WorldWideScience

Sample records for direct oxidation process

  1. Processing of effluent salt from the direct oxide reduction process

    International Nuclear Information System (INIS)

    Mishra, B.; Olson, D.L.

    1992-01-01

    The production of reactive metals by Direct Oxide Reduction (DOR) process using calcium in a molten calcium salt system generates significant amount of contaminated waste as calcium oxide saturated calcium chloride salt mix with calcium oxide content of up to 15 wt. pct. Fused salt electrolysis of a simulated salt mix has been carried out to electrowin calcium, which can be recycled to the DOR reactor along with the calcium chloride salt or may be used in-situ in a combined DOR and electrowinning process. Many reactive metal oxides could thus be reduced in a one-step process without generating a significant amount of waste. The process has been optimized in terms of the calcium solubility, cell temperature, current density and the cell design to maximize the current efficiency. Based on the information available regarding the solubility of calcium in calcium chloride salt in the presence of calcium oxide, and the back reactions occurring in-situ between the electrowon calcium and other components present in the cell, e.g. carbon, oxygen, carbon dioxide and calcium oxide, it is difficult to recover elemental calcium within the system. However, a liquid cathode or a rising cathode has been used in the past to recover calcium. The solubility has also been found to depend on the use of graphite as the anode material as evidenced by the presence of calcium carbonate in the final salt. The rate of recovery for metallic calcium has to be enhanced to levels that overcome the back reactions in a system where quick removal of anodic gases is achieved. Calcium has been detected by the hydrogen evolution technique and the amount of calcia has been determined by titration. A porous ceramic sheath has been used in the cell to prevent the chemical reaction of electrowon calcium to produce oxide or carbonate and to prevent the contamination of salt by the anodic carbon

  2. Screw calciner mechanical direct denitration process for plutonium nitrate to oxide conversion

    International Nuclear Information System (INIS)

    Souply, K.R.; Sperry, W.E.

    1977-01-01

    This report describes a screw calciner direct-denitration process for converting plutonium nitrate to plutonium oxide. The information should be used when making comparisons of alternative plutonium nitrate-to-oxide conversion processes or as a basis for further detailed studies. The report contains process flow sheets with a material balance; a process description; and a discussion of the process including history, advantages and disadvantages, and additional research required

  3. Fluid bed direct denitration process for plutonium nitrate to oxide conversion

    International Nuclear Information System (INIS)

    Souply, K.R.; Neal, D.H.

    1977-01-01

    The fluid bed direct-denitration process appears feasible for reprocessing Light Water Reactor fuel. Considerable experience with the fluid bed process exists in the denitration of uranyl nitrate and it shows promise for use in the denitration of plutonium nitrate. The process will require some development work before it can be used in a production-size facility. This report describes a fluid bed direct-denitration process for converting plutonium nitrate to plutonium oxide, and the information should be used when making comparisons of alternative processes or as a basis for further detailed studies

  4. Recovery of calcium from the effluent of direct oxide reduction process

    International Nuclear Information System (INIS)

    Ferro, P.; Mishra, B.; Olson, D.L.; Moore, J.J.; Averill, W.A.

    1992-01-01

    This paper reports that the production of plutonium by Direct Oxide Reduction [DOR] process using calcium generates significant amount of contaminated waste as calcium oxide saturated calcium chloride salt mix with calcium oxide content of up to 15 wt. pct. Fused salt electrolysis of a simulated slat mix [CaCl 2 + 15 wt. pct. CaO] is being carried out to election calcium, which can be recycled to the DOR rector along with the calcium chloride salt or may be used in-situ in an combined DOR and electrowinning process. The technology will resolve a major contaminated waste disposal problem, besides improving the cost and process efficiency in radioactive metal production. The process is being optimized in terms of the calcium solubility, cell temperature, current density and cell design to maximize the current efficiency. Scattered information is available regarding the solubility of calcium in calcium chloride salt in the present of calcium oxide. The solubility has also been found to depend on the use of graphite as the anode material. A porous ceramic sheath is being used around the anode to prevent the dissolution of electrowon calcium as oxide or carbonate and to prevent the contamination of salt by the anodic carbon. The electrode reactions are affected by the electrolyte composition and its viscosity which varies with time in this process and, therefore, electrochemical impedance is being measured to understand this time-dependent mechanisms

  5. A Study on N{sub 2}O Direct Oxidation Process with Re-oxidation Annealing for the Improvement of Interface Properties in 4H-SiC MOS Capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Doohyung; Park, Kunsik; Yoo, Seongwook; Kim, Sanggi; Lee, Jinhwan; Kim, Kwangsoo [Electronics and Telecommunications Research Institute (ETRI), Daejeon (Korea, Republic of)

    2017-08-15

    The effect of N{sub 2}O direct oxidation processes with re-oxidation on SiC/SiO{sub 2} interface characteristics has been investigated. With different oxidation and post oxidation annealing (POA) processes, the flat-band voltage, effective dielectric charge density, and interface trap density are obtained from the capacitance-voltage curves. For the proposed N{sub 2}O direct oxidation processes with re-oxidation, oxides were grown in N{sub 2}O ambient, diluted in high-purity N{sub 2} to 10% concentration, for 5 h at 1230 ℃. After the growth, some samples were annealed additionally at 1200 ℃ in O{sub 2} or H{sub 2}O for 20 min. N{sub 2}O direct oxidation with re-oxidation processes was confirmed that SiC/SiO{sub 2} interface properties and dielectric stability have better performance than with other conventional oxidation processes. This oxidation technique is expected to improve gate dielectric stability for application to SiC MOS devices; in particular, it can be used to obtain high-quality SiC/SiO{sub 2} interface properties.

  6. Extracting metals directly from metal oxides

    International Nuclear Information System (INIS)

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of β-diketones, halogenated β-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs

  7. Analysis of the laser oxidation kinetics process of In-In(2)O(3) MTMO photomasks by laser direct writing.

    Science.gov (United States)

    Xia, Feng; Zhang, Xinzheng; Wang, Meng; Liu, Qian; Xu, Jingjun

    2015-11-02

    One kind of novel grayscale photomask based on Metal-transparent-metallic-oxides (MTMOs) system fabricated by laser direct writing was demonstrated recently. Here, a multilayer oxidation model of In-In(2)O(3) film with a glass substrate was proposed to study the pulsed laser-induced oxidation mechanism. The distribution of the electromagnetic field in the film is calculated by the transfer matrix method. Temperature fields of the model are simulated based on the heat transfer equations with the Finite-Difference Time-Domain method. The oxidation kinetics process is studied based on the laser-induced Cabrera-Mott theory. The simulated oxidation processes are consistent with the experimental results, which mean that our laser-induced oxidation model can successfully interpret the fabrication mechanism of MTMO grayscale photomasks.

  8. [Small scale direct oxide reduction (DOR) experiments

    International Nuclear Information System (INIS)

    1987-01-01

    Objectives were to provide process design information to the Plutonium Recovery Project and to produce DOR (direct oxide reduction) product which meets Foundry purity specifications and Oh-0 Foundry specifications

  9. Direct oxide reducing method

    International Nuclear Information System (INIS)

    Tokiwai, Moriyasu.

    1995-01-01

    Calcium oxides and magnetic oxides as wastes generated upon direct reduction are subjected to molten salt electrolysis, and reduced metallic calcium and magnesium are separated and recovered. Then calcium and magnesium are used recyclically as the reducing agent upon conducting direct oxide reduction. Even calcium oxides and magnesium oxides, which have high melting points and difficult to be melted usually, can be melted in molten salts of mixed fluorides or chlorides by molten-salt electrolysis. Oxides are decomposed by electrolysis, and oxygen is removed in the form of carbon monoxide, while the reduced metallic calcium and magnesium rise above the molten salts on the side of a cathode, and then separated. Since only carbon monoxide is generated as radioactive wastes upon molten salt electrolysis, the amount of radioactive wastes can be greatly reduced, and the amount of the reducing agent used can also be decreased remarkably. (N.H.)

  10. Influence of Short-time Oxidation on Corrosion Properties of Directionally Solidified Superalloys with Different Orientations

    Directory of Open Access Journals (Sweden)

    MA Luo-ning

    2016-07-01

    Full Text Available In order to investigate the corrosion performance on intersecting and longitudinal surfaces of unoxidized and oxidized directionally solidified superalloys, Ni-base directionally solidified superalloy DZ125 and Co-base directionally solidified superalloy DZ40M were selected. Oxidation behavior on both alloys with different orientations was investigated at 1050℃ at different times, simulating the oxidation process of vanes or blades in service; subsequent electrochemical performance in 3.5%NaCl aqueous solution was studied on two orientations of unoxidized and oxidized alloys, simulating the corrosion process of superalloy during downtime. The results show that grain boundaries and sub-boundaries of directionally solidified superalloys are susceptible to corrosion and thus longitudinal surface with lower area fraction of grain boundaries has higher corrosion resistance. Compared to intersecting surface of alloys, the structure of grain boundaries of longitudinal surface is less conducive to diffusion and thus the oxidation rate on longitudinal surface is lower. Formation of oxide layers on alloys after short-time oxidation provides protective effect and enhances the corrosion resistance.

  11. Direct Coal Oxidation in Modified Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Gil, Vanesa; Ippolito, Davide

    2017-01-01

    Hybrid direct carbon fuel cells employ a classical solid oxide fuel cell together with carbon dispersed in a carbonate melt on the anode side. In a European project, the utilization of various coals has been investigated with and without addition of an oxidation catalyst to the carbon-carbonate s......Hybrid direct carbon fuel cells employ a classical solid oxide fuel cell together with carbon dispersed in a carbonate melt on the anode side. In a European project, the utilization of various coals has been investigated with and without addition of an oxidation catalyst to the carbon......-carbonate slurry or anode layer. The nature of the coal affects both open circuit voltage and power output. Highest OCV and power densities were observed for bituminous coal and by adding manganese oxide or praseodymium-doped ceria to the carbon/carbonate mixture. Comparing the carbon black fueled performance...... bituminous coal (73 mW/cm2)....

  12. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR; F

    International Nuclear Information System (INIS)

    K.C. Kwon

    2002-01-01

    Removal of hydrogen sulfide (H(sub 2)S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced Vision 21 plants that employ coal and natural gas and produce electric power and clean transportation fuels. These Vision 21 plants will require highly clean coal gas with H(sub 2)S below 1 ppm and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation Vision 21 plants. To this end, a novel process is now under development at Research Triangle Institute (RTI) in which the H(sub 2)S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H(sub 2)S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objective of this research is to support the near- and long-term DOE efforts to commercialize this direct oxidation technology. Specifically, we aim to: Measure the kinetics of direct oxidation of H(sub 2)S to elemental sulfur over selective catalysts in the presence of major

  13. AN ADVANCED OXIDATION PROCESS : FENTON PROCESS

    Directory of Open Access Journals (Sweden)

    Engin GÜRTEKİN

    2008-03-01

    Full Text Available Biological wastewater treatment is not effective treatment method if raw wastewater contains toxic and refractory organics. Advanced oxidation processes are applied before or after biological treatment for the detoxification and reclamation of this kind of wastewaters. The advanced oxidation processes are based on the formation of powerful hydroxyl radicals. Among advanced oxidation processes Fenton process is one of the most promising methods. Because application of Fenton process is simple and cost effective and also reaction occurs in a short time period. Fenton process is applied for many different proposes. In this study, Fenton process was evaluated as an advanced oxidation process in wastewater treatment.

  14. Direct Coal Oxidation in Modified Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Gil, Vanesa; Ippolito, Davide

    2015-01-01

    Hybrid direct carbon fuel cells employ a classical solid oxide fuel cell together with carbon dispersed in a carbonate melt on the anode side. In a European project, the utilization of various coals has been investigated with and without addition of an oxidation catalyst to the carbon-carbonate s......Hybrid direct carbon fuel cells employ a classical solid oxide fuel cell together with carbon dispersed in a carbonate melt on the anode side. In a European project, the utilization of various coals has been investigated with and without addition of an oxidation catalyst to the carbon......-carbonate slurry or anode layer. The nature of the coal affects both open circuit voltage and power output. Highest OCV and power densities were observed for bituminous coal and by adding manganese oxide or praseodymium-doped ceria to the carbon/carbonate mixture. Comparing the carbon black fueled performance...... bituminous coal (73 mW/cm2). © 2015 ECS - The Electrochemical Society...

  15. A study on direct alloying with molybdenum oxides by feed wire method

    Directory of Open Access Journals (Sweden)

    Jingjing Zou

    2018-04-01

    Full Text Available Direct alloying with molybdenum oxides has been regarded in years; the main addition methods are adding to the bottom of electric arc furnace (EAF with scrap, adding to the ladle during the converter tapping and mixing molybdenum oxide, lime and reductant to prepare pellet added to basic oxygen furnace (BOF. In this paper, a new method for direct alloying with molybdenum trioxide is proposed, adding molybdenum trioxide molten steel by feeding wire method in ladle furnace (LF refining process. The feasibility of molybdenum oxide reduction, the influence rules of bottom-blown on liquid steel fluidity and the yield of molybdenum by feeding wire method were analyzed. Results show that molybdenum oxide can be reduced by [Al], [Si], [C], and even [Fe] in molten steel. Bottom blowing position has a significant influence on the flow of molten steel when the permeable brick is located in 1/2 radius. The yields of Mo are higher than 97% for the experiments with feed wire method, the implementation of direct alloying with molybdenum trioxide by feed wire method works even better than that uses of ferromolybdenum in the traditional process.

  16. Anodic oxidation with doped diamond electrodes: a new advanced oxidation process

    International Nuclear Information System (INIS)

    Kraft, Alexander; Stadelmann, Manuela; Blaschke, Manfred

    2003-01-01

    Boron-doped diamond anodes allow to directly produce OH· radicals from water electrolysis with very high current efficiencies. This has been explained by the very high overvoltage for oxygen production and many other anodic electrode processes on diamond anodes. Additionally, the boron-doped diamond electrodes exhibit a high mechanical and chemical stability. Anodic oxidation with diamond anodes is a new advanced oxidation process (AOP) with many advantages compared to other known chemical and photochemical AOPs. The present work reports on the use of diamond anodes for the chemical oxygen demand (COD) removal from several industrial wastewaters and from two synthetic wastewaters with malic acid and ethylenediaminetetraacetic (EDTA) acid. Current efficiencies for the COD removal between 85 and 100% have been found. The formation and subsequent removal of by-products of the COD oxidation has been investigated for the first time. Economical considerations of this new AOP are included

  17. Direct chemical reduction of neptunium oxide to neptunium metal using calcium and calcium chloride

    International Nuclear Information System (INIS)

    Squires, Leah N.; Lessing, Paul

    2016-01-01

    A process of direct reduction of neptunium oxide to neptunium metal using calcium metal as the reducing agent is discussed. After reduction of the oxide to metal, the metal is separated by density from the other components of the reaction mixture and can be easily removed upon cooling. The direct reduction technique consistently produces high purity (98%–99% pure) neptunium metal.

  18. Pilot-scale demonstration of the modified direct denitration process to prepare uranium oxide for fuel fabrication evaluation

    International Nuclear Information System (INIS)

    Kitts, F.G.

    1994-04-01

    The Uranium-Atomic Vapor Laser Isotope Separation (U-AVLIS) Program has the objective of developing a cost-competitive enrichment process that will ultimately replace the gaseous diffusion process used in the United States. Current nuclear fuel fabricators are set up to process only the UF 6 product from gaseous diffusion enrichment. Enriched uranium-iron alloy from the U-AVLIS separator system must be chemically converted into an oxide form acceptable to these fabricators to make fuel pellets that meet American Society for Testing and Materials (ASTM) and utility company specifications. A critical step in this conversion is the modified direct denitration (MDD) that has been selected and presented in the AVLIS Conceptual Design for converting purified uranyl nitrate to UO 3 to be shipped to fabricators for making UO 2 pellets for power reactor fuel. This report describes the MDD process, the equipment used, and the experimental work done to demonstrate the conversion of AVLIS product to ceramic-grade UO 3 suitable for making reactor-grade fuel pellets

  19. Degradation mechanism of alachlor during direct ozonation and O(3)/H(2)O(2) advanced oxidation process.

    Science.gov (United States)

    Qiang, Zhimin; Liu, Chao; Dong, Bingzhi; Zhang, Yalei

    2010-01-01

    The degradation of alachlor by direct ozonation and advanced oxidation process O(3)/H(2)O(2) was investigated in this study with focus on identification of degradation byproducts. The second-order reaction rate constant between ozone and alachlor was determined to be 2.5+/-0.1M(-1)s(-1) at pH 7.0 and 20 degrees C. Twelve and eight high-molecular-weight byproducts (with the benzene ring intact) from alachlor degradation were identified during direct ozonation and O(3)/H(2)O(2), respectively. The common degradation byproducts included N-(2,6-diethylphenyl)-methyleneamine, 8-ethyl-3,4-dihydro-quinoline, 8-ethyl-quinoline, 1-chloroacetyl-2-hydro-3-ketone-7-acetyl-indole, 2-chloro-2',6'-diacetyl-N-(methoxymethyl)acetanilide, 2-chloro-2'-acetyl-6'-ethyl-N-(methoxymethyl)-acetanilide, and two hydroxylated alachlor isomers. In direct ozonation, four more byproducts were also identified including 1-chloroacetyl-2,3-dihydro-7-ethyl-indole, 2-chloro-2',6'-ethyl-acetanilide, 2-chloro-2',6'-acetyl-acetanilide and 2-chloro-2'-ethyl-6'-acetyl-N-(methoxymethyl)-acetanilide. Degradation of alachlor by O(3) and O(3)/H(2)O(2) also led to the formation of low-molecular-weight byproducts including formic, acetic, propionic, monochloroacetic and oxalic acids as well as chloride ion (only detected in O(3)/H(2)O(2)). Nitrite and nitrate formation was negligible. Alachlor degradation occurred via oxidation of the arylethyl group, N-dealkylation, cyclization and cleavage of benzene ring. After O(3) or O(3)/H(2)O(2) treatment, the toxicity of alachlor solution examined by the Daphnia magna bioassay was slightly reduced. 2009 Elsevier Ltd. All rights reserved.

  20. Powder processing of high Tc oxide superconductors and their properties

    International Nuclear Information System (INIS)

    Vajpei, A.C.; Upadhyaya, G.S.

    1992-01-01

    Powder processing of ceramics is an established technology and in the area of high T c superconductors, its importance is felt even more significantly. The present monograph is an attempt in this direction to explore the perspectives and practice of powder processing routes towards control and optimization of the microstructure and pertinent properties of high T c oxide superconductors. The monograph consists of 6 chapters. After a very brief introduction (Chapter 1), Chapter 2 describes various classes of high T c oxide superconductors and their phase equilibria. Chapter 3 highlights the preparation of oxide superconductor powders through various routes and details their subtle distinctions. Chapter 4 briefly covers characterisation of the oxide superconductors, laying emphasis on the process-analysis and microstructure. Chapter 5 describes in detail various fabrication techniques for bulk superconductors through the powder routes. The last Chapter (Chapter 6) describing properties of bulk oxide superconductors, discusses the role of subtituents, compositional variations and processing methods on such properties. References are given at the end of each chapter. (orig.)

  1. Alkoxide-based precursors for direct drawing of metal oxide micro- and nanofibres

    Energy Technology Data Exchange (ETDEWEB)

    Taette, Tanel; Hussainov, Medhat; Paalo, Madis; Part, Marko; Talviste, Rasmus; Kiisk, Valter; Maendar, Hugo; Pohako, Kaija; Reivelt, Kaido; Lohmus, Ants [Institute of Physics, University of Tartu, Riia 142, Tartu 51014 (Estonia); Pehk, Tonis [National Institute of Chemical and Biological Physics, Akadeemia tee 23, Tallinn 12618 (Estonia); Natali, Marco [ICIS-CNR, Corso Stati Uniti 4, Padova 35127 (Italy); Gurauskis, Jonas [Instituto de Ciencia de Materiales de Aragon C.S.I.C., University of Zaragoza Fac. De Ciencias, c/Pedro Cerbuna 12, Zaragoza 50009 (Spain); Maeeorg, Uno, E-mail: tanelt@fi.tartu.ee [Institute of Chemistry, University of Tartu, Ravila 14a, Tartu 50411 (Estonia)

    2011-06-15

    The invention of electrospinning has solved the problem of producing micro- and nanoscaled metal oxide fibres in bulk quantities. However, until now no methods have been available for preparing a single nanofibre of a metal oxide. In this work, the direct drawing method was successfully applied to produce metal oxide (SnO{sub 2}, TiO{sub 2}, ZrO{sub 2}, HfO{sub 2} and CeO{sub 2}) fibres with a high aspect ratio (up to 10 000) and a diameter as small as 200 nm. The sol-gel processing includes consumption of precursors obtained from alkoxides by aqueous or non-aqueous polymerization. Shear thinning of the precursors enables pulling a material into a fibre. This rheological behaviour can be explained by sliding of particles owing to external forces. Transmission (propagation) of light along microscaled fibres and their excellent surface morphology suggest that metal oxide nanofibres can be directly drawn from sol precursors for use in integrated photonic systems.

  2. Inhibition of Direct Electrolytic Ammonia Oxidation Due to a Change in Local pH

    International Nuclear Information System (INIS)

    Zöllig, Hanspeter; Morgenroth, Eberhard; Udert, Kai M.

    2015-01-01

    Electrochemical ammonia oxidation has gained a lot of attention recently as an efficient method for ammonia removal from wastewater, for the use in ammonia-based fuel cells and the production of high purity hydrogen. Thermally decomposed iridium oxide films (TDIROF) have been shown to be catalytically active for direct ammonia oxidation in aqueous solutions if NH 3 is present. However, the process was reported to be rapidly inhibited on TDIROF. Herein, we show that this fast inhibition of direct ammonia oxidation does not result from surface poisoning by adsorbed elemental nitrogen (N ads ). Instead, we propose that direct ammonia oxidation and oxygen evolution can lead to a drop of the local pH at the electrode resulting in a low availability of the actual reactant, NH 3 . The hypothesis was tested with cyclic voltammetry (CV) experiments on stagnant and rotating disk electrodes (RDE). The CV experiments on the stagnant electrode revealed that the decrease of the ammonia oxidation peaks was considerably reduced by introducing an idle phase at open circuit potential between subsequent scans. Furthermore, the polarization of the TDIROF electrode into the hydrogen evolution region (HER) resulted in increased ammonia oxidation peaks in the following anodic scans which can be explained with an increased local pH after the consumption of protons in the HER. On the RDE, the ammonia oxidation peaks did not decrease in immediately consecutive scans. These findings would not be expected if surface poisoning was responsible for the fast inhibition but they are in good agreement with the proposed mechanism of pH induced limitation by the reactant, NH 3 . The plausibility of the mechanism was also supported by our numerical simulations of the processes in the Nernstian diffusion layer. The knowledge about this inhibition mechanism of direct ammonia oxidation is especially important for the design of electrochemical cells for wastewater treatment. The mechanism is not only

  3. Electrochemical degradation of Novacron Yellow C-RG using boron-doped diamond and platinum anodes: Direct and Indirect oxidation

    International Nuclear Information System (INIS)

    Rocha, J.H. Bezerra; Gomes, M.M. Soares; Santos, E. Vieira dos; Moura, E.C. Martins de; Silva, D. Ribeiro da; Quiroz, M.A.; Martínez-Huitle, C.A.

    2014-01-01

    Graphical abstract: - Highlights: • Nature of electrode material decides the electrocatalytic mechanism followed. • Electrogenerated strong oxidants on BDD surface improve the color and organic load removal. • Chlorine active species act in solution cage oxidizing organic matter. - Abstract: The present study discusses the electrochemical degradation process of a textile dye, Novacron Yellow C-RG (NY), dissolved in synthetic wastewaters, via direct and indirect oxidation. Experiments were conducted using boron-doped diamond (BDD) and platinum supported on Ti (Pt/Ti) electrodes in the absence and presence of NaCl in the solution. The direct process for removing color is relatively similar for both anodes, while the electrochemical degradation is significantly accelerated by the presence of halogen salt in the solution. Interestingly, it does not depend on applied current density, but rather on NaCl concentration. Therefore, the electrochemical processes (direct/indirect) favor specific oxidation pathways depending on electrocatalytic material. Whereas, the Pt/Ti anode favors preferentially color removal by direct and indirect oxidation (100% of color removal) due to the fragmentation of the azo dye group; BDD electrode favors color and organic load removals in both processes (95% and up to 87%, respectively), due to the rupture of dye in different parts of its chemical structure. Parameters of removal efficiency and energy consumption for the electrochemical process were estimated. Finally, an explanation has been attempted for the role of halide, in relation with the oxygen evolution reaction, concomitant with the electrochemical incineration as well as electrocatalytic mechanisms, for each one of the electrodes used

  4. THE DIMINISHING OF THE CONTENT OF TEXTILE DIRECT DYES AND AUXILIARY COMPOUNDS DURING THEIR CATALYTIC OXIDATION

    Directory of Open Access Journals (Sweden)

    Maria Gonta

    2014-06-01

    Full Text Available Advanced oxidation methods of organic compounds lead to their partial mineralization and increase of the adsorption process efficiency on the surface of oxidized activated carbon. We have studied the oxidation process using model solutions containing mixture of dye direct brown (DB, ethylene glycol (EGL and sodium lauryl sulfate (SLS under the action of Fenton reagent, in the presence and absence of UV irradiation or under the action of electric current (in the electrochemical cell. The same studies were performed by replacing the iron (II ion with titanium dioxide.

  5. Comparison of direct and indirect plasma oxidation of NO combined with oxidation by catalyst

    DEFF Research Database (Denmark)

    Jogi, Indrek; Stamate, Eugen; Irimiea, Cornelia

    2015-01-01

    of the DBD reactor decreased the long-term efficiency of direct plasma oxidation. At the same time, the efficiency of indirect oxidation increased at elevated reactor temperatures. Additional experiments were carried out to investigate the improvement of indirect oxidation by the introduction of catalyst...

  6. Investigation of SiO{sub 2} film growth on 4H-SiC by direct thermal oxidation and postoxidation annealing techniques in HNO{sub 3} and H{sub 2}O vapor at varied process durations

    Energy Technology Data Exchange (ETDEWEB)

    Poobalan, Banu [Electronic Materials Research Group, School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Penang (Malaysia); Moon, Jeong Hyun; Kim, Sang-Cheol; Joo, Sung-Jae; Bahng, Wook; Kang, In Ho; Kim, Nam-Kyun [Power Semiconductor Research Centre, Korea Electrotechnology Research Institute, PO Box 20, Changwon, Gyungnam 641120 (Korea, Republic of); Cheong, Kuan Yew, E-mail: cheong@eng.usm.my [Electronic Materials Research Group, School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Penang (Malaysia)

    2014-11-03

    This study has revealed that HNO{sub 3} and H{sub 2}O vapors can be utilized as direct thermal oxidation or postoxidation annealing agents at a temperature above 1000 °C; as they play a major role in simultaneous oxidation/nitridation/hydrogenation processes at the bulk oxide and SiO{sub 2}/SiC interface. The varied process durations of the above-mentioned techniques contribute to the development of thicker gate oxides for high power device applications with improved electrical properties, lower interface-state density and higher breakdown voltage as compared to oxides grown through a more conventional wet (H{sub 2}O vapor only) oxidation technique. The study highlights the effects of hydrogen and nitrogen species on the passivation of structural defects at the bulk oxide and the SiO{sub 2}/SiC interface, which are revealed through the use of Time-of-Flight Secondary Ion Mass Spectroscopy and X-ray Photoelectron Spectroscopy. The physical properties of the substrate after oxide removal show that the surface roughness decreases as the process durations increase with longer hours of H{sub 2}O and HNO{sub 3} vapor exposures on the samples, which is mainly due to the significant reduction of carbon content at the SiO{sub 2}/SiC interface. - Highlights: • Direct thermal oxidation and postoxidation annealing techniques in HNO{sub 3}/H{sub 2}O vapor • SiO{sub 2} film growth in H{sub 2}O/HNO{sub 3}vapor at varied process durations • Thicker SiO{sub 2} film growth via annealing than direct growth in HNO{sub 3}/H{sub 2}O vapor • Nitrogen and hydrogen as passivation elements in SiO{sub 2}/SiC interface and SiO{sub 2} bulk • Significant reduction of carbon and Si-dangling bonds at the SiC/SiO{sub 2} interface.

  7. Recovery Of Nickel From Spent Nickel-Cadmium Batteries Using A Direct Reduction Process

    Directory of Open Access Journals (Sweden)

    Shin D.J.

    2015-06-01

    Full Text Available Most nickel is produced as Ferro-Nickel through a smelting process from Ni-bearing ore. However, these days, there have been some problems in nickel production due to exhaustion and the low-grade of Ni-bearing ore. Moreover, the smelting process results in a large amount of wastewater, slag and environmental risk. Therefore, in this research, spent Ni-Cd batteries were used as a base material instead of Ni-bearing ore for the recovery of Fe-Ni alloy through a direct reduction process. Spent Ni-Cd batteries contain 24wt% Ni, 18.5wt% Cd, 12.1% C and 27.5wt% polymers such as KOH. For pre-treatment, Cd was vaporized at 1024K. In order to evaluate the reduction conditions of nickel oxide and iron oxide, pre-treated spent Ni-Cd batteries were experimented on under various temperatures, gas-atmospheres and crucible materials. By a series of process, alloys containing 75 wt% Ni and 20 wt% Fe were produced. From the results, the reduction mechanism of nickel oxide and iron oxide were investigated.

  8. Uranium Metal to Oxide Conversion by Air Oxidation –Process Development

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, A

    2001-12-31

    Published technical information for the process of metal-to-oxide conversion of uranium components has been reviewed and summarized for the purpose of supporting critical decisions for new processes and facilities for the Y-12 National Security Complex. The science of uranium oxidation under low, intermediate, and high temperature conditions is reviewed. A process and system concept is outlined and process parameters identified for uranium oxide production rates. Recommendations for additional investigations to support a conceptual design of a new facility are outlined.

  9. Fenton oxidative decolorization of the azo dye Direct Blue 15 in aqueous solution

    DEFF Research Database (Denmark)

    Sun, Jian-Hui; Shi, Shao-Hui; Lee, Yi-Fan

    2009-01-01

    In this paper, the application of Fenton oxidation process for the decolorization of an azo dye Direct Blue 15 (DB15) in aqueous solution was investigated. The effect of initial pH, dosage of H2O2, H2O2/Fe2+ and H2O2/dye ratios and the reaction temperature on the decolorization efficiency...... = 60: 1 and temperature = 30 degrees C. Under the optimal conditions, 4.7 x 10(-5) mol/L of the DB15 aqueous solution can be completely decolorized by Fenton oxidation within 50-min reaction time and the decolorization kinetic rate constant k was determined as 0.1694 min(-1). Additionally increasing...... the reaction temperature from 20 to 40 degrees C showed a positive effect on the decolorization efficiency of DB15. The present study can provide guidance to relational industry operators and planners to effectively treat the DB15 contaminated wastewater by Fenton oxidation process. (C) 2009 Elsevier B. V. All...

  10. Treatment of aqueous wastes contaminated with Congo Red dye by electrochemical oxidation and ozonation processes

    International Nuclear Information System (INIS)

    Faouzi Elahmadi, Mohammed; Bensalah, Nasr; Gadri, Abdellatif

    2009-01-01

    Synthetic aqueous wastes polluted with Congo Red (CR) have been treated by two advanced oxidation processes: electrochemical oxidation on boron doped diamond anodes (BDD-EO) and ozonation under alkaline conditions. For same concentrations, galvanostatic electrolyses have led to total COD and TOC removals but ozonation process can reach only 85% and 81% of COD and TOC removals, respectively. UV-vis qualitative analyses have shown different behaviors of CR molecules towards ozonation and electrochemical oxidation. Rapid discoloration has been observed during ozonation, whereas color persistence till the end of galvanostatic electrolyses has been seen during BDD-EO process. It seems that the oxidation mechanisms involved in the two processes are different: simultaneous destruction of azoic groups is suggested during ozonation process but consecutive destruction of these groups is proposed during BDD-EO. However, energetic study has evidenced that BDD-EO appears more efficient and more economic than ozonation in terms of TOC removals. These results have been explained by the fact that during BDD-EO, other strong oxidants electrogenerated from the electrolyte oxidation such as persulfates and direct-oxidation of CR and its byproducts on BDD anodes complement the hydroxyl radicals mediated oxidation to accomplish the total mineralization of organics.

  11. Template-directed formation of functional complex metal-oxide nanostructures by combination of sol-gel processing and spin coating

    International Nuclear Information System (INIS)

    Choi, Y.C.; Kim, J.; Bu, S.D.

    2006-01-01

    We report the template-based formation of functional complex metal-oxide nanostructures by a combination of sol-gel processing and spin coating. This method employs the spin-coating of a sol-gel solution into an anodic aluminum oxide membrane (SSAM). Various metal-oxide nanowires and nanotubes with a high aspect-ratio were prepared. The aspect-ratios of the PbO 2 nanowires and Pb(Zr 0.52 Ti 0.48 )O 3 nanowires were about 300 and 400, respectively, and their diameters were about 50 nm. The fabricated PbTiO 3 nanotubes have a relatively constant wall thickness of about 20 nm with an outer diameter of about 60 nm. The deposition time for all of the fabricated metal-oxide nanowires and nanotubes is less than 120 s, which is far shorter than those required in both the sol-gel dipping and sol-gel electrophoretic methods. These results indicate that the SSAM method can be a versatile pathway to prepare functional complex metal-oxide nanowires and nanotubes with a high aspect-ratio. The possible formation process for the one-dimensional nanostructures by SSAM is discussed

  12. ADVANCED OXIDATION PROCESSES (AOX) TEXTILE WASTEWATER

    OpenAIRE

    Salas C., G.

    2014-01-01

    Advanced Oxidation Processes (AOX) are based on the in situ generation of hydroxyradicals (·OH), which have a high oxidation potential. In the case of Fenton processes !he generation of hydroxy radicals takes place by the combination of an oxidation agent (H202) with a catalyst (Fe(II)). These radicals are not selective and they react very fast with the organic matter,being able to oxidize a high variety of organic compounds. This property allows the degradation of pollutants into more biodeg...

  13. Low-temperature metal-oxide thin-film transistors formed by directly photopatternable and combustible solution synthesis.

    Science.gov (United States)

    Rim, You Seung; Lim, Hyun Soo; Kim, Hyun Jae

    2013-05-01

    We investigated the formation of ultraviolet (UV)-assisted directly patternable solution-processed oxide semiconductor films and successfully fabricated thin-film transistors (TFTs) based on these films. An InGaZnO (IGZO) solution that was modified chemically with benzoylacetone (BzAc), whose chelate rings decomposed via a π-π* transition as result of UV irradiation, was used for the direct patterning. A TFT was fabricated using the directly patterned IGZO film, and it had better electrical characteristics than those of conventional photoresist (PR)-patterned TFTs. In addition, the nitric acid (HNO3) and acetylacetone (AcAc) modified In2O3 (NAc-In2O3) solution exhibited both strong UV absorption and high exothermic reaction. This method not only resulted in the formation of a low-energy path because of the combustion of the chemically modified metal-oxide solution but also allowed for photoreaction-induced direct patterning at low temperatures.

  14. High-temperature Raman spectroscopy of solid oxide fuel cell materials and processes.

    Science.gov (United States)

    Pomfret, Michael B; Owrutsky, Jeffrey C; Walker, Robert A

    2006-09-07

    Chemical and material processes occurring in high temperature environments are difficult to quantify due to a lack of experimental methods that can probe directly the species present. In this letter, Raman spectroscopy is shown to be capable of identifying in-situ and noninvasively changes in material properties as well as the formation and disappearance of molecular species on surfaces at temperatures of 715 degrees C. The material, yttria-stabilized zirconia or YSZ, and the molecular species, Ni/NiO and nanocrystalline graphite, factor prominently in the chemistry of solid oxide fuel cells (SOFCs). Experiments demonstrate the ability of Raman spectroscopy to follow reversible oxidation/reduction kinetics of Ni/NiO as well as the rate of carbon disappearance when graphite, formed in-situ, is exposed to a weakly oxidizing atmosphere. In addition, the Raman active phonon mode of YSZ shows a temperature dependent shift that correlates closely with the expansion of the lattice parameter, thus providing a convenient internal diagnostic for identifying thermal gradients in high temperature systems. These findings provide direct insight into processes likely to occur in operational SOFCs and motivate the use of in-situ Raman spectroscopy to follow chemical processes in these high-temperature, electrochemically active environments.

  15. Lewis acid catalysis and Green oxidations: sequential tandem oxidation processes induced by Mn-hyperaccumulating plants.

    Science.gov (United States)

    Escande, Vincent; Renard, Brice-Loïc; Grison, Claude

    2015-04-01

    Among the phytotechnologies used for the reclamation of degraded mining sites, phytoextraction aims to diminish the concentration of polluting elements in contaminated soils. However, the biomass resulting from the phytoextraction processes (highly enriched in polluting elements) is too often considered as a problematic waste. The manganese-enriched biomass derived from native Mn-hyperaccumulating plants of New Caledonia was presented here as a valuable source of metallic elements of high interest in chemical catalysis. The preparation of the catalyst Eco-Mn1 and reagent Eco-Mn2 derived from Grevillea exul exul and Grevillea exul rubiginosa was investigated. Their unusual polymetallic compositions allowed to explore new reactivity of low oxidative state of manganese-Mn(II) for Eco-Mn1 and Mn(IV) for Eco-Mn2. Eco-Mn1 was used as a Lewis acid to catalyze the acetalization/elimination of aldehydes into enol ethers with high yields; a new green and stereoselective synthesis of (-)-isopulegol via the carbonyl-ene cyclization of (+)-citronellal was also performed with Eco-Mn1. Eco-Mn2 was used as a mild oxidative reagent and controlled the oxidation of aliphatic alcohols into aldehydes with quantitative yields. Oxidative cleavage was interestingly noticed when Eco-Mn2 was used in the presence of a polyol. Eco-Mn2 allowed direct oxidative iodination of ketones without using iodine, which is strongly discouraged by new environmental legislations. Finally, the combination of the properties in the Eco-Mn catalysts and reagents gave them an unprecedented potential to perform sequential tandem oxidation processes through new green syntheses of p-cymene from (-)-isopulegol and (+)-citronellal; and a new green synthesis of functionalized pyridines by in situ oxidation of 1,4-dihydropyridines.

  16. PROCESSES OF CHLORINATION OF URANIUM OXIDES

    Science.gov (United States)

    Rosenfeld, S.

    1958-09-16

    An improvement is described in the process fur making UCl/sub 4/ from uranium oxide and carbon tetrachloride. In that process, oxides of uranium are contacted with carbon tetrachloride vapor at an elevated temperature. It has been fuund that the reaction product and yield are improved if the uranlum oxide charge is disposed in flat trays in the reaction zone, to a depth of not more than 1/2 centimeter.

  17. Microwave processing of ceramic oxide filaments

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, G.J.; Katz, J.D. [Los Alamos National Laboratory, NM (United States)

    1995-05-01

    The objective of the microwave filament processing project is to develop microwave techniques at 2.45 GHZ to manufacture continuous ceramic oxide filaments. Microwave processing uses the volumetric absorption of microwave power in oxide filament tows to drive off process solvents, to burn out organic binders, and to sinter the dried fibers to produce flexible, high-strength ceramic filaments. The technical goal is to advance filament processing technology by microwave heating more rapidly with less energy and at a lower cost than conventional processing, but with the same quality as conventional processing. The manufacturing goal is to collaborate with the 3M Company, a US manufacturer of ceramic oxide filaments, to evaluate the technology using a prototype filament system and to transfer the microwave technology to the 3M Company.

  18. Direct Flotation of Niobium Oxide Minerals from Carbonatite Niobium Ores

    Science.gov (United States)

    Ni, Xiao

    Currently the recovery of niobium oxide minerals from carbonatite niobium ores relies on the use of non-selective cationic collectors. This leads to complicated process flowsheets involving multiple desliming and multiple reverse flotation stages, and low niobium recovery. In this research, anionic collectors that are capable of strong chemisorption on the niobium minerals were studied with the objective of directly floating the niobium oxide minerals from the carbonatite ores. In the flotation of both high purity minerals and Niobec ores, it was shown that the combination of hydroxamic acid and sodium metaphosphate was an effective reagent scheme for the direct flotation of niobium oxide from its ores. Batch flotation on the Niobec Mill Feed showed that over 95% of niobium oxide was recovered into a rougher concentrate that was less than 47% of the original feed mass. Preliminary cleaning tests showed that the reagent scheme could also be used to upgrade the rougher concentrate, although the depression of iron oxide minerals required further study. X-ray photoelectron spectroscopic (XPS) measurement results confirm that OHA (octyl hydroxamic acid) could chemisorb on pyrochlore surface while only physically adsorb on calcite, judging by the chemical shifts of electron binding energies in the elements in both OHA and the mineral surfaces. When hydroxamic acid was adsorbed on calcite surface, the binding energies of the N 1s electrons, at 400.3 eV, did not shift. However, after adsorption on pyrochlore, the N 1s binding energy peak split into two peaks, one at a binding energy of around 399 eV, representing chemically adsorbed OHA, the other at between 400 and 401 eV. The experimental data suggested a strong chemisorption of the OHA on pyrochlore surface in the form of a vertical head-on orientation of the OHA molecules so that the pyrochlore was strongly hydrophobized even at low OHA concentrations, followed by possibly randomly oriented physisorbed OHA molecules

  19. Directed C-H Bond Oxidation of (+)-Pleuromutilin.

    Science.gov (United States)

    Ma, Xiaoshen; Kucera, Roman; Goethe, Olivia F; Murphy, Stephen K; Herzon, Seth B

    2018-05-01

    Antibiotics derived from the diterpene fungal metabolite (+)-pleuromutilin (1) are useful agents for the treatment Gram-positive infections in humans and farm animals. Pleuromutilins elicit slow rates of resistance development and minimal cross-resistance with existing antibiotics. Despite efforts aimed at producing new derivatives by semisynthesis, modification of the tricyclic core is underexplored, in part due to a limited number of functional group handles. Herein, we report methods to selectively functionalize the methyl groups of (+)-pleuromutilin (1) by hydroxyl-directed iridium-catalyzed C-H silylation, followed by Tamao-Fleming oxidation. These reactions provided access to C16, C17, and C18 monooxidized products, as well as C15/C16 and C17/C18 dioxidized products. Four new functionalized derivatives were prepared from the protected C17 oxidation product. C6 carboxylic acid, aldehyde, and normethyl derivatives were prepared from the C16 oxidation product. Many of these sequences were executed on gram scales. The efficiency and practicality of these routes provides an easy method to rapidly interrogate structure-activity relationships that were previously beyond reach. This study will inform the design of fully synthetic approaches to novel pleuromutilins and underscores the power of the hydroxyl-directed iridium-catalyzed C-H silylation reaction.

  20. Development of ethylene direct oxidation process acetic acid new manufacturing method; Echiren jikisanho sakusan shinseizoho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Ken' ichi; Nishino, Hiroshi; Iizuka, Yukio; Suzuki, Toshiro; Sasaki, Koji [Showa Denko Corp., Tokyo (Japan)

    1999-03-05

    Though existing acetic acid manufacturing which made the ethylene to be the starting material was two steps oxidation method of the via acetaldehyde, this study persons developed the new manufacturing method by the ethylenic direct oxyacid. In system of reaction, the following were realized by the development of palladium/heteropolyacid system composite catalyst: High activity and selectivity. In the purification system, the process of becoming, when the water consequentially forms azeotrope for the separation between acetic acid and extracting agent that extracting agent of alkyl acetate was done, that it was used and extracted, was developed. In the equipment material aspect, it is sufficient as a 316 stainless steel unlike other acetic acid manufacturing method. As an equipment scale, it has made to be the optium size for 5-200 thousand t/year, and that the location that it is more small-scale than methanol, carbonylation method and approaches the consumption ground is possible are features. The industrial plant for 100 thousand t/year based on this study carries out business operation in Oita since November, 1997. (translated by NEDO)

  1. Controlling the optical performance of transparent conducting oxides using direct laser interference patterning

    International Nuclear Information System (INIS)

    Berger, Jana; Roch, Teja; Correia, Stelio; Eberhardt, Jens; Lasagni, Andrés Fabián

    2016-01-01

    In this study, a laser based process called Direct Laser Interference Patterning (DLIP) was used to fabricate micro-textured boron doped zinc oxide (ZnO:B) thin films to be used as electrodes in thin-film silicon solar cells. First, the ablation thresholds of the ZnO:B film were determined using a nanosecond pulsed laser at wavelengths of 266 and 355 nm (100 mJ/cm"2 and 89 mJ/cm"2, respectively). After that, DLIP experiments were performed at 355 nm wavelength. Line-like periodic surface structures with spatial periods ranging from 0.8 to 5.0 μm were fabricated using two interfering laser beams. It was found that the structuring process of the transparent conducting oxide (TCO) is mainly based on a photo-thermal mechanism. The surface of the ZnO:B film was molten and evaporated at the interference maxima positions and the depth and width of the generated microfeatures depend on the laser parameters as well as the spatial period of the interference pattern. The optical properties of the structured TCOs were investigated as a function of the utilized laser processing parameters. Both diffuse and total transmission and the intensity of the diffraction orders were determined. These data were used to calculate the increase of the optical path of the transmitted light. - Highlights: • Direct Laser Interference Patterning (DLIP) on boron doped zinc oxide (LPCVD-ZnO:B) • No relevant decrease of total transmission • Periods of 1.5 μm provide large diffraction angle and good diffraction intensity. • Significant increase of optical path length could be reached.

  2. Controlling the optical performance of transparent conducting oxides using direct laser interference patterning

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Jana; Roch, Teja [Fraunhofer-Institut für Werkstoff-und Strahltechnik IWS, Winterbergstr. 28, 01277 Dresden (Germany); Technische Universität Dresden, Institute of Manufacturing Technology, George-Baehr-Str.1, 01069 Dresden (Germany); Correia, Stelio; Eberhardt, Jens [Bosch Solar Energy AG, August-Broemel-Str. 6, 99310 Arnstadt (Germany); Lasagni, Andrés Fabián, E-mail: andres_fabian.lasagni@tu-dresden.de [Fraunhofer-Institut für Werkstoff-und Strahltechnik IWS, Winterbergstr. 28, 01277 Dresden (Germany); Technische Universität Dresden, Institute of Manufacturing Technology, George-Baehr-Str.1, 01069 Dresden (Germany)

    2016-08-01

    In this study, a laser based process called Direct Laser Interference Patterning (DLIP) was used to fabricate micro-textured boron doped zinc oxide (ZnO:B) thin films to be used as electrodes in thin-film silicon solar cells. First, the ablation thresholds of the ZnO:B film were determined using a nanosecond pulsed laser at wavelengths of 266 and 355 nm (100 mJ/cm{sup 2} and 89 mJ/cm{sup 2}, respectively). After that, DLIP experiments were performed at 355 nm wavelength. Line-like periodic surface structures with spatial periods ranging from 0.8 to 5.0 μm were fabricated using two interfering laser beams. It was found that the structuring process of the transparent conducting oxide (TCO) is mainly based on a photo-thermal mechanism. The surface of the ZnO:B film was molten and evaporated at the interference maxima positions and the depth and width of the generated microfeatures depend on the laser parameters as well as the spatial period of the interference pattern. The optical properties of the structured TCOs were investigated as a function of the utilized laser processing parameters. Both diffuse and total transmission and the intensity of the diffraction orders were determined. These data were used to calculate the increase of the optical path of the transmitted light. - Highlights: • Direct Laser Interference Patterning (DLIP) on boron doped zinc oxide (LPCVD-ZnO:B) • No relevant decrease of total transmission • Periods of 1.5 μm provide large diffraction angle and good diffraction intensity. • Significant increase of optical path length could be reached.

  3. Gold nanoparticle arrays directly grown on nanostructured indium tin oxide electrodes: Characterization and electroanalytical application

    International Nuclear Information System (INIS)

    Zhang Jingdong; Oyama, Munetaka

    2005-01-01

    This work describes an improved seed-mediated growth approach for the direct attachment and growth of mono-dispersed gold nanoparticles on nanostructured indium tin oxide (ITO) surfaces. It was demonstrated that, when the seeding procedure of our previously reported seed-mediated growth process on an ITO surface was modified, the density of gold nanospheres directly grown on the surface could be highly improved, while the emergence of nanorods was restrained. By field emission scanning electron microscopy (FE-SEM) and cyclic voltammetry, the growth of gold nanoparticles with increasing growth time on the defect sites of nanostructured ITO surface was monitored. Using a [Fe(China) 6 ] 3- /[Fe(China) 6 ] 4- redox probe, the increasingly facile heterogeneous electron transfer kinetics resulting from the deposition and growth of gold nanoparticle arrays was observed. The as-prepared gold nanoparticle arrays exhibited high catalytic activity toward the electrooxidation of nitric oxide, which could provide electroanalytical application for nitric oxide sensing

  4. Desulfurization of AL-Ahdab Crude Oil using Oxidative Processes

    OpenAIRE

    Neran Khalel Ibrahim; Saja Mohsen Jabbar

    2015-01-01

    Two different oxidative desulfurization strategies based on oxidation/adsorption or oxidation/extraction were evaluated for the desulfurization of AL-Ahdab (AHD) sour crude oil (3.9wt% sulfur content). In the oxidation process, a homogenous oxidizing agent comprising of hydrogen peroxide and formic acid was used. Activated carbons were used as sorbent/catalyst in the oxidation/adsorption process while acetonitrile was used as an extraction solvent in the oxidation/extraction process. For the ...

  5. Mesoporous metal oxides and processes for preparation thereof

    Energy Technology Data Exchange (ETDEWEB)

    Suib, Steven L.; Poyraz, Altug Suleyman

    2018-03-06

    A process for preparing a mesoporous metal oxide, i.e., transition metal oxide. Lanthanide metal oxide, a post-transition metal oxide and metalloid oxide. The process comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to form the mesoporous metal oxide. A mesoporous metal oxide prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous metal oxides. The method comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous metal oxides. Mesoporous metal oxides and a method of tuning structural properties of mesoporous metal oxides.

  6. Features oxidative processes in sturgeons fish (Acipenseridae (review

    Directory of Open Access Journals (Sweden)

    M. Symon

    2016-12-01

    Full Text Available Purpose. To anayze scientific sources on physiological-biochemical pecularities of reducing-oxidizing processes, including peroxide oxidation of lipids and work of the system of antioxidant protection system in sturgeon species (Acipenseridae. The initiation and process of the oxidative stress have been described. The main products of peroxide oxidation of lipids, antioxidants of natural and artificial origin, organs and tissues for the studies of reducing-oxidizing processes have been examined. Findings. The work generalizes the processes of lipid peroxidation. Briefly outlined the main mechanism of action of antioxidant enzymes. Antioxidant defense system plays one of key role in the life of organism due regulating its series of metabolic processes, use of assessing of its state gives an opportunity obtain quantitative information on the progress of these processes. The products of free radical peroxidation (dien conjugates and malonic dialdehyde can also act as a sort of biomarkers of tissue damage, because their content can judge about the intensity of the flow of free radical processes in the various systems in organism. The review contains a description of the peculiarities of the liver and its involvement in lipid metabolism and antioxidant defense system. It is shown the most common antioxidants used in the feeding of sturgeon. Organs and tissues, which should be used for studying the processes of peroxide oxidation of lipids in sturgeon species, have been examined. Practical value. The systematized data regarding peroxide oxidation of lipids, oxidative stress and antioxidant protection system allow finding a balance between these processes. The data on antioxidants, which are used in feeds for sturgeon species, will be useful for sturgeon culturists. The array of the generalized information will be important for scientists who study the pecularities of the processes of peroxide oxidation of lipids and antioxidant protection system in

  7. Uranium bed oxidation vacuum process system

    International Nuclear Information System (INIS)

    McLeland, H.L.

    1977-01-01

    Deuterium and tritium gases are occluded in uranium powder for release into neutron generator tubes. The uranium powder is contained in stainless steel bottles, termed ''beds.'' If these beds become damaged, the gases must be removed and the uranium oxidized in order not to be flammable before shipment to ERDA disposal grounds. This paper describes the system and methods designed for the controlled degassing and oxidation process. The system utilizes sputter-ion, cryo-sorption and bellows pumps for removing the gases from the heated source bed. Removing the tritium gas is complicated by the shielding effect of helium-3, a byproduct of tritium decay. This effect is minimized by incremental pressure changes, or ''batch'' processing. To prevent runaway exothermic reaction, oxidation of the uranium bed is also done incrementally, or by ''batch'' processing, rather than by continuous flow. The paper discusses in detail the helium-3 shielding effect, leak checks that must be made during processing, bed oxidation, degree of gas depletion, purity of gases sorbed from beds, radioactivity of beds, bed disposal and system renovation

  8. Simulation of the selective oxidation process of semiconductors

    International Nuclear Information System (INIS)

    Chahoud, M.

    2012-01-01

    A new approach to simulate the selective oxidation of semiconductors is presented. This approach is based on the so-called b lack box simulation method . This method is usually used to simulate complex processes. The chemical and physical details within the process are not considered. Only the input and output data of the process are relevant for the simulation. A virtual function linking the input and output data has to be found. In the case of selective oxidation the input data are the mask geometry and the oxidation duration whereas the output data are the oxidation thickness distribution. The virtual function is determined as four virtual diffusion processes between the masked und non-masked areas. Each process delivers one part of the oxidation profile. The method is applied successfully on the oxidation system silicon-silicon nitride (Si-Si 3 N 4 ). The fitting parameters are determined through comparison of experimental and simulation results two-dimensionally.(author)

  9. Direct reduction of uranium dioxide and few other metal oxides to corresponding metals by high temperature molten salt electrolysis

    International Nuclear Information System (INIS)

    Mohandas, K.S.

    2017-01-01

    Molten salt based electro-reduction processes, capable of directly converting solid metal oxides to metals with minimum intermediate steps, are being studied worldwide. Production of metals apart, the process assumes importance in nuclear technology in the context of pyrochemical reprocessing of spent oxide fuels, for it serves as an intermediate step to convert spent oxide fuel to a metal alloy, which in turn can be processed by molten salt electro-refining method to gain the actinides present in it. In the context of future metal fuel fast reactor programme, the electrochemical process was studied for conversion of solid UO_2 to U metal in LiCl-1wt.% Li_2O melt at 650 °C with platinum anode at the Metal Processing Studies Section, PMPD, IGCAR. A brief overview of the work is presented in the paper

  10. Direct-write maskless lithography using patterned oxidation of Si-substrate Induced by femtosecond laser pulses

    Science.gov (United States)

    Kiani, Amirkianoosh; Venkatakrishnan, Krishnan; Tan, Bo

    2013-03-01

    In this study we report a new method for direct-write maskless lithography using oxidized silicon layer induced by high repetition (MHz) ultrafast (femtosecond) laser pulses under ambient condition. The induced thin layer of predetermined pattern can act as an etch stop during etching process in alkaline etchants such as KOH. The proposed method can be leading to promising solutions for direct-write maskless lithography technique since the proposed method offers a higher degree of flexibility and reduced time and cost of fabrication which makes it particularly appropriate for rapid prototyping and custom scale manufacturing. A Scanning Electron Microscope (SEM), Micro-Raman, Energy Dispersive X-ray (EDX), optical microscope and X-ray diffraction spectroscopy (XRD) were used to evaluate the quality of oxidized layer induced by laser pulses.

  11. Microwave based oxidation process for recycling the off-specification (U,Pu)O{sub 2} fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Singh, G., E-mail: gitendars@barctara.gov.in [Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre, Tarapur, 401 502 (India); Khot, P.M. [Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre, Tarapur, 401 502 (India); Kumar, Pradeep [Integrated Fuel Fabrication Facility (IFFF), Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Bhatt, R.B.; Behere, P.G.; Afzal, Mohd [Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre, Tarapur, 401 502 (India)

    2017-02-15

    This paper reports development of a process named MicroWave Direct Oxidation (MWDO) for recycling the off-specification (U,Pu)O{sub 2} mixed oxide (MOX) fuel pellets generated during fabrication of typical fast reactor fuels. MWDO is a two-stage, single-cycle process based on oxidative pulverisation of pellets using 2450 MHz microwave. The powder sinterability was evaluated by bulk density and BET specific surface area. The oxidised powders were analyzed for phases using XRD and stoichiometry by thermogravimetry. The sinterability was significantly enhanced by carrying out oxidation in higher oxygen partial pressure and by subjecting MOX to multiple micronisation-oxidation cycles. After three cycles, the recycled powder from (U,28%Pu)O{sub 2} resulted surface area >3 m{sup 2}/g and 100% re-used for MOX fabrication. The flow sheet was developed for maximum utilization of recycled powder describable by a parameter called Scrap Recycling Ratio (SRR). The process demonstrates smaller processing cycle, better powder properties and higher oxidative pulverisation over conventional method. - Highlights: • A process for recycling the off-specification (U,Pu)O{sub 2} sintered fuel pellets of fast reactors was demonstrated. • The method is a two-stage, single cycle process based on oxidative pulverization of MOX pellets using 2450 MHz microwave. • The process demonstrated utilization of recycled powder with SRR of 1.

  12. Plutonium Oxide Process Capability Work Plan

    Energy Technology Data Exchange (ETDEWEB)

    Meier, David E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tingey, Joel M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-02-28

    Pacific Northwest National Laboratory (PNNL) has been tasked to develop a Pilot-scale Plutonium-oxide Processing Unit (P3U) providing a flexible capability to produce 200g (Pu basis) samples of plutonium oxide using different chemical processes for use in identifying and validating nuclear forensics signatures associated with plutonium production. Materials produced can also be used as exercise and reference materials.

  13. Applications of direct chemical oxidation to demilitarization

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J.F., LLNL

    1998-06-01

    Research is reported concerning an aqueous process for oxidative destruction of solid- and liquid organic wastes, including ongoing work relevant to demilitarization This process uses acidified ammonium- or sodium peroxydisulfate and operates at ambient pressure and at temperatures of 80- 100 C The oxidant may be regenerated by electrolysis of the sulfate by- product at Pt anodes at roughly 80% coulombic efficiency, even in the presence of inorganic contaminants (e g , nitrate, phosphate or chloride) found in the original waste and entrained in the recycle stream Integral rate constants have been determined for the oxidation of diverse organic compounds at low concentrations (50 ppm, C), with rate constants (based on equivalents) of 0 004-O 02 miri Higher concentrations generally react at a 2-4X higher rate. The process has been carried through full- scale laboratory tests and initial pilot plant tests on chlorinated solvents, using a hydrolysis pretreatment Integral rate data indicate throughput rates of about 200 kg- C/m3-day The process may benefit the demilitarization efforts in various specialized applications destruction of solvents; destruction of trace propellants and explosives in shell casings remaining after bulk removal, destruction of red and pink waters, in situ remediation of soils at open pit burning/detonation sites; and as a regenerative filter for offgas carrying toxic or explosive substances.

  14. Final Report: Fiscal Year 1997 demonstration of omnivorous non-thermal mixed waste treatment: Direct chemical oxidation of organic solids and liquids using peroxydisulfate

    International Nuclear Information System (INIS)

    Cooper, J.F.; Ballazs G.B.

    1998-01-01

    Direct Chemical Oxidation (DCO) is a non-thermal, ambient pressure, aqueous-based technology for the oxidative destruction of the organic components of hazardous or mixed waste streams. The process has been developed for applications in waste treatment, chemical demilitarization and decontamination at LLNL since 1992. The process uses solutions of the peroxydisulfate ion (typically sodium or ammonium salts) to completely mineralize the organics to carbon dioxide and water. The expended oxidant may be electrolytically regenerated to minimize secondary waste. The paper briefly describes: free radical and secondary oxidant formation; electrochemical regeneration; offgas stream; and throughput

  15. Final Report: Fiscal Year 1997 demonstration of omnivorous non-thermal mixed waste treatment: Direct chemical oxidation of organic solids and liquids using peroxydisulfate

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J.F.

    1998-01-01

    Direct Chemical Oxidation (DCO) is a non-thermal, ambient pressure, aqueous-based technology for the oxidative destruction of the organic components of hazardous or mixed waste streams. The process has been developed for applications in waste treatment, chemical demilitarization and decontamination at LLNL since 1992. The process uses solutions of the peroxydisulfate ion (typically sodium or ammonium salts) to completely mineralize the organics to carbon dioxide and water. The expended oxidant may be electrolytically regenerated to minimize secondary waste. The paper briefly describes: free radical and secondary oxidant formation; electrochemical regeneration; offgas stream; and throughput.

  16. Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte

    International Nuclear Information System (INIS)

    Chatenet, Marian; Micoud, Fabrice; Roche, Ivan; Chainet, Eric

    2006-01-01

    The direct oxidation of sodium borohydride in concentrated sodium hydroxide medium has been studied by cyclic and linear voltammetry, chronoamperometry and chronopotentiometry for silver and gold electrocatalysts, either bulk and polycrystalline or nanodispersed over high area carbon blacks. Gold and silver yield rather complete utilisation of the reducer: around 7.5 electrons are delivered on these materials, versus 4 at the most for platinum as a result of the BH 4 - non-negligible hydrolysis taking place on this latter material. The kinetic parameters for the direct borohydride oxidation are better for gold than for silver. A strong influence of the ratio of sodium hydroxide versus sodium borohydride is found: whereas the theoretical stoichiometry does forecast that eight hydroxide ions are needed for each borohydride ion, our experimental results prove that a larger excess hydroxide ion is necessary in quasi-steady state conditions. When the above-mentioned ratio is unity (1 M NaOH and 1 M NaBH 4 ), the tetrahydroborate ions direct oxidation is limited by the hydroxide concentration, and their hydrolysis is no longer negligible. The hydrolysis products are probably BH 3 OH - ions, for which gold displays a rather good oxidation activity. Additionally, silver, which is a weak BH 4 - oxidation electrocatalyst, exhibits the best activity of all the studied materials towards the BH 3 OH - direct oxidation. Finally, carbon-supported gold nanoparticles seem promising as anode material to be used in direct borohydride fuel cells

  17. Demonstration of an N7 integrated fab process for metal oxide EUV photoresist

    Science.gov (United States)

    De Simone, Danilo; Mao, Ming; Kocsis, Michael; De Schepper, Peter; Lazzarino, Frederic; Vandenberghe, Geert; Stowers, Jason; Meyers, Stephen; Clark, Benjamin L.; Grenville, Andrew; Luong, Vinh; Yamashita, Fumiko; Parnell, Doni

    2016-03-01

    Inpria has developed a directly patternable metal oxide hard-mask as a robust, high-resolution photoresist for EUV lithography. In this paper we demonstrate the full integration of a baseline Inpria resist into an imec N7 BEOL block mask process module. We examine in detail both the lithography and etch patterning results. By leveraging the high differential etch resistance of metal oxide photoresists, we explore opportunities for process simplification and cost reduction. We review the imaging results from the imec N7 block mask patterns and its process windows as well as routes to maximize the process latitude, underlayer integration, etch transfer, cross sections, etch equipment integration from cross metal contamination standpoint and selective resist strip process. Finally, initial results from a higher sensitivity Inpria resist are also reported. A dose to size of 19 mJ/cm2 was achieved to print pillars as small as 21nm.

  18. Preparation and characterization of Ce/Zr mixed oxides and their use as catalysts for the direct oxidation of dry CH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Larrondo, Susana; Vidal, Maria Adelina; Irigoyen, Beatriz; Amadeo, Norma [Lab. de Procesos Cataliticos, Depto. de Ing. Quimica, Facultad de Ingenieria, University de Buenos Aires, Pab. de Industrias, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Craievich, Aldo F. [Instituto de Fisica, USP, Travessa R da Rua do Matao, no.187, Cidade Universitaria, 05508-900, Sao Paulo, SP (Brazil); Lamas, Diego G.; Fabregas, Ismael O.; Lascalea, Gustavo E.; Reca, Noemi E. Walsoee de [Centro de Investigaciones en Solidos CINSO, CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires (Argentina)

    2005-10-30

    Solid oxide fuel cells have a promissory future in the direct combustion of fuels but, their main drawbacks are the high operation temperature and the rapid performance degradation due to carbon deposition in the anode. The development of ceria-based anodes with good electronic conductivity at lower temperatures seems to be a promising way to solve those problems. In this work, preparation of compositionally homogeneous Ce/Zr oxides by a gel-combustion process and their characterization are reported. A detailed crystallographic study performed by synchrotron radiation X-ray diffraction has been carried out, in order to analyze the correlation between crystal structure and catalytic properties. The oxides presented specific area values, porous size distribution and carbon content values desirable for solid catalysts. Likewise, increasing the content of ZrO{sub 2} facilitates the reducibility of both surface and bulk sites in the solid. The oxides have been active in the combustion of methane. Their performances were stable during a typical work period of 8h, with no evidence of formation of carbonaceous deposits. The experiments that were carried out confirm the promising features of these oxides as anodic materials in solid oxide fuel cells.

  19. ADVANCED OXIDATION PROCESSES FOR FOOD INDUSTRIAL WASTEWATER DECONTAMINATION

    Directory of Open Access Journals (Sweden)

    Dorota Krzemińska

    2015-02-01

    Full Text Available High organic matter content is a basic problem in food industry wastewaters. Typically, the amount and composition of the effluent varies considerably. In the article four groups of advanced processes and their combination of food industry wastewater treatment have been reviewed: electrochemical oxidation (EC, Fenton’s process, ozonation of water and photocatalytic processes. All advanced oxidation processes (AOP`s are characterized by a common chemical feature: the capability of exploiting high reactivity of HO• radicals in driving oxidation processes which are suitable for achieving decolonization and odour reduction, and the complete mineralization or increase of bioavailability of recalcitrant organic pollutants.

  20. Elaboration and characterisation of yttrium oxide and hafnium oxide powders by the sol-gel process

    International Nuclear Information System (INIS)

    Hours, T.

    1988-01-01

    The two classical sol-gel processes, colloidal and polymeric are studied for the preparation of yttrium oxide and hafnium oxide high performance powders. In the colloidal process, controlled and reproducible conditions for the preparation of yttrium oxide and hafnium oxide sols from salts or alkoxides are developed and the hydrothermal synthesis monodisperse hafnium oxide colloids is studied. The polymeric process is studied with hafnium ethyl-hexylate, hydrolysis kinetics for controlled preparation of sols and gels is investigated. Each step of preparation is detailed and powders obtained are characterized [fr

  1. Improvements in or relating to processes for reducing the oxygen content of metal oxides

    International Nuclear Information System (INIS)

    James, R.H.; Spooner, J.A.

    1980-01-01

    A process is described for reducing the oxygen content of a metal oxide material (such as an intimate mixture of uranium and plutonium oxides or a mixed oxide of uranium and plutonium) by contacting the material with a hydrogen-containing gas at an elevated temperature, wherein the material is contained in a plurality of carbon crucibles, each crucible having apertured ends and being otherwise a closed vessel, the crucibles being moved through a heated zone in end-to-end contact and thereby forming a duct through which the gas is passed counter-current to the direction of movement of the crucibles. (author)

  2. High aspect ratio silicon nanomoulds for UV embossing fabricated by directional thermal oxidation using an oxidation mask

    International Nuclear Information System (INIS)

    Chen, L Q; Chan-Park, Mary B; Yan, Y H; Zhang Qing; Li, C M; Zhang Jun

    2007-01-01

    Nanomoulding is simple and economical but moulds with nanoscale features are usually prohibitively expensive to fabricate because nanolithographic techniques are mostly serial and time-consuming for large-area patterning. This paper describes a novel, simple and inexpensive parallel technique for fabricating nanoscale pattern moulds by silicon etching followed by thermal oxidation. The mask pattern can be made by direct photolithography or photolithography followed by metal overetching for submicron- and nanoscale features, respectively. To successfully make nanoscale channels having a post-oxidation cross-sectional shape similar to that of the original channel, an oxidation mask to promote unidirectional (specifically horizontal) oxide growth is found to be essential. A silicon nitride or metal mask layer prevents vertical oxidation of the Si directly beneath it. Without this mask, rectangular channels become smaller but are V-shaped after oxidation. By controlling the silicon etch depth and oxidation time, moulds with high aspect ratio channels having widths ranging from 500 to 50 nm and smaller can be obtained. The nanomould, when passivated with a Teflon-like layer, can be used for first-generation replication using ultraviolet (UV) nanoembossing and second-generation replication in other materials, such as polydimethylsiloxane (PDMS). The PDMS stamp, which was subsequently coated with Au, was used for transfer printing of Au electrodes with a 600 nm gap which will find applications in plastics nanoelectronics

  3. Investigation of the direct and indirect electrochemical oxidation of hydrazine in nitric acid medium on platinum

    International Nuclear Information System (INIS)

    Cames, B.

    1997-01-01

    allow consideration of the process of direct electrochemical oxidation of hydrazine to nitrogen, and of Pu(III) to Pu(IV), with electrochemical yields of 100 %. (author)

  4. Desulfurization of AL-Ahdab Crude Oil using Oxidative Processes

    Directory of Open Access Journals (Sweden)

    Neran Khalel Ibrahim

    2015-07-01

    Full Text Available Two different oxidative desulfurization strategies based on oxidation/adsorption or oxidation/extraction were evaluated for the desulfurization of AL-Ahdab (AHD sour crude oil (3.9wt% sulfur content. In the oxidation process, a homogenous oxidizing agent comprising of hydrogen peroxide and formic acid was used. Activated carbons were used as sorbent/catalyst in the oxidation/adsorption process while acetonitrile was used as an extraction solvent in the oxidation/extraction process. For the oxidation/adsorption scheme, the experimental results indicated that the oxidation desulfurization efficiency was enhanced on using activated carbon as catalyst/sorbent. The effects of the operating conditions (contact time, temperature, mixing speed and sorbent dose on the desulfurization efficiency were examined. The desulfurization efficiency measured at the best operating conditions(optimum conditions: 60 , 500rpm, 60min contact time and sorbent dose of 0.7g AC/100 ml AHD crude, was 32.8% corresponding to a sulfur content of 2.6 wt%. Applying the same optimum operating conditions and at 3:1 solvent/oil ratio, the oxidation/extraction method gave comparable desulfurization efficiency of 31.5%.

  5. Oxidation catalysts and process for preparing same

    International Nuclear Information System (INIS)

    1980-01-01

    Compounds particularly suitable as oxidation catalysis are described, comprising specified amounts of uranium, antimony and tin as oxides. Processes for making and using the catalysts are described. (U.K.)

  6. Laser microstructuring and annealing processes for lithium manganese oxide cathodes

    International Nuclear Information System (INIS)

    Proell, J.; Kohler, R.; Torge, M.; Ulrich, S.; Ziebert, C.; Bruns, M.; Seifert, H.J.; Pfleging, W.

    2011-01-01

    It is expected that cathodes for lithium-ion batteries (LIB) composed out of nano-composite materials lead to an increase in power density of the LIB due to large electrochemically active surface areas but cathodes made of lithium manganese oxides (Li-Mn-O) suffer from structural instabilities due to their sensitivity to the average manganese oxidation state. Therefore, thin films in the Li-Mn-O system were synthesized by non-reactive radiofrequency magnetron sputtering of a spinel lithium manganese oxide target. For the enhancement of the power density and cycle stability, large area direct laser patterning using UV-laser radiation with a wavelength of 248 nm was performed. Subsequent laser annealing processes were investigated in a second step in order to set up a spinel-like phase using 940 nm laser radiation at a temperature of 680 deg. C. The interaction processes between UV-laser radiation and the material was investigated using laser ablation inductively coupled plasma mass spectroscopy. The changes in phase, structure and grain shape of the thin films due to the annealing process were recorded using Raman spectroscopy, X-ray diffraction and scanning electron microscopy. The structured cathodes were cycled using standard electrolyte and a metallic lithium anode. Different surface structures were investigated and a significant increase in cycling stability was found. Surface chemistry of an as-deposited as well as an electrochemically cycled thin film was investigated via X-ray photoelectron spectroscopy.

  7. A self-seeded, surfactant-directed hydrothermal growth of single crystalline lithium manganese oxide nanobelts from the commercial bulky particles.

    Science.gov (United States)

    Zhang, Lizhi; Yu, Jimmy C; Xu, An-Wu; Li, Quan; Kwong, Kwan Wai; Wu, Ling

    2003-12-07

    Single crystalline lithium manganese oxide nanobelts were obtained through a self-seeded, surfactant-directed growth process from the commercial bulky particles under hydrothermal treatment. A possible mechanism was proposed to explain the growth of the nanobelts. This new process could be extended to prepare other one-dimensional nanomaterials such as Se nanorods, Te nanotubes, and MnO2 nanowires.

  8. Direct chemical oxidation: a non-thermal technology for the destruction of organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, G.B.; Cooper, J. F.; Lewis, P. R.; Adamson, M. G.

    1998-02-01

    Direct Chemical Oxidation (DCO) is a non-thermal, ambient pressure, aqueous-based technology for the oxidative destruction of the organic components of hazardous or mixed waste streams. The process has been developed for applications in waste treatment and chemical demilitarization and decontamination at LLNL since 1992, and is applicable to the destruction of virtually all solid or liquid organics, including: chlorosolvents, oils and greases, detergents, organic-contaminated soils or sludges, explosives, chemical and biological warfare agents, and PCB's. [1-15] The process normally operates at 80-100 C, a heating requirement which increases the difficulty of surface decontamination of large objects or, for example, treatment of a wide area contaminated soil site. The driver for DCO work in FY98 was thus to investigate the use of catalysts to demonstrate the effectiveness of the technology for organics destruction at temperatures closer to ambient. In addition, DCO is at a sufficiently mature stage of development that technology transfer to a commercial entity was a logical next step, and was thus included in FY98 tasks.

  9. Quantitative assessment on the contribution of direct photolysis and radical oxidation in photochemical degradation of 4-chlorophenol and oxytetracycline.

    Science.gov (United States)

    Liu, Yiqing; He, Xuexiang; Fu, Yongsheng; Dionysiou, Dionysios D

    2016-07-01

    In UV-254 nm/H2O2 advanced oxidation process (AOP), the potential degradation pathways for organic pollutants include (1) hydrolysis, (2) direct H2O2 oxidation, (3) UV direct photolysis, and (4) hydroxyl radical (HO(•)) reaction. In this study, the contribution of these pathways was quantitatively assessed in the photochemical destruction of 4-chlorophenol (4-CP), demonstrating pathways (3) and (4) to be predominantly responsible for the removal of 4-CP by UV/H2O2 in 50 mM phosphate buffer solution. Increasing reaction pH could significantly enhance the contribution of direct photolysis in UV/H2O2 process. The contribution of HO(•) oxidation was improved with increasing initial H2O2 concentration probably due to the increased formation of HO(•). Presence of sodium carbonate (Na2CO3) as in UV/H2O2/Na2CO3 system promoted the degradation of 4-CP, with carbonate radical (CO3 (•-)) reaction and direct photolysis identified to be the main contributing pathways. The trends in the contribution of each factor were further evaluated and validated on the degradation of the antibiotic compound oxytetracycline (OTC). This study provides valuable information on the relative importance of different reaction pathways on the photochemical degradation of organic contaminants such as 4-CP and OTC in the presence and absence of a CO3 (•-) precursor.

  10. Beyond Diabetes: Does Obesity-Induced Oxidative Stress Drive the Aging Process?

    Directory of Open Access Journals (Sweden)

    Adam B. Salmon

    2016-07-01

    Full Text Available Despite numerous correlative data, a causative role for oxidative stress in mammalian longevity has remained elusive. However, there is strong evidence that increased oxidative stress is associated with exacerbation of many diseases and pathologies that are also strongly related to advanced age. Obesity, or increased fat accumulation, is one of the most common chronic conditions worldwide and is associated with not only metabolic dysfunction but also increased levels of oxidative stress in vivo. Moreover, obesity is also associated with significantly increased risks of cardiovascular disease, neurological decline and cancer among many other diseases as well as a significantly increased risk of mortality. In this review, we investigate the possible interpretation that the increased incidence of these diseases in obesity may be due to chronic oxidative stress mediating segmental acceleration of the aging process. Understanding how obesity can alter cellular physiology beyond that directly related to metabolic function could open new therapeutic areas of approach to extend the period of healthy aging among people of all body composition.

  11. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    International Nuclear Information System (INIS)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-01-01

    Graphical abstract: - Highlights: • Cerium oxide nanorods were uniformly grown on diverse substrates. • Changes in growth conditions led to morphology evolution of cerium oxide nanostructures. • The grown cerium oxide nanostructures were single or poly crystalline. • Direct growth of cerium oxide nanorods made the diverse substrates superhydrophobic and anti-corrosive without any surface modifiers. - Abstract: Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields

  12. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo [School of Mechanical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Dong Rip, E-mail: dongrip@hanyang.ac.kr [School of Mechanical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-06-15

    Graphical abstract: - Highlights: • Cerium oxide nanorods were uniformly grown on diverse substrates. • Changes in growth conditions led to morphology evolution of cerium oxide nanostructures. • The grown cerium oxide nanostructures were single or poly crystalline. • Direct growth of cerium oxide nanorods made the diverse substrates superhydrophobic and anti-corrosive without any surface modifiers. - Abstract: Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  13. Oxidation kinetics and mechanisms of four-direction carbon/carbon composites and their components in carbon dioxide at high temperature

    International Nuclear Information System (INIS)

    Qin, Fei; Peng, Li-na; He, Guo-qiang; Li, Jiang

    2013-01-01

    Highlights: •Four-direction C/C composite was fabricated using carbon fibres and coal tar pitches. •Large-sized bulk matrix was prepared using same process as matrix of C/C composites. •A and E a of C/C, bulk matrix and fibres in CO 2 were determined, respectively. •Pressure exponent n was 0.62 in C/C–CO 2 . -- Abstract: Thermogravimetric analysis and scanning electron microscopy were used to study the oxidation kinetics of four-direction carbon/carbon composites and their components (fibres and matrix) in a CO 2 atmosphere at high temperature. The ablation processes were restricted to reaction-limited oxidation. The mass loss rate was estimated for the four-direction carbon/carbon composites and their components within the temperature of range of 600–1400 °C. The pressure exponent for the reaction of carbon/carbon composites and CO 2 was 0.62, and the pre-exponential factor and activation energy for the reactions of CO 2 and the carbon/carbon composites, carbon fibres and matrix were determined, respectively

  14. New Catalysts for Direct Methanol Oxidation Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Adzic, Radoslav

    1998-08-01

    A new class of efficient electrocatalytic materials based on platinum - metal oxide systems has been synthetized and characterized by several techniques. Best activity was found with NiWO{sub 4}-, CoWO{sub 4}-, and RuO{sub 2}- sr¡pported platinum catalysts. A very similar activity at room temperature was observed with the electrodes prepared with the catalyst obtained from International Fuel Cells Inc. for the same Pt loading. Surprisingly, the two tungstates per se show a small activity for methanol oxidation without any Pt loading. Synthesis of NiWO{sub 4} and CoWO{sub 4} were carried out by solid-state reactions. FTIR spectroscopy shows that the tungstates contain a certain amount of physically adsorbed water even after heating samples at 200{degrees}C. A direct relationship between the activity for methanol oxidation and the amount of adsorbed water on those oxides has been found. The Ru(0001) single crystal shows a very small activity for CO adsorption and oxidation, in contrast to the behavior of polycrystalline Ru. In situ extended x-ray absorption fine structure spectroscopy (EXAFS) and x-ray absorption near edge spectroscopy (XANES) showed that the OH adsorption on Ru in the Pt-Ru alloy appears to be the limiting step in methanol oxidation. This does not occur for Pt-RuO{SUB 2} electrocatalyst, which explains its advantages over the Pt-Ru alloys. The IFCC electrocatalyst has the properties of the Pt-Ru alloy.

  15. Ce-Fe-O mixed oxide as oxygen carrier for the direct partial oxidation of methane to syngas

    Institute of Scientific and Technical Information of China (English)

    魏永刚; 王华; 李孔斋

    2010-01-01

    The Ce-Fe-O mixed oxide with a ratio of Ce/Fe=7:3, which was prepared by coprecipitation method and employed as oxygen carrier, for direct partial oxidation of methane to syngas in the absence of gaseous oxygen was explored. The mixed oxide was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), and the catalytic performances were studied in a fixed-bed quartz reactor and a thermogravimetric reactor, respectively. Approximately 99.4% H2 se...

  16. Recent Advances of Solution-Processed Metal Oxide Thin-Film Transistors.

    Science.gov (United States)

    Xu, Wangying; Li, Hao; Xu, Jian-Bin; Wang, Lei

    2018-03-06

    Solution-processed metal oxide thin-film transistors (TFTs) are considered as one of the most promising transistor technologies for future large-area flexible electronics. This review surveys the recent advances in solution-based oxide TFTs, including n-type oxide semiconductors, oxide dielectrics and p-type oxide semiconductors. Firstly, we provide an introduction on oxide TFTs and the TFT configurations and operating principles. Secondly, we present the recent progress in solution-processed n-type transistors, with a special focus on low-temperature and large-area solution processed approaches as well as novel non-display applications. Thirdly, we give a detailed analysis of the state-of-the-art solution-processed oxide dielectrics for low-voltage electronics. Fourthly, we discuss the recent progress in solution-based p-type oxide semiconductors, which will enable the highly desirable future low-cost large-area complementary circuits. Finally, we draw the conclusions and outline the perspectives over the research field.

  17. Removal of ammonia solutions used in catalytic wet oxidation processes.

    Science.gov (United States)

    Hung, Chang Mao; Lou, Jie Chung; Lin, Chia Hua

    2003-08-01

    Ammonia (NH(3)) is an important product used in the chemical industry, and is common place in industrial wastewater. Industrial wastewater containing ammonia is generally either toxic or has concentrations or temperatures such that direct biological treatment is unfeasible. This investigation used aqueous solutions containing more of ammonia for catalytic liquid-phase oxidation in a trickle-bed reactor (TBR) based on Cu/La/Ce composite catalysts, prepared by co-precipitation of Cu(NO(3))(2), La(NO(3))(2), and Ce(NO(3))(3) at 7:2:1 molar concentrations. The experimental results indicated that the ammonia conversion of the wet oxidation in the presence of the Cu/La/Ce composite catalysts was determined by the Cu/La/Ce catalyst. Minimal ammonia was removed from the solution by the wet oxidation in the absence of any catalyst, while approximately 91% ammonia removal was achieved by wet oxidation over the Cu/La/Ce catalyst at 230 degrees C with oxygen partial pressure of 2.0 MPa. Furthermore, the effluent streams were conducted at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes, and a reaction pathway was found linking the oxidizing ammonia to nitric oxide, nitrogen and water. The solution contained by-products, including nitrates and nitrites. Nitrite selectivity was minimized and ammonia removal maximized when the feed ammonia solution had a pH of around 12.0.

  18. Partial oxidation process

    International Nuclear Information System (INIS)

    Najjar, M.S.

    1987-01-01

    A process is described for the production of gaseous mixtures comprising H/sub 2/+CO by the partial oxidation of a fuel feedstock comprising a heavy liquid hydrocarbonaceous fuel having a nickel, iron, and vanadium-containing ash or petroleum coke having a nickel, iron, and vanadium-containing ash, or mixtures thereof. The feedstock includes a minimum of 0.5 wt. % of sulfur and the ash includes a minimum of 5.0 wt. % vanadium, a minimum of 0.5 ppm nickel, and a minimum of 0.5 ppm iron. The process comprises: (1) mixing together a copper-containing additive with the fuel feedstock; wherein the weight ratio of copper-containing additive to ash in the fuel feedstock is in the range of about 1.0-10.0, and there is at least 10 parts by weight of copper for each part by weight of vanadium; (2) reacting the mixture from (1) at a temperature in the range of 2200 0 F to 2900 0 F and a pressure in the range of about 5 to 250 atmospheres in a free-flow refactory lined partial oxidation reaction zone with a free-oxygen containing gas in the presence of a temperature moderator and in a reducing atmosphere to produce a hot raw effluent gas stream comprising H/sub 2/+CO and entrained molten slag; and where in the reaction zone and the copper-containing additive combines with at least a portion of the nickel and iron constituents and sulfur found in the feedstock to produce a liquid phase washing agent that collects and transports at least a portion of the vanadium-containing oxide laths and spinels and other ash components and refractory out of the reaction zone; and (3) separating nongaseous materials from the hot raw effluent gas stream

  19. Direct electrochemical reduction of solid uranium oxide in molten fluoride salts

    Science.gov (United States)

    Gibilaro, Mathieu; Cassayre, Laurent; Lemoine, Olivier; Massot, Laurent; Dugne, Olivier; Malmbeck, Rikard; Chamelot, Pierre

    2011-07-01

    The direct electrochemical reduction of UO 2 solid pellets was carried out in LiF-CaF 2 (+2 mass.% Li 2O) at 850 °C. An inert gold anode was used instead of the usual reactive sacrificial carbon anode. In this case, oxidation of oxide ions present in the melt yields O 2 gas evolution on the anode. Electrochemical characterisations of UO 2 pellets were performed by linear sweep voltammetry at 10 mV/s and reduction waves associated to oxide direct reduction were observed at a potential 150 mV more positive in comparison to the solvent reduction. Subsequent, galvanostatic electrolyses runs were carried out and products were characterised by SEM-EDX, EPMA/WDS, XRD and microhardness measurements. In one of the runs, uranium oxide was partially reduced and three phases were observed: nonreduced UO 2 in the centre, pure metallic uranium on the external layer and an intermediate phase representing the initial stage of reduction taking place at the grain boundaries. In another run, the UO 2 sample was fully reduced. Due to oxygen removal, the U matrix had a typical coral-like structure which is characteristic of the pattern observed after the electroreduction of solid oxides.

  20. Self-assembled manganese oxide structures through direct oxidation

    KAUST Repository

    Zhao, Chao; Wang, Qingxiao; Yang, Yang; Zhang, Bei; Zhang, Xixiang

    2012-01-01

    The morphology and phase of self-assembled manganese oxides during different stages of thermal oxidation were studied. Very interesting morphological patterns of Mn oxide films were observed. At the initial oxidation stage, the surface was characterized by the formation of ring-shaped patterns. As the oxidation proceeded to the intermediate stage, concentric plates formed to relax the compressive stress. Our experimental results gave a clear picture of the evolution of the structures. We also examined the properties of the structures. © 2012 Elsevier B.V.

  1. Self-assembled manganese oxide structures through direct oxidation

    KAUST Repository

    Zhao, Chao

    2012-12-01

    The morphology and phase of self-assembled manganese oxides during different stages of thermal oxidation were studied. Very interesting morphological patterns of Mn oxide films were observed. At the initial oxidation stage, the surface was characterized by the formation of ring-shaped patterns. As the oxidation proceeded to the intermediate stage, concentric plates formed to relax the compressive stress. Our experimental results gave a clear picture of the evolution of the structures. We also examined the properties of the structures. © 2012 Elsevier B.V.

  2. Direct imprinting of indium-tin-oxide precursor gel and simultaneous formation of channel and source/drain in thin-film transistor

    Science.gov (United States)

    Haga, Ken-ichi; Kamiya, Yuusuke; Tokumitsu, Eisuke

    2018-02-01

    We report on a new fabrication process for thin-film transistors (TFTs) with a new structure and a new operation principle. In this process, both the channel and electrode (source/drain) are formed simultaneously, using the same oxide material, using a single nano-rheology printing (n-RP) process, without any conventional lithography process. N-RP is a direct thermal imprint technique and deforms oxide precursor gel. To reduce the source/drain resistance, the material common to the channel and electrode is conductive indium-tin-oxide (ITO). The gate insulator is made of a ferroelectric material, whose high charge density can deplete the channel of the thin ITO film, which realizes the proposed operation principle. First, we have examined the n-RP conditions required for the channel and source/drain patterning, and found that the patterning properties are strongly affected by the cooling rate before separating the mold. Second, we have fabricated the TFTs as proposed and confirmed their TFT operation.

  3. Direct plutonium oxide reduction/electrorefining interface program

    International Nuclear Information System (INIS)

    Baldwin, C.E.; Berry, J.W.; Giebel, R.E.; Long, J.L.; Moser, W.S.; Navratil, J.D.; Tibbitts, S.F.

    1986-01-01

    Research test work and production data evaluation were performed by the Direct Oxide Reduction (DOR)/Electrorefining (ER) Interface Task Team to determine the cause for poor efficiency and yields during ER of DOR metal product. Production data and preliminary test results provided a working hypothesis. Extremely high loadings of impurities (whatever their exact source and identity) in the DOR product metal may lead to failure of the metal to become a molten anode at ER operating temperatures. Moderate impurity levels permit attainment of a molten anode, but lead to low yields because of premature anode solidification. The test results did not conclusively prove the hypothesis or identify specific mechanisms, but were qualitatively supportive. By stirring the molten anode metal pool, as well as the molten salt phase, generally good ER runs were obtained with both DOR and non-DOR feeds. These limited preliminary results suggest that anode stirring decreases the sensitivity of the ER process to DOR-related impurities. Suggested corrective measures included: (1) minimizing impurities in DOR feed to ER and (2) continued evaluation of anode stirring along with run termination by back-EMF measurements. 1 ref., 3 figs., 13 tabs

  4. Metal oxide nanoparticle mediated enhanced Raman scattering and its use in direct monitoring of interfacial chemical reactions.

    Science.gov (United States)

    Li, Li; Hutter, Tanya; Finnemore, Alexander S; Huang, Fu Min; Baumberg, Jeremy J; Elliott, Stephen R; Steiner, Ullrich; Mahajan, Sumeet

    2012-08-08

    Metal oxide nanoparticles (MONPs) have widespread usage across many disciplines, but monitoring molecular processes at their surfaces in situ has not been possible. Here we demonstrate that MONPs give highly enhanced (×10(4)) Raman scattering signals from molecules at the interface permitting direct monitoring of their reactions, when placed on top of flat metallic surfaces. Experiments with different metal oxide materials and molecules indicate that the enhancement is generic and operates at the single nanoparticle level. Simulations confirm that the amplification is principally electromagnetic and is a result of optical modulation of the underlying plasmonic metallic surface by MONPs, which act as scattering antennae and couple light into the confined region sandwiched by the underlying surface. Because of additional functionalities of metal oxides as magnetic, photoelectrochemical and catalytic materials, enhanced Raman scattering mediated by MONPs opens up significant opportunities in fundamental science, allowing direct tracking and understanding of application-specific transformations at such interfaces. We show a first example by monitoring the MONP-assisted photocatalytic decomposition reaction of an organic dye by individual nanoparticles.

  5. Efficient and simple approaches towards direct oxidative esterification of alcohols.

    Science.gov (United States)

    Ray, Ritwika; Jana, Rahul Dev; Bhadra, Mayukh; Maiti, Debabrata; Lahiri, Goutam Kumar

    2014-11-17

    The present article describes novel oxidative protocols for direct esterification of alcohols. The protocols involve successful demonstrations of both "cross" and "self" esterification of a wide variety of alcohols. The cross-esterification proceeds under a simple transition-metal-free condition, containing catalytic amounts of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy)/TBAB (tetra-n-butylammonium bromide) in combination with oxone (potassium peroxo monosulfate) as the oxidant, whereas the self-esterification is achieved through simple induction of Fe(OAc)2 /dipic (dipic=2,6-pyridinedicarboxylic acid) as the active catalyst under an identical oxidizing environment. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Oxidation-extraction of uranium from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    Lawes, B.C.

    1985-01-01

    The invention involves an improvement to the reductive stripping process for recovering uranium values from wet-process phosphoric acid solution, where uranium in the solution is oxidized to uranium (VI) oxidation state and then extracted from the solution by contact with a water immiscible organic solvent, by adding sufficient oxidant, hydrogen peroxide, to obtain greater than 90 percent conversion of the uranium to the uranium (VI) oxidation state to the phosphoric acid solution and simultaneously extracting the uranium (VI)

  7. Oxide nano-rod array structure via a simple metallurgical process

    International Nuclear Information System (INIS)

    Nanko, M; Do, D T M

    2011-01-01

    A simple method for fabricating oxide nano-rod array structure via metallurgical process is reported. Some dilute alloys such as Ni(Al) solid solution shows internal oxidation with rod-like oxide precipices during high-temperature oxidation with low oxygen partial pressure. By removing a metal part in internal oxidation zone, oxide nano-rod array structure can be developed on the surface of metallic components. In this report, Al 2 O 3 or NiAl 2 O 4 nano-rod array structures were prepared by using Ni(Al) solid solution. Effects of Cr addition into Ni(Al) solid solution on internal oxidation were also reported. Pack cementation process for aluminizing of Ni surface was applied to prepare nano-rod array components with desired shape. Near-net shape Ni components with oxide nano-rod array structure on their surface can be prepared by using the pack cementation process and internal oxidation,

  8. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    KAUST Repository

    Wang, Zhenwei

    2015-04-20

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

  9. Direct synthesis of graphene nanosheets support Pd nanodendrites for electrocatalytic formic acid oxidation

    Institute of Scientific and Technical Information of China (English)

    杨苏东; 陈琳

    2015-01-01

    We report a solvothermal method preparation of dendritic Pd nanoparticles (DPNs) and spherical Pd nanoparticles (SPNs) supported on reduced graphene oxide (RGO). Drastically different morphologies of Pd NPs with nanodendritic structures or spherical structures were observed on graphene by controlling the reduction degree of graphene oxide (GO) un-der mild conditions. In addition to being a commonplace substrate, GO plays a more important role that relies on its surface groups, which serves as a shape-directing agent to direct the dendritic growth. As a result, the obtained DPNs/RGO catalyst exhibits a significantly enhanced electro-catalytic behavior for the oxidation of formic acid compared to the SPNs/RGO catalyst.

  10. Direct reform of graphite oxide electrodes by using ambient plasma for supercapacitor applications

    Science.gov (United States)

    Kim, Ho Jun; Jeong, Hae Kyung

    2017-10-01

    Ambient plasma is applied to graphite oxide electrodes directly to improve electrochemical properties for supercapacitor applications. Surface morphology of the electrodes after the plasma treatment changes dramatically and amount of oxygen reduced significantly, demonstrating a reduction effect on the graphite oxide electrode by the ambient plasma. Equivalent series resistance of the electrode also reduced from 108 Ω to 84 Ω after the plasma treatment. Corresponding specific capacitance, therefore, increases from 0.45 F cm-2 to 0.85 F cm-2, proving that the ambient plasma treatment is very efficient, clean, economic, and environment-friendly method to reform the graphite oxide electrodes directly for the supercapacitor applications.

  11. Directed-energy process technology efforts

    Science.gov (United States)

    Alexander, P.

    1985-01-01

    A summary of directed-energy process technology for solar cells was presented. This technology is defined as directing energy or mass to specific areas on solar cells to produce a desired effect in contrast to exposing a cell to a thermal or mass flow environment. Some of these second generation processing techniques are: ion implantation; microwave-enhanced chemical vapor deposition; rapid thermal processing; and the use of lasers for cutting, assisting in metallization, assisting in deposition, and drive-in of liquid dopants. Advantages of directed energy techniques are: surface heating resulting in the bulk of the cell material being cooler and unchanged; better process control yields; better junction profiles, junction depths, and metal sintering; lower energy consumption during processing and smaller factory space requirements. These advantages should result in higher-efficiency cells at lower costs. The results of the numerous contracted efforts were presented as well as the application potentials of these new technologies.

  12. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells.

    Science.gov (United States)

    Chaudhuri, Swades K; Lovley, Derek R

    2003-10-01

    Abundant energy, stored primarily in the form of carbohydrates, can be found in waste biomass from agricultural, municipal and industrial sources as well as in dedicated energy crops, such as corn and other grains. Potential strategies for deriving useful forms of energy from carbohydrates include production of ethanol and conversion to hydrogen, but these approaches face technical and economic hurdles. An alternative strategy is direct conversion of sugars to electrical power. Existing transition metal-catalyzed fuel cells cannot be used to generate electric power from carbohydrates. Alternatively, biofuel cells in which whole cells or isolated redox enzymes catalyze the oxidation of the sugar have been developed, but their applicability has been limited by several factors, including (i) the need to add electron-shuttling compounds that mediate electron transfer from the cell to the anode, (ii) incomplete oxidation of the sugars and (iii) lack of long-term stability of the fuel cells. Here we report on a novel microorganism, Rhodoferax ferrireducens, that can oxidize glucose to CO(2) and quantitatively transfer electrons to graphite electrodes without the need for an electron-shuttling mediator. Growth is supported by energy derived from the electron transfer process itself and results in stable, long-term power production.

  13. The main directions in technology investigation of soid oxide fuel cell in Russian Federal Research Center Institute of Physics & Power Engineering (IPPE)

    Energy Technology Data Exchange (ETDEWEB)

    Ievleva, J.I.; Kolesnikov, V.P.; Mezhertisky, G.S. [and others

    1996-04-01

    The main direction of science investigations for creation of efficient solid oxide fuel cells (SOFC) in IPPE are considered in this work. The development program of planar SOFC with thin-film electrolyte is shown. General design schemes of experimental SOFC units are presented. The flow design schemes of processes for initial materials and electrodes fabrication are shown. The results of investigations for creation thin-film solid oxide electrolyte at porous cathode by magnetron sputtering from complex metal target in oxidative environment are presented.

  14. Direct measurement of the Cu oxidation number of cuprate superconductor ceramics

    International Nuclear Information System (INIS)

    Dankhazi, Z.; Szasz, A.; Kojnok, J.; Gal, M.; Torkos, K.; Solymos, K.; Kirchmayr, H.; Mueller, H.; Watson, L.M.

    1991-01-01

    The Cu oxidation number of YBa 2 Cu 3 O 7 was measured directly by soft X-ray fluorescent spectroscopy both at room temperature and at liquid N 2 temperature. The measurements are based on a calibration curve from different Ba-O compounds. The effects of changes in oxidation number above and below the transition temperature and its role in high-T c superconductivity are discussed

  15. Evaluation of Fenton Process in Removal of Direct Red 81

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Baghapour

    2016-01-01

    Full Text Available Background: Dyes are visible materials and are considered as one of the hazardous components that make up the industrial waste. Dye compounds in natural water, even in very low concentrations, will lead to environmental problems. Azo dyes are compounds with one or more –N=N– groups and are used in textile industry. Because of its low price, solubility, and stability, azo dyes are widely used in the textile industry. Direct Red 81 (DR81 is one of the azo dyes, which is removed from bodies of water, using various methods. This study aimed to assess DR81 dye removal by Fenton oxidation and the effects of various parameters on this process. Methods: Decolorization tests by Fenton oxidation were performed at dye concentrations of 50, 500, 100 and 1000 mg/L; hydrogen peroxide concentrations of 0, 10, 30, 60 and 120 mg/L; iron (II sulfate heptahydrate concentrations of 0, 3, 5, 20 and 50 mg/L; and pH levels of 3, 5, 7 and 10 for durations of 5, 10, 20, 30, 60 and 180 minutes. Results: The optimal condition occurred at a dye concentration of 20 mg/L, hydrogen peroxide concentration of 120 mg/L, bivalent iron concentration of 100 mg/L, pH of 3, and duration of 30 minutes. Under such conditions, the maximum dye removal rate was 88.98%. Conclusion: The results showed that DR81 could be decomposed and removed by Fenton oxidation. In addition, the removal of Direct Red 81 (DR81 depends on several factors such as dye concentration, reaction time, concentrations of hydrogen peroxide and iron, and pH

  16. Potential Dimension Yields From Direct Processing

    Science.gov (United States)

    Wenjie Lin; D. Earl Kline; Philip A. Araman

    1994-01-01

    As the price of timber increases and environmental leigslation limits harvestable log volumes, the process of converting logs directly into dimension parts needs further exploration. Direct processing converts logs directly into rough green dimension parts without the intermediate steps of lumber manufacturing, grading, trading, shipping and drying. A major attraction...

  17. Supported versus colloidal zinc oxide for advanced oxidation processes

    Science.gov (United States)

    Laxman, Karthik; Al Rashdi, Manal; Al Sabahi, Jamal; Al Abri, Mohammed; Dutta, Joydeep

    2017-07-01

    Photocatalysis is a green technology which typically utilizes either supported or colloidal catalysts for the mineralization of aqueous organic contaminants. Catalyst surface area and surface energy are the primary factors determining its efficiency, but correlation between the two is still unclear. This work explores their relation and hierarchy in a photocatalytic process involving both supported and colloidal catalysts. In order to do this the active surface areas of supported zinc oxide nanorods (ZnO NR's) and colloidal zinc oxide nanoparticles (having different surface energies) were equalized and their phenol oxidation mechanism and capacity was analyzed. It was observed that while surface energy had subtle effects on the oxidation rate of the catalysts, the degradation efficiency was primarily a function of the surface area; which makes it a better parameter for comparison when studying different catalyst forms of the same material. Thus we build a case for the use of supported catalysts, wherein their catalytic efficiency was tested to be unaltered over several days under both natural and artificial light, suggesting their viability for practical applications.

  18. Elementary kinetic modelling applied to solid oxide fuel cell pattern anodes and a direct flame fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Vogler, Marcel

    2009-05-27

    In the course of this thesis a model for the prediction of polarisation characteristics of solid oxide fuel cells (SOFC) was developed. The model is based on an elementary kinetic description of electrochemical reactions and the fundamental conservation principles of mass and energy. The model allows to predict the current-voltage relation of an SOFC and offers ideal possibilities for model validation. The aim of this thesis is the identification of rate-limiting processes and the determination of the elementary pathway during charge transfer. The numerical simulation of experiments with model anodes allowed to identify a hydrogen transfer to be the most probable charge-transfer reaction and revealed the influence of diffusive transport. Applying the hydrogen oxidation kinetics to the direct flame fuel cell system (DFFC) showed that electrochemical oxidation of CO is possible based on the same mechanism. Based on the quantification of loss processes in the DFFC system, improvements on cell design, predicting 80% increase of efficiency, were proposed. (orig.)

  19. A Graphite Oxide Paper Polymer Electrolyte for Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Ravi Kumar

    2011-01-01

    Full Text Available A flow directed assembly of graphite oxide solution was used in the formation of free-standing graphene oxide paper of approximate thickness of 100 μm. The GO papers were characterised by XRD and SEM. Electrochemical characterization of the GO paper membrane electrode assembly revealed proton conductivities of 4.1 × 10−2 S cm−1 to 8.2 × 10−2 S cm−1 at temperatures of 25–90°C. A direct methanol fuel cell, at 60°C, gave a peak power density of 8 mW cm−2 at a current density of 35 mA cm−2.

  20. Surface patterned dielectrics by direct writing of anodic oxides using scanning droplet cell microscopy

    International Nuclear Information System (INIS)

    Siket, Christian M.; Mardare, Andrei Ionut; Kaltenbrunner, Martin; Bauer, Siegfried; Hassel, Achim Walter

    2013-01-01

    Highlights: • Scanning droplet cell microscopy was applied for local gate oxide writing. • Sharp lines are obtained at the highest writing speed of 1 mm min −1 . • 13.4 kC cm −3 was found as charge per volume for aluminium oxide. • High field constant of 24 nm V −1 and dielectric constant of 12 were determined for Al 2 O 3 by CV and EIS. -- Abstract: Scanning droplet cell microscopy was used for patterning of anodic oxide lines on the surface of Al thin films by direct writing. The structural modifications of the written oxide lines as a function of the writing speed were studied by analyzing the relative error of the line widths. Sharper lines were obtained for writing speeds faster than 1 mm min −1 . An increase in sharpness was observed for higher writing speeds. A theoretical model based on the Faraday law is proposed to explain the constant anodisation current measured during the writing process and yielded a charge per volume of 13.4 kC cm −3 for Al 2 O 3 . From calculated oxide film thicknesses the high field constant was found to be 24 nm V −1 . Electrochemical impedance spectroscopy revealed an increase of the electrical permittivity up to ε = 12 with the decrease of the writing speed of the oxide line. Writing of anodic oxide lines was proven to be an important step in preparing capacitors and gate dielectrics in plastic electronics

  1. Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes

    Science.gov (United States)

    Humphreys, Madeleine C.S.; Brooker, R; Fraser, D.C.; Burgisser, A; Mangan, Margaret T.; McCammon, C

    2015-01-01

    Arc magmas erupted at the Earth’s surface are commonly more oxidized than those produced at mid-ocean ridges. Possible explanations for this high oxidation state are that the transfer of fluids during the subduction process results in direct oxidation of the sub-arc mantle wedge, or that oxidation is caused by the effect of later crustal processes, including protracted fractionation and degassing of volatile-rich magmas. This study sets out to investigate the effect of disequilibrium crustal processes that may involve coupled changes in H2O content and Fe oxidation state, by examining the degassing and hydration of sulphur-free rhyolites. We show that experimentally hydrated melts record strong increases in Fe3+/∑Fe with increasing H2O concentration as a result of changes in water activity. This is relevant for the passage of H2O-undersaturated melts from the deep crust towards shallow crustal storage regions, and raises the possibility that vertical variations in fO2 might develop within arc crust. Conversely, degassing experiments produce an increase in Fe3+/∑Fe with decreasing H2O concentration. In this case the oxidation is explained by loss of H2 as well as H2O into bubbles during decompression, consistent with thermodynamic modelling, and is relevant for magmas undergoing shallow degassing en route to the surface. We discuss these results in the context of the possible controls on fO2 during the generation, storage and ascent of magmas in arc settings, in particular considering the timescales of equilibration relative to observation as this affects the quality of the petrological record of magmatic fO2.

  2. Plasma Spray and Pack Cementation Process Optimization and Oxidation Behaviour of Novel Multilayered Coatings

    Science.gov (United States)

    Gao, Feng

    The hot section components in gas turbines are subjected to a harsh environment with the temperature being increased continuously. The higher temperature has directly resulted in severe oxidation of these components. Monolithic coatings such as MCrAIY and aluminide have been traditionally used to protect the components from oxidation; however, increased operating temperature quickly deteriorates the coatings due to accelerated diffusion of aluminum in the coatings. To improve the oxidation resistance a group of multilayered coatings are developed in this study. The multilayered coatings consist of a Cr-Si co-deposited layer as the diffusion barrier, a plasma sprayed NiCrA1Y coating as the middle layer and an aluminized top layer. The Cr-Si and aluminized layers are fabricated using pack cementation processes and the NiCrA1Y coatings are produced using the Mettech Axial III(TM) System. All of the coating processes are optimized using the methodology of Design of Experiments (DOE) and the results are analyzed using statistical method. The optimal processes are adopted to fabricate the multilayered coatings for oxidation tests. The coatings are exposed in air at 1050°C and 1150°C for 1000 hr. The results indicate that a Cr layer and a silicon-rich barrier layer have formed on the interface between the Cr-Si coating and the NiCrA1Y coating. This barrier layer not only prevents aluminum and chromium from diffusing into the substrate, but also impedes the diffusion of other elements from the substrate into the coating. The results also reveal that, for optimal oxidation resistance at 1050°C, the top layer in a multilayered coating should have at least Al/Ni ratio of one; whereas the multilayered coating with the All Ni ratio of two in the top layer exhibits the best oxidation resistance at 1150°C. The DOE methodology provides an excellent means for process optimization and the selection of oxidation test matrix, and also offers a more thorough understanding of the

  3. Investigation of Iron Oxide Morphology in a Cyclic Redox Water Splitting Process for Hydrogen Generation

    Directory of Open Access Journals (Sweden)

    Michael M. Bobek

    2012-10-01

    Full Text Available A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. With a goal of studying the resulting oxide chemistry and morphology, chemical assistance via CO is used to complete the redox cycle. In order to exploit the unique characteristics of highly reactive materials at the solar reactor scale, a monolithic laboratory scale reactor has been designed to explore the redox cycle at temperatures ranging from 675 to 875 K. Using high resolution scanning electron microscope (SEM and electron dispersive X-ray spectroscopy (EDS, the oxide morphology and the oxide state are quantified, including spatial distributions. These images show the change of the oxide layers directly after oxidation and after reduction. The findings show a significant non-stoichiometric O/Fe gradient in the atomic ratio following oxidation, which is consistent with a previous kinetics model, and a relatively constant, non-stoichiometric O/Fe atomic ratio following reduction.

  4. In situ photoemission spectroscopy using synchrotron radiation for O2 translational kinetic energy induced oxidation processes of partially-oxidized Si(001) surfaces

    International Nuclear Information System (INIS)

    Teraoka, Yuden; Yoshigoe, Akitaka

    2001-01-01

    The influence of translational kinetic energy of incident O 2 molecules for the passive oxidation process of partially-oxidized Si(001) surfaces has been studied by photoemission spectroscopy. The translational kinetic energy of O 2 molecules was controlled up to 3 eV by a supersonic seed beam technique using a high temperature nozzle. Two translational kinetic energy thresholds (1.0 eV and 2.6 eV) were found out in accordance with the first-principles calculation for the oxidation of clean surfaces. Si-2p photoemission spectra measured in representative translational kinetic energies revealed that the translational kinetic energy dependent oxidation of dimers and the second layer (subsurface) backbonds were caused by the direct dissociative chemisorption of O 2 molecules. Moreover, the difference in chemical bonds for oxygen atoms was found out to be as low and high binding energy components in O-1s photoemission spectra. Especially, the low binding energy component increased with increasing the translational kinetic energy that indicates the translational kinetic energy induced oxidation in backbonds. (author)

  5. Measuring oxidation processes: Atomic oxygen flux monitor

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Of the existing 95 high-energy accelerators in the world, the Stanford Linear Collider (SLC) at the Stanford Linear Accelerator Center (SLAC) is the only one of the linear-collider type, where electrons and positrons are smashed together at energies of 50 GeV using linear beams instead of beam rings for achieving interactions. Use of a collider eliminates energy losses in the form of x-rays due to the curved trajectory of the rings, a phenomena known as bremsstrauhlung. Because these losses are eliminated, higher interaction energies are reached. Consequently the SLC produced the first Z particle in quantities large enough to allow measurement of its physical properties with some accuracy. SLAC intends to probe still deeper into the structure of matter by next polarizing the electrons in the beam. The surface of the source for these polarized particles, typically gallium arsenide, must be kept clean of contaminants. One method for accomplishing this task requires the oxidation of the surface, from which the oxidized contaminants are later boiled off. The technique requires careful measurement of the oxidation process. SLAC researchers have developed a technique for measuring the atomic oxygen flux in this process. The method uses a silver film on a quartz-crystal, deposition-rate monitor. Measuring the initial oxidation rate of the silver, which is proportional to the atomic oxygen flux, determines a lower limit on that flux in the range of 10 13 to 10 17 atoms per square centimeter per second. Furthermore, the deposition is reversible by exposing the sensor to atomic hydrogen. This technique has wider applications to processes in solid-state and surface physics as well as surface chemistry. In semiconductor manufacturing where a precise thickness of oxide must be deposited, this technique could be used to monitor the critical flux of atomic oxygen in the process

  6. Electrochemical advanced oxidation processes: today and tomorrow. A review.

    Science.gov (United States)

    Sirés, Ignasi; Brillas, Enric; Oturan, Mehmet A; Rodrigo, Manuel A; Panizza, Marco

    2014-01-01

    In recent years, new advanced oxidation processes based on the electrochemical technology, the so-called electrochemical advanced oxidation processes (EAOPs), have been developed for the prevention and remediation of environmental pollution, especially focusing on water streams. These methods are based on the electrochemical generation of a very powerful oxidizing agent, such as the hydroxyl radical ((•)OH) in solution, which is then able to destroy organics up to their mineralization. EAOPs include heterogeneous processes like anodic oxidation and photoelectrocatalysis methods, in which (•)OH are generated at the anode surface either electrochemically or photochemically, and homogeneous processes like electro-Fenton, photoelectro-Fenton, and sonoelectrolysis, in which (•)OH are produced in the bulk solution. This paper presents a general overview of the application of EAOPs on the removal of aqueous organic pollutants, first reviewing the most recent works and then looking to the future. A global perspective on the fundamentals and experimental setups is offered, and laboratory-scale and pilot-scale experiments are examined and discussed.

  7. CAV-OX (trade name) Cavitation Oxidation Process Magnum Water Technology, Inc. applications analysis report. Report for November 1992-November 1993

    Energy Technology Data Exchange (ETDEWEB)

    Stacy, G.L.

    1994-05-01

    The CAV-OX process was developed by magnum Water Technology to destroy organic contaminants in water. The process uses hydrodynamic cavitation, ultraviolet (UV) radiation, and hydrogen peroxide to oxidize organic compounds present in water at or below milligrams per liter levels. This treatment technology produces no air emissions and generated no sludge or spent media that requires further processing, handling, or disposal. Ideally, the end products are water, carbon dioxide, halides, and in some cases, organic acids. The process uses mercury vapor lamps to generate UV radiation. The principal oxidants in the process, hydroxyl radicals, are produced by hydrodynamic cavitation and direct photolysis of hydrogen peroxide at UV wavelengths.

  8. Influence of oxidized purine processing on strand directionality of mismatch repair.

    Science.gov (United States)

    Repmann, Simone; Olivera-Harris, Maite; Jiricny, Josef

    2015-04-17

    Replicative DNA polymerases are high fidelity enzymes that misincorporate nucleotides into nascent DNA with a frequency lower than [1/10(5)], and this precision is improved to about [1/10(7)] by their proofreading activity. Because this fidelity is insufficient to replicate most genomes without error, nature evolved postreplicative mismatch repair (MMR), which improves the fidelity of DNA replication by up to 3 orders of magnitude through correcting biosynthetic errors that escaped proofreading. MMR must be able to recognize non-Watson-Crick base pairs and excise the misincorporated nucleotides from the nascent DNA strand, which carries by definition the erroneous genetic information. In eukaryotes, MMR is believed to be directed to the nascent strand by preexisting discontinuities such as gaps between Okazaki fragments in the lagging strand or breaks in the leading strand generated by the mismatch-activated endonuclease of the MutL homologs PMS1 in yeast and PMS2 in vertebrates. We recently demonstrated that the eukaryotic MMR machinery can make use also of strand breaks arising during excision of uracils or ribonucleotides from DNA. We now show that intermediates of MutY homolog-dependent excision of adenines mispaired with 8-oxoguanine (G(O)) also act as MMR initiation sites in extracts of human cells or Xenopus laevis eggs. Unexpectedly, G(O)/C pairs were not processed in these extracts and failed to affect MMR directionality, but extracts supplemented with exogenous 8-oxoguanine DNA glycosylase (OGG1) did so. Because OGG1-mediated excision of G(O) might misdirect MMR to the template strand, our findings suggest that OGG1 activity might be inhibited during MMR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Palladium catalyzed direct oxidation of benzene with molecular oxygen to phenol

    International Nuclear Information System (INIS)

    Jintoku, Tetsuro; Takaki, Ken; Fujiwara, Yuzo; Fuchita, Yoshio; Hiraki, Katsuma.

    1990-01-01

    Direct phenol synthesis from benzene is currently one of the most important problems in modern chemistry. We have reported new phenol synthesis from benzene and O 2 via direct activation of a C-H aromatic bond by the Pd(OAc) 2 /phenanthroline catalyst system. The evidence for direct oxidation of benzene by O 2 was obtained using 18 O and 2 H isotopes. The mechanism was proposed on the basis of these results and the reactions of Ph-Pd σ complex intermediates. (author)

  10. Study of removal of Direct Yellow 12 by cadmium oxide nanowires loaded on activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, Mehrorang, E-mail: m_ghaedi@mail.yu.ac.ir [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Sadeghian, Batuol [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Kokhdan, Syamak Nasiri, E-mail: syamak.nasiri@yahoo.com [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Pebdani, Arezou Amiri [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Sahraei, Reza; Daneshfar, Ali; Mihandoost, Asma [Department of Chemistry, University of Ilam, P.O. Box: 65315-516, Ilam (Iran, Islamic Republic of)

    2013-05-01

    In this research, cadmium oxide nanowires loaded on activated carbon (CdO-NW-AC) has been synthesized by a simple procedure and characterized by different techniques such as XRD, SEM and UV–vis spectrometry. This new adsorbent has been efficiently utilized for the removal of the Direct Yellow 12 (DY-12) from wastewater. To obtain maximum DY-12 removal efficiency, the influences of variables such as pH, DY-12 concentration, amount of CdO-NW-AC, contact time, and temperature have been examined and optimized in a batch method. Following the variable optimization, the experimental equilibrium data (at different concentration of DY-12) was fitted to conventional isotherm models such as Langmuir, Freundlich and Tempkin. The applicability of each method is based on the R{sup 2} and error analysis for each model. It was found that the experimental equilibrium data well fitted to the Langmuir isotherm model. The dependency of removal process to time and the experimental data follow second order kinetic model with involvement of intraparticle diffusion model. The negative value of Gibbs's free energy and positive value of adsorption enthalpy show the spontaneous and endothermic nature of adsorption process. - Graphical abstract: Typical FE-SEM image of the CdO nanowires. Highlights: ► Cadmium oxide nanowires loaded on activated carbon was utilized as an adsorbent. ► It was used for the removal of Direct Yellow 12 from aqueous solutions. ► The adsorption of Direct Yellow 12 on this adsorbent is endothermic in nature. ► The adsorption equilibrium data was well described by the Langmuir isotherm model.

  11. Computational prediction of the refinement of oxide agglomerates in a physical conditioning process for molten aluminium alloy

    International Nuclear Information System (INIS)

    Tong, M; Jagarlapudi, S C; Browne, D J; Patel, J B; Stone, I C; Fan, Z

    2015-01-01

    Physically conditioning molten scrap aluminium alloys using high shear processing (HSP) was recently found to be a promising technology for purification of contaminated alloys. HSP refines the solid oxide agglomerates in molten alloys, so that they can act as sites for the nucleation of Fe-rich intermetallic phases which can subsequently be removed by the downstream de-drossing process. In this paper, a computational modelling for predicting the evolution of size of oxide clusters during HSP is presented. We used CFD to predict the macroscopic flow features of the melt, and the resultant field predictions of temperature and melt shear rate were transferred to a population balance model (PBM) as its key inputs. The PBM is a macroscopic model that formulates the microscopic agglomeration and breakage of a population of a dispersed phase. Although it has been widely used to study conventional deoxidation of liquid metal, this is the first time that PBM has been used to simulate the melt conditioning process within a rotor/stator HSP device. We employed a method which discretizes the continuous profile of size of the dispersed phase into a collection of discrete bins of size, to solve the governing population balance equation for the size of agglomerates. A finite volume method was used to solve the continuity equation, the energy equation and the momentum equation. The overall computation was implemented mainly using the FLUENT module of ANSYS. The simulations showed that there is a relatively high melt shear rate between the stator and sweeping tips of the rotor blades. This high shear rate leads directly to significant fragmentation of the initially large oxide aggregates. Because the process of agglomeration is significantly slower than the breakage processes at the beginning of HSP, the mean size of oxide clusters decreases very rapidly. As the process of agglomeration gradually balances the process of breakage, the mean size of oxide clusters converges to a

  12. Computational prediction of the refinement of oxide agglomerates in a physical conditioning process for molten aluminium alloy

    Science.gov (United States)

    Tong, M.; Jagarlapudi, S. C.; Patel, J. B.; Stone, I. C.; Fan, Z.; Browne, D. J.

    2015-06-01

    Physically conditioning molten scrap aluminium alloys using high shear processing (HSP) was recently found to be a promising technology for purification of contaminated alloys. HSP refines the solid oxide agglomerates in molten alloys, so that they can act as sites for the nucleation of Fe-rich intermetallic phases which can subsequently be removed by the downstream de-drossing process. In this paper, a computational modelling for predicting the evolution of size of oxide clusters during HSP is presented. We used CFD to predict the macroscopic flow features of the melt, and the resultant field predictions of temperature and melt shear rate were transferred to a population balance model (PBM) as its key inputs. The PBM is a macroscopic model that formulates the microscopic agglomeration and breakage of a population of a dispersed phase. Although it has been widely used to study conventional deoxidation of liquid metal, this is the first time that PBM has been used to simulate the melt conditioning process within a rotor/stator HSP device. We employed a method which discretizes the continuous profile of size of the dispersed phase into a collection of discrete bins of size, to solve the governing population balance equation for the size of agglomerates. A finite volume method was used to solve the continuity equation, the energy equation and the momentum equation. The overall computation was implemented mainly using the FLUENT module of ANSYS. The simulations showed that there is a relatively high melt shear rate between the stator and sweeping tips of the rotor blades. This high shear rate leads directly to significant fragmentation of the initially large oxide aggregates. Because the process of agglomeration is significantly slower than the breakage processes at the beginning of HSP, the mean size of oxide clusters decreases very rapidly. As the process of agglomeration gradually balances the process of breakage, the mean size of oxide clusters converges to a

  13. Electrochemical characterization of Pt-Ru-Pd catalysts for methanol oxidation reaction in direct methanol fuel cells.

    Science.gov (United States)

    Choi, M; Han, C; Kim, I T; An, J C; Lee, J J; Lee, H K; Shim, J

    2011-01-01

    PtRuPd nanoparticles on carbon black were prepared and characterized as electrocatalysts for methanol oxidation reaction in direct methanol fuel cells. Nano-sized Pd (2-4 nm) particles were deposited on Pt/C and PtRu/C (commercial products) by a simple chemical reduction process. The structural and physical information of the PtRuPd/C were confirmed by TEM and XRD, and their electrocatalytic activities were measured by cyclic voltammetry and linear sweep voltammetry. The catalysts containing Pd showed higher electrocatalytic activity for methanol oxidation reaction than the other catalysts. This might be attributed to an increase in the electrochemical surface area of Pt, which is caused by the addition of Pd; this results in increased catalyst utilization.

  14. Microgravity Processing of Oxide Superconductors

    Science.gov (United States)

    Olive, James R.; Hofmeister, William H.; Bayuzick, Robert J.; Vlasse, Marcus

    1999-01-01

    Considerable effort has been concentrated on the synthesis and characterization of high T(sub c) oxide superconducting materials. The YBaCuO system has received the most intense study, as this material has shown promise for the application of both thin film and bulk materials. There are many problems with the application of bulk materials- weak links, poor connectivity, small coherence length, oxygen content and control, environmental reactivity, phase stability, incongruent melting behavior, grain boundary contamination, brittle mechanical behavior, and flux creep. The extent to which these problems are intrinsic or associated with processing is the subject of controversy. This study seeks to understand solidification processing of these materials, and to use this knowledge for alternative processing strategies, which, at the very least, will improve the understanding of bulk material properties and deficiencies. In general, the phase diagram studies of the YBaCuO system have concentrated on solid state reactions and on the Y2BaCuO(x) + liquid yields YBa2Cu3O(7-delta) peritectic reaction. Little information is available on the complete melting relations, undercooling, and solidification behavior of these materials. In addition, rare earth substitutions such as Nd and Gd affect the liquidus and phase relations. These materials have promising applications, but lack of information on the high temperature phase relations has hampered research. In general, the understanding of undercooling and solidification of high temperature oxide systems lags behind the science of these phenomena in metallic systems. Therefore, this research investigates the fundamental melting relations, undercooling, and solidification behavior of oxide superconductors with an emphasis on improving ground based synthesis of these materials.

  15. Processes regulating nitric oxide emissions from soils

    DEFF Research Database (Denmark)

    Pilegaard, Kim

    2013-01-01

    , the net result is complex and dependent on several factors such as nitrogen availability, organic matter content, oxygen status, soil moisture, pH and temperature. This paper reviews recent knowledge on processes forming NO in soils and the factors controlling its emission to the atmosphere. Schemes......Nitric oxide (NO) is a reactive gas that plays an important role in atmospheric chemistry by influencing the production and destruction of ozone and thereby the oxidizing capacity of the atmosphere. NO also contributes by its oxidation products to the formation of acid rain. The major sources...

  16. Carbon Inputs From Riparian Vegetation Limit Oxidation of Physically Bound Organic Carbon Via Biochemical and Thermodynamic Processes: OC Oxidation Processes Across Vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Emily B. [Pacific Northwest National Laboratory, Richland WA USA; Tfaily, Malak M. [Environmental Molecular Sciences Laboratory, Richland WA USA; Crump, Alex R. [Pacific Northwest National Laboratory, Richland WA USA; Goldman, Amy E. [Pacific Northwest National Laboratory, Richland WA USA; Bramer, Lisa M. [Pacific Northwest National Laboratory, Richland WA USA; Arntzen, Evan [Pacific Northwest National Laboratory, Richland WA USA; Romero, Elvira [Pacific Northwest National Laboratory, Richland WA USA; Resch, C. Tom [Pacific Northwest National Laboratory, Richland WA USA; Kennedy, David W. [Pacific Northwest National Laboratory, Richland WA USA; Stegen, James C. [Pacific Northwest National Laboratory, Richland WA USA

    2017-12-01

    In light of increasing terrestrial carbon (C) transport across aquatic boundaries, the mechanisms governing organic carbon (OC) oxidation along terrestrial-aquatic interfaces are crucial to future climate predictions. Here, we investigate biochemistry, metabolic pathways, and thermodynamics corresponding to OC oxidation in the Columbia River corridor. We leverage natural vegetative differences to encompass variation in terrestrial C inputs. Our results suggest that decreases in terrestrial C deposition associated with diminished riparian vegetation induce oxidation of physically-bound (i.e., mineral and microbial) OC at terrestrial-aquatic interfaces. We also find that contrasting metabolic pathways oxidize OC in the presence and absence of vegetation and—in direct conflict with the concept of ‘priming’—that inputs of water-soluble and thermodynamically-favorable terrestrial OC protects bound-OC from oxidation. Based on our results, we propose a mechanistic conceptualization of OC oxidation along terrestrial-aquatic interfaces that can be used to model heterogeneous patterns of OC loss under changing land cover distributions.

  17. Iron-oxidation processes in an electroflocculation (electrocoagulation) cell

    Energy Technology Data Exchange (ETDEWEB)

    Sasson, Moshe Ben, E-mail: mosheinspain@hotmail.com [Department of Soil and Water Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100 (Israel); Calmano, Wolfgang [Institute of Environmental Technology and Energy Economics, Technical University of Hamburg-Harburg, 21073 Hamburg (Germany); Adin, Avner [Department of Soil and Water Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100 (Israel)

    2009-11-15

    The processes of iron oxidation in an electroflocculation cell were investigated for a pH range of 5-9 and electric currents of 0.05-0.4 A (equivalent current densities of 8.6-69 A/m{sup 2}). At all pH values and electric currents investigated, it was demonstrated and proven that for all practical purposes, the form of iron that dissolves from the anode is Fe{sup 2+} (ferrous). The difference between the amount of theoretical dissolution as calculated by Faraday's law and the amount of observed dissolved iron ions may indicate two phenomena in electrochemical cells. The first is possible dissolution of the anode even without the operation of an electric current; this led to higher theoretical dissolution rates at lower pH. The second is the participation of some of the electrons of the electric current in reactions other than anode dissolution which led to lower theoretical dissolution rates at higher pH. Those other reactions did not lead to an increase in the local oxidation saturation level near the anode and did not affect iron-oxidation rates in the electroflocculation processes. The oxidation rates of the dissolved Fe{sup 2+} (ferrous) to Fe{sup 3+} (ferric) ions in electroflocculation processes were strongly dependent on the pH and were similar to the known oxidation rates of iron in non-electrochemical cells.

  18. Iron-oxidation processes in an electroflocculation (electrocoagulation) cell

    International Nuclear Information System (INIS)

    Sasson, Moshe Ben; Calmano, Wolfgang; Adin, Avner

    2009-01-01

    The processes of iron oxidation in an electroflocculation cell were investigated for a pH range of 5-9 and electric currents of 0.05-0.4 A (equivalent current densities of 8.6-69 A/m 2 ). At all pH values and electric currents investigated, it was demonstrated and proven that for all practical purposes, the form of iron that dissolves from the anode is Fe 2+ (ferrous). The difference between the amount of theoretical dissolution as calculated by Faraday's law and the amount of observed dissolved iron ions may indicate two phenomena in electrochemical cells. The first is possible dissolution of the anode even without the operation of an electric current; this led to higher theoretical dissolution rates at lower pH. The second is the participation of some of the electrons of the electric current in reactions other than anode dissolution which led to lower theoretical dissolution rates at higher pH. Those other reactions did not lead to an increase in the local oxidation saturation level near the anode and did not affect iron-oxidation rates in the electroflocculation processes. The oxidation rates of the dissolved Fe 2+ (ferrous) to Fe 3+ (ferric) ions in electroflocculation processes were strongly dependent on the pH and were similar to the known oxidation rates of iron in non-electrochemical cells.

  19. A novel direct carbon fuel cell by approach of tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Renzhu; Zhao, Chunhua; Li, Junliang; Zeng, Fanrong; Wang, Shaorong; Wen, Tinglian; Wen, Zhaoyin [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Inorganic Energy Materials and Power Source Engineering Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

    2010-01-15

    A direct carbon fuel cell based on a conventional anode-supported tubular solid oxide fuel cell, which consisted of a NiO-YSZ anode support tube, a NiO-ScSZ anode functional layer, a ScSZ electrolyte film, and a LSM-ScSZ cathode, has been successfully achieved. It used the carbon black as fuel and oxygen as the oxidant, and a preliminary examination of the DCFC has been carried out. The cell generated an acceptable performance with the maximum power densities of 104, 75, and 47 mW cm{sup -2} at 850, 800, and 750 C, respectively. These results demonstrate the feasibility for carbon directly converting to electricity in tubular solid oxide fuel cells. (author)

  20. Development studies of a novel wet oxidation process

    International Nuclear Information System (INIS)

    Rogers, T.W.; Dhooge, P.M.

    1995-01-01

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. Incineration and similar combustive processes do not appear to be viable options for treatment of these waste streams due to various considerations. The objective of this project is to develop a novel catalytic wet oxidation process for the treatment of multi-component wastes. The DETOX process uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials

  1. Development studies of a novel wet oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, T.W.; Dhooge, P.M. [Delphi Research, Inc., Albuquerque, NM (United States)

    1995-10-01

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. Incineration and similar combustive processes do not appear to be viable options for treatment of these waste streams due to various considerations. The objective of this project is to develop a novel catalytic wet oxidation process for the treatment of multi-component wastes. The DETOX process uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials.

  2. Standard specification for blended uranium oxides with 235U content of less than 5 % for direct hydrogen reduction to nuclear grade uranium dioxide

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This specification covers blended uranium trioxide (UO3), U3O8, or mixtures of the two, powders that are intended for conversion into a sinterable uranium dioxide (UO2) powder by means of a direct reduction process. The UO2 powder product of the reduction process must meet the requirements of Specification C 753 and be suitable for subsequent UO2 pellet fabrication by pressing and sintering methods. This specification applies to uranium oxides with a 235U enrichment less than 5 %. 1.2 This specification includes chemical, physical, and test method requirements for uranium oxide powders as they relate to the suitability of the powder for storage, transportation, and direct reduction to UO2 powder. This specification is applicable to uranium oxide powders for such use from any source. 1.3 The scope of this specification does not comprehensively cover all provisions for preventing criticality accidents, for health and safety, or for shipping. Observance of this specification does not relieve the user of th...

  3. Delay oil oxidation during frying process

    International Nuclear Information System (INIS)

    Atta, N.M.M.; Shams Eldin, N.M.M.

    2010-01-01

    Blend oil (mixed of refined sunflower and soy beans oils 1:1 w/w) containing add 200 ppm of rosemary leaves methanolic extract (rosemary extract) (RE) and 3% refined rice bran oil (RRBO), were used in frying process at 1800 degree c for 5 hrs/ day, four consecutive days to delay oil oxidation during frying. Therefore, rosemary extract (methanolic extract) was analyzed by HPLC technique for identification of flavonoids compounds (as a specific active compounds; gives high protection to frying oil). Physical and chemical properties, including refractive index(RI). Red color unit (R), viscosity, acidity (FFA), peroxide value (PV), iodine value (IV) oxidized fatty acid (OFA), polymer content (PC), total polar components (TPC) and trans fatty acid (TFA) as eliadic acid were determined. The results indicated that; rosemary extract contained about eight flavonoids compounds (hypersoid, rutin, 3-OH flavon, luleotin, kempferol, sakarutin, querectrin and apeginin). Addition of RE or RRBO to frying oil caused delay oil oxidation during frying process compared with frying oil without any addition. Also, the results indicated that rosemary extract was more effective in reducing formation of PV, FFA, OFA, PC, TPC and TFA in frying oil than refined rice bran oil

  4. Integrative device and process of oxidization, degassing, acidity adjustment of 1BP from APOR process

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Chen; Zheng, Weifang, E-mail: wfazh@ciae.ac.cn; Yan, Taihong; He, Hui; Li, Gaoliang; Chang, Shangwen; Li, Chuanbo; Yuan, Zhongwei

    2016-02-15

    Graphical abstract: Previous (left) and present (right) device of oxidation, degassing, acidity adjustment of 1BP. - Highlights: • We designed an integrative device and process. • The utilization efficiency of N{sub 2}O{sub 4} is increased significantly. • Our work results in considerable simplification of the device. • Process parameters are determined by experiments. - Abstract: Device and process of oxidization, degassing, acidity adjustment of 1BP (The Pu production feed from U/Pu separation section) from APOR process (Advanced Purex Process based on Organic Reductants) were improved through rational design and experiments. The device was simplified and the process parameters, such as feed position and flow ratio, were determined by experiments. Based on this new device and process, the reductants N,N-dimethylhydroxylamine (DMHAN) and methylhydrazine (MMH) in 1BP solution could be oxidized with much less N{sub 2}O{sub 4} consumption.

  5. Methyl Radicals in Oxidative Coupling of Methane Directly Confirmed by Synchrotron VUV Photoionization Mass Spectroscopy

    Science.gov (United States)

    Luo, Liangfeng; Tang, Xiaofeng; Wang, Wendong; Wang, Yu; Sun, Shaobo; Qi, Fei; Huang, Weixin

    2013-01-01

    Gas-phase methyl radicals have been long proposed as the key intermediate in catalytic oxidative coupling of methane, but the direct experimental evidence still lacks. Here, employing synchrotron VUV photoionization mass spectroscopy, we have directly observed the formation of gas-phase methyl radicals during oxidative coupling of methane catalyzed by Li/MgO catalysts. The concentration of gas-phase methyl radicals correlates well with the yield of ethylene and ethane products. These results lead to an enhanced fundamental understanding of oxidative coupling of methane that will facilitate the exploration of new catalysts with improved performance. PMID:23567985

  6. Energy-Efficient and Environmentally Friendly Solid Oxide Membrane Electrolysis Process for Magnesium Oxide Reduction: Experiment and Modeling

    Science.gov (United States)

    Guan, Xiaofei; Pal, Uday B.; Powell, Adam C.

    2014-06-01

    This paper reports a solid oxide membrane (SOM) electrolysis experiment using an LSM(La0.8Sr0.2MnO3-δ)-Inconel inert anode current collector for production of magnesium and oxygen directly from magnesium oxide at 1423 K (1150 °C). The electrochemical performance of the SOM cell was evaluated by means of various electrochemical techniques including electrochemical impedance spectroscopy, potentiodynamic scan, and electrolysis. Electronic transference numbers of the flux were measured to assess the magnesium dissolution in the flux during SOM electrolysis. The effects of magnesium solubility in the flux on the current efficiency and the SOM stability during electrolysis are discussed. An inverse correlation between the electronic transference number of the flux and the current efficiency of the SOM electrolysis was observed. Based on the experimental results, a new equivalent circuit of the SOM electrolysis process is presented. A general electrochemical polarization model of SOM process for magnesium and oxygen gas production is developed, and the maximum allowable applied potential to avoid zirconia dissociation is calculated as well. The modeling results suggest that a high electronic resistance of the flux and a relatively low electronic resistance of SOM are required to achieve membrane stability, high current efficiency, and high production rates of magnesium and oxygen.

  7. OXIDATIVE STRESS AND VASCULAR DAMAGE IN HYPOXIA PROCESSES. MALONDIALDEHYDE (MDA AS BIOMARKER FOR OXIDATIVE DAMAGE

    Directory of Open Access Journals (Sweden)

    Muñiz P

    2014-05-01

    Full Text Available Changes in the levels oxidative stress biomarkers are related with different diseases such as ischemia/reperfusion, cardiovascular, renal, aging, etc. One of these biomarkers is the malondialdehyde (MDA generated as resulted of the process of lipid peroxidation. This biomarker is increased under conditions of the oxidative stress. Their levels, have been frequently used to measure plasma oxidative damage to lipids by their atherogenic potential. Its half-life high and their reactivity allows it to act both inside and outside of cells and interaction with proteins and DNA involve their role in different pathophysiological processes. This paper presents an analysis of the use of MDA as a biomarker of oxidative stress and its implications associated pathologies such as cardiovascular diseases ago.

  8. Reactor modeling and process analysis for partial oxidation of natural gas

    NARCIS (Netherlands)

    Albrecht, B.A.

    2004-01-01

    This thesis analyses a novel process of partial oxidation of natural gas and develops a numerical tool for the partial oxidation reactor modeling. The proposed process generates syngas in an integrated plant of a partial oxidation reactor, a syngas turbine and an air separation unit. This is called

  9. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    Science.gov (United States)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-06-01

    Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  10. Direct ethanol solid oxide fuel cell operating in gradual internal reforming

    Science.gov (United States)

    Nobrega, S. D.; Galesco, M. V.; Girona, K.; de Florio, D. Z.; Steil, M. C.; Georges, S.; Fonseca, F. C.

    2012-09-01

    An electrolyte supported solid oxide fuel cell (SOFC) using standard electrodes, doped-lanthanum manganite cathode and Ni-cermet anode, was operated with direct (anhydrous) ethanol for more than 100 h, delivering essentially the same power output as running on hydrogen. A ceria-based layer provides the catalytic activity for the gradual internal reforming, which uses the steam formed by the electrochemical oxidation of hydrogen for the decomposition of ethanol. Such a concept opens up the way for multi-fuel SOFCs using standard components and a catalytic layer.

  11. Direct electrochemical oxidation of ammonia on graphite as a treatment option for stored source-separated urine.

    Science.gov (United States)

    Zöllig, Hanspeter; Fritzsche, Cristina; Morgenroth, Eberhard; Udert, Kai M

    2015-02-01

    Electrolysis can be a viable technology for ammonia removal from source-separated urine. Compared to biological nitrogen removal, electrolysis is more robust and is highly amenable to automation, which makes it especially attractive for on-site reactors. In electrolytic wastewater treatment, ammonia is usually removed by indirect oxidation through active chlorine which is produced in-situ at elevated anode potentials. However, the evolution of chlorine can lead to the formation of chlorate, perchlorate, chlorinated organic by-products and chloramines that are toxic. This study focuses on using direct ammonia oxidation on graphite at low anode potentials in order to overcome the formation of toxic by-products. With the aid of cyclic voltammetry, we demonstrated that graphite is active for direct ammonia oxidation without concomitant chlorine formation if the anode potential is between 1.1 and 1.6 V vs. SHE (standard hydrogen electrode). A comparison of potentiostatic bulk electrolysis experiments in synthetic stored urine with and without chloride confirmed that ammonia was removed exclusively by continuous direct oxidation. Direct oxidation required high pH values (pH > 9) because free ammonia was the actual reactant. In real stored urine (pH = 9.0), an ammonia removal rate of 2.9 ± 0.3 gN·m(-2)·d(-1) was achieved and the specific energy demand was 42 Wh·gN(-1) at an anode potential of 1.31 V vs. SHE. The measurements of chlorate and perchlorate as well as selected chlorinated organic by-products confirmed that no chlorinated by-products were formed in real urine. Electrode corrosion through graphite exfoliation was prevented and the surface was not poisoned by intermediate oxidation products. We conclude that direct ammonia oxidation on graphite electrodes is a treatment option for source-separated urine with three major advantages: The formation of chlorinated by-products is prevented, less energy is consumed than in indirect ammonia oxidation and

  12. Low Temperature Synthesis of Metal Oxides by a Supercritical Seed Enhanced Crystallization (SSEC) Process

    DEFF Research Database (Denmark)

    Jensen, Henrik; Brummerstedt Iversen, Steen; Joensen, Karsten Dan

    2006-01-01

    A novel method for producing crystalline nanosized metal oxides by a Supercritical Seed Enhanced Crystallization (SSEC) Process has been developed. The process is a modified sol-gel process taking place at temperatures as low as 95 ºC with supercritical CO2 as solvent and polypropylene as seeding...... material. The nanocrystalline product is obtained without having to resort to costly post-reaction processing and the product is obtained directly after the SSEC process. TiO2 powders produced by the SSEC process were shown to have a crystallinity of 60 % and a crystal size of 7.3 ± 2.6 nm....... The crystallinity can be controlled by changing the heating rate of the initial formation of the nanoparticles and the morphology can be altered by changing the process time....

  13. Oxidation mechanism of diethyl ether: a complex process for a simple molecule.

    Science.gov (United States)

    Di Tommaso, Stefania; Rotureau, Patricia; Crescenzi, Orlando; Adamo, Carlo

    2011-08-28

    A large number of organic compounds, such as ethers, spontaneously form unstable peroxides through a self-propagating process of autoxidation (peroxidation). Although the hazards of organic peroxides are well known, the oxidation mechanisms of peroxidizable compounds like ethers reported in the literature are vague and often based on old experiments, carried out in very different conditions (e.g. atmospheric, combustion). With the aim to (partially) fill the lack of information, in this paper we present an extensive Density Functional Theory (DFT) study of autoxidation reaction of diethyl ether (DEE), a chemical that is largely used as solvent in laboratories, and which is considered to be responsible for various accidents. The aim of the work is to investigate the most probable reaction paths involved in the autoxidation process and to identify all potential hazardous intermediates, such as peroxides. Beyond the determination of a complex oxidation mechanism for such a simple molecule, our results suggest that the two main reaction channels open in solution are the direct decomposition (β-scission) of DEE radical issued of the initiation step and the isomerization of the peroxy radical formed upon oxygen attack (DEEOO˙). A simple kinetic evaluation of these two competing reaction channels hints that radical isomerization may play an unexpectedly important role in the global DEE oxidation process. Finally industrial hazards could be related to the hydroperoxide formation and accumulation during the chain propagation step. The resulting information may contribute to the understanding of the accidental risks associated with the use of diethyl ether.

  14. Directional dependence of the threshold displacement energies in metal oxides

    Science.gov (United States)

    Cowen, Benjamin J.; El-Genk, Mohamed S.

    2017-12-01

    Molecular dynamics (MD) simulations are performed to investigate the directional dependence and the values of the threshold energies (TDEs) for the displacements of the oxygen and metal atoms and for producing stable Frenkel pairs in five metal oxides of Cr2O3, Al2O3, TiO2, SiO2, and MgO. The TDEs for the Frenkel pairs and atoms displacement are calculated in 66 crystallographic directions, on both the anion and cation sublattices. The performed simulations are for metal and oxygen PKA energies up to 350 and 400 eV, respectively. The calculated probability distributions for the atoms displacement and average number of Frenkel pairs produced in the different oxides are compared. The results revealed unique symmetrical patterns of the TDEs for the displacement of the atoms and the formation of stable Frenkel pairs, confirming the strong dependence on the direction and the crystalline structure of the oxides. Results also showed that the formation of stable Frenkel pairs is associated with the displacements of the PKAs and/or of the SKAs. The probabilities of the TDEs for the displacement of the oxygen and metal PKAs are consistently lower than those of the atoms in the crystal. In SiO2, TDEs for the displacement of oxygen and metal atoms and those for the formation of stable Frenkel pairs are the lowest, while those in TiO2 are among the highest. The results for Cr2O3 and Al2O3, which have the same crystal structure, are similar. The calculated TDEs for MgO, Al2O3 and TiO2 are generally in good agreement with the experimental values and the probability distributions of the TDEs for the PKAs in TiO2 are in good agreement with reported MD simulation results.

  15. Kinetics and mechanism of synthetic CoS oxidation process

    Directory of Open Access Journals (Sweden)

    Štrbac N.

    2006-01-01

    Full Text Available The results of investigation of kinetics and mechanism for synthetic a-CoS oxidation process are presented in this paper. Based on experimental data obtained using DTA and XRD analysis and constructed PSD diagrams for Co-S-O system, mechanism of synthetic a-CoS oxidation process is suggested. Characteristic kinetic parameters were obtained for experimental isothermal investigations of desulfurization degree using Sharp method.

  16. LITERATURE REVIEW FOR OXALATE OXIDATION PROCESSES AND PLUTONIUM OXALATE SOLUBILITY

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C.

    2012-02-03

    A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign. H Canyon plans to commence conversion of plutonium metal to low-fired plutonium oxide in 2012 for eventual use in the Mixed Oxide Fuel (MOX) Facility. The flowsheet includes sequential operations of metal dissolution, ion exchange, elution, oxalate precipitation, filtration, and calcination. All processes beyond dissolution will occur in HB-Line. The filtration step produces an aqueous filtrate that may have as much as 4 M nitric acid and 0.15 M oxalate. The oxalate needs to be removed from the stream to prevent possible downstream precipitation of residual plutonium when the solution is processed in H Canyon. In addition, sending the oxalate to the waste tank farm is undesirable. This report addresses the processing options for destroying the oxalate in existing H Canyon equipment.

  17. Nanostructure-Directed Chemical Sensing: The IHSAB Principle and the Effect of Nitrogen and Sulfur Functionalization on Metal Oxide Decorated Interface Response

    Directory of Open Access Journals (Sweden)

    James L. Gole

    2013-08-01

    Full Text Available The response matrix, as metal oxide nanostructure decorated n-type semiconductor interfaces are modified in situ through direct amination and through treatment with organic sulfides and thiols, is demonstrated. Nanostructured TiO2, SnOx, NiO and CuxO (x = 1,2, in order of decreasing Lewis acidity, are deposited to a porous silicon interface to direct a dominant electron transduction process for reversible chemical sensing in the absence of significant chemical bond formation. The metal oxide sensing sites can be modified to decrease their Lewis acidity in a process appearing to substitute nitrogen or sulfur, providing a weak interaction to form the oxynitrides and oxysulfides. Treatment with triethylamine and diethyl sulfide decreases the Lewis acidity of the metal oxide sites. Treatment with acidic ethane thiol modifies the sensor response in an opposite sense, suggesting that there are thiol (SH groups present on the surface that provide a Brønsted acidity to the surface. The in situ modification of the metal oxides deposited to the interface changes the reversible interaction with the analytes, NH3 and NO. The observed change for either the more basic oxynitrides or oxysulfides or the apparent Brønsted acid sites produced from the interaction of the thiols do not represent a simple increase in surface basicity or acidity, but appear to involve a change in molecular electronic structure, which is well explained using the recently developed inverse hard and soft acids and bases (IHSAB model.

  18. Pt-Fe catalyst nanoparticles supported on single-wall carbon nanotubes: Direct synthesis and electrochemical performance for methanol oxidation

    Science.gov (United States)

    Ma, Xiaohui; Luo, Liqiang; Zhu, Limei; Yu, Liming; Sheng, Leimei; An, Kang; Ando, Yoshinori; Zhao, Xinluo

    2013-11-01

    Single-wall carbon nanotubes (SWCNTs) supported Pt-Fe nanoparticles have been prepared by one-step hydrogen arc discharge evaporation of carbon electrode containing both Pt and Fe metal elements. The formation of SWCNTs and Pt-Fe nanoparticles occur simultaneously during the evaporation process. High-temperature hydrogen treatment and hydrochloric acid soaking have been carried out to purify and activate those materials in order to obtain a new type of Pt-Fe/SWCNTs catalyst for methanol oxidation. The Pt-Fe/SWCNTs catalyst performs much higher electrocatalytic activity for methanol oxidation, better stability and better durability than a commercial Pt/C catalyst according to the electrochemical measurements, indicating that it has a great potential for applications in direct methanol fuel cells.

  19. Influence of the Siberian larch extract on the processes of peroxide oxidation of lipids in experiment

    Directory of Open Access Journals (Sweden)

    Pateyuk Andrey

    2016-03-01

    Full Text Available In modern conditions wood processing is one of the primary branches of production in Transbaikal region. In connection with big squares of logging the question of processing and utilizing waste products directly on the spot is particularly acute. We researched the activity of water extract from sawdust of Siberian larch "Ekstrapinus" on the power exchange and processes of peroxide oxidation of lipids against immobilized stress in experiment. The data provided in the article prove that the use of Ekstrapinus extract reduces the pathological violations arising under stress. So, Ekstrapinus extract restores energy potential of cages when modeling stress, restores energy potential of cells, normalizes balance in the system "peroxide oxidation of lipids – antioxidant protection" and supports the balance of tiol in an animal organism in the state of stress. Considering absence of toxicity in the recommended doses, it is possible to recommend their application under stress.

  20. Sulfide ore looping oxidation : an innovative process that is energy efficient and environmentally friendly

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, L.F.; Balliett, R.; Mozolic, J.A. [Orchard Material Technology, North Andover, MA (United States)

    2008-07-01

    Many sulphide ore processing methods use different types of roasting technologies. These technologies are generally quite effective, however, they represent significant energy use and environmental cost. This paper discussed and validated the use of a two-step looping oxidation process that effectively removes sulphur while producing materials of adequate purity in an energy efficient and environmentally sound manner. This paper described the process in detail and compared it to existing technologies in the area of energy efficiency, and off-gas treatment energy requirements. Validation of the looping oxidation concept was described and the starting chemistries of each chemical were listed. Thermodynamic modeling was used to determine the temperature at which the reaction should begin and to predict the temperature at which the reaction should be complete. The test apparatus and run conditions were also described. It was concluded that there are several critical stages in the looping process where energy recovery is economically attractive and could easily be directed or converted for other plant operations. All reactions were fast and efficient, allowing for reduced equipment size as well as higher throughput rates. 11 refs., 3 tabs., 2 figs.

  1. Conceptual Design for the Pilot-Scale Plutonium Oxide Processing Unit in the Radiochemical Processing Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Meier, David E.; Tingey, Joel M.; Casella, Amanda J.; Delegard, Calvin H.; Edwards, Matthew K.; Jones, Susan A.; Rapko, Brian M.

    2014-08-05

    This report describes a conceptual design for a pilot-scale capability to produce plutonium oxide for use as exercise and reference materials, and for use in identifying and validating nuclear forensics signatures associated with plutonium production. This capability is referred to as the Pilot-scale Plutonium oxide Processing Unit (P3U), and it will be located in the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. The key unit operations are described, including plutonium dioxide (PuO2) dissolution, purification of the Pu by ion exchange, precipitation, and conversion to oxide by calcination.

  2. Hantzsch Reaction Starting Directly from Alcohols through a Tandem Oxidation Process

    Directory of Open Access Journals (Sweden)

    Xiaobing Liu

    2017-01-01

    Full Text Available A Brønsted acidic ionic liquid, 3-(N,N-dimethyldodecylammonium propanesulfonic acid hydrogen sulphate ([DDPA][HSO4], has been successfully applied to catalyze sequential oxidation of aromatic alcohols with NaNO3 followed by their condensation with dicarbonyl compound and ammonium acetate. The corresponding pyridine analogues of Hantzsch 1,4-dihydropyridines could be obtained as a major product with high yields by the multicomponent reaction. The present work utilizing alcohols instead of aldehyde in Hantzsch reaction is a valid and green alternative to the classical synthesis of the corresponding pyridine analogues of Hantzsch 1,4-dihydropyridines.

  3. Process for selected gas oxide removal by radiofrequency catalysts

    Science.gov (United States)

    Cha, Chang Y.

    1993-01-01

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO.sub.2 and NO.sub.x.

  4. Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition

    Science.gov (United States)

    D'Arcy, Julio M.; Tran, Henry D.; Stieg, Adam Z.; Gimzewski, James K.; Kaner, Richard B.

    2012-05-01

    A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated.A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated. Electronic supplementary information (ESI) available: Droplet coalescence, catenoid formation, mechanism of film growth, scanning electron micrographs showing carbon nanotube alignment, flexible transparent films of SWCNTs, AFM images of a chemically converted graphene film, and SEM images of SWCNT free-standing thin films. See DOI: 10.1039/c2nr00010e

  5. Literature review for oxalate oxidation processes and plutonium oxalate solubility

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-01

    A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign.

  6. Direct extraction of uranium and plutonium from oxide fuel using TBP-HNO3 complex for super-DIREX process

    International Nuclear Information System (INIS)

    Miura, S.; Kamiya, M.; Nomura, K.; Koyama, T.; Ogum, S.; Shimada, T.; Mori, Y.; Enokida, Y.

    2004-01-01

    Super-DIREX is a new reprocessing method which has high economical efficiency. Experimental study of this process was started on the direct extraction of U and Pu from irradiated MOX fuel by the supercritical carbon dioxide (SFCO 2 ) containing TBP-HNO 3 complex. This report describes direct extraction of U and Pu with TBP-HNO 3 complex at atmospheric pressure, as the first test for irradiated fuel, in order to investigate the applicability of SFCO 2 containing TBP-HNO 3 complex. In this test, dependency on dissolution temperature, Pu content, fuel/ TBP-HNO 3 complex ratio and effect of voloxidation were investigated. From these results, TBP-HNO 3 complex was found to be effective in the respect of the recovery of U and Pu. The number of the process step in dissolution and co-extraction is small, and amount of waste can be reduced. It is applicable to the direct extraction in Super-DIREX. (authors)

  7. Simulation of atomistic processes during silicon oxidation

    OpenAIRE

    Bongiorno, Angelo

    2003-01-01

    Silicon dioxide (SiO2) films grown on silicon monocrystal (Si) substrates form the gate oxides in current Si-based microelectronics devices. The understanding at the atomic scale of both the silicon oxidation process and the properties of the Si(100)-SiO2 interface is of significant importance in state-of-the-art silicon microelectronics manufacturing. These two topics are intimately coupled and are both addressed in this theoretical investigation mainly through first-principles calculations....

  8. Improved Aeration Process - Catalytic Role Of The Iron Oxides In Arsenic Oxidation And Coprecipitation

    DEFF Research Database (Denmark)

    Kowalski, Krysztof; Søgaard, Erik Gydesen

    2013-01-01

    Demands for a better drinking water quality, especially concerning arsenic, a compound with many adverse health effects, put a pressure on the utilities to ensure the best treatment technologies that meet nowadays and possible future quality standards. The aim of this paper is to introduce...... an improved aeration process that can also help in developing better arsenic removal treatment. The results present advantages of arsenic oxidation in an aeration process in the presence of ferrihydrite surface that have been shown to adsorb arsenic simultaneously to its oxidation. The presence...

  9. Utilization of a by-product produced from oxidative desulfurization process over Cs-mesoporous silica catalysts.

    Science.gov (United States)

    Kim, Hyeonjoo; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Kim, Do Heui; Jeon, Jong-Ki

    2011-02-01

    We investigated the use of Cs-mesoporous silica catalysts to upgrade a by-product of oxidative desulfurization (ODS). Cs-mesoporous silica catalysts were characterized through N2 adsorption, XRD, CO2-temperature-programmed desorption, and XRF. Cs-mesoporous silica prepared by the direct incorporation method showed higher catalytic performance than a Cs/MCM-41 catalyst by impregnation method for the catalytic decomposition of sulfone compounds produced from ODS process.

  10. Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Moussavi, Gholamreza, E-mail: moussavi@modares.ac.ir; Shekoohiyan, Sakine

    2016-11-15

    Highlights: • Simultaneous advanced oxidation and reduction processes were explored in VUV system. • Complete reduction of nitrate to N{sub 2} was achieved at the presence of acetaminophen. • Complete degradation of acetaminophen was achieved at the presence of nitrate. • Over 95% of acetaminophen was mineralized in the VUV photoreactor. • VUV is a chemical-less advanced process for treating water emerging contaminants. - Abstract: This work was aimed at investigating the performance of the continuous-flow VUV photoreactor as a novel chemical-less advanced process for simultaneously oxidizing acetaminophen (ACT) as a model of pharmaceuticals and reducing nitrate in a single reactor. Solution pH was an important parameter affecting the performance of VUV; the highest ACT oxidation and nitrate reduction attained at solution pH between 6 and 8. The ACT was oxidized mainly by HO· while the aqueous electrons were the main working agents in the reduction of nitrate. The performance of VUV photoreactor improved with the increase of hydraulic retention time (HRT); the complete degradation of ACT and ∼99% reduction of nitrate with 100% N{sub 2} selectivity achieved at HRT of 80 min. The VUV effluent concentrations of nitrite and ammonium at HRT of 80 min were below the drinking water standards. The real water sample contaminated with the ACT and nitrate was efficiently treated in the VUV photoreactor. Therefore, the VUV photoreactor is a chemical-less advanced process in which both advanced oxidation and advanced reduction reactions are accomplished. This unique feature possesses VUV photoreactor as a promising method of treating water contaminated with both pharmaceutical and nitrate.

  11. Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process

    International Nuclear Information System (INIS)

    Moussavi, Gholamreza; Shekoohiyan, Sakine

    2016-01-01

    Highlights: • Simultaneous advanced oxidation and reduction processes were explored in VUV system. • Complete reduction of nitrate to N_2 was achieved at the presence of acetaminophen. • Complete degradation of acetaminophen was achieved at the presence of nitrate. • Over 95% of acetaminophen was mineralized in the VUV photoreactor. • VUV is a chemical-less advanced process for treating water emerging contaminants. - Abstract: This work was aimed at investigating the performance of the continuous-flow VUV photoreactor as a novel chemical-less advanced process for simultaneously oxidizing acetaminophen (ACT) as a model of pharmaceuticals and reducing nitrate in a single reactor. Solution pH was an important parameter affecting the performance of VUV; the highest ACT oxidation and nitrate reduction attained at solution pH between 6 and 8. The ACT was oxidized mainly by HO· while the aqueous electrons were the main working agents in the reduction of nitrate. The performance of VUV photoreactor improved with the increase of hydraulic retention time (HRT); the complete degradation of ACT and ∼99% reduction of nitrate with 100% N_2 selectivity achieved at HRT of 80 min. The VUV effluent concentrations of nitrite and ammonium at HRT of 80 min were below the drinking water standards. The real water sample contaminated with the ACT and nitrate was efficiently treated in the VUV photoreactor. Therefore, the VUV photoreactor is a chemical-less advanced process in which both advanced oxidation and advanced reduction reactions are accomplished. This unique feature possesses VUV photoreactor as a promising method of treating water contaminated with both pharmaceutical and nitrate.

  12. Investigation of the direct and indirect electrochemical oxidation of hydrazine in nitric acid medium on platinum; Etude de l`oxydation electrochimique directe et indirecte de l`hydrazine en milieu acide nitrique sur platine

    Energy Technology Data Exchange (ETDEWEB)

    Cames, B

    1997-12-31

    allow consideration of the process of direct electrochemical oxidation of hydrazine to nitrogen, and of Pu(III) to Pu(IV), with electrochemical yields of 100 %. (author) 59 refs.

  13. Peptide methionine sulfoxide reductase A (MsrA): direct electrochemical oxidation on carbon electrodes.

    Science.gov (United States)

    Enache, T A; Oliveira-Brett, A M

    2013-02-01

    The direct electrochemical behaviour of peptide methionine sulfoxide reductase A (MsrA) adsorbed on glassy carbon and boron doped diamond electrodes surface, was studied over a wide pH range by cyclic and differential pulse voltammetry. MsrA oxidation mechanism occurs in three consecutive, pH dependent steps, corresponding to the oxidation of tyrosine, tryptophan and histidine amino acid residues. At the glassy carbon electrode, the first step corresponds to the oxidation of tyrosine and tryptophan residues and occurs for the same potential. The advantage of boron doped diamond electrode was to enable the separation of tyrosine and tryptophan oxidation peaks. On the second step occurs the histidine oxidation, and on the third, at higher potentials, the second tryptophan oxidation. MsrA adsorbs on the hydrophobic carbon electrode surface preferentially through the three hydrophobic domains, C1, C2 and C3, which contain the tyrosine, tryptophan and histidine residues, and tryptophan exists only in these regions, and undergo electrochemical oxidation. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Direct processes in heavy ion reactions

    International Nuclear Information System (INIS)

    Bunakov, V.E.; Zagrebaev, V.I.

    1983-01-01

    Direct processes in heavy ion reactions are investigated. Relative theoretical contributions in the inclusive spectrum of α particles on processes of stripping breakup and inelastic breakup are estimated using the 22 Ne+ 181 Ta reaction as an example. The consideration is performed taking into account Coulomb and nuclear distortions in the inlet and outlet ion channels. It is shown that the hard edge of α spectrum and its maximum are well described by peripheral direct processes. The hard spectrum edge is conditioned by the pure process of ''incomplete fussion'' bringing about the production af a compound nucleus. The main part of inclusive spectrum is conditioned by reactions of inelastic and elastic breakup not connected with the production of a compound nucleus

  15. The Evonik-Uhde HPPO process for proplene oxide production

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, B.; Baerz, M. [Evonik Industries, Hanau (Germany); Schemel, J.; Kolbe, B. [Uhde GmbH, Dortmund/Bad Soden (Germany)

    2011-07-01

    In 2008 the HPPO technology has shown up as an economically and environmentally friendly alternative for manufacturing of propylene oxide. The HPPO technology offers the advantage of an on purpose process for manufacturing of propylene oxide without dependency on disposal or marketing of coupling products. (orig.)

  16. The influence of Ac parameters in the process of micro-arc oxidation film electric breakdown

    Directory of Open Access Journals (Sweden)

    Ma Jin

    2016-01-01

    Full Text Available This paper studies the electric breakdown discharge process of micro-arc oxidation film on the surface of aluminum alloy. Based on the analysis of the AC parameters variation in the micro-arc oxidation process, the following conclusions can be drawn: The growth of oxide film can be divided into three stages, and Oxide film breakdown discharge occurs twice in the micro-arc oxidation process. The first stage is the formation and disruptive discharge of amorphous oxide film, producing the ceramic oxide granules, which belong to solid dielectric breakdown. In this stage the membrane voltage of the oxide film plays a key role; the second stage is the formation of ceramic oxide film, the ceramic oxide granules turns into porous structure oxide film in this stage; the third stage is the growth of ceramic oxide film, the gas film that forms in the oxide film’s porous structure is electric broken-down, which is the second breakdown discharge process, the current density on the oxide film surface could affect the breakdown process significantly.

  17. Oxidative treatment characteristics of biotreated textile-dyeing wastewater and chemical agents used in a textile-dyeing process by advanced oxidation process.

    Science.gov (United States)

    Lim, B R; Hu, H Y; Ahn, K H; Fujie, K

    2004-01-01

    The oxidative treatment characteristics of biotreated textile-dyeing wastewater and typical chemicals such as desizing, scouring, dispersing and swelling agents used in the textile-dyeing process by advanced oxidation process were experimentally studied. The refractory organic matters remained in the effluent of biological treatment process without degradation may be suitable for the improvement of biodegradability and mineralized to CO2 by combined ozonation with and without hydrogen peroxide. On the other hand, the refractory chemicals contained in the scouring agent A and swelling agent may not be mineralized and their biodegradability may not be improved by ozonation. However, the BOD/DOC ratio of scouring agent B increased from 0.3 to 0.45 after ozonation. Based on the results described above, advanced treatment process involving the ozonation without and with the addition of hydrogen peroxide, followed by biological treatment was proposed for the treatment of refractory wastewater discharged from the textile-dyeing process.

  18. A nanogravimmetric investigation of the charging processes on ruthenium oxide thin films and their effect on methanol oxidation

    International Nuclear Information System (INIS)

    Santos, M.C.; Cogo, L.; Tanimoto, S.T.; Calegaro, M.L.; Bulhoes, L.O.S

    2006-01-01

    The charging processes and methanol oxidation that occur during the oxidation-reduction cycles in a ruthenium oxide thin film electrode (deposited by the sol-gel method on Pt covered quartz crystals) were investigated by using cyclic voltammetry, chronoamperometry and electrochemical quartz crystal nanobalance techniques. The ruthenium oxide rutile phase structure was determined by X-ray diffraction analysis. The results obtained during the charging of rutile ruthenium oxide films indicate that in the anodic sweep the transition from Ru(II) to Ru(VI) occurs followed by proton de-intercalation. In the cathodic sweep, electron injection occurs followed by proton intercalation, leading to Ru(II). The proton intercalation/de-intercalation processes can be inferred from the mass/charge relationship which gives a slope close to 1 g mol -1 (multiplied by the Faraday constant) corresponding to the molar mass of hydrogen. From the chronoamperometric measurements, charge and mass saturation of the RuO 2 thin films was observed (440 ng cm -2 ) during the charging processes, which is related to the total number of active sites in these films. Using the electrochemical quartz crystal nanobalance technique to study the methanol oxidation reaction at these films was possible to demonstrate that bulk oxidation occurs without the formation of strongly adsorbed intermediates such as CO ads , demonstrating that Pt electrodes modified by ruthenium oxide particles can be promising catalysts for the methanol oxidation as already shown in the literature

  19. Direct and controllable nitric oxide delivery into biological media and living cells by a pin-to-hole spark discharge (PHD) plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dobrynin, D; Friedman, G [Electrical and Computer Engineering Department, College of Engineering, Drexel University, Philadelphia, PA (United States); Arjunan, K; Clyne, A Morss [School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA (United States); Fridman, A, E-mail: alisam@coe.drexel.edu [Department of Mechanical Engineering and Mechanics, College of Engineering, Drexel University, Philadelphia, PA (United States)

    2011-02-23

    Nitric oxide has great potential for improving wound healing through both inflammatory and vascularization processes. Nitric oxide can be produced in high concentrations by atmospheric pressure thermal plasmas. We measured the physical characteristics and nitric oxide production of a pin-to-hole spark discharge (PHD) plasma, as well as plasma-produced nitric oxide delivery into liquid and endothelial cells. The plasma temperature was calculated as 9030 {+-} 320 K by the Boltzmann method, which was adequate to produce nitric oxide, although the average gas temperature was near room temperature. The plasma produced significant UV radiation and hydrogen peroxide, but these were prevented from reaching the cells by adding a straight or curved tube extension to the plasma device. Plasma-produced nitric oxide in gas reached 2000 ppm and rapidly diffused into liquid and cells. Cells remained viable following plasma treatment and showed a linear increase in cGMP concentration with plasma treatment, indicating an intracellular functional response to PHD plasma NO. These data suggest that this plasma may provide a novel method for delivering NO locally and directly for enhanced wound healing.

  20. Direct and controllable nitric oxide delivery into biological media and living cells by a pin-to-hole spark discharge (PHD) plasma

    International Nuclear Information System (INIS)

    Dobrynin, D; Friedman, G; Arjunan, K; Clyne, A Morss; Fridman, A

    2011-01-01

    Nitric oxide has great potential for improving wound healing through both inflammatory and vascularization processes. Nitric oxide can be produced in high concentrations by atmospheric pressure thermal plasmas. We measured the physical characteristics and nitric oxide production of a pin-to-hole spark discharge (PHD) plasma, as well as plasma-produced nitric oxide delivery into liquid and endothelial cells. The plasma temperature was calculated as 9030 ± 320 K by the Boltzmann method, which was adequate to produce nitric oxide, although the average gas temperature was near room temperature. The plasma produced significant UV radiation and hydrogen peroxide, but these were prevented from reaching the cells by adding a straight or curved tube extension to the plasma device. Plasma-produced nitric oxide in gas reached 2000 ppm and rapidly diffused into liquid and cells. Cells remained viable following plasma treatment and showed a linear increase in cGMP concentration with plasma treatment, indicating an intracellular functional response to PHD plasma NO. These data suggest that this plasma may provide a novel method for delivering NO locally and directly for enhanced wound healing.

  1. Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Subramanyan, E-mail: vasudevan65@gmail.com [CSIR-Central Electrochemical Research Institute, Karaikudi 630 006 (India); Lakshmi, Jothinathan; Sozhan, Ganapathy [CSIR-Central Electrochemical Research Institute, Karaikudi 630 006 (India)

    2011-08-15

    Highlights: {yields} Very high removal efficiency of cadmium was achieved by electrocoagulation. {yields} Alternating current (AC) avoids oxide layer and corrosion on anode surface. {yields} Good current transfer between anode and cathode results more removal efficiency. {yields} Compact treatment facility and complete automation. {yields} Aluminum alloy anode prevents residual aluminum in treated water. - Abstract: In practice, direct current (DC) is used in an electrocoagulation processes. In this case, an impermeable oxide layer may form on the cathode as well as corrosion formation on the anode due to oxidation. This prevents the effective current transfer between the anode and cathode, so the efficiency of electrocoagulation processes declines. These disadvantages of DC have been diminished by adopting alternating current (AC) in electrocoagulation processes. The main objective of this study is to investigate the effects of AC and DC on the removal of cadmium from water using aluminum alloy as anode and cathode. The results showed that the removal efficiency of 97.5 and 96.2% with the energy consumption of 0.454 and 1.002 kWh kl{sup -1} was achieved at a current density of 0.2 A/dm{sup 2} and pH of 7.0 using aluminum alloy as electrodes using AC and DC, respectively. For both AC and DC, the adsorption of cadmium was preferably fitting Langmuir adsorption isotherm, the adsorption process follows second order kinetics and the temperature studies showed that adsorption was exothermic and spontaneous in nature.

  2. Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water

    International Nuclear Information System (INIS)

    Vasudevan, Subramanyan; Lakshmi, Jothinathan; Sozhan, Ganapathy

    2011-01-01

    Highlights: → Very high removal efficiency of cadmium was achieved by electrocoagulation. → Alternating current (AC) avoids oxide layer and corrosion on anode surface. → Good current transfer between anode and cathode results more removal efficiency. → Compact treatment facility and complete automation. → Aluminum alloy anode prevents residual aluminum in treated water. - Abstract: In practice, direct current (DC) is used in an electrocoagulation processes. In this case, an impermeable oxide layer may form on the cathode as well as corrosion formation on the anode due to oxidation. This prevents the effective current transfer between the anode and cathode, so the efficiency of electrocoagulation processes declines. These disadvantages of DC have been diminished by adopting alternating current (AC) in electrocoagulation processes. The main objective of this study is to investigate the effects of AC and DC on the removal of cadmium from water using aluminum alloy as anode and cathode. The results showed that the removal efficiency of 97.5 and 96.2% with the energy consumption of 0.454 and 1.002 kWh kl -1 was achieved at a current density of 0.2 A/dm 2 and pH of 7.0 using aluminum alloy as electrodes using AC and DC, respectively. For both AC and DC, the adsorption of cadmium was preferably fitting Langmuir adsorption isotherm, the adsorption process follows second order kinetics and the temperature studies showed that adsorption was exothermic and spontaneous in nature.

  3. DISY. The direct synthesis of hydrogen peroxide, a bridge for innovative applications

    Energy Technology Data Exchange (ETDEWEB)

    Buzzoni, R.; Perego, C. [Eni S.p.A., Novara (Italy). Research Center for Non-Conventional Energies

    2011-07-01

    Hydrogen peroxide is largely recognized as the green oxidant of choice for future sustainable processes. The current industrial production still goes through the old anthraquinone process, a complex, two-step process suffering from a low specific productivity. Following the development of TS-1/H{sub 2}O{sub 2} based selective oxidation processes e.g. propylene epoxidation, cyclohexanone ammoximation and the new benzene direct oxidation to phenol, there has been an incentive for the development of a new technology, simpler and with better economics. DISY process, based on direct synthesis of hydrogen peroxide from hydrogen and oxygen, is highly suitable to the design of integrated selective oxidation processes as well as for production of commercial-grade high concentration aqueous hydrogen peroxide solutions. Catalyst and process development up to pilot scale are described. (orig.)

  4. Direct conversion of bio-ethanol to isobutene on nanosized Zn(x)Zr(y)O(z) mixed oxides with balanced acid-base sites.

    Science.gov (United States)

    Sun, Junming; Zhu, Kake; Gao, Feng; Wang, Chongmin; Liu, Jun; Peden, Charles H F; Wang, Yong

    2011-07-27

    We report the design and synthesis of nanosized Zn(x)Zr(y)O(z) mixed oxides for direct and high-yield conversion of bio-ethanol to isobutene (~83%). ZnO is addded to ZrO(2) to selectively passivate zirconia's strong Lewis acidic sites and weaken Brönsted acidic sites, while simultaneously introducing basicity. As a result, the undesired reactions of bio-ethanol dehydration and acetone polymerization/coking are suppressed. Instead, a surface basic site-catalyzed ethanol dehydrogenation to acetaldehyde, acetaldehyde to acetone conversion via a complex pathway including aldol-condensation/dehydrogenation, and a Brönsted acidic site-catalyzed acetone-to-isobutene reaction pathway dominates on the nanosized Zn(x)Zr(y)O(z) mixed oxide catalyst, leading to a highly selective process for direct conversion of bio-ethanol to isobutene.

  5. Oxidation management of white wines using cyclic voltammetry and multivariate process monitoring.

    Science.gov (United States)

    Martins, Rui C; Oliveira, Raquel; Bento, Fatima; Geraldo, Dulce; Lopes, Vitor V; Guedes de Pinho, Paula; Oliveira, Carla M; Silva Ferreira, Antonio C

    2008-12-24

    The development of a fingerprinting strategy capable to evaluate the "oxidation status" of white wines based on cyclic voltammetry is proposed here. It is known that the levels of specific antioxidants and redox mechanisms may be evaluated by cyclic voltammetry. This electrochemical technique was applied on two sets of samples. One group was composed of normal aged white wines and a second group obtained from a white wine forced aging protocol with different oxygen, SO(2), pH, and temperature regimens. A study of antioxidant additions, namely ascorbic acid, was also made in order to establish a statistical link between voltammogram fingerprints and chemical antioxidant substances. It was observed that the oxidation curve presented typical features, which enables sample discrimination according to age, oxygen consumption, and antioxidant additions. In fact, it was possible to place the results into four significant orthogonal directions, compressing 99.8% of nonrandom features. Attempts were made to make voltammogram fingerprinting a tool for monitoring oxidation management. For this purpose, a supervised multivariate control chart was developed using a control sample as reference. When white wines are plotted onto the chart, it is possible to monitor the oxidation status and to diagnose the effects of oxygen regimes and antioxidant activity. Finally, quantification of substances implicated in the oxidation process as reagents (antioxidants) and products (off-flavors) was tried using a supervised algorithmic the partial least square regression analysis. Good correlations (r > 0.93) were observed for ascorbic acid, Folin-Ciocalteu index, total SO(2), methional, and phenylacetaldehyde. These results show that cyclic voltammetry fingerprinting can be used to monitor and diagnose the effects of wine oxidation.

  6. Flue gas cleanup using the Moving-Bed Copper Oxide Process

    Energy Technology Data Exchange (ETDEWEB)

    Pennline, Henry W; Hoffman, James S

    2013-10-01

    The use of copper oxide on a support had been envisioned as a gas cleanup technique to remove sulfur dioxide (SO{sub 2}) and nitric oxides (NO{sub x}) from flue gas produced by the combustion of coal for electric power generation. In general, dry, regenerable flue gas cleanup techniques that use a sorbent can have various advantages, such as simultaneous removal of pollutants, production of a salable by-product, and low costs when compared to commercially available wet scrubbing technology. Due to the temperature of reaction, the placement of the process into an advanced power system could actually increase the thermal efficiency of the plant. The Moving-Bed Copper Oxide Process is capable of simultaneously removing sulfur oxides and nitric oxides within the reactor system. In this regenerable sorbent technique, the use of the copper oxide sorbent was originally in a fluidized bed, but the more recent effort developed the use of the sorbent in a moving-bed reactor design. A pilot facility or life-cycle test system was constructed so that an integrated testing of the sorbent over absorption/regeneration cycles could be conducted. A parametric study of the total process was then performed where all process steps, including absorption and regeneration, were continuously operated and experimentally evaluated. The parametric effects, including absorption temperature, sorbent and gas residence times, inlet SO{sub 2} and NO{sub x} concentration, and flyash loadings, on removal efficiencies and overall operational performance were determined. Although some of the research results have not been previously published because of previous collaborative restrictions, a summary of these past findings is presented in this communication. Additionally, the potential use of the process for criteria pollutant removal in oxy-firing of fossil fuel for carbon sequestration purposes is discussed.

  7. Effect of preliminary oxidation on process of steel carburization

    Energy Technology Data Exchange (ETDEWEB)

    Devochkin, O V; Vorontsov, E S; Filonov, V N [Voronezhskij Politekhnicheskij Inst. (USSR)

    1975-01-01

    Effects of preliminary oxidation of the metal surface and its subsequent reduction steel cementation were studied. The samples with interferentionally coloured oxide film on the surface had deeper carbonated layer than those without film. The kinetics of carbonation process and the mechanism proposed for this phenomenon are given.

  8. Direct hydrothermal growth of GDC nanorods for low temperature solid oxide fuel cells

    Science.gov (United States)

    Hong, Soonwook; Lee, Dohaeng; Yang, Hwichul; Kim, Young-Beom

    2018-06-01

    We report a novel synthesis technique of gadolinia-doped ceria (GDC) nano-rod (NRs) via direct hydrothermal process to enhance performance of low temperature solid oxide fuel cell by increasing active reaction area and ionic conductivity at interface between cathode and electrolyte. The cerium nitrate hexahydrate, gadolinium nitrate hexahydrate and urea were used to synthesis GDC NRs for growth on diverse substrate. The directly grown GDC NRs on substrate had a width from 819 to 490 nm and height about 2200 nm with a varied urea concentration. Under the optimized urea concentration of 40 mMol, we confirmed that GDC NRs able to fully cover the substrate by enlarging active reaction area. To maximize ionic conductivity of GDC NRs, we synthesis varied GDC NRs with different ratio of gadolinium and cerium precursor. Electrochemical analysis revealed a significant enhanced performance of fuel cells applying synthesized GDC NRs with a ratio of 2:8 gadolinium and cerium precursor by reducing polarization resistance, which was chiefly attributed to the enlarged active reaction area and enhanced ionic conductivity of GDC NRs. This method of direct hydrothermal growth of GDC NRs enhancing fuel cell performance was considered to apply other types of catalyzing application using nano-structure such as gas sensing and electrolysis fields.

  9. Developing alternative oxidation processes for the treatment of organic radioactive waste

    International Nuclear Information System (INIS)

    Turc, H.A.; Broudic, J.Ch.; Joussot-Dubien, Ch.

    2000-01-01

    An electro-generated silver (II) mediated oxidation process is currently under development in the Atalante facility of the French Atomic Energy Commission, as an operation of the DELOS unit, with the aim to mineralize α-contaminated solvents with respect to the principles of nuclear safety. This process is a wet oxidation one involving a powerful mediator (Ag(II)/Ag(I): 1.92 V/NHE), but its throughput is mainly limited by technological constraints. Hydrothermal oxidation (HTO) has been investigated and proved by inactive studies as to be a versatile and powerful process, which could help destroying the contaminated solvents (dodecane, TBP, TLA...) produced by the spent nuclear fuel reprocessing research and industry. The current development aims to set up a continuous HTO pilot in a standard glovebox, in order to solve both technological and safety difficulties and to treat small volumes of contaminated solvents. This paper discusses the main results of the silver(II) oxidation and HTO process development works. (authors)

  10. Carbon contaminant in the ion processing of aluminum oxide film

    International Nuclear Information System (INIS)

    Chaug, Y.; Roy, N.

    1989-01-01

    Ion processing can induce contamination on the bombarded surface. However, this process is essential for the microelectronics device fabrication. Auger electron spectroscopy has been used to study the simultaneous deposition of carbon impurity during ion bombardment of magnetron rf-sputtering deposited aluminum oxide film. Ion bombardment on aluminum oxide results in a preferential removal of surface oxygen and a formation of a metastable state of aluminum suboxide. Cosputtered implanted carbon contaminant appears to have formed a new state of stoichiometry on the surface of the ion bombarded aluminum oxide and existed as an aluminum carbide. This phase has formed due to the interaction of the implanted carbon and the aluminum suboxide. The Ar + ion sputter etching rate is reduced for the carbon contaminated oxide. The electrical resistance of the aluminum oxide between two gold strips has been measured. It is found that the electrical resistance is also reduced due to the formation of the new stoichiometry on the surface

  11. Hybrid process for nitrogen oxides reduction

    Energy Technology Data Exchange (ETDEWEB)

    Epperly, W.R.; Sprague, B.N.

    1991-09-10

    This patent describes a process for reducing the nitrogen oxide concentration in the effluent from the combustion of a carbonaceous fuel. It comprises introducing into the effluent a first treatment agent comprising a nitrogenous composition selected from the group consisting of urea, ammonia, hexamethylenetetramine, ammonium salts of organic acids, 5- or 6-membered heterocyclic hydrocarbons having at least one cyclic nitrogen, hydroxy amino hydrocarbons, NH{sub 4}-lignosulfonate, fur-furylamine, tetrahydrofurylamine, hexamethylenediamine, barbituric acid, guanidine, guanidine carbonate, biguanidine, guanylurea sulfate, melamine, dicyandiamide, biuret, 1.1{prime}-azobisformamide, methylol urea, methylol urea-urea condensation product, dimethylol urea, methyl urea, dimethyl urea, calcium cyanamide, and mixtures thereof under conditions effective to reduce the nitrogen oxides concentration and ensure the presence of ammonia in the effluent; introducing into the effluent a second treatment agent comprising an oxygenated hydrocarbon at an effluent temperature of about 500{degrees} F. to about 1600{degrees} F. under conditions effective to oxidize nitric oxide in the effluent to nitrogen dioxide and ensure the presence of ammonia at a weight ratio of ammonia to nitrogen dioxide of about 1:5 to about 5:1; and contacting the effluent with an aqueous scrubbing solution having a pH of 12 or lower under conditions effective to cause nitrogen dioxide to be absorbed therein.

  12. Catalysed electrolytic metal oxide dissolution processes

    International Nuclear Information System (INIS)

    Machuron-Mandard, X.

    1994-01-01

    The hydrometallurgical processes designed for recovering valuable metals from mineral ores as well as industrial wastes usually require preliminary dissolution of inorganic compounds in aqueous media before extraction and purification steps. Unfortunately, most of the minerals concerned hardly or slowly dissolve in acidic or basic solutions. Metallic oxides, sulfides and silicates are among the materials most difficult to dissolve in aqueous solutions. They are also among the main minerals containing valuable metals. The redox properties of such materials sometimes permit to improve their dissolution by adding oxidizing or reducing species to the leaching solution, which leads to an increase in the dissolution rate. Moreover, limited amounts of redox promoters are required if the redox agent is regenerated continuously thanks to an electrochemical device. Nuclear applications of such concepts have been suggested since the dissolution of many actinide compounds (e.g., UO 2 , AmO 2 , PuC, PuN,...) is mainly based on redox reactions. In the 1980s, improvements of the plutonium dioxide dissolution process have been proposed on the basis of oxidation-reduction principles, which led a few years later to the design of industrial facilities (e.g., at Marcoule or at the french reprocessing plant of La Hague). General concepts and well-established results obtained in France at the Atomic Energy Commission (''Commissariat a l'Energie Atomique'') will be presented and will illustrate applications to industrial as well as analytical problems. (author)

  13. Selective oxidation of benzene and cyclohexane using amorphous microporous mixed oxides; Selektive Oxidation von Benzol und Cyclohexan mit amorphen mikroporoesen Mischoxiden

    Energy Technology Data Exchange (ETDEWEB)

    Stoeckmann, M.

    2000-07-01

    Phenol was to be produced by direct oxidation of benzene with environment-friendly oxidants like hydrogen peroxide, oxygen, or ozone. Catalysts were amorphous microporous mixed oxides whose properties can be selected directly in the sol-gel synthesis process. Apart from benzene, also cyclohexane was oxidized with ozone using AMM catalysts in order to get more information on the potential of ozone as oxidant in heterogeneously catalyzed reactions. [German] Ziel dieser Arbeit war die Herstellung von Phenol durch die Direktoxidation von Benzol mit umweltfreundlichen Oxidationsmitteln wie Wasserstoffperoxid, Sauerstoff oder Ozon. Als Katalysatoren dienten amorphe mikroporoese Mischoxide, da deren Eigenschaften direkt in der Synthese durch den Sol-Gel-Prozess gezielt eingestellt werden koennen. Neben Benzol wurde auch Cyclohexan mit Ozon unter der Verwendung von AMM-Katalysatoren oxidiert, um das Potential von Ozon als Oxiationsmittel in heterogen katalysierten Reaktionen naeher zu untersuchen. (orig.)

  14. High-performance binder-free supercapacitor electrode by direct growth of cobalt-manganese composite oxide nansostructures on nickel foam

    OpenAIRE

    Jiang, Shulan; Shi, Tielin; Long, Hu; Sun, Yongming; Zhou, Wei; Tang, Zirong

    2014-01-01

    A facile approach composed of hydrothermal process and annealing treatment is proposed to directly grow cobalt-manganese composite oxide ((Co,Mn)3O4) nanostructures on three-dimensional (3D) conductive nickel (Ni) foam for a supercapacitor electrode. The as-fabricated porous electrode exhibits excellent rate capability and high specific capacitance of 840.2 F g-1 at the current density of 10 A g-1, and the electrode also shows excellent cycling performance, which retains 102% of its initial d...

  15. Measurement of the oxidation-extraction of uranium from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    Lawes, B.C.

    1985-01-01

    The present invention relates to processes for the recovery of uranium from wet-process phosphoric acid and more particularly to the oxidation-extraction steps in the DEPA-TOPO process for such recovery. A more efficient use of oxidant is obtained by monitoring the redox potential during the extraction step

  16. A robust NiO-Sm0.2Ce0.8O1.9 anode for direct-methane solid oxide fuel cell

    KAUST Repository

    Tian, Dong

    2015-07-02

    In order to directly use methane without a reforming process, NiO-Sm0.2Ce0.8O1.9 (NiO-SDC) nanocomposite anode are successfully synthesized via a one-pot, surfactant-assisted co-assembly approach for direct-methane solid oxide fuel cells. Both NiO with cubic phase and SDC with fluorite phase are obtained at 550 °C. Both NiO nanoparticles and SDC nanoparticles are highly monodispersed in size with nearly spherical shapes. Based on the as-synthesized NiO-SDC, two kinds of single cells with different micro/macro-porous structure are successfully fabricated. As a result, the cell performance was improved by 40%-45% with the new double-pore NiO-SDC anode relative to the cell performance with the conventional NiO-SDC anode due to a wider triple-phase-boundary (TPB) area. In addition, no significant degradation of the cell performance was observed after 60 hours, which means an increasing of long term stability. Therefore, the as-synthesized NiO-SDC nanocomposite is a promising anode for direct-methane solid oxide fuel cells.

  17. Removal of macro-pollutants in oily wastewater obtained from soil remediation plant using electro-oxidation process.

    Science.gov (United States)

    Zolfaghari, Mehdi; Drogui, Patrick; Blais, Jean François

    2018-03-01

    Electro-oxidation process by niobium boron-doped diamond (Nb/BDD) electrode was used to treat non-biodegradable oily wastewater provided from soil leachate contaminated by hydrocarbons. Firstly, the diffusion current limit and mass transfer coefficient was experimentally measured (7.1 mA cm -2 and 14.7 μm s -1 , respectively), in order to understand minimum applied current density. Later on, the oxidation kinetic model of each pollutant was investigated in different current densities ranged between 3.8 and 61.5 mA cm -2 . It was observed that direct oxidation was the main removal mechanism of organic and inorganic carbon, while the indirect oxidation in higher current density was responsible for nitrogen oxidation. Hydrocarbon in the form of colloidal particles could be removed by electro-flotation. On the other hand, electro-decomposition on the surface of cathode and precipitation by hydroxyl ions were the utmost removal pathway of metals. According to the initial experiments, operating condition was further optimized by central composite design model in different current density, treatment time, and electrolyte addition, based on the best responses on the specific energy consumption (SEC), chemical oxygen demand (COD), and total organic carbon (TOC) removal efficiency. Unde r optimum operating condition (current density = 23.1 mA cm -2 , time = 120 min, Ti/Pt as a cathode, and Nb/BDD as the anode), electro-oxidation showed the following removal efficiencies: COD (84.6%), TOC (68.2%), oil and grease (99%), color (87.9%), total alkalinity (92%), N tot (18%), NH 4 + (31%), Ca (66.4%), Fe (71.1%), Mg (41.4%), Mn (78.1%), P tot (75%), S (67.1%), and Si (19.1%). Graphical abstract Environmental significance statement Soil treatment facilities are rapidly grown throughout the world, especially in North America due to its intense industrialization. High water content soil in humid area like Canada produces significant amount of leachate which is

  18. Process for fabricating mixed-oxide powders

    International Nuclear Information System (INIS)

    Elmaleh, D.; Giraudel, A.

    1975-01-01

    A physical-chemical process for fabricating homogeneous powders suitable for sintering is described. It can be applied to the synthesis of all mixed oxides having mutually compatible and water soluble salts. As a specific example, the fabrication of lead titanate-zirconate powders used to make hot pressed ceramics is described. These ceramics show improved piezoelectric properties [fr

  19. Volcano Relation for the Deacon Process over Transition-Metal Oxides

    DEFF Research Database (Denmark)

    Studt, Felix; Abild-Pedersen, Frank; Hansen, Heine Anton

    2010-01-01

    We establish an activity relation for the heterogeneous catalytic oxidation of HCI (the Deacon Process) over rutile transition-metal oxide catalysts by combining density functional theory calculations (DFT) with microkinetic modeling. Linear energy relations for the elementary reaction steps...

  20. Investigation of the Scanning Microarc Oxidation Process

    Directory of Open Access Journals (Sweden)

    Lingqin Xia

    2017-01-01

    Full Text Available Scanning microarc oxidation (SMAO is a coating process which is based on conventional microarc oxidation (MAO. The key difference is that deposition in SMAO is achieved by using a stainless steel nozzle to spray an electrolyte stream on the substrate surface as opposed to immersing the workpiece in an electrolyzer. In the present study, SMAO discharge characteristics, coating morphology, and properties are analyzed and compared to results obtained from MAO under similar conditions. Results show that MAO and SMAO have comparable spark and microarc lifetimes and sizes, though significant differences in incubation time and discharge distribution were evident. Results also showed that the voltage and current density for MAO and SMAO demonstrate similar behavior but have markedly different transient and steady-state values. Results obtained from coating A356 aluminum sheet show that oxide thickness and growth rate in SMAO are strongly dependent on interelectrode spacing and travel speed. Analysis of the SMAO coating morphology and structure showed that a denser and slightly harder layer was deposited in comparison to MAO and is attributed to reduced porosity and increased formation of α-Al2O3. Preliminary results indicate that SMAO represents a viable process for coating of aluminum surfaces.

  1. Criegee Intermediates: What Direct Production and Detection Can Teach Us About Reactions of Carbonyl Oxides

    Science.gov (United States)

    Taatjes, Craig A.

    2017-05-01

    The carbonyl oxide intermediates in the ozonolysis of alkenes, often known as Criegee intermediates, are potentially important reactants in Earth's atmosphere. For decades, careful analysis of ozonolysis systems was employed to derive an understanding of the formation and reactions of these species. Recently it has proved possible to synthesize at least some of these intermediates separately from ozonolysis, and hence to measure their reaction kinetics directly. Direct measurements have allowed new or more detailed understanding of each type of gas-phase reaction that carbonyl oxides undergo, often acting as a complement to highly detailed ozonolysis experiments. Moreover, the use of direct characterization methods to validate increasingly accurate theoretical investigations can enhance their impact well beyond the set of specific reactions that have been measured. Reactions that initiate particles or fuel their growth could be a new frontier for direct measurements of Criegee intermediate chemistry.

  2. Thermal processing and native oxidation of silicon nanoparticles

    International Nuclear Information System (INIS)

    Winters, Brandon J.; Holm, Jason; Roberts, Jeffrey T.

    2011-01-01

    In this study, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and electron energy loss spectroscopy (EELS) were used to investigate in-air oxidation of silicon nanoparticles ca. 11 nm in diameter. Particle samples were prepared first by extracting them from an RF plasma synthesis reactor, and then heating them in an inert carrier gas stream. The resulting particles had varying surface hydrogen coverages and relative amounts of SiH x (x = 1, 2, and 3), depending on the temperature to which they had been heated. The particles were allowed to oxidize in-air for several weeks. FTIR, XPS, and EELS analyses that were performed during this period clearly establish that adsorbed hydrogen retards oxidation, although in complex ways. In particular, particles that have been heated to intermediate hydrogen coverages oxidize more slowly in air than do freshly generated particles that have a much higher hydrogen content. In addition, the loss of surface hydride species at high processing temperatures results in fast initial oxidation and the formation of a self-limiting oxide layer. Analogous measurements made on deuterium-covered particles show broadly similar behavior; i.e., that oxidation is the slowest at some intermediate coverage of adsorbed deuterium.

  3. 19 CFR 10.814 - Direct costs of processing operations.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Direct costs of processing operations. 10.814... Free Trade Agreement Rules of Origin § 10.814 Direct costs of processing operations. (a) Items included. For purposes of § 10.810(b) of this subpart, the words “direct costs of processing operations”, with...

  4. 19 CFR 10.774 - Direct costs of processing operations.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Direct costs of processing operations. 10.774... Free Trade Agreement Rules of Origin § 10.774 Direct costs of processing operations. (a) Items included. For purposes of § 10.770(b) of this subpart, the words “direct costs of processing operations”, with...

  5. Lipid oxidation in baked products: impact of formula and process on the generation of volatile compounds.

    Science.gov (United States)

    Maire, Murielle; Rega, Barbara; Cuvelier, Marie-Elisabeth; Soto, Paola; Giampaoli, Pierre

    2013-12-15

    This paper investigates the effect of ingredients on the reactions occurring during the making of sponge cake and leading to the generation of volatile compounds related to flavour quality. To obtain systems sensitive to lipid oxidation (LO), a formulation design was applied varying the composition of fatty matter and eggs. Oxidation of polyunsaturated fatty acids (PUFA) and formation of related volatile compounds were followed at the different steps of cake-making. Optimised dynamic Solid Phase Micro Extraction was applied to selectively extract either volatile or semi-volatile compounds directly from the baking vapours. We show for the first time that in the case of alveolar baked products, lipid oxidation occurs very early during the step of dough preparation and to a minor extent during the baking process. The generation of lipid oxidation compounds depends on PUFA content and on the presence of endogenous antioxidants in the raw matter. Egg yolk seemed to play a double role on reactivity: protecting unsaturated lipids from oxidation and being necessary to generate a broad class of compounds of the Maillard reaction during baking and linked to the typical flavour of sponge cake. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. In situ FTIRS study of ethanol electro-oxidation on anode catalysts in direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.; Sun, G.; Jiang, L.; Zhu, M.; Yan, S.; Wang, G.; Xin, Q. [Chinese Academy of Sciences, Dalian (China). Dalian Inst. of Chemical Physics; Chen, Q.; Li, J.; Jiang, Y.; Sun, S. [Xiamen Univ., Xiamen (China). State Key Lab. for Physical Chemistry of Solid Surfaces

    2006-07-01

    The low activation of ethanol oxidation at lower temperatures is an obstacle to the development of cost-effective direct ethanol fuel cells (DEFCs). This study used a modified polyol method to prepare carbon-supported platinum (Pt) based catalysts. Carbon supported Pt-based catalysts were fabricated by a modified polyol method and characterized through transmission electron spectroscopy (TEM) and X-ray diffraction (XRD). Results of the study showed that the particles in the Pt/C and PtRu/C and PtSn/C catalysts were distributed on the carbon support uniformly. Diffraction peaks of the Pt shifted positively in the PtRu/C catalysts and negatively in the PtSn/C catalysts. In situ Fourier Transform Infra-red spectroscopy (FTIR) was used to investigate the adsorption and oxidation process of ethanol on the catalysts. Results showed that the electrocatalytic activity of ethanol oxidation on the materials was enhanced. Linear bonded carbon monoxide (CO) was the most strongly absorbed species, and the main products produced by the catalysts were carbon dioxide (CO{sub 2}), acetaldehyde, and acetic acid. Results showed that the PtRu/C catalyst broke the C-C bond more easily than the Pt/C and PtSn/C compounds. However, the results of a linear sweep voltammogram analysis showed that ethanol oxidation of the PtSn/C was enhanced. Bands observed on the compound indicated the formation of acetic acid and acetaldehyde. It was concluded that the enhancement of PtSn/C for ethanol oxidation was due to the formation of acetic acid and acetaldehyde at lower potentials. 4 refs., 1 fig.

  7. Electrochemical oxidation of organic waste

    International Nuclear Information System (INIS)

    Almon, A.C.; Buchanan, B.R.

    1990-01-01

    Both silver catalyzed and direct electrochemical oxidation of organic species are examined in analytical detail. This paper describes the mechanisms, reaction rates, products, intermediates, capabilities, limitations, and optimal reaction conditions of the electrochemical destruction of organic waste. A small bench-top electrocell being tested for the treatment of small quantities of laboratory waste is described. The 200-mL electrochemical cell used has a processing capacity of 50 mL per day, and can treat both radioactive and nonradioactive waste. In the silver catalyzed process, Ag(I) is electrochemically oxidized to Ag(II), which attacks organic species such as tributylphosphate (TBP), tetraphenylborate (TPB), and benzene. In direct electrochemical oxidation, the organic species are destroyed at the surface of the working electrode without the use of silver as an electron transfer agent. This paper focuses on the destruction of tributylphosphate (TBP), although several organic species have been destroyed using this process. The organic species are converted to carbon dioxide, water, and inorganic acids

  8. Development of a process for co-conversion of Pu-U nitrate mixed solutions to mixed oxide powder using microwave heating method

    International Nuclear Information System (INIS)

    Koizumi, Masumichi; Ohtsuka, Katsuyuki; Ohshima, Hirofumi; Isagawa, Hiroto; Akiyama, Hideo; Todokoro, Akio; Naruki, Kaoru

    1983-01-01

    For the complete nuclear fuel cycle, the development of a process for the co-conversion of Pu-U nitrate mixed solutions to mixed oxide powder has been performed along the line of non-proliferation policy of nuclear materials. A new co-conversion process using a microwave heating method has been developed and successfully demonstrated with good results using the test unit with a capacity of 2 kg MOX/d. Through the experiments and engineering test operations, several important data have been obtained concerning the feasibility of the test unit, powder characteristics and homogeneity of the product, and impurity pickups during denitration process. The results of these experimental operations show that the co-conversion process using a microwave heating method has many excellent advantages, such as good powder characteristics of the product, good homogeneity of Pu-U oxide, simplicity of the process, minimum liquid waste, no possibility of changing the Pu/U ratio and stable operability of the plant. Since August 1979, plutonium nitrate solution transported from the Tokai Reprocessing Plant has been converted to mixed oxide powder which has the Pu/U ratio = 1. The products have been processed to the ATR ''FUGEN'' reloading fuel. Based on the successful development of the co-conversion process, the microwave heating direct denitration facility with a 10 kg MOX/d capacity has been constructed adjacent to the reprocessing plant. This facility will come into hot operation by the fall of this year. For future development of the microwave heating method, a continuous direct denitration, a vitrification of high active liquid waste and a solidification of the plutonium-contaminated waste are investigated in Power Reactor and Nuclear Fuel Development Corp. (author)

  9. Automation of the micro-arc oxidation process

    Science.gov (United States)

    Golubkov, P. E.; Pecherskaya, E. A.; Karpanin, O. V.; Shepeleva, Y. V.; Zinchenko, T. O.; Artamonov, D. V.

    2017-11-01

    At present the significantly increased interest in micro-arc oxidation (MAO) encourages scientists to look for the solution of the problem of this technological process controllability. To solve this problem an automated technological installation MAO was developed, its structure and control principles are presented in this article. This device will allow to provide the controlled synthesis of MAO coatings and to identify MAO process patterns which contributes to commercialization of this technology.

  10. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    Science.gov (United States)

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.; Lloyd, Matthew T.; Widjonarko, Nicodemus Edwin; Miedaner, Alexander; Curtis, Calvin J.; Ginley, David S.; Olson, Dana C.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  11. Direct electrocatalytic reduction of coenzyme NAD{sup +} to enzymatically-active 1,4-NADH employing an iridium/ruthenium-oxide electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Nehar, E-mail: nehar.ullah@mail.mcgill.ca; Ali, Irshad; Omanovic, Sasha

    2015-01-15

    A thermally prepared iridium/ruthenium-oxide coating (Ir{sub 0.8}Ru{sub 0.2}-oxide) formed on a titanium substrate was investigated as a possible electrode for direct electrochemical regeneration of enzymatically-active 1,4-NADH from its oxidized form NAD{sup +}, at various electrode potentials, in a batch electrochemical reactor. The coating surface was characterized by ‘cracked mud’ morphology, yielding a high surface roughness. The NADH regeneration results showed that the percentage of enzymatically-active 1,4-NADH present in the product mixture (i.e. recovery) is strongly dependent on the electrode potential, reaching a maximum (88%) at −1.70 V vs. MSE. The relatively high recovery was explained on the basis of availability of adsorbed ‘active’ hydrogen (H{sub ads}) on the Ir/Ru-oxide surface, i.e. on the basis of electrochemical hydrogenation. - Highlights: • Ir{sub 0.8}Ru{sub 0.2}-oxide coating was formed thermally on a Ti substrate. • Electrochemical regeneration of enzymatically-active 1,4-NADH was investigated. • The 1,4-NADH recovery percentage is strongly dependent on the electrode potential. • A highest recovery, 88%, was obtained at −1.70 V vs. MSE. • The NADH regeneration process involved electrochemical hydrogenation.

  12. Kinetic studies on the degradation of crystal violet by the Fenton oxidation process.

    Science.gov (United States)

    Wu, H; Fan, M M; Li, C F; Peng, M; Sheng, L J; Pan, Q; Song, G W

    2010-01-01

    The degradation of dye crystal violet (CV) by Fenton oxidation process was investigated. The UV-Vis spectrogram has shown that CV can be degraded effectively by Fenton oxidation process. Different system variables namely initial H(2)O(2) concentration, initial Fe(2 + ) concentration and reaction temperature, which have effect on the degradation of CV by Fenton oxidation process, have been studied systematically. The degradation kinetics of CV was also elucidated based on the experimental data. The degradation of CV obeys the first-order reaction kinetics. The kinetic model can be described as k=1.5 exp(-(7.5)/(RT))[H(2)O(2)](0)(0.8718)[Fe(2+)](0)(0.5062). According to the IR spectrogram, it is concluded that the benzene ring of crystal violet has been destroyed by Fenton oxidation. The result will be useful in treating dyeing wastewater containing CV by Fenton oxidation process.

  13. Study on emission characteristics and reduction strategy of nitrous oxide during wastewater treatment by different processes.

    Science.gov (United States)

    Sun, Shichang; Bao, Zhiyuan; Sun, Dezhi

    2015-03-01

    Given the inexorable increase in global wastewater treatment, increasing amounts of nitrous oxide are expected to be emitted from wastewater treatment plants and released to the atmosphere. It has become imperative to study the emission and control of nitrous oxide in the various wastewater treatment processes currently in use. In the present investigation, the emission characteristics and the factors affecting the release of nitrous oxide were studied via full- and pilot-scale experiments in anoxic-oxic, sequencing batch reactor and oxidation ditch processes. We propose an optimal treatment process and relative strategy for nitrous oxide reduction. Our results show that both the bio-nitrifying and bio-denitrifying treatment units in wastewater treatment plants are the predominant sites for nitrous oxide production in each process, while the aerated treatment units are the critical sources for nitrous oxide emission. Compared with the emission of nitrous oxide from the anoxic-oxic (1.37% of N-influent) and sequencing batch reactor (2.69% of N-influent) processes, much less nitrous oxide (0.25% of N-influent) is emitted from the oxidation ditch process, which we determined as the optimal wastewater treatment process for nitrous oxide reduction, given the current technologies. Nitrous oxide emissions differed with various operating parameters. Controlling the dissolved oxygen concentration at a proper level during nitrification and denitrification and enhancing the utilization rate of organic carbon in the influent for denitrification are the two critical methods for nitrous oxide reduction in the various processes considered.

  14. Generic process for preparing a crystalline oxide upon a group IV semiconductor substrate

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick J.; Chisholm, Matthew F.

    2000-01-01

    A process for growing a crystalline oxide epitaxially upon the surface of a Group IV semiconductor, as well as a structure constructed by the process, is described. The semiconductor can be germanium or silicon, and the crystalline oxide can generally be represented by the formula (AO).sub.n (A'BO.sub.3).sub.m in which "n" and "m" are non-negative integer repeats of planes of the alkaline earth oxides or the alkaline earth-containing perovskite oxides. With atomic level control of interfacial thermodynamics in a multicomponent semiconductor/oxide system, a highly perfect interface between a semiconductor and a crystalline oxide can be obtained.

  15. Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes.

    Science.gov (United States)

    Moreira, Francisca C; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-05-15

    Apart from a high biodegradable fraction consisting of organic acids, sugars and alcohols, winery wastewaters exhibit a recalcitrant fraction containing high-molecular-weight compounds as polyphenols, tannins and lignins. In this context, a winery wastewater was firstly subjected to a biological oxidation to mineralize the biodegradable fraction and afterwards an electrochemical advanced oxidation process (EAOP) was applied in order to mineralize the refractory molecules or transform them into simpler ones that can be further biodegraded. The biological oxidation led to above 97% removals of dissolved organic carbon (DOC), chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD5), but was inefficient on the degradation of a bioresistant fraction corresponding to 130 mg L(-1) of DOC, 380 mg O2 L(-1) of COD and 8.2 mg caffeic acid equivalent L(-1) of total dissolved polyphenols. Various EAOPs such as anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), UVA photoelectro-Fenton (PEF) and solar PEF (SPEF) were then applied to the recalcitrant effluent fraction using a 2.2 L lab-scale flow plant containing an electrochemical cell equipped with a boron-doped diamond (BDD) anode and a carbon-PTFE air-diffusion cathode and coupled to a photoreactor with compound parabolic collectors (CPCs). The influence of initial Fe(2+) concentration and current density on the PEF process was evaluated. The relative oxidative ability of EAOPs increased in the order AO-H2O2 < EF < PEF ≤ SPEF. The SPEF process using an initial Fe(2+) concentration of 35 mg L(-1), current density of 25 mA cm(-2), pH of 2.8 and 25 °C reached removals of 86% on DOC and 68% on COD after 240 min, regarding the biologically treated effluent, along with energy consumptions of 45 kWh (kg DOC)(-1) and 5.1 kWh m(-3). After this coupled treatment, color, odor, COD, BOD5, NH4(+), NO3(-) and SO4(2-) parameters complied with the legislation targets and, in addition, a total

  16. Coupling mechanism between wear and oxidation processes of 304 stainless steel in hydrogen peroxide environments.

    Science.gov (United States)

    Dong, Conglin; Yuan, Chengqing; Bai, Xiuqin; Li, Jian; Qin, Honglin; Yan, Xinping

    2017-05-24

    Stainless steel is widely used in strongly oxidizing hydrogen peroxide (H 2 O 2 ) environments. It is crucial to study its wear behaviour and failure mode. The tribological properties and oxidation of 304 stainless steel were investigated using a MMW-1 tribo-tester with a three-electrode setup in H 2 O 2 solutions with different concentrations. Corrosion current densities (CCDs), coefficients of frictions (COFs), wear mass losses, wear surface topographies, and metal oxide films were analysed and compared. The results show that the wear process and oxidation process interacted significantly with each other. Increasing the concentration of H 2 O 2 or the oxidation time was useful to form a layer of integrated, homogeneous, compact and thick metal oxide film. The dense metal oxide films with higher mechanical strengths improved the wear process and also reduced the oxidation reaction. The wear process removed the metal oxide films to increase the oxidation reaction. Theoretical data is provided for the rational design and application of friction pairs in oxidation corrosion conditions.

  17. Optimization of oxidation processes to improve crystalline silicon solar cell emitters

    Directory of Open Access Journals (Sweden)

    L. Shen

    2014-02-01

    Full Text Available Control of the oxidation process is one key issue in producing high-quality emitters for crystalline silicon solar cells. In this paper, the oxidation parameters of pre-oxidation time, oxygen concentration during pre-oxidation and pre-deposition and drive-in time were optimized by using orthogonal experiments. By analyzing experimental measurements of short-circuit current, open circuit voltage, series resistance and solar cell efficiency in solar cells with different sheet resistances which were produced by using different diffusion processes, we inferred that an emitter with a sheet resistance of approximately 70 Ω/□ performed best under the existing standard solar cell process. Further investigations were conducted on emitters with sheet resistances of approximately 70 Ω/□ that were obtained from different preparation processes. The results indicate that emitters with surface phosphorus concentrations between 4.96 × 1020 cm−3 and 7.78 × 1020 cm−3 and with junction depths between 0.46 μm and 0.55 μm possessed the best quality. With no extra processing, the final preparation of the crystalline silicon solar cell efficiency can reach 18.41%, which is an increase of 0.4%abs compared to conventional emitters with 50 Ω/□ sheet resistance.

  18. Plasma and catalyst for the oxidation of NOx

    Science.gov (United States)

    Jõgi, Indrek; Erme, Kalev; Levoll, Erik; Raud, Jüri; Stamate, Eugen

    2018-03-01

    Efficient exhaust gas cleaning from NO x (NO and NO2) by absorption and adsorption based methods requires the oxidation of NO. The application of non-thermal plasma is considered as a promising oxidation method but the oxidation of NO by direct plasma remains limited due to the back-reaction of NO2 to NO mediated by O radicals in plasma. Indirect NO oxidation by plasma produced ozone allows to circumvent the back-reaction and further oxidize NO2 to N2O5 but the slow reaction rate for the latter process limits the efficiency of this process. Present paper gives an overview of the role of metal-oxide catalysts in the improvement of oxidation efficiency for both direct and indirect plasma oxidation of NO x . The plasma produced active oxygen species (O, O3) were shown to play an important role in the reactions taking place on the catalyst surfaces while the exact mechanism and extent of the effect were different for direct and indirect oxidation. In the case of direct plasma oxidation, both short and long lifetime oxygen species could reach the catalyst and participate in the oxidation of NO to NO2. The back-reaction in the plasma phase remained still important factor and limited the effect of catalyst. In the case of indirect oxidation, only ozone could reach the catalyst surface and improve the oxidation of NO2 to N2O5. The effect of catalyst at different experimental conditions was quantitatively described with the aid of simple global chemical kinetic models derived for the NO x oxidation either by plasma or ozone. The models allowed to compare the effect of different catalysts and to analyze the limitations for the efficiency improvement by catalyst.

  19. Iron oxides and their applications in catalytic processes: a review

    OpenAIRE

    Oliveira, Luiz C. A.; Fabris, José D.; Pereira, Márcio C.

    2013-01-01

    A review of most of the reported studies on the use of iron oxides as catalyst in specific processes, namely Haber-Bosch reaction, Fischer-Tropsch synthesis, Fenton oxidation and photolytic molecular splitting of water to produce gaseous hydrogen, was carried out. An essential overview is thus presented, intending to address the fundamental meaning, as well as the corresponding chemical mechanisms, and perspectives on new technological potentialities of natural and synthetic iron oxides, more...

  20. Flexible substrate compatible solution processed P-N heterojunction diodes with indium-gallium-zinc oxide and copper oxide

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Ishan; Deepak, E-mail: saboo@iitk.ac.in

    2017-04-15

    Highlights: • Both n and p-type semiconductors are solution processed. • Temperature compatibility with flexible substrates such as polyimide. • Compatibility of p-type film (CuO) on n-type film (IZO). • Diode with rectification ratio of 10{sup 4} and operating voltage <1.5 V. • Construction of band alignment using XPS. - Abstract: Printed electronics on flexible substrates requires low temperature and solution processed active inks. With n-type indium-gallium-zinc oxide (IGZO) based electronics maturing for thin film transistor (TFT), we here demonstrate its heterojunction diode with p-copper oxide, prepared by sol-gel method and processed at temperatures compatible with polyimide substrates. The phase obtained for copper oxide is CuO. When coated on n-type oxide, it is prone to develop morphological features, which are minimized by annealing treatment. Diodes of p-CuO films with IGZO are of poor quality due to its high resistivity while, conducting indium-zinc oxide (IZO) films yielded good diode with rectification ratio of 10{sup 4} and operating voltage <1.5 V. A detailed measurement at the interface by X-ray photoelectron spectroscopy and optical absorption ascertained the band alignment to be of staggered type. Consistently, the current in the diode is established to be due to electrons tunnelling from n-IZO to p-CuO.

  1. Decolorization of direct poly azo dye with nanophotocatalytic UV/NiO process

    Directory of Open Access Journals (Sweden)

    Ali Assadi

    2012-01-01

    Full Text Available Aims: The aim of the present study is to investigate the efficiency of ultraviolet/ nickel oxide (UV/NiO system as one form of advanced oxidation processes (AOP for decolorization of red poly azo. Materials and Methods: This study was conducted as a laboratory scale in a batch mode. Ultraviolet radiation was provided by a low pressure (11 W UV lamp. Effects of various factors including pH, different irradiation durations, different concentration of nickel oxide, and initial dye concentration were evaluated. Results: The results of the UV/NiO system′s assessment showed that UV light alone cannot remove DR 80 dye. Nickel oxide is an effective catalyst in the decolorization of dye with the nanophotocatalytic process. The decolorization efficiency increases with decreasing pH value and the optimum pH value is 4. Fainally, the highest removal efficiency achieved by UV/NiO process for DR 80 dye with concentrations of 25 mg/l and 50 mg/l was 94.3% and 82.2%, respectively. UV/NiO-based decolorization process follows pseudo-second-order reaction kinetics. Conclusions: From the findings of the present study, it can be concluded that UV/NiO process is an effective technique for decolorization of poly azo dye, DR 80, in aqueous solutions.

  2. Phenol wastewater remediation: advanced oxidation processes coupled to a biological treatment.

    Science.gov (United States)

    Rubalcaba, A; Suárez-Ojeda, M E; Stüber, F; Fortuny, A; Bengoa, C; Metcalfe, I; Font, J; Carrera, J; Fabregat, A

    2007-01-01

    Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. Therefore, different advanced oxidation processes were investigated as suitable precursors for the biological treatment of industrial effluents containing phenol. Wet air oxidation and Fenton process were tested batch wise, while catalytic wet air oxidation and H2O2-promoted catalytic wet air oxidation processes were studied in a trickle bed reactor, the last two using over activated carbon as catalyst. Effluent characterisation was made by means of substrate conversion (using high liquid performance chromatography), chemical oxygen demand and total organic carbon. Biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) were obtained from respirometric tests using activated sludge from an urban biological wastewater treatment plant (WWTP). The main goal was to find the proper conditions in terms of biodegradability enhancement, so that these phenolic effluents could be successfully treated in an urban biological WWTP. Results show promising research ways for the development of efficient coupled processes for the treatment of wastewater containing toxic or biologically non-degradable compounds.

  3. Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process.

    Science.gov (United States)

    Moussavi, Gholamreza; Shekoohiyan, Sakine

    2016-11-15

    This work was aimed at investigating the performance of the continuous-flow VUV photoreactor as a novel chemical-less advanced process for simultaneously oxidizing acetaminophen (ACT) as a model of pharmaceuticals and reducing nitrate in a single reactor. Solution pH was an important parameter affecting the performance of VUV; the highest ACT oxidation and nitrate reduction attained at solution pH between 6 and 8. The ACT was oxidized mainly by HO while the aqueous electrons were the main working agents in the reduction of nitrate. The performance of VUV photoreactor improved with the increase of hydraulic retention time (HRT); the complete degradation of ACT and ∼99% reduction of nitrate with 100% N2 selectivity achieved at HRT of 80min. The VUV effluent concentrations of nitrite and ammonium at HRT of 80min were below the drinking water standards. The real water sample contaminated with the ACT and nitrate was efficiently treated in the VUV photoreactor. Therefore, the VUV photoreactor is a chemical-less advanced process in which both advanced oxidation and advanced reduction reactions are accomplished. This unique feature possesses VUV photoreactor as a promising method of treating water contaminated with both pharmaceutical and nitrate. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The direct oxidative diene cyclization and related reactions in natural product synthesis

    Directory of Open Access Journals (Sweden)

    Juliane Adrian

    2016-09-01

    Full Text Available The direct oxidative cyclization of 1,5-dienes is a valuable synthetic method for the (diastereoselective preparation of substituted tetrahydrofurans. Closely related reactions start from 5,6-dihydroxy or 5-hydroxyalkenes to generate similar products in a mechanistically analogous manner. After a brief overview on the history of this group of transformations and a survey on mechanistic and stereochemical aspects, this review article provides a summary on applications in natural product synthesis. Moreover, current limitations and future directions in this area of chemistry are discussed.

  5. Processing and properties of silver-metal oxide electrical contact materials

    Directory of Open Access Journals (Sweden)

    Nadežda M. Talijan

    2012-12-01

    Full Text Available The presented study gives a brief overview of the experimental results of investigations of different production technologies of silver-metal oxide electrical contact materials in relation: processing method - properties. The two most common routes of production, i.e. internal oxidation/ingot metallurgy and powder metallurgy are demonstrated on the example of Ag-CdO and Ag-ZnO materials. For illustration of alternative processing routes that provide higher dispersion of metal-oxide particles in silver matrix more environmentally friendly Ag-SnO2 contact materials are used. Processing of electrical contact materials by mechanical mixing of starting powders in high energy ball mill is presented. The obtained experimental results of application of different methods of introduction of SnO2 nanoparticles in the silver matrix such as conventional powder metallurgy mixing and template method are given and discussed in terms of their influence on microstructure and physical properties (density, hardness and electrical conductivity of the prepared Ag-SnO2 electrical contact materials.

  6. [Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies].

    Science.gov (United States)

    Zhu, Yong-Guan; Wang, Xiao-Hui; Yang, Xiao-Ru; Xu, Hui-Juan; Jia, Yan

    2014-02-01

    Nitrous oxide (N2O) is a powerful atmospheric greenhouse gas, which does not only have a strong influence on the global climate change but also depletes the ozone layer and induces the enhancement of ultraviolet radiation to ground surface, so numerous researches have been focused on global climate change and ecological environmental change. Soil is the foremost source of N2O emissions to the atmosphere, and approximately two-thirds of these emissions are generally attributed to microbiological processes including bacterial and fungal denitrification and nitrification processes, largely as a result of the application of nitrogenous fertilizers. Here the available knowledge concerning the research progress in N2O production in agricultural soils was reviewed, including denitrification, nitrification, nitrifier denitrification and dissimilatory nitrate reduction to ammonium, and the abiotic (including soil pH, organic and inorganic nitrogen, organic matter, soil humidity and temperature) and biotic factors that have direct and indirect effects on N2O fluxes from agricultural soils were also summarized. In addition, the strategies for mitigating N2O emissions and the future research direction were proposed. Therefore, these studies are expected to provide valuable and scientific evidence for the study on mitigation strategies for the emission of greenhouse gases, adjustment of nitrogen transformation processes and enhancement of nitrogen use efficiency.

  7. SIMULTANEOUS DEGRADATION OF SOME PHTHALATE ESTERS UNDER FENTON AND PHOTO-FENTON OXIDATION PROCESSES

    Directory of Open Access Journals (Sweden)

    BELDEAN-GALEA M.S.

    2015-03-01

    Full Text Available In this study the assessment of the degradation efficiency of five phthalates, DEP, BBP, DEHP, DINP and DIDP, found in a mixture in a liquid phase, using the Fenton and Photo Fenton oxidation processes, was conducted. It was observed that the main parameters that influence the Fenton oxidative processes of phthalates were the concentration of the oxidizing agent, H2O2, the concentration of the catalyst used, Fe2+, the pH value, UV irradiation and the reaction time. For the Fenton oxidative process, the highest degradation efficiencies were 19% for DEP, 50% for BBP, 84% for DEHP, 90% for DINP and 48% for DIDP, when the experiments were carried out using concentrations of 20 mg L-1 phthalate mixture, 100 mg L-1 H2O2, 10 mg L-1 Fe2+ at a pH value of 3, with a total reaction time of 30 minutes. For the Photo-Fenton oxidative process carried out in the same conditions as Fenton oxidative process, it was observed that after an irradiation time of 90 minutes under UV radiation the degradation efficiencies of phthalates were improved, being 22% for DEP, 71% for BBP, 97% for DEHP, 97% for DINP and 81% for DIDP.

  8. Process for the fabrication of nuclear fuel oxide pellets

    International Nuclear Information System (INIS)

    Francois, Bernard; Paradis, Yves.

    1977-01-01

    Process for the fabrication of nuclear fuel oxide pellets of the type for which particles charged with an organic binder -selected from the group that includes polyvinyl alcohol, carboxymethyl cellulose, polyvinyl compounds and methyl cellulose- are prepared from a powder of such an oxide, for instance uranium dioxide. These particles are then compressed into pellets which are then sintered. Under this process the binder charged particles are prepared by stirring the powder with a gas, spraying on to the stirred powder a solution or a suspension in a liquid of this organic binder in order to obtain these particles and then drying the particles so obtained with this gas [fr

  9. Process for the removal of sulfur oxides and nitrogen oxides from flue gas

    International Nuclear Information System (INIS)

    Elshout, R.V.

    1992-01-01

    This patent describes a continuous process for removing sulfur oxide and nitrogen oxide contaminants from the flue gas generated by industrial power plants and boiler systems burning sulfur containing fossil fuels and for converting these contaminants, respectively, into recovered elemental liquid sulfur and nitrogen ammonia and mixtures thereof. It comprises removing at least a portion of the flue gas generated by a power plant or boiler system upstream of the stack thereof; passing the cooled and scrubbed flue gas through an adsorption system; combining a first portion of the reducing gas stream leaving the adsorbers of the adsorption system during regeneration thereof and containing sulfur oxide and nitrogen oxide contaminants with a hydrogen sulfide rich gas stream at a temperature of about 400 degrees F to about 600 degrees F and passing the combined gas streams through a Claus reactor-condenser system over a catalyst in the reactor section thereof which is suitable for promoting the equilibrium reaction between the hydrogen sulfide and the sulfur dioxide of the combined streams to form elemental sulfur

  10. Direction of CRT waste glass processing: Electronics recycling industry communication

    International Nuclear Information System (INIS)

    Mueller, Julia R.; Boehm, Michael W.; Drummond, Charles

    2012-01-01

    Highlights: ► Given a large flow rate of CRT glass ∼10% of the panel glass stream will be leaded. ► The supply of CRT waste glass exceeded demand in 2009. ► Recyclers should use UV-light to detect lead oxide during the separation process. ► Recycling market analysis techniques and results are given for CRT glass. ► Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

  11. Microgravity Processing of Oxide Superconductors

    Science.gov (United States)

    Hofmeister, William H.; Bayuzick, Robert J.; Vlasse, Marcus; McCallum, William; Peters, Palmer (Technical Monitor)

    2000-01-01

    The primary goal is to understand the microstructures which develop under the nonequilibrium solidification conditions achieved by melt processing in copper oxide superconductor systems. More specifically, to define the liquidus at the Y- 1:2:3 composition, the Nd-1:2:3 composition, and several intermediate partial substitution points between pure Y-1:2:3 and Nd-1:2:3. A secondary goal has been to understand resultant solidification morphologies and pathways under a variety of experimental conditions and to use this knowledge to better characterize solidification phenomena in these systems.

  12. Direct Nitrous Oxide Emission from the Aquacultured Pacific White Shrimp (Litopenaeus vannamei).

    Science.gov (United States)

    Heisterkamp, Ines M; Schramm, Andreas; de Beer, Dirk; Stief, Peter

    2016-07-01

    The Pacific white shrimp (Litopenaeus vannamei) is widely used in aquaculture, where it is reared at high stocking densities, temperatures, and nutrient concentrations. Here we report that adult L. vannamei shrimp emit the greenhouse gas nitrous oxide (N2O) at an average rate of 4.3 nmol N2O/individual × h, which is 1 to 2 orders of magnitude higher than previously measured N2O emission rates for free-living aquatic invertebrates. Dissection, incubation, and inhibitor experiments with specimens from a shrimp farm in Germany indicated that N2O is mainly produced in the animal's gut by microbial denitrification. Microsensor measurements demonstrated that the gut interior is anoxic and nearly neutral and thus is favorable for denitrification by ingested bacteria. Dinitrogen (N2) and N2O accounted for 64% and 36%, respectively, of the nitrogen gas flux from the gut, suggesting that the gut passage is too fast for complete denitrification to be fully established. Indeed, shifting the rearing water bacterial community, a diet component of shrimp, from oxic to anoxic conditions induced N2O accumulation that outlasted the gut passage time. Shrimp-associated N2O production was estimated to account for 6.5% of total N2O production in the shrimp farm studied here and to contribute to the very high N2O supersaturation measured in the rearing tanks (2,099%). Microbial N2O production directly associated with aquacultured animals should be implemented into life cycle assessments of seafood production. The most widely used shrimp species in global aquaculture, Litopenaeus vannamei, is shown to emit the potent greenhouse gas nitrous oxide (N2O) at a particularly high rate. Detailed experiments reveal that N2O is produced in the oxygen-depleted gut of the animal by bacteria that are part of the shrimp diet. Upon ingestion, these bacteria experience a shift from oxic to anoxic conditions and therefore switch their metabolism to the anaerobic denitrification process, which produces N

  13. Thermodynamic analysis of Direct Urea Solid Oxide Fuel Cell in combined heat and power applications

    Science.gov (United States)

    Abraham, F.; Dincer, I.

    2015-12-01

    This paper presents a comprehensive steady state modelling and thermodynamic analysis of Direct Urea Solid Oxide Fuel Cell integrated with Gas Turbine power cycle (DU-SOFC/GT). The use of urea as direct fuel mitigates public health and safety risks associated with the use of hydrogen and ammonia. The integration scheme in this study covers both oxygen ion-conducting solid oxide fuel cells (SOFC-O) and hydrogen proton-conducting solid oxide fuel cells (SOFC-H). Parametric case studies are carried out to investigate the effects of design and operating parameters on the overall performance of the system. The results reveal that the fuel cell exhibited the highest level of exergy destruction among other system components. Furthermore, the SOFC-O based system offers better overall performance than that with the SOFC-H option mainly due to the detrimental reverse water-gas shift reaction at the SOFC anode as well as the unique configuration of the system.

  14. Wafer-scale laser pantography: Fabrication of n-metal-oxide-semiconductor transistors and small-scale integrated circuits by direct-write laser-induced pyrolytic reactions

    International Nuclear Information System (INIS)

    McWilliams, B.M.; Herman, I.P.; Mitlitsky, F.; Hyde, R.A.; Wood, L.L.

    1983-01-01

    A complete set of processes sufficient for manufacture of n-metal-oxide-semiconductor (n-MOS) transistors by a laser-induced direct-write process has been demonstrated separately, and integrated to yield functional transistors. Gates and interconnects were fabricated of various combinations of n-doped and intrinsic polysilicon, tungsten, and tungsten silicide compounds. Both 0.1-μm and 1-μm-thick gate oxides were micromachined with and without etchant gas, and the exposed p-Si [100] substrate was cleaned and, at times, etched. Diffusion regions were doped by laser-induced pyrolytic decomposition of phosphine followed by laser annealing. Along with the successful manufacture of working n-MOS transistors and a set of elementary digital logic gates, this letter reports the successful use of several laser-induced surface reactions that have not been reported previously

  15. Direct access inter-process shared memory

    Science.gov (United States)

    Brightwell, Ronald B; Pedretti, Kevin; Hudson, Trammell B

    2013-10-22

    A technique for directly sharing physical memory between processes executing on processor cores is described. The technique includes loading a plurality of processes into the physical memory for execution on a corresponding plurality of processor cores sharing the physical memory. An address space is mapped to each of the processes by populating a first entry in a top level virtual address table for each of the processes. The address space of each of the processes is cross-mapped into each of the processes by populating one or more subsequent entries of the top level virtual address table with the first entry in the top level virtual address table from other processes.

  16. Optimization Recovery of Yttrium Oxide in Precipitation, Extraction, and Stripping Process

    Science.gov (United States)

    Perwira, N. I.; Basuki, K. T.; Biyantoro, D.; Effendy, N.

    2018-04-01

    Yttrium oxide can be used as a dopant control rod of nuclear reactors in YSH material and superconductors. Yttrium oxide is obtained in the Xenotime mineral derived from byproduct of tin mining PT Timah Bangka which contain rare earth elements (REE) dominant Y, Dy, and Gd whose content respectively about 29.53%, 7.76%, and 2.58%. Both usage in the field of nuclear and non-nuclear science and technology is need to pure from the impurities. The presence of impurities in the yttrium oxide may affect the characteristic of the material and the efficiency of its use. Thus it needs to be separated by precipitation and extraction-stripping and calcination in the making of the oxide. However, to obtain higher levels of Yttrium oxide, it is necessary to determine the optimum conditions for its separation. The purpose of this research was to determine the optimum pH of precipitation, determine acid media and concentration optimum in extraction and stripping process and determine the efficiency of the separation of Y from REE concentrate. This research was conducted with pH variation in the precipitation process that pHs were 4 - 8, the difference of acid media for the extraction process, i.e., HNO3, HCl and H2SO4 with each concentration of 0,5 M; 1 M; 1,5 M; and 2 M and for stripping process were HNO3, HCl, and H2SO4 with each concentration of 1 M; 2M; and 3 M. Based on the result, the optimum pH of precipitation process was 6,5, the optimumacid media was HNO3 0,5 M, and for stripping process media was HNO3 3 M. The efficiency of precipitation process at pH 6,5 was 69,53 %, extraction process was 96.39% and stripping process was 4,50%. The separation process from precipitation to extraction had increased the purity and the highest efficiency recovery of Y was in the extraction process and obtained Y2O3 purer compared to the feed with the Y2O3 content of 92.87%.

  17. Operating experience in processing of differently sourced deeply depleted uranium oxide and production of deeply depleted uranium metal ingots

    International Nuclear Information System (INIS)

    Manna, S.; Ladola, Y.S.; Sharma, S.; Chowdhury, S.; Satpati, S.K.; Roy, S.B.

    2009-01-01

    Uranium Metal Plant (UMP) of BARC had first time experience on production of three Depleted Uranium Metal (DUM) ingots of 76kg, 152kg and 163kg during March 1991. These ingots were produced by processing depleted uranyl nitrate solution produced at Plutonium Plant (PP), Trombay. In recent past Uranium Metal Plant (UMP), Uranium Extraction Division (UED), has been assigned to produce tonnage quantity of Deeply DUM (DDUM) from its oxide obtained from PP, PREFRE and RMP, BARC. This is required for shielding the high radioactive source of BHABHATRON Tele-cobalt machine, which is used for cancer therapy. The experience obtained in processing of various DDU oxides is being utilized for design of large scale DDU-metal plant under XIth plan project. The physico- chemical characteristics like morphology, density, flowability, reactivity, particle size distribution, which are having direct effect on reactivity of the powders of the DDU oxide powder, were studied and the shop-floor operational experience in processing of different oxide powder were obtained and recorded. During campaign trials utmost care was taken to standardized all operating conditions using the same equipment which are in use for natural uranium materials processing including safety aspects both with respect to radiological safety and industrial safety. Necessary attention and close monitoring were specially arranged and maintained for the safety aspects during the trial period. In-house developed pneumatic transport system was used for powder transfer and suitable dust arresting system was used for reduction of powder carry over

  18. Solid oxide fuel cells fueled with reducible oxides

    Science.gov (United States)

    Chuang, Steven S.; Fan, Liang Shih

    2018-01-09

    A direct-electrochemical-oxidation fuel cell for generating electrical energy includes a cathode provided with an electrochemical-reduction catalyst that promotes formation of oxygen ions from an oxygen-containing source at the cathode, a solid-state reduced metal, a solid-state anode provided with an electrochemical-oxidation catalyst that promotes direct electrochemical oxidation of the solid-state reduced metal in the presence of the oxygen ions to produce electrical energy, and an electrolyte disposed to transmit the oxygen ions from the cathode to the solid-state anode. A method of operating a solid oxide fuel cell includes providing a direct-electrochemical-oxidation fuel cell comprising a solid-state reduced metal, oxidizing the solid-state reduced metal in the presence of oxygen ions through direct-electrochemical-oxidation to obtain a solid-state reducible metal oxide, and reducing the solid-state reducible metal oxide to obtain the solid-state reduced metal.

  19. Application of infiltrated LSCM-GDC oxide anode in direct carbon/coal fuel cells.

    Science.gov (United States)

    Yue, Xiangling; Arenillas, Ana; Irvine, John T S

    2016-08-15

    Hybrid direct carbon/coal fuel cells (HDCFCs) utilise an anode based upon a molten carbonate salt with an oxide conducting solid electrolyte for direct carbon/coal conversion. They can be fuelled by a wide range of carbon sources, and offer higher potential chemical to electrical energy conversion efficiency and have the potential to decrease CO2 emissions compared to coal-fired power plants. In this study, the application of (La, Sr)(Cr, Mn)O3 (LSCM) and (Gd, Ce)O2 (GDC) oxide anodes was explored in a HDCFC system running with two different carbon fuels, an organic xerogel and a raw bituminous coal. The electrochemical performance of the HDCFC based on a 1-2 mm thick 8 mol% yttria stabilised zirconia (YSZ) electrolyte and the GDC-LSCM anode fabricated by wet impregnation procedures was characterized and discussed. The infiltrated oxide anode showed a significantly higher performance than the conventional Ni-YSZ anode, without suffering from impurity formation under HDCFC operation conditions. Total polarisation resistance (Rp) reached 0.8-0.9 Ω cm(2) from DCFC with an oxide anode on xerogel and bituminous coal at 750 °C, with open circuit voltage (OCV) values in the range 1.1-1.2 V on both carbon forms. These indicated the potential application of LSCM-GDC oxide anode in HDCFCs. The chemical compatibility of LSCM/GDC with carbon/carbonate investigation revealed the emergence of an A2BO4 type oxide in place of an ABO3 perovskite structure in the LSCM in a reducing environment, due to Li attack as a result of intimate contact between the LSCM and Li2CO3, with GDC being stable under identical conditions. Such reaction between LSCM and Li2CO3 was not observed on a LSCM-YSZ pellet treated with Li-K carbonate in 5% H2/Ar at 700 °C, nor on a GDC-LSCM anode after HDCFC operation. The HDCFC durability tests of GDC-LSCM oxide on a xerogel and on raw bituminous coal were performed under potentiostatic operation at 0.7 V at 750 °C. The degradation mechanisms were

  20. Petroleum Refinery Effluents Treatment by Advanced Oxidation Process with Methanol

    Energy Technology Data Exchange (ETDEWEB)

    Shoucheng, Wen [Yangtze Univ., HuBei Jingzhou (China)

    2014-02-15

    Petroleum refinery effluents are waste originating from industries primarily engaged in refining crude oil. It is a very complex compound of various oily wastes, water, heavy metals and so on. Conventional processes are unable to effectively remove the chemical oxygen demand (COD) of petroleum refinery effluents. Supercritical water oxidation (SCWO) was proposed to treat petroleum refinery effluents. In this paper, methanol was used to investigate co-oxidative effect of methanol on petroleum refinery effluents treatment. The results indicated that supercritical water oxidation is an effective process for petroleum refinery effluents treatment. Adding methanol caused an increase in COD removal. When reaction temperature is 440 .deg. C, residence time is 20 min, OE is 0.5 and initial COD is 40000 mg/L, and COD removal increases 8.5%.

  1. Petroleum Refinery Effluents Treatment by Advanced Oxidation Process with Methanol

    International Nuclear Information System (INIS)

    Shoucheng, Wen

    2014-01-01

    Petroleum refinery effluents are waste originating from industries primarily engaged in refining crude oil. It is a very complex compound of various oily wastes, water, heavy metals and so on. Conventional processes are unable to effectively remove the chemical oxygen demand (COD) of petroleum refinery effluents. Supercritical water oxidation (SCWO) was proposed to treat petroleum refinery effluents. In this paper, methanol was used to investigate co-oxidative effect of methanol on petroleum refinery effluents treatment. The results indicated that supercritical water oxidation is an effective process for petroleum refinery effluents treatment. Adding methanol caused an increase in COD removal. When reaction temperature is 440 .deg. C, residence time is 20 min, OE is 0.5 and initial COD is 40000 mg/L, and COD removal increases 8.5%

  2. A catalytic wet oxidation process for mixed waste volume reduction/recycling

    International Nuclear Information System (INIS)

    Dhooge, Patrick M.

    1992-01-01

    Mixed wastes have presented a challenge to treatment and destruction technologies. A recently developed catalytic wet oxidation method has promising characteristics for volume reduction and recycling of mixed wastes. The process utilizes iron (III) as an oxidant in the presence of homogeneous cocatalysts which increase organics' oxidation rates and the rate of oxidation of iron (II) by oxygen. The reaction is conducted in an aqueous mineral acid solution at temperatures of 373 - 573 deg K. The mineral acid should solvate a number of heavy metals, including U and Pu. Studies of reaction rates show that the process can oxidize a wide range of organic compounds including aromatics and chlorinated hydrocarbons. Rate constants in the range of 10 -7 to 10 -4 sec -1 , depending on the cocatalyst, acidity, type of anions, type of organic, temperature, and time. Activation energies ranged from 25. to 32. KJ/mole. Preliminary measurements of the extent of oxidation which could be obtained ranged from 80% for trichloroethylene to 99.8% for 1,2,4-trimethylbenzene; evidence was obtained that absorption by the fluorocarbon liners of the reaction bombs allowed some of the organics to escape exposure to the catalyst solution. The results indicate that complete oxidation of the organics used here, and presumably many others, can be achieved. (author)

  3. Application of advanced oxidation processes for removing salicylic acid from synthetic wastewaters

    Institute of Scientific and Technical Information of China (English)

    Djalma; Ribeiro; da; Silva; Carlos; A.Martinez-Huítle

    2010-01-01

    In this study,advanced oxidation processes(AOPs) such as anodic oxidation(AO),UV/H_2O_2 and Fenton processes(FP) were investigated for the degradation of salicylic acid(SA) in lab-scale experiments.Boron-doped diamond(BDD) film electrodes using Ta as substrates were employed for AO of SA.In the case of FP and UV/H_2O_2,most favorable experimental conditions were determined for each process and these were used for comparing with AO process.The study showed that the FP was the most effective process under ...

  4. Study on recovering directly the commercial cerium oxide and total of residue rare earths from Dongpao bastnasite concentrate

    International Nuclear Information System (INIS)

    Nguyen Trong Hung; Nguyen Thanh Chung; Luu Xuan Dinh

    2003-01-01

    A technology for decomposition roasting and sequential leaching processes of Dong Pao bastnasite concentrate to recover directly commercial cerium oxide and total of residue rare earth elements from the leaching solution of the roasted product have been investigated. The bastnasite concentrate is initially roasted at temperature range of 600 - 650 degC and for time of 4 hrs in order to decompose and convert the hardly soluble carbonate forms of ore into easily soluble oxide. The roasted solid is then leached with sulfuric acid solution of 6N at 60 degC for 4 hrs to convert rare earths in oxide and fluoride form into rare earth sulfate. The recovery yield of rare earths of these stages is more than 95%. The attention has especially been paid on recovering directly the commercial cerium oxide and total of residue rare earth element from the above leaching solution. Complex ions of CeSO 4 2+ , Ce(SO 4 ) 2 , Ce(SO 4 ) 3 2- and Ce(SO 4 ) 4 4- exist in aqueous solution of cerium (IV) sulfate. Based on the property, the method of ion - sieve with DOWEX cation resin column has been applied to estimating separation of the ceric complex anions from Ln(III). The survey showed that most of the ceric complex anions are separated from total of residue rare earths. The latter which are absorbed in the cation column are recovered by elution of HCl of 4N. The recovery yield of cerium can only be reached 20% but the purity of that is very high, can be reached 99.6%. About 5 kg of CeO 2 of high grade and 5 kg of TREO of commercial specification have been produced. (author)

  5. Processing-dependent thermal stability of a prototypical amorphous metal oxide

    Science.gov (United States)

    Zeng, Li; Moghadam, Mahyar M.; Buchholz, D. Bruce; Li, Ran; Keane, Denis T.; Dravid, Vinayak P.; Chang, Robert P. H.; Voorhees, Peter W.; Marks, Tobin J.; Bedzyk, Michael J.

    2018-05-01

    Amorphous metal oxides (AMOs) are important candidate materials for fabricating next-generation thin-film transistors. While much attention has been directed toward the synthesis and electrical properties of AMOs, less is known about growth conditions that allow AMOs to retain their desirable amorphous state when subjected to high operating temperatures. Using in situ x-ray scattering and level-set simulations, we explore the time evolution of the crystallization process for a set of amorphous I n2O3 thin films synthesized by pulsed-laser deposition at deposition temperatures (Td) of -50, -25, and 0 °C. The films were annealed isothermally and the degree of crystallinity was determined by a quantitative analysis of the time-evolved x-ray scattering patterns. As expected, for films grown at the same Td, an increase in the annealing temperature TA led to a shorter delay prior to the onset of crystallization, and a faster crystallization rate. Moreover, when lowering the deposition temperature by 25 °C, a 40 °C increase in annealing temperature is needed to achieve the same time interval for the crystals to grow from 10 to 90% volume fraction of the sample. Films grown at Td=0 ∘C exhibited strong cubic texture after crystallization. A level-set method was employed to quantitatively model the texture that develops in the microstructures and to determine key parameters, such as the interface growth velocity, the nucleation density, and the activation energy. The differences observed in the crystallization processes are attributed to the changes in the atomic structure of the oxide and possible nanocrystalline inclusions that formed during the deposition of the amorphous phase.

  6. Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes

    Science.gov (United States)

    Sheng, Jiazhen; Han, Ki-Lim; Hong, TaeHyun; Choi, Wan-Ho; Park, Jin-Seong

    2018-01-01

    The current article is a review of recent progress and major trends in the field of flexible oxide thin film transistors (TFTs), fabricating with atomic layer deposition (ALD) processes. The ALD process offers accurate controlling of film thickness and composition as well as ability of achieving excellent uniformity over large areas at relatively low temperatures. First, an introduction is provided on what is the definition of ALD, the difference among other vacuum deposition techniques, and the brief key factors of ALD on flexible devices. Second, considering functional layers in flexible oxide TFT, the ALD process on polymer substrates may improve device performances such as mobility and stability, adopting as buffer layers over the polymer substrate, gate insulators, and active layers. Third, this review consists of the evaluation methods of flexible oxide TFTs under various mechanical stress conditions. The bending radius and repetition cycles are mostly considering for conventional flexible devices. It summarizes how the device has been degraded/changed under various stress types (directions). The last part of this review suggests a potential of each ALD film, including the releasing stress, the optimization of TFT structure, and the enhancement of device performance. Thus, the functional ALD layers in flexible oxide TFTs offer great possibilities regarding anti-mechanical stress films, along with flexible display and information storage application fields. Project supported by the National Research Foundation of Korea (NRF) (No. NRF-2017R1D1A1B03034035), the Ministry of Trade, Industry & Energy (No. #10051403), and the Korea Semiconductor Research Consortium.

  7. Iron Oxide Films Prepared by Rapid Thermal Processing for Solar Energy Conversion.

    Science.gov (United States)

    Wickman, B; Bastos Fanta, A; Burrows, A; Hellman, A; Wagner, J B; Iandolo, B

    2017-01-16

    Hematite is a promising and extensively investigated material for various photoelectrochemical (PEC) processes for energy conversion and storage, in particular for oxidation reactions. Thermal treatments during synthesis of hematite are found to affect the performance of hematite electrodes considerably. Herein, we present hematite thin films fabricated via one-step oxidation of Fe by rapid thermal processing (RTP). In particular, we investigate the effect of oxidation temperature on the PEC properties of hematite. Films prepared at 750 °C show the highest activity towards water oxidation. These films show the largest average grain size and the highest charge carrier density, as determined from electron microscopy and impedance spectroscopy analysis. We believe that the fast processing enabled by RTP makes this technique a preferred method for investigation of novel materials and architectures, potentially also on nanostructured electrodes, where retaining high surface area is crucial to maximize performance.

  8. Organic waste processing using molten salt oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M. G., LLNL

    1998-03-01

    Molten Salt Oxidation (MSO) is a thermal means of oxidizing (destroying) the organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. The U. S. Department of Energy`s Office of Environmental Management (DOE/EM) is currently funding research that will identify alternatives to incineration for the treatment of organic-based mixed wastes. (Mixed wastes are defined as waste streams which have both hazardous and radioactive properties.) One such project is Lawrence Livermore National Laboratory`s Expedited Technology Demonstration of Molten Salt Oxidation (MSO). The goal of this project is to conduct an integrated demonstration of MSO, including off-gas and spent salt treatment, and the preparation of robust solid final forms. Livermore National Laboratory (LLNL) has constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are presently being performed under carefully controlled (experimental) conditions. The system consists of a MSO process vessel with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. In this paper we describe the integrated system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is to identify the most suitable waste streams and waste types for MSO treatment.

  9. Electrochemical oxidation of methanol and formic acid in fuel cell processes

    Energy Technology Data Exchange (ETDEWEB)

    Seland, Frode

    2005-07-01

    The main objectives of the thesis work were: (1), to study the oxidation of methanol and formic acid on platinum electrodes by employing conventional and advanced electrochemical methods, and (2), to develop membrane electrode assemblies based on polybenzimidazole membranes that can be used in fuel cells up to 200 C. D.c. voltammetry and a.c. voltammetry studies of methanol and formic acid on polycrystalline platinum in sulphuric acid electrolyte were performed to determine the mechanism and kinetics of the oxidation reactions. A combined potential step and fast cyclic voltammetry experiment was employed to investigate the time dependence primarily of methanol oxidation on platinum. Charge measurements clearly demonstrated the existence of a parallel path at low potentials and short times without formation of adsorbed CO. Furthermore, experimental results showed that only the serial path, via adsorbed CO, exists during continuous cycling, with the first step being diffusion controlled dissociative adsorption of methanol directly from the bulk electrolyte. The saturation charge of adsorbed CO derived from methanol was found to be significantly lower than CO derived from formic acid or dissolved CO. This was attributed to the site requirements of the dehydrogenation steps, and possibly different compositions of linear, bridged or multiply bonded CO. The coverage of adsorbed CO from formic acid decreased significantly at potentials just outside of the hydrogen region (0.35 V vs. RHE), while it did not start to decrease significantly until about 0.6 V vs. RHE for methanol. Adsorbed CO from dissolved CO rapidly oxidized at potentials above about 0.75 V due to formation of platinum oxide. Data from a.c. voltammograms from 0.5 Hz up to 30 kHz were assembled into electrochemical impedance spectra (EIS) and analyzed using equivalent circuits. The main advantages of collecting EIS spectra from a.c. voltammetry experiments are the ability to directly correlate the impedance

  10. Catalytic Oxidation of Lignins into the Aromatic Aldehydes: General Process Trends and Development Prospects

    Science.gov (United States)

    Tarabanko, Valery E.; Tarabanko, Nikolay

    2017-01-01

    This review discusses principal patterns that govern the processes of lignins’ catalytic oxidation into vanillin (3-methoxy-4-hydroxybenzaldehyde) and syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde). It examines the influence of lignin and oxidant nature, temperature, mass transfer, and of other factors on the yield of the aldehydes and the process selectivity. The review reveals that properly organized processes of catalytic oxidation of various lignins are only insignificantly (10–15%) inferior to oxidation by nitrobenzene in terms of yield and selectivity in vanillin and syringaldehyde. Very high consumption of oxygen (and consequentially, of alkali) in the process—over 10 mol per mol of obtained vanillin—is highlighted as an unresolved and unexplored problem: scientific literature reveals almost no studies devoted to the possibilities of decreasing the consumption of oxygen and alkali. Different hypotheses about the mechanism of lignin oxidation into the aromatic aldehydes are discussed, and the mechanism comprising the steps of single-electron oxidation of phenolate anions, and ending with retroaldol reaction of a substituted coniferyl aldehyde was pointed out as the most convincing one. The possibility and development prospects of single-stage oxidative processing of wood into the aromatic aldehydes and cellulose are analyzed. PMID:29140301

  11. Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes

    International Nuclear Information System (INIS)

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju; Ren, Hongqiang; Xu, Ke; Ding, Lili

    2016-01-01

    This study investigated the reduction of antibiotic resistance genes (ARGs), intI1 and 16S rRNA genes, by advanced oxidation processes (AOPs), namely Fenton oxidation (Fe"2"+/H_2O_2) and UV/H_2O_2 process. The ARGs include sul1, tetX, and tetG from municipal wastewater effluent. The results indicated that the Fenton oxidation and UV/H_2O_2 process could reduce selected ARGs effectively. Oxidation by the Fenton process was slightly better than that of the UV/H_2O_2 method. Particularly, for the Fenton oxidation, under the optimal condition wherein Fe"2"+/H_2O_2 had a molar ratio of 0.1 and a H_2O_2 concentration of 0.01 mol L"−"1 with a pH of 3.0 and reaction time of 2 h, 2.58–3.79 logs of target genes were removed. Under the initial effluent pH condition (pH = 7.0), the removal was 2.26–3.35 logs. For the UV/H_2O_2 process, when the pH was 3.5 with a H_2O_2 concentration of 0.01 mol L"−"1 accompanied by 30 min of UV irradiation, all ARGs could achieve a reduction of 2.8–3.5 logs, and 1.55–2.32 logs at a pH of 7.0. The Fenton oxidation and UV/H_2O_2 process followed the first-order reaction kinetic model. The removal of target genes was affected by many parameters, including initial Fe"2"+/H_2O_2 molar ratios, H_2O_2 concentration, solution pH, and reaction time. Among these factors, reagent concentrations and pH values are the most important factors during AOPs. - Highlights: • AOPs including Fenton oxidation and UV/H_2O_2 process could reduce ARGs effectively. • Fenton oxidation is slightly more effective than UV/H_2O_2 process in ARG reduction. • Removal of ARGs by AOPs follows the first-order reaction kinetic model. • Selected ARGs and 16S rRNA genes exhibit similar change trends during AOPs.

  12. Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, Janika

    2011-12-12

    Alternative transparent conductive oxides to tin doped indium oxide have been investigated. In this work, antimony doped tin oxide and niobium doped titanium oxide have been studied with the aim to prepare transparent and conductive films. Antimony doped tin oxide and niobium doped titanium oxide belong to different groups of oxides; tin oxide is a soft oxide, while titanium oxide is a hard oxide. Both oxides are isolating materials, in case the stoichiometry is SnO{sub 2} and TiO{sub 2}. In order to achieve transparent and conductive films free carriers have to be generated by oxygen vacancies, by metal ions at interstitial positions in the crystal lattice or by cation doping with Sb or Nb, respectively. Antimony doped tin oxide and niobium doped titanium oxide films have been prepared by reactive direct current magnetron sputtering (dc MS) from metallic targets. The process parameters and the doping concentration in the films have been varied. The films have been electrically, optically and structurally analysed in order to analyse the influence of the process parameters and the doping concentration on the film properties. Post-deposition treatments of the films have been performed in order to improve the film properties. For the deposition of transparent and conductive tin oxide, the dominant parameter during the deposition is the oxygen content in the sputtering gas. The Sb incorporation as doping atoms has a minor influence on the electrical, optical and structural properties. Within a narrow oxygen content in the sputtering gas highly transparent and conductive tin oxide films have been prepared. In this study, the lowest resistivity in the as deposited state is 2.9 m{omega} cm for undoped tin oxide without any postdeposition treatment. The minimum resistivity is related to a transition to crystalline films with the stoichiometry of SnO{sub 2}. At higher oxygen content the films turn out to have a higher resistivity due to an oxygen excess. After post

  13. Preliminary comparison of three processes of AlN oxidation: dry, wet and mixed ones

    Directory of Open Access Journals (Sweden)

    Korbutowicz R.

    2016-03-01

    Full Text Available Three methods of AlN layers oxidation: dry, wet and mixed (wet with oxygen were compared. Some physical parameters of oxidized thin films of aluminum nitride (AlN layers grown on silicon Si(1 1 1 were investigated by means Energy-Dispersive X-ray Spectroscopy (EDS and Spectroscopic Ellipsometry (SE. Three series of the thermal oxidations processes were carried out at 1012 °C in pure nitrogen as carrying gas and various gas ambients: (a dry oxidation with oxygen, (b wet oxidation with water steam and (c mixed atmosphere with various process times. All the research methods have shown that along with the rising of the oxidation time, AlN layer across the aluminum oxide nitride transforms to aluminum oxide. The mixed oxidation was a faster method than the dry or wet ones.

  14. Chemical processes for the extreme enrichment of tellurium into marine ferromanganese oxides

    Science.gov (United States)

    Kashiwabara, Teruhiko; Oishi, Yasuko; Sakaguchi, Aya; Sugiyama, Toshiki; Usui, Akira; Takahashi, Yoshio

    2014-04-01

    Tellurium, an element of growing economic importance, is extremely enriched in marine ferromanganese oxides. We investigated the mechanism of this enrichment using a combination of spectroscopic analysis and adsorption/coprecipitation experiments. X-ray Absorption Near-Edge Structure (XANES) analysis showed that in adsorption/coprecipitation systems, Te(IV) was oxidized on δ-MnO2 and not oxidized on ferrihydrite. Extended X-ray Absorption Fine Structure (EXAFS) analysis showed that both Te(IV) and Te(VI) were adsorbed on the surface of δ-MnO2 and ferrihydrite via formation of inner-sphere complexes. In addition, Te(VI) can be structurally incorporated into the linkage of Fe octahedra through a coprecipitation process because of its molecular geometry that is similar to the Fe octahedron. The largest distribution coefficient obtained in the adsorption/coprecipitation experiments was for the Te(VI)/ferrihydrite coprecipitation system, and it was comparable to those calculated from the distribution between natural ferromanganese oxides and seawater. Our XAFS and micro-focused X-ray fluorescence (μ-XRF) mapping of natural ferromanganese oxides showed that Te was structurally incorporated as Te(VI) in Fe (oxyhydr)oxide phases. We conclude that the main process for the enrichment of Te in ferromanganese oxides is structural incorporation of Te(VI) into Fe (oxyhydr)oxide phases through coprecipitation. This mechanism can explain the unique degree of enrichment of Te compared with other oxyanions, which are mainly enriched via adsorption on the surface of the solid structures. In particular, the great contrast in the distributions of Te and Se is caused by their oxidized species: (i) the similar geometry of the Te(VI) molecule to Fe octahedron, and (ii) quite soluble nature of Se(VI). Coexisting Mn oxide phases may promote structural incorporation of Te(VI) by oxidation of Te(IV), although the surface oxidation itself may not work as the critical enrichment process as

  15. Study of mass and momentum transfer and their effect on the direct fluorination of uranium oxide

    International Nuclear Information System (INIS)

    Cross, P.E.

    1983-01-01

    The mechanism for the fluorination of solid U 3 O 8 to gaseous UF 6 was found to be a two-step process with solid UO 2 F 2 as an intermediate. The highest particle temperatures were found to be associated with the initial reaction step to UO 2 F 2 ; it was recommended that these temperatures be maintained below 1700 0 F. The chemical equilibrium constant for the fluorination of PuF 4 to PuF 6 was found to be unexpectedly low at typical flame tower temperatures. Although not confirmed, there is an indication in the literature that a similar equilibrium constant is associated with the fluorination of NpF 4 and other transuranic molecules. It was recommended that uranium oxides which are significantly contaminated with transuranics should not be processed through a direct fluorination reactor such as the UF 6 flame tower. Reaction rate equations were developed for the fluorination of U 3 O 8 , UF 4 , PuF 4 and NpF 4 . During the course of the development, a significant discrepancy was found in the literature for the activation energy of the fluorination of U 3 O 8 . Equations were developed for both a high and low limit rate constant for the fluorination of U 3 O 8 . A variey of momentum, heat and mass transfer equations were developed for both oxide particles and the gas phase within the flame tower. Equations were developed to estimate the physical and transport properties of each gaseous component and the gas mixture as a whole. These properties and the transport equations were used to estimate the reaction time and distance for oxide particles with both the low and high limit reaction rate constant. The procedures used to perform these calculations is limited to constant temperature and an oxide feed comprised of a single particle size. The results indicate that above 1000 0 F the mass transfer of reactants and products becomes increasingly important to the overall rate of the reaction

  16. Triplet-State Dissolved Organic Matter Quantum Yields and Lifetimes from Direct Observation of Aromatic Amine Oxidation.

    Science.gov (United States)

    Schmitt, Markus; Erickson, Paul R; McNeill, Kristopher

    2017-11-21

    Excited triplet state chromophoric dissolved organic matter ( 3 CDOM*) is a short-lived mixture of excited-state species that plays important roles in aquatic photochemical processes. Unlike the study of the triplet states of well-defined molecules, which are amenable to transient absorbance spectroscopy, the study of 3 CDOM* is hampered by it being a complex mixture and its low average intersystem crossing quantum yield (Φ ISC ). This study is an alternative approach to investigating 3 CDOM* using transient absorption laser spectroscopy. The radical cation of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), formed through oxidation by 3 CDOM*, was directly observable by transient absorption spectroscopy and was used to probe basic photophysical properties of 3 CDOM*. Quenching and control experiments verified that TMPD •+ was formed from 3 CDOM* under anoxic conditions. Model triplet sensitizers with a wide range of excited triplet state reduction potentials and CDOM oxidized TMPD at near diffusion-controlled rates. This gives support to the idea that a large cross-section of 3 CDOM* moieties are able to oxidize TMPD and that the complex mixture of 3 CDOM* can be simplified to a single signal. Using the TMPD •+ transient, the natural triplet lifetime and Φ ISC for different DOM isolates and natural waters were quantified; values ranged from 12 to 26 μs and 4.1-7.8%, respectively.

  17. Plasmachemical oxidation processes in a hybrid gas-liquid electrical discharge reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lukes, Petr; Locke, Bruce R [Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida (United States)

    2005-11-21

    Oxidation processes induced in water by pulsed electrical discharges generated simultaneously in the gas phase in close proximity to the water surface and directly in the liquid were investigated in a hybrid series gas-liquid electrical discharge reactor. The mechanism of phenol degradation was studied through its dependence on the gas phase and liquid phase compositions using pure argon and oxygen atmospheres above the liquid and different initial pH values in the aqueous solution. Phenol degradation was significantly enhanced in the hybrid-series reactor compared with the phenol removal by the single-liquid phase discharge reactor. Under an argon atmosphere the mechanism of phenol degradation was mainly caused by the electrophilic attack of OH{center_dot} radicals produced by the liquid phase discharge directly in water and OH{center_dot} radicals produced by the gas phase discharge at the gas-liquid interface. Under an oxygen atmosphere the formation of gaseous ozone dominated over the formation of OH{center_dot} radicals, and the contribution of the gas phase discharge in this case was determined mainly by the dissolution of gaseous ozone into the water and its subsequent interaction with phenol. At high pH phenol was degraded, in addition to the direct attack by ozone, also through indirect reactions of OH{center_dot} radicals formed via a peroxone process by the decomposition of dissolved ozone by hydrogen peroxide produced by the liquid phase discharge. Such a mechanism was proved by the detection of cis,cis-muconic acid and pH-dependent degradation of phenol, which resulted in significantly higher removal of phenol from alkaline solution observed under oxygen atmosphere than in argon.

  18. Plasmachemical oxidation processes in a hybrid gas-liquid electrical discharge reactor

    International Nuclear Information System (INIS)

    Lukes, Petr; Locke, Bruce R

    2005-01-01

    Oxidation processes induced in water by pulsed electrical discharges generated simultaneously in the gas phase in close proximity to the water surface and directly in the liquid were investigated in a hybrid series gas-liquid electrical discharge reactor. The mechanism of phenol degradation was studied through its dependence on the gas phase and liquid phase compositions using pure argon and oxygen atmospheres above the liquid and different initial pH values in the aqueous solution. Phenol degradation was significantly enhanced in the hybrid-series reactor compared with the phenol removal by the single-liquid phase discharge reactor. Under an argon atmosphere the mechanism of phenol degradation was mainly caused by the electrophilic attack of OH· radicals produced by the liquid phase discharge directly in water and OH· radicals produced by the gas phase discharge at the gas-liquid interface. Under an oxygen atmosphere the formation of gaseous ozone dominated over the formation of OH· radicals, and the contribution of the gas phase discharge in this case was determined mainly by the dissolution of gaseous ozone into the water and its subsequent interaction with phenol. At high pH phenol was degraded, in addition to the direct attack by ozone, also through indirect reactions of OH· radicals formed via a peroxone process by the decomposition of dissolved ozone by hydrogen peroxide produced by the liquid phase discharge. Such a mechanism was proved by the detection of cis,cis-muconic acid and pH-dependent degradation of phenol, which resulted in significantly higher removal of phenol from alkaline solution observed under oxygen atmosphere than in argon

  19. Direct exchange between silicon nanocrystals and tunnel oxide traps under illumination on single electron photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Chatbouri, S., E-mail: Samir.chatbouri@yahoo.com; Troudi, M.; Sghaier, N.; Kalboussi, A. [Avenue de I’environnement, Université de Monastir, Laboratoire de Micro électronique et Instrumentation (LR13ES12), Faculté des Sciences de Monastir (Tunisia); Aimez, V. [Université de Sherbrooke, Laboratoire Nanotechnologies et Nanosystémes (UMI-LN2 3463), Université de Sherbrooke—CNRS—INSA de Lyon-ECL-UJF-CPE Lyon, Institut Interdisciplinaire d’Innovation Technologique (Canada); Drouin, D. [Avenue de I’environnement, Université de Monastir, Laboratoire de Micro électronique et Instrumentation (LR13ES12), Faculté des Sciences de Monastir (Tunisia); Souifi, A. [Institut des Nanotechnologies de Lyon—site INSA de Lyon, UMR CNRS 5270 (France)

    2016-09-15

    In this paper we present the trapping of photogenerated charge carriers for 300 s resulted by their direct exchange under illumination between a few silicon nanocrystals (ncs-Si) embedded in an oxide tunnel layer (SiO{sub x} = 1.5) and the tunnel oxide traps levels for a single electron photodetector (photo-SET or nanopixel). At first place, the presence of a photocurrent limited in the inversion zone under illumination in the I–V curves confirms the creation of a pair electron/hole (e–h) at high energy. This photogenerated charge carriers can be trapped in the oxide. Using the capacitance-voltage under illumination (the photo-CV measurements) we show a hysteresis chargement limited in the inversion area, indicating that the photo-generated charge carriers are stored at traps levels at the interface and within ncs-Si. The direct exchange of the photogenerated charge carriers between the interface traps levels and the ncs-Si contributed on the photomemory effect for 300 s for our nanopixel at room temperature.

  20. Microwave assisted direct saponification for the simultaneous determination of cholesterol and cholesterol oxides in shrimp.

    Science.gov (United States)

    Souza, Hugo A L; Mariutti, Lilian R B; Bragagnolo, Neura

    2017-05-01

    A novel microwave-assisted direct saponification method for the simultaneous determination of cholesterol and cholesterol oxides in shrimp was developed and validated. Optimal saponification conditions, determined by means of an experimental design, were achieved using 500mg of sample and 20mL of 1mol/L KOH ethanol solution for 16min at 45°C at maximum power at 200W and magnetic stirring at 120rpm. Higher extraction of cholesterol oxides in a reduced saponification time (∼75 times) was achieved in comparison with the direct cold saponification method. The new method showed low detection (≤0.57μg/mL) and quantification (≤1.73μg/mL) limits, good repeatability (≤10.50% intraday and ≤8.56% interday) and low artifact formation (evaluated by using a deuterated cholesterol-D6 standard). Raw, salted and dried-salted shrimps were successfully analyzed by the validated method. The content of cholesterol oxides increased after salting and decreased after drying. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Catalytic/non-catalytic combination process for nitrogen oxides reduction

    International Nuclear Information System (INIS)

    Luftglass, B.K.; Sun, W.H.; Hofmann, J.E.

    1992-01-01

    This patent describes a process for the reduction of nitrogen oxides in the effluent from the combustion of a carbonaceous fuel. It comprises introducing a nitrogenous treatment agent comprising urea, one or more of the hydrolysis products of urea, ammonia, compounds which produce ammonia as a by-product, ammonium salts of organic acids, 5- or 6-membered heterocyclic hydrocarbons having at least one cyclic nitrogen, hydroxy amino hydrocarbons, or mixtures thereof into the effluent at an effluent temperature between about 1200 degrees F and about 2100 degrees F; and contacting the treated effluent under conditions effective to reduce the nitrogen oxides in the effluent with a catalyst effective for the reduction of nitrogen oxides in the presence of ammonia

  2. Microfluidic photoinduced chemical oxidation for Ru(bpy)33+ chemiluminescence - A comprehensive experimental comparison with on-chip direct chemical oxidation.

    Science.gov (United States)

    Kadavilpparampu, Afsal Mohammed; Al Lawati, Haider A J; Suliman, Fakhr Eldin O

    2017-08-05

    For the first time, the analytical figures of merit in detection capabilities of the very less explored photoinduced chemical oxidation method for Ru(bpy) 3 2+ CL has been investigated in detail using 32 structurally different analytes. It was carried out on-chip using peroxydisulphate and visible light and compared with well-known direct chemical oxidation approaches using Ce(IV). The analytes belong to various chemical classes such as tertiary amine, secondary amine, sulphonamide, betalactam, thiol and benzothiadiazine. Influence of detection environment on CL emission with respect to method of oxidation was evaluated by changing the buffers and pH. The photoinduced chemical oxidation exhibited more universal nature for Ru(bpy) 3 2+ CL in detection towards selected analytes. No additional enhancers, reagents, or modification in instrumental configuration were required. Wide detectability and enhanced emission has been observed for analytes from all the chemical classes when photoinduced chemical oxidation was employed. Some of these analytes are reported for the first time under photoinduced chemical oxidation like compounds from sulphonamide, betalactam, thiol and benzothiadiazine class. On the other hand, many of the selected analytes including tertiary and secondary amines such as cetirizine, azithromycin fexofenadine and proline did not produced any analytically useful CL signal (S/N=3 or above for 1μgmL -1 analyte) under chemical oxidation. The most fascinating observations was in the detection limits; for example ofloxacin was 15 times more intense with a detection limit of 5.81×10 -10 M compared to most lowest ever reported 6×10 -9 M. Earlier, penicillamine was detected at 0.1μgmL -1 after derivatization using photoinduced chemical oxidation, but in this study, we improved it to 5.82ngmL -1 without any prior derivatization. The detection limits of many other analytes were also found to be improved by several orders of magnitude under photoinduced

  3. Microfluidic photoinduced chemical oxidation for Ru(bpy)33 + chemiluminescence - A comprehensive experimental comparison with on-chip direct chemical oxidation

    Science.gov (United States)

    Kadavilpparampu, Afsal Mohammed; Al Lawati, Haider A. J.; Suliman, Fakhr Eldin O.

    2017-08-01

    For the first time, the analytical figures of merit in detection capabilities of the very less explored photoinduced chemical oxidation method for Ru(bpy)32 + CL has been investigated in detail using 32 structurally different analytes. It was carried out on-chip using peroxydisulphate and visible light and compared with well-known direct chemical oxidation approaches using Ce(IV). The analytes belong to various chemical classes such as tertiary amine, secondary amine, sulphonamide, betalactam, thiol and benzothiadiazine. Influence of detection environment on CL emission with respect to method of oxidation was evaluated by changing the buffers and pH. The photoinduced chemical oxidation exhibited more universal nature for Ru(bpy)32 + CL in detection towards selected analytes. No additional enhancers, reagents, or modification in instrumental configuration were required. Wide detectability and enhanced emission has been observed for analytes from all the chemical classes when photoinduced chemical oxidation was employed. Some of these analytes are reported for the first time under photoinduced chemical oxidation like compounds from sulphonamide, betalactam, thiol and benzothiadiazine class. On the other hand, many of the selected analytes including tertiary and secondary amines such as cetirizine, azithromycin fexofenadine and proline did not produced any analytically useful CL signal (S/N = 3 or above for 1 μgmL- 1 analyte) under chemical oxidation. The most fascinating observations was in the detection limits; for example ofloxacin was 15 times more intense with a detection limit of 5.81 × 10- 10 M compared to most lowest ever reported 6 × 10- 9 M. Earlier, penicillamine was detected at 0.1 μg mL- 1 after derivatization using photoinduced chemical oxidation, but in this study, we improved it to 5.82 ng mL- 1 without any prior derivatization. The detection limits of many other analytes were also found to be improved by several orders of magnitude under

  4. Retention-oxidation-adsorption process for emergent treatment of organic liquid spills.

    Science.gov (United States)

    Liu, Xianjun; Li, Yu; Zhang, Xingwang; Lei, Lecheng

    2011-11-15

    The feasibility and effectiveness of retention-oxidation-adsorption process (ROA) for the elimination of organic contaminants induced by chemical accidents were investigated in this study. Organobentonites (DTMA-, TTA-, CTMA- and OTMA-bentonite), potassium ferrate (Fe(VI)), ozone and granular activated carbon (GAC) were used as rapid and efficient materials in the treatment and recovery of organic liquid spills. Results indicated that the retention capacities of organobentonites (especially CTMA-bentonite) were much higher than that of natural bentonite towards the chosen organic compounds. Additionally, pH, oxidant dosage, initial concentration of contaminant and chemical structure had significant influences on the effectiveness of the oxidation process. In a pilot-scale experiment, the ferrate/GAC (F/G) and ozone/GAC (O/G) processes made a comparatively good performance in the treatment of wastewater containing aniline or nitrobenzene, with the removal efficiencies of the contaminants greater than 80%. Overall, the ROA process showed a high efficiency and steady operation in the removal of hazardous organic liquids and subsequent clean up of the contaminated site. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  5. Methane-free biogas for direct feeding of solid oxide fuel cells

    Science.gov (United States)

    Leone, P.; Lanzini, A.; Santarelli, M.; Calì, M.; Sagnelli, F.; Boulanger, A.; Scaletta, A.; Zitella, P.

    This paper deals with the experimental analysis of the performance and degradation issues of a Ni-based anode-supported solid oxide fuel cell fed by a methane-free biogas from dark-anaerobic digestion of wastes by pastry and fruit shops. The biogas is produced by means of an innovative process where the biomass is fermented with a pre-treated bacteria inoculum (Clostridia) able to completely inhibit the methanization step during the fermentation process and to produce a H 2/CO 2 mixture instead of conventional CH 4/CO 2 anaerobic digested gas (bio-methane). The proposed biogas production route leads to a biogas composition which avoids the need of introducing a reformer agent into or before the SOFC anode in order to reformate it. In order to analyse the complete behaviour of a SOFC with the bio-hydrogen fuel, an experimental session with several H 2/CO 2 synthetic mixtures was performed on an anode-supported solid oxide fuel cell with a Ni-based anode. It was found that side reactions occur with such mixtures in the typical thermodynamic conditions of SOFCs (650-800 °C), which have an effect especially at high currents, due to the shift to a mixture consisting of hydrogen, carbon monoxide, carbon dioxide and water. However, cells operated with acceptable performance and carbon deposits (typical of a traditional hydrocarbon-containing biogas) were avoided after 50 h of cell operation even at 650 °C. Experiments were also performed with traditional bio-methane from anaerobic digestion with 60/40 vol% of composition. It was found that the cell performance dropped after few hours of operation due to the formation of carbon deposits. A short-term test with the real as-produced biogas was also successfully performed. The cell showed an acceptable power output (at 800 °C, 0.35 W cm -2 with biogas, versus 0.55 W cm -2 with H 2) although a huge quantity of sulphur was present in the feeding fuel (hydrogen sulphide at 103 ppm and mercaptans up to 10 ppm). Therefore, it

  6. Methane-free biogas for direct feeding of solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Leone, P.; Lanzini, A.; Santarelli, M.; Cali, M. [Dipartimento di Energetica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Sagnelli, F.; Boulanger, A.; Scaletta, A.; Zitella, P. [BioEnergy Lab, Environment Park S.p.A., Via Livorno 60, 10144 Turin (Italy)

    2010-01-01

    This paper deals with the experimental analysis of the performance and degradation issues of a Ni-based anode-supported solid oxide fuel cell fed by a methane-free biogas from dark-anaerobic digestion of wastes by pastry and fruit shops. The biogas is produced by means of an innovative process where the biomass is fermented with a pre-treated bacteria inoculum (Clostridia) able to completely inhibit the methanization step during the fermentation process and to produce a H{sub 2}/CO{sub 2} mixture instead of conventional CH{sub 4}/CO{sub 2} anaerobic digested gas (bio-methane). The proposed biogas production route leads to a biogas composition which avoids the need of introducing a reformer agent into or before the SOFC anode in order to reformate it. In order to analyse the complete behaviour of a SOFC with the bio-hydrogen fuel, an experimental session with several H{sub 2}/CO{sub 2} synthetic mixtures was performed on an anode-supported solid oxide fuel cell with a Ni-based anode. It was found that side reactions occur with such mixtures in the typical thermodynamic conditions of SOFCs (650-800 C), which have an effect especially at high currents, due to the shift to a mixture consisting of hydrogen, carbon monoxide, carbon dioxide and water. However, cells operated with acceptable performance and carbon deposits (typical of a traditional hydrocarbon-containing biogas) were avoided after 50 h of cell operation even at 650 C. Experiments were also performed with traditional bio-methane from anaerobic digestion with 60/40 vol% of composition. It was found that the cell performance dropped after few hours of operation due to the formation of carbon deposits. A short-term test with the real as-produced biogas was also successfully performed. The cell showed an acceptable power output (at 800 C, 0.35 W cm{sup -2} with biogas, versus 0.55 W cm{sup -2} with H{sub 2}) although a huge quantity of sulphur was present in the feeding fuel (hydrogen sulphide at 103 ppm and

  7. Direct oxidation of strong waste waters, simulating combined wastes in extended-mission space cabins

    Science.gov (United States)

    Ross, L. W.

    1973-01-01

    The applications of modern technology to the resolution of the problem of solid wastes in space cabin environments was studied with emphasis on the exploration of operating conditions that would permit lowering of process temperatures in wet oxidation of combined human wastes. It was found that the ultimate degree of degradation is not enhanced by use of a catalyst. However, the rate of oxidation is increased, and the temperature of oxidation is reduced to 400 F.

  8. Direct synthesis of few-layer graphene supported platinum nanocatalyst for methanol oxidation

    Science.gov (United States)

    Tan, Hong; Ma, Xiaohui; Sheng, Leimei; An, Kang; Yu, Liming; Zhao, Hongbin; Xu, Jiaqiang; Ren, Wei; Zhao, Xinluo

    2014-11-01

    High-crystalline few-layer graphene supported Pt nanoparticles have been synthesized by arc discharge evaporation of carbon electrodes containing Pt element. A high-temperature treatment under hydrogen atmosphere has been carried out to obtain a new type of Pt/graphene catalyst for methanol oxidation in direct methanol fuel cell. The morphology and structure characterizations of as-grown few-layer graphene supported Pt nanoparticles and Pt/graphene catalysts have been studied by Raman spectroscopy, scanning electron microscopy with energy-dispersive spectroscopy, and high-resolution transmission electron microscopy. Cyclic voltammograms and chronoamperometric curves show that our present Pt/graphene catalysts have larger current density for methanol oxidation, higher tolerance to carbon monoxide poisoning, and better stability during the operating procedure, compared to commercial Pt/C catalysts.

  9. Catalytic Oxidation of Lignins into the Aromatic Aldehydes: General Process Trends and Development Prospects

    Directory of Open Access Journals (Sweden)

    Valery E. Tarabanko

    2017-11-01

    Full Text Available This review discusses principal patterns that govern the processes of lignins’ catalytic oxidation into vanillin (3-methoxy-4-hydroxybenzaldehyde and syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde. It examines the influence of lignin and oxidant nature, temperature, mass transfer, and of other factors on the yield of the aldehydes and the process selectivity. The review reveals that properly organized processes of catalytic oxidation of various lignins are only insignificantly (10–15% inferior to oxidation by nitrobenzene in terms of yield and selectivity in vanillin and syringaldehyde. Very high consumption of oxygen (and consequentially, of alkali in the process—over 10 mol per mol of obtained vanillin—is highlighted as an unresolved and unexplored problem: scientific literature reveals almost no studies devoted to the possibilities of decreasing the consumption of oxygen and alkali. Different hypotheses about the mechanism of lignin oxidation into the aromatic aldehydes are discussed, and the mechanism comprising the steps of single-electron oxidation of phenolate anions, and ending with retroaldol reaction of a substituted coniferyl aldehyde was pointed out as the most convincing one. The possibility and development prospects of single-stage oxidative processing of wood into the aromatic aldehydes and cellulose are analyzed.

  10. Effect of processing on structural features of anodic aluminum oxides

    Science.gov (United States)

    Erdogan, Pembe; Birol, Yucel

    2012-09-01

    Morphological features of the anodic aluminum oxide (AAO) templates fabricated by electrochemical oxidation under different processing conditions were investigated. The selection of the polishing parameters does not appear to be critical as long as the aluminum substrate is polished adequately prior to the anodization process. AAO layers with a highly ordered pore distribution are obtained after anodizing in 0.6 M oxalic acid at 20 °C under 40 V for 5 minutes suggesting that the desired pore features are attained once an oxide layer develops on the surface. While the pore features are not affected much, the thickness of the AAO template increases with increasing anodization treatment time. Pore features are better and the AAO growth rate is higher at 20 °C than at 5 °C; higher under 45 V than under 40 V; higher with 0.6 M than with 0.3 M oxalic acid.

  11. Surface morphology study on chromium oxide growth on Cr films by Nd-YAG laser oxidation process

    International Nuclear Information System (INIS)

    Dong Qizhi; Hu Jiandong; Guo Zuoxing; Lian Jianshe; Chen Jiwei; Chen Bo

    2002-01-01

    Grain sized (60-100 nm) Cr 2 O 3 thin films were prepared on Cr thin film surfaces by Nd-YAG laser photothermal oxidation process. Surface morphology study showed crack-free short plateau-like oxide films formed. Increase of dislocation density after pulsed laser irradiation was found. Thin film external surfaces, grain boundaries and dislocations are main paths of laser surface oxidation. Pinning and sealing of grain boundary was the reason that deeper oxidation did not produce. Grain growth and agglomeration of Cr sub-layer yielded tensile stress on the surface Cr 2 O 3 thin film. It was the reason that short plateau-like surface morphology formed and cracks appeared sometimes. In oxygen annealing at 700 deg. C, grain boundaries were considered not to be pinned at the surface, mixture diffusion was main mechanism in growth of oxide. Compression stress development in whole film led to extrusion of grains that was the reason that multiple appearances such as pyramid-like and nutshell-like morphology formed

  12. Unusual nonlinear absorption response of graphene oxide in the presence of a reduction process

    International Nuclear Information System (INIS)

    Karimzadeh, Rouhollah; Arandian, Alireza

    2015-01-01

    The nonlinear absorption responses of graphene, graphene oxide and reduced graphene oxide are investigated using the Z-scan technique and laser beams at 405, 532 and 635 nm in a continuous wave regime. Results show that graphene, graphene oxide and reduced graphene oxide do not show any open Z-scan signals at wavelengths of 532 and 635 nm. At the same time, fresh graphene oxide suspension is found to exhibit a nonlinear absorption process in the case of a laser light at 405 nm. Moreover, it can be observed that the reduction of graphene oxide by 405 nm laser irradiation decreases its nonlinear absorption value significantly. These findings highlight the important role of the reduction process on the nonlinear absorption performance of graphene oxide. (letter)

  13. Direct atomic-emission determination of tungsten in molybdenum oxide in dc arc

    International Nuclear Information System (INIS)

    Zolotareva, N.I.; Grazhulene, S.S.

    2007-01-01

    A method of direct atomic-emission determination of tungsten impurity in molybdenum trioxide of high purity in dc arc is presented. Chemically active additives of elementary sulfur and gallium oxide are used to optimize W evaporation rate and residence time in the arc plasma. The procedure is easy to use and provides the limit of W determination at a level of 2x10 -4 wt. % [ru

  14. Polymer-directed synthesis of metal oxide-containing nanomaterials for electrochemical energy storage

    Science.gov (United States)

    Mai, Yiyong; Zhang, Fan; Feng, Xinliang

    2013-12-01

    Metal oxide-containing nanomaterials (MOCNMs) of controllable structures at the nano-scale have attracted considerable interest because of their great potential applications in electrochemical energy storage devices, such as lithium-ion batteries (LIBs) and supercapacitors. Among many structure-directing agents, polymers and macromolecules, including block copolymers (BCPs) and graphene, exhibit distinct advantages in the template-assisted synthesis of MOCNMs. In this feature article, we introduce the controlled preparation of MOCNMs employing BCPs and graphene as structure-directing agents. Typical synthetic strategies are presented for the control of structures and sizes as well as the improvement of physical properties and electrochemical performance of MOCNMs in LIBs and supercapacitors.

  15. Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju, E-mail: jjgeng@nju.edu.cn; Ren, Hongqiang; Xu, Ke; Ding, Lili

    2016-04-15

    This study investigated the reduction of antibiotic resistance genes (ARGs), intI1 and 16S rRNA genes, by advanced oxidation processes (AOPs), namely Fenton oxidation (Fe{sup 2+}/H{sub 2}O{sub 2}) and UV/H{sub 2}O{sub 2} process. The ARGs include sul1, tetX, and tetG from municipal wastewater effluent. The results indicated that the Fenton oxidation and UV/H{sub 2}O{sub 2} process could reduce selected ARGs effectively. Oxidation by the Fenton process was slightly better than that of the UV/H{sub 2}O{sub 2} method. Particularly, for the Fenton oxidation, under the optimal condition wherein Fe{sup 2+}/H{sub 2}O{sub 2} had a molar ratio of 0.1 and a H{sub 2}O{sub 2} concentration of 0.01 mol L{sup −1} with a pH of 3.0 and reaction time of 2 h, 2.58–3.79 logs of target genes were removed. Under the initial effluent pH condition (pH = 7.0), the removal was 2.26–3.35 logs. For the UV/H{sub 2}O{sub 2} process, when the pH was 3.5 with a H{sub 2}O{sub 2} concentration of 0.01 mol L{sup −1} accompanied by 30 min of UV irradiation, all ARGs could achieve a reduction of 2.8–3.5 logs, and 1.55–2.32 logs at a pH of 7.0. The Fenton oxidation and UV/H{sub 2}O{sub 2} process followed the first-order reaction kinetic model. The removal of target genes was affected by many parameters, including initial Fe{sup 2+}/H{sub 2}O{sub 2} molar ratios, H{sub 2}O{sub 2} concentration, solution pH, and reaction time. Among these factors, reagent concentrations and pH values are the most important factors during AOPs. - Highlights: • AOPs including Fenton oxidation and UV/H{sub 2}O{sub 2} process could reduce ARGs effectively. • Fenton oxidation is slightly more effective than UV/H{sub 2}O{sub 2} process in ARG reduction. • Removal of ARGs by AOPs follows the first-order reaction kinetic model. • Selected ARGs and 16S rRNA genes exhibit similar change trends during AOPs.

  16. Characterization of depleted uranium oxides fabricated using different processing methods

    International Nuclear Information System (INIS)

    Hastings, E.P.; Lewis, C.; FitzPatrick, J.; Rademacher, D.; Tandon, L.

    2008-01-01

    Identifying both physical and chemical characteristics of Special Nuclear Material (SNM) production processes is the corner stone of nuclear forensics. Typically, processing markers are based on measuring an interdicted sample's bulk chemical properties, such as the elemental or isotopic composition, or focusing on the chemical and physical morphology of only a few particles. Therefore, it is imperative that known SNM processes be fully characterized from bulk to trace level for each particle size range. This report outlines a series of particle size measurements and fractionation techniques that can be applied to a bulk SNM powders, categorizing both chemical and physical properties in discrete particle size fractions. This will be demonstrated by characterizing the process signatures of a series of different depleted uranium oxides prepared at increasing firing temperatures (350-1100 deg C). Results will demonstrate how each oxides' material density, particle size distribution, and morphology varies. (author)

  17. Optimization of leaching process for sum of rare earth and calcium oxides

    International Nuclear Information System (INIS)

    Troyanier, L.S.; Elunkina, Z.A.; Nikonov, V.N.; Lobov, V.I.

    1978-01-01

    Presented are the results of investigation of leaching process for rare earth and calcium oxides by sulfuric acid. The method of planning experiment has been used for this investigation. Mixtures of cerium, yttrium and neodyum oxides, taken in the relation of 1:1:0.5, have been used as rare earth elements. Received are adequate models characterizing dependence of solubility of rare earth and calcium oxides on some factors (H 2 SO 4 concentration, CaO:R 2 O 3 relation, liquid to solid ratio, solution temperature, mixing time). Dependences of solubility of rare earth elements and calcium on the process parameters are received and presented in a form of regression equations. Dependences received can be used for choice of optimum regime of the process as well as for its control

  18. A manufacturing process for a mixed-oxide type superconducting material

    International Nuclear Information System (INIS)

    Gendre, P.; Regnier, P.; Schmirgeld-Mignot, L.; Marquet, A.

    1995-01-01

    In order to produce high temperature superconducting materials such as YBaCuO and Bi 2 Sr 2 Ca Cu 2 O 8 , a process is presented which consists in an electrodeposition on a conductive substrate of successive layers made of the metallic elements composing the superconductor, with only one element in each layer; between each layer deposition, an intermediary oxide-reaction thermal treatment is carried out; a global oxidation thermal treatment is then finally conducted to produce the mixed oxide material. Narrow superconducting transitions and high critical current densities are possible. 3 refs., 4 figs

  19. Oxidizing attack process of uranium ore by a carbonated liquor

    International Nuclear Information System (INIS)

    Maurel, Pierre; Nicolas, Francois.

    1981-01-01

    A continuous process for digesting a uraniferous ore by oxidation with a recycling aqueous liquor containing alkaline carbonates and bicarbonates in solution as well as uranium in a concentration close to its solubility limit at digestion temperature, and of recuperation of the precipitated uranium within the solid phase remaining after digestion. The digestion is carried out by spraying oxygen into the hot reactional medium in order not only to permit oxidation of the uranium and its solubilization but also to ensure that the sulphides of impurities and organic substances present in the ore are oxidized [fr

  20. Development studies for a novel wet oxidation process

    International Nuclear Information System (INIS)

    Dhooge, P.M.; Hakim, L.B.

    1994-01-01

    A catalytic wet oxidation process (DETOX), which uses an acidic iron solution to oxidize organic compounds to carbon dioxide, water, and other simple products, was investigated as a potential method for the treatment of multicomponent hazardous and mixed wastes. The organic compounds picric acid, poly(vinyl chloride), tetrachlorothiophene, pentachloropyridine, Aroclor 1260 (a polychlorinated biphenyl), and hexachlorobenzene were oxidized in 125 ml reaction vessels. The metals arsenic, barium, beryllium, cadmium, cerium (as a surrogate for plutonium), chromium, lead, mercury, neodymium (as a surrogate for uranium), nickel, and vanadium were tested in the DETOX solution. Barium, beryllium, cerium, chromium, mercury, neodymium, nickel, and vanadium were all found to be very soluble (>100 g/l) in the DETOX chloride-based solution. Arsenic, barium, cadmium, and lead solubilities were lower. Lead could be selectively precipitated from the DETOX solution. Chromium(VI) was reduced to relatively non-toxic chromium(III) by the solution. Six soils were contaminated with arsenic, barium, beryllium, chromium, lead, and neodymium oxides at approximately 0.1% by weight, and benzene, trichloroethene, mineral oil, and Aroclor 1260 at approximately 5% by weight total, and 5.g amounts treated with the DETOX solution in unstirred 125. ml reaction bombs. It is felt that soil treatment in a properly designed system is entirely possible despite incomplete oxidation of the less volatile organic materials in these unstirred tests

  1. Process for depositing epitaxial alkaline earth oxide onto a substrate and structures prepared with the process

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick J.

    1996-01-01

    A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.

  2. Development studies of a novel wet oxidation process

    International Nuclear Information System (INIS)

    Rogers, T.W.; Dhooge, P.M.

    1995-01-01

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. Incineration and similar combustive processes do not appear to be viable options for treatment of these waste streams due to various considerations. There is a need for non-combustion processes with a wide application range to treat the large majority of these waste forms. The non-combustion process should also be safe, effective, cost-competitive, permit-able, and preferrably mobile. This paper describes the DETOX process of organic waste oxidation

  3. CuOX thin films by direct oxidation of Cu films deposited by physical vapor deposition

    Directory of Open Access Journals (Sweden)

    D. Santos-Cruz

    Full Text Available Thin films of Cu2O and CuO oxides were developed by direct oxidation of physical vapor deposited copper films in an open atmosphere by varying the temperature in the range between 250 and 400 °C. In this work, the influence of oxidation temperature on structural, optical and electrical properties of copper oxide films has been discussed. The characterization results revealed that at lower temperatures (<300 °C, it is feasible to obtained coper (I oxide whereas at temperatures higher than 300 °C, the copper (II oxide is formed. The band gap is found to vary in between 1.54 and 2.21 eV depending on the oxidation temperature. Both oxides present p-type electrical conductivity. The carrier concentration has been increased as a function of the oxidation temperature from 1.61 × 1012 at 250 °C to 6.8 × 1012 cm−3 at 400 °C. The mobility has attained its maximum of 34.5 cm2 V−1 s−1 at a temperature of 300 °C, and a minimum of 13.8 cm2 V−1 s−1 for 400 °C. Finally, the resistivity of copper oxide films decreases as a function of oxidation temperature from 5.4 × 106 to 2.4 × 105 Ω-cm at 250 and 400 °C, respectively. Keywords: PVD, Oxidizing annealed treatment, Non-toxic material

  4. Direct Reaction of Amides with Nitric Oxide To Form Diazeniumdiolates

    Science.gov (United States)

    2015-01-01

    We report the apparently unprecedented direct reaction of nitric oxide (NO) with amides to generate ions of structure R(C=O)NH–N(O)=NO–, with examples including R = Me (1a) or 3-pyridyl (1b). The sodium salts of both released NO in pH 7.4 buffer, with 37 °C half-lives of 1–3 min. As NO-releasing drug candidates, diazeniumdiolated amides would have the advantage of generating only 1 equiv of base on hydrolyzing exhaustively to NO, in contrast to their amine counterparts, which generate 2 equiv of base. PMID:25210948

  5. A PROCESS FOR THE CATALYTIC OXIDATION OF HYDROCARBONS

    DEFF Research Database (Denmark)

    1999-01-01

    A process for producing an alcohol from a gaseous hydrocarbon, e.g. a lower alkane such as methane, via oxidative reaction of the hydrocarbon in a concentrated sulfuric acid medium in the presence of a catalyst employs an added catalyst comprising a substance selected from iodine, iodine compounds...

  6. Microstructure and optical appearance of anodized friction stir processed Al - Metal oxide surface composites

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Bordo, Kirill

    2014-01-01

    Multiple-pass friction stir processing (FSP) was employed to impregnate Ti, Y and Ce oxide powders into the surface of an Aluminium alloy. The FSP processed surface composite was subsequently anodized with an aim to develop optical effects in the anodized layer owing to the presence of incorporated...... oxide particles which will influence the scattering of light. This paper presents the investigations on relation between microstructure of the FSP zone and optical appearance of the anodized layer due to incorporation of metal oxide particles and modification of the oxide particles due to the anodizing...

  7. A New Direction for Biomining: Extraction of Metals by Reductive Dissolution of Oxidized Ores

    Directory of Open Access Journals (Sweden)

    Kevin B. Hallberg

    2013-01-01

    Full Text Available Biomining, the biotechnology that uses microorganisms to extract metals from ores and concentrates, is currently used exclusively for processing reduced ores and mine wastes. Metals of economic value also occur extensively in oxidized ores, such as nickel laterites. While these are not amenable to oxidative dissolution, the ferric iron minerals they contain can, in theory, be disrupted by iron reduction, causing associated metals to be released. We have harnessed the ability of the facultatively anaerobic, acidophilic bacterium Acidithiobacillus ferroooxidans to couple the oxidation of elemental sulphur to the reduction of ferric iron in the goethite fraction of a limonitic nickel ore at 30 °C. Nickel and other metals (Co, Cr and Mn were effectively solubilised and maintained in solution due to the low pH (1.8 of the leach liquor. The results highlight the potential for the bioprocessing of oxidized, iron-rich ores using an approach that is energy-saving and environmentally-benign compared with metallurgical processes currently applied to the extraction of Ni from lateritic ores.

  8. Directed forgetting and aging: the role of retrieval processes, processing speed, and proactive interference.

    Science.gov (United States)

    Hogge, Michaël; Adam, Stéphane; Collette, Fabienne

    2008-07-01

    The directed forgetting effect obtained with the item method is supposed to depend on both selective rehearsal of to-be-remembered (TBR) items and attentional inhibition of to-be-forgotten (TBF) items. In this study, we investigated the locus of the directed forgetting deficit in older adults by exploring the influence of recollection and familiarity-based retrieval processes on age-related differences in directed forgetting. Moreover, we explored the influence of processing speed, short-term memory capacity, thought suppression tendencies, and sensitivity to proactive interference on performance. The results indicated that older adults' directed forgetting difficulties are due to decreased recollection of TBR items, associated with increased automatic retrieval of TBF items. Moreover, processing speed and proactive interference appeared to be responsible for the decreased recall of TBR items.

  9. Laser direct writing of oxide structures on hydrogen-passivated silicon surfaces

    DEFF Research Database (Denmark)

    Müllenborn, Matthias; Birkelund, Karen; Grey, Francois

    1996-01-01

    on amorphous and crystalline silicon surfaces in order to determine the depassivation mechanism. The minimum linewidth achieved is about 450 nm using writing speeds of up to 100 mm/s. The process is fully compatible with local oxidation of silicon by scanning probe lithography. Wafer-scale patterns can...

  10. Advanced oxidation of hypophosphite and phosphite using a UV/H2O2 process.

    Science.gov (United States)

    Liu, Peng; Li, Chaolin; Liang, Xingang; Xu, Jianhui; Lu, Gang; Ji, Fei

    2013-01-01

    The oxidation of hypophosphite and phosphite in an aqueous solution by an ultraviolet (UV)/H2O2 process was studied in this work. The reactions were performed in a lab-scale batch photoreactor. The effect of different parameters such as H2O2 dosage, H2O2 feeding mode and the initial pH of the solution on the oxidation efficiency of the process was investigated. The results indicated that the UV/H2O2 process could effectively oxidize hypophosphite and phosphite in both synthesized and real wastewater. However, neither H2O2 nor UV alone was able to appreciably oxidize the hypophosphite or phosphite. The best way of feeding H2O2 was found to be 'continuous feeding', which maximized the reaction rate. It was also found that the process presented a wide range of applicable initial pH (5-11). When treating real rinse-wastewater, which was obtained from the electroless nickel plating industry, both hypophosphite and phosphite were completely oxidized within 60 min, and by extending by another 30 min, over 90% of the chemical oxygen demand removal was obtained. Without any additional catalyst, the UV/H2O2 process can oxidize hypophosphite and phosphite to easily removable phosphate. It is really a powerful and environmentally friendly treatment method for the wastewater containing hypophosphite and phosphite.

  11. Effects of processing techniques on oxidative stability of Prunus pedunculatus seed oil

    Directory of Open Access Journals (Sweden)

    J. Yan

    2017-09-01

    Full Text Available This paper investigated the effects of Prunus pedunculatus (P. pedunculatus seed pre-treatment, including microwaving (M, roasting (R, steaming (S and roasting plus steaming (RS on crude oil quality in terms of yield, color change, fatty acid composition, and oxidative stability. The results showed an increase in monounsaturated fatty acid content and oxidative stability of the oils obtained from different processing treatments compared to the oil obtained from raw seeds (RW without processing. The oils, obtained from pretreated seeds, had higher conjugated diene (CD and 2-thiobarbituric acid (2-TBA values, compared to that obtained from RW when stored in a Schaal oven at 65 °C for 168 h. However, polyphenol and tocopherol contents decreased in all oil samples, processed or unprocessed. The effect of pre-treating the seeds was more prominent in the oil sample obtained through the RS technique, and showed higher oxidative stability than the other processed oils and the oil from RW.

  12. Light-emitting diodes based on solution-processed nontoxic quantum dots: oxides as carrier-transport layers and introducing molybdenum oxide nanoparticles as a hole-inject layer.

    Science.gov (United States)

    Bhaumik, Saikat; Pal, Amlan J

    2014-07-23

    We report fabrication and characterization of solution-processed quantum dot light-emitting diodes (QDLEDs) based on a layer of nontoxic and Earth-abundant zinc-diffused silver indium disulfide (AIZS) nanoparticles as an emitting material. In the QDLEDs fabricated on indium tin oxide (ITO)-coated glass substrates, we use layers of oxides, such as graphene oxide (GO) and zinc oxide (ZnO) nanoparticles as a hole- and electron-transport layer, respectively. In addition, we introduce a layer of MoO3 nanoparticles as a hole-inject one. We report a comparison of the characteristics of different device architectures. We show that an inverted device architecture, ITO/ZnO/AIZS/GO/MoO3/Al, yields a higher electroluminescence (EL) emission, compared to direct ones, for three reasons: (1) the GO/MoO3 layers introduce barriers for electrons to reach the Al electrode, and, similarly, the ZnO layers acts as a barrier for holes to travel to the ITO electrode; (2) the introduction of a layer of MoO3 nanoparticles as a hole-inject layer reduces the barrier height for holes and thereby balances charge injection in the inverted structure; and (3) the wide-bandgap zinc oxide next to the ITO electrode does not absorb the EL emission during its exit from the device. In the QDLEDs with oxides as carrier inject and transport layers, the EL spectrum resembles the photoluminescence emission of the emitting material (AIZS), implying that excitons are formed in the quaternary nanocrystals and decay radiatively.

  13. Feasibility of electrochemical oxidation process for treatment of saline wastewater

    Directory of Open Access Journals (Sweden)

    Kavoos Dindarloo

    2015-09-01

    Full Text Available Background: High concentration of salt makes biological treatment impossible due to bacterial plasmolysis. The present research studies the process of electrochemical oxidation efficiency and optimal levels as important factors affecting pH, salt concentration, reaction time and applied voltage. Methods: The sample included graphite electrodes with specifications of 2.5 cm diameter and 15 cm height using a reactor with an optimum capacity of 1 L. Sixty samples were obtained with the aid of the experiments carried out in triplicates for each factor at 5 different levels. The entire experiments were performed based on standard methods for water and waste water treatments. Results: Analysis of variance carried out on effect of pH, salt concentration, reaction time and flow intensity in elimination of chemical oxygen demand (COD showed that they are significant factors affecting this process and reduce COD with a coefficient interval of 95% and test power of 80%. Scheffe test showed that at optimal level, a reaction time of 1 hour, 10 g/L concentration, pH = 9 and 15 V electrical potential difference were obtained. Conclusion: Waste waters containing salt may contribute to the electro-oxidation process due to its cations and anions. Therefore, the process of electrochemical oxidation with graphite electrodes could be a proper strategy for the treatment of saline wastewater where biological treatment is not possible.

  14. Accelerated oxidation processes is biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, M.; Monyem, A.; Van Gerpen, J.

    1999-12-01

    Biodiesel is an alternative fuel for diesel engines that can be produced from renewable feedstocks such as vegetable oil and animal fats. These feedstocks are reacted with an alcohol to produce alkyl monoesters that can be used in conventional diesel engines with little or no modification. Biodiesel, especially if produced from highly unsaturated oils, oxidizes more rapidly than diesel fuel. This article reports the results of experiments to track the chemical and physical changes that occur in biodiesel as it oxidizes. These results show the impact of time, oxygen flow rate, temperature, metals, and feedstock type on the rate of oxidation. Blending with diesel fuel and the addition of antioxidants are explored also. The data indicate that without antioxidants, biodiesel will oxidize very quickly at temperatures typical of diesel engines. This oxidation results in increases in peroxide value, acid value, and viscosity. While the peroxide value generally reaches a plateau of about 350 meq/kg ester, the acid value and viscosity increase monotonically as oxidation proceeds.

  15. Palladium-based electrocatalysts for ethanol oxidation reaction in alkaline direct ethanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Leticia Poras Reis de; Amico, Sandro Campos; Malfatti, Celia de Fraga, E-mail: leticiamoraes@usp.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (Brazil); Matos, Bruno R.; Santiago, Elisabete Inacio; Fonseca, Fabio Coral [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2016-07-01

    Full text: Direct ethanol fuel cells require adequate electrocatalysts to promote the carbon carbon cleavage of ethanol molecule. Typical electrocatalysts are based on platinum, which have shown improved activity in acidic media. However, Pt-based catalysts have high cost and are easily deactivated by CO poisoning. Therefore, novel catalysts have been developed, and among then, palladium-based materials have shown promising results for the oxidation of ethanol in alkaline media. The present study reports on the performance of alkaline direct ethanol fuel cell (ADEFC) by using carbon-supported Pd, PdSn, PdNi, and PdNiSn produced by impregnation-reduction of the metallic precursors. The effect of chemical functionalization by acid treatment of the carbon support (Vulcan) was investigated. The electrocatalysts were studied by thermogravimetric analysis (TGA), X-rays diffraction (XRD), transmission electron microscopy (TEM), cyclic voltammetry (CV), and ADEFC tests. TGA measurements of functionalized Vulcan evidenced the characteristic weight losses attributed to the presence of surface functional groups due to the acid treatment. A high degree of alloying between Pd and Sn was inferred from XRD data, whereas in both PdNi and PdNiSn, Ni occurs mostly segregated in the oxide form. TEM analyses indicated agglomeration of Pd and PdSn particles, whereas a more uniform particle distribution was observed for PdNi and PdNiSn samples. CV curves showed that the peak potential for the oxidation of ethanol shifts towards negative values for all samples supported on functionalized Vulcan indicating that ethanol oxidation is facilitated. Microstructural and electrochemical features were confirmed by ADEFC tests, which revealed that the highest open circuit voltage and maximum power density were achieved for PdNiSn electrocatalysts supported on functionalized Vulcan with uniform particle distribution and improved triple phase boundaries. (author)

  16. Palladium-based electrocatalysts for ethanol oxidation reaction in alkaline direct ethanol fuel cell

    International Nuclear Information System (INIS)

    Moraes, Leticia Poras Reis de; Amico, Sandro Campos; Malfatti, Celia de Fraga; Matos, Bruno R.; Santiago, Elisabete Inacio; Fonseca, Fabio Coral

    2016-01-01

    Full text: Direct ethanol fuel cells require adequate electrocatalysts to promote the carbon carbon cleavage of ethanol molecule. Typical electrocatalysts are based on platinum, which have shown improved activity in acidic media. However, Pt-based catalysts have high cost and are easily deactivated by CO poisoning. Therefore, novel catalysts have been developed, and among then, palladium-based materials have shown promising results for the oxidation of ethanol in alkaline media. The present study reports on the performance of alkaline direct ethanol fuel cell (ADEFC) by using carbon-supported Pd, PdSn, PdNi, and PdNiSn produced by impregnation-reduction of the metallic precursors. The effect of chemical functionalization by acid treatment of the carbon support (Vulcan) was investigated. The electrocatalysts were studied by thermogravimetric analysis (TGA), X-rays diffraction (XRD), transmission electron microscopy (TEM), cyclic voltammetry (CV), and ADEFC tests. TGA measurements of functionalized Vulcan evidenced the characteristic weight losses attributed to the presence of surface functional groups due to the acid treatment. A high degree of alloying between Pd and Sn was inferred from XRD data, whereas in both PdNi and PdNiSn, Ni occurs mostly segregated in the oxide form. TEM analyses indicated agglomeration of Pd and PdSn particles, whereas a more uniform particle distribution was observed for PdNi and PdNiSn samples. CV curves showed that the peak potential for the oxidation of ethanol shifts towards negative values for all samples supported on functionalized Vulcan indicating that ethanol oxidation is facilitated. Microstructural and electrochemical features were confirmed by ADEFC tests, which revealed that the highest open circuit voltage and maximum power density were achieved for PdNiSn electrocatalysts supported on functionalized Vulcan with uniform particle distribution and improved triple phase boundaries. (author)

  17. Monolayer-directed Assembly and Magnetic Properties of FePt Nanoparticles on Patterned Aluminum Oxide

    NARCIS (Netherlands)

    Yildirim, O.; Gang, T.; Kinge, S.S.; Reinhoudt, David; Blank, David H.A.; van der Wiel, Wilfred Gerard; Rijnders, Augustinus J.H.M.; Huskens, Jurriaan

    2010-01-01

    FePt nanoparticles (NPs) were assembled on aluminum oxide substrates, and their ferromagnetic properties were studied before and after thermal annealing. For the first time, phosph(on)ates were used as an adsorbate to form self-assembled monolayers (SAMs) on alumina to direct the assembly of NPs

  18. New directions in gas processing

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Papers presented at the Insight conference held on January 30, 1996 in Calgary, Alberta, were contained in this volume. The conference was devoted to a discussion of new directions in the gas processing business, the changing business environment, new processing technologies, and means by which current facilities agreements can be adapted to the new commercial reality. High operating costs which have resulted in the downsizing and restructuring of the industry, and partnering with a third party in the gathering and processing operations, with apparently beneficial result both to plant owners, as well to third party processors, received the most attention. The relationship between the gas processor and the gas producer as they relate to the Petroleum Joint Venture Association (PJVA) Gas Processing Agreement, which defines the obligations of third parties, was the center of discussion. Regulatory changes and the industry's response to the changes was also on the agenda. Refs., tabs., figs

  19. Process for forming a homogeneous oxide solid phase of catalytically active material

    Science.gov (United States)

    Perry, Dale L.; Russo, Richard E.; Mao, Xianglei

    1995-01-01

    A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.

  20. Enhanced electro-oxidation of ethanol using PtSn/CeO{sub 2}-C electrocatalyst prepared by an alcohol-reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Almir Oliveira; Farias, Luciana A.; Dias, Ricardo R.; Brandalise, Michelle; Linardi, Marcelo; Spinace, Estevam V. [Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN-SP, Av. Prof. Lineu Prestes, 2242 - Cidade Universitaria, CEP 05508-900 Sao Paulo-SP (Brazil)

    2008-09-15

    PtSn/CeO{sub 2}-C electrocatalysts were prepared by an alcohol-reduction process using ethylene glycol as solvent and reduction agent and CeO{sub 2} and Vulcan Carbon XC72 as supports. The electrocatalysts were characterized by EDX and XRD. The electro-oxidation of ethanol was studied at room temperature by chronoamperometry. PtSn/CeO{sub 2}-C electrocatalyst with 15 wt% of CeO{sub 2} showed a significant increase of performance for ethanol oxidation compared to PtSn/C catalyst. Preliminary tests at 100C on a single cell of a direct ethanol fuel cell (DEFC) also confirm the results obtained by chronoamperometry. (author)

  1. State of the direct reduction and reduction smelting processes

    Directory of Open Access Journals (Sweden)

    Markotić A.

    2002-01-01

    Full Text Available For quite a long time efforts have been made to develop processes for producing iron i.e. steel without employing conventional procedures - from ore, coke, blast furnace, iron, electric arc furnace, converter to steel. The insufficient availability and the high price of the coking coals have forced many countries to research and adopt the non-coke-consuming reduction and metal manufacturing processes (non-coke metallurgy, direct reduction, direct processes. This paper represents a survey of the most relevant processes from this domain by the end of 2000, which display a constant increase in the modern process metallurgy.

  2. Nitric Oxide and ERK mediates regulation of cellular processes by Ecdysterone

    Energy Technology Data Exchange (ETDEWEB)

    Omanakuttan, Athira; Bose, Chinchu; Pandurangan, Nanjan; Kumar, Geetha B.; Banerji, Asoke; Nair, Bipin G., E-mail: bipin@amrita.edu

    2016-08-15

    The complex process of wound healing is a major problem associated with diabetes, venous or arterial disease, old age and infection. A wide range of pharmacological effects including anabolic, anti-diabetic and hepato-protective activities have been attributed to Ecdysterone. In earlier studies, Ecdysterone has been shown to modulate eNOS and iNOS expression in diabetic animals and activate osteogenic differentiation through the Extracellular-signal-Regulated Kinase (ERK) pathway in periodontal ligament stem cells. However, in the wound healing process, Ecdysterone has only been shown to enhance granulation tissue formation in rabbits. There have been no studies to date, which elucidate the molecular mechanism underlying the complex cellular process involved in wound healing. The present study, demonstrates a novel interaction between the phytosteroid Ecdysterone and Nitric Oxide Synthase (NOS), in an Epidermal Growth Factor Receptor (EGFR)-dependent manner, thereby promoting cell proliferation, cell spreading and cell migration. These observations were further supported by the 4-amino-5-methylamino- 2′ ,7′ -difluorofluorescein diacetate (DAF FM) fluorescence assay which indicated that Ecdysterone activates NOS resulting in increased Nitric Oxide (NO) production. Additionally, studies with inhibitors of both the EGFR and ERK, demonstrated that Ecdysterone activates NOS through modulation of EGFR and ERK. These results clearly demonstrate, for the first time, that Ecdysterone enhances Nitric Oxide production and modulates complex cellular processes by activating ERK1/2 through the EGF pathway. - Highlights: • Ecdysterone significantly enhances cell migration in a dose dependent manner. • Ecdysterone augments cell spreading during the initial phase of cell migration through actin cytoskeletal rearrangement. • Ecdysterone enhances cell proliferation in a nitric oxide dependent manner. • Ecdysterone enhances nitric oxide production via activation of EGFR

  3. Characteristics and fate of natural organic matter during UV oxidation processes.

    Science.gov (United States)

    Ahn, Yongtae; Lee, Doorae; Kwon, Minhwan; Choi, Il-Hwan; Nam, Seong-Nam; Kang, Joon-Wun

    2017-10-01

    Advanced oxidation processes (AOPs) are widely used in water treatments. During oxidation processes, natural organic matter (NOM) is modified and broken down into smaller compounds that affect the characteristics of the oxidized NOM by AOPs. In this study, NOM was characterized and monitored in the UV/hydrogen peroxide (H 2 O 2 ) and UV/persulfate (PS) processes using a liquid chromatography-organic carbon detector (LC-OCD) technique, and a combination of excitation-emission matrices (EEM) and parallel factor analysis (PARAFAC). The percentages of mineralization of NOM in the UV/H 2 O 2 and UV/PS processes were 20.5 and 83.3%, respectively, with a 10 mM oxidant dose and a contact time of 174 s (UV dose: approximately 30,000 mJ). Low-pressure, Hg UV lamp (254 nm) was applied in this experiment. The steady-state concentration of SO 4 - was 38-fold higher than that of OH at an oxidant dose of 10 mM. With para-chlorobenzoic acid (pCBA) as a radical probe compound, we experimentally determined the rate constants of Suwannee River NOM (SRNOM) with OH (k OH/NOM  = 3.3 × 10 8  M -1 s -1 ) and SO 4 - (k SO4-/NOM  = 4.55 × 10 6  M -1 s -1 ). The hydroxyl radical and sulfate radical showed different mineralization pathways of NOM, which have been verified by the use of LC-OCD and EEM/PARAFAC. Consequently, higher steady-state concentrations of SO 4 - , and different reaction preferences of OH and SO 4 - with the NOM constituent had an effect on the mineralization efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Nitric Oxide and ERK mediates regulation of cellular processes by Ecdysterone

    International Nuclear Information System (INIS)

    Omanakuttan, Athira; Bose, Chinchu; Pandurangan, Nanjan; Kumar, Geetha B.; Banerji, Asoke; Nair, Bipin G.

    2016-01-01

    The complex process of wound healing is a major problem associated with diabetes, venous or arterial disease, old age and infection. A wide range of pharmacological effects including anabolic, anti-diabetic and hepato-protective activities have been attributed to Ecdysterone. In earlier studies, Ecdysterone has been shown to modulate eNOS and iNOS expression in diabetic animals and activate osteogenic differentiation through the Extracellular-signal-Regulated Kinase (ERK) pathway in periodontal ligament stem cells. However, in the wound healing process, Ecdysterone has only been shown to enhance granulation tissue formation in rabbits. There have been no studies to date, which elucidate the molecular mechanism underlying the complex cellular process involved in wound healing. The present study, demonstrates a novel interaction between the phytosteroid Ecdysterone and Nitric Oxide Synthase (NOS), in an Epidermal Growth Factor Receptor (EGFR)-dependent manner, thereby promoting cell proliferation, cell spreading and cell migration. These observations were further supported by the 4-amino-5-methylamino- 2′ ,7′ -difluorofluorescein diacetate (DAF FM) fluorescence assay which indicated that Ecdysterone activates NOS resulting in increased Nitric Oxide (NO) production. Additionally, studies with inhibitors of both the EGFR and ERK, demonstrated that Ecdysterone activates NOS through modulation of EGFR and ERK. These results clearly demonstrate, for the first time, that Ecdysterone enhances Nitric Oxide production and modulates complex cellular processes by activating ERK1/2 through the EGF pathway. - Highlights: • Ecdysterone significantly enhances cell migration in a dose dependent manner. • Ecdysterone augments cell spreading during the initial phase of cell migration through actin cytoskeletal rearrangement. • Ecdysterone enhances cell proliferation in a nitric oxide dependent manner. • Ecdysterone enhances nitric oxide production via activation of EGFR

  5. Mathematical Modelling to Predict Oxidative Behaviour of Conjugated Linoleic Acid in the Food Processing Industry

    Directory of Open Access Journals (Sweden)

    Aitziber Ojanguren

    2013-06-01

    Full Text Available Industrial processes that apply high temperatures in the presence of oxygen may compromise the stability of conjugated linoleic acid (CLA bioactive isomers. Statistical techniques are used in this study to model and predict, on a laboratory scale, the oxidative behaviour of oil with high CLA content, controlling the limiting factors of food processing. This modelling aims to estimate the impact of an industrial frying process (140 °C, 7 L/h air on the oxidation of CLA oil for use as frying oil instead of sunflower oil. A factorial design was constructed within a temperature (80–200 °C and air flow (7–20 L/h range. Oil stability index (Rancimat method was used as a measure of oxidation. Three-level full factorial design was used to obtain a quadratic model for CLA oil, enabling the oxidative behaviour to be predicted under predetermined process conditions (temperature and air flow. It is deduced that temperatures applied in food processes affect the oxidation of CLA to a greater extent than air flow. As a result, it is estimated that the oxidative stability of CLA oil is less resistant to industrial frying than sunflower oil. In conclusion, thanks to the mathematical model, a good choice of the appropriate industrial food process can be selected to avoid the oxidation of the bioactive isomers of CLA, ensuring its functionality in novel applications.

  6. Process for recovery of plutonium from fabrication residues of mixed fuels consisting of uranium oxide and plutonium oxide

    International Nuclear Information System (INIS)

    Heremanns, R.H.; Vandersteene, J.J.

    1983-01-01

    The invention concerns a process for recovery of plutonium from fabrication residues of mixed fuels consisting of uranium oxide and plutonium oxide in the form of PuO 2 . Mixed fuels consisting of uranium oxide and plutonium oxide are being used more and more. The plants which prepare these mixed fuels have around 5% of the total mass of fuels as fabrication residue, either as waste or scrap. In view of the high cost of plutonium, it has been attempted to recover this plutonium from the fabrication residues by a process having a purchase price lower than the price of plutonium. The problem is essentially to separate the plutonium, the uranium and the impurities. The residues are fluorinated, the UF 6 and PuF 6 obtained are separated by selective absorption of the PuF 6 on NaF at a temperature of at least 400 0 C, the complex obtained by this absorption is dissolved in nitric acid solution, the plutonium is precipitated in the form of plutonium oxalate by adding oxalic acid, and the precipitated plutonium oxalate is calcined

  7. High-performance binder-free supercapacitor electrode by direct growth of cobalt-manganese composite oxide nansostructures on nickel foam

    Science.gov (United States)

    Jiang, Shulan; Shi, Tielin; Long, Hu; Sun, Yongming; Zhou, Wei; Tang, Zirong

    2014-09-01

    A facile approach composed of hydrothermal process and annealing treatment is proposed to directly grow cobalt-manganese composite oxide ((Co,Mn)3O4) nanostructures on three-dimensional (3D) conductive nickel (Ni) foam for a supercapacitor electrode. The as-fabricated porous electrode exhibits excellent rate capability and high specific capacitance of 840.2 F g-1 at the current density of 10 A g-1, and the electrode also shows excellent cycling performance, which retains 102% of its initial discharge capacitance after 7,000 cycles. The fabricated binder-free hierarchical composite electrode with superior electrochemical performance is a promising candidate for high-performance supercapacitors.

  8. Determination of the average number of electrons released during the oxidation of ethanol in a direct ethanol fuel cell

    International Nuclear Information System (INIS)

    Majidi, Pasha; Pickup, Peter G.

    2015-01-01

    The energy efficiency of a direct ethanol fuel cell (DEFC) is directly proportional to the average number of electrons released per ethanol molecule (n-value) at the anode. An approach to measuring n-values in DEFC hardware is presented, validated for the oxidation of methanol, and shown to provide n-values for ethanol oxidation that are consistent with trends and estimates from full product analysis. The method is based on quantitative oxidation of fuel that crosses through the membrane to avoid the errors that would otherwise result from crossover. It will be useful for rapid screening of catalysts, and allows performances (polarization curves) and n-values to be determined simultaneously under well controlled transport conditions.

  9. Effects of tunnel oxide process on SONOS flash memory characteristics

    International Nuclear Information System (INIS)

    Li, Dong Hua; Park, Il Han; Yun, Jang-Gn; Park, Byung-Gook

    2010-01-01

    In this paper, various process conditions of tunnel oxides are applied in SONOS flash memory to investigate their effects on charge transport during the program/erase operations. We focus the key point of analysis on Fermi-level (E F ) variation at the interface of silicon substrate and tunnel oxide. The Si-O chemical bonding information which describes the interface oxidation states at the Si/SiO 2 is obtained by the core-level X-ray photoelectron spectroscopy (XPS). Moreover, relative E F position is determined by measuring the Si 2p energy shift from XPS spectrums. Experimental results from memory characteristic measurement show that MTO tunnel oxide structure exhibits faster erase speed, and larger memory window during P/E cycle compared to FTO and RTO tunnel oxide structures. Finally, we examine long-term charge retention characteristic and find that the memory windows of all the capacitors remain wider than 2 V after 10 5 s.

  10. Synthesise of Zn O nano wires by direct oxidation method

    International Nuclear Information System (INIS)

    Farbod, M.; Ahangarpour, A.

    2007-01-01

    Zn O is a semiconductor which has a direct and wide energy band which is about 3.37 eV at room temperature. It has various applications from UV lasers, sensitive sensors, solar cells to photo catalysis applications. Zn O has different nano structures such as nanoparticles, nano wires, nano rods, nano tubes and nano belts. The one dimensional Zn O nano structures such as nano wires are very important because of their applications in nano electronics and nano photonics so different methods have been proposed to synthesize them. In this work large scale of Zn O nano wires are produced by direct oxidation a Zn substrate (which was cleaned by chemical methods) in air or oxygen atmosphere at 400 d eg C . Nano wires were investigated by scanning electron microscopy and energy dispersive x-ray measurements. Their diameter is about 30-150 nanometer and their length is about several micrometer. This method which acts without any catalyst is a convenient method to synthesis semiconductor nano wires.

  11. Destruction of microcystins (cyanotoxins) by UV-254 nm-based direct photolysis and advanced oxidation processes (AOPs): influence of variable amino acids on the degradation kinetics and reaction mechanisms.

    Science.gov (United States)

    He, Xuexiang; de la Cruz, Armah A; Hiskia, Anastasia; Kaloudis, Triantafyllos; O'Shea, Kevin; Dionysiou, Dionysios D

    2015-05-01

    Hepatotoxic microcystins (MCs) are the most frequently detected group of cyanobacterial toxins. This study investigated the degradation of common MC variants in water, MC-LR, MC-RR, MC-YR and MC-LA, by UV-254 nm-based processes, UV only, UV/H2O2, UV/S2O8(2-) and UV/HSO5(-). Limited direct photolysis of MCs was observed, while the addition of an oxidant significantly improved the degradation efficiency with an order of UV/S2O8(2-) > UV/HSO5(-) > UV/H2O2 at the same initial molar concentration of the oxidant. The removal of MC-LR by UV/H2O2 appeared to be faster than another cyanotoxin, cylindrospermopsin, at either the same initial molar concentration or the same initial organic carbon concentration of the toxin. It suggested a faster reaction of MC-LR with hydroxyl radical, which was further supported by the determined second-order rate constant of MCs with hydroxyl radical. Both isomerization and photohydration byproducts were observed in UV only process for all four MCs; while in UV/H2O2, hydroxylation and diene-Adda double bond cleavage byproducts were detected. The presence of a tyrosine in the structure of MC-YR significantly promoted the formation of monohydroxylation byproduct m/z 1061; while the presence of a second arginine in MC-RR led to the elimination of a guanidine group and the absence of double bond cleavage byproducts. It was therefore demonstrated in this study that the variable amino acids in the structure of MCs influenced not only the degradation kinetics but also the preferable reaction mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    KAUST Repository

    Wang, Zhenwei; Al-Jawhari, Hala A.; Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wei, Nini; Hedhili, Mohamed N.; Alshareef, Husam N.

    2015-01-01

    , which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin

  13. Aerosol and Photo-Oxidant Processes in the Eastern Mediterranean

    Czech Academy of Sciences Publication Activity Database

    Lazaridis, M.; Spyridaki, A.; Solberg, S.; Smolík, Jiří; Ždímal, Vladimír; Eleftheriadis, K.; Aleksandropoulos, V.; Hov, O.; Georgopoulos, P. G.

    2004-01-01

    Roč. 4, - (2004), s. 5455-5514 ISSN 1680-7367 Grant - others:ENVK2(XE) 1999-00052 Institutional research plan: CEZ:AV0Z4072921 Keywords : aerosol * mesoscale modeling * photo-oxidant processes Subject RIV: CF - Physical ; Theoretical Chemistry

  14. Kinetics of Carbon Monoxide Electro-Oxidation in Solid-Oxide Fuel Cells from Ni-YSZ Patterned-Anode Measurements

    KAUST Repository

    Hanna, J.; Lee, W. Y.; Ghoniem, A. F.

    2013-01-01

    A mathematical model is developed around the framework of a reduced mechanism describing electrochemical oxidation of carbon monoxide on Ni-YSZ patterned anodes. The electro-oxidation mechanism involves three reactions, one describing adsorption/ desorption of COonNi, and two single-electron charge-transfer steps inwhich the surface adsorbate CO(Ni) participates directly. These steps are coupled with surface transport in a reaction-diffusion model for which analytic equilibrium and steady-state solutions are derived. As much as possible, we make use of existing, independent, published information about heterogeneous chemistry, surface transport, and other model parameters. The only unknowns in our model are taken to be the kinetic rate constants of the electrochemical reactions, which we evaluate by fitting the model predictions to previously published patterned-anode experiments [B. Habibzadeh, Ph.D. Thesis, University of Maryland, College Park, MD, USA (2007)]. The results show that diffusion of CO on the Ni surface to the three-phase boundary is the rate-controlling process for CO electro-oxidation. Moreover, from a reaction standpoint, the charge-transfer process is dominated by a slow step involving CO(Ni). These findings collectively demonstrate the critical dependence of the electro-oxidation process to the direct participation of CO. © 2013 The Electrochemical Society. All rights reserved.

  15. Kinetics of Carbon Monoxide Electro-Oxidation in Solid-Oxide Fuel Cells from Ni-YSZ Patterned-Anode Measurements

    KAUST Repository

    Hanna, J.

    2013-04-17

    A mathematical model is developed around the framework of a reduced mechanism describing electrochemical oxidation of carbon monoxide on Ni-YSZ patterned anodes. The electro-oxidation mechanism involves three reactions, one describing adsorption/ desorption of COonNi, and two single-electron charge-transfer steps inwhich the surface adsorbate CO(Ni) participates directly. These steps are coupled with surface transport in a reaction-diffusion model for which analytic equilibrium and steady-state solutions are derived. As much as possible, we make use of existing, independent, published information about heterogeneous chemistry, surface transport, and other model parameters. The only unknowns in our model are taken to be the kinetic rate constants of the electrochemical reactions, which we evaluate by fitting the model predictions to previously published patterned-anode experiments [B. Habibzadeh, Ph.D. Thesis, University of Maryland, College Park, MD, USA (2007)]. The results show that diffusion of CO on the Ni surface to the three-phase boundary is the rate-controlling process for CO electro-oxidation. Moreover, from a reaction standpoint, the charge-transfer process is dominated by a slow step involving CO(Ni). These findings collectively demonstrate the critical dependence of the electro-oxidation process to the direct participation of CO. © 2013 The Electrochemical Society. All rights reserved.

  16. Thermal imaging of solid oxide fuel cell anode processes

    Energy Technology Data Exchange (ETDEWEB)

    Pomfret, Michael B.; Kidwell, David A.; Owrutsky, Jeffrey C. [Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Steinhurst, Daniel A. [Nova Research Inc., Alexandria, VA 22308 (United States)

    2010-01-01

    A Si-charge-coupled device (CCD), camera-based, near-infrared imaging system is demonstrated on Ni/yttria-stabilized zirconia (YSZ) fragments and the anodes of working solid oxide fuel cells (SOFCs). NiO reduction to Ni by H{sub 2} and carbon deposition lead to the fragment cooling by 5 {+-} 2 C and 16 {+-} 1 C, respectively. When air is flowed over the fragments, the temperature rises 24 {+-} 1 C as carbon and Ni are oxidized. In an operational SOFC, the decrease in temperature with carbon deposition is only 4.0 {+-} 0.1 C as the process is moderated by the presence of oxides and water. Electrochemical oxidation of carbon deposits results in a {delta}T of +2.2 {+-} 0.2 C, demonstrating that electrochemical oxidation is less vigorous than atmospheric oxidation. While the high temperatures of SOFCs are challenging in many respects, they facilitate thermal imaging because their emission overlaps the spectral response of inexpensive Si-CCD cameras. Using Si-CCD cameras has advantages in terms of cost, resolution, and convenience compared to mid-infrared thermal cameras. High spatial ({proportional_to}0.1 mm) and temperature ({proportional_to}0.1 C) resolutions are achieved in this system. This approach provides a convenient and effective analytical technique for investigating the effects of anode chemistry in operating SOFCs. (author)

  17. Thermal imaging of solid oxide fuel cell anode processes

    Science.gov (United States)

    Pomfret, Michael B.; Steinhurst, Daniel A.; Kidwell, David A.; Owrutsky, Jeffrey C.

    A Si-charge-coupled device (CCD), camera-based, near-infrared imaging system is demonstrated on Ni/yttria-stabilized zirconia (YSZ) fragments and the anodes of working solid oxide fuel cells (SOFCs). NiO reduction to Ni by H 2 and carbon deposition lead to the fragment cooling by 5 ± 2 °C and 16 ± 1 °C, respectively. When air is flowed over the fragments, the temperature rises 24 ± 1 °C as carbon and Ni are oxidized. In an operational SOFC, the decrease in temperature with carbon deposition is only 4.0 ± 0.1 °C as the process is moderated by the presence of oxides and water. Electrochemical oxidation of carbon deposits results in a Δ T of +2.2 ± 0.2 °C, demonstrating that electrochemical oxidation is less vigorous than atmospheric oxidation. While the high temperatures of SOFCs are challenging in many respects, they facilitate thermal imaging because their emission overlaps the spectral response of inexpensive Si-CCD cameras. Using Si-CCD cameras has advantages in terms of cost, resolution, and convenience compared to mid-infrared thermal cameras. High spatial (∼0.1 mm) and temperature (∼0.1 °C) resolutions are achieved in this system. This approach provides a convenient and effective analytical technique for investigating the effects of anode chemistry in operating SOFCs.

  18. Oxidation process of AlOx-based magnetic tunnel junctions studied by photoconductance

    NARCIS (Netherlands)

    Koller, P.H.P.; Vanhelmont, F.W.M.; Boeve, H.; Lumens, P.G.E.; Jonge, de W.J.M.

    2003-01-01

    The oxidation process of Co/AlOx/Co magnetic tunnel junctions has been investigated by photoconductance, in addition to traditional transport measurements. The shape of the photoconductance curves is explained within the framework of a simple qualitative model, assuming an oxidation time dependent

  19. Zinc-oxide-based sorbents and processes for preparing and using same

    Science.gov (United States)

    Gangwal, Santosh Kumar; Turk, Brian Scott; Gupta, Raghubir Prasael

    2010-03-23

    Zinc oxide-based sorbents, and processes for preparing and using them are provided. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

  20. Development and Processing of p-type Oxide Thermoelectric Materials

    DEFF Research Database (Denmark)

    Wu, NingYu; Van Nong, Ngo

    The main aim of this research is to investigate and develop well-performing p-type thermoelectric oxide materials that are sufficiently stable at high temperatures for power generating applications involving industrial processes. Presently, the challenges facing the widespread implementation...

  1. Treatment of uranium turning with the controllable oxidizing process

    International Nuclear Information System (INIS)

    Shen Bingyi; Zhang Yonggang; Zhen Huikuan

    1989-02-01

    The concept, procedure and safety measures of the controllable oxidizing for uranium turning is described. The feasibility study on technological process has been made. The process provided several advantages such as: simplicity of operation, no pollution environment, safety, high efficiency and low energy consumption. The process can yield nuclear pure uranium dioxide under making no use of a great number of chemical reagent. It may supply raw material for fluoration and provide a simply method of treatment for safe store of uranium turning

  2. Investigation of solid organic waste processing by oxidative pyrolysis

    Science.gov (United States)

    Kolibaba, O. B.; Sokolsky, A. I.; Gabitov, R. N.

    2017-11-01

    A thermal analysis of a mixture of municipal solid waste (MSW) of the average morphological composition and its individual components was carried out in order to develop ways to improve the efficiency of its utilization for energy production in thermal reactors. Experimental studies were performed on a synchronous thermal analyzer NETZSCH STA 449 F3 Jupiter combined with a quadrupole mass spectrometer QMC 403. Based on the results of the experiments, the temperature ranges of the pyrolysis process were determined as well as the rate of decrease of the mass of the sample of solid waste during the drying and oxidative pyrolysis processes, the thermal effects accompanying these processes, as well as the composition and volumes of gases produced during oxidative pyrolysis of solid waste and its components in an atmosphere with oxygen content of 1%, 5%, and 10%. On the basis of experimental data the dependences of the yield of gas on the moisture content of MSW were obtained under different pyrolysis conditions under which a gas of various calorific values was produced.

  3. Oxidation of adsorbed ferrous iron: kinetics and influence of process conditions.

    Science.gov (United States)

    Buamah, R; Petrusevski, B; Schippers, J C

    2009-01-01

    For the removal of iron from groundwater, aeration followed with rapid (sand) filtration is frequently applied. Iron removal in this process is achieved through oxidation of Fe(2 + ) in aqueous solution followed by floc formation as well as adsorption of Fe(2 + ) onto the filter media. The rate of oxidation of the adsorbed Fe(2 + ) on the filter media plays an important role in this removal process. This study focuses on investigating the effect of pH on the rate of oxidation of adsorbed Fe(2 + ). Fe(2 + ) has been adsorbed, under anoxic conditions, on iron oxide coated sand (IOCS) in a short filter column and subsequently oxidized by feeding the column with aerated water. Ferrous ions adsorbed at pH 5, 6, 7 and 8 demonstrated consumption of oxygen, when aerated water was fed into the column. The oxygen uptake at pH 7 and 8 was faster than at pH 5 and 6. However the difference was less pronounced than expected. The difference is attributed to the pH buffering effect of the IOCS. At feedwater pH 5, 6 and 7 the pH in the effluent was higher than in the influent, while a pH drop should occur because of oxidation of adsorbed Fe(2 + ). At pH 8, the pH dropped. These phenomena are attributed to the presence of calcium and /or ferrous carbonate in IOCS.

  4. Effect of the method of processing on quality and oxidative stability ...

    African Journals Online (AJOL)

    In this study four samn samples prepared from cow milk using two processing methods (traditional T1, T2 and factory processed T3, T4) were investigated for their physico-chemical properties, fatty acids composition, oxidative stability and sensory properties. The traditionally processed samples showed a significance ...

  5. Treatment of persistent organic pollutants in wastewater using hydrodynamic cavitation in synergy with advanced oxidation process.

    Science.gov (United States)

    Badmus, Kassim Olasunkanmi; Tijani, Jimoh Oladejo; Massima, Emile; Petrik, Leslie

    2018-03-01

    Persistent organic pollutants (POPs) are very tenacious wastewater contaminants. The consequences of their existence have been acknowledged for negatively affecting the ecosystem with specific impact upon endocrine disruption and hormonal diseases in humans. Their recalcitrance and circumvention of nearly all the known wastewater treatment procedures are also well documented. The reported successes of POPs treatment using various advanced technologies are not without setbacks such as low degradation efficiency, generation of toxic intermediates, massive sludge production, and high energy expenditure and operational cost. However, advanced oxidation processes (AOPs) have recently recorded successes in the treatment of POPs in wastewater. AOPs are technologies which involve the generation of OH radicals for the purpose of oxidising recalcitrant organic contaminants to their inert end products. This review provides information on the existence of POPs and their effects on humans. Besides, the merits and demerits of various advanced treatment technologies as well as the synergistic efficiency of combined AOPs in the treatment of wastewater containing POPs was reported. A concise review of recently published studies on successful treatment of POPs in wastewater using hydrodynamic cavitation technology in combination with other advanced oxidation processes is presented with the highlight of direction for future research focus.

  6. Treatment of oilfield wastewater by combined process of micro-electrolysis, Fenton oxidation and coagulation.

    Science.gov (United States)

    Zhang, Zhenchao

    2017-12-01

    In this study, a combined process was developed that included micro-electrolysis, Fenton oxidation and coagulation to treat oilfield fracturing wastewater. Micro-electrolysis and Fenton oxidation were applied to reduce chemical oxygen demand (COD) organic load and to enhance organic components gradability, respectively. Orthogonal experiment were employed to investigate the influence factors of micro-electrolysis and Fenton oxidation on COD removal efficiency. For micro-electrolysis, the optimum conditions were: pH, 3; iron-carbon dosage, 50 mg/L; mass ratio of iron-carbon, 2:3; reaction time, 60 min. For Fenton oxidation, a total reaction time of 90 min, a H 2 O 2 dosage of 12 mg/L, with a H 2 O 2 /Fe 2+ mole ratio of 30, pH of 3 were selected to achieve optimum oxidation. The optimum conditions in coagulation process: pH, cationic polyacrylamide dosage, mixing speed and time is 4.3, 2 mg/L, 150 rpm and 30 s, respectively. In the continuous treatment process under optimized conditions, the COD of oily wastewater fell 56.95%, 46.23%, 30.67%, respectively, from last stage and the total COD removal efficiency reached 83.94% (from 4,314 to 693 mg/L). In the overall treatment process under optimized conditions, the COD of oily wastewater was reduced from 4,314 to 637 mg/L, and the COD removal efficiency reached 85.23%. The contribution of each stage is 68.45% (micro-electrolysis), 24.07% (Fenton oxidation), 7.48% (coagulation), respectively. Micro-electrolysis is the uppermost influencing process on COD removal. Compared with the COD removal efficiency of three processes on raw wastewater under optimized conditions: the COD removal efficiency of single micro-electrolysis, single Fenton oxidation, single coagulation is 58.34%, 44.88% and 39.72%, respectively. Experiments proved the effect of combined process is marvelous and the overall water quality of the final effluent could meet the class III national wastewater discharge standard of petrochemical industry of China

  7. Direct printing and reduction of graphite oxide for flexible supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hanyung [Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Ve Cheah, Chang [Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Jeong, Namjo [Energy Materials and Convergence Research Department, Korea Institute of Energy Research, Daejeon (Korea, Republic of); Lee, Junghoon, E-mail: jleenano@snu.ac.kr [Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of)

    2014-08-04

    We report direct printing and photo-thermal reduction of graphite oxide (GO) to obtain a highly porous pattern of interdigitated electrodes, leading to a supercapacitor on a flexible substrate. Key parameters optimized include the amount of GO delivered, the suitable photo-thermal energy level for effective flash reduction, and the substrate properties for appropriate adhesion after reduction. Tests with supercapacitors based on the printed-reduced GO showed performance comparable with commercial supercapacitors: the energy densities were 1.06 and 0.87 mWh/cm{sup 3} in ionic and organic electrolytes, respectively. The versatility in the architecture and choice of substrate makes this material promising for smart power applications.

  8. Direct printing and reduction of graphite oxide for flexible supercapacitors

    Science.gov (United States)

    Jung, Hanyung; Ve Cheah, Chang; Jeong, Namjo; Lee, Junghoon

    2014-08-01

    We report direct printing and photo-thermal reduction of graphite oxide (GO) to obtain a highly porous pattern of interdigitated electrodes, leading to a supercapacitor on a flexible substrate. Key parameters optimized include the amount of GO delivered, the suitable photo-thermal energy level for effective flash reduction, and the substrate properties for appropriate adhesion after reduction. Tests with supercapacitors based on the printed-reduced GO showed performance comparable with commercial supercapacitors: the energy densities were 1.06 and 0.87 mWh/cm3 in ionic and organic electrolytes, respectively. The versatility in the architecture and choice of substrate makes this material promising for smart power applications.

  9. Direct printing and reduction of graphite oxide for flexible supercapacitors

    International Nuclear Information System (INIS)

    Jung, Hanyung; Ve Cheah, Chang; Jeong, Namjo; Lee, Junghoon

    2014-01-01

    We report direct printing and photo-thermal reduction of graphite oxide (GO) to obtain a highly porous pattern of interdigitated electrodes, leading to a supercapacitor on a flexible substrate. Key parameters optimized include the amount of GO delivered, the suitable photo-thermal energy level for effective flash reduction, and the substrate properties for appropriate adhesion after reduction. Tests with supercapacitors based on the printed-reduced GO showed performance comparable with commercial supercapacitors: the energy densities were 1.06 and 0.87 mWh/cm 3 in ionic and organic electrolytes, respectively. The versatility in the architecture and choice of substrate makes this material promising for smart power applications

  10. Evidence against a direct role for oxidative stress in cadmium-induced axial malformation in the chick embryo

    International Nuclear Information System (INIS)

    Thompson, Jennifer; Doi, Takashi; Power, Eoin; Balasubramanian, Ishwarya; Puri, Prem; Bannigan, John

    2010-01-01

    Cadmium (Cd) is a powerful inducer of oxidative stress. It also causes ventral body wall defects in chick embryos treated at Hamburger-Hamilton stages 16-17. By measuring malondialdehyde levels (TBARS method) and cotreating with antioxidants (tempol, ascorbate, and N-acetylcysteine), we sought to determine if oxidative stress were directly related to teratogenesis. We also investigated the expression of mRNAs for antioxidant enzymes superoxide dismutase (SOD) -1 and -2, catalase (CAT), and glutathione peroxidase (GPx). RT-PCR showed reductions in SOD-1, SOD-2, and CAT 1 hour after treatment with Cd. MDA levels increased 4 hours after Cd, and remained elevated 24 hours after treatment. Of the antioxidants, only N-acetylcysteine reduced MDA levels to control values. Nonetheless, no antioxidant could reduce embryo lethality or malformation rates. Furthermore, MDA levels 24 hours after treatment were identical in malformed and normal embryos exposed to Cd. Hence, we conclude that oxidative stress may not have a direct role in Cd teratogenesis.

  11. Process for removal of sulfur oxides from hot gases

    International Nuclear Information System (INIS)

    Bauerle, G. L.; Kohl, A. L.

    1984-01-01

    A process for the removal of sulfur oxides from two gas streams containing the same. One gas stream is introduced into a spray dryer zone and contacted with a finely dispersed spray of an aqueous medium containing an absorbent for sulfur oxides. The aqueous medium is introduced at a controlled rate so as to provide water to the gas in an amount to produce a cooled product gas having a temperature at least 7 0 C. above its adiabatic saturation temperature and from about 125-300% of the stoichiometric amount of absorbent required to react with the sulfur oxides to be removed from the gas stream. The effluent from the spray dryer zone comprises a gas stream of reduced sulfur oxide content and contains entrained dry particulate reaction products including unreacted absorbent. This gas stream is then introduced into a particulate removal zone from which is withdrawn a gas stream substantially free of particles and having a reduced sulfur oxide content. the dry particulate reaction products are collected and utilized as a source of absorbent for a second aqueous scrubbing medium containing unreacted absorbent for the sulfur oxides. An effluent gas stream is withdrawn from the aqueous scrubbing zone and comprises a water-saturated gas stream of reduced sulfur oxide content and substantially free of particles. The effluent gas streams from the particulate removal zone and the aqueous scrubbing zone are combined in such proportions that the combined gas stream has a temperature above its adiabatic saturation temperature

  12. Process for growing a film epitaxially upon an oxide surface and structures formed with the process

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick J.

    1995-01-01

    A process and structure wherein a film comprised of a perovskite or a spinel is built epitaxially upon a surface, such as an alkaline earth oxide surface, involves the epitaxial build up of alternating constituent metal oxide planes of the perovskite or spinel. The first layer of metal oxide built upon the surface includes a metal element which provides a small cation in the crystalline structure of the perovskite or spinel, and the second layer of metal oxide built upon the surface includes a metal element which provides a large cation in the crystalline structure of the perovskite or spinel. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  13. COMPARISON OF DIFFERENT ADVANCED OXIDATION PROCESSES DEGRADING P-CHLOROPHENOL IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    H. Movahedyan ، A. M. Seid Mohammadi ، A. Assadi

    2009-07-01

    Full Text Available In present study, degradation of p-chlorophenol using several oxidation systems involving advanced oxidation processes such as ultraviolet/H2O2, microwave/H2O2 and both in the absence of hydrogen peroxide in batch mode by photolytic pilot plant and modified domestic microwave oven was evaluated. The oxidation rate was influenced by many factors, such as the pH value, the amount of hydrogen peroxide, irradiation time and microwave power. The optimum conditions obtained for the best degradation rate were pH=7 and H2O2 concentration of 0.05 mol/L for ultraviolet/H2O2 system and pH=10.5, H2O2 concentration of about 0.1 mol/L and microwave irradiation power of about 600W for microwave/H2O2 system at constant p-chlorophenol concentration. The degradation of p-chlorophenol by different types of oxidation processes followed first order rate decay kinetics. The rate constants were 0.137, 0.012, 0.02 and 0.004/min1 for ultraviolet/H2O2, microwave/H2O2, ultraviolet and microwave irradiation alone. Finally a comparison of the specific energy consumption showed that ultraviolet/H2O2 process reduced the energy consumption by at least 67% compared with the microwave/H2O2 process.

  14. High performance printed oxide field-effect transistors processed using photonic curing

    Science.gov (United States)

    Garlapati, Suresh Kumar; Cadilha Marques, Gabriel; Gebauer, Julia Susanne; Dehm, Simone; Bruns, Michael; Winterer, Markus; Baradaran Tahoori, Mehdi; Aghassi-Hagmann, Jasmin; Hahn, Horst; Dasgupta, Subho

    2018-06-01

    Oxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV–visible light and UV-laser), we demonstrate facile fabrication of high performance In2O3 field-effect transistors (FETs). Beside the processing related issues (temperature, time etc.), the other known limitation of oxide electronics is the lack of high performance p-type semiconductors, which can be bypassed using unipolar logics from high mobility n-type semiconductors alone. Interestingly, here we have found that our chosen distinct photonic curing methods can offer a large variation in threshold voltage, when they are fabricated from the same precursor ink. Consequently, both depletion and enhancement-mode devices have been achieved which can be used as the pull-up and pull-down transistors in unipolar inverters. The present device fabrication recipe demonstrates fast processing of low operation voltage, high performance FETs with large threshold voltage tunability.

  15. Modeling and Simulation of the Direct Methanol Fuel Cell

    Science.gov (United States)

    Wohr, M.; Narayanan, S. R.; Halpert, G.

    1996-01-01

    From intro.: The direct methanol liquid feed fuel cell uses aqueous solutions of methanol as fuel and oxygen or air as the oxidant and uses an ionically conducting polymer membrane such as Nafion(sup r)117 and the electrolyte. This type of direct oxidation cell is fuel versatile and offers significant advantages in terms of simplicity of design and operation...The present study focuses on the results of a phenomenological model based on current understanding of the various processed operating in these cells.

  16. Multiscale model of metal alloy oxidation at grain boundaries

    International Nuclear Information System (INIS)

    Sushko, Maria L.; Alexandrov, Vitaly; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-01-01

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr 2 O 3 . This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl 2 O 4 . Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3–10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr 2 O 3 has a plate-like structure with 1.2–1.7 nm wide pores running along the grain boundary, while NiAl 2 O 4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional

  17. Aqueous-phase photochemical oxidation and direct photolysis of vanillin - a model compound of methoxy phenols from biomass burning

    Science.gov (United States)

    Li, Y. J.; Huang, D. D.; Cheung, H. Y.; Lee, A. K. Y.; Chan, C. K.

    2014-03-01

    We present here experimental results on aqueous-phase (A) photochemical oxidation (with UV and OH radicals generated from H2O2 photolysis) and (B) direct photolysis (with only UV irradiation) of a methoxy phenol, vanillin (VL), as a model compound from biomass burning. Both on-line aerosol mass spectrometric (AMS) characterization and off-line chemical analyses were performed. AMS analyses of dried atomized droplets of the bulk reacting mixtures showed that VL almost entirely evaporates during the drying process. Large amounts of organic mass remained in the particle phase after reactions under both conditions. Under condition (A), AMS measured organic mass first increased rapidly and then decreased, attributable to the formation of non-volatile products and subsequent formation of smaller and volatile products, respectively. The oxygen-to-carbon (O : C) ratio of the products reached 1.5 after about 80 min, but dropped substantially thereafter. In contrast, organic mass increased slowly under condition (B). The O : C ratio reached 1.0 after 180 min. In off-line analyses, small oxygenates were detected under condition (A), while hydroxylated products and dimers of VL were detected under condition (B). Particle hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of the reacting mixtures were found to depend on both organic volume fraction and the degree of oxygenation of organics. Results show that (1) aqueous-phase processes can lead to the retention of a large portion of the organic mass in the particle phase; (2) once retained, this portion of organic mass significantly changes the hygroscopicity and CCN activity of the aerosol particles; (3) intensive photochemical oxidation gave rise to an O : C ratio as high as 1.5 but the ratio decreased as further oxidation led to smaller and more volatile products; and (4) polymerization occurred with direct photolysis, resulting in high-molecular-weight products of a yellowish color. This study

  18. Aqueous-phase photochemical oxidation and direct photolysis of vanillin - a model compound of methoxy-phenols from biomass burning

    Science.gov (United States)

    Li, Y. J.; Huang, D. D.; Cheung, H. Y.; Lee, A. K. Y.; Chan, C. K.

    2013-10-01

    We present here experimental results on aqueous-phase (A) photochemical oxidation (with UV and OH radicals generated from H2O2 photolysis) and (B) direct photolysis (with only UV irradiation) of a methoxy-phenol, vanillin (VL), as a model compound from biomass burning. Both on-line aerosol mass spectrometric (AMS) characterization and off-line chemical analyses were performed. AMS analyses of dried atomized droplets of the bulk reacting mixtures showed that VL almost entirely evaporates during the drying process. Large amounts of organic mass remained in the particle phase after reactions under both conditions. Under condition (A), AMS measured organic mass first increased rapidly and then decreased, attributable to the formation of non-volatile products and subsequent formation of smaller and volatile products, respectively. The oxygen-to-carbon (O:C) ratio of the products reached 1.5 after about 80 min, but dropped substantially thereafter. In contrast, organic mass increased slowly under condition (B). The O:C ratio reached 1.0 after 180 min. In off-line analyses, small oxygenates were detected under condition (A), while hydroxylated products and dimers of VL were detected under condition (B). Particle hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of the reacting mixtures were found to be dependent on both organic volume fraction and the degree of oxygenation of organics. Results show that (1) aqueous-phase processes can lead to the retention of a large portion of the organic mass in the particle phase; (2) once retained, this portion of organic mass significantly changes the hygroscopicity and CCN activity of the aerosol particles; (3) intensive photochemical oxidation gave rise to an O:C ratio as high as 1.5 but the ratio decreased as further oxidation led to smaller and more volatile products; and (4) polymerization occurred with direct photolysis, resulting in high-molecular-weight products of a yellowish color. This study

  19. Second-Order Biomimicry: In Situ Oxidative Self-Processing Converts Copper(I)/Diamine Precursor into a Highly Active Aerobic Oxidation Catalyst.

    Science.gov (United States)

    McCann, Scott D; Lumb, Jean-Philip; Arndtsen, Bruce A; Stahl, Shannon S

    2017-04-26

    A homogeneous Cu-based catalyst system consisting of [Cu(MeCN) 4 ]PF 6 , N , N '-di- tert -butylethylenediamine (DBED), and p -( N , N -dimethylamino)pyridine (DMAP) mediates efficient aerobic oxidation of alcohols. Mechanistic study of this reaction shows that the catalyst undergoes an in situ oxidative self-processing step, resulting in conversion of DBED into a nitroxyl that serves as an efficient cocatalyst for aerobic alcohol oxidation. Insights into this behavior are gained from kinetic studies, which reveal an induction period at the beginning of the reaction that correlates with the oxidative self-processing step, EPR spectroscopic analysis of the catalytic reaction mixture, which shows the buildup of the organic nitroxyl species during steady state turnover, and independent synthesis of oxygenated DBED derivatives, which are shown to serve as effective cocatalysts and eliminate the induction period in the reaction. The overall mechanism bears considerable resemblance to enzymatic reactivity. Most notable is the "oxygenase"-type self-processing step that mirrors generation of catalytic cofactors in enzymes via post-translational modification of amino acid side chains. This higher-order function within a synthetic catalyst system presents new opportunities for the discovery and development of biomimetic catalysts.

  20. Processing and Characterization of Sol-Gel Cerium Oxide Microspheres

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Zachary D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Padilla Cintron, Cristina [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-27

    Of interest to space exploration and power generation, Radioisotope Thermoelectric Generators (RTGs) can provide long-term power to remote electronic systems without the need for refueling or replacement. Plutonium-238 (Pu-238) remains one of the more promising materials for thermoelectric power generation due to its high power density, long half-life, and low gamma emissions. Traditional methods for processing Pu-238 include ball milling irregular precipitated powders before pressing and sintering into a dense pellet. The resulting submicron particulates of Pu-238 quickly accumulate and contaminate glove boxes. An alternative and dust-free method for Pu-238 processing is internal gelation via sol-gel techniques. Sol-gel methodology creates monodisperse and uniform microspheres that can be packed and pressed into a pellet. For this study cerium oxide microspheres were produced as a surrogate to Pu-238. The similar electronic orbitals between cerium and plutonium make cerium an ideal choice for non-radioactive work. Before the microspheres can be sintered and pressed they must be washed to remove the processing oil and any unreacted substituents. An investigation was performed on the washing step to find an appropriate wash solution that reduced waste and flammable risk. Cerium oxide microspheres were processed, washed, and characterized to determine the effectiveness of the new wash solution.

  1. Improving technology and setting-up a production line for high quality zinc oxide (99.5%) with a capacity of 150 ton/year by evaporation-oxidation process

    International Nuclear Information System (INIS)

    Phan Dinh Thinh; Pham Minh Tuan; Luong Manh Hung; Tran Ngoc Vuong

    2015-01-01

    This report presents the technology improvement and a production line to produce high quality zinc oxide of purity upper than 99.5% ZnO by evaporation-oxidation method. Secondary zinc metal recovered from galvanizing industrial will undergo a pre-treatment to meet all requirements of standardized feed material for evaporation-oxidation process. Zinc metal is melted at a temperature of about 650"oC, some impurities and metallic oxides are separated preliminary, then zinc metal is converted into liquid in evaporation pot. Here the temperature is maintained around 1050"oC, zinc liquid is evaporated, zinc vapor is oxidized by air in the oxidation chamber naturally by oxygen in the air and then zinc vapor is converted to zinc oxide. Zinc oxide is passed through a product classification systems and then go to a product collection of filtering bag design. The whole process of melting, evaporation, oxidation, particles classification and product collection is a continuous process. The efficiency of the transformation of zinc metal into zinc oxide can reach the value of 1.1 to 1.2. ZnO product quality is higher than 99.5%. (author)

  2. Effect of process parameters on surface oxides on chromium-alloyed steel powder during sintering

    International Nuclear Information System (INIS)

    Chasoglou, D.; Hryha, E.; Nyborg, L.

    2013-01-01

    The use of chromium in the PM steel industry today puts high demands on the choice and control of the atmosphere during the sintering process due to its high affinity to oxygen. Particular attention is required in order to control the surface chemistry of the powder which in turn is the key factor for the successful sintering and production of PM parts. Different atmosphere compositions, heating rates and green densities were employed while performing sintering trials on water atomized steel powder pre-alloyed with 3 wt.% Cr in order to evaluate the effect on surface chemical reactions. Fracture surfaces of sintered samples were examined using high resolution scanning electron microscopy combined with X-ray microanalysis. The investigation was complemented with thermogravimetric (TG) studies. Reaction products in particulate form containing strong-oxide forming elements such as Cr, Si and Mn were formed during sintering for all conditions. Processing in vacuum results in intensive inter-particle neck development during the heating stage and consequently in the excessive enclosure of surface oxide which is reflected in less good final mechanical properties. Enhanced oxide reduction was observed in samples processed in hydrogen-containing atmospheres independent of the actual content in the range of 3–10 vol.%. An optimum heating rate was required for balancing reduction/oxidation processes. A simple model for the enclosure and growth of oxide inclusions during the sinter-neck development is proposed. The obtained results show that significant reduction of the oxygen content can be achieved by adjusting the atmosphere purity/composition. - Highlights: ► A local atmosphere microclimate is very important for sintering of PM steels. ► High risk of surface oxide enclosure between 800 and 1000 °C. ► Coalescence and agglomeration of enclosed oxides take place during sintering. ► The effect of different process parameters on the oxide reduction is examined. ► A

  3. Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Hsu, Ryan S; Higgins, Drew; Chen Zhongwei

    2010-01-01

    Novel tin-oxide (SnO 2 )-coated single-walled carbon nanotube (SWNT) bundles supporting platinum (Pt) electrocatalysts for ethanol oxidation were developed for direct ethanol fuel cells. SnO 2 -coated SWNT (SnO 2 -SWNT) bundles were synthesized by a simple chemical-solution route. SnO 2 -SWNT bundles supporting Pt (Pt/SnO 2 -SWNTs) electrocatalysts and SWNT-supported Pt (Pt/SWNT) electrocatalysts were prepared by an ethylene glycol reduction method. The catalysts were physically characterized using TGA, XRD and TEM and electrochemically evaluated through cyclic voltammetry experiments. The Pt/SnO 2 -SWNTs showed greatly enhanced electrocatalytic activity for ethanol oxidation in acid medium, compared to the Pt/SWNT. The optimal SnO 2 loading of Pt/SnO 2 -SWNT catalysts with respect to specific catalytic activity for ethanol oxidation was also investigated.

  4. Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for direct ethanol fuel cells.

    Science.gov (United States)

    Hsu, Ryan S; Higgins, Drew; Chen, Zhongwei

    2010-04-23

    Novel tin-oxide (SnO(2))-coated single-walled carbon nanotube (SWNT) bundles supporting platinum (Pt) electrocatalysts for ethanol oxidation were developed for direct ethanol fuel cells. SnO(2)-coated SWNT (SnO(2)-SWNT) bundles were synthesized by a simple chemical-solution route. SnO(2)-SWNT bundles supporting Pt (Pt/SnO(2)-SWNTs) electrocatalysts and SWNT-supported Pt (Pt/SWNT) electrocatalysts were prepared by an ethylene glycol reduction method. The catalysts were physically characterized using TGA, XRD and TEM and electrochemically evaluated through cyclic voltammetry experiments. The Pt/SnO(2)-SWNTs showed greatly enhanced electrocatalytic activity for ethanol oxidation in acid medium, compared to the Pt/SWNT. The optimal SnO(2) loading of Pt/SnO(2)-SWNT catalysts with respect to specific catalytic activity for ethanol oxidation was also investigated.

  5. Effect of oxide ion concentration on the electrochemical oxidation of carbon in molten LiCl

    International Nuclear Information System (INIS)

    Yun, J. W.; Choi, I. K.; Park, Y. S.; Kim, W. H.

    2001-01-01

    The continuous measurement of lithium oxide concentration was required in DOR (Direct Oxide Reduction) process, which converts spent nuclear fuel to metal form, for the reactivity monitor and effective control of the process. The concentration of lithium oxide was measured by the electrochemical method, which was based on the phenomenon that carbon atoms of glassy carbon electrode electrochemically react with oxygen ions of lithium oxide in molten LiCl medium. From the results of electrode polarization experiments, the trend of oxidation rate of carbon atoms was classified into two different regions, which were proportional and non-proportional ones, dependent on the amount of lithium oxide. Below about 2.5 wt % Li 2 O, as the carbon atom ionization rate was fast enough for reacting with diffusing lithium oxide to the surface of carbon electrode. In this concentration range, the oxidation rate of carbon atoms was controlled by the diffusion of lithium oxide, and the concentration of lithium oxide could be measured by electrochemical method. But, above 2.5 wt % Li 2 O, the oxidation rate of carbon atoms was controlled by the applied electrochemical potential, because the carbon atom ionization rate was suppressed by the huge amounts of diffusing Li 2 O. Above this concentration, the electrochemical method was not applicable to determine the concentration of lithium oxide

  6. Direct reduction of plutonium from dicesium hexachloroplutonate

    International Nuclear Information System (INIS)

    Averill, W.A.; Boyd, T.E.

    1991-01-01

    The Rocky Flats Plant produces dicesium hexachloroplutonate (DCHP) primarily as a reagent in the molten salt extraction of americium from plutonium metal. DCHP is precipitated from aqueous chloride solutions derived from the leaching of process residues with a high degree of selectivity. DCHP is a chloride salt of plutonium, while the traditional aqueous precipitate is a hydrated oxide. Plutonium metal preparation from the oxide involves either the conversion of oxide to a halide followed by metallothermic reduction or direct reduction of the oxide using a flux. Either method generates at least three times as much radioactively contaminated waste as metal produced. Plutonium concentration by DCHP precipitation, however, produces a chloride salt that can be reduced using calcium metal at a temperature of approximately 1000K. In this paper the advantages and limitations of this process are discussed

  7. Formation of Poultry Meat Flavor by Heating Process and Lipid Oxidation

    Directory of Open Access Journals (Sweden)

    Maijon Purba

    2014-09-01

    Full Text Available Flavor is an important factor in the acceptance of food. Flavor of poultry meat is naturally formed through a specific process of heating, where various chemical reactions complex occurred among nonvolatile precursors in fatty tissue or in lean tissue. The main flavor in the form of volatile and nonvolatile components play a major influence on the acceptance of various processed meat, especially the taste. Removal of sulfur components decreases meat flavor (meaty, while removal of carbonyl compounds decrease the specific flavor and increases common flavor of the meat. Poultry meat has a fairly high fat content that easily generates lipid oxidation. Lipid oxidation in poultry meat is a sign that the meat was damaged and caused off odor. Addition of antioxidants in the diet can inhibit lipid oxidation in the meat. Lipids interaction with proteins and carbohydrates is unavoidable during the thermal processing of food, causing the appearance of volatile components. The main reaction in meat flavor formation mechanism is Maillard reaction followed by Stecker reaction and degradation of lipids and thiamine. They involve in the reaction between carbonyl and amine components to form flavor compounds, which enhance the flavor of poultry meat.

  8. Decolourization of Direct Blue 2 by peroxidases obtained from an ...

    African Journals Online (AJOL)

    Also, an increase in toxicity, determined by Vibrio fisheri, was observed after the enzymatic oxidation of the dye. Results suggest that the oxidation of DB2 with peroxidases can be recommended as a pretreatment step before a conventional treatment process. Keywords: decolourization, Direct Blue 2, industrial waste, ...

  9. Abstract knowledge versus direct experience in processing of binomial expressions.

    Science.gov (United States)

    Morgan, Emily; Levy, Roger

    2016-12-01

    We ask whether word order preferences for binomial expressions of the form A and B (e.g. bread and butter) are driven by abstract linguistic knowledge of ordering constraints referencing the semantic, phonological, and lexical properties of the constituent words, or by prior direct experience with the specific items in questions. Using forced-choice and self-paced reading tasks, we demonstrate that online processing of never-before-seen binomials is influenced by abstract knowledge of ordering constraints, which we estimate with a probabilistic model. In contrast, online processing of highly frequent binomials is primarily driven by direct experience, which we estimate from corpus frequency counts. We propose a trade-off wherein processing of novel expressions relies upon abstract knowledge, while reliance upon direct experience increases with increased exposure to an expression. Our findings support theories of language processing in which both compositional generation and direct, holistic reuse of multi-word expressions play crucial roles. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Study of the Radical Chain Mechanism of Hydrocarbon Oxidation for In Situ Combustion Process

    Directory of Open Access Journals (Sweden)

    Alexandra Ushakova

    2017-01-01

    Full Text Available Despite the abundance of in situ combustion models of oil oxidation, many of the effects are still beyond consideration. For example, until now, initial stages of oxidation were not considered from a position of radical chain process. This is a serious difficulty for the simulation of oil recovery process that involves air injection. To investigate the initial stages of oxidation, the paper considers the sequence of chemical reactions, including intermediate short-living compounds and radicals. We have attempted to correlate the main stages of the reaction with areas of heat release observed in the experiments. The system of differential equations based on the equations of oxidation reactions was solved. Time dependence of peroxides formation and start of heat release is analytically derived for the initial stages. We have considered the inhibition of initial oxidation stages by aromatic oil compounds and have studied the induction time in dependence on temperature. Chain ignition criteria for paraffins and crude oil in presence of core samples were obtained. The calculation results are compared with the stages of oxidation that arise by high-pressure differential scanning calorimetry. According to experimental observations we have determined which reactions are important for the process and which can be omitted or combined into one as insignificant.

  11. REMOVAL OF REMAZOL ROSSO RB DYE FROM AQUEOUS EFFLUENTS BY HOMOGENOUS FENTON OXIDATION PROCESSES

    Directory of Open Access Journals (Sweden)

    Carmen Zaharia

    2014-06-01

    Full Text Available The paper presents some data from our laboratory-setup experiments of homogenous oxidative processes with hydrogen peroxide (i.e. advanced Fenton oxidation processes applied for Remazol Rosso RB dye-containing aqueous systems, especially textile effluents. Therefore, some different operating parameters (including pH, concentration of dye, H2O2 and ferrous ions, oxidation time, temperature, stirring regime, among its were tested for determination of the best performance in effluent decoloration and dye removal, meaning the optimal values of each studied parameters for highest decoloration or dye removal.

  12. Characterization of 10 μm thick porous silicon dioxide obtained by complex oxidation process for RF application

    International Nuclear Information System (INIS)

    Park, Jeong-Yong; Lee, Jong-Hyun

    2003-01-01

    This paper proposes a 10 μm thick oxide layer structure, which can be used as a substrate for RF circuits. The structure has been fabricated by anodic reaction and complex oxidation, which is a combined process of low temperature thermal oxidation (500 deg. C, for 1 h at H 2 O/O 2 ) and a rapid thermal oxidation (RTO) process (1050 deg. C, for 1 min). The electrical characteristics of oxidized porous silicon layer (OPSL) were almost the same as those of standard thermal silicon dioxide. The leakage current through the OPSL of 10 μm was about 100-500 pA in the range of 0-50 V. The average value of breakdown field was about 3.9 MV cm -1 . From the X-ray photo-electron spectroscopy (XPS) analysis, surface and internal oxide films of OPSL, prepared by complex process were confirmed to be completely oxidized and also the role of RTO process was important for the densification of porous silicon layer (PSL) oxidized at a lower temperature. For the RF-test of Si substrate with thick silicon dioxide layer, we have fabricated high performance passive devices such as coplanar waveguide (CPW) on OPSL substrate. The insertion loss of CPW on OPSL prepared by complex oxidation process was -0.39 dB at 4 GHz and similar to that of CPW on OPSL prepared by a temperature of 1050 deg. C (1 h at H 2 O/O 2 ). Also the return loss of CPW on OPSL prepared by complex oxidation process was -23 dB at 10 GHz, which is similar to that of CPW on OPSL prepared by high temperature

  13. Heterocatalytic Fenton oxidation process for the treatment of tannery effluent: kinetic and thermodynamic studies.

    Science.gov (United States)

    Karthikeyan, S; Ezhil Priya, M; Boopathy, R; Velan, M; Mandal, A B; Sekaran, G

    2012-06-01

    BACKGROUND, AIM, SCOPE: Treatment of wastewater has become significant with the declining water resources. The presence of recalcitrant organics is the major issue in meeting the pollution control board norms in India. The theme of the present investigation was on partial or complete removal of pollutants or their transformation into less toxic and more biodegradable products by heterogeneous Fenton oxidation process using mesoporous activated carbon (MAC) as the catalyst. Ferrous sulfate (FeSO(4)·7H(2)O), sulfuric acid (36 N, specific gravity 1.81, 98% purity), hydrogen peroxide (50% v/v) and all other chemicals used in this study were of analytical grade (Merck). Two reactors, each of height 50 cm and diameter 6 cm, were fabricated with PVC while one reactor was packed with MAC of mass 150 g and other without MAC served as control. The oxidation process was presented with kinetic and thermodynamic constants for the removal of COD, BOD, and TOC from the wastewater. The activation energy (Ea) for homogeneous and heterogeneous Fenton oxidation processes were 44.79 and 25.89 kJ/mol, respectively. The thermodynamic parameters ΔG, ΔH, and ΔS were calculated for the oxidation processes using Van't Hoff equation. Furthermore, the degradation of organics was confirmed through FTIR and UV-visible spectroscopy, and cyclic voltammetry. The heterocatalytic Fenton oxidation process efficiently increased the biodegradability index (BOD/COD) of the tannery effluent. The optimized conditions for the heterocatalytic Fenton oxidation of organics in tannery effluent were pH 3.5, reaction time-4 h, and H(2)O(2)/FeSO(4)·7H(2)O in the molar ratio of 2:1.

  14. Effects Of The Direct Renin Inhibitor Aliskiren On Oxidative Stress In Isolated Rat Heart

    Directory of Open Access Journals (Sweden)

    Plecevic Sasa

    2015-09-01

    Full Text Available Increased activity of the renin-angiotensin-aldosterone system (RAAS plays a significant role in the development and progression of various cardio-metabolic diseases, such as hypertension, atherosclerosis and heart failure. Aliskiren is the newest antihypertensive drug and the first orally active direct renin inhibitor to become available for clinical use. This study investigated the acute and direct effects of Aliskiren on different parameters of oxidative stress on isolated rat heart. The hearts of male Wistar albino rats (n = 24, 8 per experimental group, age 8 weeks, body mass 180–200 g, were excised and retrogradely perfused according to the Langendorfftechnique at a gradually increasing perfusion pressure (40-120 cmH2O. Markers of oxidative stress (NO2−, TBARS, H2O2 and O2− were measured spectrophotometrically after perfusion with three different concentrations of Aliskiren (0.1 μM, 1 μM, and 10 μM. The results demonstrated possible dose-dependent cardioprotective properties of Aliskiren, particularly with higher CPP. Lipid peroxidation (TBARS levels decreased with the highest dose of Aliskiren and higher CPP, and the same trend was observed in nitrite (NO2− and hydrogen peroxide (H2O2 levels. These findings indicate that the acute effects of Aliskiren do not likely promote the production of reactive oxygen species upon higher pressure with the highest dose. Aliskiren may exert beneficial effects on oxidative stress biomarkers.

  15. Advanced oxidation processes of decomposing dichloroacetic acid and trichloroacetic acid in water

    Institute of Scientific and Technical Information of China (English)

    WANG Kun-ping; GUO Jin-song; YANG Min; JUNJI Hirotsuji; DENG Rong-sen; LIU Wei

    2008-01-01

    We studied the decomposition of two haloacetic acids (HAAs), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), in water by single oxidants ozone (O3) and ultraviolet radiation (UV) and the advanced oxidation processes (AOPs) constituted by the combinations of O3/UV, H2O2/UV, O3 /H2O2, and O3/H2O2/UV. The concentrations of HAAs were analyzed at specified time intervals to track their decomposition. Except for O3 and UV, the four combined oxidation processes remarkably enhance the decomposition of DCAA and TCAA owing to the generated very reactive hydroxyl radicals. The fastest decomposition process is O3/H2O2/UV, closely followed by O3/UV. DCAA is much easier to decompose than TCAA. The kinetics of HAA decomposition by O3/UV can be described well by a pseudo first-order reaction model under a constant initial dissolved O3 concentration and fixed UV radiation. Humic acids and HCO3- in the reaction system both decrease the decomposition rate constants for DCAA and TCAA. The amount of H2O2 accumulates in the presence of humic acids in the O3/UV process.

  16. Oxidation of organic compounds in wastewater from the humid processing of coffee berries

    International Nuclear Information System (INIS)

    Goncalves, Maraisa; Guerreiro, Mario Cesar; Oliveira, Luiz Carlos Alves; Rocha, Cristian Luciana da

    2008-01-01

    Materials based on pure iron oxide and impregnated with niobia (Nb 2 O 5 ) were prepared. Their catalytic activities were tested on the oxidation of compounds present in the wastewater from the processing of coffee berries. Particularly caffeine and catechol were tested. The oxidation reactions were carried out with the following systems: UV/H 2 O 2 ; photo-Fenton and heterogeneous Fenton. All materials were characterized with X-ray diffraction, Moessbauer and infrared spectroscopy. Iron was mainly in the forms of goethite and maghemite. The oxidation kinetics were monitored by UV-vis and the oxidation products were monitored by mass spectrometry. The photo-Fenton reaction presented highest oxidation efficiency, removing 98% of all caffeine and catechol contents. (author)

  17. Electrochemical activity of heavy metal oxides in the process of ...

    Indian Academy of Sciences (India)

    Unknown

    2002-02-02

    Feb 2, 2002 ... Electrochemical activity of heavy metal oxides in the process of chloride induced .... represents the protective barrier moderating the chloride attack which ... inhibitors and their influence on the physical properties of. Portland ...

  18. Optimization of process and solution parameters in electrospinning polyethylene oxide

    CSIR Research Space (South Africa)

    Jacobs, V

    2011-11-01

    Full Text Available This paper reports the optimization of electrospinning process and solution parameters using factorial design approach to obtain uniform polyethylene oxide (PEO) nanofibers. The parameters studied were distance between nozzle and collector screen...

  19. The flashcal process for the fabrication of fuel-metal oxides using the whiteshell roto-spray calciner

    International Nuclear Information System (INIS)

    Sridhar, T.S.

    1988-01-01

    A one-step, continuous, thermochemical calcination process, called the FLASHCAL (Flash Calcination) process has been developed for the production of single- and mixed-oxide powders of fuel metals (uranium, thorium and plutonium) from the respective nitrate solutions using the Whiteshell Roto-Spray Calciner (RSC). The metal-nitrate feed solution, either by itself or mixed with a suitable chemical reactant or additive, is converted to its oxide powder in the RSC at temperatures between 300 and 600 0 C. Rapid denitration takes place in the calciner, yielding the metal-oxide powders while simultaneously destroying any excess chemical additive and reaction by-products. In the production of precursor oxide powders suitable for fuel fabrication, the FLASHCAL process has advantages over batch calcination and other processes that involve precipitation and filtration steps because fewer processing and handling operations are needed. Results obtained with thorium nitrate and uranium nitrate-thorium nitrate mixtures indicate that some measure of control over the size distribution and morphology of the oxide product powders is possible in this process with the proper selection of chemical additive, as well as the operating parameters of the calciner

  20. Low-cost label-free electrical detection of artificial DNA nanostructures using solution-processed oxide thin-film transistors.

    Science.gov (United States)

    Kim, Si Joon; Jung, Joohye; Lee, Keun Woo; Yoon, Doo Hyun; Jung, Tae Soo; Dugasani, Sreekantha Reddy; Park, Sung Ha; Kim, Hyun Jae

    2013-11-13

    A high-sensitivity, label-free method for detecting deoxyribonucleic acid (DNA) using solution-processed oxide thin-film transistors (TFTs) was developed. Double-crossover (DX) DNA nanostructures with different concentrations of divalent Cu ion (Cu(2+)) were immobilized on an In-Ga-Zn-O (IGZO) back-channel surface, which changed the electrical performance of the IGZO TFTs. The detection mechanism of the IGZO TFT-based DNA biosensor is attributed to electron trapping and electrostatic interactions caused by negatively charged phosphate groups on the DNA backbone. Furthermore, Cu(2+) in DX DNA nanostructures generates a current path when a gate bias is applied. The direct effect on the electrical response implies that solution-processed IGZO TFTs could be used to realize low-cost and high-sensitivity DNA biosensors.

  1. Enhancement of oxidative stability of the subtilisin nattokinase by site-directed mutagenesis expressed in Escherichia coli.

    Science.gov (United States)

    Weng, MeiZhi; Zheng, ZhongLiang; Bao, Wei; Cai, YongJun; Yin, Yan; Zou, GuoLin; Zou, GouLin

    2009-11-01

    Nattokinase (subtilisin NAT, NK) is a bacterial serine protease with strong fibrinolytic activity and it is a potent cardiovascular drug. In medical and commercial applications, however, it is susceptible to chemical oxidation, and subsequent inactivation or denaturation. Here we show that the oxidative stability of NK was substantially increased by optimizing the amino acid residues Thr(220) and Met(222), which were in the vicinity of the catalytic residue Ser(221) of the enzyme. Two nonoxidative amino acids (Ser and Ala) were introduced at these sites using site-directed mutagenesis. Active enzymes were successfully expressed in Escherichia coli with periplasmic secretion and enzymes were purified to homogeneity. The purified enzymes were analyzed with respect to oxidative stability, kinetic parameters, fibrinolytic activity and thermal stability. M222A mutant was found to have a greatly increased oxidative stability compared with wild-type enzyme and it was resistant to inactivation by more than 1 M H(2)O(2), whereas the wild-type enzyme was inactivated by 0.1 M H(2)O(2) (t(1/2) approximately 11.6 min). The other mutant (T220S) also showed an obvious increase in antioxidative ability. Molecular dynamic simulations on wild-type and T220S mutant proteins suggested that a hydrogen bond was formed between Ser(220) and Asn(155), and the spatial structure of Met(222) was changed compared with the wild-type. The present study demonstrates the feasibility of improving oxidative stability of NK by site-directed mutagenesis and shows successful protein engineering cases to improve stability of NK as a potent therapeutic agent.

  2. Effects of Basicity and MgO in Slag on the Behaviors of Smelting Vanadium Titanomagnetite in the Direct Reduction-Electric Furnace Process

    Directory of Open Access Journals (Sweden)

    Tao Jiang

    2016-05-01

    Full Text Available The effects of basicity and MgO content on reduction behavior and separation of iron and slag during smelting vanadium titanomagnetite by electric furnace were investigated. The reduction behaviors affect the separation of iron and slag in the direct reduction-electric furnace process. The recovery rates of Fe, V, and Ti grades in iron were analyzed to determine the effects of basicity and MgO content on the reduction of iron oxides, vanadium oxides, and titanium oxides. The chemical compositions of vanadium-bearing iron and main phases of titanium slag were detected by XRF and XRD, respectively. The results show that the higher level of basicity is beneficial to the reduction ofiron oxides and vanadium oxides, and titanium content dropped in molten iron with the increasing basicity. As the content of MgO increased, the recovery rate of Fe increased slightly but the recovery rate of V increased considerably. The grades of Ti in molten iron were at a low level without significant change when MgO content was below 11%, but increased as MgO content increased to 12.75%. The optimum conditions for smelting vanadium titanomagnetite were about 11.38% content of MgO and quaternary basicity was about 1.10. The product, vanadium-bearing iron, can be applied in the converter steelmaking process, and titanium slag containing 50.34% TiO2 can be used by the acid leaching method.

  3. Alternative oxidation technologies for organic mixed waste

    International Nuclear Information System (INIS)

    Borduin, L.C.; Fewell, T.

    1998-01-01

    The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site (SRS), and direct chemical oxidation at Lawrence Livermore National Laboratory (LLNL). All three technologies are at advanced stages of development or are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory (LBNL), and steam reforming, a commercial process being supported by the Department of Energy (DOE). Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each of the technologies are presented

  4. Ferricytochrome (c directly oxidizes aminoacetone to methylglyoxal, a catabolite accumulated in carbonyl stress.

    Directory of Open Access Journals (Sweden)

    Adriano Sartori

    Full Text Available Age-related diseases are associated with increased production of reactive oxygen and carbonyl species such as methylglyoxal. Aminoacetone, a putative threonine catabolite, is reportedly known to undergo metal-catalyzed oxidation to methylglyoxal, NH4(+ ion, and H2O2 coupled with (i permeabilization of rat liver mitochondria, and (ii apoptosis of insulin-producing cells. Oxidation of aminoacetone to methylglyoxal is now shown to be accelerated by ferricytochrome c, a reaction initiated by one-electron reduction of ferricytochrome c by aminoacetone without amino acid modifications. The participation of O2(•- and HO (• radical intermediates is demonstrated by the inhibitory effect of added superoxide dismutase and Electron Paramagnetic Resonance spin-trapping experiments with 5,5'-dimethyl-1-pyrroline-N-oxide. We hypothesize that two consecutive one-electron transfers from aminoacetone (E0 values = -0.51 and -1.0 V to ferricytochrome c (E0 = 0.26 V may lead to aminoacetone enoyl radical and, subsequently, imine aminoacetone, whose hydrolysis yields methylglyoxal and NH4(+ ion. In the presence of oxygen, aminoacetone enoyl and O2(•- radicals propagate aminoacetone oxidation to methylglyoxal and H2O2. These data endorse the hypothesis that aminoacetone, putatively accumulated in diabetes, may directly reduce ferricyt c yielding methylglyoxal and free radicals, thereby triggering redox imbalance and adverse mitochondrial responses.

  5. Study of cryoprotectors effect on oxidation processes at storage of frozen halffinished products

    Directory of Open Access Journals (Sweden)

    O. Glushkov

    2016-12-01

    Full Text Available The publication presents data on the effect of polysaccharides as cryoprotectants on changes of the lipid fraction of quick-frozen semi-finished products during storage. Since the structure of minced systems is formed as a result of the destruction of the native structure of the meat and the formation of a new secondary structure, it is important to establish the effect of cryoprotectants on the key functional and technological properties of meat systems after freezing, and in the process of storage. Based on studies of the kinetics of the oxidation of fat and accumulation data on the accumulation of the primary and secondary products of oxidation inhibition of oxidative processes has been found.

  6. Synthesis of iron oxide nanoparticles via sonochemical method and their characterization

    Institute of Scientific and Technical Information of China (English)

    Amir Hassanjani-Roshan; Mohammad Reza Vaezi; Ali Shokuhfar; Zohreh Rajabali

    2011-01-01

    Preparation of iron oxide (α-Fe2O3) nanoparticles was carried out via a sonochemical process. The process parameters such as temperature,sonication time and power of ultrasonication play important roles in the size and morphology of the final products. The iron oxide nanoparticles were characterized by transmission electron microscopy,X-ray powder diffraction,and thermogravimetric and differential thermal analyses. From transmission electron microscopy observations,the size of the iron oxide nanoparticles is estimated to be significantly smaller than 19 nm. X-ray diffraction data of the powder after annealing provide direct evidence that the iron oxide was formed during the sonochemical process.

  7. Electrochemical processing of spent nuclear fuels: An overview of oxide reduction in pyroprocessing technology

    Directory of Open Access Journals (Sweden)

    Eun-Young Choi

    2015-12-01

    Full Text Available The electrochemical reduction process has been used to reduce spent oxide fuel to a metallic form using pyroprocessing technology for a closed fuel cycle in combination with a metal-fuel fast reactor. In the electrochemical reduction process, oxides fuels are loaded at the cathode basket in molten Li2O–LiCl salt and electrochemically reduced to the metal form. Various approaches based on thermodynamic calculations and experimental studies have been used to understand the electrode reaction and efficiently treat spent fuels. The factors that affect the speed of the electrochemical reduction have been determined to optimize the process and scale-up the electrolysis cell. In addition, demonstrations of the integrated series of processes (electrorefining and salt distillation with the electrochemical reduction have been conducted to realize the oxide fuel cycle. This overview provides insight into the current status of and issues related to the electrochemical processing of spent nuclear fuels.

  8. 14 CFR 11.31 - How does FAA process direct final rules?

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false How does FAA process direct final rules? 11... PROCEDURAL RULES GENERAL RULEMAKING PROCEDURES Rulemaking Procedures General § 11.31 How does FAA process direct final rules? (a) A direct final rule will take effect on a specified date unless FAA receives an...

  9. Literature review on the properties of cuprous oxide Cu2O and the process of copper oxidation

    International Nuclear Information System (INIS)

    Korzhavyi, P. A.; Johansson, B.

    2011-10-01

    The purpose of the present review is to provide a reference guide to the most recent data on the properties of copper(I) oxide as well as on the atomic processes involved in the initial stages of oxidation of copper. The data on the structure of surfaces, as obtained from atomic-resolution microscopy studies (for example, STM) or from first-principles calculations, are reviewed. Information of this kind may be useful for understanding the atomic mechanisms of corrosion and stress-corrosion cracking of copper

  10. Reactive nanophase oxide additions to melt-processed high-{Tc} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Goretta, K.C.; Brandel, B.P.; Lanagan, M.T.; Hu, J.; Miller, D.J.; Sengupta, S. [Argonne National Lab., IL (United States); Parker, J.C.; Ali, M.N. [Nanophase Technologies Corp., Darien, IL (United States); Chen, Nan [Illinois Superconductor Corp., Evanston, IL (United States)

    1994-10-01

    Nanophase TiO{sub 2} and Al{sub 2}O{sub 3} powders were synthesized by a vapor-phase process and mechanically mixed with stoichiometric YBa{sub 2}Cu{sub 3}O{sub x} and TlBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} powders in 20 mole % concentrations. Pellets produced from powders with and without nanophase oxides were heated in air or O{sub 2} above the peritectic melt temperature and slow-cooled. At 4.2 K, the intragranular critical current density (J{sub c}) increased dramatically with the oxide additions. At 35--50 K, effects of the oxide additions were positive, but less pronounced. At 77 K, the additions decreased J{sub c}, probably because of inducing a depresion of the transition temperature.

  11. Oxidation processes on conducting carbon additives for lithium-ion batteries

    KAUST Repository

    La Mantia, Fabio; Huggins, Robert A.; Cui, Yi

    2012-01-01

    The oxidation processes at the interface between different types of typical carbon additives for lithium-ion batteries and carbonates electrolyte above 5 V versus Li/Li+ were investigated. Depending on the nature and surface area of the carbon

  12. Effect of re-oxidation annealing process on the SiO2/SiC interface characteristics

    International Nuclear Information System (INIS)

    Yan Hongli; Jia Renxu; Tang Xiaoyan; Song Qingwen; Zhang Yuming

    2014-01-01

    The effect of the different re-oxidation annealing (ROA) processes on the SiO 2 /SiC interface characteristics has been investigated. With different annealing processes, the flat band voltage, effective dielectric charge density and interface trap density are obtained from the capacitance—voltage curves. It is found that the lowest interface trap density is obtained by the wet-oxidation annealing process at 1050 °C for 30 min, while a large number of effective dielectric charges are generated. The components at the SiO 2 /SiC interface are analyzed by X-ray photoelectron spectroscopy (XPS) testing. It is found that the effective dielectric charges are generated due to the existence of the C and H atoms in the wet-oxidation annealing process. (semiconductor technology)

  13. Direct observation of surface reconstruction and termination on a complex metal oxide catalyst by electron microscopy

    KAUST Repository

    Zhu, Yihan

    2012-03-19

    On the surface: The surface reconstruction of an MoVTeO complex metal oxide catalyst was observed directly by various electron microscopic techniques and the results explain the puzzling catalytic behavior. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Establishment and calibration of consensus process model for nitrous oxide dynamics in water quality engineering

    DEFF Research Database (Denmark)

    Domingo-Felez, Carlos

    that enhance cost and energy efficiency in BNR, while maintaining effluent quali-ty. Now, increasing attention is placed on direct emissions of nitrous oxide (N2O) as by-product of BNR; N2O is a greenhouse gas (GHG) with a high warming potential and also an ozone depleting chemical compound. Several N2O...... process modelling efforts aim to reproduce ex-perimental data with mathematical equations, structuring our understanding of the system. Various mechanistic models with different structures describ-ing N2O production have been proposed, but no consensus exists between researchers. Hence, the existing plant......-wide GHG models still lack a complete biological process model that can be integrated in a methodology that assess-es N2O emissions and their impact on overall plant performance. A mathematical model structure that describes N2O production during biological nitrogen removal is proposed. Two autotrophic...

  15. Rapid thermal processing of nano-crystalline indium tin oxide transparent conductive oxide coatings on glass by flame impingement technology

    International Nuclear Information System (INIS)

    Schoemaker, S.; Willert-Porada, M.

    2009-01-01

    Indium tin oxide (ITO) is still the best suited material for transparent conductive oxides, when high transmission in the visible range, high infrared reflection or high electrical conductivity is needed. Current approaches on powder-based printable ITO coatings aim at minimum consumption of active coating and low processing costs. The paper describes how fast firing by flame impingement is used for effective sintering of ITO-coatings applied on glass. The present study correlates process parameters of fast firing by flame impingement with optoelectronic properties and changes in the microstructure of suspension derived nano-particulate films. With optimum process parameters the heat treated coatings had a sheet resistance below 0.5 kΩ/ □ combined with a transparency higher than 80%. To characterize the influence of the burner type on the process parameters and the coating functionality, two types of methane/oxygen burner were compared: a diffusion burner and a premixed burner

  16. Friction stir processed Al - Metal oxide surface composites: Anodization and optical appearance

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Canulescu, Stela

    2014-01-01

    Multiple-pass friction stir processing (FSP) was employed to impregnate metal oxide (TiO2, Y2O3 and CeO2) particles into the surface of an Aluminium alloy. The surface composites were then anodized in a sulphuric acid electrolyte. The effect of anodizing parameters on the resulting optical...... dark to greyish white. This is attributed to the localized microstructural and morphological differences around the metal oxide particles incorporated into the anodic alumina matrix. The metal oxide particles in the FSP zone electrochemically shadowed the underlying Al matrix and modified the local...

  17. New insights into the aquatic photochemistry of fluoroquinolone antibiotics: Direct photodegradation, hydroxyl-radical oxidation, and antibacterial activity changes

    International Nuclear Information System (INIS)

    Ge, Linke; Na, Guangshui; Zhang, Siyu; Li, Kai; Zhang, Peng; Ren, Honglei; Yao, Ziwei

    2015-01-01

    The ubiquity and photoreactivity of fluoroquinolone antibiotics (FQs) in surface waters urge new insights into their aqueous photochemical behavior. This study concerns the photochemistry of 6 FQs: ciprofloxacin, danofloxacin, levofloxacin, sarafloxacin, difloxacin and enrofloxacin. Methods were developed to calculate their solar direct photodegradation half-lives (t d,E ) and hydroxyl-radical oxidation half-lives (t ·OH,E ) in sunlit surface waters. The t d,E values range from 0.56 min to 28.8 min at 45° N latitude, whereas t ·OH,E ranges from 3.24 h to 33.6 h, suggesting that most FQs tend to undergo fast direct photolysis rather than hydroxyl-radical oxidation in surface waters. However, a case study for levofloxacin and sarafloxacin indicated that the hydroxyl-radical oxidation induced risky photochlorination and resulted in multi-degradation pathways, such as piperazinyl hydroxylation and clearage. Changes in the antibacterial activity of FQs caused by photodegradation in various waters were further examined using Escherichia coli, and it was found that the activity evolution depended on primary photodegradation pathways and products. Primary intermediates with intact FQ nuclei retained significant antibacterial activity. These results are important for assessing the fate and risk of FQs in surface waters. - Highlights: • It is first reported on hydroxyl-radical oxidation of 6 fluoroquinolone antibiotics. • Methods were developed to assess photolysis and oxidation fate in surface waters. • The neutral form reacted faster with hydroxyl radical than protonated forms. • The main oxidation intermediates and transformation pathways were clarified. • The antibacterial activity changes depend on dominant photolysis pathways

  18. Application of three-dimensional reduced graphene oxide-gold composite modified electrode for direct electrochemistry and electrocatalysis of myoglobin

    International Nuclear Information System (INIS)

    Shi, Fan; Xi, Jingwen; Hou, Fei; Han, Lin; Li, Guangjiu; Gong, Shixing; Chen, Chanxing; Sun, Wei

    2016-01-01

    In this paper a three-dimensional (3D) reduced graphene oxide (RGO) and gold (Au) composite was synthesized by electrodeposition and used for the electrode modification with carbon ionic liquid electrode (CILE) as the substrate electrode. Myoglobin (Mb) was further immobilized on the surface of 3D RGO–Au/CILE to obtain an electrochemical sensing platform. Direct electrochemistry of Mb on the modified electrode was investigated with a pair of well-defined redox waves appeared on cyclic voltammogram, indicating the realization of direct electron transfer of Mb with the modified electrode. The results can be ascribed to the presence of highly conductive 3D RGO–Au composite on the electrode surface that accelerate the electron transfer rate between the electroactive center of Mb and the electrode. The Mb modified electrode showed excellent electrocatalytic activity to the reduction of trichloroacetic acid in the concentration range from 0.2 to 36.0 mmol/L with the detection limit of 0.06 mmol/L (3σ). - Graphical abstract: Direct electrochemistry of myoglobin was realized on a three-dimensional reduced graphene oxide and gold nanocomposite modified carbon ionic liquid electrode. - Highlights: • A three-dimensional reduced graphene oxide and gold composite was synthesized by electrodeposition. • Myoglobin was immobilized on the modified electrode to obtain an electrochemical sensor. • Direct electrochemistry of myoglobin was realized on the modified electrode. • The myoglobin modified electrode showed excellent electrocatalytic reduction to trichloroacetic acid.

  19. Industrial waste water treatment by advanced oxidation processes; Tratamiento de aguas residuales industriales mediante procesos de oxidacion avanzada

    Energy Technology Data Exchange (ETDEWEB)

    Gasso, S.; Baldasano, J.M.

    1996-06-01

    Advanced Oxidation Technologies have been defined as processes which involve the generation of highly reactive oxy radicals. These systems show promise for the destruction of non biodegradable and hazardous organic substances in industrial wastewater. Two types of advanced oxidation processes are considered in this paper: (1) systems that use high energy oxidants (O{sub 3}, H{sub 2}O{sub 2}, UV, etc) at ambient temperature to initiate the oxidation reaction, and (2) processes that use molecular oxygen and high temperature and pressure to initiate the reaction (wet oxidation at subcritical and supercritical conditions). The fundamental aspects of these oxidation technologies are discussed, the application framework is defined and the technology development is indicated. (Author) 33 refs.

  20. Oxidative Stress to the Cornea, Changes in Corneal Optical Properties, and Advances in Treatment of Corneal Oxidative Injuries

    Directory of Open Access Journals (Sweden)

    Cestmir Cejka

    2015-01-01

    Full Text Available Oxidative stress is involved in many ocular diseases and injuries. The imbalance between oxidants and antioxidants in favour of oxidants (oxidative stress leads to the damage and may be highly involved in ocular aging processes. The anterior eye segment and mainly the cornea are directly exposed to noxae of external environment, such as air pollution, radiation, cigarette smoke, vapors or gases from household cleaning products, chemical burns from splashes of industrial chemicals, and danger from potential oxidative damage evoked by them. Oxidative stress may initiate or develop ocular injury resulting in decreased visual acuity or even vision loss. The role of oxidative stress in the pathogenesis of ocular diseases with particular attention to oxidative stress in the cornea and changes in corneal optical properties are discussed. Advances in the treatment of corneal oxidative injuries or diseases are shown.

  1. Thermodynamic analysis of combined Solid Oxide Electrolyzer and Fischer–Tropsch processes

    International Nuclear Information System (INIS)

    Stempien, Jan Pawel; Ni, Meng; Sun, Qiang; Chan, Siew Hwa

    2015-01-01

    In this paper a thermodynamic analysis and simple optimization of a combined Solid Oxide Electrolyzer Cell and Fisher–Tropsch Synthesis processes for sustainable hydrocarbons fuel production is reported. Comprehensive models are employed to describe effects of temperature, pressure, reactant composition and molar flux and flow on the system efficiency and final production distribution. The electrolyzer model was developed in-house and validated with experimental data of a typical Solid Oxide Electrolyzer. The Fischer–Tropsch Synthesis model employed lumped kinetics of syngas utilization, which includes inhibiting effect of water content and kinetics of Water–Gas Shift reaction. Product distribution model incorporated olefin re-adsorption and varying physisorption and solubility of hydrocarbons with their carbon number. The results were compared with those reported by Becker et al. with simplified analysis of such process. In the present study an opposite effect of operation at elevated pressure was observed. Proposed optimized system achieved overall efficiency of 66.67% and almost equal spread of light- (31%wt), mid-(36%wt) and heavy-hydrocarbons (33%wt). Paraffins contributed the majority of the yield. - Highlights: • Analysis of Solid Oxide Electrolyzer combined with Fisher Tropsch process. • Efficiency of converting water and carbon dioxide into synthetic fuels above 66%. • Effects of process temperature, pressure, gas flux and compositions were analyzed

  2. Electrochemical activity of heavy metal oxides in the process of ...

    Indian Academy of Sciences (India)

    Unknown

    2002-02-02

    Feb 2, 2002 ... Electrochemical activity of heavy metal oxides in the process of chloride induced .... decrease of pH value by MeOx, a synergism of acidic and chloride ... inhibitors and their influence on the physical properties of. Portland ...

  3. Electrometallurgical treatment of oxide spent fuels

    International Nuclear Information System (INIS)

    Karell, E. J.

    1999-01-01

    The Department of Energy (DOE) inventory of spent nuclear fuel contains a wide variety of oxide fuel types that may be unsuitable for direct repository disposal in their current form. The molten-salt electrometallurgical treatment technique developed by Argonne National Laboratory (ANL) has the potential to simplify preparing and qualifying these fuels for disposal by converting them into three uniform product streams: uranium metal, a metal waste form, and a ceramic waste form. This paper describes the major steps in the electrometallurgical treatment process for oxide fuels and provides the results of recent experiments performed to develop and scale up the process

  4. Alkaline electrochemical advanced oxidation process for chromium oxidation at graphitized multi-walled carbon nanotubes.

    Science.gov (United States)

    Xue, Yudong; Zheng, Shili; Sun, Zhi; Zhang, Yi; Jin, Wei

    2017-09-01

    Alkaline electrochemical advanced oxidation processes for chromium oxidation and Cr-contaminated waste disposal were reported in this study. The highly graphitized multi-walled carbon nanotubes g-MWCNTs modified electrode was prepared for the in-situ electrochemical generation of HO 2 - . RRDE test results illustrated that g-MWCNTs exhibited much higher two-electron oxygen reduction activity than other nanocarbon materials with peak current density of 1.24 mA cm -2 , %HO 2 - of 77.0% and onset potential of -0.15 V (vs. Hg/HgO). It was originated from the highly graphitized structure and good electrical conductivity as illustrated from the Raman, XRD and EIS characterizations, respectively. Large amount of reactive oxygen species (HO 2 - and ·OH) were in-situ electro-generated from the two-electron oxygen reduction and chromium-induced alkaline electro-Fenton-like reaction. The oxidation of Cr(III) was efficiently achieved within 90 min and the conversion ratio maintained more than 95% of the original value after stability test, offering an efficient and green approach for the utilization of Cr-containing wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Electrochemical/chemical oxidation of bisphenol A in a four-electron/two-proton process in aprotic organic solvents

    International Nuclear Information System (INIS)

    Chan, Ya Yun; Yue, Yanni; Li, Yongxin; Webster, Richard D.

    2013-01-01

    Graphical abstract: - Highlights: • Bisphenol A undergoes a chemically irreversible voltammetric oxidation process. • Chemical oxidation was performed to overcome adsorption effects that cause electrode fouling. • A new product was isolated from chemical oxidation with 4 mol equiv. of the one-electron oxidant, NO + . • The oxidative mechanism was proposed to be a four-electron/two-proton process. - Abstract: The electrochemical behavior of bisphenol A (BPA) was examined using cyclic voltammetry, bulk electrolysis and chemical oxidation in aprotic organic solvents. It was found that BPA undergoes a chemically irreversible voltammetric oxidation process to form compounds that cannot be electrochemically converted back to the starting materials on the voltammetric timescale. To overcome the effects of electrode fouling during controlled potential electrolysis experiments, NO + was used as a one-electron chemical oxidant. A new product, hydroxylated bisdienone was isolated from the chemical oxidation of BPA with 4 mol equiv of NO + SbF 6 − in low water content CH 3 CN. The structure of the cation intermediate species was deduced and it was proposed that BPA is oxidized in a four-electron/two-proton process to form a relatively unstable dication which reacts quickly in the presence of water in acetonitrile (in a mechanism that is similar to phenols in general). However, as the water content of the solvent increased it was found that the chemical oxidation mechanism produced a nitration product in high yield. The findings from this study provide useful insights into the reactions that can occur during oxidative metabolism of BPA and highlight the possibility of the role of a bisdienone cation as a reactive metabolite in biological systems

  6. Sludge thermal oxidation processes: mineral recycling, energy impact, and greenhouse effect gases release

    Energy Technology Data Exchange (ETDEWEB)

    Guibelin, Eric

    2003-07-01

    Different treatment routes have been studied for a mixed sludge: the conventional agricultural use is compared with the thermal oxidation processes, including incineration (in gaseous phase) and wet air oxidation (in liquid phase). The interest of a sludge digestion prior to the final treatment has been also considered according to the two major criteria, which are the fossil energy utilisation and the greenhouse effect gases (CO{sub 2}, CH{sub 4}, N{sub 2}O) release. Thermal energy has to be recovered on thermal processes to make these processes environmentally friendly, otherwise their main interest is to extract or destroy micropollutants and pathogens from the carbon cycle. In case of continuous energy recovery, incineration can produce more energy than it consumes. Digestion is especially interesting for agriculture: according to these two schemes, the energy final balance can also be in excess. As to wet air oxidation, it is probably one of the best way to minimize greenhouse effect gases emission. (author)

  7. Treatment of plutonium process residues by molten salt oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J. [Los Alamos National Lab., NM (United States); Heslop, M. [Naval Surface Warfare Center (United States). Indian Head Div.; Wernly, K. [Molten Salt Oxidation Corp. (United States)

    1999-04-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

  8. Treatment of plutonium process residues by molten salt oxidation

    International Nuclear Information System (INIS)

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J.; Heslop, M.

    1999-01-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible 238 Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na 2 SO 4 , Na 3 PO 4 and NaAsO 2 or Na 3 AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the 238 Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox

  9. A supercritical carbon dioxide plasma process for preparing tungsten oxide nanowires

    International Nuclear Information System (INIS)

    Kawashima, Ayato; Nomura, Shinfuku; Toyota, Hiromichi; Takemori, Toshihiko; Mukasa, Shinobu; Maehara, Tsunehiro

    2007-01-01

    A supercritical carbon dioxide (CO 2 ) plasma process for fabricating one-dimensional tungsten oxide nanowires coated with amorphous carbon is presented. High-frequency plasma was generated in supercritical carbon dioxide at 20 MPa by using tungsten electrodes mounted in a supercritical cell, and subsequently an organic solvent was introduced with supercritical carbon dioxide into the plasma. Electron microscopy and Raman spectroscopy investigations of the deposited materials showed the production of tungsten oxide nanowires with or without an outer layer. The nanowires with an outer layer exhibited a coaxial structure with an outer concentric layer of amorphous carbon and an inner layer of tungsten oxide with a thickness and diameter of 20-30 and 10-20 nm, respectively

  10. Directed spatial organization of zinc oxide nanostructures

    Science.gov (United States)

    Hsu, Julia [Albuquerque, NM; Liu, Jun [Richland, WA

    2009-02-17

    A method for controllably forming zinc oxide nanostructures on a surface via an organic template, which is formed using a stamp prepared from pre-defined relief structures, inking the stamp with a solution comprising self-assembled monolayer (SAM) molecules, contacting the stamp to the surface, such as Ag sputtered on Si, and immersing the surface with the patterned SAM molecules with a zinc-containing solution with pH control to form zinc oxide nanostructures on the bare Ag surface.

  11. A study of hydrogen permeation in aluminum alloy treated by various oxidation processes

    International Nuclear Information System (INIS)

    Song Wenhai; Long Bin

    1997-01-01

    A set of oxide coatings was formed on the surface of an Al alloy (wt%: Fe, 0.24; Si, 1.16; Cu, 0.05-0.2; Zn, 0.1; Al, residual) by means of various oxidation processes. The hydrogen permeability through the aluminum alloy and its coating materials was determined by a vapor phase permeation technique at temperatures ranging from 400 to 500 C using high-purity H 2 (99.9999%) gas with an upstream hydrogen pressure of 10 4 -10 5 Pa. The experimental results show that the hydrogen permeability through aluminum oxide coating is 100-2000 times lower than that through the aluminum alloy substrate. This means that the aluminum oxide is a significant hydrogen permeation barrier. A high hydrogen permeation resistance was observed in an oxide layer prefilmed in 200 C water, while an anodized aluminum oxide film had a less obstructive effect, possibly caused by the porous structure of the anodic oxide. The hydrogen permeability through films of aluminum oxide was not a simple function of the aluminum-oxide phase configuration. (orig.)

  12. Direct and indirect nitrous oxide emissions from agricultural soils, 1990 - 2003. Background document on the calculation method for the Dutch National Inventory Report

    International Nuclear Information System (INIS)

    Van der Hoek, K.W.; Van Schijndel, M.W.; Kuikman, P.J.

    2007-01-01

    Since 2005 the Dutch method to calculate the nitrous oxide emissions from agricultural soils has fully complied with the Intergovernmental Panel on Climate Change (IPCC) Good Practice Guidelines. In order to meet the commitments of the Convention on Climate Change and the Kyoto Protocol, nitrous oxide emissions have to be reported annually in the Dutch National Inventory Report (NIR). Countries are encouraged to use country-specific data rather than the default values provided by the IPCC. This report describes the calculation schemes and data sources used for nitrous oxide emissions from agricultural soils in the Netherlands. The nitrous oxide emissions, which contribute to the greenhouse effect, occur due to nitrification and denitrification processes. They include direct emissions from agricultural soils due to the application of animal manure and fertilizer nitrogen and the manure production in the meadow. Also included are indirect emissions resulting from the subsequent leaching of nitrate to ground water and surface waters, and from deposition of ammonia that had volatilized as a result of agricultural activities. Before 2005 indirect emissions in the Netherlands were calculated using a method that did not compare well with IPCC definitions and categories. The elaborate explanation here should facilitate reviewing by experts. Finally, the report also presents an overview of the nitrous oxide emissions from agricultural soils and the underlying data used in the 1990 - 2003 period

  13. Enhanced degradation of paracetamol by UV-C supported photo-Fenton process over Fenton oxidation.

    Science.gov (United States)

    Manu, B; Mahamood, S

    2011-01-01

    For the treatment of paracetamol in water, the UV-C Fenton oxidation process and classic Fenton oxidation have been found to be the most effective. Paracetamol reduction and chemical oxygen demand (COD) removal are measured as the objective functions to be maximized. The experimental conditions of the degradation of paracetamol are optimized by the Fenton process. Influent pH 3, initial H(2)O(2) dosage 60 mg/L, [H(2)O(2)]/[Fe(2+)] ratio 60 : 1 are the optimum conditions observed for 20 mg/L initial paracetamol concentration. At the optimum conditions, for 20 mg/L of initial paracetamol concentration, 82% paracetamol reduction and 68% COD removal by Fenton oxidation, and 91% paracetamol reduction and 82% COD removal by UV-C Fenton process are observed in a 120 min reaction time. By HPLC analysis, 100% removal of paracetamol is observed at the above optimum conditions for the Fenton process in 240 min and for the UV-C photo-Fenton process in 120 min. The methods are effective and they may be used in the paracetamol industry.

  14. Deactivation of iron oxide used in the steam-iron process to produce hydrogen

    NARCIS (Netherlands)

    Bleeker, M.F.; Veringa, H.J.; Kersten, Sascha R.A.

    2009-01-01

    In the steam-iron process pure hydrogen can be produced from any hydrocarbon feedstock by using a redox cycle of iron oxide. One of the main problems connected to the use of the iron oxide is the inherent structural changes that take place during oxygen loading and unloading leading to severe

  15. Texture evolution in Oxide Dispersion Strengthened (ODS) steel tubes during pilgering process

    Science.gov (United States)

    Vakhitova, E.; Sornin, D.; Barcelo, F.; François, M.

    2017-10-01

    Oxide Dispersion Strengthened (ODS) steels are foreseen as fuel cladding material in the coming generation of Sodium Fast Reactors (SFR). Cladding tubes are manufactured by hot extrusion and subsequent cold forming steps. In this study, a 9 wt% Cr ODS steel exhibiting α-γ phase transformation at high temperature is cold formed under industrial conditions with a large section reduction in two pilgering steps. The influence of pilgering process parameters and intermediate heat treatment on the microstructure evolution is studied experimentally using Electron Backscattering Diffraction (EBSD) and X-ray Diffraction (XRD) methods. Pilgered samples show elongated grains and a high texture formation with a preferential orientation along the rolling direction. During the heat treatment, grain morphology is recovered from elongated grains to almost equiaxed ones, while the well-known α-fiber texture presents an unexpected increase in intensity. The remarkable temperature stability of this fiber is attributed to a crystallographic structure memory effect during phase transformations.

  16. Nanostructural evolution from nanosheets to one-dimensional nanoparticles for manganese oxide

    International Nuclear Information System (INIS)

    Pan, Hongmei; Kong, Xingang; Wen, Puhong; Kitayama, Tomonori; Feng, Qi

    2012-01-01

    Highlights: ► Nanosheets were transformed to other one-dimensional nanoparticles. ► Nanofibers, nanotubes, nanoribbons, and nanobelts were obtained. ► Nanoparticle morphology can be controlled with organic amines. ► Organic amines act as morphology directing agent. -- Abstract: This paper introduces a novel hydrothermal soft chemical synthesis process for manganese oxide nanostructured particles using two-dimensional manganese oxide nanosheets as precursor. In this process, a birnessite-type manganese oxide with a layered structure was exfoliated into its elementary layer nanosheets, and then the nanosheets were hydrothermally treated to transform the two-dimensional morphology of the nanosheets to one-dimensional nanoparticles. The manganese oxide nanofibers, nanotubes, nanobelts, nanoribbons, and fabric-ribbon-like particles constructed from nanofibers or nanobelts were obtained using this hydrothermal soft chemical process. The nanostructural evolution from the two-dimensional nanosheets to the one-dimensional nanoparticles was characterized by XRD, SEM, TEM, and TG-DTA analysis. The morphology and nanostructure of the products are strongly dependent on the molecular dimension of organic amine cations added in the reaction system. The organic amine cations act as a morphology directing agent in the nanostructural evolution process.

  17. Process for electroforming nickel containing dispersed thorium oxide particles therein

    International Nuclear Information System (INIS)

    Malone, G.A.

    1975-01-01

    Nickel electroforming is effected by passing a direct current through a bath containing a dissolved nickel salt or a mixture of such salts, such as those present in sulfamate or Watts baths, and finely divided sol-derived thorium oxide particles of 75 to 300 angstroms, preferably 100 to 200 angstroms diameters therein, at a pH in the range of 0.4 to 1.9, preferably 0.8 to 1.3. The nickel so deposited, as on a pre-shaped stainless steel cathode, may be produced in desired shape and may be removed from the cathode and upon removal, without additional working, possesses desirable engineering properties at elevated temperatures, e.g., 1,500 to 2,200 0 F. Although the material produced is of improved high temperature stability, hardness, and ductility, compared with nickel alone, it is still ductile at room temperature and has properties equivalent or superior to nickel at room temperatures up to 1,500 0 F. Further improvements in mechanical properties of the material may be obtained by working. Also disclosed are electrodeposition baths, methods for their manufacture, and products resulting from the electrodeposition process. (U.S.)

  18. Detoxifying of high strength textile effluent through chemical and bio-oxidation processes.

    Science.gov (United States)

    Manekar, Pravin; Patkar, Guarav; Aswale, Pawan; Mahure, Manisha; Nandy, Tapas

    2014-04-01

    Small-scale textile industries (SSTIs) in India struggled for the economic and environmental race. A full-scale common treatment plant (CETP) working on the principle of destabilising negative charge colloidal particles and bio-oxidation of dissolved organic failed to comply with Inland Surface Waters (ISW) standards. Thus, presence of intense colour and organics with elevated temperature inhibited the process stability. Bench scale treatability studies were conducted on chemical and biological processes for its full-scale apps to detoxify a high strength textile process effluent. Colour, SS and COD removals from the optimised chemical process were 88%, 70% and 40%, respectively. Heterotrophic bacteria oxidised COD and BOD more than 84% and 90% at a loading rate 0.0108kgm(-3)d(-1) at 3h HRT. The combined chemical and bio-oxidation processes showed a great promise for detoxifying the toxic process effluent, and implemented in full-scale CETP. The post-assessment of the CETP resulted in detoxify the toxic effluent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Characterization of additive manufacturing processes for polymer micro parts productions using direct light processing (DLP) method

    DEFF Research Database (Denmark)

    Davoudinejad, Ali; Pedersen, David Bue; Tosello, Guido

    The process capability of additive manufacturing (AM) for direct production of miniaturized polymer components with micro features is analyzed in this work. The consideration of the minimum printable feature size and obtainable tolerances of AM process is a critical step to establish a process...... chains for the production of parts with micro scale features. A specifically designed direct light processing (DLP) AM machine suitable for precision printing has been used. A test part is designed having features with different sizes and aspect ratios in order to evaluate the DLP AM machine capability...

  20. Oxidative stability of rice bran, corn, canola, sunflower and soybean oils d baking process and storage of bread

    Directory of Open Access Journals (Sweden)

    Najmeh Jahani

    2016-01-01

    Full Text Available Oxidation of bread lipids during baking and storage reduces the nutritional value of the product and leads to the formation of off-flavors and off-odors. In this research, oxidative stability of rice bran, corn, canola, sunflower and soybean oils during Brotchen bread baking process and storage was evaluated. Baking process caused a significant increase in oxidative indices such as peroxide, anisidine, Totox and thiobarbitoric acid values and free fatty acid content. However, storage of breads for 6 days in room temperature did not affect the value of the indices. Generaly, the value of the indices in bread containing rice bran oil was lower than those of the other breads, which indicated the higher oxidative stability of rice bran oil in baking process and storage. Pure oils treated in simulated baking process and storage had an oxidative quality similar to that of breads. This means that bread ingridients may not have an effect on oil oxidative stability. Bread containing rice bran oil gained also higher scores in sensory evaluation, which of course were in agree with its better oxidative status.

  1. 17O NMR investigation of oxidative degradation in polymers under γ-irradiation

    International Nuclear Information System (INIS)

    ALAM, TODD M.; CELINA, MATHIAS C.; ASSINK, ROGER A.; CLOUGH, ROGER LEE; GILLEN, KENNETH T.

    2000-01-01

    The γ-irradiated-oxidation of pentacontane (C 50 H 102 ) and the polymer polyisoprene was investigated as a function of oxidation level using 17 O nuclear magnetic resonance (NMR) spectroscopy. It is demonstrated that by using 17 O labeled O 2 gas during the γ-irradiation process, details about the oxidative degradation mechanisms can be directly obtained from the analysis of the 17 O NMR spectra. Production of carboxylic acids is the primary oxygen-containing functionality during the oxidation of pentacontane, while ethers and alcohols are the dominant oxidation product observed for polyisoprene. The formation of ester species during the oxidation process is very minor for both materials, with water also being produced in significant amounts during the radiolytic oxidation of polyisoprene. The ability to focus on the oxidative component of the degradation process using 17 O NMR spectroscopy demonstrates the selectivity of this technique over more conventional approaches

  2. High performance solution processed zirconium oxide gate dielectric appropriate for low temperature device application

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Musarrat; Nguyen, Manh-Cuong; Kim, Hyojin; You, Seung-Won; Jeon, Yoon-Seok; Tong, Duc-Tai; Lee, Dong-Hwi; Jeong, Jae Kyeong; Choi, Rino, E-mail: rino.choi@inha.ac.kr

    2015-08-31

    This paper reports a solution processed electrical device with zirconium oxide gate dielectric that was fabricated at a low enough temperature appropriate for flexible electronics. Both inorganic dielectric and channel materials were synthesized in the same organic solvent. The dielectric constant achieved was 13 at 250 °C with a reasonably low leakage current. The bottom gate transistor devices showed the highest mobility of 75 cm{sup 2}/V s. The device is operated at low voltage with high-k dielectric with excellent transconductance and low threshold voltage. Overall, the results highlight the potential of low temperature solution based deposition in fabricating more complicated circuits for a range of applications. - Highlights: • We develop a low temperature inorganic dielectric deposition process. • We fabricate oxide semiconductor channel devices using all-solution processes. • Same solvent is used for dielectric and oxide semiconductor deposition.

  3. New insights into the aquatic photochemistry of fluoroquinolone antibiotics: Direct photodegradation, hydroxyl-radical oxidation, and antibacterial activity changes

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Linke; Na, Guangshui [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Zhang, Siyu [Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Kai [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Zhang, Peng, E-mail: pzhang@nmemc.org.cn [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Ren, Honglei; Yao, Ziwei [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China)

    2015-09-15

    The ubiquity and photoreactivity of fluoroquinolone antibiotics (FQs) in surface waters urge new insights into their aqueous photochemical behavior. This study concerns the photochemistry of 6 FQs: ciprofloxacin, danofloxacin, levofloxacin, sarafloxacin, difloxacin and enrofloxacin. Methods were developed to calculate their solar direct photodegradation half-lives (t{sub d,E}) and hydroxyl-radical oxidation half-lives (t{sub ·OH,E}) in sunlit surface waters. The t{sub d,E} values range from 0.56 min to 28.8 min at 45° N latitude, whereas t{sub ·OH,E} ranges from 3.24 h to 33.6 h, suggesting that most FQs tend to undergo fast direct photolysis rather than hydroxyl-radical oxidation in surface waters. However, a case study for levofloxacin and sarafloxacin indicated that the hydroxyl-radical oxidation induced risky photochlorination and resulted in multi-degradation pathways, such as piperazinyl hydroxylation and clearage. Changes in the antibacterial activity of FQs caused by photodegradation in various waters were further examined using Escherichia coli, and it was found that the activity evolution depended on primary photodegradation pathways and products. Primary intermediates with intact FQ nuclei retained significant antibacterial activity. These results are important for assessing the fate and risk of FQs in surface waters. - Highlights: • It is first reported on hydroxyl-radical oxidation of 6 fluoroquinolone antibiotics. • Methods were developed to assess photolysis and oxidation fate in surface waters. • The neutral form reacted faster with hydroxyl radical than protonated forms. • The main oxidation intermediates and transformation pathways were clarified. • The antibacterial activity changes depend on dominant photolysis pathways.

  4. Contribution to the identification of the processes kinetically limiting of the zirconium alloys oxidation; characterization of the oxide films formed at high temperature by solids electrochemistry

    International Nuclear Information System (INIS)

    Vermoyal, J.J.

    2000-06-01

    The corrosion behavior of zirconium alloys used for cladding tubes has been extensively studied under several oxidation conditions (temperature, steam, dry air, oxygen...) in order to clarify the mechanism(s) of oxide growth and breakdown. Oxidation rate is generally assumed to be controlled by oxygen diffusion inwards the oxide layer. Nevertheless, several experimental facts, such as acceleration or inhibition of corrosion rate in coupling conditions, suggest that electrochemical processes are involved as a rate determining step. This work is an attempt to shed light about the rate-limiting-mechanism of two zirconium alloys oxidation: Zircaloy-4 (Zy-4) and Zr-Nb(1%)O(0,13%). Impedance spectroscopy characterizations of oxide films formed in high temperature water and studied in gaseous atmosphere clearly show the difference of electrical properties between the two alloys. The in situ electrochemical and thermogravimetric investigations in gaseous medium, and the polarization effects on oxidation and hydridation of Zr alloys in PWRs conditions indicate that oxygen diffusion can be considered as the limiting kinetic step for Zy-4 oxidation. On the contrary, the acceleration of oxide growth on Zr-Nb(1%)O(0,13%) under anodic polarization in PWRs conditions (360 deg C) suggests that either the electronic conductivity in the oxide or an interfacial process at least partially control the oxidation rate. Catalytic effects observed in gaseous medium when noble metals increase the oxygen reduction rate would tend to corroborate the oxidation control of this alloy by an interfacial mechanism. An electrochemical description and a heterogeneous kinetics approach based on a diffusion-interfacial process as rate determining step are then proposed. (author)

  5. Combustion synthesized indium-tin-oxide (ITO) thin film for source/drain electrodes in all solution-processed oxide thin-film transistors

    International Nuclear Information System (INIS)

    Tue, Phan Trong; Inoue, Satoshi; Takamura, Yuzuru; Shimoda, Tatsuya

    2016-01-01

    We report combustion solution synthesized (SCS) indium-tin-oxide (ITO) thin film, which is a well-known transparent conductive oxide, for source/drain (S/D) electrodes in solution-processed amorphous zirconium-indium-zinc-oxide TFT. A redox-based combustion synthetic approach is applied to ITO thin film using acetylacetone as a fuel and metal nitrate as oxidizer. The structural and electrical properties of SCS-ITO precursor solution and thin films were systematically investigated with changes in tin concentration, indium metal precursors, and annealing conditions such as temperature, time, and ambient. It was found that at optimal conditions the SCS-ITO thin film exhibited high crystalline quality, atomically smooth surface (RMS ∝ 4.1 Aa), and low electrical resistivity (4.2 x 10 -4 Ω cm). The TFT using SCS-ITO film as the S/D electrodes showed excellent electrical properties with negligible hysteresis. The obtained ''on/off'' current ratio, subthreshold swing factor, subthreshold voltage, and field-effect mobility were 5 x 10 7 , 0.43 V/decade, 0.7 V, and 2.1 cm 2 /V s, respectively. The performance and stability of the SCS-ITO TFT are comparable to those of the sputtered-ITO TFT, emphasizing that the SCS-ITO film is a promising candidate for totally solution-processed oxide TFTs. (orig.)

  6. Study of the pelletizing process zirconium oxide and zircon sand

    International Nuclear Information System (INIS)

    Seo, E.S.M.; Paschoal, J.O.A.; Acevedo, M.T.P.

    1990-12-01

    The study of the process to obtain zirconium tetrachloride under development at IPEN, can be divide into two steps: pelletizing and chlorination. Pelletizing is an important step in the overall process as it facilitates greater contact between the particles and permits the production of pellets with dimensional uniformity and mechanical strength. In this paper, the results of the study of pelletizing zirconium oxide and zircon sand are presented. The influence of some variables related to the process and the equipment on the physical characteristics of the pellets are discussed. (author)

  7. Preliminary design needs for pilot plant of Monazite processing into Thorium Oxide (ThO_2)

    International Nuclear Information System (INIS)

    Hafni Lissa Nuri; Prayitno; Abdul Jami; M-Pancoko

    2014-01-01

    Data and information collection aimed in order to meet the needs of the initial design for pilot plant of monazite processing into thorium oxide (ThO_2). The content of thorium in monazite is high in Indonesia between 2.9 to 4.1% and relatively abundant in Bangka Belitung Islands. Thorium can be used as fuel because of its potential is more abundant instead of uranium. Plant of thorium oxide commercially from monazite established starting from pilot uranium. Plant of thorium oxide commercially from monazite established starting from pilot plant in order to test laboratory data. Pilot plant design started from initial design, basic design, detailed design, procurement and construction. Preliminary design needs includes data feed and products, a block diagram of the process, a description of the process, the determination of process conditions and type of major appliance has been conducted. (author)

  8. Literature review on the properties of cuprous oxide Cu{sub 2}O and the process of copper oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Korzhavyi, P. A.; Johansson, B. (Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm (Sweden))

    2011-10-15

    The purpose of the present review is to provide a reference guide to the most recent data on the properties of copper(I) oxide as well as on the atomic processes involved in the initial stages of oxidation of copper. The data on the structure of surfaces, as obtained from atomic-resolution microscopy studies (for example, STM) or from first-principles calculations, are reviewed. Information of this kind may be useful for understanding the atomic mechanisms of corrosion and stress-corrosion cracking of copper

  9. Adsorption of the diazo dye Direct Red 23 onto a zinc oxide surface: A spectroscopic study

    Science.gov (United States)

    Lucilha, Adriana Campano; Bonancêa, Carlos Eduardo; Barreto, Wagner José; Takashima, Keiko

    2010-01-01

    The adsorption of the diazo dye Direct Red 23 onto a zinc oxide surface at 30 °C in the dark was investigated. The color reduction was monitored by spectrophotometry at 503 nm. The FTIR and Raman spectra of the Direct Red 23 adsorption as a function of ZnO concentration were registered. From the PM3 semi-empirical calculations of the atomic charge density and dipole moment of the Direct Red 23 molecule, it was demonstrated that the azo dye molecule may be adsorbed onto the ZnO surface through molecule geometry modifications, enhancing the interfacial area causing a variation in the bonding frequencies.

  10. Assessment of the Dry Processed Oxide Fuel in Liquid Metal Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Gyu Hong; Choi, Hang Bok

    2005-09-15

    The neutronic feasibility of the dry process oxide fuel was assessed for the sodium-cooled and lead-cooled fast reactors (SFR and LFR, respectively), which were recommended as Generation-IV (Gen-IV) reactor systems by the Gen-IV international forum. The reactor analysis was performed for the equilibrium fuel cycle of two core configurations: Hybrid BN-600 benchmark core with an enlarged lattice pitch and a modified BN-600 core. The dry process technology assumed in this study is the molten-salt process, which was developed by Russian scientists for recycling oxide fuels. The core calculation was performed by the REBUS-3 code and the reactor characteristics such as the transuranic (TRU) enrichment, breeding ratio, peak linear power, burnup reactivity swing, etc. were calculated for the equilibrium core under a fixed fuel management scheme. The results showed that a fissile self-sustainable breakeven core was achievable without blanket fuels when the fuel volume fraction was {approx}50% and most of the fission products were removed. If the design criteria used in this study is proved to be acceptable through a detailed physics design and thermal hydraulic analysis in the future, it is practically possible to construct an equilibrium fuel cycle of the SFR and LFR systems based on the oxide fuel by utilizing the dry process technology.

  11. Assessment of the Dry Processed Oxide Fuel in Liquid Metal Fast Reactors

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Choi, Hang Bok

    2005-09-01

    The neutronic feasibility of the dry process oxide fuel was assessed for the sodium-cooled and lead-cooled fast reactors (SFR and LFR, respectively), which were recommended as Generation-IV (Gen-IV) reactor systems by the Gen-IV international forum. The reactor analysis was performed for the equilibrium fuel cycle of two core configurations: Hybrid BN-600 benchmark core with an enlarged lattice pitch and a modified BN-600 core. The dry process technology assumed in this study is the molten-salt process, which was developed by Russian scientists for recycling oxide fuels. The core calculation was performed by the REBUS-3 code and the reactor characteristics such as the transuranic (TRU) enrichment, breeding ratio, peak linear power, burnup reactivity swing, etc. were calculated for the equilibrium core under a fixed fuel management scheme. The results showed that a fissile self-sustainable breakeven core was achievable without blanket fuels when the fuel volume fraction was ∼50% and most of the fission products were removed. If the design criteria used in this study is proved to be acceptable through a detailed physics design and thermal hydraulic analysis in the future, it is practically possible to construct an equilibrium fuel cycle of the SFR and LFR systems based on the oxide fuel by utilizing the dry process technology

  12. Single-layered graphene oxide nanosheet/polyaniline hybrids fabricated through direct molecular exfoliation.

    Science.gov (United States)

    Chen, Guan-Liang; Shau, Shi-Min; Juang, Tzong-Yuan; Lee, Rong-Ho; Chen, Chih-Ping; Suen, Shing-Yi; Jeng, Ru-Jong

    2011-12-06

    In this study, we used direct molecular exfoliation for the rapid, facile, large-scale fabrication of single-layered graphene oxide nanosheets (GOSs). Using macromolecular polyaniline (PANI) as a layered space enlarger, we readily and rapidly synthesized individual GOSs at room temperature through the in situ polymerization of aniline on the 2D GOS platform. The chemically modified GOS platelets formed unique 2D-layered GOS/PANI hybrids, with the PANI nanorods embedded between the GO interlayers and extended over the GO surface. X-ray diffraction revealed that intergallery expansion occurred in the GO basal spacing after the PANI nanorods had anchored and grown onto the surface of the GO layer. Transparent folding GOSs were, therefore, observed in transmission electron microscopy images. GOS/PANI nanohybrids possessing high conductivities and large work functions have the potential for application as electrode materials in optoelectronic devices. Our dispersion/exfoliation methodology is a facile means of preparing individual GOS platelets with high throughput, potentially expanding the applicability of nanographene oxide materials. © 2011 American Chemical Society

  13. Interim glycol flowsheet reduction/oxidation (redox) model for the Defense Waste Processing Facility (DWPF)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-08

    Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe+2/ΣFe ratios of between 0.09 and 0.33, a range which is not overly oxidizing or overly reducing, helps retain radionuclides in the melt, i.e. long-lived radioactive 99Tc species in the less volatile reduced Tc4+ state, 104Ru in the melt as reduced Ru+4 state as insoluble RuO2, and hazardous volatile Cr6+ in the less soluble and less volatile Cr+3 state in the glass. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam. Currently, the Defense Waste Processing Facility (DWPF) is running a formic acid-nitric acid (FN) flowsheet where formic acid is the main reductant and nitric acid is the main oxidant. During decomposition formate and formic acid releases H2 gas which requires close control of the melter vapor space flammability. A switch to a nitric acid-glycolic acid (GN) flowsheet is desired as the glycolic acid flowsheet releases considerably less H2 gas upon decomposition. This would greatly simplify DWPF processing. Development of an EE term for glycolic acid in the GN flowsheet is documented in this study.

  14. Post-treatment of reclaimed waste water based on an electrochemical advanced oxidation process

    Science.gov (United States)

    Verostko, Charles E.; Murphy, Oliver J.; Hitchens, G. D.; Salinas, Carlos E.; Rogers, Tom D.

    1992-01-01

    The purification of reclaimed water is essential to water reclamation technology life-support systems in lunar/Mars habitats. An electrochemical UV reactor is being developed which generates oxidants, operates at low temperatures, and requires no chemical expendables. The reactor is the basis for an advanced oxidation process in which electrochemically generated ozone and hydrogen peroxide are used in combination with ultraviolet light irradiation to produce hydroxyl radicals. Results from this process are presented which demonstrate concept feasibility for removal of organic impurities and disinfection of water for potable and hygiene reuse. Power, size requirements, Faradaic efficiency, and process reaction kinetics are discussed. At the completion of this development effort the reactor system will be installed in JSC's regenerative water recovery test facility for evaluation to compare this technique with other candidate processes.

  15. Treatment of hazardous waste landfill leachate using Fenton oxidation process

    Science.gov (United States)

    Singa, Pradeep Kumar; Hasnain Isa, Mohamed; Ho, Yeek-Chia; Lim, Jun-Wei

    2018-03-01

    The efficiency of Fenton's oxidation was assessed in this study for hazardous waste landfill leachate treatment. The two major reagents, which are generally employed in Fenton's process are H2O2 as oxidizing agent and Fe2+ as catalyst. Batch experiments were conducted to determine the effect of experimental conditions viz., reaction time, molar ratio, and Fenton reagent dosages, which are significant parameters that influence the degradation efficiencies of Fenton process were examined. It was found that under the favorable experimental conditions, maximum COD removal was 56.49%. The optimum experimental conditions were pH=3, H2O2/Fe2+ molar ratio = 3 and reaction time = 150 minutes. The optimal amount of hydrogen peroxide and iron were 0.12 mol/L and 0.04 mol/L respectively. High dosages of H2O2 and iron resulted in scavenging effects on OH• radicals and lowered degradation efficiency of organic compounds in the hazardous waste landfill leachate.

  16. Metal-free oxidative olefination of primary amines with benzylic C-H bonds through direct deamination and C-H bond activation.

    Science.gov (United States)

    Gong, Liang; Xing, Li-Juan; Xu, Tong; Zhu, Xue-Ping; Zhou, Wen; Kang, Ning; Wang, Bin

    2014-09-14

    An oxidative olefination reaction between aliphatic primary amines and benzylic sp(3) C-H bonds has been achieved using N-bromosuccinimide as catalyst and tert-butyl hydroperoxide as oxidant. The olefination proceeds under mild metal-free conditions through direct deamination and benzylic C-H bond activation, and provides easy access to biologically active 2-styrylquinolines with (E)-configuration.

  17. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells

    International Nuclear Information System (INIS)

    Park, Eun-Jung; Choi, Jinhee; Park, Young-Kwon; Park, Kwangsik

    2008-01-01

    Cerium oxide nanoparticles of different sizes (15, 25, 30, 45 nm) were prepared by the supercritical synthesis method, and cytotoxicity was evaluated using cultured human lung epithelial cells (BEAS-2B). Exposure of the cultured cells to nanoparticles (5, 10, 20, 40 μg/ml) led to cell death, ROS increase, GSH decrease, and the inductions of oxidative stress-related genes such as heme oxygenase-1, catalase, glutathione S-transferase, and thioredoxin reductase. The increased ROS by cerium oxide nanoparticles triggered the activation of cytosolic caspase-3 and chromatin condensation, which means that cerium oxide nanoparticles exert cytotoxicity by an apoptotic process. Uptake of the nanoparticles to the cultured cells was also tested. It was observed that cerium oxide nanoparticles penetrated into the cytoplasm and located in the peri-region of the nucleus as aggregated particles, which may induce the direct interaction between nanoparticles and cellular molecules to cause adverse cellular responses

  18. Organic contaminants degradation from the S(IV) autoxidation process catalyzed by ferrous-manganous ions: A noticeable Mn(III) oxidation process.

    Science.gov (United States)

    Zhang, Jiaming; Ma, Jun; Song, Haoran; Sun, Shaofang; Zhang, Zhongxiang; Yang, Tao

    2018-04-15

    Remarkable atrazine degradation in the S(IV) autoxidation process catalyzed by Fe 2+ -Mn 2+ (Fe 2+ /Mn 2+ /sulfite) was demonstrated in this study. Competitive kinetic experiments, alcohol inhibiting methods and electron spin resonance (ESR) experiments proved that sulfur radicals were not the major oxidation species. Mn(III) was demonstrated to be the primary active species in the Fe 2+ /Mn 2+ /sulfite process based on the comparison of oxidation selectivity. Moreover, the inhibiting effect of the Mn(III) hydrolysis and the S(IV) autoxidation in the presence of organic contaminants indicated the existence of three Mn(III) consumption routes in the Fe 2+ /Mn 2+ /sulfite process. The absence of hydroxyl radical and sulfate radical was interpreted by the competitive dynamics method. The oxidation capacity of the Fe 2+ /Mn 2+ /sulfite was independent of the initial pH (4.0-6.0) because the fast decay of S(IV) decreased initial pH below 4.0 rapidly. The rate of ATZ degradation was independent of the dissolved oxygen (DO) because that the major DO consumption process was not the rate determining step during the production of SO 5 •- . Phosphate and bicarbonate were confirmed to have greater inhibitory effects than other environmental factors because of their strong pH buffering capacity and complexing capacity for Fe 3+ . The proposed acetylation degradation pathway of ATZ showed the application of the Fe 2+ /Mn 2+ /sulfite process in the research of contaminants degradation pathways. This work investigated the characteristics of the Fe 2+ /Mn 2+ /sulfite process in the presence of organic contaminants, which might promote the development of Mn(III) oxidation technology. Copyright © 2018. Published by Elsevier Ltd.

  19. Design of Biochemical Oxidation Process Engineering Unit for Treatment of Organic Radioactive Liquid Waste

    International Nuclear Information System (INIS)

    Zainus Salimin; Endang Nuraeni; Mirawaty; Tarigan, Cerdas

    2010-01-01

    Organic radioactive liquid waste from nuclear industry consist of detergent waste from nuclear laundry, 30% TBP-kerosene solvent waste from purification or recovery of uranium from process failure of nuclear fuel fabrication, and solvent waste containing D 2 EHPA, TOPO, and kerosene from purification of phosphoric acid. The waste is dangerous and toxic matter having low pH, high COD and BOD, and also low radioactivity. Biochemical oxidation process is the effective method for detoxification of organic waste and decontamination of radionuclide by bio sorption. The result process are sludges and non radioactive supernatant. The existing treatment facilities radioactive waste in Serpong can not use for treatment of that’s organics waste. Dio chemical oxidation process engineering unit for continuous treatment of organic radioactive liquid waste on the capacity of 1.6 L/h has been designed and constructed the equipment of process unit consist of storage tank of 100 L capacity for nutrition solution, 2 storage tanks of 100 L capacity per each for liquid waste, reactor oxidation of 120 L, settling tank of 50 L capacity storage tank of 55 L capacity for sludge, storage tank of 50 capacity for supernatant. Solution on the reactor R-01 are added by bacteria, nutrition and aeration using two difference aerators until biochemical oxidation occurs. The sludge from reactor of R-01 are recirculated to the settling tank of R-02 and on the its reverse operation biological sludge will be settled, and supernatant will be overflow. (author)

  20. N-oxide as a traceless oxidizing directing group: mild rhodium(III)-catalyzed C-H olefination for the synthesis of ortho-alkenylated tertiary anilines.

    Science.gov (United States)

    Huang, Xiaolei; Huang, Jingsheng; Du, Chenglong; Zhang, Xingyi; Song, Feijie; You, Jingsong

    2013-12-02

    Double role: A traceless directing group also acts as an internal oxidant in a novel Rh(III) -catalyzed protocol developed for the synthesis of ortho-alkenylated tertiary anilines. A five-membered cyclometalated Rh(III) complex is proposed as a plausible intermediate and confirmed by X-ray crystallographic analysis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Cellular Automata Modelling of Photo-Induced Oxidation Processes in Molecularly Doped Polymers

    Directory of Open Access Journals (Sweden)

    David M. Goldie

    2016-11-01

    Full Text Available The possibility of employing cellular automata (CA to model photo-induced oxidation processes in molecularly doped polymers is explored. It is demonstrated that the oxidation dynamics generated using CA models exhibit stretched-exponential behavior. This dynamical characteristic is in general agreement with an alternative analysis conducted using standard rate equations provided the molecular doping levels are sufficiently low to prohibit the presence of safe-sites which are impenetrable to dissolved oxygen. The CA models therefore offer the advantage of exploring the effect of dopant agglomeration which is difficult to assess from standard rate equation solutions. The influence of UV-induced bleaching or darkening upon the resulting oxidation dynamics may also be easily incorporated into the CA models and these optical effects are investigated for various photo-oxidation product scenarios. Output from the CA models is evaluated for experimental photo-oxidation data obtained from a series of hydrazone-doped polymers.

  2. Electrochemical and morphological analyses on the titanium surface modified by shot blasting and anodic oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Szesz, Eduardo M., E-mail: eszesz@neoortho.com.br [Neoortho Research Institute, Rua Ângelo Domingos Durigan, 607-Cascatinha, CEP 82025-100 Curitiba, PR (Brazil); Pereira, Bruno L., E-mail: brnl7@hotmail.com [Physics Department, Universidade Federal do Paraná, 81531-980 Curitiba, PR (Brazil); Kuromoto, Neide K., E-mail: kuromoto@fisica.ufpr.br [Physics Department, Universidade Federal do Paraná, 81531-980 Curitiba, PR (Brazil); Marino, Claudia E.B., E-mail: claudiamarino@yahoo.com [Mechanical Engineering Department, Universidade Federal do Paraná, 81531-980 Curitiba, PR (Brazil); Souza, Gelson B. de, E-mail: gelsonbs@uepg.br [Physics Department, Universidade Estadual de Ponta Grossa, 84051-510 Ponta Grossa, PR (Brazil); Soares, Paulo, E-mail: pa.soares@pucpr.br [Mechanical Engineering Department, Pontifícia Universidade Católica do Paraná, 80215-901 Curitiba, PR (Brazil)

    2013-01-01

    In recent years, many surface modification processes have been developed in order to induce the osseointegration on titanium surface and thus to improve the implants' biocompatibility. In this work, Ti surface has been modified by shot blasting followed by anodic oxidation process in order to associate the good surface characteristics of both processes to obtain a rough and porous surface able to promote the titanium surface bioactivity. Commercially pure titanium (grade 2) plates were used on the surface treatments that were as follows: Shot blasting (SB) performed using alumina (Al{sub 2}O{sub 3}) particles, and anodic oxidation (AO) using NaOH electrolyte. The morphology, structural changes and the open-circuit potentials (OCP) of the surfaces were analyzed. It can be observed that an increase on the roughness of the blasted surface and a rough and porous surface happens after the AO process. The anodic film produced is thin and followed the blasted surface topography. It can be observed that there are small pores with regular shape covering the entire surface. X-ray diffraction results showed the presence of the anatase and rutile phases on the blasted and anodized surface after heat treatment at 600 °C/1 h. Concerning electrochemical measurements, when the different samples were submitted to open-circuit conditions in a physiological electrolyte, the protective effect increases with the oxidation process due to the oxide layer. When the surface was blasted, the OCP was more negative when compared with the Ti surface without surface treatments. - Highlights: ► A combination of shot blasting and anodic oxidation surface treatments is proposed. ► Both processes produced an increase in roughness compared to the polished surface. ► The combination of processes produced a rough and porous surface. ► Open circuit results show that the protective effect increases with oxidation process. ► The combination of processes presents the better results in this

  3. Application of advanced oxidation processes for cleaning of industrial water generated in wet dedusting of shaft furnace gases.

    Science.gov (United States)

    Czaplicka, Marianna; Kurowski, Ryszard; Jaworek, Katarzyna; Bratek, Łukasz

    2013-01-01

    The paper presents results of studies into advanced oxidation processes in 03 and 03/UV systems. An advanced oxidation process (AOP) was conducted to reduce the load of impurities in circulating waters from wet de-dusting of shaft furnace gases. Besides inorganic impurities, i.e. mainly arsenic compounds (16 g As L(-1) on average), lead, zinc, chlorides and sulphates, the waters also contain some organic material. The organic material is composed of a complex mixture that contains, amongst others, aliphatic compounds, phenol and its derivatives, pyridine bases, including pyridine, and its derivatives. The test results show degradation of organic and inorganic compounds during ozonation and photo-oxidation processes. Analysis of the solutions from the processes demonstrated that the complex organic material in the industrial water was oxidized in ozonation and in photo-oxidation, which resulted in formation of aldehydes and carboxylic acids. Kinetic degradation of selected pollutants is presented. Obtained results indicated that the O3/UV process is more effective in degradation of organic matter than ozonation. Depending on the process type, precipitation of the solid phase was observed. The efficiency of solid-phase formation was higher in photo-oxidation with ozone. It was found that the precipitated solid phase is composed mainly of arsenic, iron and oxygen.

  4. Study on the oxidation and reduction of tungsten surface for sub-50 nm patterning process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Kyu; Nam, Seok Woo; Cho, Sung Il; Jhon, Myung S.; Min, Kyung Suk; Kim, Chan Kyu; Jung, Ho Bum; Yeom, Geun Young [Memory Division Semiconductor Business, Samsung Electronics, San No. 16 Banwol-Ri, Taean-Eup, Hwasung-City, Gyeonggi-Do 449-711, South Korea and Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Memory Division Semiconductor Business, Samsung Electronics, San No. 16 Banwol-Ri, Taean-Eup, Hwasung-City, Gyeonggi-Do 449-711 (Korea, Republic of); Department of Chemical Engineering and Data Storage Systems Center, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2012-11-15

    The oxidation characteristics of tungsten line pattern during the carbon-based mask-layer removal process using oxygen plasmas have been investigated for sub-50 nm patterning processes, in addition to the reduction characteristics of the WO{sub x} layer formed on the tungsten line surface using hydrogen plasmas. The surface oxidation of tungsten lines during the mask layer removal process could be minimized by using low-temperature (300 K) plasma processing for the removal of the carbon-based material. Using this technique, the thickness of WO{sub x} on the tungsten line could be decreased to 25% compared to results from high-temperature processing. The WO{sub x} layer could also be completely removed at a low temperature of 300 K using a hydrogen plasma by supplying bias power to the tungsten substrate to provide a activation energy for the reduction. When this oxidation and reduction technique was applied to actual 40-nm-CD device processing, the complete removal of WO{sub x} formed on the sidewall of tungsten line could be observed.

  5. Oxidative treatment of a waste water stream from a molasses processing using ozone and advanced oxidation technologies

    International Nuclear Information System (INIS)

    Gehringer, P.; Szinovatz, W.; Eschweiler, H.; Haberl, R.

    1994-08-01

    The discoloration of a biologically pretreated waste water stream from a molasses processing by ozonation and two advanced oxidation processes (O 3 /H 2 O 2 and O 3 /γ-irradiation, respectively) was studied. Colour removal occurred with all three processes with almost the same efficiency. The main difference of the methods applied was reflected by the BOD increase during the discoloration period. By ozonation it was much higher than by AOPs but it also appeared with AOPs. AOPs were, therefore, not apt for an effective BOD control during discoloration. (authors)

  6. Synthesis and crystal kinetics of cerium oxide nanocrystallites prepared by co-precipitation process

    International Nuclear Information System (INIS)

    Shih, C.J.; Chen, Y.J.; Hon, M.H.

    2010-01-01

    Cerium oxide nanocrystallites were synthesized at a relatively low temperature using cerium nitrate as starting materials in a water solution by a co-precipitation process. Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders was investigated by X-ray diffraction, transmission electron microscopy and electron diffraction. The crystallization temperature of the cerium oxide powders was estimated to be about 273 K by XRD analysis. When calcined from 473 to 1273 K, the crystallization of the face-centered cubic phase was observed by XRD. The crystallite size of the cerium oxide increased from 10.0 to 43.8 nm with calcining temperature increasing from 673 to 1273 K. The activation energy for growth of cerium oxide nanoparticles was found to be 16.0 kJ mol -1 .

  7. Synthesis and crystal kinetics of cerium oxide nanocrystallites prepared by co-precipitation process

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Chen, Y.J. [Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Hon, M.H. [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2010-05-15

    Cerium oxide nanocrystallites were synthesized at a relatively low temperature using cerium nitrate as starting materials in a water solution by a co-precipitation process. Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders was investigated by X-ray diffraction, transmission electron microscopy and electron diffraction. The crystallization temperature of the cerium oxide powders was estimated to be about 273 K by XRD analysis. When calcined from 473 to 1273 K, the crystallization of the face-centered cubic phase was observed by XRD. The crystallite size of the cerium oxide increased from 10.0 to 43.8 nm with calcining temperature increasing from 673 to 1273 K. The activation energy for growth of cerium oxide nanoparticles was found to be 16.0 kJ mol{sup -1}.

  8. Detection of Nonvolatile Inorganic Oxidizer-Based Explosives from Wipe Collections by Infrared Thermal Desorption-Direct Analysis in Real Time Mass Spectrometry.

    Science.gov (United States)

    Forbes, Thomas P; Sisco, Edward; Staymates, Matthew

    2018-05-07

    Infrared thermal desorption (IRTD) was coupled with direct analysis in real time mass spectrometry (DART-MS) for the detection of both inorganic and organic explosives from wipe collected samples. This platform generated discrete and rapid heating rates that allowed volatile and semivolatile organic explosives to thermally desorb at relatively lower temperatures, while still achieving elevated temperatures required to desorb nonvolatile inorganic oxidizer-based explosives. IRTD-DART-MS demonstrated the thermal desorption and detection of refractory potassium chlorate and potassium perchlorate oxidizers, compounds difficult to desorb with traditional moderate-temperature resistance-based thermal desorbers. Nanogram to sub-nanogram sensitivities were established for analysis of a range of organic and inorganic oxidizer-based explosive compounds, with further enhancement limited by the thermal properties of the most common commercial wipe materials. Detailed investigations and high-speed visualization revealed conduction from the heated glass-mica base plate as the dominant process for heating of the wipe and analyte materials, resulting in thermal desorption through boiling, aerosolization, and vaporization of samples. The thermal desorption and ionization characteristics of the IRTD-DART technique resulted in optimal sensitivity for the formation of nitrate adducts with both organic and inorganic species. The IRTD-DART-MS coupling and IRTD in general offer promising explosive detection capabilities to the defense, security, and law enforcement arenas.

  9. Supercritical carbon dioxide as an innovative reaction medium for selective oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Loeker, F.; Leitner, W. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    1998-12-31

    Although the catalytic efficiency of all catalytic oxidation processes studied in scCO{sub 2} up to now is far from being satisfactory, the principle possibility to carry out such reactions in this medium is clearly evident. Future research in our group will be directed towards the development of homogeneous and heterogeneous catalysts that are adopted to the special requirements of both the oxidation process and the supercritical reaction medium. Preliminary results from these studies regarding the epoxidation of olefins with molecular oxygen as oxidant will be presented on the conference poster. (orig.)

  10. An investigation to adopt zero liquid discharge in textile dyeing using advanced oxidation processes

    International Nuclear Information System (INIS)

    Ahmd, F.

    2015-01-01

    In this study, a novel idea of using ozone oxidation at the end of reactive dyeing process was explored in order to achieve zero discharge dyeing. An advanced oxidative treatment was given during the dyeing process to remove unfixed and hydrolyzed reactive dyes from cotton substrate. Three different shades were dyed using vinylsulphone reactive class of dyes. At the end of fixation step, washing of fabrics was carried out using appropriate quantities of ozone in the process. Ozone oxidation continued until the liquor was decolorized around 95-100% and COD (Chemical Oxygen Demand) was reduced about 80-90%, thus achieving zero liquid discharge dyeing process. The decolouration efficiency of wastewater was regarded as an indicative of removal of dyes from the textile materials because fabric was being washed continuously in the same liquor. Fabric samples dyed with conventional and new methods were compared in terms of change in shade, colourfastness properties, colour stripping, and fabric appearance. Overall results showed that the use of ozone during reactive dyeing can result in less water consumption, reduced process time, and zero discharge of coloured effluents from textile dyeing factories. (author)

  11. Direct social perception and dual process theories of mindreading.

    Science.gov (United States)

    Herschbach, Mitchell

    2015-11-01

    The direct social perception (DSP) thesis claims that we can directly perceive some mental states of other people. The direct perception of mental states has been formulated phenomenologically and psychologically, and typically restricted to the mental state types of intentions and emotions. I will compare DSP to another account of mindreading: dual process accounts that posit a fast, automatic "Type 1" form of mindreading and a slow, effortful "Type 2" form. I will here analyze whether dual process accounts' Type 1 mindreading serves as a rival to DSP or whether some Type 1 mindreading can be perceptual. I will focus on Apperly and Butterfill's dual process account of mindreading epistemic states such as perception, knowledge, and belief. This account posits a minimal form of Type 1 mindreading of belief-like states called registrations. I will argue that general dual process theories fit well with a modular view of perception that is considered a kind of Type 1 process. I will show that this modular view of perception challenges and has significant advantages over DSP's phenomenological and psychological theses. Finally, I will argue that if such a modular view of perception is accepted, there is significant reason for thinking Type 1 mindreading of belief-like states is perceptual in nature. This would mean extending the scope of DSP to at least one type of epistemic state. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Removal of the antiviral agent oseltamivir and its biological activity by oxidative processes

    International Nuclear Information System (INIS)

    Mestankova, Hana; Schirmer, Kristin; Escher, Beate I.; Gunten, Urs von

    2012-01-01

    The antiviral agent oseltamivir acid (OA, the active metabolite of Tamiflu ® ) may occur at high concentrations in wastewater during pandemic influenza events. To eliminate OA and its antiviral activity from wastewater, ozonation and advanced oxidation processes were investigated. For circumneutral pH, kinetic measurements yielded second-order rate constants of 1.7 ± 0.1 × 10 5 and 4.7 ± 0.2 × 10 9 M −1 s −1 for the reaction of OA with ozone and hydroxyl radical, respectively. During the degradation of OA by both oxidants, the antiviral activity of the treated aqueous solutions was measured by inhibition of neuraminidase activity of two different viral strains. A transient, moderate (two-fold) increase in antiviral activity was observed in solutions treated up to a level of 50% OA transformation, while for higher degrees of transformation the activity corresponded to that caused exclusively by OA. OA was efficiently removed by ozonation in a wastewater treatment plant effluent, suggesting that ozonation can be applied to remove OA from wastewater. - Highlights: ► Oseltamivir acid (OA) is oxidized by ozone and hydroxyl radical. ► Kinetics: We determined rate constants for the reaction with these oxidants. ► The specific activity of OA as neuraminidase inhibitor disappeared during oxidation. ► Ozonation and advanced oxidation can effectively remove OA from wastewaters. - Ozone and hydroxyl radical treatment processes can degrade aqueous oseltamivir acid and remove its antiviral activity.

  13. Shape and size transformation of gold nanorods (GNRs) via oxidation process: A reverse growth mechanism

    International Nuclear Information System (INIS)

    Chandrasekar, Govindasamy; Mougin, Karine; Haidara, Hamidou; Vidal, Loic; Gnecco, Enrico

    2011-01-01

    The anisotropic shape transformation of gold nanorods (GNRs) with H 2 O 2 was observed in the presence of 'cethyl trimethylammonium bromide' (CTAB). The adequate oxidative dissolution of GNR is provided by the following autocatalytic scheme with H 2 O 2 : Au 0 → Au + , Au 0 + Au n+ → 2Au 3+ , n = 1 and 3. The shape transformation of the GNRs was investigated by UV-vis spectroscopy and transmission electron microscopy (TEM). As-synthesised GNRs exhibit transverse plasmon band (TPB) at 523 nm and longitudinal plasmon band (LPB) at 731 nm. Upon H 2 O 2 oxidation, the LPB showed a systematic hypsochromic (blue) shift, while TPB stays at ca. 523 nm. In addition, a new emerging peak observed at ca. 390 nm due to Au(III)-CTAB complex formation during the oxidation. TEM analysis of as-synthesised GNRs with H 2 O 2 confirmed the shape transformation to spherical particles with 10 nm size in 2 h, whereas centrifuged nanorod solution showed no changes in the aspect ratio under the same condition. Au 3+ ions produced from oxidation, complex with excess free CTAB and approach the nanorods preferentially at the end, leading to spatially directed oxidation. This work provides some information to the crystal stability and the growth mechanism of GNRs, as both growth and shortening reactions occur preferentially at the edge of single-crystalline GNRs, all directed by Br - ions.

  14. Development of a novel wet oxidation process for hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Dhooge, P.M.

    1994-01-01

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. The over all objective of the effort described here is to develop a novel catalytic wet oxidation process for the treatment of these multi-component wastes, with the aim of providing a versatile, non-thermal method which will destroy hazardous organic compounds while simultaneously containing and concentrating toxic and radioactive metals for recovery or disposal in a readily stabilized matrix. The DETOX process uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials. The metal catalysts are in the form of salts dissolved in a dilute acid solution. A typical catalyst composition is 60% ferric chloride, 3--4% hydrochloric acid, 0.13% platinum ions, and 0.13% ruthenium ions in a water solution. The catalyst solution is maintained at 423--473 K. Wastes are introduced into contact with the solution, where their organic portion is oxidized to carbon dioxide and water. If the organic portion is chlorinated, hydrogen chloride will be produced as a product. The process is a viable alternative to incineration for the treatment of organic mixed wastes. Estimated costs for waste treatment using the process are from $2.50/kg to $25.00/kg, depending on the size of the unit and the amount of waste processed. Process units can be mobile for on-site treatment of wastes. Results from phase 1 and 2, design and engineering studies, are described

  15. Nanosecond laser ablation processes in aluminum-doped zinc-oxide for photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Canteli, D., E-mail: david.canteli@ciemat.es [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Fernandez, S. [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Molpeceres, C. [Centro Laser, Universidad Politecnica de Madrid, Ctra. de Valencia Km 7.3, 28031 Madrid (Spain); Torres, I.; Gandia, J.J. [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer A study of the ablation of AZO thin films deposited at different temperature conditions with nanosecond UV laser light for photovoltaic devices has been performed. Black-Right-Pointing-Pointer The ablation threshold of AZO thin films was measured and related with the absorption coefficient of the films at the laser wavelength, showing a direct correspondence. Black-Right-Pointing-Pointer A change in the material structure in the areas closest to the edges of laser grooves made in samples deposited at temperatures below 100 Degree-Sign C was observed and studied. - Abstract: Aiming to a future use in thin film solar modules, the processing of aluminum doped zinc oxide thin films with good optoelectronic properties with a nanosecond-pulsed ultraviolet laser has been studied. The ablation threshold fluence of the films has been determined and associated with the material properties. The ablation process has been optimized and grooves with good properties for photovoltaic devices have been obtained. The morphology of the ablated surfaces has been observed by confocal microscopy and its structure has been characterized by Raman spectroscopy. The influence of ablation parameters like focus distance, pulse energy and repetition frequency in the groove morphology has been studied with special attention to the thermal effects on the material structure.

  16. Nanosecond laser ablation processes in aluminum-doped zinc-oxide for photovoltaic devices

    International Nuclear Information System (INIS)

    Canteli, D.; Fernandez, S.; Molpeceres, C.; Torres, I.; Gandía, J.J.

    2012-01-01

    Highlights: ► A study of the ablation of AZO thin films deposited at different temperature conditions with nanosecond UV laser light for photovoltaic devices has been performed. ► The ablation threshold of AZO thin films was measured and related with the absorption coefficient of the films at the laser wavelength, showing a direct correspondence. ► A change in the material structure in the areas closest to the edges of laser grooves made in samples deposited at temperatures below 100 °C was observed and studied. - Abstract: Aiming to a future use in thin film solar modules, the processing of aluminum doped zinc oxide thin films with good optoelectronic properties with a nanosecond-pulsed ultraviolet laser has been studied. The ablation threshold fluence of the films has been determined and associated with the material properties. The ablation process has been optimized and grooves with good properties for photovoltaic devices have been obtained. The morphology of the ablated surfaces has been observed by confocal microscopy and its structure has been characterized by Raman spectroscopy. The influence of ablation parameters like focus distance, pulse energy and repetition frequency in the groove morphology has been studied with special attention to the thermal effects on the material structure.

  17. Rhodamine B in dissolved and nano-bound forms: Indicators for light-based advanced oxidation processes.

    Science.gov (United States)

    Shabat-Hadas, Efrat; Mamane, Hadas; Gitis, Vitaly

    2017-10-01

    Rhodamine B (RhB) is a water-soluble fluorescent dye that is often used to determine flux and flow direction in biotechnological and environmental applications. In the current research, RhB in soluble (termed free) and virus-bound (termed nano-bound) forms was used as an efficiency indicator for three environmental processes. The degradation of free and nano-bound RhB by (i) direct UV photolysis and (ii) UV/H 2 O 2 advanced oxidation process (AOP) was studied in a collimated beam apparatus equipped with medium-pressure mercury vapor lamp. The degradation by (iii) solar light-induced photocatalysis was studied in a solar simulator with titanium dioxide and bismuth photocatalysts. Results showed negligible RhB degradation by direct UV and solar light, and its nearly linear degradation by UV/H 2 O 2 and photocatalysis/photosensitization in the presence of a solid catalyst. Considerable adsorption of free RhB on bismuth-based catalyst vs. no adsorption of nano-bound RhB on this catalyst or of any form of the dye on titanium dioxide produced two important conclusions. First, the better degradation of free RhB by the bismuth catalyst suggests that close proximity of a catalyst hole and the decomposing molecule significantly influences degradation. Second, the soluble form of the dye might not be the best option for its use as an indicator. Nano-bound RhB showed high potential as an AOP indicator, featuring possible separation from water after the analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter; Bogner, J.E.

    2009-01-01

    Landfill gas containing methane is produced by anaerobic degradation of organic waste. Methane is a strong greenhouse gas and landfills are one of the major anthropogenic sources of atmospheric methane. Landfill methane may be oxidized by methanotrophic microorganisms in soils or waste materials...... to predict methane emissions from landfills. Additional research and technology development is needed before methane mitigation technologies utilizing microbial methane oxidation processes can become commercially viable and widely deployed....

  19. Structural Study of Reduced Graphene Oxide/ Polypyrrole Composite as Methanol Sensor in Direct Methanol Fuel Cell

    International Nuclear Information System (INIS)

    Mumtazah Atiqah Hassan; Siti Kartom Kamarudin; Siti Kartom Kamarudin

    2016-01-01

    Density functional theory (DFT) computations were performed on the optimized geometric and electronic properties of reduced graphene oxide/polypyrole (rGO/ PPy) composite in comparison with pure graphene and graphene oxide structures. Incorporation of both reduced GO (rGO) and PPy will form a good composite which have advantages from both materials such as good mechanical strength and excellent electrical conductivity. These composite would be very suitable in fabrication of methanol sensor in direct methanol fuel cell (DMFC). The HOMO-LUMO energy (eV) was also calculated. These computations provide a theoretical explanation for the good performance of rGO/ PPy composite as electrode materials in methanol sensor. (author)

  20. Biomembrane oxidizing tank used in the process of bacterial heap leaching of uranium ore

    International Nuclear Information System (INIS)

    Meng Yunsheng; Fan Baotuan; Liu Jian; Zheng Ying; Liu Chao

    2004-01-01

    The construction characteristic of biomembrane oxidizing tank and specialty of packing material used in the process of bacterial heap leaching of uranium ore are introduced in this paper. Method for designing biomembrane oxidizing tank, layout principle of aeration system and measurements on running management are summarized

  1. Synthesis of yttrium oxide nanoparticles via a facile microplasma-assisted process

    NARCIS (Netherlands)

    Lin, Liangliang; Starostin, Sergey A.; Li, Sirui; Khan, Saif A.; Hessel, Volker

    2018-01-01

    Plasma electrochemistry is an emerging technique for nanomaterial synthesis. The present study reports the preparation of yttrium oxide nanoparticles via a simple, environmentally benign, microplasma-assisted process operated in pin-to-liquid configuration under ambient atmospheric conditions using

  2. Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes.

    Science.gov (United States)

    Machado, W; Borrelli, N L; Ferreira, T O; Marques, A G B; Osterrieth, M; Guizan, C

    2014-02-15

    The degree of iron pyritization (DOP) and degree of trace metal pyritization (DTMP) were evaluated in mangrove soil profiles from an estuarine area located in Rio de Janeiro (SE Brazil). The soil pH was negatively correlated with redox potential (Eh) and positively correlated with DOP and DTMP of some elements (Mn, Cu and Pb), suggesting that pyrite oxidation generated acidity and can affect the importance of pyrite as a trace metal-binding phase, mainly in response to spatial variability in tidal flooding. Besides these aerobic oxidation effects, results from a sequential extraction analyses of reactive phases evidenced that Mn oxidized phase consumption in reaction with pyrite can be also important to determine the pyritization of trace elements. Cumulative effects of these aerobic and anaerobic oxidation processes were evidenced as factors affecting the capacity of mangrove soils to act as a sink for trace metals through pyritization processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Directing the Branching Growth of Cuprous Oxide by OH- Ions

    Science.gov (United States)

    Chen, Kunfeng; Si, Yunfei; Xue, Dongfeng

    The effect of OH- ions on the branching growth of cuprous oxide microcrystals was systematically studied by a reduction route, where copper-citrate complexes were reduced by glucose under alkaline conditions. Different copper salts including Cu(NO3)2, CuCl2, CuSO4, and Cu(Ac)2 were used in this work. The results indicate that the Cu2O branching growth habit is closely correlated to the concentration of OH- ions, which plays an important role in directing the diffusion-limited branching growth of Cu2O and influencing the reduction power of glucose. A variety of Cu2O branching patterns including 6-pod, 8-pod and 24-pod branches, have been achieved without using template and surfactant. The current method can provide a good platform for studying the growth mechanism of microcrystal branching patterns.

  4. Demonstration of omnivorous non-thermal mixed waste treatment: Direct chemical oxidation using peroxydisulfate. Progress report SF2-3-MW-35, October--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J.F.; Wang, F.; Krueger, R.; King, K.; Shell, T.; Farmer, J.C.; Adamson, M.

    1996-01-27

    Direct Chemical Oxidation is an emerging ``omnivorous`` waste destruction technique which uses one of the strongest known oxidants (ammonium peroxydisulfate) to convert organic solids or liquids to carbon dioxide and their mineral constituents. The process operates at ambient pressure and at moderate temperatures (80--100 C) where organic destruction is rapid without catalysts. The byproduct (ammonium sulfate) is benign and may be recycled using commercial electrolysis equipment. The authors have constructed and initially tested a bench-scale facility (batch prereactor and plug-flow reactor) which allows treatability tests on any solid or liquid organic waste surrogate, with off-gas analysis by mass spectroscopy. Shake-down tests of the plug flow reactor on model chemical ethylene glycol confirmed earlier predictive models. Pre-reactor tests on water-immiscible substances confirmed destruction of cotton rags (cellulose), kerosene, tributyl phosphate and triethylamine. The process is intended to provide an all-aqueous, ambient pressure destruction technique for difficult materials not suitable or fully accepted for conventional incineration. Such wastes include solid and liquid mixed wastes containing incinerator chars, halogenated and nitrogenated wastes, oils and greases, and chemical or biological warfare agents.

  5. Demonstration of omnivorous non-thermal mixed waste treatment: Direct chemical oxidation using peroxydisulfate. Progress report SF2-3-MW-35, October--December 1995

    International Nuclear Information System (INIS)

    Cooper, J.F.; Wang, F.; Krueger, R.; King, K.; Shell, T.; Farmer, J.C.; Adamson, M.

    1996-01-01

    Direct Chemical Oxidation is an emerging ''omnivorous'' waste destruction technique which uses one of the strongest known oxidants (ammonium peroxydisulfate) to convert organic solids or liquids to carbon dioxide and their mineral constituents. The process operates at ambient pressure and at moderate temperatures (80--100 C) where organic destruction is rapid without catalysts. The byproduct (ammonium sulfate) is benign and may be recycled using commercial electrolysis equipment. The authors have constructed and initially tested a bench-scale facility (batch prereactor and plug-flow reactor) which allows treatability tests on any solid or liquid organic waste surrogate, with off-gas analysis by mass spectroscopy. Shake-down tests of the plug flow reactor on model chemical ethylene glycol confirmed earlier predictive models. Pre-reactor tests on water-immiscible substances confirmed destruction of cotton rags (cellulose), kerosene, tributyl phosphate and triethylamine. The process is intended to provide an all-aqueous, ambient pressure destruction technique for difficult materials not suitable or fully accepted for conventional incineration. Such wastes include solid and liquid mixed wastes containing incinerator chars, halogenated and nitrogenated wastes, oils and greases, and chemical or biological warfare agents

  6. Simultaneous application of chemical oxidation and extraction processes is effective at remediating soil Co-contaminated with petroleum and heavy metals.

    Science.gov (United States)

    Yoo, Jong-Chan; Lee, Chadol; Lee, Jeung-Sun; Baek, Kitae

    2017-01-15

    Chemical extraction and oxidation processes to clean up heavy metals and hydrocarbon from soil have a higher remediation efficiency and take less time than other remediation processes. In batch extraction/oxidation process, 3% hydrogen peroxide (H 2 O 2 ) and 0.1 M ethylenediaminetetraacetic acid (EDTA) could remove approximately 70% of the petroleum and 60% of the Cu and Pb in the soil, respectively. In particular, petroleum was effectively oxidized by H 2 O 2 without addition of any catalysts through dissolution of Fe oxides in natural soils. Furthermore, heavy metals bound to Fe-Mn oxyhydroxides could be extracted by metal-EDTA as well as Fe-EDTA complexation due to the high affinity of EDTA for metals. However, the strong binding of Fe-EDTA inhibited the oxidation of petroleum in the extraction-oxidation sequential process because Fe was removed during the extraction process with EDTA. The oxidation-extraction sequential process did not significantly enhance the extraction of heavy metals from soil, because a small portion of heavy metals remained bound to organic matter. Overall, simultaneous application of oxidation and extraction processes resulted in highly efficient removal of both contaminants; this approach can be used to remove co-contaminants from soil in a short amount of time at a reasonable cost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Lipolysis and lipid oxidation in fermented sausages depending on different processing conditions and different antioxidants.

    Science.gov (United States)

    Zanardi, Emanuela; Ghidini, Sergio; Battaglia, Alessandra; Chizzolini, Roberto

    2004-02-01

    Lipolysis and lipid oxidation in Mediterranean and North Europe type sausages were studied in relation to raw material, processing conditions and additives. In particular the effect of ascorbic acid, nitrites and spices was evaluated. Lipolysis was measured by the determination of total and free fatty acids of fresh minces and matured products and lipid oxidation was evaluated by thiobarbituric acid reactive substances and cholesterol oxidation products. The increase of free fatty acids during maturation appears to be independent from processing conditions and the differences in polyunsaturated fatty acids increment found among the formulations appear to be due to inherent variations of raw materials. The presence of ascorbic acid and/or nitrite seems important for cholesterol protection and, as a consequence, for the safety of fermented meat products while spices at doses up to 0.1% do not seem to have a remarkable effect. The effect on fatty acid oxidation of the same additives and of the different processing technologies is not significantly different and the variations linked to raw material may play the greatest role.

  8. Process for depositing an oxide epitaxially onto a silicon substrate and structures prepared with the process

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick J.

    1993-01-01

    A process and structure involving a silicon substrate utilizes an ultra high vacuum and molecular beam epitaxy (MBE) methods to grow an epitaxial oxide film upon a surface of the substrate. As the film is grown, the lattice of the compound formed at the silicon interface becomes stabilized, and a base layer comprised of an oxide having a sodium chloride-type lattice structure grows epitaxially upon the compound so as to cover the substrate surface. A perovskite may then be grown epitaxially upon the base layer to render a product which incorporates silicon, with its electronic capabilities, with a perovskite having technologically-significant properties of its own.

  9. 18O isotopic tracer studies of silicon oxidation in dry oxygen

    International Nuclear Information System (INIS)

    Han, C.J.

    1986-01-01

    Oxidation of silicon in dry oxygen has been an important process in the integrated circuit industry for making gate insulators on metal-oxide-semiconductory (MOS) devices. This work examines this process using isotopic tracers of oxygen to determine the transport mechanisms of oxygen through silicon dioxide. Oxides were grown sequentially using mass-16 and mass-18 oxygen gas sources to label the oxygen molecules from each step. The resulting oxides are analyzed using secondary ion mass spectrometry (SIMS). The results of these analyses suggest two oxidant species are present during the oxidation, each diffuses and oxidizes separately during the process. A model from this finding using a sum of two linear-parabolic growth rates, each representing the growth rate from one of the oxidants, describes the reported oxidation kinetics in the literature closely. A fit of this relationship reveals excellent fits to the data for oxide thicknesses ranging from 30 A to 1 μm and for temperatures ranging from 800 to 1200 0 C. The mass-18 oxygen tracers also enable a direct observation of the oxygen solubility in the silicon dioxide during a dry oxidation process. The SIMS profiles establish a maximum solubility for interstitial oxygen at 1000 0 C at 2 x 10 20 cm -3 . Furthermore, the mass-18 oxygen profiles show negligible network diffusion during an 1000 0 C oxidation

  10. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes.

    Science.gov (United States)

    Nidheesh, P V; Zhou, Minghua; Oturan, Mehmet A

    2018-04-01

    Wastewater containing dyes are one of the major threats to our environment. Conventional methods are insufficient for the removal of these persistent organic pollutants. Recently much attention has been received for the oxidative removal of various organic pollutants by electrochemically generated hydroxyl radical. This review article aims to provide the recent trends in the field of various Electrochemical Advanced Oxidation Processes (EAOPs) used for removing dyes from water medium. The characteristics, fundamentals and recent advances in each processes namely anodic oxidation, electro-Fenton, peroxicoagulation, fered Fenton, anodic Fenton, photoelectro-Fenton, sonoelectro-Fenton, bioelectro-Fenton etc. have been examined in detail. These processes have great potential to destroy persistent organic pollutants in aqueous medium and most of the studies reported complete removal of dyes from water. The great capacity of these processes indicates that EAOPs constitute a promising technology for the treatment of the dye contaminated effluents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Direct versus indirect electrochemical oxidation of pesticide polluted drainage water containing sodium chloride

    DEFF Research Database (Denmark)

    Muff, Jens; Erichsen, Rasmus; Damgaard, Christian

    2008-01-01

    Drainage water from a depot of chemical waste, polluted with a mixture of organophosphates and degradation products was treated by a direct as well as an indirect electrochemical method using a Ti/Pt-Ir anode and Stainless Steel 304 cathode. With a concentration of 0.7%, sodium chloride...... the treatment. Indirect electrochemical treatment, where a highly oxidized brine solution was added to the drainage water, revealed immediately reduction in COD, and similar to the direct treatment, degradation of all of the pesticide pollutants was obtained except for the O,O,O-triethyl-phosphoric acid...... concentrations. Analyses of the actual pollutants, Me-Parathion, parathion, malathion and degradation products, confirmed that the concentrations of all initial pollutants were eliminated during the treatment. The only exception was O,O,O-triethyl-phosphoric acid, a degradation product which was formed during...

  12. Direct versus indirect electrochemical oxidation of pesticide polluted drainage water containing sodium chloride

    DEFF Research Database (Denmark)

    Muff, Jens; Erichsen, Rasmus; Damgaard, Christian

    2008-01-01

    the treatment. Indirect electrochemical treatment, where a highly oxidized brine solution was added to the drainage water, revealed immediately reduction in COD, and similar to the direct treatment, degradation of all of the pesticide pollutants was obtained except for the O,O,O-triethyl-phosphoric acid......Drainage water from a depot of chemical waste, polluted with a mixture of organophosphates and degradation products was treated by a direct as well as an indirect electrochemical method using a Ti/Pt-Ir anode and Stainless Steel 304 cathode. With a concentration of 0.7%, sodium chloride...... concentrations. Analyses of the actual pollutants, Me-Parathion, parathion, malathion and degradation products, confirmed that the concentrations of all initial pollutants were eliminated during the treatment. The only exception was O,O,O-triethyl-phosphoric acid, a degradation product which was formed during...

  13. Initial oxidation processes of Si(001) surfaces by supersonic O2 molecular beams. Different oxidation mechanisms for clean and partially-oxidized surfaces

    International Nuclear Information System (INIS)

    Teraoka, Yuden; Yoshigoe, Akitaka

    2002-01-01

    Potential energy barriers for dissociative chemisorption of O 2 molecules on Si(001) clean surfaces were investigated using supersonic O 2 molecular beams and photoemission spectroscopy. Relative initial sticking probabilities of O 2 molecules and the saturated oxygen amount on the Si(001) surface were measured as a function of incident energy of O 2 molecules. Although the probability was independent on the incident energy in the region larger than 1 eV, the saturated oxygen amount was dependent on the incident energy without energy thresholds. An Si-2p photoemission spectrum of the Si(001) surface oxidized by thermal O 2 gas revealed the oxygen insertion into dimer backbond sites. These facts indicate that a reaction path of the oxygen insertion into dimer backbonds through bridge sites is open for the clean surface oxidation, and the direct chemisorption probability at the backbonds is negligibly small comparing with that at the bridge sites. (author)

  14. Direct Thermodynamic Measurements of the Energetics of Information Processing

    Science.gov (United States)

    2017-08-08

    Title: Direct thermodynamic measurements of the energetics of information processing Report Term: 0-Other Email : roukes@caltech.edu Distribution...INVESTIGATOR(S): Phone Number: 6263952916 Principal: Y Name: PhD Michael L. Roukes Email : roukes@caltech.edu PARTICIPANTS: Person Months Worked: 1.00... writing of this final DURIP report. These initial data directly demonstrate our ability to drive and detect nanomechanical motion at ultralow

  15. DIRECT TUNNELLING AND MOSFET BORDER TRAPS

    Directory of Open Access Journals (Sweden)

    Vladimir Drach

    2015-09-01

    Full Text Available The border traps, in particular slow border traps, are being investigated in metal-oxide-semiconductor structures, utilizing n-channel MOSFET as a test sample. The industrial process technology of test samples manufacturing is described. The automated experimental setup is discussed, the implementation of the experimental setup had made it possible to complete the entire set of measurements. The schematic diagram of automated experimental setup is shown. The charging time characteristic of the ID-VG shift reveals that the charging process is a direct tunnelling process and highly bias dependent.

  16. Crystalline mesoporous tungsten oxide nanoplate monoliths synthesized by directed soft template method for highly sensitive NO2 gas sensor applications

    International Nuclear Information System (INIS)

    Hoa, Nguyen Duc; Duy, Nguyen Van; Hieu, Nguyen Van

    2013-01-01

    Graphical abstract: Display Omitted Highlights: ► Mesoporous WO 3 nanoplate monoliths were obtained by direct templating synthesis. ► Enable effective accession of the analytic molecules for the sensor applications. ► The WO 3 sensor exhibited a high performance to NO 2 gas at low temperature. -- Abstract: Controllable synthesis of nanostructured metal oxide semiconductors with nanocrystalline size, porous structure, and large specific surface area is one of the key issues for effective gas sensor applications. In this study, crystalline mesoporous tungsten oxide nanoplate-like monoliths with high specific surface areas were obtained through instant direct-templating synthesis for highly sensitive nitrogen dioxide (NO 2 ) sensor applications. The copolymer soft template was converted into a solid carbon framework by heat treatment in an inert gas prior to calcinations in air to sustain the mesoporous structure of tungsten oxide. The multidirectional mesoporous structures of tungsten oxide with small crystalline size, large specific surface area, and superior physical characteristics enabled the rapid and effective accession of analytic gas molecules. As a result, the sensor response was enhanced and the response and recovery times were reduced, in which the mesoporous tungsten oxide based gas sensor exhibited a superior response of 21,155% to 5 ppm NO 2 . In addition, the developed sensor exhibited selective detection of low NO 2 concentration in ammonia and ethanol at a low temperature of approximately 150 °C.

  17. Inherent health and environmental risk assessment of nanostructured metal oxide production processes.

    Science.gov (United States)

    Torabifard, Mina; Arjmandi, Reza; Rashidi, Alimorad; Nouri, Jafar; Mohammadfam, Iraj

    2018-01-10

    The health and environmental effects of chemical processes can be assessed during the initial stage of their production. In this paper, the Chemical Screening Tool for Exposure and Environmental Release (ChemSTEER) software was used to compare the health and environmental risks of spray pyrolysis and wet chemical techniques for the fabrication of nanostructured metal oxide on a semi-industrial scale with a capacity of 300 kg/day in Iran. The pollution sources identified in each production process were pairwise compared in Expert Choice software using indicators including respiratory damage, skin damage, and environmental damages including air, water, and soil pollution. The synthesis of nanostructured zinc oxide using the wet chemical technique (with 0.523 wt%) leads to lower health and environmental risks compared to when spray pyrolysis is used (with 0.477 wt%). The health and environmental risk assessment of nanomaterial production processes can help select safer processes, modify the operation conditions, and select or modify raw materials that can help eliminate the risks.

  18. Treatment of toxic and hazardous organic wastes by wet oxidation process with oxygenated water at low temperature

    International Nuclear Information System (INIS)

    Piccinno, T.; Salluzzo, A.; Nardi, L.; Gili, M.; Luce, A.; Troiani, F.; Cornacchia, G.

    1989-11-01

    The wet oxidation process using air or molecular oxygen is a well-known process from long time. It is suitable to oxidize several types of waste refractory to the usual biological, thermal and chemical treatments. The drastic operating conditions (high pressures and temperatures) prevented its industrial development. In the last years a new interest was assigned to the process for the treatment of nuclear wastes (organic resins and exhaust organic wastes); the treatment is carried out at widely reduced operating conditions (atmospheric pressure and boiling temperature) by means of metallic catalysts and hydrogen peroxide. With some limits, the wet oxidation with hydrogen peroxide at low temperature can be applied to conventional waste waters containing toxic organic compounds. In the present report are summarized the activities developed at ENEA Fuel Cycle Department by the task force 'Deox' constituted by laboratory and plant specialists in order to verify the application of the wet oxidation process to the treatment of the toxic wastes. (author)

  19. Highly transparent and conductive Al-doped ZnO nanoparticulate thin films using direct write processing

    International Nuclear Information System (INIS)

    Vunnam, S; Ankireddy, K; Kellar, J; Cross, W

    2014-01-01

    Solution processable Al-doped ZnO (AZO) thin films are attractive candidates for low cost transparent electrodes. We demonstrate here an optimized nanoparticulate ink for the fabrication of AZO thin films using scalable, low-cost direct write processing (ultrasonic spray deposition) in air at atmospheric pressure. The thin films were made via thermal processing of as-deposited films. AZO films deposited using the proposed nanoparticulate ink with further reducing in vacuum and rf plasma of forming gas exhibited optical transparency greater than 95% across the visible spectrum, and electrical resistivity of 0.5 Ω cm and it drops down to 7.0 × 10 −2 Ω cm after illuminating with UV light, which is comparable to commercially available tin doped indium oxide colloidal coatings. Various structural analyses were performed to investigate the influence of ink chemistry, deposition parameters, and annealing temperatures on the structural, optical, and electrical characteristics of the spray deposited AZO thin films. Optical micrographs confirmed the presence of surface defects and cracks using the AZO NPs ink without any additives. After adding N-(2-Aminoethyl)-3-aminopropylmethyldimethoxy silane to the ink, AZO films exhibited an optical transparency which was virtually identical to that of the plain glass substrate. (papers)

  20. Review of the literature for dry reprocessing oxide, metal, and carbide fuel: The AIROX, RAHYD, and CARBOX pyrochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, R.C.; Rhee, B.W. [Rockwell International Corp., Canoga Park, CA (United States). Energy Systems Group

    1979-09-30

    The state of the art of dry processing oxide, carbide, and metal fuel has been determined through an extensive literature review. Dry processing in one of the most proliferation resistant fuel reprocessing technologies available to date, and is one of the few which can be exported to other countries. Feasibility has been established for oxide, carbide, and metal fuel on a laboratory scale, and large-scale experiments on oxide and carbide fuel have shown viability of the dry processing concept. A complete dry processing cycle has been demonstrated by multicycle processing-refabrication-reirradiation experiments on oxide fuel. Additional experimental work is necessary to: (1) demonstrate the complete fuel cycle for carbide and metal fuel, (2) optimize dry processing conditions, and (3) establish fission product behavior. Dry process waste management is easier than for an aqueous processing facility since wastes are primarily solids and gases. Waste treatment can be accomplished by techniques which have been, or are being, developed for aqueous plants.

  1. Process for producing metal oxide kernels and kernels so obtained

    International Nuclear Information System (INIS)

    Lelievre, Bernard; Feugier, Andre.

    1974-01-01

    The process desbribed is for producing fissile or fertile metal oxide kernels used in the fabrication of fuels for high temperature nuclear reactors. This process consists in adding to an aqueous solution of at least one metallic salt, particularly actinide nitrates, at least one chemical compound capable of releasing ammonia, in dispersing drop by drop the solution thus obtained into a hot organic phase to gel the drops and transform them into solid particles. These particles are then washed, dried and treated to turn them into oxide kernels. The organic phase used for the gel reaction is formed of a mixture composed of two organic liquids, one acting as solvent and the other being a product capable of extracting the anions from the metallic salt of the drop at the time of gelling. Preferably an amine is used as product capable of extracting the anions. Additionally, an alcohol that causes a part dehydration of the drops can be employed as solvent, thus helping to increase the resistance of the particles [fr

  2. Modification in oxidative processes in muscle tissues exposed to laser- and light-emitting diode radiation.

    Science.gov (United States)

    Monich, Victor A; Bavrina, Anna P; Malinovskaya, Svetlana L

    2018-01-01

    Exposure of living tissues to high-intensity red or near-infrared light can produce the oxidative stress effects both in the target zone and adjacent ones. The protein oxidative modification (POM) products can be used as reliable and early markers of oxidative stress. The contents of modified proteins in the investigated specimens can be evaluated by the 2,4-dinitrophenylhydrazine assay (the DNPH assay). Low-intensity red light is able to decrease the activity of oxidative processes and the DNPH assay data about the POM products in the biological tissues could show both an oxidative stress level and an efficiency of physical agent protection against the oxidative processes. Two control groups of white rats were irradiated by laser light, the first control group by red light and the second one by near-infrared radiation (NIR).Two experimental groups were consequently treated with laser and red low-level light-emitting diode radiation (LED). One of them was exposed to red laser light + LED and the other to NIR + LED. The fifth group was intact. Each group included ten animals. The effect of laser light was studied by methods of protein oxidative modifications. We measured levels of both induced and spontaneous POM products by the DNPH assay. The dramatic increase in levels of POM products in the control group samples when compared with the intact group data as well as the sharp decrease in the POM products in the experimental groups treated with LED low-level light were statistically significant (p ≤ 0.05). Exposure of skeletal muscles to high-intensity red and near-infrared laser light causes oxidative stress that continues not less than 3 days. The method of measurement of POM product contents by the DNPH assay is a reliable test of an oxidative process rate. Red low-intensity LED radiation can provide rehabilitation of skeletal muscle tissues treated with high-intensity laser light.

  3. Thermoelectric characterization of an intermediate temperature solid oxide fuel cell system directly fed by dry biogas

    International Nuclear Information System (INIS)

    De Lorenzo, G.; Corigliano, O.; Lo Faro, M.; Frontera, P.; Antonucci, P.; Zignani, S.C.; Trocino, S.; Mirandola, F.A.; Aricò, A.S.; Fragiacomo, P.

    2016-01-01

    Highlights: • Numerical Model (NM) of SOFC Cogenerative System (SCS) fed by dry biogas is set up. • NM simulates new Ni-Fe/CGO protective layer for direct CH_4 consumption at the anode. • NM simulates the anode carbonation phenomenon and is experimentally validated. • The performance parameters trends of SCS fed by three types of dry biogas are shown. • SEM images after 40 h of operation show that there is no anode carbon deposition. - Abstract: A properly manufactured intermediate temperature Solid Oxide Fuel Cell (SOFC) can be directly fed by dry biogas, considering also the electrochemical partial and total oxidation reactions of methane in the biogas at the anode. In this way the methane in the biogas is electrochemically consumed directly at the fuel cell without the need to mix the biogas with any reforming gas (steam, oxygen or carbon dioxide). In this article, a numerical model of an SOFC system with Ni-Fe/CGO electrocatalyst anode protective layer directly fed by dry biogas, in cogenerative arrangement and with anode exhaust gas recirculation is formulated. The influences of biogas composition, of fuel cell operating current density and of percentage of recirculated anode exhaust gas on the SOFC system performances were evaluated by calculation code. An SOFC test bench was set up to validate the calculation code results experimentally. Furthermore, the numerical model also considers the anode carbonation and evaluates the amount of carbon that can be formed in the anode at chemical equilibrium and quasi-equilibrium conditions associated with the specific anode protective layer used.

  4. Fingerprinting DNA oxidation processes: IR characterization of the 5-methyl-2'-deoxycytidine radical cation.

    Science.gov (United States)

    Bucher, Dominik B; Pilles, Bert M; Pfaffeneder, Toni; Carell, Thomas; Zinth, Wolfgang

    2014-02-24

    Methylated cytidine plays an important role as an epigenetic signal in gene regulation. Its oxidation products are assumed to be involved in active demethylation processes but also in damaging DNA. Here, we report the photochemical production of the 5-methyl-2'-deoxycytidine radical cation via a two-photon ionization process. The radical cation is detected by time-resolved IR spectroscopy and identified by band assignment using density functional theory calculations. Two final oxidation products are characterized with liquid chromatography coupled to mass spectrometry. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. New deposition processes for the growth of oxide and nitride thin films

    International Nuclear Information System (INIS)

    Apen, E.A.; Atagi, L.M.; Barbero, R.S.; Espinoza, B.F.; Hubbard, K.M.; Salazar, K.V.; Samuels, J.A.; Smith, D.C.; Hoffman, D.M.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The goal of this effort is to study the use of homoleptic metal amido compounds as precursors for chemical vapor deposition (CVD). The amides offer potential for the deposition of a variety of important materials at low temperatures. The establishment of these precursor compounds will enhance the ability to exploit the properties of advanced materials in numerous coatings applications. Experiments were performed to study the reactivity of Sn[NMe 2 ] 4 with oxygen. The data demonstrated that gas-phase insertion of oxygen into the Sn-N bond, leading to a reactive intermediate, plays an important role in tin oxide deposition. Several CVD processes for technologically important materials were developed using the amido precursor complexes. These included the plasma enhanced CVD of TiN and Zr 3 N 4 , and the thermal CVD of GaN and AlN. Quality films were obtained in each case, demonstrating the potential of the amido compounds as CVD precursors

  6. Engineering application of anaerobic ammonium oxidation process in wastewater treatment.

    Science.gov (United States)

    Mao, Nianjia; Ren, Hongqiang; Geng, Jinju; Ding, Lili; Xu, Ke

    2017-08-01

    Anaerobic ammonium oxidation (Anammox), a promising biological nitrogen removal process, has been verified as an efficient, sustainable and cost-effective alternative to conventional nitrification and denitrification processes. To date, more than 110 full-scale anammox plants have been installed and are in operation, treating industrial NH 4 + -rich wastewater worldwide, and anammox-based technologies are flourishing. This review the current state of the art for engineering applications of the anammox process, including various anammox-based technologies, reactor selection and attempts to apply it at different wastewater plants. Process control and implementation for stable performance are discussed as well as some remaining issues concerning engineering application are exposed, including the start-up period, process disturbances, greenhouse gas emissions and especially mainstream anammox applications. Finally, further development of the anammox engineering application is proposed in this review.

  7. Subfemtosecond directional control of chemical processes in molecules

    Science.gov (United States)

    Alnaser, Ali S.; Litvinyuk, Igor V.

    2017-02-01

    Laser pulses with a waveform-controlled electric field and broken inversion symmetry establish the opportunity to achieve directional control of molecular processes on a subfemtosecond timescale. Several techniques could be used to break the inversion symmetry of an electric field. The most common ones include combining a fundamental laser frequency with its second harmonic or with higher -frequency pulses (or pulse trains) as well as using few-cycle pulses with known carrier-envelope phase (CEP). In the case of CEP, control over chemical transformations, typically occurring on a timescale of many femtoseconds, is driven by much faster sub-cycle processes of subfemtosecond to few-femtosecond duration. This is possible because electrons are much lighter than nuclei and fast electron motion is coupled to the much slower nuclear motion. The control originates from populating coherent superpositions of different electronic or vibrational states with relative phases that are dependent on the CEP or phase offset between components of a two-color pulse. In this paper, we review the recent progress made in the directional control over chemical processes, driven by intense few-cycle laser pulses a of waveform-tailored electric field, in different molecules.

  8. Direct measurement of carbon substrate oxidation and incorporation patterns in RuMP-type methylotrophs: chemostatic cultures of Methylomonas L3

    International Nuclear Information System (INIS)

    Chu, I.M.; Bussineau, C.M.; Papoutsakis, E.T.

    1985-01-01

    A technique using C-14 isotope tracers to probe the branching of carbon flow in methylotrophic bacteria has been devised and applied to continuous steady-state cultures. Methylomonas L3, a strain which utilizes the KDPG/TA variant of the ribulose monophosphate cycle for carbon fixation, was employed in the experimental studies. The actual in vivo rates of substrate-carbon incorporation into biomass, both direct and via CO 2 , and of the two carbon oxidation schemes were determined in three different steady-state cultures. The results show that the carbon substrate is oxidized predominantly via formate (the linear oxidation scheme), and that the cyclic scheme of oxidation is minimally, if at all, utilized. The carbon incorporation and oxidation patterns appear to vary considerably with the dilution rate and the inoculum history. The experimental accuracy of the new technique is discussed in detail

  9. IMPACTS OF ANTIFOAM ADDITIONS AND ARGON BUBBLING ON DEFENSE WASTE PROCESSING FACILITY REDUCTION/OXIDATION

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.; Johnson, F.

    2012-06-05

    During melting of HLW glass, the REDOX of the melt pool cannot be measured. Therefore, the Fe{sup +2}/{Sigma}Fe ratio in the glass poured from the melter must be related to melter feed organic and oxidant concentrations to ensure production of a high quality glass without impacting production rate (e.g., foaming) or melter life (e.g., metal formation and accumulation). A production facility such as the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. therefore, the acceptability decision is made on the upstream process, rather than on the downstream melt or glass product. That is, it is based on 'feed foward' statistical process control (SPC) rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. Use of the DWPF REDOX model has controlled the balanjce of feed reductants and oxidants in the Sludge Receipt and Adjustment Tank (SRAT). Once the alkali/alkaline earth salts (both reduced and oxidized) are formed during reflux in the SRAT, the REDOX can only change if (1) additional reductants or oxidants are added to the SRAT, the Slurry Mix Evaporator (SME), or the Melter Feed Tank (MFT) or (2) if the melt pool is bubble dwith an oxidizing gas or sparging gas that imposes a different REDOX target than the chemical balance set during reflux in the SRAT.

  10. Ion beam synthesis of indium-oxide nanocrystals for improvement of oxide resistive random-access memories

    Science.gov (United States)

    Bonafos, C.; Benassayag, G.; Cours, R.; Pécassou, B.; Guenery, P. V.; Baboux, N.; Militaru, L.; Souifi, A.; Cossec, E.; Hamga, K.; Ecoffey, S.; Drouin, D.

    2018-01-01

    We report on the direct ion beam synthesis of a delta-layer of indium oxide nanocrystals (In2O3-NCs) in silica matrices by using ultra-low energy ion implantation. The formation of the indium oxide phase can be explained by (i) the affinity of indium with oxygen, (ii) the generation of a high excess of oxygen recoils generated by the implantation process in the region where the nanocrystals are formed and (iii) the proximity of the indium-based nanoparticles with the free surface and oxidation from the air. Taking advantage of the selective diffusivity of implanted indium in SiO2 with respect to Si3N4, In2O3-NCs have been inserted in the SiO2 switching oxide of micrometric planar oxide-based resistive random access memory (OxRAM) devices fabricated using the nanodamascene process. Preliminary electrical measurements show switch voltage from high to low resistance state. The devices with In2O3-NCs have been cycled 5 times with identical operating voltages and RESET current meanwhile no switch has been observed for non implanted devices. This first measurement of switching is very promising for the concept of In2O3-NCs based OxRAM memories.

  11. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?

    Energy Technology Data Exchange (ETDEWEB)

    Cristale, Joyce [Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-2, 08034 Barcelona, Catalonia (Spain); Ramos, Dayana D. [Institute of Chemistry, Federal University of Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, CP 549, CEP 79074-460 Campo Grande, MS (Brazil); Dantas, Renato F. [Department of Chemical Engineering, University de Barcelona, Marti i Franques 1, 08028 Barcelona, Catalonia (Spain); School of Technology, University of Campinas-UNICAMP, Paschoal Marmo 1888, 13484-332 Limeira, SP (Brazil); Machulek Junior, Amilcar [Institute of Chemistry, Federal University of Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, CP 549, CEP 79074-460 Campo Grande, MS (Brazil); Lacorte, Silvia [Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-2, 08034 Barcelona, Catalonia (Spain); Sans, Carme; Esplugas, Santiago [Department of Chemical Engineering, University de Barcelona, Marti i Franques 1, 08028 Barcelona, Catalonia (Spain)

    2016-01-15

    This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67 µg L{sup −1} to 150 µg L{sup −1}. During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980 ng g{sup −1} dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatment and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H{sub 2}O{sub 2} and O{sub 3}) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H{sub 2}O{sub 2} and O{sub 3}. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs. - Highlights: • OPFRs were detected in wastewater and sludge of all studied WWTPs. • Alkyl and chloroalkyl phosphates were present in secondary treatment effluents. • TBOEP, TNBP and TIBP were degraded by UV/H{sub 2}O{sub 2} and O{sub 3} treatment. • TCEP, TCIPP and TDCPP were

  12. Reaction Mechanism for m- Xylene Oxidation in the Claus Process by Sulfur Dioxide

    KAUST Repository

    Sinha, Sourab

    2015-09-24

    In the Claus process, the presence of aromatic contaminants such benzene, toluene, and xylenes (BTX), in the H2S feed stream has a detrimental effect on catalytic reactors, where BTX form soot particles and clog and deactivate the catalysts. Among BTX, xylenes are proven to be most damaging contaminant for catalysts. BTX oxidation in the Claus furnace, before they enter catalyst beds, provides a solution to this problem. A reaction kinetics study on m-xylene oxidation by SO2, an oxidant present in Claus furnace, is presented. The density functional theory is used to study the formation of m-xylene radicals (3-methylbenzyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, and 3,5-dimethylphenyl) through H-abstraction and their oxidation by SO2. The mechanism begins with SO2 addition on the radicals through an O-atom rather than the S-atom with the release of 180.0-183.1 kJ/mol of reaction energies. This exothermic reaction involves energy barriers in the range 3.9-5.2 kJ/mol for several m-xylene radicals. Thereafter, O-S bond scission takes place to release SO, and the O-atom remaining on aromatics leads to CO formation. Among four m-xylene radicals, the resonantly stabilized 3-methylbenzyl exhibited the lowest SO2 addition and SO elimination rates. The reaction rate constants are provided to facilitate Claus process simulations to find conditions suitable for BTX oxidation. © 2015 American Chemical Society.

  13. Reaction Mechanism for m- Xylene Oxidation in the Claus Process by Sulfur Dioxide

    KAUST Repository

    Sinha, Sourab; Raj, Abhijeet; Al Shoaibi, Ahmed S.; Chung, Suk-Ho

    2015-01-01

    In the Claus process, the presence of aromatic contaminants such benzene, toluene, and xylenes (BTX), in the H2S feed stream has a detrimental effect on catalytic reactors, where BTX form soot particles and clog and deactivate the catalysts. Among BTX, xylenes are proven to be most damaging contaminant for catalysts. BTX oxidation in the Claus furnace, before they enter catalyst beds, provides a solution to this problem. A reaction kinetics study on m-xylene oxidation by SO2, an oxidant present in Claus furnace, is presented. The density functional theory is used to study the formation of m-xylene radicals (3-methylbenzyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, and 3,5-dimethylphenyl) through H-abstraction and their oxidation by SO2. The mechanism begins with SO2 addition on the radicals through an O-atom rather than the S-atom with the release of 180.0-183.1 kJ/mol of reaction energies. This exothermic reaction involves energy barriers in the range 3.9-5.2 kJ/mol for several m-xylene radicals. Thereafter, O-S bond scission takes place to release SO, and the O-atom remaining on aromatics leads to CO formation. Among four m-xylene radicals, the resonantly stabilized 3-methylbenzyl exhibited the lowest SO2 addition and SO elimination rates. The reaction rate constants are provided to facilitate Claus process simulations to find conditions suitable for BTX oxidation. © 2015 American Chemical Society.

  14. Disintegration and dissolution of spent radioactive cationic exchange resins using Fenton-like oxidation process

    International Nuclear Information System (INIS)

    Wan, Zhong; Xu, Lejin; Wang, Jianlong

    2015-01-01

    Highlights: • The spent radioactive resins could be oxidized by Fenton-like process. • The influencing factors on resin oxidation were evaluated. • Chemical oxygen demand (COD) reduction rate was more than 99%. • SEM and Raman spectrum were used to analyze the resins morphological change. - Abstract: The treatment and disposal of the spent radioactive resins is essential for the sustainable development of the nuclear industry. In this paper, the disintegration and dissolution of spent cationic resins were studied by Fenton-like process. The influencing factors on resin dissolution, such as pH, temperature, type and concentration of catalysts were evaluated. The results showed that the spent resins could be effectively dissolved at pH < 1, [Fe 2+ ] = 0.2 M and T = 97 ± 2 °C. Chemical oxygen demand (COD) reduction rate was more than 99%. The scanning electron microscopy and the Raman spectrum were used to observe the morphological changes of the spent resins during the dissolution process. Fenton-like oxidation is an efficient method for the volume reduction and stabilization of the spent resins before further immobilization

  15. Disintegration and dissolution of spent radioactive cationic exchange resins using Fenton-like oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Zhong; Xu, Lejin [Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084 (China); Wang, Jianlong, E-mail: wangjl@tsinghua.edu.cn [Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084 (China)

    2015-09-15

    Highlights: • The spent radioactive resins could be oxidized by Fenton-like process. • The influencing factors on resin oxidation were evaluated. • Chemical oxygen demand (COD) reduction rate was more than 99%. • SEM and Raman spectrum were used to analyze the resins morphological change. - Abstract: The treatment and disposal of the spent radioactive resins is essential for the sustainable development of the nuclear industry. In this paper, the disintegration and dissolution of spent cationic resins were studied by Fenton-like process. The influencing factors on resin dissolution, such as pH, temperature, type and concentration of catalysts were evaluated. The results showed that the spent resins could be effectively dissolved at pH < 1, [Fe{sup 2+}] = 0.2 M and T = 97 ± 2 °C. Chemical oxygen demand (COD) reduction rate was more than 99%. The scanning electron microscopy and the Raman spectrum were used to observe the morphological changes of the spent resins during the dissolution process. Fenton-like oxidation is an efficient method for the volume reduction and stabilization of the spent resins before further immobilization.

  16. Method of forming oxide coatings. [for solar collector heating panels

    Science.gov (United States)

    Mcdonald, G. E. (Inventor)

    1983-01-01

    This invention is concerned with an improved plating process for covering a substrate with a black metal oxide film. The invention is particularly directed to making a heating panel for a solar collector. A compound is electrodeposited from an aqueous solution containing cobalt metal salts onto a metal substrate. This compound is converted during plating into a black, highly absorbing oxide coating which contains hydrated oxides. This is achieved by the inclusion of an oxidizing agent in the plating bath. The inclusion of an oxidizing agent in the plating bath is contrary to standard electroplating practice. The hydrated oxides are converted to oxides by treatment in a hot bath, such as boiling water. An oxidizing agent may be added to the hot liquid treating bath.

  17. A direct current potential drop method for evaluating oxide film thickness formed in high-temperature water

    International Nuclear Information System (INIS)

    Anzai, Hideya; Ishibashi, Ryo; Saka, Masumi

    2016-01-01

    To establish an evaluation technique for oxide film thickness in-situ, the applicability of a four-point-probe direct current potential drop method is discussed in this study. Several samples of JIS SUS316L stainless steel with different oxide film thickness were prepared after immersing them in oxygenated pure water at 288°C for different periods. The oxide film thickness was measured by cross sectional observation using a transmission electron microscope. Potential drop on the oxide surface was measured every second during an acquisition period of about 20 s while a constant current was being injected into the sample simultaneously. This kind of measurement was repeatedly carried out at several arbitrary contact positions on the surface of the same sample. The measurement results showed that the potential drop slightly changed during the acquisition period and the tendency varied at the different contact positions. Multiple measurements at different contact positions revealed that the tendency could be categorized into two general types: the decreasing potential drop and the increasing potential drop, defined by the overall trend of the potential drop during the acquisition time. It was found that the ratio of contact positions with a decreasing potential drop tendency to all the contact positions of measurement tended to increase as applied current increased. This tendency depended on the oxide film thickness. The threshold value of applied current was found to correlate well with the oxide film thickness when the occurrence rate of decreasing potential drop ranged from 70 to 90% showing the best correlation at 70%. (author)

  18. GaAs circuit restructuring by multi-level laser-direct-written tungsten process

    International Nuclear Information System (INIS)

    Black, J.G.; Doran, S.P.; Rothschild, M.; Sedlacek, J.H.C.; Ehrlich, D.J.

    1987-01-01

    Laser-direct-writing processes are employed to fabricate a GaAs digital integrated circuit. The lithography-free techniques deposit and etch conductors and resistors, and remove insulating layers, thus enabling multilevel interconnections. These combined direct-write processes provide the flexibility of clip-lead prototyping on a micrometer scale

  19. Direct conversion of plutonium-containing materials to borosilicate glass for storage or disposal

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.

    1995-01-01

    A new process, the Glass Material Oxidation and Dissolution System (GMODS), has been invented for the direct conversion of plutonium metal, scrap, and residue into borosilicate glass. The glass should be acceptable for either the long-term storage or disposition of plutonium. Conversion of plutonium from complex chemical mixtures and variable geometries into homogeneous glass (1) simplifies safeguards and security; (2) creates a stable chemical form that meets health, safety, and environmental concerns; (3) provides an easy storage form; (4) may lower storage costs; and (5) allows for future disposition options. In the GMODS process, mixtures of metals, ceramics, organics, and amorphous solids containing plutonium are fed directly into a glass melter where they are directly converted to glass. Conventional glass melters can accept materials only in oxide form; thus, it is its ability to accept materials in multiple chemical forms that makes GMODS a unique glass making process. Initial proof-of-principle experiments have converted cerium (plutonium surrogate), uranium, stainless steel, aluminum, and other materials to glass. Significant technical uncertainties remain because of the early nature of process development

  20. Pd-catalyzed aerobic oxidative annulation of cyclohexanones and 2-aminophenyl ketones: A direct approach to acridines

    Science.gov (United States)

    Mu, Wanlu; Li, Xiaowei; Wang, Longfei; Chen, Yong; Wu, Yanchao

    2017-08-01

    An efficient aerobic oxidative annulation of cyclohexanones and 2-aminophenyl ketones approach to substituted acridines, a structural motif for a large number of pharmaceuticals and functional materials is described. The key feature of this method is the use of oxygen as the sole oxidant and Pd catalyst, which resulting in the high regioselectivity with unsymmetrical meta-substituted cyclohexanones. The electron gap of the global redox condensation process is filled and the reaction efficiency is significantly promoted by O2 as a redox moderator. This protocol possesses many advantages such as using O2 as a cheap and nonhazardous oxidant, high regioselectivity and water as the only by-product, which meet the principle of green chemistry.

  1. Laser processing for manufacturing nanocarbon materials

    Science.gov (United States)

    Van, Hai Hoang

    CNTs have been considered as the excellent candidate to revolutionize a broad range of applications. There have been many method developed to manipulate the chemistry and the structure of CNTs. Laser with non-contact treatment capability exhibits many processing advantages, including solid-state treatment, extremely fast processing rate, and high processing resolution. In addition, the outstanding monochromatic, coherent, and directional beam generates the powerful energy absorption and the resultant extreme processing conditions. In my research, a unique laser scanning method was developed to process CNTs, controlling the oxidation and the graphitization. The achieved controllability of this method was applied to address the important issues of the current CNT processing methods for three applications. The controllable oxidation of CNTs by laser scanning method was applied to cut CNT films to produce high-performance cathodes for FE devices. The production method includes two important self-developed techniques to produce the cold cathodes: the production of highly oriented and uniformly distributed CNT sheets and the precise laser trimming process. Laser cutting is the unique method to produce the cathodes with remarkable features, including ultrathin freestanding structure (~200 nm), greatly high aspect ratio, hybrid CNT-GNR emitter arrays, even emitter separation, and directional emitter alignment. This unique cathode structure was unachievable by other methods. The developed FE devices successfully solved the screening effect issue encounter by current FE devices. The laser-control oxidation method was further developed to sequentially remove graphitic walls of CNTs. The laser oxidation process was directed to occur along the CNT axes by the laser scanning direction. Additionally, the oxidation was further assisted by the curvature stress and the thermal expansion of the graphitic nanotubes, ultimately opening (namely unzipping) the tubular structure to

  2. Direct oxide reduction (DOR) solvent salt recycle in pyrochemical plutonium recovery operations

    International Nuclear Information System (INIS)

    Fife, K.W.; Bowersox, D.F.; Davis, C.C.; McCormick, E.D.

    1987-02-01

    One method used at Los Alamos for producing plutonium metal is to reduce the oxide with calcium metal in molten CaCl 2 at 850 0 C. The solvent CaCl 2 from this reduction step is currently discarded as low-level radioactive waste because it is saturated with the reaction by-product, CaO. We have developed and demonstrated a molten salt technique for rechlorinating the CaO, thereby regenerating the CaCl 2 and incorporating solvent recycle into the batch PuO 2 reduction process. We discuss results from the process development experiments and present our plans for incorporating the technique into an advanced design for semicontinuous plutonium metal production

  3. Conversion of plutonium-containing materials into borosilicate glass using the glass material oxidation and dissolution system

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1996-01-01

    The end of the cold war has resulted in excess plutonium-containing materials (PCMs) in multiple chemical forms. Major problems are associated with the long-term management of these materials: safeguards and nonproliferation issues; health, environment, and safety concerns; waste management requirements; and high storage costs. These issues can be addressed by conversion of the PCMs to glass: however, conventional glass processes require oxide-like feed materials. Conversion of PCMs to oxide-like materials followed by vitrification is a complex and expensive process. A new vitrification process has been invented, the Glass Material Oxidation and Dissolution System (GMODS) to allow direct conversion of PCMs to glass. GMODS directly converts metals, ceramics, and amorphous solids to glass; oxidizes organics with the residue converted to glass; and converts chlorides to borosilicate glass and a secondary sodium chloride stream. Laboratory work has demonstrated the conversion of cerium (a plutonium surrogate), uranium (a plutonium surrogate), Zircaloy, stainless steel, multiple oxides, and other materials to glass. Equipment options have been identified for processing rates between 1 and 100,000 t/y. Significant work, including a pilot plant, is required to develop GMODS for applications at an industrial scale

  4. New insights into the aquatic photochemistry of fluoroquinolone antibiotics: Direct photodegradation, hydroxyl-radical oxidation, and antibacterial activity changes.

    Science.gov (United States)

    Ge, Linke; Na, Guangshui; Zhang, Siyu; Li, Kai; Zhang, Peng; Ren, Honglei; Yao, Ziwei

    2015-09-15

    The ubiquity and photoreactivity of fluoroquinolone antibiotics (FQs) in surface waters urge new insights into their aqueous photochemical behavior. This study concerns the photochemistry of 6 FQs: ciprofloxacin, danofloxacin, levofloxacin, sarafloxacin, difloxacin and enrofloxacin. Methods were developed to calculate their solar direct photodegradation half-lives (td,E) and hydroxyl-radical oxidation half-lives (tOH,E) in sunlit surface waters. The td,E values range from 0.56 min to 28.8 min at 45° N latitude, whereas tOH,E ranges from 3.24h to 33.6h, suggesting that most FQs tend to undergo fast direct photolysis rather than hydroxyl-radical oxidation in surface waters. However, a case study for levofloxacin and sarafloxacin indicated that the hydroxyl-radical oxidation induced risky photochlorination and resulted in multi-degradation pathways, such as piperazinyl hydroxylation and clearage. Changes in the antibacterial activity of FQs caused by photodegradation in various waters were further examined using Escherichia coli, and it was found that the activity evolution depended on primary photodegradation pathways and products. Primary intermediates with intact FQ nuclei retained significant antibacterial activity. These results are important for assessing the fate and risk of FQs in surface waters. Copyright © 2015. Published by Elsevier B.V.

  5. Kinetics and Mechanisms of Thiol–Disulfide Exchange Covering Direct Substitution and Thiol Oxidation-Mediated Pathways

    Science.gov (United States)

    2013-01-01

    Abstract Significance: Disulfides are important building blocks in the secondary and tertiary structures of proteins, serving as inter- and intra-subunit cross links. Disulfides are also the major products of thiol oxidation, a process that has primary roles in defense mechanisms against oxidative stress and in redox regulation of cell signaling. Although disulfides are relatively stable, their reduction, isomerisation, and interconversion as well as their production reactions are catalyzed by delicate enzyme machineries, providing a dynamic system in biology. Redox homeostasis, a thermodynamic parameter that determines which reactions can occur in cellular compartments, is also balanced by the thiol–disulfide pool. However, it is the kinetic properties of the reactions that best represent cell dynamics, because the partitioning of the possible reactions depends on kinetic parameters. Critical Issues: This review is focused on the kinetics and mechanisms of thiol–disulfide substitution and redox reactions. It summarizes the challenges and advances that are associated with kinetic investigations in small molecular and enzymatic systems from a rigorous chemical perspective using biological examples. The most important parameters that influence reaction rates are discussed in detail. Recent Advances and Future Directions: Kinetic studies of proteins are more challenging than small molecules, and quite often investigators are forced to sacrifice the rigor of the experimental approach to obtain the important kinetic and mechanistic information. However, recent technological advances allow a more comprehensive analysis of enzymatic systems via using the systematic kinetics apparatus that was developed for small molecule reactions, which is expected to provide further insight into the cell's machinery. Antioxid. Redox Signal. 18, 1623–1641. PMID:23075118

  6. Direct and indirect two-photon processes in semiconductors

    International Nuclear Information System (INIS)

    Hassan, A.R.

    1986-07-01

    The expressions describing direct and indirect two-photon absorption in crystals are given. They are valid both near and far from the energy gap. A perturbative approach through two different band models is adopted. The effects of the non-parabolicity and the degeneracy of the energy bands are considered. The numerical results are compared with the other theories and with a recent experimental data in Zn and AgCl. It is shown that the dominant transition mechanisms are of the allowed-allowed type near and far from the gap for both direct and indirect processes. (author)

  7. Rapid deposition process for zinc oxide film applications in pyroelectric devices

    International Nuclear Information System (INIS)

    Hsiao, Chun-Ching; Yu, Shih-Yuan

    2012-01-01

    Aerosol deposition (AD) is a rapid process for the deposition of films. Zinc oxide is a low toxicity and environmentally friendly material, and it possesses properties such as semiconductivity, pyroelectricity and piezoelectricity without the poling process. Therefore, AD is used to accelerate the manufacturing process for applications of ZnO films in pyroelectric devices. Increasing the temperature variation rate in pyroelectric films is a useful method for enhancing the responsivity of pyroelectric devices. In the present study, a porous ZnO film possessing the properties of large heat absorption and high temperature variation rate is successfully produced by the AD rapid process and laser annealing for application in pyroelectric devices. (paper)

  8. Dose dependent oxidation kinetics of lipids in fish during irradiation processing

    International Nuclear Information System (INIS)

    Tukenmez, I.; Ersen, M.S.; Bakioglu, A.T.; Bicer, A.; Pamuk, V.

    1997-01-01

    Kinetic aspects of the development of lipid oxidation in complex foods as fish in the course of irradiation were analyzed with respect to the associated formation of malonaldehyde (MA) through the reactions modified so as to be consistent with those in complex foods as fish. Air-packed anchovy (Engraulis encrasicholus) samples in polyethylene pouches were irradiated at the doses of 1, 2, 5, 10, 15,20 and 25 kGy at 20 o C in a Cs-137 gamma irradiator of 1.806 kGy/h dose rate. Immediately after each irradiation, MA contents of irradiated and unirradiated samples were determined by thiobarbituric acid test. Based on the MA formation, a kinetic model to simulate the apparent oxidation of lipid in fish as a function of irradiation dose was derived from the rate equations consistent with modified reactions. Kinetic parameters and simulation were related to conditions of lipid oxidation, and associated rancidity state of fish with respect to the doses applied in different irradiation-preservation processes. Numerical values of kinetic parameters based on the MA formation were found as a threshold dose of 0.375 kGy, an apparent yield of 1.871 μmol/kg kGy, and a maximum attainable concentration of 15.853 μmol/kg which may be used for process control and dosimetry. (author)

  9. A directional entrapment modification on the polyethylene surface by the amphiphilic modifier of stearyl-alcohol poly(ethylene oxide) ether

    Science.gov (United States)

    Lu, Qiang; Chen, Yi; Huang, Juexin; Huang, Jian; Wang, Xiaolin; Yao, Jiaying

    2018-05-01

    A novel entrapment modification method involving directional implantation of the amphiphilic modifier of stearyl-alcohol poly(ethylene oxide) ether (AEO) into the high-density polyethylene (HDPE) surface is proposed. This modification technique allows the AEO modifier to be able to spontaneously attain and subsequently penetrate into the swollen HDPE surface with its hydrophobic stearyl segment, while its hydrophilic poly(ethylene oxide) (PEO) segment spontaneously points to water. The AEO modifier with a HLB number below 8.7 was proved appropriate for the directional entrapment, Nevertheless, AEOs with larger HLB numbers were also effective modifiers in the presence of salt additives. In addition, a larger and hydrophobic micelle, induced respectively by the AEO concentration above 1.3 × 10-2 mol/L and the entrapping temperature above the cloud point of AEO, could lead to a sharp contact angle decline of the modified surface. Finally, a hydrophilic HDPE surface with the modifier coverage of 38.9% was reached by the directional entrapment method, which is far larger than that of 19.2% by the traditional entrapment method.

  10. Graphene oxide for acid catalyzed-reactions: Effect of drying process

    Science.gov (United States)

    Gong, H. P.; Hua, W. M.; Yue, Y. H.; Gao, Z.

    2017-03-01

    Graphene oxides (GOs) were prepared by Hummers method through various drying processes, and characterized by XRD, SEM, FTIR, XPS and N2 adsorption. Their acidities were measured using potentiometric titration and acid-base titration. The catalytic properties were investigated in the alkylation of anisole with benzyl alcohol and transesterification of triacetin with methanol. GOs are active catalysts for both reaction, whose activity is greatly affected by their drying processes. Vacuum drying GO exhibits the best performance in transesterification while freezing drying GO is most active for alkylation. The excellent catalytic behavior comes from abundant surface acid sites as well as proper surface functional groups, which can be obtained by selecting appropriate drying process.

  11. Cosmetic wastewater treatment by coagulation and advanced oxidation processes.

    Science.gov (United States)

    Naumczyk, Jeremi; Bogacki, Jan; Marcinowski, Piotr; Kowalik, Paweł

    2014-01-01

    In this study, the treatment process of three cosmetic wastewater types has been investigated. Coagulation allowed to achieve chemical oxygen demand (COD) removal of 74.6%, 37.7% and 74.0% for samples A (Al2(SO4)3), B (Brentafloc F3) and C (PAX 16), respectively. The Fenton process proved to be effective as well - COD removal was equal to 75.1%, 44.7% and 68.1%, respectively. Coagulation with FeCl3 and the subsequent photo-Fenton process resulted in the best values of final COD removal equal to 92.4%, 62.8% and 90.2%. In case of the Fenton process, after coagulation these values were equal to 74.9%, 50.1% and 84.8%, while in case of the H2O2/UV process, the obtained COD removal was 83.8%, 36.2% and 80.9%. High value of COD removal in the Fenton process carried out for A and C wastewater samples was caused by a significant contribution of the final neutralization/coagulation. Very small effect of the oxidation reaction in the Fenton process in case of sample A resulting from the presence of antioxidants, 'OH radical scavengers' in the wastewater.

  12. Experimental Methodology for Determining Optimum Process Parameters for Production of Hydrous Metal Oxides by Internal Gelation

    Energy Technology Data Exchange (ETDEWEB)

    Collins, J.L.

    2005-10-28

    The objective of this report is to describe a simple but very useful experimental methodology that was used to determine optimum process parameters for preparing several hydrous metal-oxide gel spheres by the internal gelation process. The method is inexpensive and very effective in collection of key gel-forming data that are needed to prepare the hydrous metal-oxide microspheres of the best quality for a number of elements.

  13. Oxidation kinetics of Si and SiGe by dry rapid thermal oxidation, in-situ steam generation oxidation and dry furnace oxidation

    Science.gov (United States)

    Rozé, Fabien; Gourhant, Olivier; Blanquet, Elisabeth; Bertin, François; Juhel, Marc; Abbate, Francesco; Pribat, Clément; Duru, Romain

    2017-06-01

    The fabrication of ultrathin compressively strained SiGe-On-Insulator layers by the condensation technique is likely a key milestone towards low-power and high performances FD-SOI logic devices. However, the SiGe condensation technique still requires challenges to be solved for an optimized use in an industrial environment. SiGe oxidation kinetics, upon which the condensation technique is founded, has still not reached a consensus in spite of various studies which gave insights into the matter. This paper aims to bridge the gaps between these studies by covering various oxidation processes relevant to today's technological needs with a new and quantitative analysis methodology. We thus address oxidation kinetics of SiGe with three Ge concentrations (0%, 10%, and 30%) by means of dry rapid thermal oxidation, in-situ steam generation oxidation, and dry furnace oxidation. Oxide thicknesses in the 50 Å to 150 Å range grown with oxidation temperatures between 850 and 1100 °C were targeted. The present work shows first that for all investigated processes, oxidation follows a parabolic regime even for thin oxides, which indicates a diffusion-limited oxidation regime. We also observe that, for all investigated processes, the SiGe oxidation rate is systematically higher than that of Si. The amplitude of the variation of oxidation kinetics of SiGe with respect to Si is found to be strongly dependent on the process type. Second, a new quantitative analysis methodology of oxidation kinetics is introduced. This methodology allows us to highlight the dependence of oxidation kinetics on the Ge concentration at the oxidation interface, which is modulated by the pile-up mechanism. Our results show that the oxidation rate increases with the Ge concentration at the oxidation interface.

  14. Iron Oxide Films Prepared by Rapid Thermal Processing for Solar Energy Conversion

    DEFF Research Database (Denmark)

    Wickman, B.; da Silva Fanta, Alice Bastos; Burrows, Andrew

    2017-01-01

    Hematite is a promising and extensively investigated material for various photoelectrochemical (PEC) processes for energy conversion and storage, in particular for oxidation reactions. Thermal treatments during synthesis of hematite are found to affect the performance of hematite electrodes...

  15. Food Processing and Marketing: New Directions...New Opportunities.

    Science.gov (United States)

    Welch, Mary A., Ed.

    1995-01-01

    This issue uses tomato processing to illustrate the new directions and opportunities available in the food market. Comparative advantage and economies of scale are discussed in relation to markets. Forecasting success in the market is attributed to studying consumer consumption trends by type and monitoring standards of living in 32 newly…

  16. 19 CFR 10.178 - Direct costs of processing operations performed in the beneficiary developing country.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Direct costs of processing operations performed in... processing operations performed in the beneficiary developing country. (a) Items included in the direct costs of processing operations. As used in § 10.176, the words “direct costs of processing operations...

  17. Mathematical Modeling of Nitrous Oxide Production during Denitrifying Phosphorus Removal Process.

    Science.gov (United States)

    Liu, Yiwen; Peng, Lai; Chen, Xueming; Ni, Bing-Jie

    2015-07-21

    A denitrifying phosphorus removal process undergoes frequent alternating anaerobic/anoxic conditions to achieve phosphate release and uptake, during which microbial internal storage polymers (e.g., Polyhydroxyalkanoate (PHA)) could be produced and consumed dynamically. The PHA turnovers play important roles in nitrous oxide (N2O) accumulation during the denitrifying phosphorus removal process. In this work, a mathematical model is developed to describe N2O dynamics and the key role of PHA consumption on N2O accumulation during the denitrifying phosphorus removal process for the first time. In this model, the four-step anoxic storage of polyphosphate and four-step anoxic growth on PHA using nitrate, nitrite, nitric oxide (NO), and N2O consecutively by denitrifying polyphosphate accumulating organisms (DPAOs) are taken into account for describing all potential N2O accumulation steps in the denitrifying phosphorus removal process. The developed model is successfully applied to reproduce experimental data on N2O production obtained from four independent denitrifying phosphorus removal study reports with different experimental conditions. The model satisfactorily describes the N2O accumulation, nitrogen reduction, phosphate release and uptake, and PHA dynamics for all systems, suggesting the validity and applicability of the model. The results indicated a substantial role of PHA consumption in N2O accumulation due to the relatively low N2O reduction rate by using PHA during denitrifying phosphorus removal.

  18. Direction of CRT waste glass processing: electronics recycling industry communication.

    Science.gov (United States)

    Mueller, Julia R; Boehm, Michael W; Drummond, Charles

    2012-08-01

    Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Application of secondary ion mass spectrometry to the study of a corrosion process: oxidation of uranium by water

    International Nuclear Information System (INIS)

    Cristy, S.S.; Condon, J.B.

    1985-01-01

    Corrosion of metals is an extremely important field with great economic and engineering implications at the Oak Ridge Y-12 Plant. To effectively combat corrosion, one must understand the processes occurring. This paper shows the utility of Secondary Ion Mass Spectrometry (SIMS) data for elucidating the processes occurring in one particular corrosion process - the oxidation of uranium by water - and for validating a theoretical model. It had long been known that the oxidation of uranium by water is retarded by the presence of oxygen gas and the retardation has been assumed to occur by site blocking at the surface. However, when alternate isotopic exposures were made, followed by exposure to a mixture of 16 O 2 and 18 OH 2 , the rapid exchange of 16 O and 18 O occurred in the oxide layer, but the further oxidation by water in this and subsequent exposures was retarded for up to 21 hours. This shows graphically that OH 2 is not held up at the surface and that the retarding mechanism is effective at the oxide/metal interface rather than at the surface. The effectiveness of the O 2 to retard the further water oxidation was much reduced if no water-formed oxide layer were present. The effectiveness was also crystallite related. 12 refs., 5 figs

  20. Fuel-pellet-fabrication experience using direct-denitration-recycle-PuO2-coprecipitated mixed oxide

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Schaus, P.S.

    1980-01-01

    The fuel pellet fabrication experience described in this paper involved three different feed powders: coprecipitated PuO 2 -UO 2 which was flash calcined in a fluidized bed; co-direct denitrated PuO 2 -UO 2 ; and direct denitrated LWR recycle PuO 2 which was mechanically blended with natural UO 2 . The objectives of this paper are twofold; first, to demonstrate that acceptable quality fuel pellets were fabricated using feed powders manufactured by processes other than the conventional oxalate process; and second, to highlight some pellet fabrication difficulties experienced with the direct denitration LWR recycle PuO 2 feed material, which did not produce acceptable pellets. The direct denitration LWR recycle PuO 2 was available as a by-product and was not specifically produced for use in fuel pellet fabrication. Nevertheless, its characteristics and pellet fabrication behavior serve to re-emphasize the importance of continued process development involving both powder suppliers and fuel fabricators to close the fuel cycle in the future

  1. Solvent recyclability in a multistep direct liquefaction process

    Energy Technology Data Exchange (ETDEWEB)

    Hetland, M.D.; Rindt, J.R. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-31

    Direct liquefaction research at the Energy & Environmental Research Center (EERC) has, for a number of years, concentrated on developing a direct liquefaction process specifically for low-rank coals (LRCs) through the use of hydrogen-donating solvents and solvents similar to coal-derived liquids, the water/gas shift reaction, and lower-severity reaction conditions. The underlying assumption of all of the research was that advantage could be taken of the reactivity and specific qualities of LRCs to produce a tetrahydrofuran (THF)-soluble material that might be easier to upgrade than the soluble residuum produced during direct liquefaction of high-rank coals. A multistep approach was taken to produce the THF-soluble material, consisting of (1) preconversion treatment to prepare the coal for solubilization, (2) solubilization of the coal in the solvent, and (3) polishing to complete solubilization of the remaining material. The product of these three steps can then be upgraded during a traditional hydrotreatment step. The results of the EERC`s research indicated that additional studies to develop this process more fully were justified. Two areas were targeted for further research: (1) determination of the recyclability of the solvent used during solubilization and (2) determination of the minimum severity required for hydrotreatment of the liquid product. The current project was funded to investigate these two areas.

  2. Low Temperature Selective Catalytic Reduction of Nitrogen Oxides in Production of Nitric Acid by the Use of Liquid

    Directory of Open Access Journals (Sweden)

    Kabljanac, Ž.

    2011-11-01

    Full Text Available This paper presents the application of low-temperature selective catalytic reduction of nitrous oxides in the tail gas of the dual-pressure process of nitric acid production. The process of selective catalytic reduction is carried out using the TiO2/WO3 heterogeneous catalyst applied on a ceramic honeycomb structure with a high geometric surface area per volume. The process design parameters for nitric acid production by the dual-pressure procedure in a capacity range from 75 to 100 % in comparison with designed capacity for one production line is shown in the Table 1. Shown is the effectiveness of selective catalytic reduction in the temperature range of the tail gas from 180 to 230 °C with direct application of liquid ammonia, without prior evaporation to gaseous state. The results of inlet and outlet concentrations of nitrous oxides in the tail gas of the nitric acid production process are shown in Figures 1 and 2. Figure 3 shows the temperature dependence of the selective catalytic reduction of nitrous oxides expressed as NO2in the tail gas of nitric acid production with the application of a constant mass flow of liquid ammonia of 13,0 kg h-1 and average inlet mass concentration of the nitrous oxides expressed as NO2of 800,0 mgm-3 during 100 % production capacity. The specially designed liquid-ammonia direct-dosing system along with the effective homogenization of the tail gas resulted in emission levels of nitrous oxides expressed as NO2 in tail gas ranging from 100,0 to 185,0 mg m-3. The applied low-temperature selective catalytic reduction of the nitrous oxides in the tail gases by direct use of liquid ammonia is shown in Figure 4. It is shown that low-temperature selective catalytic reduction with direct application of liquid ammonia opens a new opportunity in the reduction of nitrous oxide emissions during nitric acid production without the risk of dangerous ammonium nitrate occurring in the process of subsequent energy utilization of

  3. Solidification in direct metal deposition by LENS processing

    Science.gov (United States)

    Hofmeister, William; Griffith, Michelle

    2001-09-01

    Thermal imaging and metallographic analysis were used to study Laser Engineered Net Shaping (LENS™) processing of 316 stainless steel and H13 tool steel. The cooling rates at the solid-liquid interface were measured over a range of conduction conditions. The length scale of the molten zone controls cooling rates during solidification in direct metal deposition. In LENS processing, the molten zone ranges from 0.5 mm in length to 1.5 mm, resulting in cooling rates at the solid-liquid interface ranging from 200 6,000 Ks-1.

  4. High Dielectric Performance of Solution-Processed Aluminum Oxide-Boron Nitride Composite Films

    Science.gov (United States)

    Yu, Byoung-Soo; Ha, Tae-Jun

    2018-04-01

    The material compositions of oxide films have been extensively investigated in an effort to improve the electrical characteristics of dielectrics which have been utilized in various electronic devices such as field-effect transistors, and storage capacitors. Significantly, solution-based compositions have attracted considerable attention as a highly effective and practical technique to replace vacuum-based process in large-area. Here, we demonstrate solution-processed composite films consisting of aluminum oxide (Al2O3) and boron nitride (BN), which exhibit remarkable dielectric properties through the optimization process. The leakage current of the optimized Al2O3-BN thin films was decreased by a factor of 100 at 3V, compared to pristine Al2O3 thin film without a loss of the dielectric constant or degradation of the morphological roughness. The characterization by X-ray photoelectron spectroscopy measurements revealed that the incorporation of BN with an optimized concentration into the Al2O3 dielectric film reduced the density of oxygen vacancies which act as defect states, thereby improving the dielectric characteristics.

  5. Effect of gamma radiation and storage on cholesterol oxidative stability of raw and processed eggs

    International Nuclear Information System (INIS)

    Medina, Marliz Klaumann Julca

    2005-01-01

    The egg have being studied due its nutritional wealth, for show industrial interest as a raw material, e due its higher cholesterol content. At the same time, due its susceptibility to contamination mainly with salmonella, it is being proposed the ionizing radiation as a hygienic measure. Cholesterol is subject to oxidation, that it is facilitated by several factors, among them ionizing radiation. Formed cholesterol oxides, by its turn, show harmful biological properties to human health, as atherogenicity, cytotoxicity, carcinogenicity and mutagenicity, among others. The objectives of this work were evaluate the effect of ionizing radiation over pH, viscosity and color, besides the oxidative stability of cholesterol, in stored and processed crude eggs. With the increase of used doses (1, 2 and 3 KGy), there was an reduction in the viscosity of the egg white and in the color yolk egg, besides the increase in lipidic oxidation, measured through tiobarbituric acid-reactive substances (TBARS). Specifications as humidity, total lipids and egg yolk cholesterol were not influenced. In the subject of humidity and of cholesterol, there was an meaningful alteration due storage (30 days in 4 deg C). The sum of the analyzed oxides didn't variate with the irradiation, only individually, although it did vary with storage. The thermal processing caused an meaningful increase of TBARS, but despite this, the oxides sum didn't differed between treatments. (author)

  6. The role of saliva in the process of oxidative stress – review of literature

    Directory of Open Access Journals (Sweden)

    Anna Krysińska

    2016-12-01

    Full Text Available Background: Saliva constitutes a first line of defence against free radical-mediated oxidative stress, since the process of mastication and digestion promotes lipid peroxidation. During gingival inflammation, gingival crevicular fluid flow increases the change of saliva composition with products from the inflammatory response, modulating oxidative damages in the oral cavity. Authors review the current literature concerning the reactive oxygen species, oxidants, pro-oxidants and antioxidants in saliva, and methods for assessing the antioxidant capacity of saliva. Comparison of salivary antioxidant status in male and female subjects reveales a significant gender-related difference in saliva composition. The current data demonstrate a significant enhancement of the salivary antioxidant system in juvenile idiopathic arthritis patients. Also patients with chronic renal failure, diabetes and on hemodialysis show increase oxidative stress burden in both serum and saliva. The finding of reduced oral peroxidase levels in smoking subjects may represent a contributory mechanism for initiation and progression of cigarette smoke-related oral diseases such as oral cancer. The results of recent studies indicate that the total antioxidant capacity of saliva decreased in children with HIV infection. Conclusion: Whole saliva may contain simply measured indicators of oxidative processes. This may provide a tool for the development and monitoring of new treatment strategies. A non-invasive determination of the salivary concentrations of antioxidants such as superoxide dismutase (SOD and uric acid (UR allows the evaluation of the defensive capacity of the oral mucosa. Still, there is a need for standardization of methods for saliva sampling and testing protocol.

  7. Sequential application of Fenton and ozone-based oxidation process for the abatement of Ni-EDTA containing nickel plating effluents.

    Science.gov (United States)

    Zhao, Zilong; Liu, Zekun; Wang, Hongjie; Dong, Wenyi; Wang, Wei

    2018-07-01

    Treatment of Ni-EDTA in industrial nickel plating effluents was investigated by integrated application of Fenton and ozone-based oxidation processes. Determination of integrated sequence found that Fenton oxidation presented higher apparent kinetic rate constant of Ni-EDTA oxidation and capacity for contamination load than ozone-based oxidation process, the latter, however, was favorable to guarantee the further mineralization of organic substances, especially at a low concentration. Serial-connection mode of two oxidation processes was appraised, Fenton effluent after treated by hydroxide precipitation and filtration negatively affected the overall performance of the sequential system, as evidenced by the removal efficiencies of Ni 2+ and TOC dropping from 99.8% to 98.7%, and from 74.8% to 66.6%, respectively. As a comparison, O 3 /Fe 2+ oxidation process was proved to be more effective than other processes (e.g. O 3 -Fe 2+ , O 3 /H 2 O 2 /Fe 2+ , O 3 /H 2 O 2 -Fe 2+ ), and the final effluent Ni 2+ concentration could satisfied the discharge standard (Fenton reaction, initial influent pH of 3.0, O 3 dosage of 252 mg L -1 , Fe 2+ of 150 mg L -1 , and reaction time of 30 min for O 3 /Fe 2+ oxidation). Furthermore, pilot-scale test was carried out to study the practical treatability towards the real nickel plating effluent, revealing the effective removal of some other co-existence contaminations. And Fenton reaction has contributed most, with the percentage ranging from 72.41% to 93.76%. The economic cost advantage made it a promising alternative to the continuous Fenton oxidation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Features of the theories of the formation of oxide films on aluminum alloys piston diesel engines with micro-arc oxidation

    Directory of Open Access Journals (Sweden)

    Skryabin M.L.

    2017-12-01

    Full Text Available The article considers one of the promising methods of surface hardening of piston aluminum alloy – microarc oxidation. Described fundamental differences from the micro-arc oxidation anodizing and similar electrochemical processes. The schemes of formation of the barrier and outer layers surface treatment in aqueous electrolytes. Shows the mechanism of formation of the interface. Considers the formation of layers with high porosity and method of exposure. Also describes the exponential dependence of the current density from the electric field in the surface film of the base metal. The role of discharges in the formation of oxide layers on the treated surface. Proposed and described features of the three main theories of formation of oxide films on the surface of the piston: physical and geometrical model of Keller; models of formation of oxide films as a colloid formations and plasma theory (theory of oxidation with the formation of plasma in the zone of oxidation. The features of formation of films in each of the models. For the model of Keller porous oxide film is a close-Packed oxide cell, having the shape of a prism. They are based on a hexagonal prism. These cells have normal orientation to the surface of the metal. In the center of the unit cell there is one season that is a channel, whose size is determined by the composition of the electrolyte, the chemical composition of the base metal and the electrical parameters of the process of oxidation. In the micro-arc oxidation process according to this model, the beginning of the formation of cells occurs with the formation of the barrier layer, passing in the porous layer and, over time, the elonga-tion of the pores, due to the constant etching electrolyte. In the theory of formation of the oxide films as kolloidnyh formations revealed that formation of pores in the film is a result of their growth. The anodic oxide is represented by a directed electric field, the alumina gel colloidal and

  9. Oxide cathodes produced by plasma deposition

    International Nuclear Information System (INIS)

    Scheitrum, G.; Caryotakis, G.; Pi, T.; Umstattd, R.; Brown, I.; Montiero, O.

    1997-01-01

    These are two distinct applications for high-current-density, long-life thermionic cathodes. The first application is as a substitute for explosive emission cathodes used in high-power microwave (HPM) devices being developed for Air Force programs. The second application is in SLAC's X-band klystrons for the Next Linear Collider (NLC). SLAC, UCD, and LBL are developing a plasma deposition process that eliminates the problems with binders, carbonate reduction, peeling, and porosity. The emission layer is deposited using plasma deposition of metallic barium in vacuum with an oxygen background gas. An applied bias voltage drives the oxide plasma into the nickel surface. Since the oxide is deposited directly, it does not have problems with poisoning from a hydrocarbon binder. The density of the oxide layer is increased from the 40--50% for standard oxide cathodes to nearly 100% for plasma deposition

  10. Kinetics and Mechanism of the Reaction of Coherently Synchronized Oxidation and Dehydrogenation of Cyclohexane by Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Aghamammadova S.

    2016-01-01

    Based on this experimental researches, the complex reaction, consisting of parallel-sequential oxidation and dehydrogenation reactions, which are coherently synchronized, proceeds during the process of cyclohexane oxidation with biomimetic catalyst. Depending on the reaction parameters it is possible to deliberately adjust the direction of oxidation reaction and reaction rate.

  11. Development of chemical and biological processes for production of bioethanol. Optimization of the wet oxidation process and characterization of products

    Energy Technology Data Exchange (ETDEWEB)

    Bjerre, A B; Skammelsen Schmidt, A

    1997-02-01

    The combination of the wet oxidation pretreatment process and alkaline hydrolysis was investigated in order to efficiently solubilize the hemicellulose, degrade the lignin, and open the solid crystalline cellulose structure of wheat straw lignocellulose without generating fermentation inhibitors. The effects of temperature, oxygen pressure, reaction time, and concentration of straw were evaluated. The degree of lignin degradation and hemicellulose solubilization increased with the reaction temperature and time. The optimum conditions were 15 minutes at 185 deg. C, producing 9.8 g/L hemicellulose. For quantification of the solubilized hemicellulose the best overall acid hydrolysis was obtained by treatment with 4 %w/v sulfuric acid for 10 minutes. The Aminex HPX-87H column was less sensitive towards impurities than the Aminex HPX-87P column. HPX-87H gave improved recovery and reproducibility, and was chosen for routine quantification of hydrolyzed hemicellulose sugars. The purity of the solid cellulose fraction also improved with higher temperature. The optimum condition for obtaining enzymatic convertible cellulose (90%) was 10 minutes at 170 deg. C using a high carbonate concentration. The hemicellulose yield and recovery were significantly reduced under these conditions indicating that a simultaneous optimal utilization of the hemicellulose and cellulose was difficult. The oxygen pressure and sodium carbonate concentration had little effect on the solubilization of hemicellulose, however, by combining wet oxidation with alkaline hydrolysis the formation of 2-furfural, a known microbial inhibitor, was minimal. Much more hemicellulose and lignin were solubilized from the straw by wet oxidation than by steaming(an alternative process). More cellulose was solubilized (and degraded) by steaming than by wet oxidation. Overall carbohydrates `losses` of 20.1% for steaming and 16.2% for wet oxidation were found. More 2-furfural was formed by steaming than by wet oxidation.

  12. Development of chemical and biological processes for production of bioethanol. Optimization of the wet oxidation process and characterization of products

    International Nuclear Information System (INIS)

    Bjerre, A.B.; Skammelsen Schmidt, A.

    1997-02-01

    The combination of the wet oxidation pretreatment process and alkaline hydrolysis was investigated in order to efficiently solubilize the hemicellulose, degrade the lignin, and open the solid crystalline cellulose structure of wheat straw lignocellulose without generating fermentation inhibitors. The effects of temperature, oxygen pressure, reaction time, and concentration of straw were evaluated. The degree of lignin degradation and hemicellulose solubilization increased with the reaction temperature and time. The optimum conditions were 15 minutes at 185 deg. C, producing 9.8 g/L hemicellulose. For quantification of the solubilized hemicellulose the best overall acid hydrolysis was obtained by treatment with 4 %w/v sulfuric acid for 10 minutes. The Aminex HPX-87H column was less sensitive towards impurities than the Aminex HPX-87P column. HPX-87H gave improved recovery and reproducibility, and was chosen for routine quantification of hydrolyzed hemicellulose sugars. The purity of the solid cellulose fraction also improved with higher temperature. The optimum condition for obtaining enzymatic convertible cellulose (90%) was 10 minutes at 170 deg. C using a high carbonate concentration. The hemicellulose yield and recovery were significantly reduced under these conditions indicating that a simultaneous optimal utilization of the hemicellulose and cellulose was difficult. The oxygen pressure and sodium carbonate concentration had little effect on the solubilization of hemicellulose, however, by combining wet oxidation with alkaline hydrolysis the formation of 2-furfural, a known microbial inhibitor, was minimal. Much more hemicellulose and lignin were solubilized from the straw by wet oxidation than by steaming(an alternative process). More cellulose was solubilized (and degraded) by steaming than by wet oxidation. Overall carbohydrates 'losses' of 20.1% for steaming and 16.2% for wet oxidation were found. More 2-furfural was formed by steaming than by wet oxidation

  13. Revisiting the Relationship between the Processing of Gaze Direction and the Processing of Facial Expression

    Science.gov (United States)

    Ganel, Tzvi

    2011-01-01

    There is mixed evidence on the nature of the relationship between the perception of gaze direction and the perception of facial expressions. Major support for shared processing of gaze and expression comes from behavioral studies that showed that observers cannot process expression or gaze and ignore irrelevant variations in the other dimension.…

  14. Mathematical modeling of nitrous oxide production in an anaerobic/oxic/anoxic process.

    Science.gov (United States)

    Ding, Xiaoqian; Zhao, Jianqiang; Hu, Bo; Chen, Ying; Ge, Guanghuan; Li, Xiaoling; Wang, Sha; Gao, Kun; Tian, Xiaolei

    2016-12-01

    This study incorporates three currently known nitrous oxide (N 2 O) production pathways: ammonium-oxidizing bacteria (AOB) denitrification, incomplete hydroxylamine (NH 2 OH) oxidation, and heterotrophic denitrification on intracellular polymers, into a mathematical model to describe N 2 O production in an anaerobic/oxic/anoxic (AOA) process for the first time. The developed model was calibrated and validated by four experimental cases, then evaluated by two independent anaerobic/aerobic (AO) studies from literature. The modeling results displayed good agreement with the measured data. N 2 O was primarily generated in the aerobic stage by AOB denitrification (67.84-81.64%) in the AOA system. Smaller amounts of N 2 O were produced via incomplete NH 2 OH oxidation (15.61-32.17%) and heterotrophic denitrification on intracellular polymers (0-12.47%). The high nitrite inhibition on N 2 O reductase led to the increased N 2 O accumulation in heterotrophic denitrification on intracellular polymers. The new model was capable of modeling nitrification-denitrification dynamics and heterotrophic denitrification on intracellular polymers in the AOA system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation.

    Science.gov (United States)

    Mirza-Aghayan, Maryam; Tavana, Mahdieh Molaee; Boukherroub, Rabah

    2016-03-01

    Sulfonated reduced graphene oxide nanosheets (rGO-SO3H) were prepared by grafting sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide (rGO) under sonochemical conditions. rGO-SO3H catalyst was characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). rGO-SO3H catalyst was successfully applied as a reusable solid acid catalyst for the direct amidation of carboxylic acids with amines into the corresponding amides under ultrasonic irradiation. The direct sonochemical amidation of carboxylic acid takes place under mild conditions affording in good to high yields (56-95%) the corresponding amides in short reaction times. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Process for the enhanced capture of heavy metal emissions

    Science.gov (United States)

    Biswas, Pratim; Wu, Chang-Yu

    2001-01-01

    This invention is directed to a process for forming a sorbent-metal complex. The process includes oxidizing a sorbent precursor and contacting the sorbent precursor with a metallic species. The process further includes chemically reacting the sorbent precursor and the metallic species, thereby forming a sorbent-metal complex. In one particular aspect of the invention, at least a portion of the sorbent precursor is transformed into sorbent particles during the oxidation step. These sorbent particles then are contacted with the metallic species and chemically reacted with the metallic species, thereby forming a sorbent-metal complex. Another aspect of the invention is directed to a process for forming a sorbent metal complex in a combustion system. The process includes introducing a sorbent precursor into a combustion system and subjecting the sorbent precursor to an elevated temperature sufficient to oxidize the sorbent precursor and transform the sorbent precursor into sorbent particles. The process further includes contacting the sorbent particles with a metallic species and exposing the sorbent particles and the metallic species to a complex-forming temperature whereby the metallic species reacts with the sorbent particles thereby forming a sorbent-metal complex under UV irradiation.

  17. Reduction Behaviors of Carbon Composite Iron Oxide Briquette Under Oxidation Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Woo; Kim, Kang-Min; Kwon, Jae-Hong; Han, Jeong-Whan [Inha University, Incheon (Korea, Republic of); Son, Sang-Han [POSCO, Pohang (Korea, Republic of)

    2017-01-15

    The carbon composite iron oxide briquette (CCB) is considered a potential solution to the upcoming use of low grade iron resources in the ironmaking process. CCB is able to reduce raw material cost by enabling the use of low grade powdered iron ores and coal. Additionally, the fast reduction of iron oxides by direct contact with coal can be utilized. In this study, the reduction behaviors of CCB were investigated in the temperature range of 200-1200 ℃ under oxidizing atmosphere. Briquettes were prepared by mixing iron ore and coal in a weight ratio of 8:2. Then reduction experiments were carried out in a mixed gas atmosphere of N{sub 2}, O{sub 2}, and CO{sub 2}. Compressive strength tests and quantitative analysis were performed by taking samples at each target temperature. In addition, the reduction degree depending on the reaction time was evaluated by off-gas analysis during the reduction test. It was found that the compressive strength and the metallization degree of the reduced briquettes increased with increases in the reaction temperature and holding time. However, it tended to decrease when the re-oxidation phenomenon was caused by injected oxygen. The degree of reduction reached a maximum value in 26 minutes. Therefore, the re-oxidation phenomenon becomes dominant after 26 minutes.

  18. Solar photoassisted advanced oxidation process of azo dyes.

    Science.gov (United States)

    Prato-Garcia, D; Buitrón, G

    2009-01-01

    Advanced oxidation processes assisted with natural solar radiation in CPC type reactors (parabolic collector compound), was applied for the degradation of three azo dyes: acid orange (AO7), acid red 151 (AR151) and acid blue 113 (AB113). Fenton, Fenton like and ferrioxalate-type complexes showed to be effective for degrade the azo linkage and moieties in different extensions. Initially, the best dose of reagents (Fe(3 + )-H(2)O(2)) was determined through a factorial experimental design, next, using response surface methodologies, the reagent consumption was reduced up to 40%, maintaining in all cases high decolourisation percentages (>98%) after 60 min. of phototreatment. In this work, it was also studied the effect of concentration changes of the influent between 100-300 mg/L and the operation of the photocatalytic process near neutral conditions (pH 6.0-6.5) by using ferrioxalate type complex (FeOx).

  19. Transparent and Flexible Zinc Tin Oxide Thin Film Transistors and Inverters using Low-pressure Oxygen Annealing Process

    Science.gov (United States)

    Lee, Kimoon; Kim, Yong-Hoon; Kim, Jiwan; Oh, Min Suk

    2018-05-01

    We report on the transparent and flexible enhancement-load inverters which consist of zinc tin oxide (ZTO) thin film transistors (TFTs) fabricated at low process temperature. To control the electrical characteristics of oxide TFTs by oxygen vacancies, we applied low-pressure oxygen rapid thermal annealing (RTA) process to our devices. When we annealed the ZTO TFTs in oxygen ambient of 2 Torr, they showed better electrical characteristics than those of the devices annealed in the air ambient of 760 Torr. To realize oxide thin film transistor and simple inverter circuits on flexible substrate, we annealed the devices in O2 of 2 Torr at 150° C and could achieve the decent electrical properties. When we used transparent conductive oxide electrodes such as indium zinc oxide (IZO) and indium tin oxide (ITO), our transparent and flexible inverter showed the total transmittance of 68% in the visible range and the voltage gain of 5. And the transition voltage in voltage transfer curve was located well within the range of operation voltage.

  20. Lignocellulosic Biomass Transformations via Greener Oxidative Pretreatment Processes: Access to Energy and Value-Added Chemicals.

    Science.gov (United States)

    Den, Walter; Sharma, Virender K; Lee, Mengshan; Nadadur, Govind; Varma, Rajender S

    2018-01-01

    Anthropogenic climate change, principally induced by the large volume of carbon dioxide emission from the global economy driven by fossil fuels, has been observed and scientifically proven as a major threat to civilization. Meanwhile, fossil fuel depletion has been identified as a future challenge. Lignocellulosic biomass in the form of organic residues appears to be the most promising option as renewable feedstock for the generation of energy and platform chemicals. As of today, relatively little bioenergy comes from lignocellulosic biomass as compared to feedstock such as starch and sugarcane, primarily due to high cost of production involving pretreatment steps required to fragment biomass components via disruption of the natural recalcitrant structure of these rigid polymers; low efficiency of enzymatic hydrolysis of refractory feedstock presents a major challenge. The valorization of lignin and cellulose into energy products or chemical products is contingent on the effectiveness of selective depolymerization of the pretreatment regime which typically involve harsh pyrolytic and solvothermal processes assisted by corrosive acids or alkaline reagents. These unselective methods decompose lignin into many products that may not be energetically or chemically valuable, or even biologically inhibitory. Exploring milder, selective and greener processes, therefore, has become a critical subject of study for the valorization of these materials in the last decade. Efficient alternative activation processes such as microwave- and ultrasound irradiation are being explored as replacements for pyrolysis and hydrothermolysis, while milder options such as advanced oxidative and catalytic processes should be considered as choices to harsher acid and alkaline processes. Herein, we critically abridge the research on chemical oxidative techniques for the pretreatment of lignocellulosics with the explicit aim to rationalize the objectives of the biomass pretreatment step and the