers. Finally, we integrate optical trapping with Raman and photoluminescence spectroscopy demonstrating the use of a Raman and photoluminescence tweezers by investigating the spectroscopy of nanotubes and graphene flakes in solution. Experimental results are compared with calculations based on electromagnetic scattering theory.

  19. Condensate growth in trapped Bose gates

    NARCIS (Netherlands)

    Bijlsma, M.J.; Zaremba, E.; Stoof, H.T.C.

    2000-01-01

    We study the dynamics of condensate fromation in an inhomogeneous trapped Bose gas with a positive interatomic scattering length. We take into account both the nonequilibrium kinetics of the thermal cloud and the Hartree-Fock mean-field efects in the condensed and the noncondensed parts of the gas.

  20. Condensate growth in trapped Bose gases

    NARCIS (Netherlands)

    Bijlsma, M.J.; Zaremba, E.; Stoof, H.T.C.

    2000-01-01

    We study the dynamics of condensate formation in an inhomogeneous trapped Bose gas with a positive interatomic scattering length. We take into account both the nonequilibrium kinetics of the thermal cloud and the Hartree-Fock mean-field effects in the condensed and the noncondensed parts of the gas.

  1. Direct observation and theory of trajectory-dependent electronic energy losses in medium-energy ion scattering.

    Science.gov (United States)

    Hentz, A; Parkinson, G S; Quinn, P D; Muñoz-Márquez, M A; Woodruff, D P; Grande, P L; Schiwietz, G; Bailey, P; Noakes, T C Q

    2009-03-06

    The energy spectrum associated with scattering of 100 keV H+ ions from the outermost few atomic layers of Cu(111) in different scattering geometries provides direct evidence of trajectory-dependent electronic energy loss. Theoretical simulations, combining standard Monte Carlo calculations of the elastic scattering trajectories with coupled-channel calculations to describe inner-shell ionization and excitation as a function of impact parameter, reproduce the effects well and provide a means for far more complete analysis of medium-energy ion scattering data.

  2. Tunable Mobility in Double-Gated MoTe2 Field-Effect Transistor: Effect of Coulomb Screening and Trap Sites.

    Science.gov (United States)

    Ji, Hyunjin; Joo, Min-Kyu; Yi, Hojoon; Choi, Homin; Gul, Hamza Zad; Ghimire, Mohan Kumar; Lim, Seong Chu

    2017-08-30

    There is a general consensus that the carrier mobility in a field-effect transistor (FET) made of semiconducting transition-metal dichalcogenides (s-TMDs) is severely degraded by the trapping/detrapping and Coulomb scattering of carriers by ionic charges in the gate oxides. Using a double-gated (DG) MoTe 2 FET, we modulated and enhanced the carrier mobility by adjusting the top- and bottom-gate biases. The relevant mechanism for mobility tuning in this device was explored using static DC and low-frequency (LF) noise characterizations. In the investigations, LF-noise analysis revealed that for a strong back-gate bias the Coulomb scattering of carriers by ionized traps in the gate dielectrics is strongly screened by accumulation charges. This significantly reduces the electrostatic scattering of channel carriers by the interface trap sites, resulting in increased mobility. The reduction of the number of effective trap sites also depends on the gate bias, implying that owing to the gate bias, the carriers are shifted inside the channel. Thus, the number of active trap sites decreases as the carriers are repelled from the interface by the gate bias. The gate-controlled Coulomb-scattering parameter and the trap-site density provide new handles for improving the carrier mobility in TMDs, in a fundamentally different way from dielectric screening observed in previous studies.

  3. Direct Experimental Evidence of Hole Trapping in Negative Bias Temperature Instability

    International Nuclear Information System (INIS)

    Ji Xiao-Li; Liao Yi-Ming; Yan Feng; Shi Yi; Zhang Guan; Guo Qiang

    2011-01-01

    Negative bias temperature instability (NBTI) in ultrathin-plasma-nitrided-oxide (PNO) based p-type metal-oxide-semiconductor field effect transistors (pMOSFETs) is investigated at temperatures ranging from 220K to 470K. It is found that the threshold voltage V T degradation below 290 K is dominated by the hole trapping process. Further studies unambiguously show that this process is unnecessarily related to nitrogen but the incorporation of nitrogen in the gate dielectric increases the probability of hole trapping in the NBTI process as it introduces extra trap states located in the upper half of the Si band gap. The possible hole trapping mechanism in NBTI stressed PNO pMOSFETs is suggested by taking account of oxygen and nitrogen related trap centers. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. Signatures of Earth-scattering in the direct detection of Dark Matter

    DEFF Research Database (Denmark)

    Kavanagh, Bradley J.; Catena, Riccardo; Kouvaris, Chris

    2017-01-01

    Direct detection experiments search for the interactions of Dark Matter (DM) particles with nuclei in terrestrial detectors. But if these interactions are sufficiently strong, DM particles may scatter in the Earth, affecting their distribution in the lab. We present a new analytic calculation...

  5. Direct time-domain techniques for transient radiation and scattering

    International Nuclear Information System (INIS)

    Miller, E.K.; Landt, J.A.

    1976-01-01

    A tutorial introduction to transient electromagnetics, focusing on direct time-domain techniques, is presented. Physical, mathematical, numerical, and experimental aspects of time-domain methods, with emphasis on wire objects excited as antennas or scatters are examined. Numerous computed examples illustrate the characteristics of direct time-domain procedures, especially where they may offer advantages over procedures in the more familiar frequency domain. These advantages include greater solution efficiency for many types of problems, the ability to handle nonlinearities, improved physical insight and interpretability, availability of wide-band information from a single calculation, and the possibility of isolating interactions among various parts of an object using time-range gating

  6. Update on the direct n-n scattering experiment at the reactor YAGUAR

    Science.gov (United States)

    Stephenson, S. L.; Crawford, B. E.; Furman, W. I.; Lychagin, E. V.; Muzichka, A. Yu.; Nekhaev, G. V.; Sharapov, E. I.; Shvetsov, V. N.; Strelkov, A. V.; Levakov, B. G.; Lyzhin, A. E.; Chernukhin, Yu. I.; Howell, C. R.; Mitchell, G. E.; Tornow, W.; Showalter-Bucher, R. A.

    2013-10-01

    The first direct measurement of the 1S0 neutron-neutron scattering experiment using the YAGUAR aperiodic reactor at the Russian Federal Nuclear Center - All Russian Research Institute of Technical Physics has preliminary results. Thermal neutrons are scattered from a thermal neutron ``gas'' within the scattering chamber of the reactor and measured via time-of-flight. These initial results show an unexpectedly large thermal neutron background now understood to be from radiation-induced desorption within the scattering chamber. Analysis of the neutron time-of-flight spectra suggests neutron scattering from H2 and possibly H2O molecules. An experimental value for the desorption yield ηγ of 0.02 molecules/gamma agrees with modeled results. Techniques to reduce the effect of the nonthermal desorption will be presented. This work was supported in part by ISTC project No. 2286, Russia Found. Grant 01-02-17181, the US DOE grants Nos. DE-FG02-97-ER41042 and DE-FG02-97-ER41033, and by the US NSF through Award Nos. 0107263 and 0555652.

  7. Direct determination of scattering time delays using the R-matrix propagation method

    International Nuclear Information System (INIS)

    Walker, R.B.; Hayes, E.F.

    1989-01-01

    A direct method for determining time delays for scattering processes is developed using the R-matrix propagation method. The procedure involves the simultaneous generation of the global R matrix and its energy derivative. The necessary expressions to obtain the energy derivative of the S matrix are relatively simple and involve many of the same matrix elements required for the R-matrix propagation method. This method is applied to a simple model for a chemical reaction that displays sharp resonance features. The test results of the direct method are shown to be in excellent agreement with the traditional numerical differentiation method for scattering energies near the resonance energy. However, for sharp resonances the numerical differentiation method requires calculation of the S-matrix elements at many closely spaced energies. Since the direct method presented here involves calculations at only a single energy, one is able to generate accurate energy derivatives and time delays much more efficiently and reliably

  8. Dependence of direct losses and trapping properties with the magnetic configuration in TJ-II

    International Nuclear Information System (INIS)

    Guasp, J.; Liniers, M.

    1998-05-01

    The former studies concerning direct losses, disymmetries, trapping and radial electric field effects for intermediate energy ions have been extended to several magnetic configurations in TJ-II. In the absence of electric field there are strong similarities in the behaviour of all configurations: disymmetries, loss distributions at plasma border, radial and angular profiles, etc. Generally the differences are only quantitative and dominated by the magnetic ripple at border, that is clearly related with the configuration radius. This qualitative similarity disappears in the presence of a radial electric field. The field resonance are at the origin of these differences. A simple model reproduces correctly the ordering and degree of influence of these resonances. Except when the 0 resonance predominates the los distributions at plasma border move always in the direction of the induced poloidal rotation. The los radial profiles are strongly affected by the -2 Resonance, that can provoke the appearance of lost passing ions well inside the plasma. Instead the radial and angular profiles for trapping are only slightly affected by the -2 Resonance, while the 0 Resonance has a very strong influence there

  9. Spatio-temporal powder formation and trapping in RF silane plasmas using 2-D polarization-sensitive laser scattering

    International Nuclear Information System (INIS)

    Dorier, J.L.; Hollenstein, C.; Howling, A.A.

    1994-09-01

    Powder formation studies in deposition plasmas are motivated by the need to reduce contamination in the plasma and films. Models for the force acting upon particles in rf discharges suffer from a lack of quantitative experimental data for comparison in the case of silane-containing plasmas. In this work, a cross-section of the parallel-plate capacitor discharge is illuminated with a polarized beam-expanded laser and global spatio-temporal scattered light and extinction are recorded by CCD cameras. Spatially-regular periodic bright/dark zones due to constructive/destructive Mie interference are visible over large regions of the powder layers, which shows the uniform nature of particle growth in silane plasmas. For particles trapped in an argon plasma, as for steady-state conditions in silane, spatial size segregation is demonstrated by fringes which reverse according to the polarisation of scattered light. The method allow a self-consistent estimation of particle size and number density throughout the discharge volume from which strong particle Coulomb coupling (Γ>40) is suggested to influence powder dynamics. Correction must be made to the plasma emission profile for the extinction by powder. In conclusion, this global diagnostics improves understanding of particle growth and dynamics in silane rf discharges and provides experimental input for testing the validity of models. (author) 6 figs., 43 refs

  10. Low Amplitude of Geomagnetic Secular Variations Recorded in Traps of the Southern Siberian Platform: Very Fast Emplacement or Regional Remagnetization?

    Science.gov (United States)

    Veselovskiy, R. V.; Latyshev, A. V.; Pavlov, V. E.

    2011-12-01

    We have studied the lowest part of the Permo-Triassic Siberian trap sequence which is located in the middle course of the Angara river (Southern Siberia). This sequenced is composed by 200m thick volcanoclastic rocks (tuffs with bombs of different composition) and includes numerous mafic subvolcanic bodies (dykes and sills). Altogether more than 20 sites representing tuffs, bombs, dykes and sills stretched along the valley of the Angara river over the distance more than 30 km have been sampled and studied. Obtained site mean paleomagnetic directions are tightly grouped, showing very lower scatter. Taking into account that amplitude of geomagnetic secular variation at the P-T boundary was about of same order as in Late Cenozoic (Pavlov et al., 2011) this lower scatter can be either a sequence of very fast traps emplacement which could have disastrous environmental impact or a result of subsequent regional remagnetization. The only geological event in the region which seems to be capable to cause this remagnetization is emplacement of Early Triassic sills in nearby areas. In such the case we should expect that mean paleomagnetic directions from these sills will be very close to these ones obtained from site presented in this report. We present results of paleomagnetic studies of these sills and make a choice in favor of one of discussed options. This work was supported by grants NSF EAR 0807585 ("The Siberian Traps and end-Permian extinction") and RFBR 09-05-01180, 10-05-00557.

  11. The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography

    International Nuclear Information System (INIS)

    Takahashi, Jun; Kawakami, Kazuto; Kobayashi, Yukiko; Tarui, Toshimi

    2010-01-01

    For the first time ever, atomic-scale direct observation of deuterium atoms trapping at nano-sized titanium carbide (TiC) precipitates in steel was successfully achieved using atom probe tomography (APT). Deuterium gas charging into the needle specimen and subsequently quenching were conducted in our designed chamber attached to three-dimensional atom probe (3DAP). The deuterium atoms were definitely observed on the broad surface of TiC platelets, which indicated that the broad interface between the matrix and TiC was the main trapping site.

  12. Electron scattering off short-lived radioactive nuclei

    International Nuclear Information System (INIS)

    Wang, S.; Emoto, T.; Furukawa, Y.

    2009-01-01

    We have established a novel method which make electron scattering off short-lived radioactive nuclei come into being. This novel method was named SCRIT (Self-Confining RI ion Target). It was based on the well known "ion trapping" phenomenon in electron storage rings. Stable nucleus, 133 Cs, was used as target nucleus in the R&D experiment. The luminosity of interaction between stored electrons and Cs ions was about 1.02(0.06) × 10 26 cm -2 s -1 at beam current around 80 mA. The angular distribution of elastically scattered electrons from trapped Cs ions was measured. And an online luminosity monitor was used to monitor the change of luminosity during the experiment. (author)

  13. On the mobility of delocalized and self-trapped positronium states in ionic crystals

    CERN Document Server

    Bondarev, I V

    2003-01-01

    The temperature dependence of the diffusivity is studied for delocalized and self-trapped positronium (Ps) atoms in ionic crystals. Detailed calculations taking into account low-temperature and inelastic scattering corrections and a Ps scattering form-factor have been performed for delocalized Ps. Low-temperature and inelastic corrections to the delocalized Ps diffusivity are shown to be essential below several tens of K, while the form-factor contribution is negligibly small up to thousand K. The mobility of self-trapped Ps is analyzed within the framework of a small polaron approach. The hopping contribution to the self-trapped Ps diffusivity is shown to be adiabatic in its physical nature. The tunnel contribution is in general not small and may turn out to be dominating even at very high temperatures. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  14. Mirror System for Collecting Thomson-Scattered Light in a Tangential Direction

    NARCIS (Netherlands)

    Barth, C. J.; Grobben, B. J. J.; Verhaag, G. C. H. M.

    1994-01-01

    We describe an optical system for collecting Thomson-scattering light in the tangential direction of a tokamak. The key part of the optics is a set of mirrors arranged as a Venetian blind. This system makes it possible to look around the corner of the tokamak vessel. Design considerations and test

  15. Fractal scattering of Gaussian solitons in directional couplers with logarithmic nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Rafael M.P.; Cardoso, Wesley B., E-mail: wesleybcardoso@gmail.com

    2016-08-12

    In this paper we study the interaction of Gaussian solitons in a dispersive and nonlinear media with log-law nonlinearity. The model is described by the coupled logarithmic nonlinear Schrödinger equations, which is a nonintegrable system that allows the observation of a very rich scenario in the collision patterns. By employing a variational approach and direct numerical simulations, we observe a fractal-scattering phenomenon from the exit velocities of each soliton as a function of the input velocities. Furthermore, we introduce a linearization model to identify the position of the reflection/transmission window that emerges within the chaotic region. This enables us the possibility of controlling the scattering of solitons as well as the lifetime of bound states. - Highlights: • We study the interaction of Gaussian solitons in a system with log-law nonlinearity. • The model is described by the coupled logarithmic nonlinear Schrödinger equations. • We observe a fractal-scattering phenomenon of the solitons.

  16. Progress on the Magnetic Trapping of Ultra-cold Neutrons

    Science.gov (United States)

    Doyle, John M.

    1998-04-01

    Ultra-cold neutrons (UCN) have been instrumental in making improved measurements of the neutron beta-decay lifetime and in searches for a permanent electric dipole moment.(R. Golub, D. Richardson and S.K. Lamoreaux, Ultra-cold Neutrons), Adam Hilger, 1991 The most accurate experiments have taken place using in-core devices at ILL (Grenoble, France) and PNPI (St. Petersburg, Russia). Superthermal techniques offer the promise of high-density sources of UCN via scattering of cold neutrons. Cold neutron beams are available at many neutron facilities. We are currently working on the development of a superfluid helium UCN source using the Cold Neutron Research Facility at the NIST Research Reactor (Gaithersburg) . Our first experiment plans to use superthermal scattering of neutrons in superfluid helium to produce UCN within a magnetic trapping volume. A magnetic trap 30 cm long and 4 cm diameter will be filled with helium at about 100 mK. Cold neutrons (around 11 K) will be introduced into the trapping region where some of them scatter to low enough energies (around 1 mK) so that they are magnetically trapped. Once trapped the UCN travel undisturbed; they have a very small probability of upscattering. Detection will be accomplished as the UCN beta-decay. The resultant high-energy electron creates excited molecular helium dimers, a portion which decay in less than 10 ns and emit radiation in the XUV (50-100 nm). We have developed techniques to measure these scintillations. Analysis indicates that a high accuracy measurement of the neutron beta decay lifetime should be possible using our techniques. An apparatus has been constructed and initial runs are underway. An overview of the experiment, discussion of systematic errors and recent experimental progress will be presented. This work is done in collaboration with C. Brome, J. Butterworth, S. Dzhosyuk, P. Huffman, C. Mattoni, D. McKinsey, M. Cooper, G. Greene, S. Lamoreaux, R. Golub, K. Habicht, K. Coakley, S. Dewey, D

  17. Pushing nanoparticles with light — A femtonewton resolved measurement of optical scattering forces

    Directory of Open Access Journals (Sweden)

    C. Zensen

    2016-05-01

    Full Text Available Optomechanical manipulation of plasmonic nanoparticles is an area of current interest, both fundamental and applied. However, no experimental method is available to determine the forward-directed scattering force that dominates for incident light of a wavelength close to the plasmon resonance. Here, we demonstrate how the scattering force acting on a single gold nanoparticle in solution can be measured. An optically trapped 80 nm particle was repetitively pushed from the side with laser light resonant to the particle plasmon frequency. A lock-in analysis of the particle movement provides a measured value for the scattering force. We obtain a resolution of less than 3 femtonewtons which is an order of magnitude smaller than any measurement of switchable forces performed on nanoparticles in solution with single beam optical tweezers to date. We compared the results of the force measurement with Mie simulations of the optical scattering force on a gold nanoparticle and found good agreement between experiment and theory within a few fN.

  18. Trapped-ion quantum logic gates based on oscillating magnetic fields

    Science.gov (United States)

    Ospelkaus, Christian; Langer, Christopher E.; Amini, Jason M.; Brown, Kenton R.; Leibfried, Dietrich; Wineland, David J.

    2009-05-01

    Oscillating magnetic fields and field gradients can be used to implement single-qubit rotations and entangling multiqubit quantum gates for trapped-ion quantum information processing. With fields generated by currents in microfabricated surface-electrode traps, it should be possible to achieve gate speeds that are comparable to those of optically induced gates for realistic distances between the ions and the electrode surface. Magnetic-field-mediated gates have the potential to significantly reduce the overhead in laser-beam control and motional-state initialization compared to current QIP experiments with trapped ions and will eliminate spontaneous scattering decoherence, a fundamental source of decoherence in laser-mediated gates. A potentially beneficial environment for the implementation of such schemes is a cryogenic ion trap, because small length scale traps with low motional heating rates can be realized. A cryogenic ion trap experiment is currently under construction at NIST.

  19. Building a better sticky trap: description of an easy-to-use trap and pole mount for quantifying the abundance of adult aquatic insects

    Science.gov (United States)

    Smith, Joshua T.; Kennedy, Theodore A.; Muehlbauer, Jeffrey D.

    2014-01-01

    Insect emergence is a fundamental process in freshwaters. It is a critical life-history stage for aquatic insects and provides an important prey resource for terrestrial and aquatic consumers. Sticky traps are increasingly being used to sample these insects. The most common design consists of an acetate sheet coated with a nondrying adhesive that is attached to a wire frame or cylinder. These traps must be prepared at the deployment site, a process that can be time consuming and difficult given the vagaries of field conditions. Our goals were to develop a sturdy, low-cost sticky trap that could be prepared in advance, rapidly deployed and recovered in the field, and used to estimate the flight direction of insects. We used 150-mm Petri dishes with lids. The dishes can be coated cleanly and consistently with Tangle-Trap® adhesive. Deploying traps is simple and requires only a pole set near the body of water being sampled. Four dishes can be attached to the pole using Velcro and aligned in 4 different directions to enable quantification of insect flight direction. After sampling, Petri dishes can be taped closed, packed in boxes, and stored indefinitely. Petri traps are comparable in price to standard acetate sheet traps at ∼US$0.50/directional deployment, but they require more space for storage than acetate sheet traps. However, a major benefit of Petri traps is that field deployment times are ⅓ those of acetate traps. Our study demonstrated that large Petri dishes are an ideal platform for sampling postemergent adult aquatic insects, particularly when the study design involves estimating flight direction and when rapid deployment and recovery of traps is critical.

  20. [Trapping techniques for Solenopsis invicta].

    Science.gov (United States)

    Liang, Xiao-song; Zhang, Qiang; Zhuang, Yiong-lin; Li, Gui-wen; Ji, Lin-peng; Wang, Jian-guo; Dai, Hua-guo

    2007-06-01

    A field study was made to investigate the trapping effects of different attractants, traps, and wind directions on Solenopsis invicta. The results showed that among the test attractants, TB1 (50 g fishmeal, 40 g peptone, 10 ml 10% sucrose water solution and 20 ml soybean oil) had the best effect, followed by TB2 (ham), TB6 (100 g cornmeal and 20 ml soybean oil) and TB4 (10 ml 10% sucrose water solution, 100 g sugarcane powder and 20 ml soybean oil), with a mean capture efficiency being 77.6, 58.7, 29 and 7.7 individuals per trap, respectively. No S. invicta was trapped with TB3 (10 ml 10% sucrose water solution, 100 g cornmeal and 20 ml soybean oil) and TB5 (honey). Tube trap was superior to dish trap, with a trapping efficiency of 75.2 and 35 individuals per trap, respectively. The attractants had better effects in leeward than in windward.

  1. Trapped-ion quantum logic gates based on oscillating magnetic fields.

    Science.gov (United States)

    Ospelkaus, C; Langer, C E; Amini, J M; Brown, K R; Leibfried, D; Wineland, D J

    2008-08-29

    Oscillating magnetic fields and field gradients can be used to implement single-qubit rotations and entangling multiqubit quantum gates for trapped-ion quantum information processing (QIP). With fields generated by currents in microfabricated surface-electrode traps, it should be possible to achieve gate speeds that are comparable to those of optically induced gates for realistic distances between the ion crystal and the electrode surface. Magnetic-field-mediated gates have the potential to significantly reduce the overhead in laser-beam control and motional-state initialization compared to current QIP experiments with trapped ions and will eliminate spontaneous scattering, a fundamental source of decoherence in laser-mediated gates.

  2. Experimental pseudo-symmetric trap EPSILON

    International Nuclear Information System (INIS)

    Skovoroda, A.A.; Arsenin, V.V.; Dlougach, E.D.; Kulygin, V.M.; Kuyanov, A.Yu.; Timofeev, A.V.; Zhil'tsov, V.A.; Zvonkov, A.V.

    2001-01-01

    Within the framework of the conceptual project 'Adaptive Plasma EXperiment' a trap with the closed magnetic field lines 'Experimental Pseudo-Symmetric trap' is examined. The project APEX is directed at the theoretical and experimental development of physical foundations for stationary thermonuclear reactor on the basis of an alternative magnetic trap with tokamak-level confinement of high β plasma. The fundamental principle of magnetic field pseudosymmetry that should be satisfied for plasma to have tokamak-like confinement is discussed. The calculated in paraxial approximation examples of pseudosymmetric curvilinear elements with poloidal direction of B isolines are adduced. The EPSILON trap consisting of two straight axisymmetric mirrors linked by two curvilinear pseudosymmetric elements is considered. The plasma currents are short-circuited within the curvilinear element what increases the equilibrium β. The untraditional scheme of MHD stabilization of a trap with the closed field lines by the use of divertor inserted into axisymmetric mirror is analyzed. The experimental installation EPSILON-OME that is under construction for experimental check of divertor stabilization is discussed. The possibility of ECR plasma production in EPSILON-OME under conditions of high density and small magnetic field is examined. (author)

  3. A quasi-electrostatic trap for neutral atoms

    International Nuclear Information System (INIS)

    Engler, H.

    2000-01-01

    This thesis reports on the realization of a ''quasi-electrostatic trap'' (QUEST) for neutral atoms. Cesium ( 133 Cs) and Lithium ( 7 Li) atoms are stored, which represents for the first time a mixture of different species in an optical dipole trap. The trap is formed by the focused Gaussian beam of a 30 W cw CO 2 -laser. For a beam waist of 108 μm the resulting trap depth is κ B x 118 μK for Cesium and κ B x 48 μK for Lithium. We transfer up to 2 x 10 6 Cesium and 10 5 Lithium atoms from a magneto-optical trap into the QUEST. When simultaneously transferred, the atom number currently is reduced by roughly a factor of 10. Since photon scattering from the trapping light can be neglected, the QUEST represents an almost perfect conservative trapping potential. Atoms in the QUEST populate the electronic ground state sublevels. Arbitrary sublevels can be addressed via optical pumping. Due to the very low background gas pressure of 2 x 10 -11 mbar storage times of several minutes are realized. Evaporative cooling of Cesium is observed. In addition, laser cooling is applied to the trapped Cesium sample, which reduces the temperature from 25 μK to a value below 7 μK. If prepared in the upper hyper-fine ground state sublevel, spin changing collisions are observed not only within one single species, but also between the two different species. The corresponding relaxation rates are quantitatively analyzed. (orig.)

  4. Direct observation of forward-scattering oscillations in the H+HD→H2+D reaction

    Science.gov (United States)

    Yuan, Daofu; Yu, Shengrui; Chen, Wentao; Sang, Jiwei; Luo, Chang; Wang, Tao; Xu, Xin; Casavecchia, Piergiorgio; Wang, Xingan; Sun, Zhigang; Zhang, Dong H.; Yang, Xueming

    2018-06-01

    Accurate measurements of product state-resolved angular distributions are central to fundamental studies of chemical reaction dynamics. Yet, fine quantum-mechanical structures in product angular distributions of a reactive scattering process, such as the fast oscillations in the forward-scattering direction, have never been observed experimentally and the nature of these oscillations has not been fully explored. Here we report the crossed-molecular-beam experimental observation of these fast forward-scattering oscillations in the product angular distribution of the benchmark chemical reaction, H + HD → H2 + D. Clear oscillatory structures are observed for the H2(v' = 0, j' = 1, 3) product states at a collision energy of 1.35 eV, in excellent agreement with the quantum-mechanical dynamics calculations. Our analysis reveals that the oscillatory forward-scattering components are mainly contributed by the total angular momentum J around 28. The partial waves and impact parameters responsible for the forward scatterings are also determined from these observed oscillations, providing crucial dynamics information on the transient reaction process.

  5. Gold nanoparticle trapping and delivery for therapeutic applications

    Directory of Open Access Journals (Sweden)

    Aziz MS

    2011-12-01

    Full Text Available MS Aziz1, Nathaporn Suwanpayak3,4, Muhammad Arif Jalil2, R Jomtarak4, T Saktioto2, Jalil Ali1, PP Yupapin41Institute of Advanced Photonics Science, 2Ibnu Sina Institute of Fundamental Science Studies, Nanotechnology Research Alliance, Universiti Teknologi Malaysia, Johor Bahru, Malaysia; 3King Mongkut's Institute of Technology Ladkrabang, Chump on Campus, Chumphon, 4Nanoscale Science and Engineering Research Alliance (N'SERA, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, ThailandAbstract: A new optical trapping design to transport gold nanoparticles using a PANDA ring resonator system is proposed. Intense optical fields in the form of dark solitons controlled by Gaussian pulses are used to trap and transport nanoscopic volumes of matter to the desired destination via an optical waveguide. Theoretically, the gradient and scattering forces are responsible for this trapping phenomenon, where in practice such systems can be fabricated and a thin-film device formed on the specific artificial medical materials, for instance, an artificial bone. The dynamic behavior of the tweezers can be tuned by controlling the optical pulse input power and parameters of the ring resonator system. Different trap sizes can be generated to trap different gold nanoparticles sizes, which is useful for gold nanoparticle therapy. In this paper, we have shown the utility of gold nanoparticle trapping and delivery for therapy, which may be useful for cosmetic therapy and related applications.Keywords: gold nanoparticle trapping, particle trapping, therapy, transport

  6. Resonant trapping in the transport of a matter-wave soliton through a quantum well

    International Nuclear Information System (INIS)

    Ernst, Thomas; Brand, Joachim

    2010-01-01

    We theoretically investigate the scattering of bright solitons in a Bose-Einstein condensate on narrow attractive potential wells. Reflection, transmission, and trapping of an incident soliton are predicted to occur with remarkably abrupt transitions upon varying the potential depth. Numerical simulations of the nonlinear Schroedinger equation are complemented by a variational collective coordinate approach. The mechanism for nonlinear trapping is found to rely both on resonant interaction between the soliton and bound states in the potential well and on the radiation of small-amplitude waves. These results suggest that solitons can be used to probe bound states that are not accessible through scattering with single atoms.

  7. Dark matter effective field theory scattering in direct detection experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schneck, K.; Cabrera, B.; Cerdeño, D. G.; Mandic, V.; Rogers, H. E.; Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Brandt, D.; Brink, P. L.; Bunker, R.; Caldwell, D. O.; Calkins, R.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D. M.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Saab, T.; Sadoulet, B.; Sander, J.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yang, X.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2015-05-18

    We examine the consequences of the effective field theory (EFT) of dark matter–nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.

  8. Investigation of silicon width (p, p') resonance scattering in left angle 110 right angle channeling direction

    International Nuclear Information System (INIS)

    Ditroi, F.; Meyer, J.D.; Michelmann, R.; Kislat, D.; Bethge, K.

    1994-01-01

    Crystalline silicon samples were investigated both in channeling and random directions by using the (p, p') resonance scattering at 2.3 MeV bombarding energy. The samples were positioned in the scattering chamber of a VdG accelerator after 2 m collimating path. The peaks due to the resonance at 2.1 MeV were measured at different angles in the vicinity of the channeling and random directions. A peak shift and broadening was seen at the channeling and near channeling directions compared with the random one. The spectra were also simulated using our modified Monte Carlo calculation method for stopping, range and energy distribution in highly ordered materials. The energy shift and the broadening between the random and the channeling spectra were compared and explained. (orig.)

  9. Trapping and Probing Antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan [UC Berkeley and LBNL

    2013-03-27

    Precision spectroscopy of antihydrogen is a promising path to sensitive tests of CPT symmetry. The most direct route to achieve this goal is to create and probe antihydrogen in a magnetic minimum trap. Antihydrogen has been synthesized and trapped for 1000s at CERN by the ALPHA Collaboration. Some of the challenges associated with achieving these milestones will be discussed, including mixing cryogenic positron and antiproton plasmas to synthesize antihydrogen with kinetic energy less than the trap potential of .5K. Recent experiments in which hyperfine transitions were resonantly induced with microwaves will be presented. The opportunity for gravitational measurements in traps based on detailed studies of antihydrogen dynamics will be described. The talk will conclude with a discussion future antihydrogen research that will use a new experimental apparatus, ALPHA-I.

  10. A Rotating-Bears Optical Dipole Trap for Cold Aatoms

    International Nuclear Information System (INIS)

    Friedman, N.; Ozeri, R.; Khaykovich, L.; Davidson, N.

    1999-01-01

    In the last few years, several optical dipole traps for cold atoms were demonstrated and used to study cold atomic collisions, long atomic coherence times and quantum collective effects. Blue-detuned dipole traps, where repulsive light forces confines atoms mostly in dark, offer long storage, and photon-scattering times, combined with strong confinement forces. Unfortunately, such blue-detuned dipole traps involve complicated light intensity distributions that require either multiple laser beams or complicated phase elements. Here, we propose and demonstrate a novel configuration for a single-beam blue-detuned dipole trap, which enables larger trapping volume, and fast temporal changes in the trap size and shape. Our trap consists of a tightly-focused laser beam which is rapidly rotated (with rotation frequency up to 400 khz) with two orthogonal acousto optical scanners. For very high rotation frequencies the atoms feel a time-averaged static dipole potential. Therefore, when the radius of rotation is larger than the beam size, a dark volume which is completely surrounded by light is obtained around the focal region. By changing the rotation radius and the trapping laser intensity and detuning, the trap dimensions and oscillation frequency could be changed over a large parameter range. In particular trap diameters were changed between 50 to 220 microns and trap length was changed between 3.5 to 16 mm. ∼10 6 atoms were loaded into the rotating-beam dipole trap from a magneto optical trap. The density of the trapped atoms was 4x10 10 atoms/cm 3 ,their temperature was -6 pK. and the trap (1/e) lifetime was 0.65 sec, limited by collisions with background atoms. When the rotation frequency was decreased below the oscillation frequency of the atoms in the trap, the trap became unstable, and a sharp reduction of the trap lifetime was observed, in agreement with our theoretical analysis. Finally, we demonstrated adiabatic compression of atoms in the trap by decreasing

  11. Feasibility study of direct spectra measurements for Thomson scattered signals for KSTAR fusion-grade plasmas

    Science.gov (United States)

    Park, K.-R.; Kim, K.-h.; Kwak, S.; Svensson, J.; Lee, J.; Ghim, Y.-c.

    2017-11-01

    Feasibility study of direct spectra measurements of Thomson scattered photons for fusion-grade plasmas is performed based on a forward model of the KSTAR Thomson scattering system. Expected spectra in the forward model are calculated based on Selden function including the relativistic polarization correction. Noise in the signal is modeled with photon noise and Gaussian electrical noise. Electron temperature and density are inferred using Bayesian probability theory. Based on bias error, full width at half maximum and entropy of posterior distributions, spectral measurements are found to be feasible. Comparisons between spectrometer-based and polychromator-based Thomson scattering systems are performed with varying quantum efficiency and electrical noise levels.

  12. Resonant nano-antennas for light trapping in plasmonic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mokkapati, S; Beck, F J; Catchpole, K R [Centre for Sustainable Energy Systems, College of Engineering and Computer Science, Australian National University, Canberra, 0200 (Australia); De Waele, R; Polman, A, E-mail: sudha.mokkapati@anu.edu.au [Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands)

    2011-05-11

    We investigate the influence of nanoparticle height on light trapping in thin-film solar cells covered with metal nanoparticles. We show that in taller nanoparticles the scattering cross-section is enhanced by resonant excitation of plasmonic standing waves. Tall nanoparticles have higher coupling efficiency when placed on the illuminated surface of the cell than on the rear of the cell due to their forward scattering nature. One of the major factors affecting the coupling efficiency of these particles is the phase shift of surface plasmon polaritons propagating along the nanoparticle due to reflection from the Ag/Si or Ag/air interface. The high scattering cross-sections of tall nanoparticles on the illuminated surface of the cell could be exploited for efficient light trapping by modifying the coupling efficiency of nanoparticles by engineering this phase shift. We demonstrate that the path length enhancement (with a nanoparticle of height 500 nm) at an incident wavelength of 700 nm can be increased from {approx}6 to {approx}16 by modifying the phase shift at the Ag/air interface by coating the surface of the nanoparticle with a layer of Si.

  13. Stimulated scattering in laser driven fusion and high energy density physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yin, L., E-mail: lyin@lanl.gov; Albright, B. J.; Rose, H. A.; Montgomery, D. S.; Kline, J. L.; Finnegan, S. M.; Bergen, B.; Bowers, K. J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kirkwood, R. K.; Milovich, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-09-15

    In laser driven fusion and high energy density physics experiments, one often encounters a kλ{sub D} range of 0.15 < kλ{sub D} < 0.5, where stimulated Raman scattering (SRS) is active (k is the initial electron plasma wave number and λ{sub D} is the Debye length). Using particle-in-cell simulations, the SRS reflectivity is found to scale as ∼ (kλ{sub D}){sup −4} for kλ{sub D} ≳ 0.3 where electron trapping effects dominate SRS saturation; the reflectivity scaling deviates from the above for kλ{sub D} < 0.3 when Langmuir decay instability (LDI) is present. The SRS risk is shown to be highest for kλ{sub D} between 0.2 and 0.3. SRS re-scattering processes are found to be unimportant under conditions relevant to ignition experiments at the National Ignition Facility (NIF). Large-scale simulations of the hohlraum plasma show that the SRS wavelength spectrum peaks below 600 nm, consistent with most measured NIF spectra, and that nonlinear trapping in the presence of plasma gradients determines the SRS spectral peak. Collisional effects on SRS, stimulated Brillouin scattering (SBS), LDI, and re-scatter, together with three dimensional effects, are examined. Effects of collisions are found to include de-trapping as well as cross-speckle electron temperature variation from collisional heating, the latter of which reduces gain, introduces a positive frequency shift that counters the trapping-induced negative frequency shift, and affects SRS and SBS saturation. Bowing and breakup of ion-acoustic wavefronts saturate SBS and cause a dramatic, sharp decrease in SBS reflectivity. Mitigation of SRS and SBS in the strongly nonlinear trapping regime is discussed.

  14. Direct observation of a single proton in a Penning trap. Towards a direct measurement of the proton g-factor

    Energy Technology Data Exchange (ETDEWEB)

    Kreim, Susanne Waltraud

    2009-08-25

    This PhD thesis presents experiments performed on a single proton stored in a Penning trap. The eigenmotion of an isolated, free proton could be detected electronically via a coupling to a resonance circuit. This represents a non-destructive measurement, i.e. the particle is not lost during the measurement. The free cyclotron frequency emerging from the measured eigenfrequencies is one of the two frequencies required for the determination of the magnetic moment. This enables a direct determination of the g-factor contrary to already existing works. Design, developing, and commissioning of the experimental setup have been accomplished within the scope of this work leading to a measuring accuracy of 10{sup -7}. The technical challenges for the determination of the second frequency (the Larmor frequency) arising from the smallness of the magnetic moment were mastered. Since the spin state required for this measurement is an internal degree of freedom, it can only be accessed through a coupling of the magnetic moment to the eigenmotion. A novel, hybrid penning trap is presented in this work, which imprints the spin information onto the eigenmotion, thus, realizing a quantum jump spectrometer. Therewith, the frequency shift of the two spin states resulting from the magnetic coupling reaches for the first time an electronically detectable range. (orig.)

  15. Direct observation of a single proton in a Penning trap. Towards a direct measurement of the proton g-factor

    International Nuclear Information System (INIS)

    Kreim, Susanne Waltraud

    2009-01-01

    This PhD thesis presents experiments performed on a single proton stored in a Penning trap. The eigenmotion of an isolated, free proton could be detected electronically via a coupling to a resonance circuit. This represents a non-destructive measurement, i.e. the particle is not lost during the measurement. The free cyclotron frequency emerging from the measured eigenfrequencies is one of the two frequencies required for the determination of the magnetic moment. This enables a direct determination of the g-factor contrary to already existing works. Design, developing, and commissioning of the experimental setup have been accomplished within the scope of this work leading to a measuring accuracy of 10 -7 . The technical challenges for the determination of the second frequency (the Larmor frequency) arising from the smallness of the magnetic moment were mastered. Since the spin state required for this measurement is an internal degree of freedom, it can only be accessed through a coupling of the magnetic moment to the eigenmotion. A novel, hybrid penning trap is presented in this work, which imprints the spin information onto the eigenmotion, thus, realizing a quantum jump spectrometer. Therewith, the frequency shift of the two spin states resulting from the magnetic coupling reaches for the first time an electronically detectable range. (orig.)

  16. Direct Observation of Insulin Association Dynamics with Time-Resolved X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Rimmerman, Dolev [Department; Leshchev, Denis [Department; Hsu, Darren J. [Department; Hong, Jiyun [Department; Kosheleva, Irina [Center; Chen, Lin X. [Department; Chemical

    2017-09-05

    Biological functions frequently require protein-protein interactions that involve secondary and tertiary structural perturbation. Here we study protein-protein dissociation and reassociation dynamics in insulin, a model system for protein oligomerization. Insulin dimer dissociation into monomers was induced by a nanosecond temperature-jump (T-jump) of ~8 °C in aqueous solution, and the resulting protein and solvent dynamics were tracked by time-resolved X-ray solution scattering (TRXSS) on time scales of 10 ns to 100 ms. The protein scattering signals revealed the formation of five distinguishable transient species during the association process that deviate from simple two state kinetics. Our results show that the combination of T-jump pump coupled to TRXSS probe allows for direct tracking of structural dynamics in nonphotoactive proteins.

  17. Optimal wavelength scale diffraction gratings for light trapping in solar cells

    International Nuclear Information System (INIS)

    Chong, Teck Kong; Wilson, Jonathan; Mokkapati, Sudha; Catchpole, Kylie R

    2012-01-01

    Dielectric gratings are a promising method of achieving light trapping for thin crystalline silicon solar cells. In this paper, we systematically examine the potential performance of thin silicon solar cells with either silicon (Si) or titanium dioxide (TiO 2 ) gratings using numerical simulations. The square pyramid structure with silicon nitride coating provides the best light trapping among all the symmetric structures investigated, with 89% of the expected short circuit current density of the Lambertian case. For structures where the grating is at the rear of the cell, we show that the light trapping provided by the square pyramid and the checkerboard structure is almost identical. Introducing asymmetry into the grating structures can further improve their light trapping properties. An optimized Si skewed pyramid grating on the front surface of the solar cell results in a maximum short circuit current density, J sc , of 33.4 mA cm −2 , which is 91% of the J sc expected from an ideal Lambertian scatterer. An optimized Si skewed pyramid grating on the rear performs as well as a rear Lambertian scatterer and an optimized TiO 2 grating on the rear results in 84% of the J sc expected from an optimized Si grating. The results show that submicron symmetric and skewed pyramids of Si or TiO 2 are a highly effective way of achieving light trapping in thin film solar cells. TiO 2 structures would have the additional advantage of not increasing recombination within the cell. (paper)

  18. Levitated atoms in a CO2 laser trap: towards BEC with cesium

    International Nuclear Information System (INIS)

    Herbig, J.; Weber, T.; Naegerl, H.-C.; Grimm, R.

    2001-01-01

    Full text: Since the standard approach towards Bose-Einstein condensation has failed for cesium, we are exploring a novel concept employing an optical dipole trap formed by intense CO2 lasers. These provide a conservative and large-volume trapping potential. In order to compensate the gravitational force, a magnetic field gradient along the vertical axis is applied. This counterbalances gravitation for the absolute internal ground state of Cs (F=3, mF=3), effectively levitating those atoms. Other spin states are expelled from the trap, opening up a path for rf exploration. Our approach to trap the lowest spin state at low densities minimizes inelastic processes. The free choice of a magnetic bias field allows exploration of Feshbach resonances to tune scattering properties. (author)

  19. Direct nn-Scattering Measurement With the Pulsed Reactor YAGUAR.

    Science.gov (United States)

    Mitchell, G E; Furman, W I; Lychagin, E V; Muzichka, A Yu; Nekhaev, G V; Strelkov, A V; Sharapov, E I; Shvetsov, V N; Chernuhin, Yu I; Levakov, B G; Litvin, V I; Lyzhin, A E; Magda, E P; Crawford, B E; Stephenson, S L; Howell, C R; Tornow, W

    2005-01-01

    Although crucial for resolving the issue of charge symmetry in the nuclear force, direct measurement of nn-scattering by colliding free neutrons has never been performed. At present the Russian pulsed reactor YAGUAR is the best neutron source for performing such a measurement. It has a through channel where the neutron moderator is installed. The neutrons are counted by a neutron detector located 12 m from the reactor. In preliminary experiments an instantaneous value of 1.1 × 10(18)/cm(2)s was obtained for the thermal neutron flux density. The experiment will be performed by the DIANNA Collaboration as International Science & Technology Center (ISTC) project No. 2286.

  20. All-optical atom trap as a target for MOTRIMS-like collision experiments

    Science.gov (United States)

    Sharma, S.; Acharya, B. P.; De Silva, A. H. N. C.; Parris, N. W.; Ramsey, B. J.; Romans, K. L.; Dorn, A.; de Jesus, V. L. B.; Fischer, D.

    2018-04-01

    Momentum-resolved scattering experiments with laser-cooled atomic targets have been performed since almost two decades with magneto-optical trap recoil ion momentum spectroscopy (MOTRIMS) setups. Compared to experiments with gas-jet targets, MOTRIMS features significantly lower target temperatures allowing for an excellent recoil ion momentum resolution. However, the coincident and momentum-resolved detection of electrons was long rendered impossible due to incompatible magnetic field requirements. Here we report on an experimental approach which is based on an all-optical 6Li atom trap that—in contrast to magneto-optical traps—does not require magnetic field gradients in the trapping region. Atom temperatures of about 2 mK and number densities up to 109 cm-3 make this trap ideally suited for momentum-resolved electron-ion coincidence experiments. The overall configuration of the trap is very similar to conventional magneto-optical traps. It mainly requires small modifications of laser beam geometries and polarization which makes it easily implementable in other existing MOTRIMS experiments.

  1. Transfer by anisotropic scattering between subsets of the unit sphere of directions in linear transport theory

    International Nuclear Information System (INIS)

    Trombetti, T.

    1990-01-01

    The exact kernel method is presented for linear transport problems with azimuth-dependent angular fluxes. It is based on the evaluation of average scattering densities (ASD's) that fully describe the neutron (or particle) transfer between subsets of the unit sphere of directions by anisotropic scattering. Reciprocity and other ASD functional properties are proved and combined with the symmetry properties of suitable SN quadrature sets. This greatly reduces the number of independent ASD's to be computed and stored. An approach for performing ASD computations with reciprocity checks is presented. ASD expressions of the scattering source for typical 2D geometries are explicitly given. (author)

  2. Estimates of oceanic surface wind speed and direction using orthogonal beam scatterometer measurements and comparison of recent sea scattering theories

    Science.gov (United States)

    Moore, R. K.; Fung, A. K.; Dome, G. J.; Birrer, I. J.

    1978-01-01

    The wind direction properties of radar backscatter from the sea were empirically modelled using a cosine Fourier series through the 4th harmonic in wind direction (referenced to upwind). A comparison with 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data, at incidence angles of 40 and 65, indicates that effects to third and fourth harmonics are negligible. Another important result is that the Fourier coefficients through the second harmonic are related to wind speed by a power law expression. A technique is also proposed to estimate the wind speed and direction over the ocean from two orthogonal scattering measurements. A comparison between two different types of sea scatter theories, one type presented by the work of Wright and the other by that of Chan and Fung, was made with recent scatterometer measurements. It demonstrates that a complete scattering model must include some provisions for the anisotropic characteristics of the sea scatter, and use a sea spectrum which depends upon wind speed.

  3. Ions kinematics in an electrostatic ion beam trap

    Energy Technology Data Exchange (ETDEWEB)

    Attia, D

    2004-06-01

    In this study, I have tried to provide a better understanding of the dynamics of ions inside an electrostatic ion beam trap. The electrostatic ion trap allows to store ions moving between two electrostatic mirrors. Although the trap has been developed already seven years ago, no direct measurement of the transversal velocity distribution of the ions has been performed. Such quantity is central for understanding the conditions under which a beam should be produced (mainly emittance) in order to be trapped by such a device. The data I have obtained during the course of this work are based on an experimental technique which relies on the direct imaging of the particles exiting the trap, as well as on numerical simulations of the ion trajectories inside the trap. I have personally been involved in the hardware development of the imaging system, the data acquisition and analysis of the data as well as il all numerical calculations presented here. These results allow us to obtain, for the first time, experimental information on the transverse phase space of the trap, and contribute to the overall understanding of the ion motion in this system. (author)

  4. Direct trace analysis of metals and alloys in a quadrupole ion-trap mass spectrometer

    CERN Document Server

    Song, K S; Yang, M; Cha, H K; Lee, J M; Lee, G H

    1999-01-01

    An ion-trap mass spectrometer adopting a quadrupole ion-trap and laser ablation/ionization method was constructed. The developed system was tested for composition analysis of some metals (Cu, stainless), and alloys (hastalloy C, mumetal) by mass spectrometry. Samples were analyzed by using laser ablation from a sample probe tip followed by a mass analysis with the quadrupole ion-trap. The quadrupole ion-trap was modified to enable laser ablation by a XeCl excimer laser pulse that passed radially through the ring electrode. A mass scan of the produced ions was performed in the mass selective instability mode wherein trapped ions were successively detected by increasing the rf voltage through the ring electrode. Factors affecting the mass resolution, such as pressure of buffer gas and ablation laser power, are discussed.

  5. Ion trap device

    Science.gov (United States)

    Ibrahim, Yehia M.; Smith, Richard D.

    2016-01-26

    An ion trap device is disclosed. The device includes a series of electrodes that define an ion flow path. A radio frequency (RF) field is applied to the series of electrodes such that each electrode is phase shifted approximately 180 degrees from an adjacent electrode. A DC voltage is superimposed with the RF field to create a DC gradient to drive ions in the direction of the gradient. A second RF field or DC voltage is applied to selectively trap and release the ions from the device. Further, the device may be gridless and utilized at high pressure.

  6. Counter-Propagating Optical Trapping System for Size and Refractive Index Measurement of Microparticles

    National Research Council Canada - National Science Library

    Flynn, Richard A; Shao, Bing; Chachisvilis, Mirianas; Ozkan, Mihrimah; Esener, Sadik C

    2005-01-01

    We propose and demonstrate a novel approach to measure the size and refractive index of microparticles based on two beam optical trapping, where forward scattered light is detected to give information about the particle...

  7. The Aarhus Ion Micro-Trap Project

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Nielsen, Otto; Poulsen, Gregers

    As part of our involvement in the EU MICROTRAP project, we have designed, manufactured and assembled a micro-scale ion trap with integrated optical fibers. These prealigned fibers will allow delivering cooling laser light to single ions. Therefore, such a trap will not require any direct optical...... and installed in an ultra high vacuum chamber, which includes an ablation oven for all-optical loading of the trap [2]. The next steps on the project are to demonstrate the operation of the micro-trap and the cooling of ions using fiber delivered light. [1] D. Grant, Development of Micro-Scale Ion traps, Master...... Thesis (2008). [2] R.J. Hendricks, D.M. Grant, P.F. Herskind, A. Dantan and M. Drewsen, An all-optical ion-loading technique for scalable microtrap architectures, Applied Physics B, 88, 507 (2007)....

  8. Light trapping with plasmonic back contacts in thin-film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Paetzold, Ulrich Wilhelm

    2013-02-08

    Trapping light in silicon solar cells is essential as it allows an increase in the absorption of incident sunlight in optically thin silicon absorber layers. This way, the costs of the solar cells can be reduced by lowering the material consumption and decreasing the physical constraints on the material quality. In this work, plasmonic light trapping with Ag back contacts in thin-film silicon solar cells is studied. Solar cell prototypes with plasmonic back contacts are presented along with optical simulations of these devices and general design considerations of plasmonic back contacts. Based on three-dimensional electromagnetic simulations, the conceptual design of plasmonic nanostructures on Ag back contacts in thin-film silicon solar cells is studied in this work. Optimizations of the nanostructures regarding their ability to scatter incident light at low optical losses into large angles in the silicon absorber layers of the thin-film silicon solar cells are presented. Geometrical parameters as well as the embedding dielectric layer stack of the nanostructures on Ag layers are varied. Periodic as well as isolated hemispherical Ag nanostructures of dimensions above 200 nm are found to scatter incident light at high efficiencies and low optical losses. Hence, these nanostructures are of interest for light trapping in solar cells. In contrast, small Ag nanostructures of dimension below 100 nm are found to induce optical losses. At the surface of randomly textured Ag back contacts small Ag nanostructures exist which induce optical losses. In this work, the relevance of these localized plasmon induced optical losses as well as optical losses caused by propagating plasmons are investigated with regard to the reflectance of the textured back contacts. In state-of-the-art solar cells, the plasmon-induced optical losses are shifted out of the relevant wavelength range by incorporating a ZnO:Al interlayer of low refractive index at the back contact. The additional but

  9. Time-dependent scattering in resonance lines

    International Nuclear Information System (INIS)

    Kunasz, P.B.

    1983-01-01

    A numerical finite-difference method is presented for the problem of time-dependent line transfer in a finite slab in which material density is sufficiently low that the time of flight between scatterings greatly exceeds the relaxation time of the upper state of the scattering transition. The medium is assumed to scatter photons isotropically, with complete frequency redistribution. Numerical solutions are presented for a homogeneous, time-independent slab illuminated by an externally imposed radiation field which enters the slab at t = 0. Graphical results illustrate relaxation to steady state of trapped internal radiation, emergent energy, and emergent profiles. A review of the literature is also given in which the time-dependent line transfer problem is discussed in the context of recent analytical work

  10. Direct Calculation of the Scattering Amplitude Without Partial Wave Analysis

    Science.gov (United States)

    Shertzer, J.; Temkin, A.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Two new developments in scattering theory are reported. We show, in a practical way, how one can calculate the full scattering amplitude without invoking a partial wave expansion. First, the integral expression for the scattering amplitude f(theta) is simplified by an analytic integration over the azimuthal angle. Second, the full scattering wavefunction which appears in the integral expression for f(theta) is obtained by solving the Schrodinger equation with the finite element method (FEM). As an example, we calculate electron scattering from the Hartree potential. With minimal computational effort, we obtain accurate and stable results for the scattering amplitude.

  11. Trapping hydrogen atoms from a neon-gas matrix: a theoretical simulation.

    Science.gov (United States)

    Bovino, S; Zhang, P; Kharchenko, V; Dalgarno, A

    2009-08-07

    Hydrogen is of critical importance in atomic and molecular physics and the development of a simple and efficient technique for trapping cold and ultracold hydrogen atoms would be a significant advance. In this study we simulate a recently proposed trap-loading mechanism for trapping hydrogen atoms released from a neon matrix. Accurate ab initio quantum calculations are reported of the neon-hydrogen interaction potential and the energy- and angular-dependent elastic scattering cross sections that control the energy transfer of initially cold atoms are obtained. They are then used to construct the Boltzmann kinetic equation, describing the energy relaxation process. Numerical solutions of the Boltzmann equation predict the time evolution of the hydrogen energy distribution function. Based on the simulations we discuss the prospects of the technique.

  12. Quasiresonant scattering

    International Nuclear Information System (INIS)

    Hategan, Cornel; Comisel, Horia; Ionescu, Remus A.

    2004-01-01

    The quasiresonant scattering consists from a single channel resonance coupled by direct interaction transitions to some competing reaction channels. A description of quasiresonant Scattering, in terms of generalized reduced K-, R- and S- Matrix, is developed in this work. The quasiresonance's decay width is, due to channels coupling, smaller than the width of the ancestral single channel resonance (resonance's direct compression). (author)

  13. Neoclassical transport caused by collisionless scattering across an asymmetric separatrix.

    Science.gov (United States)

    Dubin, Daniel H E; Driscoll, C F; Tsidulko, Yu A

    2010-10-29

    Plasma loss due to apparatus asymmetries is a ubiquitous phenomenon in magnetic plasma confinement. When the plasma equilibrium has locally trapped particle populations partitioned by a separatrix from one another and from passing particles, the asymmetry transport is enhanced. The trapped and passing particle populations react differently to the asymmetries, leading to the standard 1/ν and sqrt[ν] transport regimes of superbanana orbit theory as particles collisionally scatter from one orbit type to another. However, when the separatrix is itself asymmetric, particles can collisionlessly transit from trapped to passing and back, leading to enhanced transport.

  14. A simple, direct method for x-ray scatter estimation and correction in digital radiography and cone-beam CT

    International Nuclear Information System (INIS)

    Siewerdsen, J.H.; Daly, M.J.; Bakhtiar, B.

    2006-01-01

    X-ray scatter poses a significant limitation to image quality in cone-beam CT (CBCT), resulting in contrast reduction, image artifacts, and lack of CT number accuracy. We report the performance of a simple scatter correction method in which scatter fluence is estimated directly in each projection from pixel values near the edge of the detector behind the collimator leaves. The algorithm operates on the simple assumption that signal in the collimator shadow is attributable to x-ray scatter, and the 2D scatter fluence is estimated by interpolating between pixel values measured along the top and bottom edges of the detector behind the collimator leaves. The resulting scatter fluence estimate is subtracted from each projection to yield an estimate of the primary-only images for CBCT reconstruction. Performance was investigated in phantom experiments on an experimental CBCT benchtop, and the effect on image quality was demonstrated in patient images (head, abdomen, and pelvis sites) obtained on a preclinical system for CBCT-guided radiation therapy. The algorithm provides significant reduction in scatter artifacts without compromise in contrast-to-noise ratio (CNR). For example, in a head phantom, cupping artifact was essentially eliminated, CT number accuracy was restored to within 3%, and CNR (breast-to-water) was improved by up to 50%. Similarly in a body phantom, cupping artifact was reduced by at least a factor of 2 without loss in CNR. Patient images demonstrate significantly increased uniformity, accuracy, and contrast, with an overall improvement in image quality in all sites investigated. Qualitative evaluation illustrates that soft-tissue structures that are otherwise undetectable are clearly delineated in scatter-corrected reconstructions. Since scatter is estimated directly in each projection, the algorithm is robust with respect to system geometry, patient size and heterogeneity, patient motion, etc. Operating without prior information, analytical modeling

  15. Kinetic model of the bichromatic dark trap for atoms

    Science.gov (United States)

    Krasnov, I. V.

    2017-08-01

    A kinetic model of atom confinement in a bichromatic dark trap (BDT) is developed with the goal of describing its dissipative properties. The operating principle of the deep BDT is based on using the combination of multiple bichromatic cosine-Gaussian optical beams (CGBs) for creating high-potential barriers, which is described in our previous work (Krasnov 2016 Laser Phys. 26 105501). In the indicated work, particle motion in the BDT is described in terms of classical trajectories. In the present study, particle motion is analyzed by means of the Wigner function (phase-space distribution function (DF)), which allows one to properly take into account the quantum fluctuations of optical forces. Besides, we consider an improved scheme of the BDT, where CGBs create, apart from plane potential barriers, a narrow cooling layer. We find an asymptotic solution of the Fokker-Planck equation for the DF and show that the DF of particles deeply trapped in a BDT with a cooling layer is the Tsallis distribution with the effective temperature, which can be considerably lower than in a BDT without a cooling layer. Moreover, it can be adjusted by slightly changing the CGBs’ radii. We also study the effect of particle escape from the trap due to the scattering of resonant photons and show that the particle lifetime in a BDT can exceed several tens of hours when it is limited by photon scattering.

  16. Hyper-Rayleigh scattering and hyper-Raman scattering of dye-adsorbed silver nanoparticles induced by a focused continuous-wave near-infrared laser

    International Nuclear Information System (INIS)

    Itoh, Tamitake; Ozaki, Yukihiro; Yoshikawa, Hiroyuki; Ihama, Takashi; Masuhara, Hiroshi

    2006-01-01

    We report that hyper-Rayleigh scattering, surface-enhanced hyper-Raman scattering, and two-photon excited luminescence occur intermittently by focusing a continuous-wave near-infrared (cw-NIR) laser into a colloidal silver solution including rhodamine 6G (R6G) and sodium chloride (NaCl). On the other hand, continuous hyper-Rayleigh scattering is observed from colloidal silver free from R6G and NaCl, demonstrating that hyper-Raman scattering and two-photon excited luminescence are attributed to R6G and their intermittent features are dependent on the colloidal dispersion. These results suggest that the cw-NIR laser has three roles; the source of the nonlinear response, optical trapping of nanoparticles, and making nanoparticle aggregates possessing the high activity for the nonlinear response

  17. Mathematical Modeling of Resonant Processes in Confined Geometry of Atomic and Atom-Ion Traps

    Science.gov (United States)

    Melezhik, Vladimir S.

    2018-02-01

    We discuss computational aspects of the developed mathematical models for resonant processes in confined geometry of atomic and atom-ion traps. The main attention is paid to formulation in the nondirect product discrete-variable representation (npDVR) of the multichannel scattering problem with nonseparable angular part in confining traps as the boundary-value problem. Computational efficiency of this approach is demonstrated in application to atomic and atom-ion confinement-induced resonances we predicted recently.

  18. Nonlinear behavior of stimulated scatter in large underdense plasmas

    International Nuclear Information System (INIS)

    Kruer, W.L.; Estabrook, K.G.

    1979-01-01

    Several nonlinear effects which limit Brillouin and Raman scatter of intense light in large underdense plasmas are examined. After briefly considering ion trapping and harmonic generation, we focus on the self-consistent ion heating which occurs as an integral part of the Brillouin scattering process. In the long-term nonlinear state, the ion wave amplitude is determined by damping on the heated ion tail which self-consistently forms. A simple model of the scatter is presented and compared with particle simulations. A similar model is also applied to Raman scatter and compared with simulations. Our calculations emphasize that modest tails on the electron distribution function can significantly limit instabilities involving electron plasma waves

  19. 3-T direct MR arthrography of the wrist: Value of finger trap distraction to assess intrinsic ligament and triangular fibrocartilage complex tears

    Energy Technology Data Exchange (ETDEWEB)

    Cerny, Milena; Marlois, Romain [Department of Diagnostic and Interventional Radiology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Rue du Bugnon 46, 1011 Lausanne (Switzerland); Theumann, Nicolas [Institute of Radiology, Clinique Hirslanden Bois-Cerf, Avenue d’Ouchy 31, 1006 Lausanne (Switzerland); Bollmann, Christof; Wehrli, Laurent [Department of Plastic and Hand Surgery, Clinique Longeraie and Centre Hospitalier Universitaire Vaudois, University of Lausanne, Avenue de la Gare 9, 1003 Lausanne (Switzerland); Richarme, Delphine [Institute of Radiology, Clinique Hirslanden Bois-Cerf, Avenue d’Ouchy 31, 1006 Lausanne (Switzerland); Meuli, Reto [Department of Diagnostic and Interventional Radiology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Rue du Bugnon 46, 1011 Lausanne (Switzerland); Becce, Fabio, E-mail: fabio.becce@chuv.ch [Department of Diagnostic and Interventional Radiology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Rue du Bugnon 46, 1011 Lausanne (Switzerland)

    2013-10-01

    Purpose: To determine the value of applying finger trap distraction during direct MR arthrography of the wrist to assess intrinsic ligament and triangular fibrocartilage complex (TFCC) tears. Materials and methods: Twenty consecutive patients were prospectively investigated by three-compartment wrist MR arthrography. Imaging was performed with 3-T scanners using a three-dimensional isotropic (0.4 mm) T1-weighted gradient-recalled echo sequence, with and without finger trap distraction (4 kg). In a blind and independent fashion, two musculoskeletal radiologists measured the width of the scapholunate (SL), lunotriquetral (LT) and ulna-TFC (UTFC) joint spaces. They evaluated the amount of contrast medium within these spaces using a four-point scale, and assessed SL, LT and TFCC tears, as well as the disruption of Gilula's carpal arcs. Results: With finger trap distraction, both readers found a significant increase in width of the SL space (mean Δ = +0.1 mm, p ≤ 0.040), and noticed more contrast medium therein (p ≤ 0.035). In contrast, the differences in width of the LT (mean Δ = +0.1 mm, p ≥ 0.057) and UTFC (mean Δ = 0 mm, p ≥ 0.728) spaces, as well as the amount of contrast material within these spaces were not statistically significant (p = 0.607 and ≥0.157, respectively). Both readers detected more SL (Δ = +1, p = 0.157) and LT (Δ = +2, p = 0.223) tears, although statistical significance was not reached, and Gilula's carpal arcs were more frequently disrupted during finger trap distraction (Δ = +5, p = 0.025). Conclusion: The application of finger trap distraction during direct wrist MR arthrography may enhance both detection and characterisation of SL and LT ligament tears by widening the SL space and increasing the amount of contrast within the SL and LT joint spaces.

  20. 3-T direct MR arthrography of the wrist: value of finger trap distraction to assess intrinsic ligament and triangular fibrocartilage complex tears.

    Science.gov (United States)

    Cerny, Milena; Marlois, Romain; Theumann, Nicolas; Bollmann, Christof; Wehrli, Laurent; Richarme, Delphine; Meuli, Reto; Becce, Fabio

    2013-10-01

    To determine the value of applying finger trap distraction during direct MR arthrography of the wrist to assess intrinsic ligament and triangular fibrocartilage complex (TFCC) tears. Twenty consecutive patients were prospectively investigated by three-compartment wrist MR arthrography. Imaging was performed with 3-T scanners using a three-dimensional isotropic (0.4 mm) T1-weighted gradient-recalled echo sequence, with and without finger trap distraction (4 kg). In a blind and independent fashion, two musculoskeletal radiologists measured the width of the scapholunate (SL), lunotriquetral (LT) and ulna-TFC (UTFC) joint spaces. They evaluated the amount of contrast medium within these spaces using a four-point scale, and assessed SL, LT and TFCC tears, as well as the disruption of Gilula's carpal arcs. With finger trap distraction, both readers found a significant increase in width of the SL space (mean Δ = +0.1mm, p ≤ 0.040), and noticed more contrast medium therein (p ≤ 0.035). In contrast, the differences in width of the LT (mean Δ = +0.1 mm, p ≥ 0.057) and UTFC (mean Δ = 0mm, p ≥ 0.728) spaces, as well as the amount of contrast material within these spaces were not statistically significant (p = 0.607 and ≥ 0.157, respectively). Both readers detected more SL (Δ = +1, p = 0.157) and LT (Δ = +2, p = 0.223) tears, although statistical significance was not reached, and Gilula's carpal arcs were more frequently disrupted during finger trap distraction (Δ = +5, p = 0.025). The application of finger trap distraction during direct wrist MR arthrography may enhance both detection and characterisation of SL and LT ligament tears by widening the SL space and increasing the amount of contrast within the SL and LT joint spaces. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Nanographene charge trapping memory with a large memory window

    International Nuclear Information System (INIS)

    Meng, Jianling; Yang, Rong; Zhao, Jing; He, Congli; Wang, Guole; Shi, Dongxia; Zhang, Guangyu

    2015-01-01

    Nanographene is a promising alternative to metal nanoparticles or semiconductor nanocrystals for charge trapping memory. In general, a high density of nanographene is required in order to achieve high charge trapping capacity. Here, we demonstrate a strategy of fabrication for a high density of nanographene for charge trapping memory with a large memory window. The fabrication includes two steps: (1) direct growth of continuous nanographene film; and (2) isolation of the as-grown film into high-density nanographene by plasma etching. Compared with directly grown isolated nanographene islands, abundant defects and edges are formed in nanographene under argon or oxygen plasma etching, i.e. more isolated nanographene islands are obtained, which provides more charge trapping sites. As-fabricated nanographene charge trapping memory shows outstanding memory properties with a memory window as wide as ∼9 V at a relative low sweep voltage of ±8 V, program/erase speed of ∼1 ms and robust endurance of >1000 cycles. The high-density nanographene charge trapping memory provides an outstanding alternative for downscaling technology beyond the current flash memory. (paper)

  2. Optical trapping and Raman spectroscopy of single nanostructures using standing-wave Raman tweezers

    Science.gov (United States)

    Wu, Mu-ying; He, Lin; Chen, Gui-hua; Yang, Guang; Li, Yong-qing

    2017-08-01

    Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped micro-particle, but is generally less effective for individual nano-sized objects in the 10-100 nm range. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap (SWOT) with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus is more stable and sensitive in measuring nanoparticles in liquid with 4-8 fold increase in the Raman signals. It can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, polystyrene beads (100 nm), SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles with a low laser power of a few milliwatts. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints.

  3. Anomalous resonance-radiation energy-transfer rate in a scattering dispersive medium

    International Nuclear Information System (INIS)

    Shekhtman, V.L.

    1992-01-01

    This paper describes a generalization of the concept of group velocity as an energy-transfer rate in a dispersive medium with complex refractive index when the polaritons, which are energy carriers, undergo scattering, in contrast to the classical concept of the group velocity of free polaritons (i.e., without scattering in the medium). The concept of delay time from quantum multichannel-scattering, theory is used as the fundamental concept. Based on Maxwell's equations and the new mathematical Φ-function method, a consistent conceptual definition of group velocity in terms of the ratio of the coherent-energy flux density to the coherent-energy density is obtained for the first time, and a critical analysis of the earlier (Brillouin) understanding of energy-transfer rate is given in the light of radiation-trapping theory and the quantum theory of resonance scattering. The role of generalized group velocity is examined for the interpretation of the phenomenon of multiple resonance scattering, or radiation diffusion. The question of causality for the given problem is touched upon; a new relationship is obtained, called the microcausality condition, which limits the anomalous values of group velocity by way of the indeterminacy principle and the relativistic causality principle for macroscopic time intervals directly measurable in experiment, whereby attention is focused on the connection of the given microcausality condition and the well-known Wigner inequality for the time delay of spherical waves. 22 refs

  4. Transfer of orbital angular momentum to an optically trapped low-index particle

    International Nuclear Information System (INIS)

    Garces-Chavez, V.; Sibbett, W.; Dholakia, K.; Volke-Sepulveda, K.; Chavez-Cerda, S.

    2002-01-01

    We demonstrate the transfer of orbital angular momentum from a light beam to a trapped low-index particle. The particle is trapped in a dark annular region of a high-order Bessel beam and rotates around the beam axis due to scattering from the helical wave fronts of the light beam. A general theoretical geometrical optics model is developed that, applied to our specific situation, corroborates tweezing and transfer of orbital angular momentum to the low-index particle. Good quantitative agreement between theory and experiment for particle rotation rates is observed

  5. Direct observation of 0.57 eV trap-related RF output power reduction in AlGaN/GaN high electron mobility transistors

    Science.gov (United States)

    Arehart, A. R.; Sasikumar, A.; Rajan, S.; Via, G. D.; Poling, B.; Winningham, B.; Heller, E. R.; Brown, D.; Pei, Y.; Recht, F.; Mishra, U. K.; Ringel, S. A.

    2013-02-01

    This paper reports direct evidence for trap-related RF output power loss in GaN high electron mobility transistors (HEMTs) grown by metal organic chemical vapor deposition (MOCVD) through increased concentration of a specific electron trap at EC-0.57 eV that is located in the drain access region, as a function of accelerated life testing (ALT). The trap is detected by constant drain current deep level transient spectroscopy (CID-DLTS) and the CID-DLTS thermal emission time constant precisely matches the measured drain lag. Both drain lag and CID-DLTS measurements show this state to already exist in pre-stressed devices, which coupled with its strong increase in concentration as a function of stress in the absence of significant increases in concentrations of other detected traps, imply its role in causing degradation, in particular knee walkout. This study reveals EC-0.57 eV trap concentration tracks degradation induced by ALT for MOCVD-grown HEMTs supplied by several commercial and university sources. The results suggest this defect has a common source and may be a key degradation pathway in AlGaN/GaN HEMTs and/or an indicator to predict device lifetime.

  6. Trapped Fermions with Density Imbalance in the Bose-Einstein Condensate Limit

    International Nuclear Information System (INIS)

    Pieri, P.; Strinati, G.C.

    2006-01-01

    We analyze the effects of imbalancing the populations of two-component trapped fermions, in the Bose-Einstein condensate limit of the attractive interaction between different fermions. Starting from the gap equation with two fermionic chemical potentials, we derive a set of coupled equations that describe composite bosons and excess fermions. We include in these equations the processes leading to the correct dimer-dimer and dimer-fermion scattering lengths. The coupled equations are then solved in the Thomas-Fermi approximation to obtain the density profiles for composite bosons and excess fermions, which are relevant to the recent experiments with trapped fermionic atoms

  7. Directed seed dispersal towards areas with low conspecific tree density by a scatter-hoarding rodent

    NARCIS (Netherlands)

    Hirsch, Ben T.; Kays, Roland; Pereira, Veronica E.; Jansen, Patrick A.

    2012-01-01

    Scatter-hoarding animals spread out cached seeds to reduce density-dependent theft of their food reserves. This behaviour could lead to directed dispersal into areas with lower densities of conspecific trees, where seed and seedling survival are higher, and could profoundly affect the spatial

  8. Stability of trapped electrons in SiO2

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Flament, O.; Leray, J.L.

    1998-01-01

    Electron trapping near the Si/SiO 2 interface plays a crucial role in mitigating the response of MOS devices to ionizing radiation or high-field stress. These electrons offset positive charge due to trapped holes, and can be present at densities exceeding 10 12 cm -2 in the presence of a similar density of trapped positive charge. The nature of the defects that serve as hosts for trapped electrons in the near-interfacial SiO 2 is presently unknown, although there is compelling evidence that these defects are often intimately associated with trapped holes. This association is depicted most directly in the model of Lelis et al., which suggests that trapped electrons and holes occupy opposite sides of a compensated E center in SiO 2 . Charge exchange between electron traps and the Si can occur over a wide range of time scales, depending on the trap depth and location relative to the Si/SiO 2 interface. Here the authors report a detailed study of the stability of electron traps associated with trapped holes near the Si/SiO 2 interface

  9. High-field penning-malmberg trap: confinement properties and use in positron accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, J.H.

    1997-09-01

    This dissertation reports on the development of the 60 kG cryogenic positron trap at Lawrence Livermore National Laboratory, and compares the trap`s confinement properties with other nonneutral plasma devices. The device is designed for the accumulation of up to 2{times}10{sup 9} positrons from a linear-accelerator source. This positron plasma could then be used in Bhabha scattering experiments. Initial efforts at time-of-flight accumulation of positrons from the accelerator show rapid ({approximately}100 ms) deconfinement, inconsistent with the long electron lifetimes. Several possible deconfinement mechanisms have been explored, including annihilation on residual gas, injection heating, rf noise from the accelerator, magnet field curvature, and stray fields. Detailed studies of electron confinement demonstrate that the empirical scaling law used to design the trap cannot be extrapolated into the parameter regime of this device. Several possible methods for overcoming these limitations are presented.

  10. Trapping Dust to Form Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Kraus (University of Exeter) in a recent publication. Kraus and collaborators show that the protoplanetary disk of V1247 Orionis contains a ring-shaped, asymmetric inner disk component, as well as a sharply confined crescent structure. These structures are consistent with the morphologies expected from theoretical models of vortex formation in disks.Kraus and collaborators propose the following picture: an early planet is orbiting at 100 AU within the disk, generating a one-armed spiral arm as material feeds the protoplanet. As the protoplanet orbits, it clears a gap between the ring and the crescent, and it simultaneously triggers two vortices, visible as the crescent and the bright asymmetry in the ring. These vortices are then able to trap millimeter-sized particles.Gas column density of the authors radiation-hydrodynamic simulation of V1247 Orioniss disk. [Kraus et al. 2017]The authors run detailed hydrodynamics simulations of this scenario and compare them (as well as alternative theories) to the ALMA observations of V1247 Orionis. The simulations support their model, producing sample scattered-light images thatmatchwell the one-armed spiral observed in previous scattered-light images of the disk.How can we confirm V1247 Orionis providesan example of dust-trapping vortices? One piece of supporting evidence would be the discovery of the protoplanet that Kraus and collaborators theorize triggered the potential vortices in this disk. Future deeper ALMA imaging may make this possible, helping to confirm our picture of how dust builds into planets.CitationStefan Kraus et al 2017 ApJL 848 L11. doi:10.3847/2041-8213/aa8edc

  11. Parametric trapping of electromagnetic waves in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Silin, V.P.; Starodub, A.N.

    1977-01-01

    Considered is parametric instability in an inhomogeneous plasma at which a pumping wave is transformed to an electromagnetic wave and aperiodically in-time-growing disturbances. It is shown that after achievement of some boundary pumping value by electric field intensity an absolute parametric instability evolution becomes possible. In-time growing plasma disturbances are localized near electric field extremums of a pumping wave. Such localization areas are small as compared to characteristic size of pumping inhomogeneity in a plasma. The secondary electromagnetic waves stay within the localization areas and, therefore, are not scattered by a plasma. As following from this it has been established, that due to parametric instability electromagnetic radiation trapping by a plasma occurs. Such a trapping is considerably connected with a spatial structure of a pumping field and it cannot arise within the field of a running wave in the theoretical model considered. However parametric trapping turns out to be possible even with very small reflection coefficients

  12. Effect of Thermospheric Neutral Density upon Inner Trapped-belt Proton Flux

    Science.gov (United States)

    Wilson, Thomas L.; Lodhi, M. A. K.; Diaz, Abel B.

    2007-01-01

    We wish to point out that a secular change in the Earth's atmospheric neutral density alters charged-particle lifetime in the inner trapped radiation belts, in addition to the changes recently reported as produced by greenhouse gases. Heretofore, changes in neutral density have been of interest primarily because of their effect on the orbital drag of satellites. We extend this to include the orbital lifetime of charged particles in the lower radiation belts. It is known that the charged-belt population is coupled to the neutral density of the atmosphere through changes induced by solar activity, an effect produced by multiple scattering off neutral and ionized atoms along with ionization loss in the thermosphere where charged and neutral populations interact. It will be shown here that trapped-belt flux J is bivariant in energy E and thermospheric neutral density , as J(E,rho). One can conclude that proton lifetimes in these belts are also directly affected by secular changes in the neutral species populating the Earth s thermosphere. This result is a consequence of an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present.

  13. Metal oxide nanoparticle mediated enhanced Raman scattering and its use in direct monitoring of interfacial chemical reactions.

    Science.gov (United States)

    Li, Li; Hutter, Tanya; Finnemore, Alexander S; Huang, Fu Min; Baumberg, Jeremy J; Elliott, Stephen R; Steiner, Ullrich; Mahajan, Sumeet

    2012-08-08

    Metal oxide nanoparticles (MONPs) have widespread usage across many disciplines, but monitoring molecular processes at their surfaces in situ has not been possible. Here we demonstrate that MONPs give highly enhanced (×10(4)) Raman scattering signals from molecules at the interface permitting direct monitoring of their reactions, when placed on top of flat metallic surfaces. Experiments with different metal oxide materials and molecules indicate that the enhancement is generic and operates at the single nanoparticle level. Simulations confirm that the amplification is principally electromagnetic and is a result of optical modulation of the underlying plasmonic metallic surface by MONPs, which act as scattering antennae and couple light into the confined region sandwiched by the underlying surface. Because of additional functionalities of metal oxides as magnetic, photoelectrochemical and catalytic materials, enhanced Raman scattering mediated by MONPs opens up significant opportunities in fundamental science, allowing direct tracking and understanding of application-specific transformations at such interfaces. We show a first example by monitoring the MONP-assisted photocatalytic decomposition reaction of an organic dye by individual nanoparticles.

  14. Science, conservation, and camera traps

    Science.gov (United States)

    Nichols, James D.; Karanth, K. Ullas; O'Connel, Allan F.; O'Connell, Allan F.; Nichols, James D.; Karanth, K. Ullas

    2011-01-01

    Biologists commonly perceive camera traps as a new tool that enables them to enter the hitherto secret world of wild animals. Camera traps are being used in a wide range of studies dealing with animal ecology, behavior, and conservation. Our intention in this volume is not to simply present the various uses of camera traps, but to focus on their use in the conduct of science and conservation. In this chapter, we provide an overview of these two broad classes of endeavor and sketch the manner in which camera traps are likely to be able to contribute to them. Our main point here is that neither photographs of individual animals, nor detection history data, nor parameter estimates generated from detection histories are the ultimate objective of a camera trap study directed at either science or management. Instead, the ultimate objectives are best viewed as either gaining an understanding of how ecological systems work (science) or trying to make wise decisions that move systems from less desirable to more desirable states (conservation, management). Therefore, we briefly describe here basic approaches to science and management, emphasizing the role of field data and associated analyses in these processes. We provide examples of ways in which camera trap data can inform science and management.

  15. Enhanced ionized impurity scattering in nanowires

    Science.gov (United States)

    Oh, Jung Hyun; Lee, Seok-Hee; Shin, Mincheol

    2013-06-01

    The electronic resistivity in silicon nanowires is investigated by taking into account scattering as well as the donor deactivation from the dielectric mismatch. The effects of poorly screened dopant atoms from the dielectric mismatch and variable carrier density in nanowires are found to play a crucial role in determining the nanowire resistivity. Using Green's function method within the self-consistent Born approximation, it is shown that donor deactivation and ionized impurity scattering combined with the charged interface traps successfully to explain the increase in the resistivity of Si nanowires while reducing the radius, measured by Björk et al. [Nature Nanotech. 4, 103 (2009)].

  16. Hydrogen and deuterium trapping in iron

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, H H; Lin, R W

    1981-02-01

    The research described is directed at present almost exclusively to hydrogen transport, including both chemical and physical trapping, in iron and iron-base alloys. Some attention is directed to isotope effects. Efforts are made to clarify and understand hydrogen-related phenomena which are believed to be of direct importance to practical performance.

  17. Spectral and directional dependence of light-trapping in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ulbrich, Carolin

    2011-02-17

    This thesis investigates the directional and spectral dependence of light-incoupling and light-trapping in solar cells. The light-trapping does not notably change under increased angles of incidence. To enhance the incoupling at the front of the solar cell, the effects of a textured surface structure on the cover glass of the solar cell are investigated. The texture reduces the reflectance at the air-glass interface and, additionally, reduces the reflection losses originating at the interface between the glass and the transparent conductive oxide (TCO) as well as the TCO and the silicon (Si) absorber due to the randomization of light. On samples without a textured TCO/Si interface, the textured foil induces additional light-trapping in the photovoltaically active absorber material. This effect is not observed for samples with a textured TCO/Si interface. In this case, using tandem solar cells, a redistribution of light absorption in the top and bottom subcells is detected. The antireflective texture increases the short circuit current density in thin film silicon tandem solar cells by up to 1 mA/cm{sup 2}, and the conversion efficiency by up to 0.7 % absolute. The increase in the annual yield of solar cells is estimated to be up to 10 %. Further, the spectral dependence of the efficiency and annual yield of a tandem solar cell was investigated. The daily variation of the incident spectrum causes a change in the current matching of the serial connected subcells. Simulations determine the optimum subcell layer thicknesses of tandem solar cells. The thicknesses optimized in respect to the annual yield overlap in a wide range for both investigated locations with those for the AM1.5g standard spectrum. Though, a slight top limitation is favorable. Matching the short circuit currents of the subcells maximizes the overall current, but minimizes the fill factor. This thesis introduces a new definition for the matching condition of tandem solar cells. This definition

  18. First direct mass measurements on nobelium and lawrencium with the Penning trap mass spectrometer SHIPTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Dworschak, Michael Gerhard

    2009-12-08

    The Penning trap mass spectrometer SHIPTRAP at GSI Darmstadt was set up for high-precision mass measurements of heavy radionuclides produced in fusion evaporation reactions and separated from the primary beam by the velocity filter SHIP. It consists of a gas stopping cell for the deceleration of the high energetic reaction products, an RFQ cooler and buncher for cooling and accumulation of the ions, and a double Penning trap system to perform mass measurements. The mass is determined by measuring the cyclotron frequency of the ion of interest in a strong homogeneous magnetic field and comparing it to the frequency of a well-known reference ion. With this method relative uncertainties in the order of 10{sup -8} can be achieved. Recently, mass measurements of the three nobelium isotopes {sup 252-254}No (Z=102) and the lawrencium isotope {sup 255}Lr (Z=103) were performed successfully. These were the first direct mass measurements of transuranium elements ever per- formed. The production rate of the atoms of interest was about one per second or less. The results of the measurements on nobelium confirm the previous mass values which were deduced from Q{sub {alpha}} values. In the case of {sup 255}Lr the mass excess value, which was previously only estimated from systematic trends, was for the first time directly measured. These results mark the first step in the exploration of the region of transuranium elements which is planned at SHIPTRAP. The main objective is to fix the endpoints of {alpha} decay chains which are originating from superheavy elements close to the predicted island of stability. (orig.)

  19. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics

    Science.gov (United States)

    Cremer, Johannes W.; Thaler, Klemens M.; Haisch, Christoph; Signorell, Ruth

    2016-03-01

    Photochemistry taking place in atmospheric aerosol droplets has a significant impact on the Earth's climate. Nanofocusing of electromagnetic radiation inside aerosols plays a crucial role in their absorption behaviour, since the radiation flux inside the droplet strongly affects the activation rate of photochemically active species. However, size-dependent nanofocusing effects in the photokinetics of small aerosols have escaped direct observation due to the inability to measure absorption signatures from single droplets. Here we show that photoacoustic measurements on optically trapped single nanodroplets provide a direct, broadly applicable method to measure absorption with attolitre sensitivity. We demonstrate for a model aerosol that the photolysis is accelerated by an order of magnitude in the sub-micron to micron size range, compared with larger droplets. The versatility of our technique promises broad applicability to absorption studies of aerosol particles, such as atmospheric aerosols where quantitative photokinetic data are critical for climate predictions.

  20. A Computer Model of Insect Traps in a Landscape

    Science.gov (United States)

    Manoukis, Nicholas C.; Hall, Brian; Geib, Scott M.

    2014-11-01

    Attractant-based trap networks are important elements of invasive insect detection, pest control, and basic research programs. We present a landscape-level, spatially explicit model of trap networks, focused on detection, that incorporates variable attractiveness of traps and a movement model for insect dispersion. We describe the model and validate its behavior using field trap data on networks targeting two species, Ceratitis capitata and Anoplophora glabripennis. Our model will assist efforts to optimize trap networks by 1) introducing an accessible and realistic mathematical characterization of the operation of a single trap that lends itself easily to parametrization via field experiments and 2) allowing direct quantification and comparison of sensitivity between trap networks. Results from the two case studies indicate that the relationship between number of traps and their spatial distribution and capture probability under the model is qualitatively dependent on the attractiveness of the traps, a result with important practical consequences.

  1. Coherent states approach to Penning trap

    International Nuclear Information System (INIS)

    Fernandez, David J; Velazquez, Mercedes

    2009-01-01

    By using a matrix technique, which allows us to identify directly the ladder operators, the Penning trap coherent states are derived as eigenstates of the appropriate annihilation operators. These states are compared with those obtained through the displacement operator. The associated wavefunctions and mean values for some relevant operators in these states are also evaluated. It turns out that the Penning trap coherent states minimize the Heisenberg uncertainty relation

  2. The substrate-binding protein imposes directionality on an electrochemical sodium gradient-driven TRAP transporter

    NARCIS (Netherlands)

    Mulligan, Christopher; Geertsma, Eric R.; Severi, Emmanuele; Kelly, David J.; Poolman, Bert; Thomas, Gavin H.

    2009-01-01

    Substrate-binding protein-dependent secondary transporters are widespread in prokaryotes and are represented most frequently by members of the tripartite ATP-independent periplasmic (TRAP) transporter family. Here, we report the membrane reconstitution of a TRAP transporter, the sialic acid-specific

  3. Laser-induced stimulated Raman scattering in the forward direction of a droplet - Comparison of Mie theory with geometrical optics

    Science.gov (United States)

    Srivastava, Vandana; Jarzembski, Maurice A.

    1991-01-01

    This paper uses Mie theory to treat electromagnetic scattering and to evaluate field enhancement in the forward direction of a small droplet irradiated by a high-energy beam and compares the results of calculations with the field-enhancement evaluation obtained via geometrical optics treatment. Results of this comparison suggest that the field enhancement located at the critical ring region encircling the axis in the forward direction of the droplet can support laser-induced Raman scattering. The results are supported by experimental observations of the interaction of a 120-micron-diam water droplet with a high-energy Nd:YAG laser beam.

  4. Trapped electron losses by interactions with coherent VLF waves

    International Nuclear Information System (INIS)

    Walt, M.; Inan, U.S.; Voss, H.D.

    1996-01-01

    VLF whistler waves from lightning enter the magnetosphere and cause the precipitation of energetic trapped electrons by pitch angle scattering. These events, known as Lightning-induced Electron Precipitation (LEP) have been detected by satellite and rocket instruments and by perturbations of VLF waves traveling in the earth-ionosphere waveguide. Detailed comparison of precipitating electron energy spectra and time dependence are in general agreement with calculations of trapped electron interactions with ducted whistler waves. In particular the temporal structure of the precipitation and the dynamic energy spectra of the electrons confirm this interpretation of the phenomena. There are discrepancies between observed and measured electron flux intensities and pitch angle distributions, but these quantities are sensitive to unknown wave intensities and trapped particle fluxes near the loss cone angle. The overall effect of lightning generated VLF waves on the lifetime of trapped electrons is still uncertain. The flux of electrons deflected into the bounce loss cone by a discrete whistler wave has been measured in a few cases. However, the area of the precipitation region is not known, and thus the total number of electrons lost in an LEP event can only be estimated. While the LEP events are dramatic, more important effects on trapped electrons may arise from the small but numerous deflections which increase the pitch angle diffusion rate of the electron population. copyright 1996 American Institute of Physics

  5. Trapped electron losses by interactions with coherent VLF waves

    Science.gov (United States)

    Walt, M.; Inan, U. S.; Voss, H. D.

    1996-07-01

    VLF whistler waves from lightning enter the magnetosphere and cause the precipitation of energetic trapped electrons by pitch angle scattering. These events, known as Lightning-induced Electron Precipitation (LEP) have been detected by satellite and rocket instruments and by perturbations of VLF waves traveling in the earth-ionosphere waveguide. Detailed comparison of precipitating electron energy spectra and time dependence are in general agreement with calculations of trapped electron interactions with ducted whistler waves. In particular the temporal structure of the precipitation and the dynamic energy spectra of the electrons confirm this interpretation of the phenomena. There are discrepancies between observed and measured electron flux intensities and pitch angle distributions, but these quantities are sensitive to unknown wave intensities and trapped particle fluxes near the loss cone angle. The overall effect of lightning generated VLF waves on the lifetime of trapped electrons is still uncertain. The flux of electrons deflected into the bounce loss cone by a discrete whistler wave has been measured in a few cases. However, the area of the precipitation region is not known, and thus the total number of electrons lost in an LEP event can only be estimated. While the LEP events are dramatic, more important effects on trapped electrons may arise from the small but numerous deflections which increase the pitch angle diffusion rate of the electron population.

  6. Cross plane scattering correction

    International Nuclear Information System (INIS)

    Shao, L.; Karp, J.S.

    1990-01-01

    Most previous scattering correction techniques for PET are based on assumptions made for a single transaxial plane and are independent of axial variations. These techniques will incorrectly estimate the scattering fraction for volumetric PET imaging systems since they do not take the cross-plane scattering into account. In this paper, the authors propose a new point source scattering deconvolution method (2-D). The cross-plane scattering is incorporated into the algorithm by modeling a scattering point source function. In the model, the scattering dependence both on axial and transaxial directions is reflected in the exponential fitting parameters and these parameters are directly estimated from a limited number of measured point response functions. The authors' results comparing the standard in-plane point source deconvolution to the authors' cross-plane source deconvolution show that for a small source, the former technique overestimates the scatter fraction in the plane of the source and underestimate the scatter fraction in adjacent planes. In addition, the authors also propose a simple approximation technique for deconvolution

  7. Boson-fermion mixtures inside an elongated cigar-shaped trap

    International Nuclear Information System (INIS)

    Akdeniz, Z; Vignolo, P; Tosi, M P

    2005-01-01

    We present mean-field calculations of the equilibrium state in a gaseous mixture of bosonic and spin-polarized fermionic atoms with repulsive or attractive interspecies interactions, confined inside a cigar-shaped trap under conditions such that the radial thickness of the two atomic clouds is approaching the magnitude of the s-wave scattering lengths. In this regime, the kinetic pressure of the fermionic component is dominant. Full demixing under repulsive boson-fermion interactions can occur only when the number of fermions in the trap is below a threshold, and collapse under attractive interactions is suppressed within the range of validity of the mean-field model. Specific numerical illustrations are given for values of system parameters obtaining in 7 Li- 6 Li clouds

  8. Measurement of Photon Production in the Very Forward Direction in Deep-Inelastic Scattering at HERA

    CERN Document Server

    Aaron, F.D.; Andreev, V.; Backovic, S.; Baghdasaryan, A.; Baghdasaryan, S.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Belov, P.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Bruncko, D.; Bunyatyan, A.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Ceccopieri, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cvach, J.; Dainton, J.B.; Daum, K.; Delcourt, B.; Delvax, J.; De Wolf, E.A.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Egli, S.; Eliseev, A.; Elsen, E.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jonsson, L.; Jung, H.; Kapichine, M.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kluge, T.; Kogler, R.; Kostka, P.; Kraemer, M.; Kretzschmar, J.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lendermann, V.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lopez-Fernandez, R.; Lubimov, V.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mudrinic, M.; Muller, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikitin, D.; Nowak, G.; Nowak, K.; Olsson, J.E.; Ozerov, D.; Pahl, P.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Povh, B.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Tabasco, J.E.Ruiz; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, I.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sykora, T.; Thompson, P.D.; Tran, T.H.; Traynor, D.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zohrabyan, H.; Zomer, F.

    2011-01-01

    The production of photons at very small angles with respect to the proton beam direction is studied in deep-inelastic positron-proton scattering at HERA. The data are taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of $126 \\mathrm{pb}^{-1}$. The analysis covers the range of negative four momentum transfer squared at the positron vertex $67.9$ as a function of its transverse momentum $p_T^{lead}$ and longitudinal momentum fraction of the incoming proton $x_L^{lead}$. In addition, the cross sections are studied as a function of the sum of the longitudinal momentum fraction $x_L^{sum}$ of all photons in the pseudorapidity range $\\eta>7.9$. The cross sections are normalised to the inclusive deep-inelastic scattering cross section and compared to the predictions of models of deep-inelastic scattering and models of the hadronic interactions of high energy cosmic rays.

  9. Refraction, scattering, absorption and mode conversion of ECRH waves in RTP

    International Nuclear Information System (INIS)

    Smits, F.M.A.; Oomens, A.A.M.; Bank, S.L.; Bongers, W.A.; Polman, R.W.; Schueller, F.C.

    1993-01-01

    A diagnostic, TraP, has been installed which measures the Transmitted Power fraction of one of the two additional Electron Cyclotron Heating sources on the RTP tokamak (R=0.72 m, B 0 ≤2.5 T, a=0.164 m). The ECH power (60 GHz, 180 kW) of this source is launched in O-mode radially from the low field side into RTP. TraP is installed opposite to this launcher at the high field side to measure the transmitted power fraction. With TraP, studies on the refraction, scattering, absorption and mode conversion of the incoming beam have been performed. (orig.)

  10. A theoretical and numerical study of polarimetric scattering and emission from random rough surfaces with anisotropic directional spectrum

    Science.gov (United States)

    Yueh, S. H.; Kwok, R.

    1993-01-01

    In this paper, theoretical and numerical results of the polarimetric scattering and emission from random rough surfaces with anisotropic directional spectrum are presented for the remote sensing of ocean and soil surfaces. The polarimetric scattered field for rough dielectric surfaces is derived to the second order by the small perturbation method (SPM). It is found that the second-order scattered field is coherent in nature, and its coefficients for different polarizations present the lowest-order corrections to the Fresnel reflection coefficients of the surfaces. In addition, the cross-polarized (HV and VH) components of the coherent fields are reciprocal and not zero for surfaces with anisotropic directional spectrum when the azimuth angle of the incident direction is not aligned with the symmetry directions of surfaces. In order to verify the energy conservation condition of the theoretical results, which is important if the theory is to be applied to the passive polarimetry of rough surfaces, a Monte Carlo simulation is performed to numerically calculate the polarimetric reflectivities of one-dimensional random rough surfaces which are generated with a prescribed power-law spectrum in the spectral domain and transformed to the spatial domain by the FFT. The surfaces simulated by this approach are periodic with the period corresponding to the low-wavenumber cutoff. To calculate the scattering from periodic dielectric surfaces, the authors present a new numerical technique which applies the Floquet theorem to reduce the problem to one period and does not require the evaluation of one-dimensional periodic Green's function used in the conventional method of moment formulation. Once the scattering coefficients are obtained, the polarimetric Stokes vectors for the emission from the random surfaces are then calculated according to the Kirchhoff's law and are illustrated as functions of relative azimuth observation and row directions. The second-order SPM is also

  11. Studies of isotopic defined hydrogen beams scattering from Pd single-crystal surfaces

    International Nuclear Information System (INIS)

    Varlam, Mihai; Steflea, Dumitru

    2001-01-01

    An experimental investigation of hydrogen isotopes interaction with Pd single-crystal surface has been carried out using molecular beam technique. The energy dependence of the sticking probability and its relation with the trapping probability into the precursor state is studied by integrating the scattered angular distribution of hydrogen Isotopic defined beams from Pd (111) surface in the 40-400 K surface temperature range. The dependence has been evaluated by defining hydrogen molecular beams with different isotopic concentration - from the natural one to the 5% D/(D+H) ratio - and for different incident energies. The beam was directed onto a single-crystal Pd (111) surface. In the paper, we report the experimental results and some considerations related to it. (authors)

  12. Studies of isotopic defined hydrogen beams scattering from Pd single-crystal surfaces

    International Nuclear Information System (INIS)

    Varlam, Mihai; Steflea, Dumitru

    1999-01-01

    An experimental investigation of hydrogen isotopes interaction with Pd single-crystal surfaces has been carried out using molecular beam technique. The energy dependence of the sticking probability and its relation with the trapping probability into the precursor state is studied by integrating the scattered angular distribution of hydrogen isotopic defined beams from Pd (111) surfaces in the 40 - 400 K surface temperature range. The dependence has been evaluated by defining hydrogen molecular beams with different isotopic concentration - from the natural one until 5% D/(D + H) and different incident energies and directed onto a single - crystal Pd (111) surface. In the paper, we report the experimental results and some considerations related to them. (authors)

  13. Open quantum maps from complex scaling of kicked scattering systems

    Science.gov (United States)

    Mertig, Normann; Shudo, Akira

    2018-04-01

    We derive open quantum maps from periodically kicked scattering systems and discuss the computation of their resonance spectra in terms of theoretically grounded methods, such as complex scaling and sufficiently weak absorbing potentials. In contrast, we also show that current implementations of open quantum maps, based on strong absorptive or even projective openings, fail to produce the resonance spectra of kicked scattering systems. This comparison pinpoints flaws in current implementations of open quantum maps, namely, the inability to separate resonance eigenvalues from the continuum as well as the presence of diffraction effects due to strong absorption. The reported deviations from the true resonance spectra appear, even if the openings do not affect the classical trapped set, and become appreciable for shorter-lived resonances, e.g., those associated with chaotic orbits. This makes the open quantum maps, which we derive in this paper, a valuable alternative for future explorations of quantum-chaotic scattering systems, for example, in the context of the fractal Weyl law. The results are illustrated for a quantum map model whose classical dynamics exhibits key features of ionization and a trapped set which is organized by a topological horseshoe.

  14. Study of mode-converted and directly-excited ion Bernstein waves by CO2 laser scattering in Alcator C

    International Nuclear Information System (INIS)

    Takase, Y.; Fiore, C.L.; McDermott, F.S.; Moody, J.D.; Porkolab, M.; Shepard, T.; Squire, J.

    1987-01-01

    Mode-converted and directly excited ion Bernstein waves (IBW) were studied using CO 2 laser scattering in the Alcator C tokamak. During the ICRF fast wave heating experiments, mode-converted IBW was observed on the high-field side of the resonance in both second harmonic and minority heating regimes. By comparing the relative scattered powers from the two antennas separated by 180 0 toroidally, an increased toroidal wave damping with increasing density was inferred. In the IBW heating experiments, optimum direct excitation is obtained when an ion-cyclotron harmonic layer is located just behind the antenna. Wave absorption at the ω = 3Ω/sub D/ = 1.5Ω/sub H/ layer was directly observed. Edge ion heating was inferred from the IBW dispersion when this absorption layer was located in the plasma periphery, which may be responsible for the observed improvement in particle confinement

  15. High-efficiency γ-ray flash generation via multiple-laser scattering in ponderomotive potential well.

    Science.gov (United States)

    Gong, Z; Hu, R H; Shou, Y R; Qiao, B; Chen, C E; He, X T; Bulanov, S S; Esirkepov, T Zh; Bulanov, S V; Yan, X Q

    2017-01-01

    γ-ray flash generation in near-critical-density target irradiated by four symmetrical colliding laser pulses is numerically investigated. With peak intensities about 10^{23} W/cm^{2}, the laser pulses boost electron energy through direct laser acceleration, while pushing them inward with the ponderomotive force. After backscattering with counterpropagating laser, the accelerated electron is trapped in the electromagnetic standing waves or the ponderomotive potential well created by the coherent overlapping of the laser pulses, and emits γ-ray photons in a multiple-laser-scattering regime, where electrons act as a medium transferring energy from the laser to γ rays in the ponderomotive potential valley.

  16. Sediment Trapping in Estuaries

    Science.gov (United States)

    Burchard, Hans; Schuttelaars, Henk M.; Ralston, David K.

    2018-01-01

    Estuarine turbidity maxima (ETMs) are generated by a large suite of hydrodynamic and sediment dynamic processes, leading to longitudinal convergence of cross-sectionally integrated and tidally averaged transport of cohesive and noncohesive suspended particulate matter (SPM). The relative importance of these processes for SPM trapping varies substantially among estuaries depending on topography, fluvial and tidal forcing, and SPM composition. The high-frequency dynamics of ETMs are constrained by interactions with the low-frequency dynamics of the bottom pool of easily erodible sediments. Here, we use a transport decomposition to present processes that lead to convergent SPM transport, and review trapping mechanisms that lead to ETMs at the landward limit of the salt intrusion, in the freshwater zone, at topographic transitions, and by lateral processes within the cross section. We use model simulations of example estuaries to demonstrate the complex concurrence of ETM formation mechanisms. We also discuss how changes in SPM trapping mechanisms, often caused by direct human interference, can lead to the generation of hyperturbid estuaries.

  17. Plasmonic scattering back reflector for light trapping in flat nano-crystalline silicon solar cells

    NARCIS (Netherlands)

    van Dijk, L.; van de Groep, J.; Veldhuizen, L.W.; Di Vece, M.; Polman, A.; Schropp, R.E.I.

    2016-01-01

    Most types of thin film solar cells require light management to achieve sufficient light absorptance. We demonstrate a novel process for fabricating a scattering back reflector for flat, thin film hydrogenated nanocrystalline silicon (nc-Si:H) solar cells. This scattering back reflector consists of

  18. Trapped ion depletion by anomalous diffusion due to the dissipative trapped ion instability

    International Nuclear Information System (INIS)

    Wimmel, H.K.

    1975-07-01

    At high temperatures the KADOMTSEV-POGUTSE diffusion in tokamaks can become so large as to cause depletion of trapped ions if these are replaced with free ions by means of collisions rather than being directly recycled or injected. Modified KADOMTSEV-POGUTSE diffusion formulas are employed in order to estimate this effect in the cases of classical and anomalous collisions. The maximum trapped-ion depletion is estimated from the PENROSE stability condition. For anomalous collisions a BOHM-type diffusion is derived. Numerical examples are given for JET-like parameters (JET = Joint European Torus). Depletion is found to reduce diffusion by factors of up to 10 and more. (orig.) [de

  19. The Use of Camera Traps in Wildlife

    Directory of Open Access Journals (Sweden)

    Yasin Uçarlı

    2013-11-01

    Full Text Available Camera traps are increasingly used in the abundance and density estimates of wildlife species. Camera traps are very good alternative for direct observation in case, particularly, steep terrain, dense vegetation covered areas or nocturnal species. The main reason for the use of camera traps is eliminated that the economic, personnel and time loss in a continuous manner at the same time in different points. Camera traps, motion and heat sensitive, can take a photo or video according to the models. Crossover points and feeding or mating areas of the focal species are addressed as a priority camera trap set locations. The population size can be finding out by the images combined with Capture-Recapture methods. The population density came out the population size divided to effective sampling area size. Mating and breeding season, habitat choice, group structures and survival rates of the focal species can be achieved from the images. Camera traps are very useful to obtain the necessary data about the particularly mysterious species with economically in planning and conservation efforts.

  20. Trapped Mode Study in the LHC Rotatable Collimator

    CERN Document Server

    Xiao, L; Smith, J C; Caspers, F

    2010-01-01

    A rotatable collimator is proposed for the LHC phase II collimation upgrade. When the beam crosses the collimator, trapped modes will be excited that result in beam energy loss and collimator power dissipation. Some of the trapped modes can also generate transverse kick on the beam and affect the beam operation. In this paper the parallel eigensolver code Omega3P is used to search for all the trapped modes below 2GHz in the collimator, including longitudinal modes and transverse modes. The loss factors and kick factors of the trapped modes are calculated as function of the jaw positions. The amplitude ratio between transverse and longitudinal trapped mode intensity can be used as a direct measure of the position of the beam. We present simulation results and discuss the results.

  1. A study on the directional dependence of scatter ray in radiography

    International Nuclear Information System (INIS)

    Oh, Hyun Joo; Kim, Sung Soo; Kim, Young Il; Lee, Who Min; Kim, Hak Sung; Lim, Han Young; Kim, Heung Tae; Lee, Sang Suk

    1995-01-01

    In this papper, the back, forward, side and 45 .deg. oblique scatter dose were measured the X-ray exposure conditions 60, 80, 100, 120 kV, FFD 100 cm, FS 20 x 20 cm, toward the 25 x 25cm x 10 ∼ 20cm of solid water, paraffin and MiX-DP phantom, and Pb, Cu, AI, and styrofoam materials, by the electrometer and 5.3 cc ionization chamber. The obtained results are summarized as following. 1. The percentage depth dose(PDD) at the range of the diagnostic x-ray energy were appeared 50 % depth dose at the 2 cm depth with 60 kV, and 5 cm depth with 120 kV X-ray, 10 % depth dose at the 10 cm depth with 60 kV and 14 cm depth with 120 kV X-ray, 5 % below depth dose at the 20 cm depth. 2. The back scatter dose which were generated the surface of Pb, Cu and Al metal plates were 10 % below, and than the back scatter dose at the Pb plate were a most amount of these which were about 10 %, and were appeared the order of Cu and AI. 3. The percentage forward scatter were appeared from 50 % to 65 %, and the more phantom thickness become, the more forward scatter were increased with the ratio of 5 % per 5 cm thickness. 4. The percentage back scatter which were generated the tissue equivalence materials solid water, paraffin and MiX-DP were from 20 % to 40 %, and than the back scatter dose at the solid water were a mast amount of those, and paraffin and MiX-DP were appeared with the next values. 5. The percentage 90 .deg. lateral and 45 .deg. oblique side scatter dose were measured from 4 % to 12 %. a most amount of scatter dose which were generated from the patient in radiography were the forward scatter, the next values were the back scatter, the third values were the 90 .deg. lateral scatter

  2. Tightly confined atoms in optical dipole traps

    International Nuclear Information System (INIS)

    Schulz, M.

    2002-12-01

    This thesis reports on the design and setup of a new atom trap apparatus, which is developed to confine few rubidium atoms in ultrahigh vacuum and make them available for controlled manipulations. To maintain low background pressure, atoms of a vapour cell are transferred into a cold atomic beam by laser cooling techniques, and accumulated by a magneto-optic trap (MOT) in a separate part of the vacuum system. The laser cooled atoms are then transferred into dipole traps made of focused far-off-resonant laser fields in single- or crossed-beam geometry, which are superimposed with the center of the MOT. Gaussian as well as hollow Laguerre-Gaussian (LG$ ( 01)$) beam profiles are used with red-detuned or blue-detuned light, respectively. Microfabricated dielectric phase objects allow efficient and robust mode conversion of Gaussian into Laguerre-Gaussian laser beams. Trap geometries can easily be changed due to the highly flexible experimental setup. The dipole trap laser beams are focused to below 10 microns at a power of several hundred milliwatts. Typical trap parameters, at a detuning of several ten nanometers from the atomic resonance, are trag depths of few millikelvin, trap frequencies near 30-kHz, trap light scattering rates of few hundred photons per atom and second, and lifetimes of several seconds. The number of dipole-trapped atoms ranges from more than ten thousand to below ten. The dipole-trapped atoms are detected either by a photon counting system with very efficient straylight discrimination, or by recapture into the MOT, which is imaged onto a sensitive photodiode and a CCD-camera. Due to the strong AC-Stark shift imposed by the high intensity trapping light, energy-selective resonant excitation and detection of the atoms is possible. The measured energy distribution is consistent with a harmonic potential shape and allows the determination of temperatures and heating rates. In first measurements, the thermal energy is found to be about 10 % of the

  3. Development of an in-trap spectroscopy setup at MLLTRAP for the future project MATS at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Thirolf, Peter; Gartzke, Eva; Habs, Dietrich; Krug, Kevin; Szerypo, Jerzy; Weber, Christine [Fak. fuer Physik, LMU - Muenchen (Germany); Kolhinen, Veli [Dept. of Physics, University of Jyvaeskylae (Sweden); Rodriguez, Daniel [FAMN, Universidad de Granada (Spain)

    2010-07-01

    One of the most important achievements of Penning trap technology is the possibility to manipulate ions of a defined q/m in order to provide purified ion species to dedicated experiments, such as high-precision mass measurements. This feature of ion manipulation and purification is used as well in nuclear decay-spectroscopy experiments with isobarically or even isomerically pure samples, typically installed after the trap. In a further approach, the Penning trap itself is equipped with detectors, since the stored ion clouds represent ideal sources, free from any background or scattering effects in the required backing materials. An in-trap spectroscopy setup is developed at MLLTRAP to be implemented in the future MATS facility at the low-energy branch of FAIR/GSI. Here, the main trapping electrodes will be replaced by position-sensitive Si-strip detectors and emitted electrons are efficiently guided towards detectors by the strong field of the trap magnet. Possible physics experiments are conversion-electron spectroscopy and in-trap {alpha}-decay experiments of heavy actinides. In this presentation, the design of the setup and possible physics applications are presented.

  4. Resonant Self-Trapping and Absorption of Intense Bessel Beams

    International Nuclear Information System (INIS)

    Fan, J.; Parra, E.; Milchberg, H. M.

    2000-01-01

    We report the observation of resonant self-trapping and enhanced laser-plasma heating resulting from propagation of high intensity Bessel beams in neutral gas. The enhancement in absorption and plasma heating is directly correlated to the spatial trapping of laser radiation. (c) 2000 The American Physical Society

  5. Developments in the theory of trapped particle pressure gradient driven turbulence in tokamaks and stellarators

    International Nuclear Information System (INIS)

    Diamond, P.H.; Biglari, H.; Gang, F.Y.

    1991-01-01

    Recent advances in the theory of trapped particle pressure gradient driven turbulence are summarized. A novel theory of trapped ion convective cell turbulence is presented. It is shown that non-linear transfer to small scales occurs, and that saturation levels are not unphysically large, as previously thought. As the virulent saturation mechanism of ion Compton scattering is shown to result in weak turbulence at higher frequencies, it is thus likely that trapped ion convective cells are the major agent of tokamak transport. Fluid like trapped electron modes at short wavelengths (k θ ρ i > 1) are shown to drive an inward particle pinch. The characteristics of convective cell turbulence in flat density discharges are described, as is the stability of dissipative trapped electron modes in stellarators, with flexible magnetic field structure. The role of cross-correlations in the dynamics of multifield models of drift wave turbulence is discussed. (author). 32 refs, 8 figs, 1 tab

  6. Evaporative cooling of antiprotons and efforts to trap antihydrogen

    CERN Document Server

    Andresen, Gorm Bruun

    Evaporative cooling has proven to be an invaluable technique in atomic physics, allowing for the study of effects such as Bose-Einstein condensation. One main topic of this thesis is the first application of evaporative cooling to cold non-neutral plasmas stored in an ion trap. We (the ALPHA collaboration) have achieved cooling of a cloud of antiprotons to a temperature as low as 9 K, two orders of magnitude lowerthan ever directly measured previously. The measurements are well-described by appropriate rate equations for the temperature and number of particles. The technique has direct application to the ongoing attempts to produce trapped samples of antihydrogen. In these experiments the maximum trap depths are ex tremely shallow (~0.6 K for ground state atoms), and careful control of the trapped antiprotons and positrons used to form the (anti)atoms is essential to succes. Since 2006 powerful tools to diagnose and manipulate the antiproton and positron plasmas in the ALPHA apparatus have been developed and ...

  7. Magneto optical trap recoil ion momentum spectroscopy: application to ion-atom collisions

    International Nuclear Information System (INIS)

    Blieck, J.

    2008-10-01

    87 Rb atoms have been cooled, trapped and prepared as targets for collision studies with 2 and 5 keV Na + projectiles. The physics studied deals with charge exchange processes. The active electron, which is generally the most peripheral electron of the atomic target, is transferred from the target onto the ionic projectile. The ionized target is called recoil ion. The technique used to study this physics is the MOTRIMS (Magneto Optical Trap Recoil Ion Momentum Spectroscopy) technique, which combines a magneto optical trap and a recoil ion momentum spectrometer. The spectrometer is used for the measurement of the recoil ions momentum, which gives access to all the information of the collision: the Q-value (which is the potential energy difference of the active electron on each particle) and the scattering angle of the projectile. The trap provides extremely cold targets to optimize the measurement of the momentum, and to release the latter from thermal motion. Through cinematically complete experiments, the MOTRIMS technique gives access to better resolutions on momentum measurements. Measurements of differential cross sections in initial and final capture states and in scattering angle have been done. Results obtained for differential cross sections in initial and final states show globally a good agreement with theory and an other experiment. Nevertheless, discrepancies with theory and this other experiment are shown for the measurements of doubly differential cross sections. These discrepancies are not understood yet. The particularity of the experimental setup designed and tested in this work, namely a low background noise, allows a great sensitivity to weak capture channels, and brings a technical and scientific gain compared with previous works. (author)

  8. Direct access to dithiobenzoate RAFT agent fragmentation rate coefficients by ESR spin-trapping.

    Science.gov (United States)

    Ranieri, Kayte; Delaittre, Guillaume; Barner-Kowollik, Christopher; Junkers, Thomas

    2014-12-01

    The β-scission rate coefficient of tert-butyl radicals fragmenting off the intermediate resulting from their addition to tert-butyl dithiobenzoate-a reversible addition-fragmentation chain transfer (RAFT) agent-is estimated via the recently introduced electron spin resonance (ESR)-trapping methodology as a function of temperature. The newly introduced ESR-trapping methodology is critically evaluated and found to be reliable. At 20 °C, a fragmentation rate coefficient of close to 0.042 s(-1) is observed, whereas the activation parameters for the fragmentation reaction-determined for the first time-read EA = 82 ± 13.3 kJ mol(-1) and A = (1.4 ± 0.25) × 10(13) s(-1) . The ESR spin-trapping methodology thus efficiently probes the stability of the RAFT adduct radical under conditions relevant for the pre-equilibrium of the RAFT process. It particularly indicates that stable RAFT adduct radicals are indeed formed in early stages of the RAFT poly-merization, at least when dithiobenzoates are employed as controlling agents as stipulated by the so-called slow fragmentation theory. By design of the methodology, the obtained fragmentation rate coefficients represent an upper limit. The ESR spin-trapping methodology is thus seen as a suitable tool for evaluating the fragmentation rate coefficients of a wide range of RAFT adduct radicals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Energy spectrum structure and ''trap'' effects in a three-particle system

    International Nuclear Information System (INIS)

    Simenog, I.V.; Sitnichenko, A.I.

    1982-01-01

    Investigation is made of the threshold energy spectrum structure in a system of three spinless particles depending on the form of two-particle interaction. The correlation dependence of the spectrum and low-energy scattering parameters are shown. A new phenomenon of ''traps'' for the spectrum in a three-particle system with interaction involving components of considerably different ranges is established

  10. The dynamics of triple-well trapped Bose–Einstein condensates with atoms feeding and loss effects

    International Nuclear Information System (INIS)

    Mu Aixia; Zhou Xiaoyan; Xue Jukui

    2008-01-01

    In this paper, we consider the macroscopic quantum tunnelling and self-trapping phenomena of Bose–Einstein condensates (BECs) with three-body recombination losses and atoms feeding from thermal cloud in triple-well potential. Using the three-mode approximation, three coupled Gross–Pitaevskii equations (GPEs), which describe the dynamics of the system, are obtained. The corresponding numerical results reveal some interesting characteristics of BECs for different scattering lengths. The self-trapping and quantum tunnelling both are found in zero-phase and π-phase modes. Furthermore, we observe the quantum beating phenomenon and the resonance character during the self-trapping and quantum tunnelling. It is also shown that the initial phase has a significant effect on the dynamics of the system

  11. Universal Properties of a Trapped Two-Component Fermi Gas at Unitarity

    International Nuclear Information System (INIS)

    Blume, D.; Stecher, J. von; Greene, Chris H.

    2007-01-01

    We treat the trapped two-component Fermi system, in which unlike fermions interact through a two-body short-range potential having no bound state but an infinite scattering length. By accurately solving the Schroedinger equation for up to N=6 fermions, we show that no many-body bound states exist other than those bound by the trapping potential, and we demonstrate unique universal properties of the system: Certain excitation frequencies are separated by 2(ℎ/2π)ω, the wave functions agree with analytical predictions and a virial theorem is fulfilled. Further calculations up to N=30 determine the excitation gap, an experimentally accessible universal quantity, and it agrees with recent predictions based on a density functional approach

  12. Asymmetric Penning trap coherent states

    International Nuclear Information System (INIS)

    Contreras-Astorga, Alonso; Fernandez, David J.

    2010-01-01

    By using a matrix technique, which allows to identify directly the ladder operators, the coherent states of the asymmetric Penning trap are derived as eigenstates of the appropriate annihilation operators. They are compared with those obtained through the displacement operator method.

  13. Diffuse scattering from hemispherical nanoparticles at the air–silicon interface

    International Nuclear Information System (INIS)

    Centeno, Anthony; Ahmed, Badar; Reehal, Haricharan; Xie, Fang

    2013-01-01

    There has been much recent interest in the application of plasmonics to improve the efficiency of silicon solar cells. In this paper we use finite difference time domain calculations to investigate the placement of hemispherical gold nanoparticles on the rear surface of a silicon solar cell. The results indicate that nanoparticles protruding into the silicon, rather than into air, have a larger scattering efficiency and diffuse scattering into the semiconductor. This finding could lead to improved light trapping within a thin silicon solar cell device. (paper)

  14. Axicon-based annular laser trap for studies on sperm activity

    Science.gov (United States)

    Shao, Bing; Vinson, Jaclyn M.; Botvinick, Elliot L.; Esener, Sadik C.; Berns, Michael W.

    2005-08-01

    As a powerful and noninvasive tool, laser trapping has been widely applied for the confinement and physiological study of biological cells and organelles. Researchers have used the single spot laser trap to hold individual sperm and quantitatively evaluated the motile force generated by a sperm. Early studies revealed the relationship between sperm motility and swimming behavior and helped the investigations in medical aspects of sperm activity. As sperm chemotaxis draws more and more interest in fertilization research, the studies on sperm-egg communication may help to explain male or female infertility and provide exciting new approaches to contraception. However, single spot laser trapping can only be used to investigate an individual target, which has limits in efficiency and throughput. To study the chemotactic response of sperm to eggs and to characterize sperm motility, an annular laser trap with a diameter of several hundred microns is designed, simulated with ray tracing tool, and implemented. An axicon transforms the wavefront such that the laser beam is incident on the microscope objective from all directions while filling the back aperture completely for high efficiency trapping. A trapping experiment with microspheres is carried out to evaluate the system performance. The power requirement for annular sperm trapping is determined experimentally and compared with theoretical calculations. With a chemo-attractant located in the center and sperm approaching from all directions, the annular laser trapping could serve as a speed bump for sperm so that motility characterization and fertility sorting can be performed efficiently.

  15. On stimulated scattering of laser light in inertial fusion energy targets

    International Nuclear Information System (INIS)

    Nikolic, Lj; Skoric, M.M.; Ishiguro, S.; Sato, T.

    2002-11-01

    Propagation of a laser light through regions of an underdense plasma is an active research topic in laser fusion. In particular, a large effort has been invested in studies of stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) which can reflect laser energy and produce energetic particles to preheat a fusion energy target. Experiments, theory and simulations agree on a complex interplay between various laser-plasma instabilities. By particle-in-cell simulations of an underdense electron-plasma, we have found, apart from the standard SRS, a strong backscattering near the electron plasma frequency at densities beyond the quarter critical. This novel instability, recognized in recent experiments as stimulated laser scattering on a trapped electron-acoustic mode (SEAS), is absent from a classical theory of laser-parametric instabilities. A parametric excitation of SEAS instability, is explained by a three-wave resonant decay of the incident laser light into a standing backscattered wave and a slow trapped electron acoustic wave (ω p ). Large SEAS pulsations, eventually suppressed by relativistic heating of electrons, are observed in our simulations. This phenomenon seems relevant to future hohlraum target and fast ignition experiments. (author)

  16. Normal and system lupus erythematosus red blood cell interactions studied by double trap optical tweezers: direct measurements of aggregation forces

    Science.gov (United States)

    Khokhlova, Maria D.; Lyubin, Eugeny V.; Zhdanov, Alexander G.; Rykova, Sophia Yu.; Sokolova, Irina A.; Fedyanin, Andrey A.

    2012-02-01

    Direct measurements of aggregation forces in piconewton range between two red blood cells in pair rouleau are performed under physiological conditions using double trap optical tweezers. Aggregation and disaggregation properties of healthy and pathologic (system lupus erythematosis) blood samples are analyzed. Strong difference in aggregation speed and behavior is revealed using the offered method which is proposed to be a promising tool for SLE monitoring at single cell level.

  17. An EPR study of positive hole transfer and trapping in irradiated frozen solutions containing aromatic traps

    International Nuclear Information System (INIS)

    Egorov, A.V.; Zezin, A.A.; Feldman, V.I.

    2002-01-01

    Complete text of publication follows. Processes of positive hole migration and trapping are of basic significance for understanding of the primary events in the radiation chemistry of solid molecular systems. Specific interest is concerned with the case, when ionization energies of 'hole traps' are rather close, so one may expect 'fine tuning' effects resulting from variations in conformation, weak interactions, molecular packing, etc. In this contribution we report the results of EPR study of formation of radical cations in irradiated frozen halocarbon solutions containing aromatic molecules of different structure. Using the 'two-trap' model made it possible to obtain an evidence for efficient long-range trap-to-trap positive hole transfer between alkyl benzene molecules with close ionization energies distributed in the matrices with high ionization potentials. The distance of transfer was found to be 2-4 nm. In the case of frozen solutions containing ethylbenzene and toluene, it was found that the efficiency and direction of hole transfer was controlled by the conformation of ethylbenzene radical cation. The study of positive hole localization in 'bridged' diphenyls of Ph(CH 2 ) n Ph type revealed that the structure of radical cations of these species was affected by local environment (type of halocarbon matrix) and the conformational flexibility of 'bridge'. In summary, we may conclude that migration and localization of positive hole in rigid systems containing aromatic 'traps' is quite sensitive to rather subtle effects. This conclusion may be of common significance for the radiation chemistry of systems with physical dispersion of the traps of similar chemical structure (e.g. macromolecules, adsorbed molecules, etc.)

  18. Low energy positron interactions with uracil—Total scattering, positronium formation, and differential elastic scattering cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, E. K.; Boadle, R. A.; Machacek, J. R.; Makochekanwa, C.; Sullivan, J. P. [ARC Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Chiari, L. [ARC Centre for Antimatter-Matter Studies, Flinders University, GPO Box 2100, Adelaide, 5001 SA (Australia); Buckman, S. J., E-mail: Stephen.buckman@anu.edu.au [ARC Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia); Brunger, M. J. [ARC Centre for Antimatter-Matter Studies, Flinders University, GPO Box 2100, Adelaide, 5001 SA (Australia); Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia); Garcia, G. [Instituto de Fısica Fundamental, Consejo Superior de Investigationes Cientıficas (CSIC), Serrano 113-bis, E-28006 Madrid (Spain); Blanco, F. [Departamento de Fısica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Ingolfsson, O. [Department of Chemistry, Science Institute, University of Iceland, Reykjavík 107 (Iceland)

    2014-07-21

    Measurements of the grand total and total positronium formation cross sections for positron scattering from uracil have been performed for energies between 1 and 180 eV, using a trap-based beam apparatus. Angular, quasi-elastic differential cross section measurements at 1, 3, 5, 10, and 20 eV are also presented and discussed. These measurements are compared to existing experimental results and theoretical calculations, including our own calculations using a variant of the independent atom approach.

  19. Cooperative scattering of scalar waves by optimized configurations of point scatterers

    Science.gov (United States)

    Schäfer, Frank; Eckert, Felix; Wellens, Thomas

    2017-12-01

    We investigate multiple scattering of scalar waves by an ensemble of N resonant point scatterers in three dimensions. For up to N = 21 scatterers, we numerically optimize the positions of the individual scatterers, to maximize the total scattering cross section for an incoming plane wave, on the one hand, and to minimize the decay rate associated to a long-lived scattering resonance, on the other. In both cases, the optimum is achieved by configurations where all scatterers are placed on a line parallel to the direction of the incoming plane wave. The associated maximal scattering cross section increases quadratically with the number of scatterers for large N, whereas the minimal decay rate—which is realized by configurations that are not the same as those that maximize the scattering cross section—decreases exponentially as a function of N. Finally, we also analyze the stability of our optimized configurations with respect to small random displacements of the scatterers. These results demonstrate that optimized configurations of scatterers bear a considerable potential for applications such as quantum memories or mirrors consisting of only a few atoms.

  20. Luther-Emery Phase and Atomic-Density Waves in a Trapped Fermion Gas

    International Nuclear Information System (INIS)

    Gao Xianlong; Rizzi, M.; Polini, Marco; Tosi, M. P.; Fazio, Rosario; Campo, V. L. Jr.; Capelle, K.

    2007-01-01

    The Luther-Emery liquid is a state of matter that is predicted to occur in one-dimensional systems of interacting fermions and is characterized by a gapless charge spectrum and a gapped spin spectrum. In this Letter we discuss a realization of the Luther-Emery phase in a trapped cold-atom gas. We study by means of the density-matrix renormalization-group technique a two-component atomic Fermi gas with attractive interactions subject to parabolic trapping inside an optical lattice. We demonstrate how this system exhibits compound phases characterized by the coexistence of spin pairing and atomic-density waves. A smooth crossover occurs with increasing magnitude of the atom-atom attraction to a state in which tightly bound spin-singlet dimers occupy the center of the trap. The existence of atomic-density waves could be detected in the elastic contribution to the light-scattering diffraction pattern

  1. Trapped waves of the 27 November 1945 Makran tsunami: observations and numerical modeling

    Digital Repository Service at National Institute of Oceanography (India)

    Neetu, S.; Suresh, I.; Shankar, R.; Nagarajan, B.; Sharma, R.; Shenoi, S.S.C.; Unnikrishnan, A.S.; Sundar, D.

    the Makran coast and at Karachi were the result of trapping of the tsunami-wave energy on the continental shelf off the Makran coast and that these coastally-trapped edge waves were trapped in the alongshore direction within a approx 300-km stretch...

  2. Antiproton annihilation in very low-energy antihydrogen scattering by simple atoms and molecules

    International Nuclear Information System (INIS)

    Armour, E.A.G.; Gregory, M.R.; Liu, Y.

    2006-01-01

    The aim of experimentalists currently working on the preparation of antihydrogen is to trap it at very low temperatures so that its properties can be studied. Of concern to experimentalists are processes that lead to a loss of antihydrogen through annihilation. The dominant annihilation process that leads to the loss of antihydrogen is the annihilation of the antiproton with nuclei through the strong interaction. A recent scattering calculation of antihydrogen with hydrogen at very low energy, using the complex strong interaction potential of Kohno and Weise, has found an average annihilation cross-section of 0.13E -1/2 a 0 -2 , where E is the energy of relative motion. The antihydrogen-helium system is of particular interest to experimentalists as helium may be present as an impurity in the trap. Also there is interest in the possibility of using it to cool antihydrogen. We present a treatment of antihydrogen scattering with helium at very low temperatures. The annihilation cross-sections obtained are much larger than antihydrogen-hydrogen scattering cross-section, making it very unlikely that helium can be used to cool antihydrogen

  3. Ultra-small-angle X-ray scattering characterization of diesel/gasoline soot: sizes and particle-packing conditions

    Science.gov (United States)

    Kameya, Yuki; Lee, Kyeong O.

    2013-10-01

    Regulations on particulate emissions from internal combustion engines tend to become more stringent, accordingly the importance of particulate filters in the after-treatment system has been increasing. In this work, the applicability of ultra-small-angle X-ray scattering (USAXS) to diesel soot cake and gasoline soot was investigated. Gasoline-direct-injection engine soot was collected at different fuel injection timings. The unified fits method was applied to analyze the resultant scattering curves. The validity of analysis was supported by comparing with carbon black and taking the sample images using a transmission electron microscope, which revealed that the primary particle size ranged from 20 to 55 nm. In addition, the effects of particle-packing conditions on the USAXS measurement were demonstrated by using samples suspended in acetone. Then, the investigation was extended to characterization of diesel soot cake deposited on a diesel particulate filter (DPF). Diesel soot was trapped on a small piece of DPF at different deposition conditions which were specified using the Peclet number. The dependence of scattering curve on soot-deposition conditions was demonstrated. To support the interpretation of the USAXS results, soot cake samples were observed using a scanning electron microscope and the influence of particle-packing conditions on scattering curve was discussed.

  4. Ultra-small-angle X-ray scattering characterization of diesel/gasoline soot: sizes and particle-packing conditions

    International Nuclear Information System (INIS)

    Kameya, Yuki; Lee, Kyeong O.

    2013-01-01

    Regulations on particulate emissions from internal combustion engines tend to become more stringent, accordingly the importance of particulate filters in the after-treatment system has been increasing. In this work, the applicability of ultra-small-angle X-ray scattering (USAXS) to diesel soot cake and gasoline soot was investigated. Gasoline-direct-injection engine soot was collected at different fuel injection timings. The unified fits method was applied to analyze the resultant scattering curves. The validity of analysis was supported by comparing with carbon black and taking the sample images using a transmission electron microscope, which revealed that the primary particle size ranged from 20 to 55 nm. In addition, the effects of particle-packing conditions on the USAXS measurement were demonstrated by using samples suspended in acetone. Then, the investigation was extended to characterization of diesel soot cake deposited on a diesel particulate filter (DPF). Diesel soot was trapped on a small piece of DPF at different deposition conditions which were specified using the Peclet number. The dependence of scattering curve on soot-deposition conditions was demonstrated. To support the interpretation of the USAXS results, soot cake samples were observed using a scanning electron microscope and the influence of particle-packing conditions on scattering curve was discussed

  5. Ultra-small-angle X-ray scattering characterization of diesel/gasoline soot: sizes and particle-packing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kameya, Yuki, E-mail: ykameya@anl.gov; Lee, Kyeong O. [Argonne National Laboratory, Center for Transportation Research (United States)

    2013-10-15

    Regulations on particulate emissions from internal combustion engines tend to become more stringent, accordingly the importance of particulate filters in the after-treatment system has been increasing. In this work, the applicability of ultra-small-angle X-ray scattering (USAXS) to diesel soot cake and gasoline soot was investigated. Gasoline-direct-injection engine soot was collected at different fuel injection timings. The unified fits method was applied to analyze the resultant scattering curves. The validity of analysis was supported by comparing with carbon black and taking the sample images using a transmission electron microscope, which revealed that the primary particle size ranged from 20 to 55 nm. In addition, the effects of particle-packing conditions on the USAXS measurement were demonstrated by using samples suspended in acetone. Then, the investigation was extended to characterization of diesel soot cake deposited on a diesel particulate filter (DPF). Diesel soot was trapped on a small piece of DPF at different deposition conditions which were specified using the Peclet number. The dependence of scattering curve on soot-deposition conditions was demonstrated. To support the interpretation of the USAXS results, soot cake samples were observed using a scanning electron microscope and the influence of particle-packing conditions on scattering curve was discussed.

  6. Evaluation of yellow sticky traps for monitoring the population of thrips (Thysanoptera) in a mango orchard.

    Science.gov (United States)

    Aliakbarpour, Hamaseh; Rawi, Che Salmah Md

    2011-08-01

    Populations of several thrips species were estimated using yellow sticky traps in an orchard planted with mango, Mangifera indica L. during the dry and wet seasons beginning in late 2008-2009 on Penang Island, Malaysia. To determine the efficacy of using sticky traps to monitor thrips populations, we compared weekly population estimates on yellow sticky traps with thrips population sizes that were determined (using a CO(2) method) directly from mango panicles. Dispersal distance and direction of thrips movement out of the orchard also were studied using yellow sticky traps placed at three distances from the edge of the orchard in four cardinal directions facing into the orchard. The number of thrips associated with the mango panicles was found to be correlated with the number of thrips collected using the sticky trap method. The number of thrips captured by the traps decreased with increasing distance from the mango orchard in all directions. Density of thrips leaving the orchard was related to the surrounding vegetation. Our results demonstrate that sticky traps have the potential to satisfactorily estimate thrips populations in mango orchards and thus they can be effectively employed as a useful tactic for sampling thrips.

  7. Three-dimensional cavity cooling and trapping in an optical lattice

    International Nuclear Information System (INIS)

    Murr, K.; Nussmann, S.; Puppe, T.; Hijlkema, M.; Weber, B.; Webster, S. C.; Kuhn, A.; Rempe, G.

    2006-01-01

    A robust scheme for trapping and cooling atoms is described. It combines a deep dipole-trap which localizes the atom in the center of a cavity with a laser directly exciting the atom. In that way one obtains three-dimensional cooling while the atom is dipole-trapped. In particular, we identify a cooling force along the large spatial modulations of the trap. A feature of this setup, with respect to a dipole trap alone, is that all cooling forces keep a constant amplitude if the trap depth is increased simultaneously with the intensity of the probe laser. No strong coupling is required, which makes such a technique experimentally attractive. Several analytical expressions for the cooling forces and heating rates are derived and interpreted by analogy to ordinary laser cooling

  8. Numerical evidences of universal trap-like aging dynamics

    Science.gov (United States)

    Cammarota, Chiara; Marinari, Enzo

    2018-04-01

    Trap models have been initially proposed as toy models for dynamical relaxation in extremely simplified rough potential energy landscapes. Their importance has recently grown considerably thanks to the discovery that the trap-like aging mechanism directly controls the out-of-equilibrium relaxation processes of more sophisticated spin models, that are considered as the solvable counterpart of real disordered systems. Further establishing the connection between these spin models, out-of-equilibrium behavior and the trap like aging mechanism could shed new light on the properties, which are still largely mysterious, for the activated out-of-equilibrium dynamics of disordered systems. In this work we discuss numerical evidence based on the computations of the permanence times of an emergent trap-like aging behavior in a variety of very simple disordered models—developed from the trap model paradigm. Our numerical results are backed by analytic derivations and heuristic discussions. Such exploration reveals some of the tricks needed to reveal the trap behavior in spite of the occurrence of secondary processes, of the existence of dynamical correlations and of strong finite system’s size effects.

  9. Tailored long range forces on polarizable particles by collective scattering of broadband radiation

    International Nuclear Information System (INIS)

    Holzmann, D; Ritsch, H

    2016-01-01

    Collective coherent light scattering by polarizable particles creates surprisingly strong, long range inter-particle forces originating from interference of the light scattered by different particles. While for monochromatic laser beams this interaction decays with the inverse distance, we show here that in general the effective interaction range and geometry can be controlled by the illumination bandwidth and geometry. As generic example we study the modifications inter-particle forces within a 1D chain of atoms trapped in the field of a confined optical nanofiber mode. For two particles we find short range attraction as well as optical binding at multiple distances. The range of stable distances shrinks with increasing light bandwidth and for a very large bandwidth field as e.g. blackbody radiation. We find a strongly attractive potential up to a critical distance beyond which the force gets repulsive. Including multiple scattering can even lead to the appearance of a stable configuration at a large distance. Such broadband scattering forces should be observable contributions in ultra-cold atom interferometers or atomic clocks setups. They could be studied in detail in 1D geometries with ultra-cold atoms trapped along or within an optical nanofiber. Broadband radiation force interactions might also contribute in astrophysical scenarios as illuminated cold dust clouds. (paper)

  10. Development of a Hydrogen Møller Polarimeter for Precision Parity-Violating Electron Scattering

    Science.gov (United States)

    Gray, Valerie M.

    2013-10-01

    Parity-violating electron scattering experiments allow for testing the Standard Model at low energy accelerators. Future parity-violating electron scattering experiments, like the P2 experiment at the Johannes Gutenberg University, Mainz, Germany, and the MOLLER and SoLID experiments at Jefferson Lab will measure observables predicted by the Standard Model to high precision. In order to make these measurements, we will need to determine the polarization of the electron beam to sub-percent precision. The present way of measuring the polarization, with Møller scattering in iron foils or using Compton laser backscattering, will not easily be able to reach this precision. The novel Hydrogen Møller Polarimeter presents a non-invasive way to measure the electron polarization by scattering the electron beam off of atomic hydrogen gas polarized in a 7 Tesla solenoidal magnetic trap. This apparatus is expected to be operational by 2016 in Mainz. Currently, simulations of the polarimeter are used to develop the detection system at College of William & Mary, while the hydrogen trap and superconducting solenoid magnet are being developed at the Johannes Gutenberg University, Mainz. I will discuss the progress of the design and development of this novel polarimeter system. This material is based upon work supported by the National Science Foundation under Grant No. PHY-1206053.

  11. S-to-P Conversions from Mid-mantle Slow Scatterers in Slab Regions: Observations of Deep/Stagnated Oceanic Crust?

    Science.gov (United States)

    He, Xiaobo; Zheng, Yixian

    2018-02-01

    The fate of a subducted slab is a key ingredient in the context of plate tectonics, yet it remains enigmatic especially in terms of its crustal component. In this study, our efforts are devoted to resolve slab-related structures in the mid-mantle below eastern Indonesia, the Izu-Bonin region, and the Peru area by employing seismic array analysing techniques on high-frequency waveform data from F-net in Japan and the Alaska regional network and the USArray in North America. A pronounced arrival after the direct P wave is observed in the recordings of four deep earthquakes (depths greater than 400 km) from three subduction systems including the Philippines, the Izu-Bonin, and the Peru. This later arrival displays a slightly lower slowness compared to the direct P wave and its back-azimuth deviates somewhat from the great-circle direction. We explain it as an S-to-P conversion at a deep scatterer below the sources in the source region. In total, five scatterers are seen at depths ranging from 930 to 1500 km. Those scatterers appear to be characterised by an 7 km-thick low-velocity layer compared to the ambient mantle. Combined evidence from published mineral physical analysis suggests that past subducted oceanic crust, possibly fragmented, is most likely responsible for these thin-layer compositional heterogeneities trapped in the mid-mantle beneath the study regions. Our observations give a clue to the potential fate of subducted oceanic crust.

  12. Temperature dependence of positron trapping by vacancies, loops and voids in molybdenum

    International Nuclear Information System (INIS)

    Bentzon, M.D.; Linderoth, S.; Petersen, K.

    1985-01-01

    The temperature dependence of positron trapping by defects in molybdenum has been studied. By resolving positron lifetime spectra into three components, it has been possible to distinguish the temperature dependence of positron trapping into loops and voids. The results show that the positron trapping rate into voids depends linearly on temperature. The temperature dependence of positron trapping by loops can be interpreted as positrons being trapped by jogs, directly or via the dislocation line. The temperature dependence of positrons trapped by loops is argued mainly to be due to the trapping at the dislocation line, and not to detrapping. The observed temperature dependence of positron annihilation parameters in an electron irradiated sample (below stage III), is explained by competitive positron trapping in interstitial loops at low temperatures

  13. Nanoimprint lithography of light trapping patterns in sol-gel coatings for thin film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Heijna, M.; Loffler, J.; Van Aken, B.B.; Soppe, W.J. [ECN Solar Energy, Petten (Netherlands); Borg, H.; Peeters, P. [OM and T, Eindhoven (Netherlands)

    2008-04-15

    For thin-film silicon solar cells, light trapping schemes are of uppermost importance to harvest all available sunlight. Typically, randomly textured TCO front layers are used to scatter the light diffusively in p-i-n cells on glass. Here, we investigate methods to texture the back contact with both random and periodic textures, for use in n-i-p cells on opaque foil. We applied an electrically insulating SiOx-polymer coating on a stainless steel substrate, and textured this barrier layer by nanoimprint. On this barrier layer the back contact is deposited for further use in the solar cell stack. Replication of masters with various random and periodic patterns was tested, and, using scanning electron microscopy, replicas were found to compare well with the originals. Masters with U-grooves of various sub micrometer widths have been used to investigate the optimal dimensions of regular patterns for light trapping in the silicon layers. Angular reflection distributions were measured to evaluate the light scattering properties of both periodic and random patterns. Diffraction gratings show promising results in scattering the light to specific angles, enhancing the total internal reflection in the solar cell.

  14. Measurement of photon production in the very forward direction in deep-inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)] (and others)

    2011-06-15

    The production of photons at very small angles with respect to the proton beam direction is studied in deep-inelastic positron-proton scattering at HERA. The data are taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of 126 pb{sup -1}. The analysis covers the range of negative four momentum transfer squared at the positron vertex 67.9 as a function of its transverse momentum p{sub T}{sup lead} and longitudinal momentum fraction of the incoming proton x{sub L}{sup lead}. In addition, the cross sections are studied as a function of the sum of the longitudinal momentum fraction x{sub L}{sup sum} of all photons in the pseudorapidity range {eta}>7.9. The cross sections are normalised to the inclusive deep-inelastic scattering cross section and compared to the predictions of models of deep-inelastic scattering and models of the hadronic interactions of high energy cosmic rays. (orig.)

  15. Measurement of photon production in the very forward direction in deep-inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G. [National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Inst., Moscow (Russian Federation); Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N. [Univ. of Montenegro, Podgorica (ME); Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H. [Yerevan Physics Inst. (Armenia); Barrelet, E. [Univ. Pierre et Marie Curie Paris 6, LPNHE, Paris (France); Univ. Denis Diderot Paris 7, CNRS/IN2P3, Paris (France); Bartel, W.; Belov, P.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Kleinwort, C.; Kogler, R.; Kraemer, M.; Levonian, S.; Lipka, K.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Schmitt, S.; Sefkow, F.; South, D.; Steder, M.; Wuensch, E. [DESY, Hamburg (Germany); Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B. [Inst. of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F. [Univ. Paris-Sud, CNRS/IN2P3, LAL, Orsay (France); Boudry, V.; Moreau, F.; Specka, A. [Ecole Polytechnique, CNRS/IN2P3, LLR, Palaiseau (France); Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I. [Univ. of Belgrade, Vinca Institute of Nuclear Sciences, Belgrade (RS); Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D. [Univ. of Birmingham (United Kingdom); Bruncko, D.; Cerny, V.; Ferencei, J. [Slovak Academy of Sciences, Inst. of Experimental Physics, Kosice (Slovakia)] [and others

    2011-10-15

    The production of photons at very small angles with respect to the proton beam direction is studied in deep-inelastic positron-proton scattering at HERA. The data are taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of 126 pb{sup -1}. The analysis covers the range of negative four momentum transfer squared at the positron vertex 67.9 as a function of its transverse momentum p{sub T}{sup lead} and longitudinal momentum fraction of the incoming proton x{sub L}{sup lead}. In addition, the cross sections are studied as a function of the sum of the longitudinal momentum fraction x{sub L}{sup sum} of all photons in the pseudorapidity range {eta}>7.9. The cross sections are normalised to the inclusive deep-inelastic scattering cross section and compared to the predictions of models of deep-inelastic scattering and models of the hadronic interactions of high energy cosmic rays. (orig.)

  16. Trapping cold ground state argon atoms for sympathetic cooling of molecules

    OpenAIRE

    Edmunds, P. D.; Barker, P. F.

    2014-01-01

    We trap cold, ground-state, argon atoms in a deep optical dipole trap produced by a build-up cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of co-trapped metastable argon atoms using a new type of parametric loss spectroscopy. Using this technique we als...

  17. Antihydrogen Formation, Dynamics and Trapping

    CERN Document Server

    Butler, Eoin; Charlton, Michael

    2011-01-01

    Antihydrogen, the simplest pure-antimatter atomic system, holds the promise of direct tests of matter-antimatter equivalence and CPT invariance, two of the outstanding unanswered questions in modern physics. Antihydrogen is now routinely produced in charged-particle traps through the combination of plasmas of antiprotons and positrons, but the atoms escape and are destroyed in a minuscule fraction of a second. The focus of this work is the production of a sample of cold antihydrogen atoms in a magnetic atom trap. This poses an extreme challenge, because the state-of-the-art atom traps are only approximately 0.5 K deep for ground-state antihydrogen atoms, much shallower than the energies of particles stored in the plasmas. This thesis will outline the main parts of the ALPHA experiment, with an overview of the important physical processes at work. Antihydrogen production techniques will be described, and an analysis of the spatial annihilation distribution to give indications of the temperature and binding ene...

  18. In-situ, real-time, studies of film growth processes using ion scattering and direct recoil spectroscopy techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Smentkowski, V. S.

    1999-04-22

    Time-of-flight ion scattering and recoil spectroscopy (TOF-ISARS) enables the characterization of the composition and structure of surfaces with 1-2 monolayer specificity. It will be shown that surface analysis is possible at ambient pressures greater than 3 mTorr using TOF-ISARS techniques; allowing for real-time, in situ studies of film growth processes. TOF-ISARS comprises three analytical techniques: ion scattering spectroscopy (ISS), which detects the backscattered primary ion beam; direct recoil spectroscopy (DRS), which detects the surface species recoiled into the forward scattering direction; and mass spectroscopy of recoiled ions (MSRI), which is 3 variant of DRS capable of isotopic resolution for all surface species--including H and He. The advantages and limitations of each of these techniques will be discussed. The use of the three TOF-ISARS methods for real-time, in situ film growth studies at high ambient pressures will be illustrated. It will be shown that MSRI analysis is possible during sputter deposition. It will be also be demonstrated that the analyzer used for MSRI can also be used for time of flight secondary ion mass spectroscopy (TOF-SIMS) under high vacuum conditions. The use of a single analyzer to perform the complimentary surface analytical techniques of MSRI and SIMS is unique. The dwd functionality of the MSRI analyzer provides surface information not obtained when either MSRI or SIMS is used independently.

  19. Direct Analysis of Organic Compounds in Liquid Using a Miniature Photoionization Ion Trap Mass Spectrometer with Pulsed Carrier-Gas Capillary Inlet.

    Science.gov (United States)

    Lu, Xinqiong; Yu, Quan; Zhang, Qian; Ni, Kai; Qian, Xiang; Tang, Fei; Wang, Xiaohao

    2017-08-01

    A miniature ion trap mass spectrometer with capillary direct sampling and vacuum ultraviolet photoionization source was developed to conduct trace analysis of organic compounds in liquids. Self-aspiration sampling is available where the samples are drawn into the vacuum chamber through a capillary with an extremely low flow rate (less than 1 μL/min), which minimizes sample consumption in each analysis to tens of micrograms. A pulsed gas-assisted inlet was designed and optimized to promote sample transmission in the tube and facilitate the cooling of ions, thereby improving instrument sensitivity. A limit of detection of 2 ppb could be achieved for 2,4-dimethylaniline in a methanol solution. The sampling system described in the present study is specifically suitable for a miniature photoionization ion trap mass spectrometer that can perform rapid and online analysis for liquid samples. Graphical Abstract ᅟ.

  20. Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect

    International Nuclear Information System (INIS)

    Allcock, D T C; Sherman, J A; Stacey, D N; Burrell, A H; Curtis, M J; Imreh, G; Linke, N M; Szwer, D J; Webster, S C; Steane, A M; Lucas, D M

    2010-01-01

    We describe a new electrode design for a surface-electrode Paul trap, which allows rotation of the normal modes out of the trap plane, and a technique for micromotion compensation in all directions using a two-photon process, which avoids the need for an ultraviolet laser directed to the trap plane. The fabrication and characterization of the trap are described, as well as its implementation for the trapping and cooling of single Ca + ions. We also propose a repumping scheme that increases ion fluorescence and simplifies heating rate measurements obtained by time-resolved ion fluorescence during Doppler cooling.

  1. Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect

    Science.gov (United States)

    Allcock, D. T. C.; Sherman, J. A.; Stacey, D. N.; Burrell, A. H.; Curtis, M. J.; Imreh, G.; Linke, N. M.; Szwer, D. J.; Webster, S. C.; Steane, A. M.; Lucas, D. M.

    2010-05-01

    We describe a new electrode design for a surface-electrode Paul trap, which allows rotation of the normal modes out of the trap plane, and a technique for micromotion compensation in all directions using a two-photon process, which avoids the need for an ultraviolet laser directed to the trap plane. The fabrication and characterization of the trap are described, as well as its implementation for the trapping and cooling of single Ca+ ions. We also propose a repumping scheme that increases ion fluorescence and simplifies heating rate measurements obtained by time-resolved ion fluorescence during Doppler cooling.

  2. Correlation in atomic scattering

    International Nuclear Information System (INIS)

    McGuire, J.H.

    1987-01-01

    Correlation due to the Coulomb interactions between electrons in many-electron targets colliding with charged particles is formulated, and various approximate probability amplitudes are evaluated. In the limit that the electron-electron, 1/r/sub i//sub j/, correlation interactions are ignored or approximated by central potentials, the independent-electron approximation is obtained. Two types of correlations, or corrections to the independent-electron approximation due to 1/r/sub i//sub j/ terms, are identified: namely, static and scattering correlation. Static correlation is that contained in the asymptotic, e.g., bound-state, wave functions. Scattering correlation, arising from correlation in the scattering operator, is new and is considered in some detail. Expressions for a scattering correlation amplitude, static correlation or rearrangement amplitude, and independent-electron or direct amplitude are derived at high collision velocity and compared. At high velocities the direct and rearrangement amplitudes dominate. At very high velocities, ν, the rearrangement amplitude falls off less rapidly with ν than the direct amplitude which, however, is dominant as electron-electron correlation tends to zero. Comparisons with experimental observations are discussed

  3. Very low-energy hydrogen-antihydrogen scattering

    International Nuclear Information System (INIS)

    Armour, E.A.G.; Chamberlain, C.W.

    2003-01-01

    In view of current interest in the trapping of antihydrogen (H-bar) atoms at very low temperatures, we have carried out a calculation of s-wave hydrogen-antihydrogen scattering at very low energies, using the Kohn variational method, taking into account rearrangement scattering into the three channels that contain positronium in its ground state and lie closest to threshold. We find that our values for the elastic cross section are in good agreement with the values obtained by Jonsell et al. [2001 Phys. Rev. A 64 052712] using a distorted wave approximation. However, our values for the total rearrangement cross section are much larger than their values and we predict that cooling of H-bar by cold H would be considerably less efficient than was found to be the case by Jonsell et al.. (author)

  4. Integrated fiber-mirror ion trap for strong ion-cavity coupling

    International Nuclear Information System (INIS)

    Brandstätter, B.; Schüppert, K.; Casabone, B.; Friebe, K.; Stute, A.; Northup, T. E.; McClung, A.; Schmidt, P. O.; Deutsch, C.; Reichel, J.; Blatt, R.

    2013-01-01

    We present and characterize fiber mirrors and a miniaturized ion-trap design developed to integrate a fiber-based Fabry-Perot cavity (FFPC) with a linear Paul trap for use in cavity-QED experiments with trapped ions. Our fiber-mirror fabrication process not only enables the construction of FFPCs with small mode volumes, but also allows us to minimize the influence of the dielectric fiber mirrors on the trapped-ion pseudopotential. We discuss the effect of clipping losses for long FFPCs and the effect of angular and lateral displacements on the coupling efficiencies between cavity and fiber. Optical profilometry allows us to determine the radii of curvature and ellipticities of the fiber mirrors. From finesse measurements, we infer a single-atom cooperativity of up to 12 for FFPCs longer than 200 μm in length; comparison to cavities constructed with reference substrate mirrors produced in the same coating run indicates that our FFPCs have similar scattering losses. We characterize the birefringence of our fiber mirrors, finding that careful fiber-mirror selection enables us to construct FFPCs with degenerate polarization modes. As FFPCs are novel devices, we describe procedures developed for handling, aligning, and cleaning them. We discuss experiments to anneal fiber mirrors and explore the influence of the atmosphere under which annealing occurs on coating losses, finding that annealing under vacuum increases the losses for our reference substrate mirrors. X-ray photoelectron spectroscopy measurements indicate that these losses may be attributable to oxygen depletion in the mirror coating. Special design considerations enable us to introduce a FFPC into a trapped ion setup. Our unique linear Paul trap design provides clearance for such a cavity and is miniaturized to shield trapped ions from the dielectric fiber mirrors. We numerically calculate the trap potential in the absence of fibers. In the experiment additional electrodes can be used to compensate

  5. Direct and inverse scattering at fixed energy for massless charged Dirac fields by Kerr-Newman-de Sitter black holes

    CERN Document Server

    Daudé, Thierry

    2017-01-01

    In this paper, the authors study the direct and inverse scattering theory at fixed energy for massless charged Dirac fields evolving in the exterior region of a Kerr-Newman-de Sitter black hole. In the first part, they establish the existence and asymptotic completeness of time-dependent wave operators associated to our Dirac fields. This leads to the definition of the time-dependent scattering operator that encodes the far-field behavior (with respect to a stationary observer) in the asymptotic regions of the black hole: the event and cosmological horizons. The authors also use the miraculous property (quoting Chandrasekhar)-that the Dirac equation can be separated into radial and angular ordinary differential equations-to make the link between the time-dependent scattering operator and its stationary counterpart. This leads to a nice expression of the scattering matrix at fixed energy in terms of stationary solutions of the system of separated equations. In a second part, the authors use this expression of ...

  6. Weak Interaction Measurements with Optically Trapped Radioactive Atoms

    International Nuclear Information System (INIS)

    Vieira, D.J.; Crane, S.G.; Guckert, R.; Zhao, X.; Brice, S.J.; Goldschmidt, A.; Hime, A.; Tupa, D.

    1999-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project is to apply the latest in magneto-optical and pure magnetic trapping technology to concentrate, cool, confine, and polarize radioactive atoms for precise electroweak interaction measurements. In particular, the authors have concentrated their efforts on the trapping of 82 Rb for a parity-violating, beta-asymmetry measurement. Progress has been made in successfully trapping of up to 6 million 82 Rb(t 1/2 =75s) atoms in a magneto-optical trap coupled to a mass separator. This represents a two order of magnitude improvement in the number trapped radioactive atoms over all previous work. They have also measured the atomic hyperfine structure of 82 Rb and demonstrated the MOT-to-MOT transfer and accumulation of atoms in a second trap. Finally, they have constructed and tested a time-orbiting-potential magnetic trap that will serve as a rotating beacon of spin-polarized nuclei and a beta-telescope detection system. Prototype experiments are now underway with the initial goal of making a 1% measurements of the beta-asymmetry parameter A which would match the world's best measurements

  7. DaMaSCUS: the impact of underground scatterings on direct detection of light dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Emken, Timon; Kouvaris, Chris, E-mail: emken@cp3.sdu.dk, E-mail: kouvaris@cp3.sdu.dk [CP3-Origins, University of Southern Denmark, Campusvej 55, DK-5230 Odense (Denmark)

    2017-10-01

    Conventional dark matter direct detection experiments set stringent constraints on dark matter by looking for elastic scattering events between dark matter particles and nuclei in underground detectors. However these constraints weaken significantly in the sub-GeV mass region, simply because light dark matter does not have enough energy to trigger detectors regardless of the dark matter-nucleon scattering cross section. Even if future experiments lower their energy thresholds, they will still be blind to parameter space where dark matter particles interact with nuclei strongly enough that they lose enough energy and become unable to cause a signal above the experimental threshold by the time they reach the underground detector. Therefore in case dark matter is in the sub-GeV region and strongly interacting, possible underground scatterings of dark matter with terrestrial nuclei must be taken into account because they affect significantly the recoil spectra and event rates, regardless of whether the experiment probes DM via DM-nucleus or DM-electron interaction. To quantify this effect we present the publicly available Dark Matter Simulation Code for Underground Scatterings (DaMaSCUS), a Monte Carlo simulator of DM trajectories through the Earth taking underground scatterings into account. Our simulation allows the precise calculation of the density and velocity distribution of dark matter at any detector of given depth and location on Earth. The simulation can also provide the accurate recoil spectrum in underground detectors as well as the phase and amplitude of the diurnal modulation caused by this shadowing effect of the Earth, ultimately relating the modulations expected in different detectors, which is important to decisively conclude if a diurnal modulation is due to dark matter or an irrelevant background.

  8. DaMaSCUS: the impact of underground scatterings on direct detection of light dark matter

    International Nuclear Information System (INIS)

    Emken, Timon; Kouvaris, Chris

    2017-01-01

    Conventional dark matter direct detection experiments set stringent constraints on dark matter by looking for elastic scattering events between dark matter particles and nuclei in underground detectors. However these constraints weaken significantly in the sub-GeV mass region, simply because light dark matter does not have enough energy to trigger detectors regardless of the dark matter-nucleon scattering cross section. Even if future experiments lower their energy thresholds, they will still be blind to parameter space where dark matter particles interact with nuclei strongly enough that they lose enough energy and become unable to cause a signal above the experimental threshold by the time they reach the underground detector. Therefore in case dark matter is in the sub-GeV region and strongly interacting, possible underground scatterings of dark matter with terrestrial nuclei must be taken into account because they affect significantly the recoil spectra and event rates, regardless of whether the experiment probes DM via DM-nucleus or DM-electron interaction. To quantify this effect we present the publicly available Dark Matter Simulation Code for Underground Scatterings (DaMaSCUS), a Monte Carlo simulator of DM trajectories through the Earth taking underground scatterings into account. Our simulation allows the precise calculation of the density and velocity distribution of dark matter at any detector of given depth and location on Earth. The simulation can also provide the accurate recoil spectrum in underground detectors as well as the phase and amplitude of the diurnal modulation caused by this shadowing effect of the Earth, ultimately relating the modulations expected in different detectors, which is important to decisively conclude if a diurnal modulation is due to dark matter or an irrelevant background.

  9. Optical manipulation with two beam traps in microfluidic polymer systems

    DEFF Research Database (Denmark)

    Khoury Arvelo, Maria; Matteucci, Marco; Sørensen, Kristian Tølbøl

    2015-01-01

    An optical trapping system with two opposing laser beams, also known as the optical stretcher, are naturally constructed inside a microfluidic lab-on-chip system. We present and compare two approaches to combine a simple microfluidic system with either waveguides directly written in the microflui......An optical trapping system with two opposing laser beams, also known as the optical stretcher, are naturally constructed inside a microfluidic lab-on-chip system. We present and compare two approaches to combine a simple microfluidic system with either waveguides directly written...

  10. Trapping and interactions of an ultracold gas of Cs2 molecules

    International Nuclear Information System (INIS)

    Mark, M.; Kraemer, T.; Herbig, J.; Waldburger, P.; Naegerl, H.C.; Chin, C.; Grimm, R.

    2005-01-01

    Full text: We investigate dynamics and interactions of Cs 2 dimers in a CO2-laser dipole trap. Starting with a Bose-Einstein condensate (BEC) of 2.2 x 10 5 Cs atoms, we create ultracold molecules in a single, weakly bound quantum state by sweeping the magnetic field across a narrow Feshbach resonance. When the molecules are created in free space, the conversion efficiency exceeds 30 %, yielding up to 50000 molecules. In our trapping experiments, about 6000 ultracold Cs 2 dimers are prepared in the optical trap at a temperature of 200 nK. We transfer the trapped molecules from the initial molecular state to other molecular states by following avoided crossings. We find two magnetically tunable resonances in collisions between the molecules for one of the molecular states. We interpret these Feshbach-liKEX resonances as being induced by Cs 4 bound states near the molecular scattering continuum. Further, we have discovered a new molecular state with very large orbital angular momentum of l = 8. This state is very weakly coupled to one of the initial molecular states. We use the associated avoided crossing as a molecular beam splitter to realize a molecular Ramsey-type interferometer. Refs. 2 (author)

  11. Single-electron capture for 2-8 keV incident energy and direct scattering at 6 keV in He2+-He collisions

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, D.; Dagnac, R.

    1992-01-01

    We studied the single-electron capture as well as the direct processes occurring when a He 2+ ion is scattered by a He target. Doubly differential cross sections were measured for single-electron capture with a collision energy ranging from 2 to 8 keV and a scattering angle varying from 10' to 3 o 30' (laboratory frame). Single-electron capture into excited states of He + was found to be the dominant process, confirming a previous experimental study. Elastic scattering and ionization differential cross sections were measured for E = 6 keV. (Author)

  12. Effects of oxide traps, interface traps, and ''border traps'' on metal-oxide-semiconductor devices

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Reber, R.A. Jr.; Meisenheimer, T.L.; Schwank, J.R.; Shaneyfelt, M.R.; Riewe, L.C.

    1993-01-01

    We have identified several features of the 1/f noise and radiation response of metal-oxide-semiconductor (MOS) devices that are difficult to explain with standard defect models. To address this issue, and in response to ambiguities in the literature, we have developed a revised nomenclature for defects in MOS devices that clearly distinguishes the language used to describe the physical location of defects from that used to describe their electrical response. In this nomenclature, ''oxide traps'' are simply defects in the SiO 2 layer of the MOS structure, and ''interface traps'' are defects at the Si/SiO 2 interface. Nothing is presumed about how either type of defect communicates with the underlying Si. Electrically, ''fixed states'' are defined as trap levels that do not communicate with the Si on the time scale of the measurements, but ''switching states'' can exchange charge with the Si. Fixed states presumably are oxide traps in most types of measurements, but switching states can either be interface traps or near-interfacial oxide traps that can communicate with the Si, i.e., ''border traps'' [D. M. Fleetwood, IEEE Trans. Nucl. Sci. NS-39, 269 (1992)]. The effective density of border traps depends on the time scale and bias conditions of the measurements. We show the revised nomenclature can provide focus to discussions of the buildup and annealing of radiation-induced charge in non-radiation-hardened MOS transistors, and to changes in the 1/f noise of MOS devices through irradiation and elevated-temperature annealing

  13. Trapping processes in CaS:Eu2+,Tm3+

    International Nuclear Information System (INIS)

    Jia, Dongdong; Jia, Weiyi; Evans, D. R.; Dennis, W. M.; Liu, Huimin; Zhu, Jing; Yen, W. M.

    2000-01-01

    CaS:Eu 2+ ,Tm 3+ is a persistent red phosphor. Thermoluminescence was measured under different excitation and thermal treatment conditions. The results reveal that the charge defects, created by substituting Tm 3+ for Ca 2+ , serve as hole traps for the afterglow at room temperature. Tm 3+ plays the role of deep electron trapping centers, capturing electrons either through the conduction band or directly from the excited Eu 2+ ions. These two processes, in which two different sites of Tm 3+ are involved, correspond to two traps with different depths. (c) 2000 American Institute of Physics

  14. Nanometer-range atomic order directly recovered from resonant diffuse scattering

    Czech Academy of Sciences Publication Activity Database

    Kopecký, Miloš; Kub, Jiří; Fábry, Jan; Hlinka, Jiří

    2016-01-01

    Roč. 93, č. 5 (2016), 1-8, č. článku 054202. ISSN 1098-0121 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : diffuse scattering * resonant scattering * atomic structure * perovskites * relaxors * PbMg 1/3 Nb 2/3 O 3 (PMN) Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  15. Measurement of illite particle thickness using a direct Fourier transform of small-angle X-ray scattering data

    Science.gov (United States)

    Shang, Chao; Rice, James A.; Eberl, Dennis D.; Lin, Jar-Shyong

    2003-01-01

    It has been suggested that interstratified illite-smectite (I-S) minerals are composed of aggregates of fundamental particles. Many attempts have been made to measure the thickness of such fundamental particles, but each of the methods used suffers from its own limitations and uncertainties. Small-angle X-ray scattering (SAXS) can be used to measure the thickness of particles that scatter X-rays coherently. We used SAXS to study suspensions of Na-rectorite and other illites with varying proportions of smectite. The scattering intensity (I) was recorded as a function of the scattering vector, q = (4 /) sin(/2), where  is the X-ray wavelength and  is the scattering angle. The experimental data were treated with a direct Fourier transform to obtain the pair distance distribution function (PDDF) that was then used to determine the thickness of illite particles. The Guinier and Porod extrapolations were used to obtain the scattering intensity beyond the experimental q, and the effects of such extrapolations on the PDDF were examined. The thickness of independent rectorite particles (used as a reference mineral) is 18.3 Å. The SAXS results are compared with those obtained by X-ray diffraction peak broadening methods. It was found that the power-law exponent (α) obtained by fitting the data in the region of q = 0.1-0.6 nm-1 to the power law (I = I0q-α) is a linear function of illite particle thickness. Therefore, illite particle thickness could be predicted by the linear relationship as long as the thickness is within the limit where α <4.0.

  16. Delbrueck scattering of monoenergetic photons

    International Nuclear Information System (INIS)

    Kahane, S.

    1978-05-01

    The Delbrueck effect was experimentally investigated in high Z nuclei with monoenergetic photons in the range 6.8-11.4 MeV. Two different methods were used for measurements of the differential scattering cross-section, in the 25-140 deg range and in the forward direction (theta = 1.5 deg), respectively. The known Compton scattering cross-section was used in a new and unique way for the determination of the elastic scattering cross-section. Isolation of the contribution of the real Delbrueck amplitudes to the cross-section was crried out successfully. Experimental confirmation of the theoretical calculations of Papatzacos and Mork and measurement, for the first time, of the Rayleigh scattering in the 10 MeV region are also reported. One of the most interesting findings is the presence of Coulomb corrections in Delbrueck scattering at these energies. More theoretical effort is needed in this last direction. (author)

  17. Antiproton annihilation in very low-energy antihydrogen scattering by simple atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Armour, E.A.G. [School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Gregory, M.R. [School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD (United Kingdom)]. E-mail: mark.gregory@maths.nottingham.ac.uk; Liu, Y. [School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2006-06-15

    The aim of experimentalists currently working on the preparation of antihydrogen is to trap it at very low temperatures so that its properties can be studied. Of concern to experimentalists are processes that lead to a loss of antihydrogen through annihilation. The dominant annihilation process that leads to the loss of antihydrogen is the annihilation of the antiproton with nuclei through the strong interaction. A recent scattering calculation of antihydrogen with hydrogen at very low energy, using the complex strong interaction potential of Kohno and Weise, has found an average annihilation cross-section of 0.13E{sup -1/2}a{sub 0}{sup -2}, where E is the energy of relative motion. The antihydrogen-helium system is of particular interest to experimentalists as helium may be present as an impurity in the trap. Also there is interest in the possibility of using it to cool antihydrogen. We present a treatment of antihydrogen scattering with helium at very low temperatures. The annihilation cross-sections obtained are much larger than antihydrogen-hydrogen scattering cross-section, making it very unlikely that helium can be used to cool antihydrogen.

  18. Ion trapping within the dust grain plasma sheath

    International Nuclear Information System (INIS)

    Jovanovic, D.; Shukla, P.K.

    2002-01-01

    One of the most important and still unresolved problems in the physics of dusty plasmas is the determination of the dust charge. The grains are not directly accessible to measurements and it is necessary to have a reliable theoretical model of the electron and ion dynamics inside the Debye sphere for the interpretation of the relevant experimental data, which include also the effects of the surrounding electron and ion clouds. Recent computer simulations [6] and laboratory experiments [9] indicate that the plasma sheath is dominated by trapped ions, orbiting the grain on closed trajectories at distances smaller than the Debye radius, that cannot be accounted for by the classical theories. We present the first analytical, fully self-consistent, calculations of the electrostatic shielding of a charged dust grain in a collisional plasma. In the regime when the mean free path for the ion-dust collisions is larger than that for the ion-neutral collisions, we solve the kinetic equation for the ions, coupled with Boltzmann distributed electrons and Poisson's equation. The ion velocity distribution function, in the form of a spherically symmetric ion hole, is found to be anisotropic in the presence of charge-exchange collisions. The number of trapped ions and their spatial distribution are determined from the interplay between the collective plasma interaction and the collisional trapping/de-trapping. The stationary state results from the self-tuning of the trapped ion density by the feedback based on the nonlocality of the collisional integral, and on the ion mixing in the radial direction along elongated orbits. Our results confirm the existence of a strong Debye shielding of the dust charge, allowing also the over-population of the trapped ion distribution (ion hump)

  19. Trapping cold ground state argon atoms.

    Science.gov (United States)

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  20. Quantized motion of trapped ions

    International Nuclear Information System (INIS)

    Steinbach, J.

    1999-01-01

    This thesis is concerned with a theoretical and numerical study of the preparation and coherent manipulation of quantum states in the external and internal degrees of freedom of trapped ions. In its first part, this thesis proposes and investigates schemes for generating several nonclassical states for the quantized vibrational motion of a trapped ion. Based on dark state preparation specific laser excitation configurations are presented which, given appropriately chosen initial states, realize the desired motional states in the steady-state, indicated by the cessation of the fluorescence emitted by the ion. The focus is on the SU(1,1) intelligent states in both their single- and two-mode realization, corresponding to one- and two-dimensional motion of the ion. The presented schemes are also studied numerically using a Monte-Carlo state-vector method. The second part of the thesis describes how two vibrational degrees of freedom of a single trapped ion can be coupled through the action of suitably chosen laser excitation. Concentrating on a two-dimensional ion trap with dissimilar vibrational frequencies a variety of quantized two-mode couplings are derived. The focus is on a linear coupling that takes excitations from one mode to another. It is demonstrated how this can result in a state rotation, in which it is possible to coherently transfer the motional state of the ion between orthogonal directions without prior knowledge of that motional state. The third part of this thesis presents a new efficient method for generating maximally entangled internal states of a collection of trapped ions. The method is deterministic and independent of the number of ions in the trap. As the essential element of the scheme a mechanism for the realization of a controlled NOT operation that can operate on multiple ions is proposed. The potential application of the scheme for high-precision frequency standards is explored. (author)

  1. The trapping of K and Na atoms by a clean W(110) surface. Dynamic trajectory calculations. ch.3

    International Nuclear Information System (INIS)

    Hurkmans, A.; Overbosch, E.G.; Los, J.

    1976-01-01

    The fraction of K and Na atoms which are initially trapped by a clean W(110) surface has been measured as a function of incident energy (0.5 < approximately Esub(i) < approximately 15 eV) at several angles of incidence. At the same time the desorption energies Qsub(i) of the trapped potassium and sodium atoms were measured: Qsub(i) = 2.05 +- 0.02 eV and Qsub(i) = 2.60 +- 0.04 eV respectively. The measured trapping probabilities can be described well by Trillings 'partially screened spherical cap' model, except fos the small angles of incidence. Dynamic trajectory calculations were performed for a particle scattered from a diatomic molecule to explain the screening and the descrepancy at normal incidence. The calculations give good quantitative agreement with the measured trapping probability at small angles both for potassium and sodium atoms and show that simultaneous interaction with two adjacent surface atoms affects the trapping particularly at small angles of incidence. (Auth.)

  2. Behaviour of direct and delayed fast ion losses during NBI on TJ-II

    International Nuclear Information System (INIS)

    Guasp, J.; Liniers; M.

    1995-09-01

    The dependence with density and beam energy of the different kind of fast ion losses, direct and delayed, during tangential balanced NBI injection in TJ-II helical axis stellerator has been analysed. Direct losses increase with energy and a strong difference between the two injection directions appears, are produced by passing particles that loss confinement in a dew mu,sec and the influence of birth profiles produces an increase with density. Delayed losses are very well separated in time from direct ones, are produced by particles experimenting pitch angle scattering an,d, most o them, correspond to trapped particles. Are much less important than the direct ones (about 1/3), decrease slowly with energy and, with CX, increase with density (an effect of initial profile). The absorption is rather independent of energy with low values at low density in reason of high shine trough and CX losses, but reovers quickly with the density increase

  3. Behaviour of direct and delayed fast ion losses during NBI on TJ-II

    International Nuclear Information System (INIS)

    Guasp, J.; Liniers, M.

    1995-01-01

    The dependence with density and beam energy of the different kind of fast ion losses, direct and delayed, during tangential balanced NBI injection in TJ-II helical axis stellarator has been analysed. Direct losses increase with energy and a strong difference between the two injection directions appears, are produced by passing particles that loss confinement in a few μsec and the influence of birth profiles produces an increase with density. Delayed losses are very well separated in time from direct ones, are produced by particles experimenting pitch angle scattering and, most o them, correspond to trapped particles. Are much less important than the direct ones (about 1/3), decrease slowly with energy and, with C X, increase with density (an effect of initial profile). The absorption is rather independent of energy with low values at low density in reason of high shine through and C X losses, but recovers quickly with the density increase. (Author) 4 refs

  4. Determination of the NOx Loading of an Automotive Lean NOx Trap by Directly Monitoring the Electrical Properties of the Catalyst Material Itself

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2011-08-01

    Full Text Available Recently, it has been shown that the degree of loading of several types of automotive exhaust aftertreatment devices can be directly monitored in situ and in a contactless way by a microwave-based method. The goal of this study was to clarify whether this method can also be applied to NOx storage and reduction catalysts (lean NOx traps in order to obtain further knowledge about the reactions occurring in the catalyst and to compare the results with those obtained by wirebound NOx loading sensors. It is shown that both methods are able to detect the different catalyst loading states. However, the sensitivity of the microwave-based method turned out to be small compared to that previously observed for other exhaust aftertreatment devices. This may limit the practical applicability of the microwave-based NOx loading detection in lean NOx traps.

  5. Simulations of the Light Scattering Properties of Metal/Oxide Core/Shell Nanospheres

    International Nuclear Information System (INIS)

    Ruffino, F.; Piccitto, G.; Grimaldi, M.G.; Ruffino, F.; Grimaldi, M.G.

    2014-01-01

    Given the importance of the optical properties of metal/dielectric core/shell nanoparticles, in this work we focus our attention on the light scattering properties, within the Mie framework, of some specific categories of these noteworthy nano structures. In particular, we report theoretical results of angle-dependent light scattering intensity and scattering efficiency for Ag/Ag 2 O, Al/Al 2 O 2 , Cu/Cu 2 O, Pd/PdO, and Ti/TiO 2 core/shell nanoparticles as a function of the core radius/shell thickness ratio and on a relative comparison. The results highlight the light scattering characteristics of these systems as a function of the radius/shell thickness ratio, helping in the choice of the more suitable materials and sizes for specific applications (i.e., dynamic light scattering for biological and molecular recognition, increasing light trapping in thin-film silicon, organic solar cells for achieving a higher photocurrent).

  6. Shrew trap efficiency

    DEFF Research Database (Denmark)

    Gambalemoke, Mbalitini; Mukinzi, Itoka; Amundala, Drazo

    2008-01-01

    We investigated the efficiency of four trap types (pitfall, Sherman LFA, Victor snap and Museum Special snap traps) to capture shrews. This experiment was conducted in five inter-riverine forest blocks in the region of Kisangani. The total trapping effort was 6,300, 9,240, 5,280 and 5,460 trap......, our results indicate that pitfall traps are the most efficient for capturing shrews: not only do they have a higher efficiency (yield), but the taxonomic diversity of shrews is also higher when pitfall traps are used....

  7. Experimental study of Rayleigh scattering with a ruby laser beam: relative variation of scattered light with the number of scattering center and the gases nature

    International Nuclear Information System (INIS)

    Bayer, Charles

    1973-06-01

    The experimental variation of the scattered light with the number of scattering centers and with the refraction index of gases is in agreement with the theoretical Rayleigh scattering. A direct calibration System gives the absolute value of the Rayleigh ratio. The experimental value appears to be half of the theoretical one. (author) [fr

  8. Precision polarization measurements of atoms in a far-off-resonance optical dipole trap

    International Nuclear Information System (INIS)

    Fang, F.; Vieira, D. J.; Zhao, X.

    2011-01-01

    Precision measurement of atomic and nuclear polarization is an essential step for beta-asymmetry measurement of radioactive atoms. In this paper, we report the polarization measurement of Rb atoms in an yttrium-aluminum-garnet (YAG) far-off-resonance optical dipole trap. We have prepared a cold cloud of polarized Rb atoms in the YAG dipole trap by optical pumping and achieved an initial nuclear polarization of up to 97.2(5)%. The initial atom distribution in different Zeeman levels is measured by using a combination of microwave excitation, laser pushing, and atomic retrap techniques. The nuclear-spin polarization is further purified to 99.2(2)% in 10 s and maintained above 99% because the two-body collision loss rate between atoms in mixed spin states is greater than the one-body trap loss rate. Systematic effects on the nuclear polarization, including the off-resonance Raman scattering, magnetic field gradient, and background gas collisions, are discussed.

  9. Raman scattering and associated fast electron production. Final technical report, April 16, 1984-April 15, 1985

    International Nuclear Information System (INIS)

    Brooks, R.D.; Pietrzyk, Z.A.

    1985-08-01

    High energy electrons in plasmas have been attributed to various causes including trapping by electron plasma waves created by stimulated Raman scattering. A theory, consistent with experimental results, based on the acceleration of trapped electrons by such electron plasma waves as they propagate in the presence of a density gradient away from the region where they are created is presented. Single particle simulations show accelerating voltages as high as 20 GV/m

  10. Quantum trajectories in elastic atom-surface scattering: threshold and selective adsorption resonances.

    Science.gov (United States)

    Sanz, A S; Miret-Artés, S

    2005-01-01

    The elastic resonant scattering of He atoms off the Cu(117) surface is fully described with the formalism of quantum trajectories provided by Bohmian mechanics. Within this theory of quantum motion, the concept of trapping is widely studied and discussed. Classically, atoms undergo impulsive collisions with the surface, and then the trapped motion takes place covering at least two consecutive unit cells. However, from a Bohmian viewpoint, atom trajectories can smoothly adjust to the equipotential energy surface profile in a sort of sliding motion; thus the trapping process could eventually occur within one single unit cell. In particular, both threshold and selective adsorption resonances are explained by means of this quantum trapping considering different space and time scales. Furthermore, a mapping between each region of the (initial) incoming plane wave and the different parts of the diffraction and resonance patterns can be easily established, an important issue only provided by a quantum trajectory formalism. (c) 2005 American Institute of Physics.

  11. Current status and future development of neutron scattering in CIAE

    International Nuclear Information System (INIS)

    Chen, D.F.; Gou, C.; Ye, C.T.; Guo, L.P.; Sun, K.

    2003-01-01

    Currently, the 15 MW Heavy Water Research Reactor (HWRR) at China Institute of Atomic Energy (CIAE) in Beijing is the only neutron source available for neutron scattering experiments in China. A 60 MW tank-in-pool inverse neutron trap-type research reactor, China Advanced Research Reactor (CARR), now is being built at CIAE to meet the increasing demand of neutron scattering research in China. According to design, the maximum unperturbed thermal neutron flux would be expected to be 8x10 14 n/cm 2 .s in the reflector region. Seven out of nine tangential horizontal beam tubes will be dedicated for neutron scattering experiments. A cold source, a hot source and a 30x60 m 2 guide tube hall will also be constructed. In this paper, a brief introduction of HWRR, the existing neutron scattering facilities and research activities at HWRR, CARR, and the facilities to be built at CARR are presented. (author)

  12. Multichannel analysis of He*(21S)+Ne elastic and inelastic scattering in crossed atomic beams

    International Nuclear Information System (INIS)

    Martin, D.W.; Fukuyama, T.; Siska, P.E.

    1990-01-01

    State-to-state elastic and inelastic angular distribution and time-of-flight measurements are reported for the scattering of He*(2 1 S) by Ne in crossed supersonic atom beams at four collision energies in the range 0.6--2.8 kcal/mol. The inelastic collision products He+Ne*(nl), where nl=3d', 4p, 4p', 5s, 5s', and 4d, are scattered predominantly forward with respect to the direction of incidence, except for endothermic states near threshold. The data are analyzed with a numerically exact multichannel curve-crossing model that yields good agreement with experimental cross section branching fractions and total quenching and state-to-state rate constants as well as the angular measurements. The model suggests the importance of intermediate ''chaperone'' states, in which the excited electron is temporarily trapped in a d or f Rydberg Ne orbital, in channeling flux into the 4s' and 5s' upper laser states of Ne by energy transfer from He*(2s 1,3 S)

  13. The range of attraction for light traps catching Culicoides biting midges (Diptera: Ceratopogonidae).

    Science.gov (United States)

    Kirkeby, Carsten; Græsbøll, Kaare; Stockmarr, Anders; Christiansen, Lasse E; Bødker, René

    2013-03-15

    Culicoides are vectors of e.g. bluetongue virus and Schmallenberg virus in northern Europe. Light trapping is an important tool for detecting the presence and quantifying the abundance of vectors in the field. Until now, few studies have investigated the range of attraction of light traps. Here we test a previously described mathematical model (Model I) and two novel models for the attraction of vectors to light traps (Model II and III). In Model I, Culicoides fly to the nearest trap from within a fixed range of attraction. In Model II Culicoides fly towards areas with greater light intensity, and in Model III Culicoides evaluate light sources in the field of view and fly towards the strongest. Model II and III incorporated the directionally dependent light field created around light traps with fluorescent light tubes. All three models were fitted to light trap collections obtained from two novel experimental setups in the field where traps were placed in different configurations. Results showed that overlapping ranges of attraction of neighboring traps extended the shared range of attraction. Model I did not fit data from any of the experimental setups. Model II could only fit data from one of the setups, while Model III fitted data from both experimental setups. The model with the best fit, Model III, indicates that Culicoides continuously evaluate the light source direction and intensity. The maximum range of attraction of a single 4W CDC light trap was estimated to be approximately 15.25 meters. The attraction towards light traps is different from the attraction to host animals and thus light trap catches may not represent the vector species and numbers attracted to hosts.

  14. Magnetic traps with a sperical separatrix: Tornado traps

    International Nuclear Information System (INIS)

    Peregood, B.P.; Lehnert, B.

    1979-11-01

    A review is given on the features of magnetic traps with a spherical separatrix, with special emphesis on Tornado spiral coil configurations. The confinement and heating of static plasmas in Tornado traps is treated, including the topology of the magnetic field structure, the magneto-mechanical properties of the magnetic coil system, as well as the particle orbits and plasma behaviour in these traps. In additio, the mode of rotating plasma operation by crossed electric and magnetic fields is being described. The results of experiments on static and rotating plasmas are summarized, and conclusions are drawn about future possibilities of Tornado traps for the creation and containment of hot plasmas. (author)

  15. Magnetic traps with a spherical separatrix: Tornado traps

    International Nuclear Information System (INIS)

    Peregood, B.P.; Lehnert, B.

    1981-01-01

    A review is given on the features of magnetic traps with a spherical separatrix, with special emphasis on Tornado spiral coil configurations. The confinement and heating of static plasms in Tornado traps is treated, including the topology of the magnetic field structure, the magneto-mechanical properties of the magnetic coil system, as well as the particle orbits and plasma behaviour in these traps. In addition, the mode of rotating plasma operation by crossed electric and magnetic fields is described. The results of experiments on static and rotating plasmas are summarized, and conclusions are drawn about future possibilities of Tornado traps in the creation and containment of hot plasmas. (orig.)

  16. Ion trapping in one-minimum potentials via charge-exchange collisions

    International Nuclear Information System (INIS)

    Maier, H.; Kuhn, S.

    1994-01-01

    A (1 d, 2 v), electrostatic, kinetics model for time-independent single-ended Q-machine states with a positively biased cold plate and a single internal minimum near the hot plate is presented. While the electrons are treated as collisionless, charge-exchange collisions between the ions and the neutral background gas atoms are taken into account by means of a linearized Boltzmann collision operator. The self-consistent plasma states are found by using an iterative analytic-numerical trajectory-simulation method in which the charge-density and potential distributions are alternately determined numerical results clearly demonstrate the sensitive role that trapped ions play in shaping the microscopic and macroscopic properties of the dc states under study. The trapped-ion distributions themselves are shown to be controlled critically by the detailed scattering conditions, which in turn are determined by the choice of the background properties. (author). 10 refs, 3 figs

  17. Charge trapping and de-trapping in isolated CdSe/ZnS nanocrystals under an external electric field: indirect evidence for a permanent dipole moment.

    Science.gov (United States)

    Zang, Huidong; Cristea, Mihail; Shen, Xuan; Liu, Mingzhao; Camino, Fernando; Cotlet, Mircea

    2015-09-28

    Single nanoparticle studies of charge trapping and de-trapping in core/shell CdSe/ZnS nanocrystals incorporated into an insulating matrix and subjected to an external electric field demonstrate the ability to reversibly modulate the exciton dynamics and photoluminescence blinking while providing indirect evidence for the existence of a permanent ground state dipole moment in such nanocrystals. A model assuming the presence of energetically deep charge traps physically aligned along the direction of the permanent dipole is proposed in order to explain the dynamics of nanocrystal blinking in the presence of a permanent dipole moment.

  18. 50 CFR 697.19 - Trap limits and trap tag requirements for vessels fishing with lobster traps.

    Science.gov (United States)

    2010-10-01

    ... vessels fishing with lobster traps. 697.19 Section 697.19 Wildlife and Fisheries FISHERY CONSERVATION AND... requirements for vessels fishing with lobster traps. (a) Trap limits for vessels fishing or authorized to fish... management area designation certificate or valid limited access American lobster permit specifying one or...

  19. Regge poles and alpha scattering

    International Nuclear Information System (INIS)

    Ceuleneer, R.

    1974-01-01

    The direct Regge pole model as a means of describing resonances in elastic particle scattering has been used for the analysis of the so-called ''anormalous large angle scattering'' of alpha particles by spinless nuclei. (Z.M.)

  20. Absolute Negative Resistance Induced by Directional Electron-Electron Scattering in a Two-Dimensional Electron Gas

    Science.gov (United States)

    Kaya, Ismet I.; Eberl, Karl

    2007-05-01

    A three-terminal device formed by two electrostatic barriers crossing an asymmetrically patterned two-dimensional electron gas displays an unusual potential depression at the middle contact, yielding absolute negative resistance. The device displays momentum and current transfer ratios that far exceed unity. The observed reversal of the current or potential in the middle terminal can be interpreted as the analog of Bernoulli’s effect in a Fermi liquid. The results are explained by directional scattering of electrons in two dimensions.

  1. Positional Accuracy in Optical Trap-Assisted Nanolithography

    Science.gov (United States)

    Arnold, Craig B.; McLeod, Euan

    2009-03-01

    The ability to directly print patterns on size scales below 100 nm is important for many applications where the production or repair of high resolution and density features are important. Laser-based direct-write methods have the benefit of quickly and easily being able to modify and create structures on existing devices, but feature sizes are conventionally limited by diffraction. In this presentation, we show how to overcome this limit with a new method of probe-based near-field nanopatterning in which we employ a CW laser to optically trap and manipulate dispersed microspheres against a substrate using a 2-d Bessel beam optical trap. A secondary, pulsed nanosecond laser at 355 nm is directed through the bead and used to modify the surface below the microsphere, taking advantage of the near-field enhancement in order to produce materials modification with feature sizes under 100 nm. Here, we analyze the 3-d positioning accuracy of the microsphere through analytic modeling as a function of experimental parameters. The model is verified in all directions for our experimental conditions and is used to predict the conditions required for improved positional accuracy.

  2. Schemes for loading a Bose-Einstein condensate into a two-dimensional dipole trap

    International Nuclear Information System (INIS)

    Colombe, Yves; Kadio, Demascoth; Olshanii, Maxim; Mercier, Brigitte; Lorent, Vincent; Perrin, Helene

    2003-01-01

    We propose two loading mechanisms of a degenerate Bose gas into a surface trap. This trap relies on the dipole potential produced by two evanescent optical waves far detuned from the atomic resonance, yielding a strongly anisotropic trap with typical frequencies 40 Hz x 65 Hz x 30 kHz. We present numerical simulations based on the time-dependent Gross-Pitaevskii equation of the transfer process from a conventional magnetic trap into the surface trap. We show that, despite a large discrepancy between the oscillation frequencies along one direction in the initial and final traps, a loading time of a few tens of milliseconds would lead to an adiabatic transfer. Preliminary experimental results are presented

  3. Scattering Theory on Surface Majorana Fermions by an Impurity in ^{3}He-B.

    Science.gov (United States)

    Tsutsumi, Yasumasa

    2017-04-07

    We have formulated the scattering theory on Majorana fermions emerging in the surface bound state of the superfluid ^{3}He B phase (^{3}He-B) by an impurity. By applying the theory to the electron bubble, which is regarded as the impurity, trapped below a free surface of ^{3}He-B, the observed mobility of the electron bubble [J. Phys. Soc. Jpn. 82, 124607 (2013)JUPSAU0031-901510.7566/JPSJ.82.124607] is quantitatively reproduced. The mobility is suppressed in low temperatures from the expected value in the bulk ^{3}He-B by the contribution from the surface Majorana fermions. By contrast, the mobility does not depend on the trapped depth of the electron bubble in spite of the spatial variation of the wave function of the surface Majorana fermions. Our formulated theory demonstrates the depth-independent mobility by considering intermediate states in the scattering process. Therefore, we conclude that the experiment has succeeded in observing Majorana fermions in the surface bound state.

  4. Continuous loading of cold atoms into a Ioffe-Pritchard magnetic trap

    International Nuclear Information System (INIS)

    Schmidt, Piet O; Hensler, Sven; Werner, Joerg; Binhammer, Thomas; Goerlitz, Axel; Pfau, Tilman

    2003-01-01

    We present a robust continuous optical loading scheme for a Ioffe-Pritchard (IP) type magnetic trap (MT). Chromium atoms are cooled and trapped in a modified magneto-optical trap (MOT) consisting of a conventional 2D-MOT in the radial direction and an axial molasses. The MOT and IP trap share the same magnetic field configuration. Continuous loading of atoms into the IP trap is provided by radiative leakage from the MOT to a metastable level which is magnetically trapped and decoupled from the MOT light. We are able to accumulate 30 times more atoms in the MT than in the MOT. The absolute number of 2 x 10 8 atoms is limited by inelastic collisions. A model based on rate equations shows good agreement with the data. Our scheme can also be applied to other atoms with similar level structure like alkaline earth metals

  5. Intensity-modulated polarizabilities and magic trapping of alkali-metal and divalent atoms in infrared optical lattices

    Science.gov (United States)

    Topcu, Turker; Derevianko, Andrei

    2014-05-01

    Long range interactions between neutral Rydberg atoms has emerged as a potential means for implementing quantum logical gates. These experiments utilize hyperfine manifold of ground state atoms to act as a qubit basis, while exploiting the Rydberg blockade mechanism to mediate conditional quantum logic. The necessity for overcoming several sources of decoherence makes magic wavelength trapping in optical lattices an indispensable tool for gate experiments. The common wisdom is that atoms in Rydberg states see trapping potentials that are essentially that of a free electron, and can only be trapped at laser intensity minima. We show that although the polarizability of a Rydberg state is always negative, the optical potential can be both attractive or repulsive at long wavelengths (up to ~104 nm). This opens up the possibility of magic trapping Rydberg states with ground state atoms in optical lattices, thereby eliminating the necessity to turn off trapping fields during gate operations. Because the wavelengths are near the CO2 laser band, the photon scattering and the ensuing motional heating is also reduced compared to conventional traps near low lying resonances, alleviating an important source of decoherence. This work was supported by the National Science Foundation (NSF) Grant No. PHY-1212482.

  6. Studies of Ink Trapping III Direct Detection of Small Air Bubbles in Ink Layer

    Directory of Open Access Journals (Sweden)

    Ikuo Naito

    2006-12-01

    Full Text Available Ink trappings were studied by using polyethylene terephthalate (PET film with black inks for offset proofing and synthetic paper. By observing printed matter from reverse side through the PET film, we detected many air bubbles in the ink layer and between the ink layer and the PET film. They are classified roughly to two groups, small number of large ones (φ = 2 - 5 μm and many small ones (φ = 0.5 - 1.0 μm. The former ones were fixed air bubbles during the trapping. The latter ones decreased according to increase the amount of ink trapped (y. Because number of the air bubbles (Nair bubble increased with increasing the ink distribution time, they seemed to be yielded by suspension of air into the ink layer during ink distribution. By observing printed surface, we also detected many ink peaks (immediately after the trapping and pinholes (at 24 h. The numbers of the ink peaks and pinholes (Nink peak and Npinhole, respectively decreased also with increasing the y value and increased with increasing the ink distribution time. We studied effects of nip width on these values (distribution time = 2 min.; nip width = 2, 3 and 4 mm. The Nair bubble value decreased with increasing nip width contrary to increase the Nink peak and Npinhole values. The effects can be represented by differences in the values of 2 and 4 mm nip widths. At y = 2 gm-2, the difference in the Nair bubble value is about one third (synthetic paper ink or a half (offset proofing ink of the difference in the Nink peak values.

  7. Cryogenic surface ion traps

    International Nuclear Information System (INIS)

    Niedermayr, M.

    2015-01-01

    Microfabricated surface traps are a promising architecture to realize a scalable quantum computer based on trapped ions. In principle, hundreds or thousands of surface traps can be located on a single substrate in order to provide large arrays of interacting ions. To this end, trap designs and fabrication methods are required that provide scalable, stable and reproducible ion traps. This work presents a novel surface-trap design developed for cryogenic applications. Intrinsic silicon is used as the substrate material of the traps. The well-developed microfabrication and structuring methods of silicon are utilized to create simple and reproducible traps. The traps were tested and characterized in a cryogenic setup. Ions could be trapped and their life time and motional heating were investigated. Long ion lifetimes of several hours were observed and the measured heating rates were reproducibly low at around 1 phonon per second at a trap frequency of 1 MHz. (author) [de

  8. Artificial covering on trap nests improves the colonization of trap-nesting wasps

    OpenAIRE

    Taki, Hisatomo; Kevan, Peter G.; Viana, Blandina Felipe; Silva, Fabiana O.; Buck, Matthias

    2008-01-01

    Acesso restrito: Texto completo. p. 225-229 To evaluate the role that a trap-nest cover might have on sampling methodologies, the abundance of each species of trap-nesting Hymenoptera and the parasitism rate in a Canadian forest were compared between artificially covered and uncovered traps. Of trap tubes exposed at eight forest sites in six trap-nest boxes, 531 trap tubes were occupied and 1216 individuals of 12 wasp species of four predatory families, Vespidae (Eumeninae), Crabronidae...

  9. Direct measurement of the cross section of neutron-neutron scattering at the YAGUAR reactor. Substantiation of the experiment technique

    International Nuclear Information System (INIS)

    Chernukhin, Yu.G.; Kandiev, Ya.Z.; Lartsev, V.D.; Levakov, B.G.; Modestov, D.G.; Simonenko, V.A.; Streltsov, S.I.; Khmel'nitskij, D.V.

    2006-01-01

    The main stage of experiment for direct measurement of cross section of neutron-neutron scattering σ nn at low energies (E nn determination. It was shown, that for achieving the criterion ε ∼ 4% it will be necessary to have 40-50 pulses of a reactor [ru

  10. Discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap

    CERN Document Server

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Kurchaninov, L; Jonsell, S; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-01-01

    Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum (minimum-B) trap formed by superconducting octupole and mirror magnet coils. The trapped antiatoms were detected by rapidly turning off these magnets, thereby eliminating the magnetic minimum and releasing any antiatoms contained in the trap. Once released, these antiatoms quickly hit the trap wall, whereupon the positrons and antiprotons in the antiatoms annihilated. The antiproton annihilations produce easily detected signals; we used these signals to prove that we trapped antihydrogen. However, our technique could be confounded by mirror-trapped antiprotons, which would produce seemingly-identical annihilation signals upon hitting the trap wall. In this paper, we discuss possible sources of mirror-trapped antiprotons and show that antihydrogen and antiprotons can be readily distinguished, often with the aid of applied electric fields, by analyzing the annihilation locations and times. We further discuss the general properties of antipr...

  11. Stable Trapping of Multielectron Helium Bubbles in a Paul Trap

    Science.gov (United States)

    Joseph, E. M.; Vadakkumbatt, V.; Pal, A.; Ghosh, A.

    2017-06-01

    In a recent experiment, we have used a linear Paul trap to store and study multielectron bubbles (MEBs) in liquid helium. MEBs have a charge-to-mass ratio (between 10^{-4} and 10^{-2} C/kg) which is several orders of magnitude smaller than ions (between 10^6 and 10^8 C/kg) studied in traditional ion traps. In addition, MEBs experience significant drag force while moving through the liquid. As a result, the experimental parameters for stable trapping of MEBs, such as magnitude and frequency of the applied electric fields, are very different from those used in typical ion trap experiments. The purpose of this paper is to model the motion of MEBs inside a linear Paul trap in liquid helium, determine the range of working parameters of the trap, and compare the results with experiments.

  12. Use of a solar panel as a directionally sensitive large-area radiation monitor for direct and scattered x-rays and gamma-rays.

    Science.gov (United States)

    Abdul-Majid, S

    1987-01-01

    The characteristics of a 25.4 X 91 cm solar cell panel used as an x-ray and gamma-ray radiation monitor are presented. Applications for monitoring the primary x-ray beam are described at different values of operating currents and voltages as well as for directional dependence of scattered radiation. Other applications in gamma-ray radiography are also given. The detector showed linear response to both x-ray and gamma-ray exposures. The equipment is rigid, easy to use, relatively inexpensive and requires no power supply or any complex electronic equipment.

  13. A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses

    International Nuclear Information System (INIS)

    Walker, Bennett N.; James, Robert H.; Ilev, Ilko K.; Calogero, Don

    2015-01-01

    Glare, glistenings, optical defects, dysphotopsia, and poor image quality are a few of the known deficiencies of intraocular lenses (IOLs). All of these optical phenomena are related to light scatter. However, the specific direction that light scatters makes a critical difference between debilitating glare and a slightly noticeable decrease in image quality. Consequently, quantifying the magnitude and direction of scattered light is essential to appropriately evaluate the safety and efficacy of IOLs. In this study, we introduce a full-angle scanning light scattering profiler (SLSP) as a novel approach capable of quantitatively evaluating the light scattering from IOLs with a nearly 360° view. The SLSP method can simulate in situ conditions by controlling the parameters of the light source including angle of incidence. This testing strategy will provide a more effective nonclinical approach for the evaluation of IOL light scatter

  14. A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Bennett N., E-mail: bennett.walker@fda.hhs.gov [Optical Therapeutics and Medical Nanophotonics Laboratory, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States); Office of Device Evaluation, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States); James, Robert H.; Ilev, Ilko K. [Optical Therapeutics and Medical Nanophotonics Laboratory, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States); Calogero, Don [Office of Device Evaluation, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States)

    2015-09-15

    Glare, glistenings, optical defects, dysphotopsia, and poor image quality are a few of the known deficiencies of intraocular lenses (IOLs). All of these optical phenomena are related to light scatter. However, the specific direction that light scatters makes a critical difference between debilitating glare and a slightly noticeable decrease in image quality. Consequently, quantifying the magnitude and direction of scattered light is essential to appropriately evaluate the safety and efficacy of IOLs. In this study, we introduce a full-angle scanning light scattering profiler (SLSP) as a novel approach capable of quantitatively evaluating the light scattering from IOLs with a nearly 360° view. The SLSP method can simulate in situ conditions by controlling the parameters of the light source including angle of incidence. This testing strategy will provide a more effective nonclinical approach for the evaluation of IOL light scatter.

  15. Self-trapping and self-focusing of an elliptical laser beam in a collisionless magnetoplasma

    Energy Technology Data Exchange (ETDEWEB)

    Soni, V S; Nayyar, V P [Punjabi Univ., Patiala (India). Dept. of Physics

    1980-03-14

    The authors have studied the self-trapping and self-focusing-defocusing of an elliptically shaped laser beam in a magnetoplasma. The critical self-trapping power of the beam for the ordinary mode is twice the critical power for the extraordinary mode. On both sides of the critical power required for self-trapping, there are separate values of the critical power for the x-dimension as well as for the y-dimension of the beam. At and above the critical value for the x-dimension, the beam defocuses in both directions while at and below the critical value for the y-dimension, it self-focuses in both directions. Self-trapping is also observed in the case of the ordinary mode at a critical value of the external magnetic field for any power value.

  16. Single-electron capture for 2-8 keV incident energy and direct scattering at 6 keV in He[sup 2+]-He collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, D.; Dagnac, R. (Toulouse-3 Univ., 31 (France). Centre de Physique Atomique)

    1992-06-14

    We studied the single-electron capture as well as the direct processes occurring when a He[sup 2+] ion is scattered by a He target. Doubly differential cross sections were measured for single-electron capture with a collision energy ranging from 2 to 8 keV and a scattering angle varying from 10' to 3[sup o]30' (laboratory frame). Single-electron capture into excited states of He[sup +] was found to be the dominant process, confirming a previous experimental study. Elastic scattering and ionization differential cross sections were measured for E = 6 keV. (Author).

  17. Motion analysis of optically trapped particles and cells using 2D Fourier analysis

    DEFF Research Database (Denmark)

    Kristensen, Martin Verner; Ahrendt, Peter; Lindballe, Thue Bjerring

    2012-01-01

    Motion analysis of optically trapped objects is demonstrated using a simple 2D Fourier transform technique. The displacements of trapped objects are determined directly from the phase shift between the Fourier transform of subsequent images. Using end-and side-view imaging, the stiffness...... of the trap is determined in three dimensions. The Fourier transform method is simple to implement and applicable in cases where the trapped object changes shape or where the lighting conditions change. This is illustrated by tracking a fluorescent particle and a myoblast cell, with subsequent determination...

  18. Laser scattering on an atmospheric pressure plasma jet : disentangling Rayleigh, Raman and Thomson scattering

    NARCIS (Netherlands)

    Gessel, van A.F.H.; Carbone, E.A.D.; Bruggeman, P.J.; Mullen, van der J.J.A.M.

    2012-01-01

    Laser scattering provides a very direct method for measuring the local densities and temperatures inside a plasma. We present new experimental results of laser scattering on an argon atmospheric pressure microwave plasma jet operating in an air environment. The plasma is very small so a high spatial

  19. Investigation of deep inelastic scattering processes involving large p$_{t}$ direct photons in the final state

    CERN Multimedia

    2002-01-01

    This experiment will investigate various aspects of photon-parton scattering and will be performed in the H2 beam of the SPS North Area with high intensity hadron beams up to 350 GeV/c. \\\\\\\\ a) The directly produced photon yield in deep inelastic hadron-hadron collisions. Large p$_{t}$ direct photons from hadronic interactions are presumably a result of a simple annihilation process of quarks and antiquarks or of a QCD-Compton process. The relative contribution of the two processes can be studied by using various incident beam projectiles $\\pi^{+}, \\pi^{-}, p$ and in the future $\\bar{p}$. \\\\\\\\b) The correlations between directly produced photons and their accompanying hadronic jets. We will examine events with a large p$_{t}$ direct photon for away-side jets. If jets are recognised their properties will be investigated. Differences between a gluon and a quark jet may become observable by comparing reactions where valence quark annihilations (away-side jet originates from a gluon) dominate over the QDC-Compton...

  20. Brilliant GeV gamma-ray flash from inverse Compton scattering in the QED regime

    Science.gov (United States)

    Gong, Z.; Hu, R. H.; Lu, H. Y.; Yu, J. Q.; Wang, D. H.; Fu, E. G.; Chen, C. E.; He, X. T.; Yan, X. Q.

    2018-04-01

    An all-optical scheme is proposed for studying laser plasma based incoherent photon emission from inverse Compton scattering in the quantum electrodynamic regime. A theoretical model is presented to explain the coupling effects among radiation reaction trapping, the self-generated magnetic field and the spiral attractor in phase space, which guarantees the transfer of energy and angular momentum from electromagnetic fields to particles. Taking advantage of a prospective ˜ 1023 W cm-2 laser facility, 3D particle-in-cell simulations show a gamma-ray flash with unprecedented multi-petawatt power and brightness of 1.7 × 1023 photons s-1 mm-2 mrad-2/0.1% bandwidth (at 1 GeV). These results bode well for new research directions in particle physics and laboratory astrophysics exploring laser plasma interactions.

  1. Some results on inverse scattering

    International Nuclear Information System (INIS)

    Ramm, A.G.

    2008-01-01

    A review of some of the author's results in the area of inverse scattering is given. The following topics are discussed: (1) Property C and applications, (2) Stable inversion of fixed-energy 3D scattering data and its error estimate, (3) Inverse scattering with 'incomplete' data, (4) Inverse scattering for inhomogeneous Schroedinger equation, (5) Krein's inverse scattering method, (6) Invertibility of the steps in Gel'fand-Levitan, Marchenko, and Krein inversion methods, (7) The Newton-Sabatier and Cox-Thompson procedures are not inversion methods, (8) Resonances: existence, location, perturbation theory, (9) Born inversion as an ill-posed problem, (10) Inverse obstacle scattering with fixed-frequency data, (11) Inverse scattering with data at a fixed energy and a fixed incident direction, (12) Creating materials with a desired refraction coefficient and wave-focusing properties. (author)

  2. Multi-scattering inversion for low model wavenumbers

    KAUST Repository

    Alkhalifah, Tariq Ali

    2015-08-19

    A successful full wavenumber inversion (FWI) implementation updates the low wavenumber model components first for proper wavefield propagation description, and slowly adds the high-wavenumber potentially scattering parts of the model. The low-wavenumber components can be extracted from the transmission parts of the recorded data given by direct arrivals or the transmission parts of the single and double-scattering wave-fields developed from a predicted scatter field. We develop a combined inversion of data modeled from the source and those corresponding to single and double scattering to update both the velocity model and the component of the velocity (perturbation) responsible for the single and double scattering. The combined inversion helps us access most of the potential model wavenumber information that may be embedded in the data. A scattering angle filter is used to divide the gradient of the combined inversion so initially the high wavenumber (low scattering angle) components of the gradient is directed to the perturbation model and the low wavenumber (high scattering angle) components to the velocity model. As our background velocity matures, the scattering angle divide is slowly lowered to allow for more of the higher wavenumbers to contribute the velocity model.

  3. Studies on biological macromolecules by neutron inelastic scattering

    International Nuclear Information System (INIS)

    Fujiwara, Satoru; Nakagawa, Hiroshi

    2013-01-01

    Neutron inelastic scattering techniques, including quasielastic and elastic incoherent neutron scattering, provide unique tools to directly measure the protein dynamics at a picosecond time scale. Since the protein dynamics at this time scale is indispensable to the protein functions, elucidation of the protein dynamics is indispensable for ultimate understanding of the protein functions. There are two complementary directions of the protein dynamics studies: one is to explore the physical basis of the protein dynamics using 'model' proteins, and the other is more biology-oriented. Examples of the studies on the protein dynamics with neutron inelastic scattering are described. The examples of the studies in the former direction include the studies on the dynamical transitions of the proteins, the relationship between the protein dynamics and the hydration water dynamics, and combined analysis of the protein dynamics with molecular dynamics simulation. The examples of the studies in the latter direction include the elastic incoherent and quasielastic neutrons scattering studies of actin. Future prospects of the studies on the protein dynamics with neutron scattering are briefly described. (author)

  4. The control mechanism of surface traps on surface charge behavior in alumina-filled epoxy composites

    International Nuclear Information System (INIS)

    Li, Chuanyang; Hu, Jun; Lin, Chuanjie; He, Jinliang

    2016-01-01

    To investigate the role surface traps play in the charge injection and transfer behavior of alumina-filled epoxy composites, surface traps with different trap levels are introduced by different surface modification methods which include dielectric barrier discharges plasma, direct fluorination, and Cr 2 O 3 coating. The resulting surface physicochemical characteristics of experimental samples were observed using atomic force microscopy, scanning electron microscopy and fourier transform infrared spectroscopy. The surface potential under dc voltage was detected and the trap level distribution was measured. The results suggest that the surface morphology of the experimental samples differs dramatically after treatment with different surface modification methods. Different surface trap distributions directly determine the charge injection and transfer property along the surface. Shallow traps with trap level of 1.03–1.11 eV and 1.06–1.13 eV introduced by plasma and fluorination modifications are conducive for charge transport along the insulating surface, and the surface potential can be modified, producing a smoother potential curve. The Cr 2 O 3 coating can introduce a large number of deep traps with energy levels ranging from 1.09 to 1.15 eV. These can prevent charge injection through the reversed electric field formed by intensive trapped charges in the Cr 2 O 3 coatings. (paper)

  5. Inelastic scattering and deformation parameters

    International Nuclear Information System (INIS)

    Ford, J.L.C. Jr.

    1978-01-01

    In recent years there has been extensive study of nuclear shape parameters by electron scattering, μ meson atomic transitions, Coulomb excitation and direct nuclear inelastic scattering. Inelastic scattering of strongly absorbed particles, e.g., alpha-particles and heavy ions, at energies below and above the Coulomb barrier probe the charge and mass distributions within the nucleus. This paper summarizes measurements in this field performed at Oak Ridge National Laboratory

  6. Back scattering involving embedded silicon nitride (SiN) nanoparticles for c-Si solar cells

    Science.gov (United States)

    Ghosh, Hemanta; Mitra, Suchismita; Siddiqui, M. S.; Saxena, A. K.; Chaudhuri, Partha; Saha, Hiranmay; Banerjee, Chandan

    2018-04-01

    A novel material, structure and method of synthesis for dielectric light trapping have been presented in this paper. First, the light scattering behaviour of silicon nitride nanoparticles have been theoretically studied in order to find the optimized size for dielectric back scattering by FDTD simulations from Lumerical Inc. The optical results have been used in electrical analysis and thereby, estimate the effect of nanoparticles on efficiency of the solar cells depending on substrate thickness. Experimentally, silicon nitride (SiN) nanoparticles have been formed using hydrogen plasma treatment on SiN layer deposited by Plasma Enhanced Chemical Vapour Deposition (PECVD). The size and area coverage of the nanoparticles were controlled by varying the working pressure, power density and treatment duration. The nanoparticles were integrated with partial rear contact c-Si solar cells as dielectric back reflector structures for the light trapping in thin silicon solar cells. Experimental results revealed the increases of current density by 2.7% in presence of SiN nanoparticles.

  7. Laser bistatic two-dimensional scattering imaging simulation of lambert cone

    Science.gov (United States)

    Gong, Yanjun; Zhu, Chongyue; Wang, Mingjun; Gong, Lei

    2015-11-01

    This paper deals with the laser bistatic two-dimensional scattering imaging simulation of lambert cone. Two-dimensional imaging is called as planar imaging. It can reflect the shape of the target and material properties. Two-dimensional imaging has important significance for target recognition. The expression of bistatic laser scattering intensity of lambert cone is obtained based on laser radar eauqtion. The scattering intensity of a micro-element on the target could be obtained. The intensity is related to local angle of incidence, local angle of scattering and the infinitesimal area on the cone. According to the incident direction of laser, scattering direction and normal of infinitesimal area, the local incidence angle and scattering angle can be calculated. Through surface integration and the introduction of the rectangular function, we can get the intensity of imaging unit on the imaging surface, and then get Lambert cone bistatic laser two-dimensional scattering imaging simulation model. We analyze the effect of distinguishability, incident direction, observed direction and target size on the imaging. From the results, we can see that the scattering imaging simulation results of the lambert cone bistatic laser is correct.

  8. The MESA polarimetry chain and the status of its double scattering polarimeter

    International Nuclear Information System (INIS)

    Aulenbacher, K.; Bartolomé, P. Aguar; Molitor, M.; Tioukine, V.

    2013-01-01

    We plan to have two independent polarimetry systems at MESA based on totally different physical processes. A first one tries to minimize the systematic uncertainties in double polarized Mo/ller scattering, which is to be achieved by stored hydrogen atoms in an atomic trap (Hydro-Mo/ller-Polarimeter). The other one relies on the equality of polarizing and analyzing power which allows to measure the effective analyzing power of a polarimeter with very high accuracy. Since the status of Hydro-Mo/ller is presented in a separate paper we concentrate on the double scattering polarimeter in this article

  9. Quasielastic Neutron Scattering by Superionic Strontium Chloride

    DEFF Research Database (Denmark)

    Dickens, M. H.; Hutchings, M. T.; Kjems, Jørgen

    1978-01-01

    The scattering, from powder and single crystal samples, appears only above the superionic transition temperature, 1000K. The integrated intensity is found to be strongly dependent on the direction and magnitude of the scattering vector, Q, (which suggests the scattering is coherent) but does not ...

  10. Direct comparison of Fe-Cr unmixing characterization by atom probe tomography and small angle scattering

    Energy Technology Data Exchange (ETDEWEB)

    Couturier, Laurent, E-mail: laurent.couturier55@hotmail.fr [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Department of Materials Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); De Geuser, Frédéric; Deschamps, Alexis [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France)

    2016-11-15

    The fine microstructure obtained by unmixing of a solid solution either by classical precipitation or spinodal decomposition is often characterized either by small angle scattering or atom probe tomography. This article shows that a common data analysis framework can be used to analyze data obtained from these two techniques. An example of the application of this common analysis is given for characterization of the unmixing of the Fe-Cr matrix of a 15-5 PH stainless steel during long-term ageing at 350 °C and 400 °C. A direct comparison of the Cr composition fluctuations amplitudes and characteristic lengths obtained with both techniques is made showing a quantitative agreement for the fluctuation amplitudes. The origin of the discrepancy remaining for the characteristic lengths is discussed. - Highlights: •Common analysis framework for atom probe tomography and small angle scattering •Comparison of same microstructural characteristics obtained using both techniques •Good correlation of Cr composition fluctuations amplitudes from both techniques •Good correlation of Cr composition fluctuations amplitudes with classic V parameter.

  11. Enhanced light scattering in Si nanostructures produced by pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sberna, P. M.; Scapellato, G. G.; Boninelli, S.; Miritello, M.; Crupi, I.; Bruno, E.; Privitera, V.; Simone, F.; Mirabella, S. [MATIS IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania (Italy); Piluso, N. [IMM-CNR, VIII strada 5, 95121 Catania (Italy)

    2013-11-25

    An innovative method for Si nanostructures (NS) fabrication is proposed, through nanosecond laser irradiation (λ = 532 nm) of thin Si film (120 nm) on quartz. Varying the laser energy fluences (425–1130 mJ/cm{sup 2}) distinct morphologies of Si NS appear, going from interconnected structures to isolated clusters. Film breaking occurs through a laser-induced dewetting process. Raman scattering is enhanced in all the obtained Si NS, with the largest enhancement in interconnected Si structures, pointing out an increased trapping of light due to multiple scattering. The reported method is fast, scalable and cheap, and can be applied for light management in photovoltaics.

  12. Nematode-Trapping Fungi.

    Science.gov (United States)

    Jiang, Xiangzhi; Xiang, Meichun; Liu, Xingzhong

    2017-01-01

    Nematode-trapping fungi are a unique and intriguing group of carnivorous microorganisms that can trap and digest nematodes by means of specialized trapping structures. They can develop diverse trapping devices, such as adhesive hyphae, adhesive knobs, adhesive networks, constricting rings, and nonconstricting rings. Nematode-trapping fungi have been found in all regions of the world, from the tropics to Antarctica, from terrestrial to aquatic ecosystems. They play an important ecological role in regulating nematode dynamics in soil. Molecular phylogenetic studies have shown that the majority of nematode-trapping fungi belong to a monophyletic group in the order Orbiliales (Ascomycota). Nematode-trapping fungi serve as an excellent model system for understanding fungal evolution and interaction between fungi and nematodes. With the development of molecular techniques and genome sequencing, their evolutionary origins and divergence, and the mechanisms underlying fungus-nematode interactions have been well studied. In recent decades, an increasing concern about the environmental hazards of using chemical nematicides has led to the application of these biological control agents as a rapidly developing component of crop protection.

  13. Trapping of positrons in a Penning Malmberg trap in the view of accumulating them with the use of a pulsed beam

    International Nuclear Information System (INIS)

    Dupre, P.

    2011-09-01

    The weak equivalence principle, a fundament of Einstein general relativity, states that gravitational mass and inertial mass are equal whatever the body. This equivalence principle has never been directly tested with antimatter. The GBAR (Gravitational Behaviour of Antimatter at Rest) experiment intends to test it by measuring the acceleration of ultra cold anti-hydrogens in free fall. The production of such anti-atoms requires a pulse of about 10 10 positrons in a few tens of nanoseconds. This thesis focuses on the development of a new accumulation technique of positrons in a Penning-Malmberg trap in order to create this pulse. This new method is an improvement of the accumulation technique of Oshima et al.. This technique requires a non-neutral electron plasma to cool down positrons in the trap in order to confine them. A continuous beam delivers positrons and the trapping efficiency is about 0.4%. The new method needs a positron pulsed beam and the method efficiency is estimated at 80%. A part of this thesis was performed at Riken (Tokyo) on the trap of Oshima et al. to study the behavior of non-neutral plasmas in this type of trap and the first accumulation method. A theoretical model was developed to simulate the positron trapping efficiency. The description and the systematic study of the new accumulation technique with a pulsed positron beam are presented. They includes notably the optimization through simulation of the electromagnetic configuration of the trap and of the parameters of the used non-neutral plasmas. (author)

  14. Towards antihydrogen trapping and spectroscopy at ALPHA

    International Nuclear Information System (INIS)

    Butler, E.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Bray, C. C.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.

    2011-01-01

    Spectroscopy of antihydrogen has the potential to yield high-precision tests of the CPT theorem and shed light on the matter-antimatter imbalance in the Universe. The ALPHA antihydrogen trap at CERN’s Antiproton Decelerator aims to prepare a sample of antihydrogen atoms confined in an octupole-based Ioffe trap and to measure the frequency of several atomic transitions. We describe our techniques to directly measure the antiproton temperature and a new technique to cool them to below 10 K. We also show how our unique position-sensitive annihilation detector provides us with a highly sensitive method of identifying antiproton annihilations and effectively rejecting the cosmic-ray background.

  15. Towards Antihydrogen Trapping and Spectroscopy at ALPHA

    CERN Document Server

    Butler, Eoin; Ashkezari, Mohammad.D.; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D.; Bray, Crystal C.; Cesar, Claudio L.; Chapman, Steven; Charlton, Michael; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C.; Gill, David R.; Hangst, Jeffrey S.; Hardy, Walter N.; Hayano, Ruyugo S.; Hayden, Michael E.; Humphries, Andrew J.; Hydomako, Richard; Jonsell, Svante; Kurchaninov, Leonid; Lambo, Ricardo; Madsen, Niels; Menary, Scott; Nolan, Paul; Olchanski, Konstantin; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Silveira, Daniel M.; So, Chukman; Storey, James W.; Thompson, Robert I.; van der Werf, Dirk P.; Wilding, Dean; Wurtele, Jonathan S.; Yamazaki, Yasunori

    2011-01-01

    Spectroscopy of antihydrogen has the potential to yield high-precision tests of the CPT theorem and shed light on the matter-antimatter imbalance in the Universe. The ALPHA antihydrogen trap at CERN's Antiproton Decelerator aims to prepare a sample of antihydrogen atoms confined in an octupole-based Ioffe trap and to measure the frequency of several atomic transitions. We describe our techniques to directly measure the antiproton temperature and a new technique to cool them to below 10 K. We also show how our unique position-sensitive annihilation detector provides us with a highly sensitive method of identifying antiproton annihilations and effectively rejecting the cosmic-ray background.

  16. Observation of Spin Flips with a Single Trapped Proton

    CERN Document Server

    Ulmer, S.; Blaum, K.; Kracke, H.; Mooser, A.; Quint, W.; Walz, J.

    2011-01-01

    Spin transitions of an isolated trapped proton are observed for the first time. The spin quantum jumps are detected via the continuous Stern-Gerlach effect which is used in an experiment with a single proton stored in a cryogenic Penning trap. This opens the way for a direct high-precision measurement of the magnetic moment of the proton and a new test of the matter-antimatter symmetry in the baryon sector. This method can also be applied to other light atomic nuclei.

  17. Characteristics of trapped electrons and electron traps in single crystals

    International Nuclear Information System (INIS)

    Budzinski, E.E.; Potter, W.R.; Potienko, G.; Box, H.C.

    1979-01-01

    Two additional carbohydrates are reported whose crystal structures trap electrons intermolecularly in single crystals x irradiated at low temperature, namely sucrose and rhamnose. Five carbohydrate and polyhydroxy compounds are now known which exhibit this phenomenon. The following characteristics of the phenomenon were investigated: (1) the hyperfine couplings of the electron with protons of the polarized hydroxy groups forming the trap; (2) the distances between these protons and the trapped electron; (3) the spin density of the electron at the protons and (4) the relative stabilities of the electron trapped in various crystal structures

  18. Direct rapid analysis of trace bioavailable soil macronutrients by chemometrics-assisted energy dispersive X-ray fluorescence and scattering spectrometry

    International Nuclear Information System (INIS)

    Kaniu, M.I.; Angeyo, K.H.; Mwala, A.K.; Mangala, M.J.

    2012-01-01

    Highlights: ► Chemometrics-assisted EDXRFS spectroscopy realizes direct, rapid and accurate analysis of trace bioavailable macronutrients in soils. ► The method is minimally invasive, involves little sample preparation, short analysis times and is relatively insensitive to matrix effects. ► This opens up the ability to rapidly characterize large number of samples/matrices with this method. - Abstract: Precision agriculture depends on the knowledge and management of soil quality (SQ), which calls for affordable, simple and rapid but accurate analysis of bioavailable soil nutrients. Conventional SQ analysis methods are tedious and expensive. We demonstrate the utility of a new chemometrics-assisted energy dispersive X-ray fluorescence and scattering (EDXRFS) spectroscopy method we have developed for direct rapid analysis of trace ‘bioavailable’ macronutrients (i.e. C, N, Na, Mg, P) in soils. The method exploits, in addition to X-ray fluorescence, the scatter peaks detected from soil pellets to develop a model for SQ analysis. Spectra were acquired from soil samples held in a Teflon holder analyzed using 109 Cd isotope source EDXRF spectrometer for 200 s. Chemometric techniques namely principal component analysis (PCA), partial least squares (PLS) and artificial neural networks (ANNs) were utilized for pattern recognition based on fluorescence and Compton scatter peaks regions, and to develop multivariate quantitative calibration models based on Compton scatter peak respectively. SQ analyses were realized with high CMD (R 2 > 0.9) and low SEP (0.01% for N and Na, 0.05% for C, 0.08% for Mg and 1.98 μg g −1 for P). Comparison of predicted macronutrients with reference standards using a one-way ANOVA test showed no statistical difference at 95% confidence level. To the best of the authors’ knowledge, this is the first time that an XRF method has demonstrated utility in trace analysis of macronutrients in soil or related matrices.

  19. Scattered X-ray beam nondestructive testing

    International Nuclear Information System (INIS)

    Harding, G.; Kosanetzky, J.

    1988-01-01

    X-ray scatter interactions generally dominate the linear attenuation coefficient at the photon energies typical of medical and industrial radiography. Specific advantages of X-ray scatter imaging, including a flexible choice of measurement geometry, direct 3D-imaging capability (tomography) and improved information for material characterization, are illustrated with results from Compton and coherent scatter devices. Applications of a Compton backscatter scanner (ComScan) in the aerospace industry and coherent scatter imaging in security screening are briefly considered [pt

  20. Investigating dust trapping in transition disks with millimeter-wave polarization

    Science.gov (United States)

    Pohl, A.; Kataoka, A.; Pinilla, P.; Dullemond, C. P.; Henning, Th.; Birnstiel, T.

    2016-08-01

    Context. Spatially resolved polarized (sub-)mm emission has been observed for example in the protoplanetary disk around HL Tau. Magnetically aligned grains are commonly interpreted as the source of polarization. However, self-scattering by large dust grains with a high enough albedo is another polarization mechanism, which is becoming a compelling method independent of the spectral index to constrain the dust grain size in protoplanetary disks. Aims: We study the dust polarization at mm wavelengths in the dust trapping scenario proposed for transition disks, when a giant planet opens a gap in the disk. We investigate the characteristic polarization patterns and their dependence on disk inclination, dust size evolution, planet position, and observing wavelength. Methods: We combine two-dimensional hydrodynamical simulations of planet-disk interactions with self-consistent dust growth models. These size-dependent dust density distributions are used for follow-up three-dimensional radiative transfer calculations to predict the polarization degree at ALMA bands due to scattered thermal emission. Results: Dust self-scattering has been proven to be a viable mechanism for producing polarized mm-wave radiation. We find that the polarization pattern of a disk with a planetary gap after 1 Myr of dust evolution shows a distinctive three-ring structure. Two narrow inner rings are located at the planet gap edges. A third wider ring of polarization is situated in the outer disk beyond 100 au. For increasing observing wavelengths, all three rings change their position slightly, where the innermost and outermost rings move inward. This distance is detectable when comparing the results at ALMA bands 3, 6, and 7. Within the highest polarized intensity regions the polarization vectors are oriented in the azimuthal direction. For an inclined disk there is an interplay between polarization originating from a flux gradient and inclination-induced quadrupole polarization. For

  1. Atmospheric scattering corrections to solar radiometry

    International Nuclear Information System (INIS)

    Box, M.A.; Deepak, A.

    1979-01-01

    Whenever a solar radiometer is used to measure direct solar radiation, some diffuse sky radiation invariably enters the detector's field of view along with the direct beam. Therefore, the atmospheric optical depth obtained by the use of Bouguer's transmission law (also called Beer-Lambert's law), that is valid only for direct radiation, needs to be corrected by taking account of the scattered radiation. In this paper we shall discuss the correction factors needed to account for the diffuse (i.e., singly and multiply scattered) radiation and the algorithms developed for retrieving aerosol size distribution from such measurements. For a radiometer with a small field of view (half-cone angle 0 ) and relatively clear skies (optical depths <0.4), it is shown that the total diffuse contributions represents approximately l% of the total intensity. It is assumed here that the main contributions to the diffuse radiation within the detector's view cone are due to single scattering by molecules and aerosols and multiple scattering by molecules alone, aerosol multiple scattering contributions being treated as negligibly small. The theory and the numerical results discussed in this paper will be helpful not only in making corrections to the measured optical depth data but also in designing improved solar radiometers

  2. Detection of explosives by neutron scattering

    International Nuclear Information System (INIS)

    Brooks, F.D.; Buffler, A.; Allie, M.S.; Nchodu, M.R.; Bharuth-Ram, K.

    1998-01-01

    For non-intrusive detection of hidden explosives or other contraband such as narcotics a fast neutron scattering analysis (FNSA) technique is proposed. An experimental arrangement uses a collimated, pulsed beam of neutrons directed at the sample. Scattered neutrons are detected by liquid scintillation counters at different scattering angles. A scattering signature is derived from two-parameter data, counts vs pulse height and time-of-flight measured for each element (H, C, N or O) at each of two scattering angles and two neutron energies. The elemental signatures are very distinctive and constitute a good response matrix for unfolding elemental components from the scattering signatures measured for different compounds

  3. Optical two-beam trap in a polymer microfluidic chip

    DEFF Research Database (Denmark)

    Palanco, Marta Espina; Catak, Darmin; Marie, Rodolphe

    2016-01-01

    An optical two-beam trap, composed from two counter propagating laser beams, is an interesting setup due to the ability of the system to trap, hold, and stretch soft biological objects like vesicles or single cells. Because of this functionality, the system was also named "the optical stretcher...... wish to trap, thereby preventing too many cells to flow below the line of focus of the two counter propagating laser beams that are positioned perpendicular to the direction of flow of the cells. Results will be compared to that from other designs from previous work in the group......." by Jochen Guck, Josep Käs and co-workers some 15 years ago. In a favorable setup, the two opposing laser beams meet with equal intensities in the middle of a fluidic channel in which cells may flow past, be trapped, stretched, and allowed to move on, giving the promise of a high throughput device. Yet...

  4. Counter-propagating dual-trap optical tweezers based on linear momentum conservation

    International Nuclear Information System (INIS)

    Ribezzi-Crivellari, M.; Huguet, J. M.; Ritort, F.

    2013-01-01

    We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecular hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces.

  5. Counter-propagating dual-trap optical tweezers based on linear momentum conservation

    Energy Technology Data Exchange (ETDEWEB)

    Ribezzi-Crivellari, M.; Huguet, J. M. [Small Biosystems Lab, Dept. de Fisica Fonamental, Universitat de Barcelona, Avda. Diagonal 647, 08028 Barcelona (Spain); Ritort, F. [Small Biosystems Lab, Dept. de Fisica Fonamental, Universitat de Barcelona, Avda. Diagonal 647, 08028 Barcelona (Spain); Ciber-BBN de Bioingenieria, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid (Spain)

    2013-04-15

    We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecular hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces.

  6. Superfluid transition of homogeneous and trapped two-dimensional Bose gases.

    Science.gov (United States)

    Holzmann, Markus; Baym, Gordon; Blaizot, Jean-Paul; Laloë, Franck

    2007-01-30

    Current experiments on atomic gases in highly anisotropic traps present the opportunity to study in detail the low temperature phases of two-dimensional inhomogeneous systems. Although, in an ideal gas, the trapping potential favors Bose-Einstein condensation at finite temperature, interactions tend to destabilize the condensate, leading to a superfluid Kosterlitz-Thouless-Berezinskii phase with a finite superfluid mass density but no long-range order, as in homogeneous fluids. The transition in homogeneous systems is conveniently described in terms of dissociation of topological defects (vortex-antivortex pairs). However, trapped two-dimensional gases are more directly approached by generalizing the microscopic theory of the homogeneous gas. In this paper, we first derive, via a diagrammatic expansion, the scaling structure near the phase transition in a homogeneous system, and then study the effects of a trapping potential in the local density approximation. We find that a weakly interacting trapped gas undergoes a Kosterlitz-Thouless-Berezinskii transition from the normal state at a temperature slightly below the Bose-Einstein transition temperature of the ideal gas. The characteristic finite superfluid mass density of a homogeneous system just below the transition becomes strongly suppressed in a trapped gas.

  7. Rapid localized crystallization of lysozyme by laser trapping.

    Science.gov (United States)

    Yuyama, Ken-Ichi; Chang, Kai-Di; Tu, Jing-Ru; Masuhara, Hiroshi; Sugiyama, Teruki

    2018-02-28

    Confining protein crystallization to a millimetre size was achieved within 0.5 h after stopping 1 h intense trapping laser irradiation, which shows excellent performance in spatial and temporal controllability compared to spontaneous nucleation. A continuous-wave near-infrared laser beam is tightly focused into a glass/solution interfacial layer of a supersaturated buffer solution of hen egg-white lysozyme (HEWL). The crystallization is not observed during laser trapping, but initiated by stopping the laser irradiation. The generated crystals are localized densely in a circular area with a diameter of a few millimetres around the focal spot and show specific directions of the optical axes of the HEWL crystals. To interpret this unique crystallization, we propose a mechanism that nucleation and the subsequent growth take place in a highly concentrated domain consisting of HEWL liquid-like clusters after turning off laser trapping.

  8. Photonic Structures for Light Trapping in Thin Film Silicon Solar Cells: Design and Experiment

    Directory of Open Access Journals (Sweden)

    Yi Ding

    2017-12-01

    Full Text Available One of the foremost challenges in designing thin-film silicon solar cells (TFSC is devising efficient light-trapping schemes due to the short optical path length imposed by the thin absorber thickness. The strategy relies on a combination of a high-performance back reflector and an optimized texture surface, which are commonly used to reflect and scatter light effectively within the absorption layer, respectively. In this paper, highly promising light-trapping structures based on a photonic crystal (PC for TFSCs were investigated via simulation and experiment. Firstly, a highly-reflective one-dimensional photonic crystal (1D-PC was designed and fabricated. Then, two types of 1D-PC-based back reflectors (BRs were proposed: Flat 1D-PC with random-textured aluminum-doped zinc oxide (AZO or random-textured 1D-PC with AZO. These two newly-designed BRs demonstrated not only high reflectivity and sufficient conductivity, but also a strong light scattering property, which made them efficient candidates as the electrical contact and back reflector since the intrinsic losses due to the surface plasmon modes of the rough metal BRs can be avoided. Secondly, conical two-dimensional photonic crystal (2D-PC-based BRs were investigated and optimized for amorphous a-SiGe:H solar cells. The maximal absorption value can be obtained with an aspect ratio of 1/2 and a period of 0.75 µm. To improve the full-spectral optical properties of solar cells, a periodically-modulated PC back reflector was proposed and experimentally demonstrated in the a-SiGe:H solar cell. This periodically-modulated PC back reflector, also called the quasi-crystal structure (QCS, consists of a large periodic conical PC and a randomly-textured Ag layer with a feature size of 500–1000 nm. The large periodic conical PC enables conformal growth of the layer, while the small feature size of Ag can further enhance the light scattering. In summary, a comprehensive study of the design, simulation

  9. Harmonically trapped cold atom systems: Few-body dynamics and application to many-body thermodynamics

    Science.gov (United States)

    Daily, Kevin Michael

    Underlying the many-body effects of ultracold atomic gases are the few-body dynamics and interparticle interactions. Moreover, the study of few-body systems on their own has accelerated due to confining few atoms in each well of a deep optical lattice or in a single microtrap. This thesis studies the microscopic properties of few-body systems under external spherically symmetric harmonic confinement and how the few-body properties translate to the many-body system. Bosonic and fermionic few-body systems are considered and the dependence of the energetics and other quantities are investigated as functions of the s-wave scattering length, the mass ratio and the temperature. It is found that the condensate fraction of a weakly-interacting trapped Bose gas depletes quadratically with the s-wave scattering length. The next order term in the depletion depends not only, as might be expected naively, on the s-wave scattering length and the effective range but additionally on a two-body parameter that is not needed to reproduce the energy of weakly-interacting trapped Bose gases. This finding has important implications for effective field theory treatments of the system. Weakly-interacting atomic and molecular two-component Fermi gases with equal masses are described using perturbative approaches. The energy shifts are tabulated and interpreted, and a measure of the molecular condensate fraction is developed. We develop a measure of the molecular condensate fraction using the two-body density matrix and we develop a model of the spherical component of the momentum distribution that agrees well with stochastic variational calculations. We establish the existence of intersystem degeneracies for equal mass two-component Fermi gases with zero-range interactions, where the eigen energies of the spin-imbalanced system are degenerate with a subset of the eigen energies of the more spin-balanced system and the same total number of fermions. For unequal mass two-component Fermi

  10. Very High Energy Neutron Scattering from Hydrogen

    International Nuclear Information System (INIS)

    Cowley, R A; Stock, C; Bennington, S M; Taylor, J; Gidopoulos, N I

    2010-01-01

    The neutron scattering from hydrogen in polythene has been measured with the direct time-of flight spectrometer, MARI, at the ISIS facility of the Rutherford Appleton Laboratory with incident neutron energies between 0.5 eV and 600 eV. The results of experiments using the spectrometer, VESUVIO, have given intensities from hydrogen containing materials that were about 60% of the intensity expected from hydrogen. Since VESUVIO is the only instrument in the world that routinely operates with incident neutron energies in the eV range we have chosen to measure the scattering from hydrogen at high incident neutron energies with a different type of instrument. The MARI, direct time-of-flight, instrument was chosen for the experiment and we have studied the scattering for several different incident neutron energies. We have learnt how to subtract the gamma ray background, how to calibrate the incident energy and how to convert the spectra to an energy plot . The intensity of the hydrogen scattering was independent of the scattering angle for scattering angles from about 5 degrees up to 70 degrees for at least 3 different incident neutron energies between 20 eV and 100 eV. When the data was put on an absolute scale, by measuring the scattering from 5 metal foils with known thicknesses under the same conditions we found that the absolute intensity of the scattering from the hydrogen was in agreement with that expected to an accuracy of ± 5.0% over a wide range of wave-vector transfers between 1 and 250 A -1 . These measurements show that it is possible to measure the neutron scattering with incident neutron energies up to at least 100 eV with a direct geometry time-of-flight spectrometer and that the results are in agreement with conventional scattering theory.

  11. Trapping, self-trapping and the polaron family

    International Nuclear Information System (INIS)

    Stoneham, A M; Gavartin, J; Shluger, A L; Kimmel, A V; Ramo, D Munoz; Roennow, H M; Aeppli, G; Renner, C

    2007-01-01

    The earliest ideas of the polaron recognized that the coupling of an electron to ionic vibrations would affect its apparent mass and could effectively immobilize the carrier (self-trapping). We discuss how these basic ideas have been generalized to recognize new materials and new phenomena. First, there is an interplay between self-trapping and trapping associated with defects or with fluctuations in an amorphous solid. In high dielectric constant oxides, like HfO 2 , this leads to oxygen vacancies having as many as five charge states. In colossal magnetoresistance manganites, this interplay makes possible the scanning tunnelling microscopy (STM) observation of polarons. Second, excitons can self-trap and, by doing so, localize energy in ways that can modify the material properties. Third, new materials introduce new features, with polaron-related ideas emerging for uranium dioxide, gate dielectric oxides, Jahn-Teller systems, semiconducting polymers and biological systems. The phonon modes that initiate self-trapping can be quite different from the longitudinal optic modes usually assumed to dominate. Fourth, there are new phenomena, like possible magnetism in simple oxides, or with the evolution of short-lived polarons, like muons or excitons. The central idea remains that of a particle whose properties are modified by polarizing or deforming its host solid, sometimes profoundly. However, some of the simpler standard assumptions can give a limited, indeed misleading, description of real systems, with qualitative inconsistencies. We discuss representative cases for which theory and experiment can be compared in detail

  12. Anomalous vibrational modes in acetanilide as studied by inelastic neutron scattering

    Science.gov (United States)

    Barthes, Mariette; Eckert, Juegen; Johnson, Susanna W.; Moret, Jacques; Swanson, Basil I.; Unkefer, Clifford J.

    1992-10-01

    A study of the anomalous modes in acetanilide and five deuterated derivatives by incoherent inelastic neutron scattering is reported. These data show that the dynamics of the amide and methyl groups influence each other. In addition, the anomalous temperature behaviour of the NH out-of-plane bending mode is confirmed. These observations suggest that the self-trapping mechanism in ACN may be more complex than hitherto assumed.

  13. Trapping radioactive ions

    CERN Document Server

    Kluge, Heinz-Jürgen

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning.

  14. Trapping radioactive ions

    International Nuclear Information System (INIS)

    Kluge, H.-J.; Blaum, K.

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning

  15. Experimental comparison of particle interaction measurement techniques using optical traps

    International Nuclear Information System (INIS)

    Koehler, Timothy P.; Grillet, Anne Mary; Brotherton, Christopher M.; Molecke, Ryan A.

    2008-01-01

    Optical tweezers has become a powerful and common tool for sensitive determination of electrostatic interactions between colloidal particles. Recently, two techniques, 'blinking' tweezers and direct force measurements, have become increasingly prevalent in investigations of inter-particle potentials. The 'blinking' tweezers method acquires physical statistics of particle trajectories to determine drift velocities, diffusion coefficients, and ultimately colloidal forces as a function of the center-center separation of two particles. Direct force measurements monitor the position of a particle relative to the center of an optical trap as the separation distance between two continuously trapped particles is gradually decreased. As the particles near each other, the displacement from the trap center for each particle increases proportional to the inter-particle force. Although commonly employed in the investigation of interactions of colloidal particles, there exists no direct comparison of these experimental methods in the literature. In this study, an experimental apparatus was developed capable of performing both methods and is used to quantify electrostatic potentials between particles in several particle/solvent systems. Comparisons are drawn between the experiments conducted using the two measurement techniques, theory, and existing literature. Forces are quantified on the femto-Newton scale and results agree well with literature values

  16. Neutron scattering instrumentation. A guide to future directions

    International Nuclear Information System (INIS)

    Crawford, R.K.

    2001-01-01

    Many of the neutron scattering instruments being designed or built now are the first generation of pulsed source instruments to provide nearly optimal scattering angle coverage with good spatial resolution in a single setting of the instrument while making full use of modern optics to maximize the useful flux on the sample. Spectacular gains have resulted from such optimization, but in most of these cases there is little room for further large improvements. However, other types of pulsed source instruments are currently less well optimized, and there is room for significant improvements in these types of pulsed source instruments. Several examples will illustrate these points. In the longer term, we can expect source strengths to continue to increase, but only slowly. However, we can expect new science and new ways of doing experiments to emerge. Many of these changes will be driven by enhancements in sample environment capabilities leading to more innovative sample conditions and to efficient parametric studies. Kinetic studies and parametric studies will take on much greater roles with the high data rates now available. Implications of these trends will be discussed. (author)

  17. Effect of trap position on the efficiency of trapping in treelike scale-free networks

    International Nuclear Information System (INIS)

    Zhang Zhongzhi; Lin Yuan; Ma Youjun

    2011-01-01

    The conventional wisdom is that the role and impact of nodes on dynamical processes in scale-free networks are not homogenous, because of the presence of highly connected nodes at the tail of their power-law degree distribution. In this paper, we explore the influence of different nodes as traps on the trapping efficiency of the trapping problem taking place on scale-free networks. To this end, we study in detail the trapping problem in two families of deterministically growing scale-free networks with treelike structure: one family is non-fractal, the other is fractal. In the first part of this work, we attack a special case of random walks on the two network families with a perfect trap located at a hub, i.e. node with the highest degree. The second study addresses the case with trap distributed uniformly over all nodes in the networks. For these two cases, we compute analytically the mean trapping time (MTT), a quantitative indicator characterizing the trapping efficiency of the trapping process. We show that in the non-fractal scale-free networks the MTT for both cases follows different scalings with the network order (number of network nodes), implying that trap's position has a significant effect on the trapping efficiency. In contrast, it is presented that for both cases in the fractal scale-free networks, the two leading scalings exhibit the same dependence on the network order, suggesting that the location of trap has no essential impact on the trapping efficiency. We also show that for both cases of the trapping problem, the trapping efficiency is more efficient in the non-fractal scale-free networks than in their fractal counterparts.

  18. Influence of trap location on the efficiency of trapping in dendrimers and regular hyperbranched polymers.

    Science.gov (United States)

    Lin, Yuan; Zhang, Zhongzhi

    2013-03-07

    The trapping process in polymer systems constitutes a fundamental mechanism for various other dynamical processes taking place in these systems. In this paper, we study the trapping problem in two representative polymer networks, Cayley trees and Vicsek fractals, which separately model dendrimers and regular hyperbranched polymers. Our goal is to explore the impact of trap location on the efficiency of trapping in these two important polymer systems, with the efficiency being measured by the average trapping time (ATT) that is the average of source-to-trap mean first-passage time over every staring point in the whole networks. For Cayley trees, we derive an exact analytic formula for the ATT to an arbitrary trap node, based on which we further obtain the explicit expression of ATT for the case that the trap is uniformly distributed. For Vicsek fractals, we provide the closed-form solution for ATT to a peripheral node farthest from the central node, as well as the numerical solutions for the case when the trap is placed on other nodes. Moreover, we derive the exact formula for the ATT corresponding to the trapping problem when the trap has a uniform distribution over all nodes. Our results show that the influence of trap location on the trapping efficiency is completely different for the two polymer networks. In Cayley trees, the leading scaling of ATT increases with the shortest distance between the trap and the central node, implying that trap's position has an essential impact on the trapping efficiency; while in Vicsek fractals, the effect of location of the trap is negligible, since the dominant behavior of ATT is identical, respective of the location where the trap is placed. We also present that for all cases of trapping problems being studied, the trapping process is more efficient in Cayley trees than in Vicsek fractals. We demonstrate that all differences related to trapping in the two polymer systems are rooted in their underlying topological structures.

  19. Towards trapped antihydrogen

    CERN Document Server

    Jorgensen, L V; Bertsche, W; Boston, A; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hayano, R S; Hydomako, R; Jenkins, M J; Kurchaninov, L; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page, R D; Povilus, A; Robicheaux, F; Sarid, E; Silveira, D M; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    Substantial progress has been made in the last few years in the nascent field of antihydrogen physics. The next big step forward is expected to be the trapping of the formed antihydrogen atoms using a magnetic multipole trap. ALPHA is a new international project that started to take data in 2006 at CERN’s Antiproton Decelerator facility. The primary goal of ALPHA is stable trapping of cold antihydrogen atoms to facilitate measurements of its properties. We discuss the status of the ALPHA project and the prospects for antihydrogen trapping.

  20. Behavior of many ions in a Penning trap and results of the WITCH experiment

    CERN Document Server

    Porobic, Tomica

    Precision measurements of the beta−neutrino angular correlation in nuclear beta-decay provide a unique window into the physics beyond the Standard model. The WITCH (Weak Interaction Trap for CHarged particles) experiment aims to measure this correlation, a(beta-nu), in order to impose a more stringent constraint on the exotic scalar current admixture in the beta-decay Hamiltonian. The apparatus is situated at CERN/ISOLDE laboratory and consists of a unique combination of a retardation spectrometer and two Penning traps, with one of them serving as a scattering-free source. This configuration is suited for a precise measurement of the energy spectrum of 35Ar recoiled daughter ions. The shape of the spectrum then allows a determination of a(beta-nu) and consequently of the presence or absence of a scalar current. Radioactive 35Ar ions are created at ISOLDE by impinging 1.2 GeV protons on the target material. After being separated by a magnetic separator and bunched by REXTRAP, a high-capacity Penning trap, th...

  1. Acoustic rainbow trapping by coiling up space

    KAUST Repository

    Ni, Xu

    2014-11-13

    We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea.

  2. Acoustic rainbow trapping by coiling up space

    KAUST Repository

    Ni, Xu; Wu, Ying; Chen, Ze-Guo; Zheng, Li-Yang; Xu, Ye-Long; Nayar, Priyanka; Liu, Xiao-Ping; Lu, Ming-Hui; Chen, Yan-Feng

    2014-01-01

    We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea.

  3. Two-species mixing in a nested Penning trap for antihydrogen trapping

    International Nuclear Information System (INIS)

    Ordonez, C. A.; Weathers, D. L.

    2008-01-01

    There exists an international quest to trap neutral antimatter in the form of antihydrogen for scientific study. One method that is being developed for trapping antihydrogen employs a nested Penning trap. Such a trap serves to mix positrons and antiprotons so as to produce low energy antihydrogen atoms. Mixing is achieved when the confinement volumes of the two species overlap one another. In the work presented here, a theoretical understanding of the mixing process is developed by analyzing a mixing scheme that was recently reported [G. Gabrielse et al., Phys. Rev. Lett. 100, 113001 (2008)]. The results indicate that positron space charge or collisions among antiprotons may substantially reduce the fraction of antiprotons that have an energy suitable for antihydrogen trapping

  4. Spin dependence in superelastic electron scattering from Na(3P)

    International Nuclear Information System (INIS)

    McClelland, J.J.; Kelley, M.H.; Celotta, R.J.

    1985-01-01

    Measurements are presented of spin asymmetries for superelastic scattering of 10-eV spin polarized electrons from the excited Na(3P/sub 3/2/) state created by linearly polarized laser optical pumping. Asymmetries as large as 16% are observed in scattering from a state which is not spin-polarized. Results are shown both as a function of scattering angle with fixed laser polarization direction, and as a function of the laser polarization direction at a fixed scattering angle

  5. Dynamic analysis of trapping and escaping in dual beam optical trap

    Science.gov (United States)

    Li, Wenqiang; Hu, Huizhu; Su, Heming; Li, Zhenggang; Shen, Yu

    2016-10-01

    In this paper, we simulate the dynamic movement of a dielectric sphere in optical trap. This dynamic analysis can be used to calibrate optical forces, increase trapping efficiency and measure viscous coefficient of surrounding medium. Since an accurate dynamic analysis is based on a detailed force calculation, we calculate all forces a sphere receives. We get the forces of dual-beam gradient radiation pressure on a micron-sized dielectric sphere in the ray optics regime and utilize Einstein-Ornstein-Uhlenbeck to deal with its Brownian motion forces. Hydrodynamic viscous force also exists when the sphere moves in liquid. Forces from buoyance and gravity are also taken into consideration. Then we simulate trajectory of a sphere when it is subject to all these forces in a dual optical trap. From our dynamic analysis, the sphere can be trapped at an equilibrium point in static water, although it permanently fluctuates around the equilibrium point due to thermal effects. We go a step further to analyze the effects of misalignment of two optical traps. Trapping and escaping phenomena of the sphere in flowing water are also simulated. In flowing water, the sphere is dragged away from the equilibrium point. This dragging distance increases with the decrease of optical power, which results in escaping of the sphere with optical power below a threshold. In both trapping and escaping process we calculate the forces and position of the sphere. Finally, we analyze a trapping region in dual optical tweezers.

  6. Confined trapped-alpha behavior in TFTR deuterium-tritium plasmas

    International Nuclear Information System (INIS)

    Medley, S.S.; Budny, R.V.; Redi, M.H.; Roquemore, A.L.; White, R.B.; Petrov, M.P.; Gorelenkov, N.N.

    1997-10-01

    Confined trapped-alpha energy spectra and differential radial density profiles in TFTR D-T plasmas are obtained with the Pellet Charge-eXchange (PCX) diagnostic which measures high energy (E α = 0.5--3.5 MeV), trapped alphas (v parallel /v = - 0.048) at a single time slice (Δt ∼ 1 msec) with a spatial resolution of Δr ∼ 5 cm. Tritons produced in D-D plasmas and RF-driven ion tails (H, 3 He or T) were also observed and energetic tritium ion tail measurements will be discussed. PCX alpha and triton energy spectra extending up to their birth energies were measured in the core of MHD-quiescent discharges where the expected classical slowing down and pitch angle scattering effects are not complicated by stochastic ripple diffusion and sawtooth activity. Both the shape of the measured alpha and triton energy distributions and their density ratios are in good agreement with TRANSP predictions, indicating that the PCX measurements are consistent with classical thermalization of the fusion-generated alphas and tritons. From calculations, these results set an upper limit on possible anomalous radial diffusion for trapped alphas of D α ≤ 0.01 m 2 s -1 . Outside the core, where the trapped alphas are influenced by stochastic ripple diffusion effects, the PCX measurements are consistent with the functional dependence of the Goldston-White-Boozer stochastic ripple threshold on the alpha energy and the q-profile. In the presence of strong sawtooth activity, the PCX diagnostic observes significant redistribution of the alpha signal radial profile wherein alphas are depleted in the core and redistributed to well outside the q = 1 radius, but apparently not beyond the energy-dependent stochastic ripple loss boundary

  7. Fabrication of multi-functional silicon surface by direct laser writing

    Science.gov (United States)

    Verma, Ashwani Kumar; Soni, R. K.

    2018-05-01

    We present a simple, quick and one-step methodology based on nano-second laser direct writing for the fabrication of micro-nanostructures on silicon surface. The fabricated surfaces suppress the optical reflection by multiple reflection due to light trapping effect to a much lower value than polished silicon surface. These textured surfaces offer high enhancement ability after gold nanoparticle deposition and then explored for Surface Enhanced Raman Scattering (SERS) for specific molecular detection. The effect of laser scanning line interval on optical reflection and SERS signal enhancement ability was also investigated. Our results indicate that low optical reflection substrates exhibit uniform SERS enhancement with enhancement factor of the order of 106. Furthermore, this methodology provide an alternative approach for cost-effective large area fabrication with good control over feature size.

  8. Photoionization and cold collision studies using trapped atoms

    International Nuclear Information System (INIS)

    Gould, P.L.

    1996-01-01

    The authors have used laser cooling and trapping techniques to investigate photoionization and cold collisions. With laser-trapped Rb, they have measured the photoionization cross section from the first excited (5P) level by observing the photoionization-induced loss rate of neutral atoms from the trap. This technique has the advantage that it directly measures the photoionization rate per atom. Knowing the ionizing laser intensity and the excited-state fraction, the measured loss rate gives the absolute cross section. Using this technique, the Rb 5P photoionization cross section at ∼400 nm has been determined with an uncertainty of 9%. The authors are currently attempting to extend this method to the 5D level. Using time-ordered pulses of diode-laser light (similar to the STIRAP technique), they have performed very efficient two-photon excitation of trapped Rb atoms to 5D. Finally, they will present results from a recent collaboration which combines measurements form conventional molecular spectroscopy (single photon and double resonance) with photoassociation collisions of ultracold Na atoms to yield a precise (≤1 ppm) value for the dissociation energy of the X Σ g+ ground state of the Na 2 molecule

  9. Forbidden Raman scattering processes. I. General considerations and E1--M1 scattering

    International Nuclear Information System (INIS)

    Harney, R.C.

    1979-01-01

    The generalized theory of forbidden Raman scattering processes is developed in terms of the multipole expansion of the electromagnetic interaction Hamiltonian. Using the general expressions, the theory of electric dipole--magnetic dipole (E1--M1) Raman scattering is derived in detail. The 1 S 0 → 3 P 1 E1--M1 Raman scattering cross section in atomic magnesium is calculated for two applicable laser wavelengths using published f-value data. Since resonantly enhanced cross sections larger than 10 -29 cm 2 /sr are predicted it should be possible to experimentally observe this scattering phenomenon. In addition, by measuring the frequency dependence of the cross section near resonance, it may be possible to directly determine the relative magnitudes of the Axp and AxA contributions to the scattering cross section. Finally, possible applications of the effect in atomic and molecular physics are discussed

  10. Deuterium trapping in tungsten

    Science.gov (United States)

    Poon, Michael

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  11. Deuterium trapping in tungsten

    International Nuclear Information System (INIS)

    Poon, M.

    2004-01-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D 2 molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  12. Deuterium trapping in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Poon, M

    2004-07-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D{sub 2} molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  13. Status and outlook of CHIP-TRAP: The Central Michigan University high precision Penning trap

    Science.gov (United States)

    Redshaw, M.; Bryce, R. A.; Hawks, P.; Gamage, N. D.; Hunt, C.; Kandegedara, R. M. E. B.; Ratnayake, I. S.; Sharp, L.

    2016-06-01

    At Central Michigan University we are developing a high-precision Penning trap mass spectrometer (CHIP-TRAP) that will focus on measurements with long-lived radioactive isotopes. CHIP-TRAP will consist of a pair of hyperbolic precision-measurement Penning traps, and a cylindrical capture/filter trap in a 12 T magnetic field. Ions will be produced by external ion sources, including a laser ablation source, and transported to the capture trap at low energies enabling ions of a given m / q ratio to be selected via their time-of-flight. In the capture trap, contaminant ions will be removed with a mass-selective rf dipole excitation and the ion of interest will be transported to the measurement traps. A phase-sensitive image charge detection technique will be used for simultaneous cyclotron frequency measurements on single ions in the two precision traps, resulting in a reduction in statistical uncertainty due to magnetic field fluctuations.

  14. Evaluation method for acoustic trapping performance by tracking motion of trapped microparticle

    Science.gov (United States)

    Lim, Hae Gyun; Ham Kim, Hyung; Yoon, Changhan

    2018-05-01

    We report a method to evaluate the performances of a single-beam acoustic tweezer using a high-frequency ultrasound transducer. The motion of a microparticle trapped by a 45-MHz single-element transducer was captured and analyzed to deduce the magnitude of trapping force. In the proposed method, the motion of a trapped microparticle was analyzed from a series of microscopy images to compute trapping force; thus, no additional equipment such as microfluidics is required. The method could be used to estimate the effective trapping force in an acoustic tweezer experiment to assess cell membrane deformability by attaching a microbead to the surface of a cell and tracking the motion of the trapped bead, which is similar to a bead-based assay that uses optical tweezers. The results showed that the trapping force increased with increasing acoustic intensity and duty factor, but the force eventually reached a plateau at a higher acoustic intensity. They demonstrated that this method could be used as a simple tool to evaluate the performance and to optimize the operating conditions of acoustic tweezers.

  15. Comparison between periodic and stochastic parabolic light trapping structures for thin-film microcrystalline Silicon solar cells.

    Science.gov (United States)

    Peters, M; Battaglia, C; Forberich, K; Bläsi, B; Sahraei, N; Aberle, A G

    2012-12-31

    Light trapping is of very high importance for silicon photovoltaics (PV) and especially for thin-film silicon solar cells. In this paper we investigate and compare theoretically the light trapping properties of periodic and stochastic structures having similar geometrical features. The theoretical investigations are based on the actual surface geometry of a scattering structure, characterized by an atomic force microscope. This structure is used for light trapping in thin-film microcrystalline silicon solar cells. Very good agreement is found in a first comparison between simulation and experimental results. The geometrical parameters of the stochastic structure are varied and it is found that the light trapping mainly depends on the aspect ratio (length/height). Furthermore, the maximum possible light trapping with this kind of stochastic structure geometry is investigated. In a second step, the stochastic structure is analysed and typical geometrical features are extracted, which are then arranged in a periodic structure. Investigating the light trapping properties of the periodic structure, we find that it performs very similar to the stochastic structure, in agreement with reports in literature. From the obtained results we conclude that a potential advantage of periodic structures for PV applications will very likely not be found in the absorption enhancement in the solar cell material. However, uniformity and higher definition in production of these structures can lead to potential improvements concerning electrical characteristics and parasitic absorption, e.g. in a back reflector.

  16. Fast quantum logic by selective displacement of hot trapped ions

    International Nuclear Information System (INIS)

    Sasura, Marek; Steane, Andrew M.

    2003-01-01

    The 'pushing gate' proposed by Cirac and Zoller for quantum logic in ion traps is discussed, in which a force is used to give a controlled push to a pair of trapped ions and thus realize a phase gate. The original proposal had a weakness in that it involved a hidden extreme sensitivity to the size of the force. Also, the physical origin of this force was not fully addressed. Here, we discuss the sensitivity and present a way to avoid it by choosing the spatial form of the pushing force in an optimal way. We also analyze the effect of imperfections in a pair of π pulses which are used to implement a 'spin echo' to cancel correlated errors. We present a physical model for the force, namely, the dipole force, and discuss the impact of unwanted photon scattering, and of finite temperature of the ions. The main effect of the temperature is to blur the phase of the gate owing to the ions exploring a range of values of the force. When the distance scale of the force profile is smaller than the ion separation, this effect is more important than the high-order terms in the Coulomb repulsion which were originally discussed. Overall, we find that whereas the pushing gate is not as resistant to imperfection as was supposed, it remains a significant candidate for ion trap quantum computing since it does not require ground-state cooling, and in some cases it does not require the Lamb-Dicke limit, while the gate rate is fast, close to (rather than small compared to) the trap vibrational frequency

  17. Probing the density of trap states in the middle of the bandgap using ambipolar organic field-effect transistors

    Science.gov (United States)

    Häusermann, Roger; Chauvin, Sophie; Facchetti, Antonio; Chen, Zhihua; Takeya, Jun; Batlogg, Bertram

    2018-04-01

    The number of trap states in the band gap of organic semiconductors directly influences the charge transport as well as the threshold and turn-on voltage. Direct charge transport measurements have been used until now to probe the trap states rather close to the transport level, whereas their number in the middle of the band gap has been elusive. In this study, we use PDIF-CN2, a well known n-type semiconductor, together with vanadium pentoxide electrodes to build ambipolar field-effect transistors. Employing three different methods, we study the density of trap states in the band gap of the semiconductor. These methods give consistent results, and no pool of defect states was found. Additionally, we show first evidence that the number of trap states close to the transport level is correlated with the number of traps in the middle of the band-gap, meaning that a high number of trap states close to the transport level also implies a high number of trap states in the middle of the band gap. This points to a common origin of the trap states over a wide energy range.

  18. Research on the efficiency and performance of camera traps and ...

    African Journals Online (AJOL)

    This study, carried out in 2009-2010, aims to use imaging technology for wild goat inventory in the study area, because direct counts done by means of labor intensive techniques give high error rates. Camera traps and dome systems are used to investigate the replacement of direct counts done by authorized institutions, ...

  19. Direct measurement of the Rayleigh scattering cross section in various gases

    International Nuclear Information System (INIS)

    Sneep, Maarten; Ubachs, Wim

    2005-01-01

    Using the laser-based technique of cavity ring-down spectroscopy extinction measurements have been performed in various gases straightforwardly resulting in cross sections for Rayleigh scattering. For Ar and N 2 measurements are performed in the range 470-490nm, while for CO 2 cross sections are determined in the wider range 470-570nm. In addition to these gases also for N 2 O, CH 4 , CO, and SF 6 the scattering cross section is determined at 532nm, a wavelength of importance for lidar applications and combustion laser diagnostics. In O 2 the cross section at 532nm is found to depend on pressure due to collision-induced light absorption. The obtained cross sections validate the cross sections for Rayleigh scattering as derived from refractive indices and depolarization ratios through Rayleigh's theory at the few %-level, although somewhat larger discrepancies are found for CO, N 2 O and CH 4

  20. Calcium Atom Trap for Atom Trap Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kwang Hoon; Park, Hyun Min; Han, Jae Min; Kim, Taek Soo; Cha, Yong Ho; Lim, Gwon; Jeong, Do Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Trace isotope analysis has been an important role in science, archaeological dating, geology, biology and nuclear industry. Artificially produced fission products such as Sr-90, Cs-135 and Kr-85 can be released to the environment when nuclear accident occurs and the reprocessing factory operates. Thus, the analysis of them has been of interest in nuclear industry. But it is difficult to detect them due to low natural abundance less then 10-10. The ultra-trace radio isotopes have been analyzed by the radio-chemical method, accelerator mass spectrometer, and laser based method. The radiochemical method has been used in the nuclear industry. But this method has disadvantages of long measurement time for long lived radioisotopes and toxic chemical process for the purification. The accelerator mass spectrometer has high isotope selectivity, but the system is huge and it has the isobar effects. The laser based method, such as RIMS (Resonance Ionization Mass Spectrometry) is a basically isobar-effect free method. Recently, ATTA (Atom Trap Trace Analysis), one of the laser based method, has been successfully demonstrated sufficient isotope selectivity with small system size. It has been applied for the detection of Kr-81 and Kr-85. However, it is not suitable for real sample detection, because it requires steady atomic beam generation during detection and is not allowed simultaneous detection of other isotopes. Therefore, we proposed the coupled method of Atom Trap and Mass Spectrometer. It consists of three parts, neutral atom trap, ionization and mass spectrometer. In this paper, we present the demonstration of the magneto-optical trap of neutral calcium. We discuss the isotope selective characteristics of the MOT (Magneto Optical Trap) of calcium by the fluorescence measurement. In addition, the frequency stabilization of the trap beam will be presented

  1. Scattering of spermatozoa off cylindrical pillars

    Science.gov (United States)

    Bukatin, Anton; Lushi, Enkeleida; Kantsler, Vasily

    2017-11-01

    The motion of micro-swimmers in structured environments, even though crucial in processes such as in vivo and in vitro egg fertilization, is still not completely understood. We combine microfluidic experiments with mathematical modeling of 3D swimming near convex surfaces to quantify the dynamics of individual sperm cells in the proximity of cylindrical pillars. Our results show that the hydrodynamic and contact forces that account for the shape asymmetry and flagellar motion, are crucial in correctly describing the dynamics observed in the experiments. Last, we discuss how the size of the cylindrical obstacles determines whether the swimmers scatter off or get trapped circling the pillar.

  2. Light extraction enhancement from organic light-emitting diodes with randomly scattered surface fixture

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dong-Ying; Shi, Xiao-Bo; Gao, Chun-Hong; Cai, Shi-Duan; Jin, Yue; Liao, Liang-Sheng, E-mail: lsliao@suda.edu.cn

    2014-09-30

    Graphical abstract: - Highlights: • A combination of scattering layer and roughened substrate is used for light extraction from OLEDs. • The scattering layer is readily achieved by spin-coating the TiO{sub 2} sol. • The enhancement relying scattering depends on the size of TiO{sub 2} nano particles. • With the light extraction techniques the uniform emission is achieved. - Abstract: A combination of a scattering medium layer and a roughened substrate was proposed to enhance the light extraction efficiency of organic light-emitting diodes (OLEDs). Comparing with a reference OLED without any scattering layer, 65% improvement in the forward emission has been achieved with a scattering layer formed on an intentionally roughened external substrate surface of the OLED by spin-coating a sol–gel fabricated matrix containing well dispersed titania (TiO{sub 2}) particles. Such a combination method not only demonstrated efficient extraction of the light trapped in the glass substrate but also achieved homogenous emission from the OLED panel. The proposed technique, convenient and inexpensive, is believed to be suitable for the large area OLED production in lighting applications.

  3. The matrix element for radiative Bhabha scattering in the forward direction

    International Nuclear Information System (INIS)

    Kleiss, R.

    1993-09-01

    We present an approximation to the matrix element for the process e + e - →e + e - γ, appropriate to the situation where one or both of the fermions are scattered over very small angles. The leading terms in the situation where all scattering angles are small contains not only terms quadratic in the electron mass, but also quartic and even sextic terms must be included. Special attention is devoted to the numerical stability of the resultant expression. Its relation to several existing formulae is discussed. (orig.)

  4. Extending Penning trap mass measurements with SHIPTRAP to the heaviest elements

    International Nuclear Information System (INIS)

    Block, M.; Ackermann, D.; Herfurth, F.; Hofmann, S.; Blaum, K.; Droese, C.; Marx, G.; Schweikhard, L.; Düllmann, Ch. E.; Eibach, M.; Eliseev, S.; Haettner, E.; Plaß, W. R.; Scheidenberger, C.; Heßberger, F. P.; Ramirez, E. Minaya; Nesterenko, D.

    2013-01-01

    Penning-trap mass spectrometry of radionuclides provides accurate mass values and absolute binding energies. Such mass measurements are sensitive indicators of the nuclear structure evolution far away from stability. Recently, direct mass measurements have been extended to the heavy elements nobelium (Z=102) and lawrencium (Z=103) with the Penning-trap mass spectrometer SHIPTRAP. The results probe nuclear shell effects at N=152. New developments will pave the way to access even heavier nuclides.

  5. Magnetic monopole search with the MoEDAL test trapping detector

    Directory of Open Access Journals (Sweden)

    Katre Akshay

    2016-01-01

    Full Text Available IMoEDAL is designed to search for monopoles produced in high-energy Large Hadron Collider (LHC collisions, based on two complementary techniques: nucleartrack detectors for high-ionisation signatures and other highly ionising avatars of new physics, and trapping volumes for direct magnetic charge measurements with a superconducting magnetometer. The MoEDAL test trapping detector array deployed in 2012, consisting of over 600 aluminium samples, was analysed and found to be consistent with zero trapped magnetic charge. Stopping acceptances are obtained from a simulation of monopole propagation in matter for a range of charges and masses, allowing to set modelindependent and model-dependent limits on monopole production cross sections. Multiples of the fundamental Dirac magnetic charge are probed for the first time at the LHC.

  6. Magnetic monopole search with the MoEDAL test trapping detector

    Science.gov (United States)

    Katre, Akshay

    2016-11-01

    IMoEDAL is designed to search for monopoles produced in high-energy Large Hadron Collider (LHC) collisions, based on two complementary techniques: nucleartrack detectors for high-ionisation signatures and other highly ionising avatars of new physics, and trapping volumes for direct magnetic charge measurements with a superconducting magnetometer. The MoEDAL test trapping detector array deployed in 2012, consisting of over 600 aluminium samples, was analysed and found to be consistent with zero trapped magnetic charge. Stopping acceptances are obtained from a simulation of monopole propagation in matter for a range of charges and masses, allowing to set modelindependent and model-dependent limits on monopole production cross sections. Multiples of the fundamental Dirac magnetic charge are probed for the first time at the LHC.

  7. Theoretical and Experimental Investigation of Particle Trapping via Acoustic Bubbles

    Science.gov (United States)

    Chen, Yun; Fang, Zecong; Merritt, Brett; Saadat-Moghaddam, Darius; Strack, Dillon; Xu, Jie; Lee, Sungyon

    2014-11-01

    One important application of lab-on-a-chip devices is the trapping and sorting of micro-objects, with acoustic bubbles emerging as an effective, non-contact method. Acoustically actuated bubbles are known to exert a secondary radiation force on micro-particles and trap them, when this radiation force exceeds the drag force that acts to keep the particles in motion. In this study, we theoretically evaluate the magnitudes of these two forces for varying actuation frequencies and voltages. In particular, the secondary radiation force is calculated directly from bubble oscillation shapes that have been experimentally measured for varying acoustic parameters. Finally, based on the force estimates, we predict the threshold voltage and frequency for trapping and compare them to the experimental results.

  8. A live-trap and trapping technique for fossorial mammals

    African Journals Online (AJOL)

    mammals. G.C. Hickman. An effective live-trap was designed for Cryptomys hottentotus .... that there is an animal in the burrow system, and to lessen the likelihood of the .... the further testing and modification of existing trap types. Not only is it ...

  9. Institutional Traps of Russia’s Higher Education Nonlinear Development

    Directory of Open Access Journals (Sweden)

    Maria V.

    2018-03-01

    systemic ways for avoiding the described traps and present solutions for solving contradictions, which can be considered in terms of strategies and tactics for the management of reform processes in Russian universities. The proposed solutions are directly related to the activation of the main educational communities’ potential. Within the framework of the project, the authors’ method of sociological study of higher education transition to its nonlinear development within the boundaries of a particular macroregion was developed and tested.

  10. Case Study: Trap Crop with Pheromone Traps for Suppressing Euschistus servus (Heteroptera: Pentatomidae in Cotton

    Directory of Open Access Journals (Sweden)

    P. G. Tillman

    2012-01-01

    Full Text Available The brown stink bug, Euschistus servus (Say, can disperse from source habitats, including corn, Zea mays L., and peanut, Arachis hypogaea L., into cotton, Gossypium hirsutum L. Therefore, a 2-year on-farm experiment was conducted to determine the effectiveness of a sorghum (Sorghum bicolor (L. Moench spp. bicolor trap crop, with or without Euschistus spp. pheromone traps, to suppress dispersal of this pest to cotton. In 2004, density of E. servus was lower in cotton fields with sorghum trap crops (with or without pheromone traps compared to control cotton fields. Similarly, in 2006, density of E. servus was lower in cotton fields with sorghum trap crops and pheromone traps compared to control cotton fields. Thus, the combination of the sorghum trap crop and pheromone traps effectively suppressed dispersal of E. servus into cotton. Inclusion of pheromone traps with trap crops potentially offers additional benefits, including: (1 reducing the density of E. servus adults in a trap crop, especially females, to possibly decrease the local population over time and reduce the overwintering population, (2 reducing dispersal of E. servus adults from the trap crop into cotton, and (3 potentially attracting more dispersing E. servus adults into a trap crop during a period of time when preferred food is not prevalent in the landscape.

  11. Angular trap for macroparticles

    International Nuclear Information System (INIS)

    Aksyonov, D.S.

    2013-01-01

    Properties of angular macroparticle traps were investigated in this work. These properties are required to design vacuum arc plasma filters. The correlation between trap geometry parameters and its ability to absorb macroparticles were found. Calculations allow one to predict the behaviour of filtering abilities of separators which contain such traps in their design. Recommendations regarding the use of angular traps in filters of different builds are given.

  12. Calculations of neutron spectra after neutron-neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, B E [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Stephenson, S L [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Howell, C R [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Mitchell, G E [North Carolina State University, Raleigh, NC 27695-8202 (United States); Tornow, W [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Furman, W I [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Lychagin, E V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Muzichka, A Yu [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nekhaev, G V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Strelkov, A V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Sharapov, E I [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Shvetsov, V N [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2004-09-01

    A direct neutron-neutron scattering length, a{sub nn}, measurement with the goal of 3% accuracy (0.5 fm) is under preparation at the aperiodic pulsed reactor YAGUAR. A direct measurement of a{sub nn} will not only help resolve conflicting results of a{sub nn} by indirect means, but also in comparison to the proton-proton scattering length, a{sub pp}, shed light on the charge-symmetry of the nuclear force. We discuss in detail the analysis of the nn-scattering data in terms of a simple analytical expression. We also discuss calibration measurements using the time-of-flight spectra of neutrons scattered on He and Ar gases and the neutron activation technique. In particular, we calculate the neutron velocity and time-of-flight spectra after scattering neutrons on neutrons and after scattering neutrons on He and Ar atoms for the proposed experimental geometry, using a realistic neutron flux spectrum-Maxwellian plus epithermal tail. The shape of the neutron spectrum after scattering is appreciably different from the initial spectrum, due to collisions between thermal-thermal and thermal-epithermal neutrons. At the same time, the integral over the Maxwellian part of the realistic scattering spectrum differs by only about 6 per cent from that of a pure Maxwellian nn-scattering spectrum.

  13. Trapped antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Butler, E., E-mail: eoin.butler@cern.ch [CERN, Physics Department (Switzerland); Andresen, G. B. [Aarhus University, Department of Physics and Astronomy (Denmark); Ashkezari, M. D. [Simon Fraser University, Department of Physics (Canada); Baquero-Ruiz, M. [University of California, Department of Physics (United States); Bertsche, W. [Swansea University, Department of Physics (United Kingdom); Bowe, P. D. [Aarhus University, Department of Physics and Astronomy (Denmark); Cesar, C. L. [Universidade Federal do Rio de Janeiro, Instituto de Fisica (Brazil); Chapman, S. [University of California, Department of Physics (United States); Charlton, M.; Deller, A.; Eriksson, S. [Swansea University, Department of Physics (United Kingdom); Fajans, J. [University of California, Department of Physics (United States); Friesen, T.; Fujiwara, M. C. [University of Calgary, Department of Physics and Astronomy (Canada); Gill, D. R. [TRIUMF (Canada); Gutierrez, A. [University of British Columbia, Department of Physics and Astronomy (Canada); Hangst, J. S. [Aarhus University, Department of Physics and Astronomy (Denmark); Hardy, W. N. [University of British Columbia, Department of Physics and Astronomy (Canada); Hayden, M. E. [Simon Fraser University, Department of Physics (Canada); Humphries, A. J. [Swansea University, Department of Physics (United Kingdom); Collaboration: ALPHA Collaboration; and others

    2012-12-15

    Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only {approx}1 T ({approx}0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be 'born' inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 10{sup 4} times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been trapped for at least 172 ms and then released-the first instance of a purely antimatter atomic system confined for any length of time (Andresen et al., Nature 468:673, 2010). We present a description of the main components of the ALPHA traps and detectors that were key to realising this result. We discuss how the antihydrogen atoms were identified and how they were discriminated from the background processes. Since the results published in Andresen et al. (Nature 468:673, 2010), refinements in the antihydrogen production technique have allowed many more antihydrogen atoms to be trapped, and held for much longer times. We have identified antihydrogen atoms that have been trapped for at least 1,000 s in the apparatus (Andresen et al., Nature Physics 7:558, 2011). This is more than sufficient time to interrogate the atoms spectroscopically, as well as to ensure that they have relaxed to their ground state.

  14. Direct rapid analysis of trace bioavailable soil macronutrients by chemometrics-assisted energy dispersive X-ray fluorescence and scattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kaniu, M.I., E-mail: ikaniu@uonbi.ac.ke [Institute of Nuclear Science and Technology, University of Nairobi, P.O. Box 30197-00100 Nairobi (Kenya); Angeyo, K.H. [Department of Physics, University of Nairobi, P.O. Box 30197-00100 Nairobi (Kenya); Mwala, A.K. [Department of Land Resource Management and Agricultural Technology, University of Nairobi, P.O. Box 30197-00100 Nairobi (Kenya); Mangala, M.J. [Institute of Nuclear Science and Technology, University of Nairobi, P.O. Box 30197-00100 Nairobi (Kenya)

    2012-06-04

    Highlights: Black-Right-Pointing-Pointer Chemometrics-assisted EDXRFS spectroscopy realizes direct, rapid and accurate analysis of trace bioavailable macronutrients in soils. Black-Right-Pointing-Pointer The method is minimally invasive, involves little sample preparation, short analysis times and is relatively insensitive to matrix effects. Black-Right-Pointing-Pointer This opens up the ability to rapidly characterize large number of samples/matrices with this method. - Abstract: Precision agriculture depends on the knowledge and management of soil quality (SQ), which calls for affordable, simple and rapid but accurate analysis of bioavailable soil nutrients. Conventional SQ analysis methods are tedious and expensive. We demonstrate the utility of a new chemometrics-assisted energy dispersive X-ray fluorescence and scattering (EDXRFS) spectroscopy method we have developed for direct rapid analysis of trace 'bioavailable' macronutrients (i.e. C, N, Na, Mg, P) in soils. The method exploits, in addition to X-ray fluorescence, the scatter peaks detected from soil pellets to develop a model for SQ analysis. Spectra were acquired from soil samples held in a Teflon holder analyzed using {sup 109}Cd isotope source EDXRF spectrometer for 200 s. Chemometric techniques namely principal component analysis (PCA), partial least squares (PLS) and artificial neural networks (ANNs) were utilized for pattern recognition based on fluorescence and Compton scatter peaks regions, and to develop multivariate quantitative calibration models based on Compton scatter peak respectively. SQ analyses were realized with high CMD (R{sup 2} > 0.9) and low SEP (0.01% for N and Na, 0.05% for C, 0.08% for Mg and 1.98 {mu}g g{sup -1} for P). Comparison of predicted macronutrients with reference standards using a one-way ANOVA test showed no statistical difference at 95% confidence level. To the best of the authors' knowledge, this is the first time that an XRF method has demonstrated

  15. Pp scattering at SIN

    International Nuclear Information System (INIS)

    Aprile-Giboni, E.; Cantale, G.; Hausammann, R.

    1983-01-01

    Using the PM1 polarized proton beam at SIN and a polarized target, the elastic pp scattering as well as the inelastic channel pp → π + d have been studied between 400 and 600 MeV. For the elastic reaction, a sufficient number of spin dependent parameters has been measured in order to do a direct reconstruction of the scattering matrix between 38 0 /sub cm/ and 90 0 /sub cm/. 10 references, 6 figures

  16. Optimization of multifunnel traps for emerald ash borer (Coleoptera: Buprestidae): influence of size, trap coating, and color.

    Science.gov (United States)

    Francese, Joseph A; Rietz, Michael L; Mastro, Victor C

    2013-12-01

    Field assays were conducted in southeastern and south-central Michigan in 2011 and 2012 to optimize green and purple multifunnel (Lindgren funnel) traps for use as a survey tool for the emerald ash borer, Agrilus planipennis Fairmaire. Larger sized (12- and 16-unit) multifunnel traps caught more beetles than their smaller-sized (4- and 8-unit) counterparts. Green traps coated with untinted (white) fluon caught almost four times as many adult A. planipennis as Rain-X and tinted (green) fluon-coated traps and almost 33 times more beetles than untreated control traps. Purple multifunnel traps generally caught much lower numbers of A. planipennis adults than green traps, and trap catch on them was not affected by differences in the type of coating applied. However, trap coating was necessary as untreated control purple traps caught significantly less beetles than traps treated with Rain-X and untinted or tinted (purple) fluon. Proportions of male beetles captured were generally much higher on green traps than on purple traps, but sex ratios were not affected by trap coating. In 2012, a new shade of purple plastic, based on a better color match to an attractive purple paint than the previously used purple, was used for trapping assays. When multifunnel traps were treated with fluon, green traps caught more A. planipennis adults than both shades of purple and a prism trap that was manufactured based on the same color match. Trap catch was not affected by diluting the fluon concentration applied to traps to 50% (1:1 mixture in water). At 10%, trap catch was significantly lowered.

  17. Pion scattering from very light nuclei

    International Nuclear Information System (INIS)

    Berman, B.

    1993-01-01

    Selected recent elastic and inelastic pion-scattering experiments on 3 H, 3 He, and 4 He will be reviewed. Particular attention will be given to multinucleon or cluster aspects of the data, and to possible comparisons with electron-scattering results. From elastic scattering from 3 H and 3 He at forward angles, one can extract the matter distribution of the paired neutrons in 3 H as well as that of the paired protons in 3 He. At backward angles, scattering from correlated nucleon pairs and/or two-step processes play an important role. For inelastic scattering, the momentum-transfer dependence of the cross section varies strongly with incident energy. Elastic scattering from a polarized 3 He target shows a strong asymmetry near 90 degrees. Elastic scattering from 4 He yields results which cannot be fitted with a simple optical model. An for inelastic scattering from 4 He, analysis of the data requires an important contribution from direct triton knockout

  18. Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment.

    Science.gov (United States)

    Liu, Zhihai; Wang, Lei; Liang, Peibo; Zhang, Yu; Yang, Jun; Yuan, Libo

    2013-07-15

    We demonstrate trapped yeast cell axial-position adjustment without moving the optical fiber in a single-fiber optical trapping system. The dynamic axial-position adjustment is realized by controlling the power ratio of the fundamental mode beam (LP01) and the low-order mode beam (LP11) generated in a normal single-core fiber. In order to separate the trapping positions produced by the two mode beams, we fabricate a special fiber tapered tip with a selective two-step method. A yeast cell of 6 μm diameter is moved along the optical axis direction for a distance of ~3 μm. To the best of our knowledge, this is the first demonstration of the trapping position adjustment without moving the fiber for single-fiber optical tweezers. The excitation and utilization of multimode beams in a single fiber constitutes a new development for single-fiber optical trapping and makes possible more practical applications in biomedical research fields.

  19. Status of THe-Trap

    Energy Technology Data Exchange (ETDEWEB)

    Streubel, Sebastian; Eronen, Tommi; Hoecker, Martin; Ketter, Jochen; Blaum, Klaus [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Van Dyck, Robert S. Jr. [Department of Physics, University of Washington, Seattle, WA (United States)

    2013-07-01

    THe-Trap (short for Tritium-{sup 3}He Trap) is a Penning-trap setup dedicated to measure the {sup 3}H to {sup 3}He mass-ratio with a relative uncertainty of better than 10{sup -11}. The ratio is of relevance for the KArlsruhe TRItium Neutrino experiment (KATRIN), which aims to measure the electron anti-neutrino mass, by measuring the shape of the β-decay energy spectrum close to its endpoint. An independent measurement of the {sup 3}H to {sup 3}He mass-ratio pins down this endpoint, and thus will help to determine the systematics of KATRIN. The trap setup consists of two Penning-traps: One trap for precision measurements, the other trap for ion storage. Ideally, the trap content will be periodically switched, which reduces the time between the measurements of the two ions' motional frequencies. In 2012, a mass ratio measurement of {sup 12}C{sup 4+} to {sup 14}N{sup 5+} was performed to characterize systematic effects of the traps. This measurement yielded a accuracy of 10{sup -9}. Further investigations revealed that a major reason for the modest accuracy is the large axial amplitude of ∼100 μm, compared to a ideal case of 3 μm at 4 K. In addition, relative magnetic fluctuations at a 3 x 10{sup -10} level on a 10 h timescale need to be significantly improved. In this contribution, the aforementioned findings and further systematic studies will be presented.

  20. Label-free direct surface-enhanced Raman scattering (SERS) of nucleic acids (Conference Presentation)

    Science.gov (United States)

    Guerrini, Luca; Morla-Folch, Judit; Gisbert-Quilis, Patricia; Xie, Hainan; Alvarez-Puebla, Ramon

    2016-03-01

    Recently, plasmonic-based biosensing has experienced an unprecedented level of attention, with a particular focus on the nucleic acid detection, offering efficient solutions to engineer simple, fast, highly sensitive sensing platforms while overcoming important limitations of PCR and microarray techniques. In the broad field of plasmonics, surface-enhanced Raman scattering (SERS) spectroscopy has arisen as a powerful analytical tool for detection and structural characterization of biomolecules. Today applications of SERS to nucleic acid analysis largely rely on indirect strategies, which have been demonstrated very effective for pure sensing purposes but completely dismiss the exquisite structural information provided by the direct acquisition of the biomolecular vibrational fingerprint. Contrarily, direct label-free SERS of nucleic acid shows an outstanding potential in terms of chemical-specific information which, however, remained largely unexpressed mainly because of the inherent poor spectral reproducibility and/or limited sensitivity. To address these limitations, we developed a fast and affordable high-throughput screening direct SERS method for gaining detailed genomic information on nucleic acids (DNA and RNA) and for the characterization and quantitative recognition of DNA interactions with exogenous agents. The simple strategy relies on the electrostatic adhesion of DNA/RNA onto positively-charged silver colloids that promotes the nanoparticle aggregation into stable clusters yielding intense and reproducible SERS spectra at picogram level (i.e. the analysis can be performed without the necessity of amplification steps thus providing realistic direct information of the nucleic acid in its native state). We anticipate this method to gain a vast impact and set of applications in different fields, including medical diagnostics, genomic screening, drug discovery, forensic science and even molecular electronics.

  1. Quantum effective force and Bohmian approach to time-dependent traps

    International Nuclear Information System (INIS)

    Mousavi, S V

    2014-01-01

    Trajectories of a Bohmian particle confined in time-dependent cylindrical and spherical traps are computed for both contracting and expanding boxes. A quantum effective force is considered in arbitrary directions. It is seen that in contrast to the case for the problem of a particle in an infinite rectangular box with one wall in motion, if the particle is initially in an energy eigenstate of a tiny box, the force is zero in all directions. Trajectories of a two-body system confined in the spherical trap are also computed for different statistics types. Computations show that there are situations for which the distance between bosons is greater than that between fermions. However, the results on the average separation of the particles confirm our expectation as regards the statistics

  2. The surface emissions trap: a new approach in indoor air purification.

    Science.gov (United States)

    Markowicz, Pawel; Larsson, Lennart

    2012-11-01

    A new device for stopping or reducing potentially irritating or harmful emissions from surfaces indoors is described. The device is a surface emissions trap prototype and consists of an adsorbent sheet with a semipermeable barrier surrounded by two thin nonwoven layers. The trap may be applied directly at the source of the emissions e.g. at moisture-affected floors and walls, surfaces contaminated by chemical spills etc. This results in an immediate stop or reduction of the emitting pollutants. The trap has a very low water vapor resistance thus allowing drying of wet surfaces. In laboratory experiments typically 98% reduction of air concentrations of volatile organic compounds and a virtually total reduction of mold particle-associated mycotoxins was observed. The surface emissions trap may represent a convenient and efficient way of restoring indoor environments polluted by microbial and other moisture-associated emissions. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Slowing techniques for loading a magneto-optical trap of CaF molecules

    Science.gov (United States)

    Truppe, Stefan; Fitch, Noah; Williams, Hannah; Hambach, Moritz; Sauer, Ben; Hinds, Ed; Tarbutt, Mike

    2016-05-01

    Ultracold molecules in a magneto-optical trap (MOT) are useful for testing fundamental physics and studying strongly-interacting quantum systems. With experiments starting with a relatively fast (50-200 m/s) buffer-gas beam, a primary concern is decelerating molecules to below the MOT capture velocity, typically 10 m/s. Direct laser cooling, where the molecules are slowed via momentum transfer from a chirped counter-propagating narrowband laser, is a natural choice. However, chirping the cooling and repump lasers requires precise control of multiple laser frequencies simultaneously. Another approach, called ``white-light slowing'' uses a broadband laser such that all fast molecules in the beam are decelerated. By addressing numerous velocities no chirping is needed. Unfortunately, both techniques have significant losses as molecules are transversely heated during the optical cycling. Ideally, the slowing method would provide simultaneous deceleration and transverse guiding. A newly developed technique, called Zeeman-Sisyphus deceleration, is potentially capable of both. Using permanent magnets and optical pumping, the number of scattered photons is reduced, lessening transverse heating and relaxing the repump requirements. Here we compare all three options for CaF.

  4. Optical trapping of gold aerosols

    DEFF Research Database (Denmark)

    Schmitt, Regina K.; Pedersen, Liselotte Jauffred; Taheri, S. M.

    2015-01-01

    Aerosol trapping has proven challenging and was only recently demonstrated.1 This was accomplished by utilizing an air chamber designed to have a minimum of turbulence and a laser beam with a minimum of aberration. Individual gold nano-particles with diameters between 80 nm and 200 nm were trapped...... in air using a 1064 nm laser. The positions visited by the trapped gold nano-particle were quantified using a quadrant photo diode placed in the back focal plane. The time traces were analyzed and the trapping stiffness characterizing gold aerosol trapping determined and compared to aerosol trapping...... of nanometer sized silica and polystyrene particles. Based on our analysis, we concluded that gold nano-particles trap more strongly in air than similarly sized polystyrene and silica particles. We found that, in a certain power range, the trapping strength of polystyrene particles is linearly decreasing...

  5. Dual-mode optical fiber-based tweezers for robust trapping and manipulation of absorbing particles in air

    Science.gov (United States)

    Sil, Souvik; Kanti Saha, Tushar; Kumar, Avinash; Bera, Sudipta K.; Banerjee, Ayan

    2017-12-01

    We develop an optical tweezers system using a single dual-mode optical fiber where mesoscopic absorbing particles can be trapped in three dimensions and manipulated employing photophoretic forces. We generate a superposition of fundamental and first order Hermite-Gaussian beam modes by the simple innovation of coupling a laser into a commercial optical fiber designed to be single mode for a wavelength higher than that of the laser. We achieve robust trapping of the absorbing particles for hours using both the pure fundamental and superposition mode beams and attain large manipulation velocities of ˜5 mm s-1 in the axial direction and ˜0.75 mm s-1 in the radial direction. We then demonstrate that the superposition mode is more effective in trapping and manipulation compared to the fundamental mode by around 80%, which may be increased several times by the use of a pure first order Hermite-Gaussian mode. The work has promising implications for trapping and spectroscopy of aerosols in air using simple optical fiber-based traps.

  6. Sizing of single evaporating droplet with Near-Forward Elastic Scattering Spectroscopy

    Science.gov (United States)

    Woźniak, M.; Jakubczyk, D.; Derkachov, G.; Archer, J.

    2017-11-01

    We have developed an optical setup and related numerical models to study evolution of single evaporating micro-droplets by analysis of their spectral properties. Our approach combines the advantages of the electrodynamic trapping with the broadband spectral analysis with the supercontinuum laser illumination. The elastically scattered light within the spectral range of 500-900 nm is observed by a spectrometer placed at the near-forward scattering angles between 4.3 ° and 16.2 ° and compared with the numerically generated lookup table of the broadband Mie scattering. Our solution has been successfully applied to infer the size evolution of the evaporating droplets of pure liquids (diethylene and ethylene glycol) and suspensions of nanoparticles (silica and gold nanoparticles in diethylene glycol), with maximal accuracy of ± 25 nm. The obtained results have been compared with the previously developed sizing techniques: (i) based on the analysis of the Mie scattering images - the Mie Scattering Lookup Table Method and (ii) the droplet weighting. Our approach provides possibility to handle levitating objects with much larger size range (radius from 0.5 μm to 30 μm) than with the use of optical tweezers (typically radius below 8 μm) and analyse them with much wider spectral range than with commonly used LED sources.

  7. Leishmania amazonensis chemotaxis under glucose gradient studied by the strength and directionality of forces measured with optical tweezers

    Science.gov (United States)

    de Ysasa Pozzo, Liliana; Fontes, Adriana; de Thomaz, André A.; Barbosa, Luiz Carlos; Ayres, Diana Copi; Giorgio, Selma; Cesar, Carlos Lenz

    2007-02-01

    Chemotaxis is the mechanism microorganisms use to sense the environment surrounding them and to direct their movement towards attractive, or away from the repellent, chemicals. The biochemical sensing is almost the only way for communication between unicellular organisms. Prokaryote and Eukaryote chemotaxis has been mechanically studied mainly by observing the directionality and timing of the microorganisms movements subjected to a chemical gradient, but not through the directionality and strength of the forces it generates. To observe the vector force of microorganisms under a chemical gradient we developed a system composed of two large chambers connected by a tiny duct capable to keep the chemical gradient constant for more than ten hours. We also used the displacements of a microsphere trapped in an Optical Tweezers as the force transducer to measure the direction and the strength of the propulsion forces of flagellum of the microorganism under several gradient conditions. A 9μm diameter microsphere particle was trapped with a Nd:YAG laser and its movement was measured through the light scattered focused on a quadrant detector. We observed the behavior of the protozoa Leishmania amazonensis (eukaryote) under several glucose gradients. This protozoa senses the gradient around it by swimming in circles for three to five times following by tumbling, and not by the typical straight swimming/tumbling of bacteria. Our results also suggest that force direction and strength are also used to control its movement, not only the timing of swimming/tumbling, because we observed a higher force strength clearly directed towards the glucose gradient.

  8. Resonant quantum transitions in trapped antihydrogen atoms.

    Science.gov (United States)

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Capra, A; Cesar, C L; Charlton, M; Deller, A; Donnan, P H; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Shields, C R; Silveira, D M; Stracka, S; So, C; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-03-07

    The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom's stature lies in its simplicity and in the accuracy with which its spectrum can be measured and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and--by comparison with measurements on its antimatter counterpart, antihydrogen--the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave radiation to flip the spin of the positron in antihydrogen atoms that were magnetically trapped in the ALPHA apparatus. The spin flip causes trapped anti-atoms to be ejected from the trap. We look for evidence of resonant interaction by comparing the survival rate of trapped atoms irradiated with microwaves on-resonance to that of atoms subjected to microwaves that are off-resonance. In one variant of the experiment, we detect 23 atoms that survive in 110 trapping attempts with microwaves off-resonance (0.21 per attempt), and only two atoms that survive in 103 attempts with microwaves on-resonance (0.02 per attempt). We also describe the direct detection of the annihilation of antihydrogen atoms ejected by the microwaves.

  9. Rayleigh-wave scattering by shallow cracks using the indirect boundary element method

    International Nuclear Information System (INIS)

    Ávila-Carrera, R; Rodríguez-Castellanos, A; Ortiz-Alemán, C; Sánchez-Sesma, F J

    2009-01-01

    The scattering and diffraction of Rayleigh waves by shallow cracks using the indirect boundary element method (IBEM) are investigated. The detection of cracks is of interest because their presence may compromise structural elements, put technological devices at risk or represent economical potential in reservoir engineering. Shallow cracks may give rise to scattered body and surface waves. These waves are sensitive to the crack's geometry, size and orientation. Under certain conditions, amplitude spectra clearly show conspicuous resonances that are associated with trapped waves. Several applications based on the scattering of surface waves (e.g. Rayleigh and Stoneley waves), such as non-destructive testing or oil well exploration, have shown that the scattered fields may provide useful information to detect cracks and other heterogeneities. The subject is not new and several analytical and numerical techniques have been applied for the last 50 years to understand the basis of multiple scattering phenomena. In this work, we use the IBEM to calculate the scattered fields produced by single or multiple cracks near a free surface. This method is based upon an integral representation of the scattered displacement fields, which is derived from Somigliana's identity. Results are given in both frequency and time domains. The analyses of the displacement field using synthetic seismograms and snapshots reveal some important effects from various configurations of cracks. The study of these simple cases may provide an archetype to geoscientists and engineers to understand the fundamental aspects of multiple scattering and diffraction by cracks

  10. Exciton trapping in interface defects/quantum dots in narrow quantum wells: magnetic-field effects

    International Nuclear Information System (INIS)

    Barticevic, Z.; Pacheco, M.; Duque, C.A.; Oliveira, L.E.

    2003-01-01

    The effects of applied magnetic fields on excitons trapped in quantum dots/interface defects in narrow GaAs/Ga 1-x Al x As quantum wells are studied within the effective-mass approximation. The magnetic fields are applied in the growth direction of the quantum wells, and exciton trapping is modeled through a quantum dot formed by monolayer fluctuations in the z-direction, together with lateral confinement via a truncated or infinite parabolic potential in the exciton in-plane coordinate. Theoretical results are found in overall agreement with available experimental measurements

  11. Free radicals trapped in polyethylene matrix

    International Nuclear Information System (INIS)

    Shimada, S.; Maeda, M.; Hori, Y.; Kashiwabara, H.

    1977-01-01

    Two types of alkyl radicals were found to be trapped in irradiated crystals grown from polyethylene solution. One of them corresponds to the broad sextet pattern of the e.s.r. spectrum and the other corresponds to the sharp sextet pattern. The free radicals attributed to the broad sextet began to disappear at a lower temperature than the temperature at which the free radicals attributed to the sharp sextet disappeared. When butadiene molecules were brought into contact with the specimen, the decay of the free radicals corresponding to the broad sextet was accelerated. When the specimen was subjected to fuming nitric acid treatment, no broad sextet was observed. The mat of the crystals was aligned so that the c-axes of its crystallites were perpendicular to its surface. The broad sextet showed no anisotropy when the angle between the direction of applied magnetic field and that of the c-axis of the crystallite was varied. On the other hand, the sharp component of the spectrum showed apparent anisotropy. It can be concluded that the broad component comes from the free radicals trapped in the lamellar surface and the sharp component is attributed to the free radicals trapped in the inner part of the crystallite. (author)

  12. Nonlinear ion-mixing-mode particle transport in the dissipative trapped electron regime

    International Nuclear Information System (INIS)

    Ware, A.S.; Terry, P.W.

    1993-09-01

    The nonlinear particle transport arising from the convection of nonadiabatic electron density by ion temperature gradient driven turbulence is examined for trapped electron collisionality regimes. The renormalized dissipative nonadiabatic trapped electron phase space density response is derived and used to calculate the nonlinear particle flux along with an ansatz for the turbulently broadened frequency spectrum. In the lower temperature end of this regime, trapped electrons are collisional and all components of the quasilinear particle flux are outward (i.e., in the direction of the gradients). Nonlinear effects can alter the phase between the nonadiabatic trapped electron phase space density and the electrostatic potential, producing inward components in the particle flux. Specifically, both turbulent shifting of the peak of the frequency spectrum and nonlinear source terms in the trapped electron response can give rise to inward components. However, in the dissipative regime these terms are small and the trapped electron response remains dominantly laminar. When the trapped electrons are collisionless, there is a temperature threshold above which the electron temperature gradient driven component of the quasilinear particle flux changes sign and becomes inward. For finite amplitude turbulence, however, turbulent broadening of both the electron collisional resonance and the frequency spectrum removes tills threshold., and the temperature gradient driven component remains outward

  13. A simple algorithm for calculating the scattering angle in atomic collisions

    International Nuclear Information System (INIS)

    Belchior, J.C.; Braga, J.P.

    1996-01-01

    A geometric approach to calculate the classical atomic scattering angle is presented. The trajectory of the particle is divided into several straight-lines and changing in direction from one sector to the other is used to calculate the scattering angle. In this model, calculation of the scattering angle does not involve either the direct evaluation of integrals nor classical turning points. (author)

  14. Probing gas-surface interactions with a molecular beam

    International Nuclear Information System (INIS)

    Spruit, M.E.M.

    1988-01-01

    The dynamics of direct scattering, trapping and sticking in molecular beam scattering is probed. The O 2 /Ag interaction was chosen, using the close-packed (111) plane of Ag as target surface. 170 refs.; 22 figs.; 3 tabs

  15. Acid Treatment of Titania Pastes to Create Scattering Layers in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Trystan Watson

    2012-01-01

    Full Text Available In dye-sensitized solar cells (DSC scattering layers are used to increase the path length of light incident on the TiO2 film. This is typically achieved by the deposition of an additional TiO2 layer on top of an existing transparent film and designed to trap light. In this work we show that a simple acid pretreatment can lead to the formation of a scattering “skin” on the surface of a single TiO2 film performing a similar function to a scattering layer without any additional depositions. This is important in increasing manufacturing throughput for DSCs as further TiO2 depositions require additional materials and heat treatment. The pretreatment leads to self-assembly of a scattering layer of TiO2 which covers the surface on short-term immersion (<30 min and penetrates the bulk layer upon longer immersion. The method has been shown to increase the efficiency of the device by 20%.

  16. Paths to light trapping in thin film GaAs solar cells.

    Science.gov (United States)

    Xiao, Jianling; Fang, Hanlin; Su, Rongbin; Li, Kezheng; Song, Jindong; Krauss, Thomas F; Li, Juntao; Martins, Emiliano R

    2018-03-19

    It is now well established that light trapping is an essential element of thin film solar cell design. Numerous light trapping geometries have already been applied to thin film cells, especially to silicon-based devices. Less attention has been paid to light trapping in GaAs thin film cells, mainly because light trapping is considered less attractive due to the material's direct bandgap and the fact that GaAs suffers from strong surface recombination, which particularly affects etched nanostructures. Here, we study light trapping structures that are implemented in a high-bandgap material on the back of the GaAs active layer, thereby not perturbing the integrity of the GaAs active layer. We study photonic crystal and quasi-random nanostructures both by simulation and by experiment and find that the photonic crystal structures are superior because they exhibit fewer but stronger resonances that are better matched to the narrow wavelength range where GaAs benefits from light trapping. In fact, we show that a 1500 nm thick cell with photonic crystals achieves the same short circuit current as an unpatterned 4000 nm thick cell. These findings are significant because they afford a sizeable reduction in active layer thickness, and therefore a reduction in expensive epitaxial growth time and cost, yet without compromising performance.

  17. Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide

    Science.gov (United States)

    Sadgrove, Mark; Wimberger, Sandro; Nic Chormaic, Síle

    2016-01-01

    We propose several schemes to realize a tractor beam effect for ultracold atoms in the vicinity of a few-mode nanowaveguide. Atoms trapped near the waveguide are transported in a direction opposite to the guided mode propagation direction. We analyse three specific examples for ultracold 23Na atoms trapped near a specific nanowaveguide (i.e. an optical nanofibre): (i) a conveyor belt-type tractor beam effect, (ii) an accelerator tractor beam effect, and (iii) a quantum coherent tractor beam effect, all of which can effectively pull atoms along the nanofibre toward the light source. This technique provides a new tool for controlling the motion of particles near nanowaveguides with potential applications in the study of particle transport and binding as well as atom interferometry. PMID:27440516

  18. Internal state distributions of molecules scattering and desorbing from surfaces

    International Nuclear Information System (INIS)

    Auerbach, D.J.

    1983-01-01

    Attempts are made to interpret scattering experiments of NO molecules on Ag(111) where a (rotational) state-specific detector has been used. A model using an anisotropic potential is proposed to explain the observed incoming energy- and angle dependence. The so-called rotational rainbows are explained. It is concluded, that in this way information on intermolecular potentials and the transfer of translational to rotational energy in the dynamics of trapping and sticking of molecules on surfaces can be extracted. (G.Q.)

  19. Search For Trapped Antihydrogen

    CERN Document Server

    Andresen, Gorm B.; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D.; Bray, Crystal C.; Butler, Eoin; Cesar, Claudio L.; Chapman, Steven; Charlton, Michael; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C.; Gill, David R.; Hangst, Jeffrey S.; Hardy, Walter N.; Hayano, Ryugo S.; Hayden, Michael E.; Humphries, Andrew J.; Hydomako, Richard; Jonsell, Svante; Jorgensen, Lars V.; Kurchaninov, Lenoid; Lambo, Ricardo; Madsen, Niels; Menary, Scott; Nolan, Paul; Olchanski, Konstantin; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Nasr, Sarah Seif El; Silveira, Daniel M.; So, Chukman; Storey, James W.; Thompson, Robert I.; van der Werf, Dirk P.; Wilding, Dean; Wurtele, Jonathan S.; Yamazaki, Yasunori

    2011-01-01

    We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ~30 ms. After a three-week experimental run in 2009 involving mixing of 10^7 antiprotons with 1.3 10^9 positrons to produce 6 10^5 antihydrogen atoms, we have identified six antiproton annihilation events that are consist...

  20. Injection into electron plasma traps

    International Nuclear Information System (INIS)

    Gorgadze, Vladimir; Pasquini, Thomas A.; Fajans, Joel; Wurtele, Jonathan S.

    2003-01-01

    Computational studies and experimental measurements of plasma injection into a Malmberg-Penning trap reveal that the number of trapped particles can be an order of magnitude higher than predicted by a simple estimates based on a ballistic trapping model. Enhanced trapping is associated with a rich nonlinear dynamics generated by the space-charge forces of the evolving trapped electron density. A particle-in-cell simulation is used to identify the physical mechanisms that lead to the increase in trapped electrons. The simulations initially show strong two-stream interactions between the electrons emitted from the cathode and those reflected off the end plug of the trap. This is followed by virtual cathode oscillations near the injection region. As electrons are trapped, the initially hollow longitudinal phase-space is filled, and the transverse radial density profile evolves so that the plasma potential matches that of the cathode. Simple theoretical arguments are given that describe the different dynamical regimes. Good agreement is found between simulation and theory

  1. Separation of effects of oxide-trapped charge and interface-trapped charge on mobility in irradiated power MOSFETs

    International Nuclear Information System (INIS)

    Zupac, D.; Galloway, K.F.; Khosropour, P.; Anderson, S.R.; Schrimpf, R.D.

    1993-01-01

    An effective approach to separating the effects of oxide-trapped charge and interface-trapped charge on mobility degradation in irradiated MOSFETs is demonstrated. It is based on analyzing mobility data sets which have different functional relationships between the radiation-induced-oxide-trapped charge and interface-trapped charge. Separation of effects of oxide-trapped charge and interface-trapped charge is possible only if these two trapped charge components are not linearly dependent. A significant contribution of oxide-trapped charge to mobility degradation is demonstrated and quantified

  2. Polarized scattered light from self-luminous exoplanets. Three-dimensional scattering radiative transfer with ARTES

    Science.gov (United States)

    Stolker, T.; Min, M.; Stam, D. M.; Mollière, P.; Dominik, C.; Waters, L. B. F. M.

    2017-11-01

    Context. Direct imaging has paved the way for atmospheric characterization of young and self-luminous gas giants. Scattering in a horizontally-inhomogeneous atmosphere causes the disk-integrated polarization of the thermal radiation to be linearly polarized, possibly detectable with the newest generation of high-contrast imaging instruments. Aims: We aim to investigate the effect of latitudinal and longitudinal cloud variations, circumplanetary disks, atmospheric oblateness, and cloud particle properties on the integrated degree and direction of polarization in the near-infrared. We want to understand how 3D atmospheric asymmetries affect the polarization signal in order to assess the potential of infrared polarimetry for direct imaging observations of planetary-mass companions. Methods: We have developed a three-dimensional Monte Carlo radiative transfer code (ARTES) for scattered light simulations in (exo)planetary atmospheres. The code is applicable to calculations of reflected light and thermal radiation in a spherical grid with a parameterized distribution of gas, clouds, hazes, and circumplanetary material. A gray atmosphere approximation is used for the thermal structure. Results: The disk-integrated degree of polarization of a horizontally-inhomogeneous atmosphere is maximal when the planet is flattened, the optical thickness of the equatorial clouds is large compared to the polar clouds, and the clouds are located at high altitude. For a flattened planet, the integrated polarization can both increase or decrease with respect to a spherical planet which depends on the horizontal distribution and optical thickness of the clouds. The direction of polarization can be either parallel or perpendicular to the projected direction of the rotation axis when clouds are zonally distributed. Rayleigh scattering by submicron-sized cloud particles will maximize the polarimetric signal whereas the integrated degree of polarization is significantly reduced with micron

  3. Electron–phonon interaction and scattering in phosphorene

    Science.gov (United States)

    Fan, Xiaolin; Zhao, Guojun; Wang, Shudong

    2018-04-01

    The electron–phonon scattering of phosphorene is investigated via performing first-principles calculations. Our results reveal that the scattering rates are negligible at the valence band maximum (VBM) and conduction band minimum, but they are much larger away from the band edges. The scattering rates increase with the rising temperature. The relaxation times run up to ~850 fs around the VBM at 1 K, and they will decrease with the increasing temperature. In addition, we find that the mean free paths (MFPs) are anisotropic. The MFPs along the armchair direction are two times larger than that along the zigzag direction near the band edges. According to our results, we predict that the extraction of hot holes is best achieved along the armchair direction in phosphorene with a 65 nm range at 1 K. The best extraction range of hot electrons is less than 30 nm along the armchair direction at 1 K. On the other hand, the extraction range of hot holes and hot electrons will decrease to 15 nm along both directions in phosphorene at 300 K.

  4. X-ray scattering from periodic arrays of quantum dots

    International Nuclear Information System (INIS)

    Holy, V; Stangl, J; Lechner, R T; Springholz, G

    2008-01-01

    Three-dimensional periodic arrays of self-organized quantum dots in semiconductor multilayers are investigated by high-resolution x-ray scattering. We demonstrate that the statistical parameters of the dot array can be determined directly from the scattering data without performing a numerical simulation of the scattered intensity.

  5. Improved method for estimating particle scattering probabilities to finite detectors for Monte Carlo simulation

    International Nuclear Information System (INIS)

    Mickael, M.; Gardner, R.P.; Verghese, K.

    1988-01-01

    An improved method for calculating the total probability of particle scattering within the solid angle subtended by finite detectors is developed, presented, and tested. The limiting polar and azimuthal angles subtended by the detector are measured from the direction that most simplifies their calculation rather than from the incident particle direction. A transformation of the particle scattering probability distribution function (pdf) is made to match the transformation of the direction from which the limiting angles are measured. The particle scattering probability to the detector is estimated by evaluating the integral of the transformed pdf over the range of the limiting angles measured from the preferred direction. A general formula for transforming the particle scattering pdf is derived from basic principles and applied to four important scattering pdf's; namely, isotropic scattering in the Lab system, isotropic neutron scattering in the center-of-mass system, thermal neutron scattering by the free gas model, and gamma-ray Klein-Nishina scattering. Some approximations have been made to these pdf's to enable analytical evaluations of the final integrals. These approximations are shown to be valid over a wide range of energies and for most elements. The particle scattering probability to spherical, planar circular, and right circular cylindrical detectors has been calculated using the new and previously reported direct approach. Results indicate that the new approach is valid and is computationally faster by orders of magnitude

  6. Simulating quantum effects of cosmological expansion using a static ion trap

    Science.gov (United States)

    Menicucci, Nicolas C.; Olson, S. Jay; Milburn, Gerard J.

    2010-09-01

    We propose a new experimental test bed that uses ions in the collective ground state of a static trap to study the analogue of quantum-field effects in cosmological spacetimes, including the Gibbons-Hawking effect for a single detector in de Sitter spacetime, as well as the possibility of modeling inflationary structure formation and the entanglement signature of de Sitter spacetime. To date, proposals for using trapped ions in analogue gravity experiments have simulated the effect of gravity on the field modes by directly manipulating the ions' motion. In contrast, by associating laboratory time with conformal time in the simulated universe, we can encode the full effect of curvature in the modulation of the laser used to couple the ions' vibrational motion and electronic states. This model simplifies the experimental requirements for modeling the analogue of an expanding universe using trapped ions, and it enlarges the validity of the ion-trap analogy to a wide range of interesting cases.

  7. Particle trapping in 3-D using a single fiber probe with an annular light distribution.

    Science.gov (United States)

    Taylor, R; Hnatovsky, C

    2003-10-20

    A single optical fiber probe has been used to trap a solid 2 ìm diameter glass bead in 3-D in water. Optical confinement in 2-D was produced by the annular light distribution emerging from a selectively chemically etched, tapered, hollow tipped metalized fiber probe. Confinement of the bead in 3-D was achieved by balancing an electrostatic force of attraction towards the tip and the optical scattering force pushing the particle away from the tip.

  8. Electron traps in semiconducting polymers : Exponential versus Gaussian trap distribution

    NARCIS (Netherlands)

    Nicolai, H. T.; Mandoc, M. M.; Blom, P. W. M.

    2011-01-01

    The low electron currents in poly(dialkoxy-p-phenylene vinylene) (PPV) derivatives and their steep voltage dependence are generally explained by trap-limited conduction in the presence of an exponential trap distribution. Here we demonstrate that the electron transport of several PPV derivatives can

  9. Electron traps in semiconducting polymers: exponential versus Gaussian trap distribution

    NARCIS (Netherlands)

    Nicolai, H.T.; Mandoc, M.M.; Blom, P.W.M.

    2011-01-01

    The low electron currents in poly(dialkoxy-p-phenylene vinylene) (PPV) derivatives and their steep voltage dependence are generally explained by trap-limited conduction in the presence of an exponential trap distribution. Here we demonstrate that the electron transport of several PPV derivatives can

  10. Correlated lifetimes of free paraexcitons and excitons trapped at oxygen vacancies in cuprous oxide

    International Nuclear Information System (INIS)

    Koirala, Sandhaya; Naka, Nobuko; Tanaka, Koichiro

    2013-01-01

    We have studied transients of luminescence due to free excitons and excitons trapped at oxygen vacancies in cuprous oxide. We find that both trapped and free paraexcitons have lifetime dependent on temperature and on the oxygen concentration. By using samples containing much less copper vacancies relative to oxygen vacancies, we find out the direct correlation between the free paraexciton lifetime and trapped exciton lifetime. - Highlights: ► We have investigated trapping of free excitons at oxygen vacancies in cuprous oxide. ► Lifetimes of free and trapped excitons exhibit correlative temperature dependence. ► Four-level model with the activation energy of 33 meV well explains the observation. ► Comparison is made using the four samples with different vacancy concentrations. ► We clarified the crucial role of the oxygen vacancy in shortening the lifetimes.

  11. Experiments with trapped ions and ultrafast laser pulses

    Science.gov (United States)

    Johnson, Kale Gifford

    Since the dawn of quantum information science, laser-cooled trapped atomic ions have been one of the most compelling systems for the physical realization of a quantum computer. By applying qubit state dependent forces to the ions, their collective motional modes can be used as a bus to realize entangling quantum gates. Ultrafast state-dependent kicks [1] can provide a universal set of quantum logic operations, in conjunction with ultrafast single qubit rotations [2], which uses only ultrafast laser pulses. This may present a clearer route to scaling a trapped ion processor [3]. In addition to the role that spin-dependent kicks (SDKs) play in quantum computation, their utility in fundamental quantum mechanics research is also apparent. In this thesis, we present a set of experiments which demonstrate some of the principle properties of SDKs including ion motion independence (we demonstrate single ion thermometry from the ground state to near room temperature and the largest Schrodinger cat state ever created in an oscillator), high speed operations (compared with conventional atom-laser interactions), and multi-qubit entanglement operations with speed that is not fundamentally limited by the trap oscillation frequency. We also present a method to provide higher stability in the radial mode ion oscillation frequencies of a linear radiofrequency (rf) Paul trap-a crucial factor when performing operations on the rf-sensitive modes. Finally, we present the highest atomic position sensitivity measurement of an isolated atom to date of 0.5 nm Hz. (-1/2) with a minimum uncertaintyof 1.7 nm using a 0.6 numerical aperature (NA) lens system, along with a method to correct aberrations and a direct position measurement of ion micromotion (the inherent oscillations of an ion trapped in an oscillating rf field). This development could be used to directly image atom motion in the quantum regime, along with sensing forces at the yoctonewton [10. (-24) N)] scale forgravity sensing

  12. Secretion Trap Tagging of Secreted and Membrane-Spanning Proteins Using Arabidopsis Gene Traps

    Science.gov (United States)

    Andrew T. Groover; Joseph R. Fontana; Juana M. Arroyo; Cristina Yordan; W. Richard McCombie; Robert A. Martienssen

    2003-01-01

    Secreted and membrane-spanning proteins play fundamental roles in plant development but pose challenges for genetic identification and characterization. We describe a "secretion trap" screen for gene trap insertions in genes encoding proteins routed through the secretory pathway. The gene trap transposon encodes a ß-glucuronidase reporter enzyme...

  13. Trapping for invasive crayfish: comparisons of efficacy and selectivity of baited traps versus novel artificial refuge traps

    Directory of Open Access Journals (Sweden)

    Green Nicky

    2018-01-01

    Full Text Available Non-native crayfish can dominate the invertebrate biomass of invaded freshwaters, with their high ecological impacts resulting in their populations being controlled by numerous methods, especially trapping. Although baited funnel traps (BTs are commonly used, they tend to be selective in mainly catching large-bodied males. Here, the efficacy and selectivity of BTs were tested against an alternative trapping method based on artificial refuges (ARTs that comprised of a metal base with several tubes (refuges attached. The target species was signal crayfish Pacifastacus leniusculus in an upland river in southwest England. Trapping was completed in April to October over two consecutive years. In total, 5897 crayfish were captured, with 87% captured in ARTs. Comparison of the catch per unit effort (CPUE between the trapping methods in the same 24 hour periods revealed significantly higher CPUE in ARTs than of BTs. ARTs fished for 6 consecutive days had higher catches than both methods over 24 hours. Whilst catches in BTs were significantly dominated by males (1.49M:1F, the sex ratio of catches in ARTs was 0.99M:1F. The mean carapace length of crayfish was also significantly larger in BTs (43.2 ± 0.6 mm than in ARTs (33.6 ± 0.2 mm. Thus, ARTs had higher CPUE over 24 hour and 6 day periods versus BTs and also captured a greater proportion of smaller and female individuals. These results indicate that when trapping methods are deployed for managing invasions, the use of ARTs removes substantial numbers of crayfish of both sexes and of varying body sizes.

  14. Stability of the trapped nonconservative Gross-Pitaevskii equation with attractive two-body interaction

    International Nuclear Information System (INIS)

    Filho, Victo S.; Tomio, Lauro; Frederico, T.; Gammal, Arnaldo

    2002-01-01

    The dynamics of a nonconservative Gross-Pitaevskii equation for trapped atomic systems with attractive two-body interaction is numerically investigated, considering wide variations of the nonconservative parameters, related to atomic feeding and dissipation. We study the possible limitations of the mean-field description for an atomic condensate with attractive two-body interaction, by defining the parameter regions, where stable or unstable formation can be found. The present study is useful and timely considering the possibility of large variations of attractive two-body scattering lengths, which may be feasible in recent experiments

  15. Scattering and absorption of particles emitted by a point source in a cluster of point scatterers

    International Nuclear Information System (INIS)

    Liljequist, D.

    2012-01-01

    A theory for the scattering and absorption of particles isotropically emitted by a point source in a cluster of point scatterers is described and related to the theory for the scattering of an incident particle beam. The quantum mechanical probability of escape from the cluster in different directions is calculated, as well as the spatial distribution of absorption events within the cluster. A source strength renormalization procedure is required. The average quantum scattering in clusters with randomly shifting scatterer positions is compared to trajectory simulation with the aim of studying the validity of the trajectory method. Differences between the results of the quantum and trajectory methods are found primarily for wavelengths larger than the average distance between nearest neighbour scatterers. The average quantum results include, for example, a local minimum in the number of absorption events at the location of the point source and interference patterns in the angle-dependent escape probability as well as in the distribution of absorption events. The relative error of the trajectory method is in general, though not generally, of similar magnitude as that obtained for beam scattering.

  16. Geometrical effects in X-mode scattering

    International Nuclear Information System (INIS)

    Bretz, N.

    1986-10-01

    One technique to extend microwave scattering as a probe of long wavelength density fluctuations in magnetically confined plasmas is to consider the launching and scattering of extraordinary (X-mode) waves nearly perpendicular to the field. When the incident frequency is less than the electron cyclotron frequency, this mode can penetrate beyond the ordinary mode cutoff at the plasma frequency and avoid significant distortions from density gradients typical of tokamak plasmas. In the more familiar case, where the incident and scattered waves are ordinary, the scattering is isotropic perpendicular to the field. However, because the X-mode polarization depends on the frequency ratios and the ray angle to the magnetic field, the coupling between the incident and scattered waves is complicated. This geometrical form factor must be unfolded from the observed scattering in order to interpret the scattering due to density fluctuations alone. The geometrical factor is calculated here for the special case of scattering perpendicular to the magnetic field. For frequencies above the ordinary mode cutoff the scattering is relatively isotropic, while below cutoff there are minima in the forward and backward directions which go to zero at approximately half the ordinary mode cutoff density

  17. Electromagnetic trapping of neutral atoms

    International Nuclear Information System (INIS)

    Metcalf, H.J.

    1986-01-01

    Cooling and trapping of neutral atoms is a new branch of applied physics that has potential for application in many areas. The authors present an introduction to laser cooling and magnetic trapping. Some basic ideas and fundamental limitations are discussed, and the first successful experiments are reviewed. Trapping a neutral object depends on the interaction between an inhomogeneous electromagnetic field and a multiple moment that results in the exchange of kinetic for potential energy. In neutral atom traps, the potential energy must be stored as internal atomic energy, resulting in two immediate and extremely important consequences. First, the atomic energy levels will necessarily shift as the atoms move in the trap, and, second, practical traps for ground state neutral atoms atr necessarily very shallow compared to thermal energy. This small depth also dictates stringent vacuum requirements because a trapped atom cannot survive a single collision with a thermal energy background gas molecule. Neutral trapping, therefore, depends on substantial cooling of a thermal atomic sample and is inextricably connected with the cooling process

  18. Deep cooling of optically trapped atoms implemented by magnetic levitation without transverse confinement

    Science.gov (United States)

    Li, Chen; Zhou, Tianwei; Zhai, Yueyang; Xiang, Jinggang; Luan, Tian; Huang, Qi; Yang, Shifeng; Xiong, Wei; Chen, Xuzong

    2017-05-01

    We report a setup for the deep cooling of atoms in an optical trap. The deep cooling is implemented by eliminating the influence of gravity using specially constructed magnetic coils. Compared to the conventional method of generating a magnetic levitating force, the lower trap frequency achieved in our setup provides a lower limit of temperature and more freedoms to Bose gases with a simpler solution. A final temperature as low as ˜ 6 nK is achieved in the optical trap, and the atomic density is decreased by nearly two orders of magnitude during the second stage of evaporative cooling. This deep cooling of optically trapped atoms holds promise for many applications, such as atomic interferometers, atomic gyroscopes, and magnetometers, as well as many basic scientific research directions, such as quantum simulations and atom optics.

  19. Circular Intensity Differential Scattering of chiral molecules

    Energy Technology Data Exchange (ETDEWEB)

    Bustamante, C.J.

    1980-12-01

    In this thesis a theory of the Circular Intensity Differential Scattering (CIDS) of chiral molecules as modelled by a helix oriented with respect to the direction of incidence of light is presented. It is shown that a necessary condition for the existence of CIDS is the presence of an asymmetric polarizability in the scatterer. The polarizability of the scatterer is assumed generally complex, so that both refractive and absorptive phenomena are taken into account.

  20. Qubit Manipulations Techniques for Trapped-Ion Quantum Information Processing

    Science.gov (United States)

    Gaebler, John; Tan, Ting; Lin, Yiheng; Bowler, Ryan; Jost, John; Meier, Adam; Knill, Emanuel; Leibfried, Dietrich; Wineland, David; Ion Storage Team

    2013-05-01

    We report recent results on qubit manipulation techniques for trapped-ions towards scalable quantum information processing (QIP). We demonstrate a platform-independent benchmarking protocol for evaluating the performance of Clifford gates, which form a basis for fault-tolerant QIP. We report a demonstration of an entangling gate scheme proposed by Bermudez et al. [Phys. Rev. A. 85, 040302 (2012)] and achieve a fidelity of 0.974(4). This scheme takes advantage of dynamic decoupling which protects the qubit against dephasing errors. It can be applied directly on magnetic-field-insensitive states, and provides a number of simplifications in experimental implementation compared to some other entangling gates with trapped ions. We also report preliminary results on dissipative creation of entanglement with trapped-ions. Creation of an entangled pair does not require discrete logic gates and thus could reduce the level of quantum-coherent control needed for large-scale QIP. Supported by IARPA, ARO contract No. EAO139840, ONR, and the NIST Quantum Information Program.

  1. Finding trap stiffness of optical tweezers using digital filters.

    Science.gov (United States)

    Almendarez-Rangel, Pedro; Morales-Cruzado, Beatriz; Sarmiento-Gómez, Erick; Pérez-Gutiérrez, Francisco G

    2018-02-01

    Obtaining trap stiffness and calibration of the position detection system is the basis of a force measurement using optical tweezers. Both calibration quantities can be calculated using several experimental methods available in the literature. In most cases, stiffness determination and detection system calibration are performed separately, often requiring procedures in very different conditions, and thus confidence of calibration methods is not assured due to possible changes in the environment. In this work, a new method to simultaneously obtain both the detection system calibration and trap stiffness is presented. The method is based on the calculation of the power spectral density of positions through digital filters to obtain the harmonic contributions of the position signal. This method has the advantage of calculating both trap stiffness and photodetector calibration factor from the same dataset in situ. It also provides a direct method to avoid unwanted frequencies that could greatly affect calibration procedure, such as electric noise, for example.

  2. Scattering in relativistic particle mechanics

    International Nuclear Information System (INIS)

    De Bievre, S.

    1986-01-01

    The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis the authors studied scattering in the relativistic two-body problem. He uses the results to analyze gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. A general geometric framework that underlies approaches to relativistic particle mechanics is presented and the kinematic properties of the scattering transformation, i.e., those properties that arise solely from the invariance of the theory under the Poincare group are studied. The second part of the analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Using general geometric arguments, gauge invariance of the scattering transformation in the Todorov-Komar Hamiltonian constraint model is proved. Finally, quantization of the models is discussed

  3. Solar Wind Halo Formation by the Scattering of the Strahl via Direct Cluster/PEACE Observations of the 3D Velocity Distribution Function

    Science.gov (United States)

    Figueroa-Vinas, Adolfo; Gurgiolo, Chris A.; Nieves-Chinchilla, Teresa; Goldstein, Melvyn L.

    2010-01-01

    It has been suggested by a number of authors that the solar wind electron halo can be formed by the scattering of the strahl. On frequent occasions we have observed in electron angular skymaps (Phi/Theta-plots) of the electron 3D velocity distribution functions) a bursty-filament of particles connecting the strahl to the solar wind core-halo. These are seen over a very limited energy range. When the magnetic field is well off the nominal solar wind flow direction such filaments are inconsistent with any local forces and are probably the result of strong scattering. Furthermore, observations indicates that the strahl component is frequently and significantly anisotropic (Tper/Tpal approx.2). This provides a possible free energy source for the excitation of whistler waves as a possible scattering mechanism. The empirical observational evidence between the halo and the strahl suggests that the strahl population may be, at least in part, the source of the halo component.

  4. Neutron scattering studies of the heavy Fermion superconductors

    International Nuclear Information System (INIS)

    Goldman, A.I.

    1985-01-01

    Recent neutron scattering measurements of the heavy Fermion superconductors are described. Those materials offer an exciting opportunity for neutron scattering since the f-electrons, which couple directly to magnetic scattering measurements, seem to be the same electrons which form the superconducting state below T/sub c/. In addition, studies of the magnetic fluctuations in these, and other heavy Fermion systems, by inelastic magnetic neutron scattering can provide information about the nature of the low temperature Fermi liquid character of these novel compounds

  5. Atomic scattering from an adsorbed monolayer solid with a helium beam that penetrates to the substrate

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, L.W.; Dammann, Bernd

    2013-01-01

    Diffraction and one-phonon inelastic scattering of a thermal energy helium atomic beam are evaluated in the situation that the target monolayer lattice is so dilated that the atomic beam penetrates to the interlayer region between the monolayer and the substrate. The scattering is simulated......(1 × 1) commensurate monolayer solid of H2/KCl(001). For the latter, there are cases where part of the incident beam is trapped in the interlayer region for times exceeding 50 ps, depending on the spacing between the monolayer and the substrate and on the angle of incidence. The feedback effect...

  6. Direct rapid analysis of trace bioavailable soil macronutrients by chemometrics-assisted energy dispersive X-ray fluorescence and scattering spectrometry.

    Science.gov (United States)

    Kaniu, M I; Angeyo, K H; Mwala, A K; Mangala, M J

    2012-06-04

    Precision agriculture depends on the knowledge and management of soil quality (SQ), which calls for affordable, simple and rapid but accurate analysis of bioavailable soil nutrients. Conventional SQ analysis methods are tedious and expensive. We demonstrate the utility of a new chemometrics-assisted energy dispersive X-ray fluorescence and scattering (EDXRFS) spectroscopy method we have developed for direct rapid analysis of trace 'bioavailable' macronutrients (i.e. C, N, Na, Mg, P) in soils. The method exploits, in addition to X-ray fluorescence, the scatter peaks detected from soil pellets to develop a model for SQ analysis. Spectra were acquired from soil samples held in a Teflon holder analyzed using (109)Cd isotope source EDXRF spectrometer for 200 s. Chemometric techniques namely principal component analysis (PCA), partial least squares (PLS) and artificial neural networks (ANNs) were utilized for pattern recognition based on fluorescence and Compton scatter peaks regions, and to develop multivariate quantitative calibration models based on Compton scatter peak respectively. SQ analyses were realized with high CMD (R(2)>0.9) and low SEP (0.01% for N and Na, 0.05% for C, 0.08% for Mg and 1.98 μg g(-1) for P). Comparison of predicted macronutrients with reference standards using a one-way ANOVA test showed no statistical difference at 95% confidence level. To the best of the authors' knowledge, this is the first time that an XRF method has demonstrated utility in trace analysis of macronutrients in soil or related matrices. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Neutron scattering and the search for mechanisms of superconductivity

    DEFF Research Database (Denmark)

    Aeppli, G.; Bishop, D.J.; Broholm, C.

    1999-01-01

    Neutron scattering is a direct probe of mass and magnetization density in solids. We start with a brief review of experimental strategies for determining the mechanisms of superconductivity and how neutron scattering contributed towards our understanding of conventional superconductors. The remai......Neutron scattering is a direct probe of mass and magnetization density in solids. We start with a brief review of experimental strategies for determining the mechanisms of superconductivity and how neutron scattering contributed towards our understanding of conventional superconductors....... The remainder of the article gives examples of neutron results with impact on the search for the mechanism of superconductivity in more recently discovered, 'exotic', materials, namely the heavy fermion compounds and the layered cuprates, (C) 1999 Elsevier Science B.V. All rights reserved....

  8. Air Trapping Mechanism in Artificial Salvinia-Like Micro-Hairs Fabricated via Direct Laser Lithography

    Directory of Open Access Journals (Sweden)

    Omar Tricinci

    2017-12-01

    Full Text Available Salvinia leaves represent an extraordinary example of how nature found a strategy for the long term retainment of air, and thus oxygen, on a surface, the so-called ‘Salvinia effect’, thanks to the peculiar three-dimensional and hierarchical shape of the hairs covering the leaves. Here, starting from the natural model, we have microfabricated hairs inspired by those present on the Salvinia molesta leaves, by means of direct laser lithography. Artificial hairs, like their natural counterpart, are composed of a stalk and a crown-like head, and have been reproduced in the microscale since this ensures, if using a proper design, an air-retaining behavior even if the bulk structural material is hydrophilic. We have investigated the capability of air retainment inside the heads of the hairs that can last up to 100 h, demonstrating the stability of the phenomenon. For a given dimension of the head, the greater the number of filaments, the greater the amount of air that can be trapped inside the heads since the increase in the number of solid–air interfaces able to pin the liquid phase. For this reason, such type of pattern could be used for the fabrication of surfaces for controlled gas retainment and gas release in liquid phases. The range of applications would be quite large, including industrial, medical, and biological fields.

  9. Well-Controlled Cell-Trapping Systems for Investigating Heterogeneous Cell-Cell Interactions.

    Science.gov (United States)

    Kamiya, Koki; Abe, Yuta; Inoue, Kosuke; Osaki, Toshihisa; Kawano, Ryuji; Miki, Norihisa; Takeuchi, Shoji

    2018-03-01

    Microfluidic systems have been developed for patterning single cells to study cell-cell interactions. However, patterning multiple types of cells to understand heterogeneous cell-cell interactions remains difficult. Here, it is aimed to develop a cell-trapping device to assemble multiple types of cells in the well-controlled order and morphology. This device mainly comprises a parylene sheet for assembling cells and a microcomb for controlling the cell-trapping area. The cell-trapping area is controlled by moving the parylene sheet on an SU-8 microcomb using tweezers. Gentle downward flow is used as a driving force for the cell-trapping. The assembly of cells on a parylene sheet with round and line-shaped apertures is demonstrated. The cell-cell contacts of the trapped cells are then investigated by direct cell-cell transfer of calcein via connexin nanopores. Finally, using the device with a system for controlling the cell-trapping area, three different types of cells in the well-controlled order are assembled. The correct cell order rate obtained using the device is 27.9%, which is higher than that obtained without the sliding parylene system (0.74%). Furthermore, the occurrence of cell-cell contact between the three cell types assembled is verified. This cell-patterning device will be a useful tool for investigating heterogeneous cell-cell interactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Forward Scattering of Loaded and Unloaded Antennas

    DEFF Research Database (Denmark)

    Gustafsson, Mats; Andersen, Jørgen Bach; Kristensson, Gerhard

    2012-01-01

    Forward scattering of antennas is related to antenna performance via the forward-scattering sum rule. The forward-scattering sum rule is an integral identity that shows that a weighted integral of the extinction cross section over all spectrum is proportional to the static polarizability...... of the antenna structure. Here, the forward-scattering sum rule is experimentally verified for loaded, short-circuit, and open-circuit cylindrical dipole antennas. It is also shown that the absorption efficiency cannot be greater than 1/2 for reciprocal linearly polarized lossless matched antennas...... with a symmetric radiation pattern in the forward and backward directions....

  11. GaAs on Si epitaxy by aspect ratio trapping: Analysis and reduction of defects propagating along the trench direction

    Energy Technology Data Exchange (ETDEWEB)

    Orzali, Tommaso, E-mail: tommaso.orzali@sematech.org; Vert, Alexey; O' Brien, Brendan; Papa Rao, Satyavolu S. [SEMATECH, 257 Fuller Rd Suite 2200, Albany, New York 12203 (United States); Herman, Joshua L.; Vivekanand, Saikumar [College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 251 Fuller Road, Albany, New York 12203 (United States); Hill, Richard J. W. [Now at Micron Technologies, 8000 S Federal Way, Boise, Idaho 83716 (United States); Karim, Zia [AIXTRON, Inc., 1139 Karlstad Dr., Sunnyvale, California 94089 (United States)

    2015-09-14

    The Aspect Ratio Trapping technique has been extensively evaluated for improving the quality of III-V heteroepitaxial films grown on Si, due to the potential for terminating defects at the sidewalls of SiO{sub 2} patterned trenches that enclose the growth region. However, defects propagating along the trench direction cannot be effectively confined with this technique. We studied the effect of the trench bottom geometry on the density of defects of GaAs fins, grown by metal-organic chemical vapor deposition on 300 mm Si (001) wafers inside narrow (<90 nm wide) trenches. Plan view and cross sectional Scanning Electron Microscopy and Transmission Electron Microscopy, together with High Resolution X-Ray Diffraction, were used to evaluate the crystal quality of GaAs. The prevalent defects that reach the top surface of GaAs fins are (111) twin planes propagating along the trench direction. The lowest density of twin planes, ∼8 × 10{sup 8 }cm{sup −2}, was achieved on “V” shaped bottom trenches, where GaAs nucleation occurs only on (111) Si planes, minimizing the interfacial energy and preventing the formation of antiphase boundaries.

  12. Scatter networks: a new approach for analysing information scatter

    International Nuclear Information System (INIS)

    Adamic, Lada A; Suresh, K; Shi Xiaolin

    2007-01-01

    Information on any given topic is often scattered across the Web. Previously this scatter has been characterized through the inequality of distribution of facts (i.e. pieces of information) across webpages. Such an approach conceals how specific facts (e.g. rare facts) occur in specific types of pages (e.g. fact-rich pages). To reveal such regularities, we construct bipartite networks, consisting of two types of vertices: the facts contained in webpages and the webpages themselves. Such a representation enables the application of a series of network analysis techniques, revealing structural features such as connectivity, robustness and clustering. Not only does network analysis yield new insights into information scatter, but we also illustrate the benefit of applying new and existing analysis techniques directly to a bipartite network as opposed to its one-mode projection. We discuss the implications of each network feature to the users' ability to find comprehensive information online. Finally, we compare the bipartite graph structure of webpages and facts with the hyperlink structure between the webpages

  13. Transfer the multiscale texture of crystalline Si onto thin-film micromorph cell by UV nanoimprint for light trapping

    Science.gov (United States)

    Liu, Daiming; Wang, Qingkang; Wang, Qing

    2018-05-01

    Surface texturing is of great significance in light trapping for solar cells. Herein, the multiscale texture, consisting of microscale pyramids and nanoscale porous arrangement, was fabricated on crystalline Si by KOH etching and Ag-assisted HF etching processes and subsequently replicated onto glass with high fidelity by UV nanoimprint method. Light trapping of the multiscale texture was studied by spectral (reflectance, haze ratio) characterizations. Results reveal the multiscale texture provides the broadband reflection reducing, the highlighted light scattering and the additional self-cleaning behaviors. Compared with bare cell, the multiscale textured micromorph cell achieves a 4% relative increase in power conversion efficiency. This surface texturing route paves a promising way for developing low-cost, large-scale and high-efficiency solar applications.

  14. Inhomogeneous and anisotropic particles in optical traps: Physical behaviour and applications

    Science.gov (United States)

    Simpson, S. H.

    2014-10-01

    Beyond the ubiquitous colloidal sphere, optical tweezers are capable of trapping myriad exotic particles with wildly varying geometries and compositions. This simple fact opens up numerous opportunities for micro-manipulation, directed assembly and characterization of novel nanostructures. Furthermore, the mechanical properties of optical tweezers are transformed by their contents. For example, traps capable of measuring, or applying, femto-Newton scale forces with nanometric spatial resolution can be designed. Analogous, if not superior, angular sensitivity can be achieved, enabling the creation of exquisitely sensitive torque wrenches. These capacities, and others, lead to a multitude of novel applications in the meso- and nanosciences. In this article we review experimental and theoretical work on the relationship between particle geometry, composition and trap properties. A range of associated metrological techniques are discussed.

  15. Theoretical approach to direct resonant inelastic X-ray scattering on magnets and superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Marra, Pasquale

    2015-10-26

    The capability to probe the dispersion of elementary spin, charge, orbital, and lattice excitations has positioned resonant inelastic X-ray scattering (RIXS) at the forefront of photon science. In this work, we will investigate how RIXS can contribute to a deeper understanding of the orbital properties and of the pairing mechanism in unconventional high-temperature superconductors. In particular, we show how direct RIXS spectra of magnetic excitations can reveal long-range orbital correlations in transition metal compounds, by discriminating different kind of orbital order in magnetic and antiferromagnetic systems. Moreover, we show how RIXS spectra of quasiparticle excitations in superconductors can measure the superconducting gap magnitude, and reveal the presence of nodal points and phase differences of the superconducting order parameter on the Fermi surface. This can reveal the properties of the underlying pairing mechanism in unconventional superconductors, in particular cuprates and iron pnictides, discriminating between different superconducting order parameter symmetries, such as s,d (singlet pairing) and p wave (triplet pairing).

  16. A study of phonon anisotropic scattering effect on silicon thermal conductivity at nanoscale

    International Nuclear Information System (INIS)

    Bong, Victor N-S; Wong, Basil T.

    2015-01-01

    Previous studies have shown that anisotropy in phonon transport exist because of the difference in phonon dispersion relation due to different lattice direction, as observed by a difference in in-plane and cross-plane thermal conductivity. The directional preference (such as forward or backward scattering) in phonon propagation however, remains a relatively unexplored frontier. Our current work adopts a simple scattering probability in radiative transfer, which is called Henyey and Greenstein probability density function, and incorporates it into the phonon Monte Carlo simulation to investigate the effect of directional scattering in phonon transport. In this work, the effect of applying the anisotropy scattering is discussed, as well as its impact on the simulated thermal conductivity of silicon thin films. While the forward and backward scattering will increase and decrease thermal conductivity respectively, the extent of the effect is non-linear such that forward scattering has a more obvious effect than backward scattering

  17. A study of phonon anisotropic scattering effect on silicon thermal conductivity at nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Bong, Victor N-S; Wong, Basil T. [Swinburne Sarawak Research Centre for Sustainable Technologies, Faculty of Engineering, Computing & Science, Swinburne University of Technology Sarawak Campus, 93350 Kuching, Sarawak (Malaysia)

    2015-08-28

    Previous studies have shown that anisotropy in phonon transport exist because of the difference in phonon dispersion relation due to different lattice direction, as observed by a difference in in-plane and cross-plane thermal conductivity. The directional preference (such as forward or backward scattering) in phonon propagation however, remains a relatively unexplored frontier. Our current work adopts a simple scattering probability in radiative transfer, which is called Henyey and Greenstein probability density function, and incorporates it into the phonon Monte Carlo simulation to investigate the effect of directional scattering in phonon transport. In this work, the effect of applying the anisotropy scattering is discussed, as well as its impact on the simulated thermal conductivity of silicon thin films. While the forward and backward scattering will increase and decrease thermal conductivity respectively, the extent of the effect is non-linear such that forward scattering has a more obvious effect than backward scattering.

  18. A magnetic particle micro-trap for large trapping surfaces

    KAUST Repository

    Gooneratne, Chinthaka P.

    2012-01-08

    Manipulation of micron-size magnetic particles of the superparamagnetic type contributes significantly in many applications like controlling the antibody/antigen binding process in immunoassays. Specifically, more target biomolecules can be attached/tagged and analyzed since the three dimensional structure of the magnetic particles increases the surface to volume ratio. Additionally, such biomolecular-tagged magnetic particles can be easily manipulated by an external magnetic field due to their superparamagnetic behavior. Therefore, magnetic particle- based immunoassays are extensively applied in micro-flow cytometry. The design of a square-loop micro-trap as a magnetic particle manipulator as well as numerical and experimental analysis is presented. Experimental results showed that the micro-trap could successfully trap and concentrate magnetic particles from a large to a small area with a high spatial range.

  19. A magnetic particle micro-trap for large trapping surfaces

    KAUST Repository

    Gooneratne, Chinthaka P.; Liang, Cai; Giouroudi, Ioanna; Kosel, Jü rgen

    2012-01-01

    Manipulation of micron-size magnetic particles of the superparamagnetic type contributes significantly in many applications like controlling the antibody/antigen binding process in immunoassays. Specifically, more target biomolecules can be attached/tagged and analyzed since the three dimensional structure of the magnetic particles increases the surface to volume ratio. Additionally, such biomolecular-tagged magnetic particles can be easily manipulated by an external magnetic field due to their superparamagnetic behavior. Therefore, magnetic particle- based immunoassays are extensively applied in micro-flow cytometry. The design of a square-loop micro-trap as a magnetic particle manipulator as well as numerical and experimental analysis is presented. Experimental results showed that the micro-trap could successfully trap and concentrate magnetic particles from a large to a small area with a high spatial range.

  20. Optical trapping and Feshbach spectroscopy of an ultracold Rb-Cs mixture

    International Nuclear Information System (INIS)

    Pilch, K.

    2009-01-01

    We investigate quantum-mechanical interactions between ultracold rubidium and cesium in an optical trap at temperatures of a few micro kelvin. Our results provide, on the one hand, an experimental key to understand the collisional properties and, on the other hand, a tool to control the interspecies interactions. By performing loss measurements we locate several Feshbach resonances, which provide insight into the energy structure of weakly bound RbCs molecules near the dissociation threshold and allow for the production of such heteronuclear Feshbach molecules. In the future we will transfer these loosely-bound molecules into the absolute internal ground state. The availability of ultracold heteronuclear ground state molecules will open the door to investigate phenomena associated with ultracold polar quantum gases. In our new experimental set-up we are able to trap and cool rubidium and cesium atoms in their lowest internal states. First we load both species into a two-color magneto-optical trap, having full control over the single-species atom number. We extend the technique of degenerate Raman-sideband cooling to a two-color version, which is able to simultaneously cool and polarize both rubidium and cesium. Thereafter we load the atoms into a levitated crossed optical dipole trap. Because of the presence of the gradient magnetic field the trap is highly state selective and consequently provides perfect spin-polarization of the sample. Furthermore, a coincidence of the magnetic-moment-to-mass ratios of the two species allows for simultaneous levitation of both, which assures an almost perfect spatial overlap between the species. We perform Feshbach spectroscopy in two dierent spin channels of the mixture within a magnetic field ranging from 20 to 300 Gauss. In the lowest spin combination of the species we locate 23 interspecies Feshbach resonances, while in a higher spin mixture we find 2 resonances. The high number of resonances found within this range of

  1. Superradiative scattering magnons

    International Nuclear Information System (INIS)

    Shrivastava, K.N.

    1980-01-01

    A magnon-photon interaction for the magnetic vector of the electromagnetic wave perpendicular to the direction of magnetization in a ferromagnet is constructed. The magnon part of the interaction is reduced with the use of Bogoliubov transformation. The resulting magnon-photon interaction is found to contain several interesting new radiation effects. The self energy of the magnon is calculated and life times arising from the radiation scattering are predicted. The magnon frequency shift due to the radiation field is found. One of the terms arising from the one-magnon one-photon scattering gives a line width in reasonable agreement with the experimentally measured value of ferromagnetic resonance line width in yttrium iron garnet. Surface magnon scattering is indicated and the contribution of this type of scattering to the radiative line width is discussed. The problem of magnetic superradiance is indicated and it is shown that in anisotropic ferromagnets the emission is proportional to the sqare of the number of magnons and the divergence is considerably minimized. Accordingly the magnetic superradiance emerges as a hyperradiance with much more radiation intensity than in the case of disordered atomic superradiance. (author)

  2. ATRAP - Progress Towards Trapped Antihydrogen

    International Nuclear Information System (INIS)

    Grzonka, D.; Goldenbaum, F.; Oelert, W.; Sefzick, T.; Zhang, Z.; Comeau, D.; Hessels, E.A.; Storry, C.H.; Gabrielse, G.; Larochelle, P.; Lesage, D.; Levitt, B.; Speck, A.; Haensch, T.W.; Pittner, H.; Walz, J.

    2005-01-01

    The ATRAP experiment at the CERN antiproton decelerator AD aims for a test of the CPT invariance by a high precision comparison of the 1s-2s transition in the hydrogen and the antihydrogen atom.Antihydrogen production is routinely operated at ATRAP and detailed studies have been performed in order to optimize the production efficiency of useful antihydrogen.For high precision measurements of atomic transitions cold antihydrogen in the ground state is required which must be trapped due to the low number of available antihydrogen atoms compared to the cold hydrogen beam used for hydrogen spectroscopy. To ensure a reasonable antihydrogen trapping efficiency a magnetic trap has to be superposed the nested Penning trap. First trapping tests of charged particles within a combined magnetic/Penning trap have started at ATRAP

  3. ATRAP Progress Towards Trapped Antihydrogen

    CERN Document Server

    Grzonka, D; Gabrielse, G; Goldenbaum, F; Hänsch, T W; Hessels, E A; Larochelle, P; Le Sage, D; Levitt, B; Oelert, W; Pittner, H; Sefzick, T; Speck, A; Storry, C H; Walz, J; Zhang, Z

    2005-01-01

    The ATRAP experiment at the CERN antiproton decelerator AD aims for a test of the CPT invariance by a high precision comparison of the 1s‐2s transition in the hydrogen and the antihydrogen atom. Antihydrogen production is routinely operated at ATRAP and detailed studies have been performed in order to optimize the production efficiency of useful antihydrogen. For high precision measurements of atomic transitions cold antihydrogen in the ground state is required which must be trapped due to the low number of available antihydrogen atoms compared to the cold hydrogen beam used for hydrogen spectroscopy. To ensure a reasonable antihydrogen trapping efficiency a magnetic trap has to be superposed the nested Penning trap. First trapping tests of charged particles within a combined magnetic/Penning trap have started at ATRAP.

  4. Spin wave scattering and interference in ferromagnetic cross

    Energy Technology Data Exchange (ETDEWEB)

    Nanayakkara, Kasuni; Kozhanov, Alexander [Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303 (United States); Center for Nano Optics, Georgia State University, Atlanta, Georgia 30303 (United States); Jacob, Ajey P. [Exploratory Research Device and Integration, GLOBALFOUNDRIES, Albany, New York 12203 (United States)

    2015-10-28

    Magnetostatic spin wave scattering and interference across a CoTaZr ferromagnetic spin wave waveguide cross junction were investigated experimentally and by micromagnetic simulations. It is observed that the phase of the scattered waves is dependent on the wavelength, geometry of the junction, and scattering direction. It is found that destructive and constructive interference of the spin waves generates switching characteristics modulated by the input phase of the spin waves. Micromagnetic simulations are used to analyze experimental data and simulate the spin wave scattering and interference.

  5. Initial characterization of mudstone nanoporosity with small angle neutron scattering using caprocks from carbon sequestration sites

    International Nuclear Information System (INIS)

    McCray, John; Navarre-Sitchler, Alexis; Mouzakis, Katherine; Heath, Jason E.; Dewers, Thomas A.; Rother, Gernot

    2010-01-01

    Geological carbon sequestration relies on the principle that CO 2 injected deep into the subsurface is unable to leak to the atmosphere. Structural trapping by a relatively impermeable caprock (often mudstone such as a shale) is the main trapping mechanism that is currently relied on for the first hundreds of years. Many of the pores of the caprock are of micrometer to nanometer scale. However, the distribution, geometry and volume of porosity at these scales are poorly characterized. Differences in pore shape and size can cause variation in capillary properties and fluid transport resulting in fluid pathways with different capillary entry pressures in the same sample. Prediction of pore network properties for distinct geologic environments would result in significant advancement in our ability to model subsurface fluid flow. Specifically, prediction of fluid flow through caprocks of geologic CO 2 sequestration reservoirs is a critical step in evaluating the risk of leakage to overlying aquifers. The micro- and nanoporosity was analyzed in four mudstones using small angle neutron scattering (SANS). These mudstones are caprocks of formations that are currently under study or being used for carbon sequestration projects and include the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Total organic carbon varies from <0.3% to 4% by weight. Expandable clay contents range from 10% to ∼40% in the Gothic shale and Kirtland Formation, respectively. Neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e. minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume of pores and their arrangement in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of the pore network

  6. Initial characterization of mudstone nanoporosity with small angle neutron scattering using caprocks from carbon sequestration sites.

    Energy Technology Data Exchange (ETDEWEB)

    McCray, John (Colorado School of Mines); Navarre-Sitchler, Alexis (Colorado School of Mines); Mouzakis, Katherine (Colorado School of Mines); Heath, Jason E.; Dewers, Thomas A.; Rother, Gernot (Oak Ridge National Laboratory)

    2010-11-01

    Geological carbon sequestration relies on the principle that CO{sub 2} injected deep into the subsurface is unable to leak to the atmosphere. Structural trapping by a relatively impermeable caprock (often mudstone such as a shale) is the main trapping mechanism that is currently relied on for the first hundreds of years. Many of the pores of the caprock are of micrometer to nanometer scale. However, the distribution, geometry and volume of porosity at these scales are poorly characterized. Differences in pore shape and size can cause variation in capillary properties and fluid transport resulting in fluid pathways with different capillary entry pressures in the same sample. Prediction of pore network properties for distinct geologic environments would result in significant advancement in our ability to model subsurface fluid flow. Specifically, prediction of fluid flow through caprocks of geologic CO{sub 2} sequestration reservoirs is a critical step in evaluating the risk of leakage to overlying aquifers. The micro- and nanoporosity was analyzed in four mudstones using small angle neutron scattering (SANS). These mudstones are caprocks of formations that are currently under study or being used for carbon sequestration projects and include the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Total organic carbon varies from <0.3% to 4% by weight. Expandable clay contents range from 10% to {approx}40% in the Gothic shale and Kirtland Formation, respectively. Neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e. minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume of pores and their arrangement in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of

  7. Status of THe-trap

    Energy Technology Data Exchange (ETDEWEB)

    Ketter, Jochen; Eronen, Tommi; Hoecker, Martin; Streubel, Sebastian; Blaum, Klaus [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Van Dyck, Robert S. Jr. [Department of Physics, University of Washington, Seattle, WA (United States)

    2012-07-01

    Originally developed at the University of Washington and relocated to the Max-Planck-Institut fuer Kernphysik in 2008, the Penning-trap spectrometer THe-Trap is specially tailored for a {sup 3}H/{sup 3}He mass-ratio measurement, from which the Q-value of the beta-decay of {sup 3}H to {sup 3}He can be derived. Improving the current best value by at least an order of magnitude will provide an important independent test parameter for the determination of the electron-antineutrino's mass by the Karlsruhe Tritium Neutrino Experiment (KATRIN). However, Penning-trap mass spectrometry has to be pushed to its limits in a dedicated experiment for a sufficiently accurate mass-ratio measurement with a relative uncertainty of 10{sup -11}. Unlike the closed-envelope, single-trap predecessor, the new spectrometer features an external ion source, owing to the radioactive nature of tritium, and two traps in order to speed up the measurement cycle. While the double-trap technique holds great promise, it also calls for more intricate procedures, such as ion transfer. Details about the recent progress of the experiment are given.

  8. Servo control of an optical trap.

    Science.gov (United States)

    Wulff, Kurt D; Cole, Daniel G; Clark, Robert L

    2007-08-01

    A versatile optical trap has been constructed to control the position of trapped objects and ultimately to apply specified forces using feedback control. While the design, development, and use of optical traps has been extensive and feedback control has played a critical role in pushing the state of the art, few comprehensive examinations of feedback control of optical traps have been undertaken. Furthermore, as the requirements are pushed to ever smaller distances and forces, the performance of optical traps reaches limits. It is well understood that feedback control can result in both positive and negative effects in controlled systems. We give an analysis of the trapping limits as well as introducing an optical trap with a feedback control scheme that dramatically improves an optical trap's sensitivity at low frequencies.

  9. Development of a gravid trap for collecting live malaria vectors Anopheles gambiae s.l.

    Directory of Open Access Journals (Sweden)

    Sisay Dugassa

    Full Text Available Effective malaria vector control targeting indoor host-seeking mosquitoes has resulted in fewer vectors entering houses in many areas of sub-Saharan Africa, with the proportion of vectors outdoors becoming more important in the transmission of this disease. This study aimed to develop a gravid trap for the outdoor collection of the malaria vector Anopheles gambiae s.l. based on evaluation and modification of commercially available gravid traps.Experiments were implemented in an 80 m(2 semi-field system where 200 gravid Anopheles gambiae s.s. were released nightly. The efficacy of the Box, CDC and Frommer updraft gravid traps was compared. The Box gravid trap was tested to determine if the presence of the trap over water and the trap's sound affected catch size. Mosquitoes approaching the treatment were evaluated using electrocuting nets or detergents added to the water in the trap. Based on the results, a new gravid trap (OviART trap that provided an open, unobstructed oviposition site was developed and evaluated.Box and CDC gravid traps collected similar numbers (relative rate (RR 0.8, 95% confidence interval (CI 0.6-1.2; p = 0.284, whereas the Frommer trap caught 70% fewer mosquitoes (RR 0.3, 95% CI 0.2-0.5; p < 0.001. The number of mosquitoes approaching the Box trap was significantly reduced when the trap was positioned over a water-filled basin compared to an open pond (RR 0.7 95% CI 0.6-0.7; p < 0.001. This effect was not due to the sound of the trap. Catch size increased by 60% (RR 1.6, 1.2-2.2; p = 0.001 with the new OviART trap.Gravid An. Gambiae s.s. females were visually deterred by the presence of the trapping device directly over the oviposition medium. Based on these investigations, an effective gravid trap was developed that provides open landing space for egg-laying Anopheles.

  10. Algae commensal community in Genlisea traps

    Directory of Open Access Journals (Sweden)

    Konrad Wołowski

    2011-01-01

    Full Text Available The community of algae occurring in Genlisea traps and on the external traps surface in laboratory conditions were studied. A total of 29 taxa were found inside the traps, with abundant diatoms, green algae (Chlamydophyceae and four morphotypes of chrysophytes stomatocysts. One morphotype is described as new for science. There are two ways of algae getting into Genlisea traps. The majority of those recorded inside the traps, are mobile; swimming freely by flagella or moving exuding mucilage like diatoms being ablate to colonize the traps themselves. Another possibility is transport of algae by invertebrates such as mites and crustaceans. In any case algae in the Genlisea traps come from the surrounding environment. Two dominant groups of algae (Chladymonas div. and diatoms in the trap environment, show ability to hydrolyze phosphomonoseters. We suggest that algae in carnivorous plant traps can compete with plant (host for organic phosphate (phosphomonoseters. From the spectrum and ecological requirements of algal species found in the traps, environment inside the traps seems to be acidic. However, further studies are needed to test the relations between algae and carnivorous plants both in laboratory conditions and in the natural environment. All the reported taxa are described briefly and documented with 74 LM and SEM micrographs.

  11. Nonperturbative effects on Tc of interacting Bose gases in power-law traps

    International Nuclear Information System (INIS)

    Zobay, O.; Metikas, G.; Kleinert, H.

    2005-01-01

    The critical temperature T c of an interacting Bose gas trapped in a general power-law potential V(x)=Σ i U i vertical bar x i vertical bar p i is calculated with the help of variational perturbation theory. It is shown that the interaction-induced shift in T c fulfills the relation (T c -T c 0 )/T c 0 =D 1 (η)a+D ' (η)a 2η +O(a 2 ) with T c 0 the critical temperature of the trapped ideal gas, a the s-wave scattering length divided by the thermal wavelength at T c , and η=1/2+Σ i p i -1 the potential-shape parameter. The terms D 1 (η)a and D ' (η)a 2η describe the leading-order perturbative and nonperturbative contributions to the critical temperature, respectively. This result quantitatively shows how an increasingly inhomogeneous potential suppresses the influence of critical fluctuations. The appearance of the a 2η contribution is qualitatively explained in terms of the Ginzburg criterion

  12. Electron scattering studies by means of various nuclear models

    International Nuclear Information System (INIS)

    Essaniyazov, Sh.; Juraev, Sh.; Ismatov, E.I.

    2006-01-01

    Full text: Let us consider a general case of various interaction processes of electrons with nuclei. The study of the scattering o electrons of nuclei is the source of information on the structure of nuclei. At collision of fast electrons with nuclei, both elastic and inelastic scattering can be observed. Elastic scattering gives information on the sizes of nuclei, whereas the electrons inelastic scattering processes give important information on the dynamical properties of nuclei. In the first case, the characteristics of excited states, energy levels, their widths and others, and in the second case, momentum distribution of nucleons and other particles in nuclei are studied. Let us denote the momentum and the energy of the incident electron before and after the scattering as k and ε, and k' and ε', respectively. The angle between the vectors k and k' is denoted as θ. The scattering process is characterized by three parameters: k, k' and θ. However, it is convenient to introduce three other parameters instead of the indicated above. They are: energy ω ε - ε' and momentum q = k - k', transferred by electron at scattering, and the scattering angle θ. It is worth of mentioning the two reasons why the study of electron scattering is very effective tool to study the nuclear structure. First of all, the character of electron interaction with nucleus is a well-known electromagnetic interaction of electron with current and charge in nucleus. Secondly, this interaction is relatively weak (e 2 /ℎc) 2 = ω 2 is possible (since the photon mass is zero). In case of electrons, at fixed energy transfer ω various momentum transfer are possible. Therefore, at electron scattering study one can establish the dependence of the matrix elements of q, which are the Fourier-representations of the charge and current densities. Thus, it is possible to determine directly the spatial distribution of charge and current in nucleus. The inelastic scattering is accompanied by

  13. Diffraction scattering and the parton model in QCD

    International Nuclear Information System (INIS)

    White, A.

    1985-01-01

    Arguments are presented that the validity of the parton model for hadron scattering in QCD is directly related to the occurrence of the Critical Pomeron description of diffraction scattering. An attractive route suggested for Electroweak and Grand Unification is also briefly described

  14. Microfabricated linear Paul-Straubel ion trap

    Science.gov (United States)

    Mangan, Michael A [Albuquerque, NM; Blain, Matthew G [Albuquerque, NM; Tigges, Chris P [Albuquerque, NM; Linker, Kevin L [Albuquerque, NM

    2011-04-19

    An array of microfabricated linear Paul-Straubel ion traps can be used for mass spectrometric applications. Each ion trap comprises two parallel inner RF electrodes and two parallel outer DC control electrodes symmetric about a central trap axis and suspended over an opening in a substrate. Neighboring ion traps in the array can share a common outer DC control electrode. The ions confined transversely by an RF quadrupole electric field potential well on the ion trap axis. The array can trap a wide array of ions.

  15. Assessing the measurement of aerosol single scattering albedo by Cavity Attenuated Phase-Shift Single Scattering Monitor (CAPS PMssa)

    Science.gov (United States)

    Perim de Faria, Julia; Bundke, Ulrich; Onasch, Timothy B.; Freedman, Andrew; Petzold, Andreas

    2016-04-01

    The necessity to quantify the direct impact of aerosol particles on climate forcing is already well known; assessing this impact requires continuous and systematic measurements of the aerosol optical properties. Two of the main parameters that need to be accurately measured are the aerosol optical depth and single scattering albedo (SSA, defined as the ratio of particulate scattering to extinction). The measurement of single scattering albedo commonly involves the measurement of two optical parameters, the scattering and the absorption coefficients. Although there are well established technologies to measure both of these parameters, the use of two separate instruments with different principles and uncertainties represents potential sources of significant errors and biases. Based on the recently developed cavity attenuated phase shift particle extinction monitor (CAPS PM_{ex) instrument, the CAPS PM_{ssa instrument combines the CAPS technology to measure particle extinction with an integrating sphere capable of simultaneously measuring the scattering coefficient of the same sample. The scattering channel is calibrated to the extinction channel, such that the accuracy of the single scattering albedo measurement is only a function of the accuracy of the extinction measurement and the nephelometer truncation losses. This gives the instrument an accurate and direct measurement of the single scattering albedo. In this study, we assess the measurements of both the extinction and scattering channels of the CAPS PM_{ssa through intercomparisons with Mie theory, as a fundamental comparison, and with proven technologies, such as integrating nephelometers and filter-based absorption monitors. For comparison, we use two nephelometers, a TSI 3563 and an Aurora 4000, and two measurements of the absorption coefficient, using a Particulate Soot Absorption Photometer (PSAP) and a Multi Angle Absorption Photometer (MAAP). We also assess the indirect absorption coefficient

  16. Direct time integration of Maxwell's equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses

    Science.gov (United States)

    Joseph, Rose M.; Hagness, Susan C.; Taflove, Allen

    1991-01-01

    The initial results for femtosecond pulse propagation and scattering interactions for a Lorentz medium obtained by a direct time integration of Maxwell's equations are reported. The computational approach provides reflection coefficients accurate to better than 6 parts in 10,000 over the frequency range of dc to 3 x 10 to the 16th Hz for a single 0.2-fs Gaussian pulse incident upon a Lorentz-medium half-space. New results for Sommerfeld and Brillouin precursors are shown and compared with previous analyses. The present approach is robust and permits 2D and 3D electromagnetic pulse propagation directly from the full-vector Maxwell's equations.

  17. Formal analogy between Compton scattering and Doppler effect

    DEFF Research Database (Denmark)

    Nielsen, A.; Olsen, Jørgen Seir

    1966-01-01

    Viewed from the scatterer, the energy of the incoming photon or particle is equal to that of the outgoing, and the angle of incidence is equal to the angle of reflection, when the direction of the velocity of the scatterer after the collision is taken as reference. This paper sets out to prove...... this statement in a more simple and direct way. The authors only consider the Compton scatting process as it is quite analogous to the particle case....

  18. PREFACE: Atom-surface scattering Atom-surface scattering

    Science.gov (United States)

    Miret-Artés, Salvador

    2010-08-01

    ; all of them were ready for use! We cannot imagine him without his two old-fashioned Mercedes, also in his collection. He also has technical skills in construction and music and always has time for jogging. I would finally say that he is an even-tempered person. In brief, mens sana in corpore sano 1 . Dick is a theorist bound to experimental work, extremely intuitive and very dedicated. In his long stays outside Clemson, he always visited places where experiments were being carried out. He has been, and still is, of great help to experimental PhD students, postdocs or senior scientists in providing valuable advice and suggestions towards new measurements. Plausible interpretations of their results developing theoretical models or always searching for good agreement with experiment are two constants in his daily scientific work. Experimental work is present in most of his 150 papers. One of the main theoretical challenges in this field was to develop a formalism where the plethora of experimental results reported in the literature were accommodated. His transition matrix formalism was also seminal in the field of atom-surface scattering. Elastic and inelastic (single and double phonon) contributions were determined as well as the multiphonon background. This work was preceded by a theory for diffuse inelastic scattering and a posterior contribution for multiphonon scattering, both with V Celli. In a similar vein, a theory of molecule-surface scattering was also derived and, more recently, a theory for direct scattering, trapping and desorption. Very interesting extensions to scattering with molten metal and liquid surfaces have also been carried out. Along with collaborators he has studied energy accommodation and sticking coefficients, providing a better understanding of their meaning. G Armand and Dick proposed the well-known corrugated Morse potential as an interaction potential model providing reliable results of diffraction patterns and selective adsorption

  19. Two-baffle trap for macroparticles

    International Nuclear Information System (INIS)

    Aksyonov, D.S.

    2014-01-01

    In this work, properties of two-baffle macroparticle traps were investigated. These properties are needed for designing and optimization of vacuum arc plasma filters. The dependencies between trap geometry parameters and its ability to absorb macroparticles were found. Calculations made allow one to predict the behaviour of filtering abilities of separators containing such traps in their design. Recommendations regarding the use of two-baffle traps in filters of different builds are given

  20. Ion Trap Quantum Computing

    Science.gov (United States)

    2011-12-01

    variations of ion traps, including (1) the cylindrically symmetric 3D ring trap; (2) the linear trap with a combination of cavity QED; (#) the symmetric...concepts of quantum information. The major demonstration has been the test of a Bell inequality as demonstrated by Rowe et al. [50] and a decoherence...famous physics experiment [62]. Wolfgang Paul demonstrated a similar apparatus during his Nobel Prize speech [63]. This device is hyperbolic- parabolic

  1. Interstellar scattering and resolution limitations

    International Nuclear Information System (INIS)

    Dennison, B.

    1987-01-01

    Density irregularities in both the interplanetary medium and the ionized component of the interstellar medium scatter radio waves, resulting in limitations on the achievable resolution. Interplanetary scattering (IPS) is weak for most observational situations, and in principle the resulting phase corruption can be corrected for when observing with sufficiently many array elements. Interstellar scattering (ISS), on the other hand, is usually strong at frequencies below about 8 GHz, in which case intrinsic structure information over a range of angular scales is irretrievably lost. With the earth-space baselines now planned, it will be possible to search directly for interstellar refraction, which is suspected of modulating the fluxes of background sources. 14 references

  2. Characteristics of trapped proton anisotropy at Space Station Freedom altitudes

    Science.gov (United States)

    Armstrong, T. W.; Colborn, B. L.; Watts, J. W.

    1990-01-01

    The ionizing radiation dose for spacecraft in low-Earth orbit (LEO) is produced mainly by protons trapped in the Earth's magnetic field. Current data bases describing this trapped radiation environment assume the protons to have an isotropic angular distribution, although the fluxes are actually highly anisotropic in LEO. The general nature of this directionality is understood theoretically and has been observed by several satellites. The anisotropy of the trapped proton exposure has not been an important practical consideration for most previous LEO missions because the random spacecraft orientation during passage through the radiation belt 'averages out' the anisotropy. Thus, in spite of the actual exposure anisotropy, cumulative radiation effects over many orbits can be predicted as if the environment were isotropic when the spacecraft orientation is variable during exposure. However, Space Station Freedom will be gravity gradient stabilized to reduce drag, and, due to this fixed orientation, the cumulative incident proton flux will remain anisotropic. The anisotropy could potentially influence several aspects of Space Station design and operation, such as the appropriate location for radiation sensitive components and experiments, location of workstations and sleeping quarters, and the design and placement of radiation monitors. Also, on-board mass could possible be utilized to counteract the anisotropy effects and reduce the dose exposure. Until recently only omnidirectional data bases for the trapped proton environment were available. However, a method to predict orbit-average, angular dependent ('vector') trapped proton flux spectra has been developed from the standard omnidirectional trapped proton data bases. This method was used to characterize the trapped proton anisotropy for the Space Station orbit (28.5 degree inclination, circular) in terms of its dependence on altitude, solar cycle modulation (solar minimum vs. solar maximum), shielding thickness

  3. Microwave imaging for conducting scatterers by hybrid particle swarm optimization with simulated annealing

    International Nuclear Information System (INIS)

    Mhamdi, B.; Grayaa, K.; Aguili, T.

    2011-01-01

    In this paper, a microwave imaging technique for reconstructing the shape of two-dimensional perfectly conducting scatterers by means of a stochastic optimization approach is investigated. Based on the boundary condition and the measured scattered field derived by transverse magnetic illuminations, a set of nonlinear integral equations is obtained and the imaging problem is reformulated in to an optimization problem. A hybrid approximation algorithm, called PSO-SA, is developed in this work to solve the scattering inverse problem. In the hybrid algorithm, particle swarm optimization (PSO) combines global search and local search for finding the optimal results assignment with reasonable time and simulated annealing (SA) uses certain probability to avoid being trapped in a local optimum. The hybrid approach elegantly combines the exploration ability of PSO with the exploitation ability of SA. Reconstruction results are compared with exact shapes of some conducting cylinders; and good agreements with the original shapes are observed.

  4. Charged mediators in dark matter scattering

    Science.gov (United States)

    Stengel, Patrick

    2017-11-01

    We consider a scenario, within the framework of the MSSM, in which dark matter is bino-like and dark matter-nucleon spin-independent scattering occurs via the exchange of light squarks which exhibit left-right mixing. We show that direct detection experiments such as LUX and SuperCDMS will be sensitive to a wide class of such models through spin-independent scattering. The dominant nuclear physics uncertainty is the quark content of the nucleon, particularly the strangeness content. We also investigate parameter space with nearly degenerate neutralino and squark masses, thus enhancing dark matter annihilation and nucleon scattering event rates.

  5. Scattering Correction For Image Reconstruction In Flash Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Liangzhi; Wang, Mengqi; Wu, Hongchun; Liu, Zhouyu; Cheng, Yuxiong; Zhang, Hongbo [Xi' an Jiaotong Univ., Xi' an (China)

    2013-08-15

    Scattered photons cause blurring and distortions in flash radiography, reducing the accuracy of image reconstruction significantly. The effect of the scattered photons is taken into account and an iterative deduction of the scattered photons is proposed to amend the scattering effect for image restoration. In order to deduct the scattering contribution, the flux of scattered photons is estimated as the sum of two components. The single scattered component is calculated accurately together with the uncollided flux along the characteristic ray, while the multiple scattered component is evaluated using correction coefficients pre-obtained from Monte Carlo simulations.The arbitrary geometry pretreatment and ray tracing are carried out based on the customization of AutoCAD. With the above model, an Iterative Procedure for image restORation code, IPOR, is developed. Numerical results demonstrate that the IPOR code is much more accurate than the direct reconstruction solution without scattering correction and it has a very high computational efficiency.

  6. Scattering Correction For Image Reconstruction In Flash Radiography

    International Nuclear Information System (INIS)

    Cao, Liangzhi; Wang, Mengqi; Wu, Hongchun; Liu, Zhouyu; Cheng, Yuxiong; Zhang, Hongbo

    2013-01-01

    Scattered photons cause blurring and distortions in flash radiography, reducing the accuracy of image reconstruction significantly. The effect of the scattered photons is taken into account and an iterative deduction of the scattered photons is proposed to amend the scattering effect for image restoration. In order to deduct the scattering contribution, the flux of scattered photons is estimated as the sum of two components. The single scattered component is calculated accurately together with the uncollided flux along the characteristic ray, while the multiple scattered component is evaluated using correction coefficients pre-obtained from Monte Carlo simulations.The arbitrary geometry pretreatment and ray tracing are carried out based on the customization of AutoCAD. With the above model, an Iterative Procedure for image restORation code, IPOR, is developed. Numerical results demonstrate that the IPOR code is much more accurate than the direct reconstruction solution without scattering correction and it has a very high computational efficiency

  7. Time-domain Brillouin scattering assisted by diffraction gratings

    Science.gov (United States)

    Matsuda, Osamu; Pezeril, Thomas; Chaban, Ievgeniia; Fujita, Kentaro; Gusev, Vitalyi

    2018-02-01

    Absorption of ultrashort laser pulses in a metallic grating deposited on a transparent sample launches coherent compression/dilatation acoustic pulses in directions of different orders of acoustic diffraction. Their propagation is detected by delayed laser pulses, which are also diffracted by the metallic grating, through the measurement of the transient intensity change of the first-order diffracted light. The obtained data contain multiple frequency components, which are interpreted by considering all possible angles for the Brillouin scattering of light achieved through multiplexing of the propagation directions of light and coherent sound by the metallic grating. The emitted acoustic field can be equivalently presented as a superposition of plane inhomogeneous acoustic waves, which constitute an acoustic diffraction grating for the probe light. Thus the obtained results can also be interpreted as a consequence of probe light diffraction by both metallic and acoustic gratings. The realized scheme of time-domain Brillouin scattering with metallic gratings operating in reflection mode provides access to wide range of acoustic frequencies from minimal to maximal possible values in a single experimental optical configuration for the directions of probe light incidence and scattered light detection. This is achieved by monitoring the backward and forward Brillouin scattering processes in parallel. Potential applications include measurements of the acoustic dispersion, simultaneous determination of sound velocity and optical refractive index, and evaluation of samples with a single direction of possible optical access.

  8. Resonances of coherent population trapping in samarium vapours

    International Nuclear Information System (INIS)

    Kolachevsky, Nikolai N; Akimov, A V; Kiselev, N A; Papchenko, A A; Sorokin, Vadim N; Kanorskii, S I

    2001-01-01

    Resonances of coherent population trapping were detected in atomic vapours of the rare-earth element samarium. The coherent population trapping was produced by two external-cavity diode lasers (672 and 686 nm) in a Λ-system formed by the three levels of 154 Sm: the 4f 6 6s 2 ( 7 F 0 ) ground state, the first fine-structure 4f 6 6s 2 ( 7 F 1 ) sublevel of the ground state and the 4f 6 ( 7 F)6s6p( 3 P o ) 9 F o 1 upper level. The dependence of the spectral shapes and resonance contrasts on the polarisation of the laser beams and the direction of the applied magnetic field was studied. The obtained results were analysed. (nonlinear optical phenomena)

  9. Practical model for the calculation of multiply scattered lidar returns

    International Nuclear Information System (INIS)

    Eloranta, E.W.

    1998-01-01

    An equation to predict the intensity of the multiply scattered lidar return is presented. Both the scattering cross section and the scattering phase function can be specified as a function of range. This equation applies when the cloud particles are larger than the lidar wavelength. This approximation considers photon trajectories with multiple small-angle forward-scattering events and one large-angle scattering that directs the photon back toward the receiver. Comparisons with Monte Carlo simulations, exact double-scatter calculations, and lidar data demonstrate that this model provides accurate results. copyright 1998 Optical Society of America

  10. Transient electromagnetic scattering on anisotropic media

    International Nuclear Information System (INIS)

    Stewart, R.D.

    1990-01-01

    This dissertation treats the problem of transient scattering of obliquely incident electromagnetic plane waves on a stratified anisotropic dielectric slab. Scattering operators are derived for the reflective response of the medium. The internal fields are calculated. Wave splitting and invariant imbedding techniques are used. These techniques are first presented for fields normally incident on a stratified, isotropic dielectric medium. The techniques of wave splitting and invariant imbedding are applied to normally incident plane waves on an anisotropic medium. An integro-differential equation is derived for the reflective response and the direct and inverse scattering problems are discussed. These techniques are applied to the case of obliquely incident plane waves. The reflective response is derived and the direct and inverse problems discussed and compared to those for the normal incidence case. The internal fields are investigated for the oblique incidence via a Green's function approach. A numerical scheme is presented to calculate the Green's function. Finally, symmetry relations of the reflective response are discussed

  11. Versatile electrostatic trap

    NARCIS (Netherlands)

    van Veldhoven, J.; Bethlem, H.L.; Schnell, M.; Meijer, G.

    2006-01-01

    A four electrode electrostatic trap geometry is demonstrated that can be used to combine a dipole, quadrupole, and hexapole field. A cold packet of ND315 molecules is confined in both a purely quadrupolar and hexapolar trapping field and additionally, a dipole field is added to a hexapole field to

  12. Experimental demonstration and visual observation of dust trapping in an electron storage ring

    Directory of Open Access Journals (Sweden)

    Yasunori Tanimoto

    2009-11-01

    Full Text Available Sudden decreases in the beam lifetime, which are attributed to the dust trappings, sometimes occur at the electron storage ring Photon Factory Advanced Ring (PF-AR. Since these dust events cause difficulties in user operations, we have been carefully observing this phenomenon for many years. Our observations indicated that the dust trappings could be caused by electric discharges in vacuum ducts. In order to demonstrate this hypothesis experimentally, we designed a new vacuum device that intentionally generates electric discharges and installed it in PF-AR. Using this device, we could repeatedly induce sudden decreases in the beam lifetime because of the generated electric discharge. We also detected decreases in the beam lifetime caused by mechanical movement of the electrodes in the device. Moreover, we could visually observe the dust trapping phenomenon; the trapped dust particle was observed by two video cameras and appeared as a luminous body that resembled a shooting star. This was the first direct observation of a luminous dust particle trapped by the electron beam.

  13. State-to-state inelastic and reactive molecular beam scattering from surfaces

    International Nuclear Information System (INIS)

    Lykke, K.R.; Kay, B.D.

    1990-01-01

    Resonantly enhanced multiphoton ionization (REMPI) laser spectroscopic and molecular beam-surface scattering techniques are coupled to study inelastic and reactive gas-surface scattering with state-to-state specificity. Rotational, vibrational, translational and angular distributions have been measured for the inelastic scattering of HCI and N 2 from Au(111). In both cases the scattering is direct-inelastic in nature and exhibits interesting dynamical features such as rotational rainbow scattering. In an effort to elucidate the dynamics of chemical reactions occurring on surfaces we have extended our quantum-resolved scattering studies to include the reactive scattering of a beam of gas phase H-atoms from a chlorinated metal surface M-CI. The nascent rotational and vibrational distributions of the HCI product are determined using REMPI. The thermochemistry for this reaction on Au indicates that the product formation proceeding through chemisorbed H-atoms is slightly endothermic while direct reaction of a has phase H-atom with M-CI is highly exothermic (ca. 50 kcal/mole). Details of the experimental techniques, results and implications regarding the scattering dynamics are discussed. 55 ref., 8 fig

  14. Estimating tiger abundance from camera trap data: Field surveys and analytical issues

    Science.gov (United States)

    Karanth, K. Ullas; Nichols, James D.; O'Connell, Allan F.; Nichols, James D.; Karanth, K. Ullas

    2011-01-01

    Automated photography of tigers Panthera tigris for purely illustrative purposes was pioneered by British forester Fred Champion (1927, 1933) in India in the early part of the Twentieth Century. However, it was McDougal (1977) in Nepal who first used camera traps, equipped with single-lens reflex cameras activated by pressure pads, to identify individual tigers and study their social and predatory behaviors. These attempts involved a small number of expensive, cumbersome camera traps, and were not, in any formal sense, directed at “sampling” tiger populations.

  15. Trapped-particle instabilities in quasi-isodynamic stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Proll, Josefine Henriette Elise

    2014-01-28

    approximately in quasi-isodynamic stellarators, for example Wendelstein 7-X. In such configurations the precessional drift of the trapped particles is in the opposite direction from the direction of propagation of drift waves. Instabilities that are driven by the trapped particles usually rely on a resonance between these two frequencies. Here it is shown analytically by analysing the electrostatic energy transfer between the particles and the instability that, thanks to the absence of the resonance, a particle species draws energy from the mode if the frequency of the mode is well below the characteristic bounce frequency. Due to the low electron mass and the fast bounce motion, electrons are almost always found to be stabilising. Most of the trapped-particle instabilities are therefore predicted to be absent in maximum- J configurations in large parts of parameter space. Analytical theory thus predicts enhanced linear stability of trapped-particle modes in quasi-isodynamic stellarators compared with tokamaks. Moreover, since the electrons are expected to be stabilising, or at least less destabilising, for all instabilities whose frequency lies below the trapped-electron bounce frequency, other modes might benefit from the enhanced stability as well. In reality, however, stellarators are never perfectly quasi-isodynamic, and the question thus arises whether they still benefit from enhanced stability. Here the stability properties of Wendelstein 7-X and a more quasi-isodynamic configuration, QIPC, are investigated numerically and compared with another, non-quasiisodynamic stellarator, the National Compact Stellarator Experiment (NCSX) and a typical tokamak. In gyrokinetic simulations, performed with the gyrokinetic code GENE in the electrostatic and collisionless approximation, several microinstabilities, driven by the density as well as both ion and electron temperature gradients, are studied. Wendelstein 7-X and QIPC exhibit significantly reduced growth rates for all

  16. Trapped-particle instabilities in quasi-isodynamic stellarators

    International Nuclear Information System (INIS)

    Proll, Josefine Henriette Elise

    2014-01-01

    approximately in quasi-isodynamic stellarators, for example Wendelstein 7-X. In such configurations the precessional drift of the trapped particles is in the opposite direction from the direction of propagation of drift waves. Instabilities that are driven by the trapped particles usually rely on a resonance between these two frequencies. Here it is shown analytically by analysing the electrostatic energy transfer between the particles and the instability that, thanks to the absence of the resonance, a particle species draws energy from the mode if the frequency of the mode is well below the characteristic bounce frequency. Due to the low electron mass and the fast bounce motion, electrons are almost always found to be stabilising. Most of the trapped-particle instabilities are therefore predicted to be absent in maximum- J configurations in large parts of parameter space. Analytical theory thus predicts enhanced linear stability of trapped-particle modes in quasi-isodynamic stellarators compared with tokamaks. Moreover, since the electrons are expected to be stabilising, or at least less destabilising, for all instabilities whose frequency lies below the trapped-electron bounce frequency, other modes might benefit from the enhanced stability as well. In reality, however, stellarators are never perfectly quasi-isodynamic, and the question thus arises whether they still benefit from enhanced stability. Here the stability properties of Wendelstein 7-X and a more quasi-isodynamic configuration, QIPC, are investigated numerically and compared with another, non-quasiisodynamic stellarator, the National Compact Stellarator Experiment (NCSX) and a typical tokamak. In gyrokinetic simulations, performed with the gyrokinetic code GENE in the electrostatic and collisionless approximation, several microinstabilities, driven by the density as well as both ion and electron temperature gradients, are studied. Wendelstein 7-X and QIPC exhibit significantly reduced growth rates for all

  17. Electron--molecule scattering in momentum space

    International Nuclear Information System (INIS)

    Ritchie, B.

    1979-01-01

    We examine the Fourier transform of the Schroedinger equation for electron--molecule scattering, treated as potential scattering from a multicenter distribution of charged fixed in space. When the angle theta between R,the internuclear vector of a diatomic target, and q, the momentum transfer, is held fixed during the collision, then the directions of incidence and scattering are fixed relative to R. The process is then described as having a dynamical dependence on the magnitude of q, q, from which the scattering angle is determined, and a parametric dependence on q's direction relative to R. This approximation is used routinely at high energies in the calculation of the Born amplitude. Fixed--nuclei coordinate--space studies suggest that this approximation can be extended to low energies, provided the amplitude is taken from the solution of the integral equation of momentum space rather than from its inhomogeneity, proportional to the Born amplitude. We constrain R to be in the same direction relative to q', a virtual momentum transfer belonging to the kernel, as it is to q.Calculations are performed for the e, H 2 scattering in the static approximation, and cross sections averaged over theta/sub R/ are shown to be in good agreement with cross sections calculated by use of coupled spherical and coupled spheroidal partial wave theories. The angular distribution in the static approximation is also calculated at an incident energy close to 7 eV, where exchange is relatively unimportant. This result is in reasonably good agreement with that of R matrix theory in the static--exchange approximation. The extension of the theory to treat exchange is formulated and discussed. Also its extension to treat more complicated molecular targets is discussed

  18. First observation of spin flips with a single proton stored in a cryogenic Penning trap

    International Nuclear Information System (INIS)

    Ulmer, Stefan

    2011-01-01

    In this thesis the very first observation of spin transitions of a single proton stored in a cryogenic double-Penning trap is presented. The experimental observation of spin transitions is based on the continuous Stern-Gerlach effect, which couples the spin of the single trapped proton to its axial eigenfrequency, by means of an inhomogeneous magnetic field. A spin transition causes a change of the axial frequency, which can be measured non-destructively. Due to the tiny magnetic moment of the proton, the direct detection of proton spin-flips is an exceeding challenge. To achieve spin-flip resolution, the proton was stored in the largest magnetic field inhomogeneity, which has ever been superimposed to a Penning trap, and its axial frequency was detected non-destructively. Therefore, superconducting detection systems with ultrahigh-sensitivity were developed, allowing the direct observation of the single trapped proton, as well as the high-precision determination of its eigenfrequencies. Based on novel experimental methods, which were developed in the framework of this thesis, the axial frequency of the particle was stabilized to a level, where the observation of single-proton spin-flips is possible, which was demonstrated. This experimental success is one of the most important steps towards the high-precision determination of the magnetic moment of the free proton. With the very first observation of spin transitions with a single trapped proton, a highly exciting perspective opens. All experimental techniques which were developed in this thesis can be directly applied to the antiproton. Thus, the first high-precision measurement of the magnetic moment of the antiproton becomes possible. This will provide a new high-precision test of the matterantimatter symmetry. (orig.)

  19. A circularly polarized optical dipole trap and other developments in laser trapping of atoms

    Science.gov (United States)

    Corwin, Kristan Lee

    Several innovations in laser trapping and cooling of alkali atoms are described. These topics share a common motivation to develop techniques for efficiently manipulating cold atoms. Such advances facilitate sensitive precision measurements such as parity non- conservation and 8-decay asymmetry in large trapped samples, even when only small quantities of the desired species are available. First, a cold, bright beam of Rb atoms is extracted from a magneto-optical trap (MOT) using a very simple technique. This beam has a flux of 5 × 109 atoms/s and a velocity of 14 m/s, and up to 70% of the atoms in the MOT were transferred to the atomic beam. Next, a highly efficient MOT for radioactive atoms is described, in which more than 50% of 221Fr atoms contained in a vapor cell are loaded into a MOT. Measurements were also made of the 221Fr 7 2P1/2 and 7 2P3/2 energies and hyperfine constants. To perform these experiments, two schemes for stabilizing the frequency of the light from a diode laser were developed and are described in detail. Finally, a new type of trap is described and a powerful cooling technique is demonstrated. The circularly polarized optical dipole trap provides large samples of highly spin-polarized atoms, suitable for many applications. Physical processes that govern the transfer of large numbers of atoms into the trap are described, and spin-polarization is measured to be 98(1)%. In addition, the trap breaks the degeneracy of the atomic spin states much like a magnetic trap does. This allows for RF and microwave cooling via both forced evaporation and a Sisyphus mechanism. Preliminary application of these techniques to the atoms in the circularly polarized dipole trap has successfully decreased the temperature by a factor of 4 while simultaneously increasing phase space density.

  20. Quantum theory of scattering of channeled electrons and positrons in a crystal

    International Nuclear Information System (INIS)

    Bazylev, V.A.; Goloviznin, V.V.

    1982-01-01

    The quantum theory of elastic scattering of electrons and positrons on plane or axial channeling in a thin crystal is developed. The role of coherent (without phonon excitation) and incoherent scattering by atoms of the plane (chain) is investigated. It is shown that incoherent scattering which leads to dechanneling cannot be reduced to scattering by an isolated atom. Allowance for ordered arrangement of the atoms in the plane (chain) of the crystal leads to suppression of the motion levels. It is also shown that on movement of a particle along the plane in directions strongly differing from those of the principal axes, the scattering is incoherent and is determined by thermal vibrations of the nuclei. As the direction of the particle momentum approaches those of the principal axes, the role of coherent scattering without recoil by the crystal lattice nuclei increases and may become dicisive. The probability of large- angle scattering increases relatively in this case. Under certain conditions coherent scattering may become resonant [ru

  1. Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids

    International Nuclear Information System (INIS)

    Mendes, Manuel J.; Mateus, Tiago; Lyubchyk, Andriy; Águas, Hugo; Ferreira, Isabel; Fortunato, Elvira; Martins, Rodrigo; Morawiec, Seweryn; Priolo, Francesco; Crupi, Isodiana

    2015-01-01

    The intense light scattered from metal nanoparticles sustaining surface plasmons makes them attractive for light trapping in photovoltaic applications. However, a strong resonant response from nanoparticle ensembles can only be obtained if the particles have monodisperse physical properties. Presently, the chemical synthesis of colloidal nanoparticles is the method that produces the highest monodispersion in geometry and material quality, with the added benefits of being low-temperature, low-cost, easily scalable and of allowing control of the surface coverage of the deposited particles. In this paper, novel plasmonic back-reflector structures were developed using spherical gold colloids with appropriate dimensions for pronounced far-field scattering. The plasmonic back reflectors are incorporated in the rear contact of thin film n-i-p nanocrystalline silicon solar cells to boost their photocurrent generation via optical path length enhancement inside the silicon layer. The quantum efficiency spectra of the devices revealed a remarkable broadband enhancement, resulting from both light scattering from the metal nanoparticles and improved light incoupling caused by the hemispherical corrugations at the cells’ front surface formed from the deposition of material over the spherically shaped colloids. (paper)

  2. Efficacy of multifunnel traps for capturing emerald ash borer (Coleoptera: Buprestidae): effect of color, glue, and other trap coatings.

    Science.gov (United States)

    Francese, Joseph A; Fraser, Ivich; Lance, David R; Mastro, Victor C

    2011-06-01

    Tens of thousands of adhesive-coated purple prism traps are deployed annually in the United States to survey for the invasive emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). A reusable, more user-friendly trap is desired by program managers, surveyors, and researchers. Field assays were conducted in southeastern Michigan to ascertain the feasibility of using nonsticky traps as survey and detection tools for emerald ash borer. Three nonsticky trap designs, including multifunnel (Lindgren), modified intercept panel, and drainpipe (all painted purple) were compared with the standard purple prism trap; no statistical differences in capture of emerald ash borer adults were detected between the multifunnel design and the prism. In subsequent color comparison assays, both green- and purple-painted multifunnel traps (and later, plastic versions of these colors) performed as well or better than the prism traps. Multifunnel traps coated with spray-on adhesive caught more beetles than untreated traps. The increased catch, however, occurred in the traps' collection cups and not on the trap surface. In a separate assay, there was no significant difference detected between glue-coated traps and Rain-X (normally a glass treatment)-coated traps, but both caught significantly more A. planipennis adults than untreated traps.

  3. Undergraduate Labs for Biological Physics: Brownian Motion and Optical Trapping

    Science.gov (United States)

    Chu, Kelvin; Laughney, A.; Williams, J.

    2006-12-01

    We describe a set of case-study driven labs for an upper-division biological physics course. These labs are motivated by case-studies and consist of inquiry-driven investigations of Brownian motion and optical-trapping experiments. Each lab incorporates two innovative educational techniques to drive the process and application aspects of scientific learning. Case studies are used to encourage students to think independently and apply the scientific method to a novel lab situation. Student input from this case study is then used to decide how to best do the measurement, guide the project and ultimately evaluate the success of the program. Where appropriate, visualization and simulation using VPython is used. Direct visualization of Brownian motion allows students to directly calculate Avogadro's number or the Boltzmann constant. Following case-study driven discussion, students use video microscopy to measure the motion of latex spheres in different viscosity fluids arrive at a good approximation of NA or kB. Optical trapping (laser tweezer) experiments allow students to investigate the consequences of 100-pN forces on small particles. The case study consists of a discussion of the Boltzmann distribution and equipartition theorem followed by a consideration of the shape of the potential. Students can then use video capture to measure the distribution of bead positions to determine the shape and depth of the trap. This work supported by NSF DUE-0536773.

  4. Resistive cooling circuits for charged particle traps using crystal resonators

    CERN Document Server

    Kaltenbacher, T; Doser, M; Kellerbauer, A; Pribyl, W

    2011-01-01

    The paper addresses a novel method to couple a signal from charged particles in a Penning trap to a high Q resonant circuit using a crystal resonator. Traditionally the trap capacity is converted into a resonator by means of an inductance. When normal conducting wires (e.g. copper) are applied to build up a coil, the unloaded Q value is limited to a value in the order of 1000. The tuned circuit’s Q factor is directly linked to the input impedance “seen” by the trapped particles at resonance frequency. This parallel resonance impedance is a measure of the efficiency of resistive cooling and thus it should be optimized. We propose here a commercially available crystal resonator since it exhibits a very high Q value and a parallel resonance impedance of several MOhm. The possibility to tune the parallel resonance frequency of the quartz results in filter behavior that allows covering a broad range of frequencies.

  5. Dynamic light scattering. Observation of polymer dynamics

    International Nuclear Information System (INIS)

    Hiroi, Takashi

    2015-01-01

    Dynamic light scattering is a technique to measure properties of polymer solutions such as size distribution. Principle of dynamic light scattering is briefly explained. Sometime dynamic light scattering is regarded as the observation of Doppler shift of scattered light. First, the difficulty for the direct observation of this Doppler shift is mentioned. Then the measurement by using a time correlation function is introduced. Measuring techniques for dynamic light scattering are also introduced. In addition to homodyne and heterodyne detection techniques, the technique called partial heterodyne method is also introduced. This technique is useful for the analysis of nonergodic medium such as polymer gels. Then the application of this technique to condensed suspension is briefly reviewed. As one of the examples, a dynamic light scattering microscope is introduced. By using this apparatus, we can measure the concentration dependence of the size distribution of polymer solutions. (author)

  6. Near-field acoustic microbead trapping as remote anchor for single particle manipulation

    Science.gov (United States)

    Hwang, Jae Youn; Cheon, Dong Young; Shin, Hyunjune; Kim, Hyun Bin; Lee, Jungwoo

    2015-05-01

    We recently proposed an analytical model of a two-dimensional acoustic trapping of polystyrene beads in the ray acoustics regime, where a bead diameter is larger than the wavelength used. As its experimental validation, this paper demonstrates the transverse (or lateral) trapping of individual polystyrene beads in the near field of focused ultrasound. A 100 μm bead is immobilized on the central beam axis by a focused sound beam from a 30 MHz single element lithium niobate transducer, after being laterally displaced through hundreds of micrometers. Maximum displacement, a longest lateral distance at which a trapped bead can be directed towards the central axis, is thus measured over a discrete frequency range from 24 MHz to 36 MHz. The displacement data are found to be between 323.7 μm and 470.2 μm, depending on the transducer's driving frequency and input voltage amplitude. The experimental results are compared with their corresponding model values, and their relative errors lie between 0.9% and 3.9%. The results suggest that this remote maneuvering technique may be employed to manipulate individual cells through solid microbeads, provoking certain cellular reactions to localized mechanical disturbance without direct contact.

  7. Measurement of Feynman-x spectra of photons and neutrons in the very forward direction in deep-inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Andreev, V.; Baghdasaryan, A.; Begzsuren, K.

    2014-03-01

    Measurements of normalised cross sections for the production of photons and neutrons at very small angles with respect to the proton beam direction in deep-inelastic ep scattering at HERA are presented as a function of the Feynman variable x F and of the centre-of-mass energy of the virtual photon-proton system W. The data are taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of 131 pb -1 . The measurement is restricted to photons and neutrons in the pseudorapidity range η > 7.9 and covers the range of negative four momentum transfer squared at the positron vertex 6 2 2 , of inelasticity 0.05 F dependent cross sections is investigated. Predictions of deep-inelastic scattering models and of models for hadronic interactions of high energy cosmic rays are compared to the measured cross sections.

  8. Dynamic array of dark optical traps

    DEFF Research Database (Denmark)

    Daria, V.R.; Rodrigo, P.J.; Glückstad, J.

    2004-01-01

    A dynamic array of dark optical traps is generated for simultaneous trapping and arbitrary manipulation of multiple low-index microstructures. The dynamic intensity patterns forming the dark optical trap arrays are generated using a nearly loss-less phase-to-intensity conversion of a phase......-encoded coherent light source. Two-dimensional input phase distributions corresponding to the trapping patterns are encoded using a computer-programmable spatial light modulator, enabling each trap to be shaped and moved arbitrarily within the plane of observation. We demonstrate the generation of multiple dark...... optical traps for simultaneous manipulation of hollow "air-filled" glass microspheres suspended in an aqueous medium. (C) 2004 American Institute of Physics....

  9. Understanding Coulomb Scattering Mechanism in Monolayer MoS2 Channel in the Presence of h-BN Buffer Layer.

    Science.gov (United States)

    Joo, Min-Kyu; Moon, Byoung Hee; Ji, Hyunjin; Han, Gang Hee; Kim, Hyun; Lee, Gwanmu; Lim, Seong Chu; Suh, Dongseok; Lee, Young Hee

    2017-02-08

    As the thickness becomes thinner, the importance of Coulomb scattering in two-dimensional layered materials increases because of the close proximity between channel and interfacial layer and the reduced screening effects. The Coulomb scattering in the channel is usually obscured mainly by the Schottky barrier at the contact in the noise measurements. Here, we report low-temperature (T) noise measurements to understand the Coulomb scattering mechanism in the MoS 2 channel in the presence of h-BN buffer layer on the silicon dioxide (SiO 2 ) insulating layer. One essential measure in the noise analysis is the Coulomb scattering parameter (α SC ) which is different for channel materials and electron excess doping concentrations. This was extracted exclusively from a 4-probe method by eliminating the Schottky contact effect. We found that the presence of h-BN on SiO 2 provides the suppression of α SC twice, the reduction of interfacial traps density by 100 times, and the lowered Schottky barrier noise by 50 times compared to those on SiO 2 at T = 25 K. These improvements enable us to successfully identify the main noise source in the channel, which is the trapping-detrapping process at gate dielectrics rather than the charged impurities localized at the channel, as confirmed by fitting the noise features to the carrier number and correlated mobility fluctuation model. Further, the reduction in contact noise at low temperature in our system is attributed to inhomogeneous distributed Schottky barrier height distribution in the metal-MoS 2 contact region.

  10. Trapped antihydrogen

    CERN Document Server

    Butler, E; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jonsell, S; Jørgensen, L V; Kemp, S L; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Seif el Nasr, S; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki,Y

    2012-01-01

    Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only ∼1 T (∼0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be ‘born’ inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 104 times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been ...

  11. Three-dimensional imaging and force characterization of multiple trapped particles in low NA counterpropagating optical traps

    DEFF Research Database (Denmark)

    Lindballe, T. B.; Kristensen, M. V.; Kylling, A. P.

    2011-01-01

    from two orthogonal views and used to determine the stiffness along all three spatial directions through power spectrum analysis and the equipartition method. For the case of three trapped beads we measure the dependence of the force constants on the counterpropagating beams waist separation....... The maximal transverse stiffnesses, is about 0.1 pN/mm per mW at a beam waist separation of 67 mm whereas the longitudinal stiffness is approximately 20 times lower. The experimental findings are in reasonable agreement with a recent physical-geometric optics calculation....

  12. Spatial mismatch between sea lamprey behaviour and trap location explains low success at trapping for control

    Science.gov (United States)

    Rous, Andrew M.; McLean, Adrienne R.; Barber, Jessica; Bravener, Gale; Castro-Santos, Theodore; Holbrook, Christopher M.; Imre, Istvan; Pratt, Thomas C.; McLaughlin, Robert L.

    2017-01-01

    Crucial to the management of invasive species is understanding space use and the environmental features affecting space use. Improved understanding of space use by invasive sea lamprey (Petromyzon marinus) could help researchers discern why trap success in large rivers is lower than needed for effective control. We tested whether manipulating discharge nightly could increase trap success at a hydroelectric generating station on the St. Marys River. We quantified numbers of acoustically tagged sea lampreys migrating up to, and their space use at, the hydroelectric generating station. In 2011 and 2012, 78% and 68%, respectively, of tagged sea lampreys reached the generating station. Sea lampreys were active along the face, but more likely to occur at the bottom and away from the traps near the surface, especially when discharge was high. Our findings suggest that a low probability of encountering traps was due to spatial (vertical) mismatch between space use by sea lamprey and trap locations and that increasing discharge did not alter space use in ways that increased trap encounter. Understanding space use by invasive species can help managers assess the efficacy of trapping and ways of improving trapping success.

  13. Non-Directional Radiation Spread Modeling and Non-Invasive Estimating the Radiation Scattering and Absorption Parameters in Biological Tissue

    Directory of Open Access Journals (Sweden)

    S. Yu. Makarov

    2015-01-01

    Full Text Available The article dwells on a development of new non-invasive measurement methods of optical parameters of biological tissues, which are responsible for the scattering and absorption of monochromatic radiation. It is known from the theory of radiation transfer [1] that for strongly scattering media, to which many biological tissues pertain, such parameters are parameters of diffusion approximation, as well as a scattering coefficient and an anisotropy parameter.Based on statistical modeling the paper examines a spread of non-directional radiation from a Lambert light beam with the natural polarization that illuminates a surface of the biological tissue. Statistical modeling is based on the Monte Carlo method [2]. Thus, to have the correct energy coefficient values of Fresnel reflection and transmission in simulation of such radiation by Monte Carlo method the author uses his finding that is a function of the statistical representation for the incidence of model photons [3]. The paper describes in detail a principle of fixing the power transmitted by the non-directional radiation into biological tissue [3], and the equations of a power balance in this case.Further, the paper describes the diffusion approximation of a radiation transfer theory, often used in simulation of radiation propagation in strongly scattering media and shows its application in case of fixing the power transmitted into the tissue. Thus, to represent an uneven power distribution is used an approximating expression in conditions of fixing a total input power. The paper reveals behavior peculiarities of solution on the surface of the biological tissue inside and outside of the incident beam. It is shown that the solution in the region outside of the incident beam (especially far away from it, essentially, depends neither on the particular power distribution across the surface, being a part of the tissue, nor on the refractive index of the biological tissue. It is determined only by

  14. Direct detection of near-surface faults by migration of back-scattered surface waves

    KAUST Repository

    Yu, Han

    2014-08-05

    We show that diffraction stack migration can be used to estimate the distribution of near-surface faults. The assumption is that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. The processing steps are to isolate the back-scattered surface waves, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. A deconvolution filter derived from the data can be used to collapse a dispersive arrival into a non-dispersive event. Results with synthetic data and field records validate the feasibility of this method. Applying this method to USArray data or passively recorded exploration data might open new opportunities in mapping tectonic features over the extent of the array.

  15. Elastic scattering dynamics of cavity polaritons: Evidence for time-energy uncertainty and polariton localization

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Hvam, Jørn Märcher

    2002-01-01

    The directional dynamics of the resonant Rayleigh scattering from a semiconductor microcavity is investigated. When optically exciting the lower polariton branch, the strong dispersion results in a directional emission on a ring. The coherent emission ring shows a reduction of its angular width...... for increasing time after excitation, giving direct evidence for the time-energy uncertainty in the dynamics of the scattering by disorder. The ring width converges with time to a finite value, a direct measure of an intrinsic momentum broadening of the polariton states localized by multiple disorder scattering....

  16. Gold nanoparticle-polydimethylsiloxane films reflect light internally by optical diffraction and Mie scattering

    International Nuclear Information System (INIS)

    Dunklin, Jeremy R; Keith Roper, D; Forcherio, Gregory T

    2015-01-01

    Optical properties of polymer films embedded with plasmonic nanoparticles (NPs) are important in many implementations. In this work, optical extinction by polydimethylsiloxane (PDMS) films containing gold (Au) NPs was enhanced at resonance compared to AuNPs in suspensions, Beer–Lambert law, or Mie theory by internal reflection due to optical diffraction in 16 nm AuNP–PDMS films and Mie scattering in 76 nm AuNP–PDMS films. Resonant extinction per AuNP for 16 nm AuNPs with negligible resonant Mie scattering was enhanced up to 1.5-fold at interparticle separation (i.e., Wigner–Seitz radii) comparable to incident wavelength. It was attributable to diffraction through apertures formed by overlapping electric fields of adjacent, resonantly excited AuNPs at Wigner–Seitz radii equal to or less than incident wavelengths. Resonant extinction per AuNP for strongly Mie scattering 76 nm AuNPs was enhanced up to 1.3-fold at Wigner–Seitz radii four or more times greater than incident wavelength. Enhanced light trapping from diffraction and/or scattering is relevant to optoelectronic, biomedical, and catalytic activity of substrates embedded with NPs. (paper)

  17. Migration of scattered teleseismic body waves

    Science.gov (United States)

    Bostock, M. G.; Rondenay, S.

    1999-06-01

    The retrieval of near-receiver mantle structure from scattered waves associated with teleseismic P and S and recorded on three-component, linear seismic arrays is considered in the context of inverse scattering theory. A Ray + Born formulation is proposed which admits linearization of the forward problem and economy in the computation of the elastic wave Green's function. The high-frequency approximation further simplifies the problem by enabling (1) the use of an earth-flattened, 1-D reference model, (2) a reduction in computations to 2-D through the assumption of 2.5-D experimental geometry, and (3) band-diagonalization of the Hessian matrix in the inverse formulation. The final expressions are in a form reminiscent of the classical diffraction stack of seismic migration. Implementation of this procedure demands an accurate estimate of the scattered wave contribution to the impulse response, and thus requires the removal of both the reference wavefield and the source time signature from the raw record sections. An approximate separation of direct and scattered waves is achieved through application of the inverse free-surface transfer operator to individual station records and a Karhunen-Loeve transform to the resulting record sections. This procedure takes the full displacement field to a wave vector space wherein the first principal component of the incident wave-type section is identified with the direct wave and is used as an estimate of the source time function. The scattered displacement field is reconstituted from the remaining principal components using the forward free-surface transfer operator, and may be reduced to a scattering impulse response upon deconvolution of the source estimate. An example employing pseudo-spectral synthetic seismograms demonstrates an application of the methodology.

  18. Characterisation of retention properties of charge-trapping memory cells at low temperatures

    International Nuclear Information System (INIS)

    Yurchuk, E; Bollmann, J; Mikolajick, T

    2009-01-01

    The density of states of deep level centers in silicon oxynitride layer of SONOS memory cells are calculated from temperature dependent retention measurement. The dominating charge loss mechanisms are direct trap-to-band tunneling (TB) and thermally stimulated emission (TE). Retention measurements at low temperatures (80 - 300K) will be dominated by TE from more 'shallow' traps with energies below 1eV and by TB. Taking into account both independent and rival processes the density of states could be calculated self consisting. The results are in excellent agreement with elsewhere published data.

  19. Correlated fermionic densities for many harmonically trapped particles interacting with repulsive forces

    International Nuclear Information System (INIS)

    Glasser, M.L.; March, N.H.; Nieto, L.M.

    2010-01-01

    This study is motivated by the very recent work on correlation energy as approximated by the Thomas-Fermi (TF) semiclassical limit [B.R. Landry, et al., Phys. Rev. Lett. 103 (2009) 066401]. In contrast, and motivated by the Hohenberg-Kohn theorem, our work is focussed primarily on the correlated TF ground-state density. We invoke directly the Holas et al. result that for two-fermion systems with harmonic trapping, the fermion-fermion interaction u simply adds to the trapping potential. We conclude this report with some results on correlation kinetic energy for two-fermion systems.

  20. Characterisation of retention properties of charge-trapping memory cells at low temperatures

    Science.gov (United States)

    Yurchuk, E.; Bollmann, J.; Mikolajick, T.

    2009-09-01

    The density of states of deep level centers in silicon oxynitride layer of SONOS memory cells are calculated from temperature dependent retention measurement. The dominating charge loss mechanisms are direct trap-to-band tunneling (TB) and thermally stimulated emission (TE). Retention measurements at low temperatures (80 - 300K) will be dominated by TE from more "shallow" traps with energies below 1eV and by TB. Taking into account both independent and rival processes the density of states could be calculated self consisting. The results are in excellent agreement with elsewhere published data.