WorldWideScience

Sample records for direct observation instrument

  1. Measuring Medical Housestaff Teamwork Performance Using Multiple Direct Observation Instruments: Comparing Apples and Apples.

    Science.gov (United States)

    Weingart, Saul N; Yaghi, Omar; Wetherell, Matthew; Sweeney, Megan

    2018-04-10

    To examine the composition and concordance of existing instruments used to assess medical teams' performance. A trained observer joined 20 internal medicine housestaff teams for morning work rounds at Tufts Medical Center, a 415-bed Boston teaching hospital, from October through December 2015. The observer rated each team's performance using 9 teamwork observation instruments that examined domains including team structure, leadership, situation monitoring, mutual support, and communication. Observations recorded on paper forms were stored electronically. Scores were normalized from 1 (low) to 5 (high) to account for different rating scales. Overall mean scores were calculated and graphed; weighted scores adjusted for the number of items in each teamwork domain. Teamwork scores were analyzed using t-tests, pair-wise correlations, and the Kruskal-Wallis statistic, and team performance was compared across instruments by domain. The 9 tools incorporated 5 major domains, with 5-35 items per instrument for a total of 161 items per observation session. In weighted and unweighted analyses, the overall teamwork performance score for a given team on a given day varied by instrument. While all of the tools identified the same low outlier, high performers on some instruments were low performers on others. Inconsistent scores for a given team across instruments persisted in domain-level analyses. There was substantial variation in the rating of individual teams assessed concurrently by a single observer using multiple instruments. Since existing teamwork observation tools do not yield concordant assessments, researchers should create better tools for measuring teamwork performance.

  2. Human dorsal striatum encodes prediction errors during observational learning of instrumental actions.

    Science.gov (United States)

    Cooper, Jeffrey C; Dunne, Simon; Furey, Teresa; O'Doherty, John P

    2012-01-01

    The dorsal striatum plays a key role in the learning and expression of instrumental reward associations that are acquired through direct experience. However, not all learning about instrumental actions require direct experience. Instead, humans and other animals are also capable of acquiring instrumental actions by observing the experiences of others. In this study, we investigated the extent to which human dorsal striatum is involved in observational as well as experiential instrumental reward learning. Human participants were scanned with fMRI while they observed a confederate over a live video performing an instrumental conditioning task to obtain liquid juice rewards. Participants also performed a similar instrumental task for their own rewards. Using a computational model-based analysis, we found reward prediction errors in the dorsal striatum not only during the experiential learning condition but also during observational learning. These results suggest a key role for the dorsal striatum in learning instrumental associations, even when those associations are acquired purely by observing others.

  3. A Manual Transportable Instrument Platform for Ground-Based Spectro-Directional Observations (ManTIS and the Resultant Hyperspectral Field Goniometer System

    Directory of Open Access Journals (Sweden)

    Marcel Buchhorn

    2013-11-01

    Full Text Available This article presents and technically describes a new field spectro-goniometer system for the ground-based characterization of the surface reflectance anisotropy under natural illumination conditions developed at the Alfred Wegener Institute (AWI. The spectro-goniometer consists of a Manual Transportable Instrument platform for ground-based Spectro-directional observations (ManTIS, and a hyperspectral sensor system. The presented measurement strategy shows that the AWI ManTIS field spectro-goniometer can deliver high quality hemispherical conical reflectance factor (HCRF measurements with a pointing accuracy of ±6 cm within the constant observation center. The sampling of a ManTIS hemisphere (up to 30° viewing zenith, 360° viewing azimuth needs approx. 18 min. The developed data processing chain in combination with the software used for the semi-automatic control provides a reliable method to reduce temporal effects during the measurements. The presented visualization and analysis approaches of the HCRF data of an Arctic low growing vegetation showcase prove the high quality of spectro-goniometer measurements. The patented low-cost and lightweight ManTIS instrument platform can be customized for various research needs and is available for purchase.

  4. Quality of life among dots (directly observed treatment short course ...

    African Journals Online (AJOL)

    Quality of life among dots (directly observed treatment short course) cured patients: ... which is a specific instrument and covers four domains of health i.e. physical, ... thereby necessitating measures for the improvement of the overall health of ...

  5. Direct observation of two dimensional trace gas distributions with an airborne Imaging DOAS instrument

    Directory of Open Access Journals (Sweden)

    K.-P. Heue

    2008-11-01

    Full Text Available In many investigations of tropospheric chemistry information about the two dimensional distribution of trace gases on a small scale (e.g. tens to hundreds of metres is highly desirable. An airborne instrument based on imaging Differential Optical Absorption Spectroscopy has been built to map the two dimensional distribution of a series of relevant trace gases including NO2, HCHO, C2H2O2, H2O, O4, SO2, and BrO on a scale of 100 m.

    Here we report on the first tests of the novel aircraft instrument over the industrialised South African Highveld, where large variations in NO2 column densities in the immediate vicinity of several sources e.g. power plants or steel works, were measured. The observed patterns in the trace gas distribution are interpreted with respect to flux estimates, and it is seen that the fine resolution of the measurements allows separate sources in close proximity to one another to be distinguished.

  6. Jefferson Teamwork Observation Guide (JTOG): An Instrument to Observe Teamwork Behaviors.

    Science.gov (United States)

    Lyons, Kevin J; Giordano, Carolyn; Speakman, Elizabeth; Smith, Kellie; Horowitz, June A

    2016-01-01

    Interprofessional education (IPE) is becoming an integral part of the education of health professions students. However, teaching students to become successful members of interprofessional teams is complex, and it is important for students to learn the combinations of skills necessary for teams to function effectively. There are many instruments available to measure many features related to IPE. However, these instruments are often too cumbersome to use in an observational situation since they tend to be lengthy and contain many abstract characteristics that are difficult to identify. The Jefferson Teamwork Observation Guide (JTOG) is a short tool that was created for students early in their educational program to observe teams in action with a set of guidelines to help them focus their observation on behaviors indicative of good teamwork. The JTOG was developed over a 2-year period based on student and clinician feedback and the input of experts in IPE. While initially developed as a purely educational tool for prelicensure students, it is becoming clear that it is an easy-to-use instrument that assesses the behavior of clinicians in practice.

  7. Lidar instruments for ESA Earth observation missions

    Science.gov (United States)

    Hélière, Arnaud; Armandillo, Errico; Durand, Yannig; Culoma, Alain; Meynart, Roland

    2017-11-01

    The idea of deploying a lidar system on an Earthorbiting satellite stems from the need for continuously providing profiles of our atmospheric structure with high accuracy and resolution and global coverage. Interest in this information for climatology, meteorology and the atmospheric sciences in general is huge. Areas of application range from the determination of global warming and greenhouse effects, to monitoring the transport and accumulation of pollutants in the different atmospheric regions (such as the recent fires in Southeast Asia), to the assessment of the largely unknown microphysical properties and the structural dynamics of the atmosphere itself. Spaceborne lidar systems have been the subject of extensive investigations by the European Space Agency since mid 1970's, resulting in mission and instrument concepts, such as ATLID, the cloud backscatter lidar payload of the EarthCARE mission, ALADIN, the Doppler wind lidar of the Atmospheric Dynamics Mission (ADM) and more recently a water vapour Differential Absorption Lidar considered for the WALES mission. These studies have shown the basic scientific and technical feasibility of spaceborne lidars, but they have also demonstrated their complexity from the instrument viewpoint. As a result, the Agency undertook technology development in order to strengthen the instrument maturity. This is the case for ATLID, which benefited from a decade of technology development and supporting studies and is now studied in the frame of the EarthCARE mission. ALADIN, a Direct Detection Doppler Wind Lidar operating in the Ultra -Violet, will be the 1st European lidar to fly in 2007 as payload of the Earth Explorer Core Mission ADM. WALES currently studied at the level of a phase A, is based upon a lidar operating at 4 wavelengths in near infrared and aims to profile the water vapour in the lower part of the atmosphere with high accuracy and low bias. Lastly, the European Space Agency is extending the lidar instrument field

  8. Low-cost coding of directivity information for the recording of musical instruments

    Science.gov (United States)

    Braasch, Jonas; Martens, William L.; Woszczyk, Wieslaw

    2004-05-01

    Most musical instruments radiate sound according to characteristic spatial directivity patterns. These patterns are usually not only strongly frequency dependent, but also time-variant functions of various parameters of the instrument, such as pitch and the playing technique applied (e.g., plucking versus bowing of string instruments). To capture the directivity information when recording an instrument, Warusfel and Misdariis (2001) proposed to record an instrument using four channels, one for the monopole and the others for three orthogonal dipole parts. In the new recording setup presented here, it is proposed to store one channel at a high sampling frequency, along with directivity information that is updated only every few milliseconds. Taking the binaural sluggishness of the human auditory system into account in this way provides a low-cost coding scheme for subsequent reproduction of time-variant directivity patterns.

  9. Direct concurrent comparison of multiple pediatric acute asthma scoring instruments.

    Science.gov (United States)

    Johnson, Michael D; Nkoy, Flory L; Sheng, Xiaoming; Greene, Tom; Stone, Bryan L; Garvin, Jennifer

    2017-09-01

    Appropriate delivery of Emergency Department (ED) treatment to children with acute asthma requires clinician assessment of acute asthma severity. Various clinical scoring instruments exist to standardize assessment of acute asthma severity in the ED, but their selection remains arbitrary due to few published direct comparisons of their properties. Our objective was to test the feasibility of directly comparing properties of multiple scoring instruments in a pediatric ED. Using a novel approach supported by a composite data collection form, clinicians categorized elements of five scoring instruments before and after initial treatment for 48 patients 2-18 years of age with acute asthma seen at the ED of a tertiary care pediatric hospital ED from August to December 2014. Scoring instruments were compared for inter-rater reliability between clinician types and their ability to predict hospitalization. Inter-rater reliability between clinician types was not different between instruments at any point and was lower (weighted kappa range 0.21-0.55) than values reported elsewhere. Predictive ability of most instruments for hospitalization was higher after treatment than before treatment (p < 0.05) and may vary between instruments after treatment (p = 0.054). We demonstrate the feasibility of comparing multiple clinical scoring instruments simultaneously in ED clinical practice. Scoring instruments had higher predictive ability for hospitalization after treatment than before treatment and may differ in their predictive ability after initial treatment. Definitive conclusions about the best instrument or meaningful comparison between instruments will require a study with a larger sample size.

  10. Direct payments as an instrument of the environmental policy

    Directory of Open Access Journals (Sweden)

    Adrian Sadłowski

    2011-01-01

    Full Text Available Agriculture is the area of human activity that is accompanied by the formation of positive and negative external environmental effects. In order to motivate farmers to conduct production activities in a way that reduces the negative impact of these activities on the environment, the so-called principle of cross compliance has been incorporated into the direct support system. This study characterises the area payments as an instrument of the environmental policy and is a review of the European Commission’s different proposals for the reform of direct payments through the prism of environmental functions of this instrument.

  11. Participant observation of time allocation, direct patient contact and simultaneous activities in hospital physicians

    Directory of Open Access Journals (Sweden)

    Zupanc Andrea

    2009-06-01

    Full Text Available Abstract Background Hospital physicians' time is a critical resource in medical care. Two aspects are of interest. First, the time spent in direct patient contact – a key principle of effective medical care. Second, simultaneous task performance ('multitasking' which may contribute to medical error, impaired safety behaviour, and stress. There is a call for instruments to assess these aspects. A preliminary study to gain insight into activity patterns, time allocation and simultaneous activities of hospital physicians was carried out. Therefore an observation instrument for time-motion-studies in hospital settings was developed and tested. Methods 35 participant observations of internists and surgeons of a German municipal 300-bed hospital were conducted. Complete day shifts of hospital physicians on wards, emergency ward, intensive care unit, and operating room were continuously observed. Assessed variables of interest were time allocation, share of direct patient contact, and simultaneous activities. Inter-rater agreement of Kappa = .71 points to good reliability of the instrument. Results Hospital physicians spent 25.5% of their time at work in direct contact with patients. Most time was allocated to documentation and conversation with colleagues and nursing staff. Physicians performed parallel simultaneous activities for 17–20% of their work time. Communication with patients, documentation, and conversation with colleagues and nursing staff were the most frequently observed simultaneous activities. Applying logit-linear analyses, specific primary activities increase the probability of particular simultaneous activities. Conclusion Patient-related working time in hospitals is limited. The potential detrimental effects of frequently observed simultaneous activities on performance outcomes need further consideration.

  12. OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. I. INSTRUMENT DESCRIPTION AND FIRST RESULTS

    International Nuclear Information System (INIS)

    Horch, Elliott P.; Veillette, Daniel R.; Shah, Sagar C.; O'Rielly, Grant V.; Baena Galle, Roberto; Van Altena, William F.

    2009-01-01

    First results of a new speckle imaging system, the Differential Speckle Survey Instrument, are reported. The instrument is designed to take speckle data in two filters simultaneously with two independent CCD imagers. This feature results in three advantages over other speckle cameras: (1) twice as many frames can be obtained in the same observation time which can increase the signal-to-noise ratio for astrometric measurements, (2) component colors can be derived from a single observation, and (3) the two colors give substantial leverage over atmospheric dispersion, allowing for subdiffraction-limited separations to be measured reliably. Fifty-four observations are reported from the first use of the instrument at the Wisconsin-Indiana-Yale-NOAO 3.5 m Telescope 9 The WIYN Observatory is a joint facility of the University of Wisconsin-Madison, Indiana University, Yale University, and the National Optical Astronomy Observatories. in 2008 September, including seven components resolved for the first time. These observations are used to judge the basic capabilities of the instrument.

  13. The Domain Five Observation Instrument: A Competency-Based Coach Evaluation Tool

    Science.gov (United States)

    Shangraw, Rebecca

    2017-01-01

    The Domain Five Observation Instrument (DFOI) is a competency-based observation instrument recommended for sport leaders or researchers who wish to evaluate coaches' instructional behaviors. The DFOI includes 10 behavior categories and four timed categories that encompass 34 observable instructional benchmarks outlined in domain five of the…

  14. Analysis the fatigue using pro taper rotary instruments durin instrumentation of extrated mandibular premolars. SEM observation.

    OpenAIRE

    Siragusa, Martha; Racciatti, Gabriela; García, María

    2007-01-01

    Recibido: Marzo 2007 Aceptado: Julio 2007 Siragusa, Martha; Racciatti, Gabriela y García, María. Analysis the fatigue using pro taper rotary instruments durin instrumentation of extrated mandibular premolars. SEM observation. Electronic Journal of Endodontics Rosario [Online], Volumen 2 Número 13. [octubre 2007]. http://www.endojournal.com.ar/journal/index.php/ejer/article/view/44. ISSN 1666-6143.

  15. The influence of the directivity of musical instruments in a room

    DEFF Research Database (Denmark)

    Otondo, Felipe; Rindel, Jens Holger

    2004-01-01

    Measurements of the directivity of musical instruments are presented as part of the study of the influence of their representation in room acoustic simulations and auralizations. Pairs of measured and averaged directivities have been used both for room simulation comparisons and as a basis...... for listening experiments with auralizations. Room simulation results show a clear influence of the changes in the representation directivity on the distribution of acoustical parameters in the room. The results of the listening experiments with auralizations show that some changes produced by directivity...

  16. Measurement of proton momentum distributions using a direct geometry instrument

    International Nuclear Information System (INIS)

    Senesi, R; Andreani, C; Kolesnikov, A I

    2014-01-01

    We report the results of inelastic neutron scattering measurements on bulk water and ice using the direct geometry SEQUOIA chopper spectrometer at the Spallation Neutron Source (USA), with incident energy E i = 6 eV. In this set up the measurements allow to access the Deep Inelastic Neutron Scattering regime. The scattering is centred at the proton recoil energy given by the impulse approximation, and the shape of the recoil peak conveys information on the proton momentum distribution in the system. The comparison with the performance of inverse geometry instruments, such as VESUVIO at the ISIS source (UK), shows that complementary information can be accessed by the use of direct and inverse geometry instruments. Analysis of the neutron Compton profiles shows that the proton kinetic energy in ice at 271 K is larger than in room temperature liquid water, in agreement with previous measurements on VESUVIO

  17. Multi-instrument observations of nightside plasma patches under conditions of IMF Bz positive

    Directory of Open Access Journals (Sweden)

    V. S. C. Howells

    2008-08-01

    Full Text Available Results are presented from two multi-instrument case studies showing patches of cold, long-lived plasma in the winter nightside ionosphere during times when the z-component of the Interplanetary Magnetic Field (IMF Bz was positive. These enhancements were coincident with the antisunward convective plasma drift, flowing from polar to nightside auroral latitudes. In the first case, on 5 December 2005 with IMF By negative, two regions of enhanced electron density were observed extended in MLT in the magnetic midnight sector separated by lower densities near midnight. It is likely that the earlier enhancement originated on the dayside near magnetic noon and was transported to the nightside sector in the convective flow, whilst the later feature originated in the morning magnetic sector. The lower densities separating the two enhancements were a consequence of a pair of lobe cells essentially blocking the direct antisunward cross polar flow from the dayside. A second case study on 4 February 2006 with IMF By positive revealed a single nightside enhancement likely to have originated in the morning magnetic sector. These multi-instrument investigations, incorporating observations by the EISCAT radar facility, the SuperDARN network and radio tomography, reveal that plasma flowing from the dayside can play a significant role in the nightside ionosphere under conditions of IMF Bz positive. The observations are reinforced by simulations of flux-tube transport and plasma decay.

  18. Direct payments as an instrument of the environmental policy Płatności obszarowe jako instrument polityki ochrony środowiska

    Directory of Open Access Journals (Sweden)

    Adrian Sadłowski

    2011-12-01

    Full Text Available Agriculture is the area of human activity that is accompanied by the formation of positive and negative external environmental effects. In order to motivate farmers to conduct production activities in a way that reduces the negative impact of these activities on the environment, the so-called principle of cross compliance has been incorporated into the direct support system. This study characterises the area payments as an instrument of the environmental policy and is a review of the European Commission’s different proposals for the reform of direct payments through the prism of environmental functions of this instrument.

  19. PERSPECTIVE DIRECTIONS OF DEVELOPMENT OF HARD-ALLOY INSTRUMENT FOR WIRE DRAWING

    Directory of Open Access Journals (Sweden)

    A. N. Savenok

    2007-01-01

    Full Text Available The new directions and developments, which are more perspective f o r  the development of  the wiredrawing instrument, possessing necessary complex of  physical-mechanical characteristics, are examined.

  20. Attainment of students’ conception in magnetic fields by using of direct observation and symbolic language ability

    Science.gov (United States)

    Desy Fatmaryanti, Siska; Suparmi; Sarwanto; Ashadi

    2017-11-01

    This study focuses on description attainment of students’ conception in the magnetic field. The conception was based by using of direct observation and symbolic language ability. The method used is descriptive quantitative research. The subject of study was about 86 students from 3 senior high school at Purworejo. The learning process was done by guided inquiry model. During the learning, students were required to actively investigate the concept of a magnetic field around a straight wire electrical current Data retrieval was performed using an instrument in the form of a multiple choice test reasoned and observation during the learning process. There was four indicator of direct observation ability and four indicators of symbolic language ability to grouping category of students conception. The results of average score showed that students conception about the magnitude more better than the direction of magnetic fields in view of symbolic language. From the observation, we found that students could draw the magnetic fields line not from a text book but their direct observation results. They used various way to get a good accuracy of observation results. Explicit recommendations are presented in the discussion section at the end of this paper.

  1. Automation of processing and photometric data analysis for transiting exoplanets observed with ESO NIR instrument HAWK-I

    Science.gov (United States)

    Blažek, M.; Kabáth, P.; Klocová, T.; Skarka, M.

    2018-04-01

    Nowadays, when amount of data still increases, it is necessary to automatise their processing. State-of-the-art instruments are capable to produce even tens of thousands of images during a single night. One of them is HAWK-I that is a part of Very Large Telescope of European Southern Observatory. This instrument works in near-infrared band. In my Master thesis, I dealt with developing a pipeline to process data obtained by the instrument. It is written in Python programming language using commands of IRAF astronomical software and it is developed directly for "Fast Photometry Mode" of HAWK-I. In this mode, a large number of data has been obtained during secondary eclipses of exoplanets by their host star. The pipeline was tested by a data set from sorting of the images to making a light curve. The data of WASP-18 system contained almost 40 000 images observed by using a filter centered at 2.09 μm wavelength and there is a plan to process other data sets. A goal of processing of WASP-18 and the other data sets is consecutive analysis of exoplanetary atmospheres of the observed systems.

  2. Weather Instruments.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  3. Constraining the temperature history of the past millennium using early instrumental observations

    Directory of Open Access Journals (Sweden)

    P. Brohan

    2012-10-01

    Full Text Available The current assessment that twentieth-century global temperature change is unusual in the context of the last thousand years relies on estimates of temperature changes from natural proxies (tree-rings, ice-cores, etc. and climate model simulations. Confidence in such estimates is limited by difficulties in calibrating the proxies and systematic differences between proxy reconstructions and model simulations. As the difference between the estimates extends into the relatively recent period of the early nineteenth century it is possible to compare them with a reliable instrumental estimate of the temperature change over that period, provided that enough early thermometer observations, covering a wide enough expanse of the world, can be collected.

    One organisation which systematically made observations and collected the results was the English East India Company (EEIC, and their archives have been preserved in the British Library. Inspection of those archives revealed 900 log-books of EEIC ships containing daily instrumental measurements of temperature and pressure, and subjective estimates of wind speed and direction, from voyages across the Atlantic and Indian Oceans between 1789 and 1834. Those records have been extracted and digitised, providing 273 000 new weather records offering an unprecedentedly detailed view of the weather and climate of the late eighteenth and early nineteenth centuries.

    The new thermometer observations demonstrate that the large-scale temperature response to the Tambora eruption and the 1809 eruption was modest (perhaps 0.5 °C. This provides an out-of-sample validation for the proxy reconstructions – supporting their use for longer-term climate reconstructions. However, some of the climate model simulations in the CMIP5 ensemble show much larger volcanic effects than this – such simulations are unlikely to be accurate in this respect.

  4. Creating and purifying an observation instrument using the generalizability theory

    Directory of Open Access Journals (Sweden)

    Elena Rodríguez-Naveiras

    2013-12-01

    Full Text Available The control of quality of data it is one of the most relevant aspects in observational researches. The Generalizability Theory (GT provides a method of analysis that allows us to isolate the various sources of error measurement. At the same time, it helps us to determine the extent to which various factors can change and analyze the effect on the generalizability coefficient. In the work shown here, there are two studies aimed to creating and purifying an observation instrument, Observation Protocol in the Teaching Functions (Protocolo de Funciones Docentes, PROFUNDO, v1 and v2, for behavioral assessment which has been carried out by instructors in a social-affective out-of-school program. The reliability and homogeneity studies are carried out once the instrument has been created and purified. The reliability study will be done through the GT method taking both codes (c and agents (a as differential facets in. The generalization will be done through observers using a crossed multi-faceted design (A × O × C. In the homogeneity study the generalization facet will be done through codes using the same design that the reliability study.

  5. Design and validation of an observational instrument for technical and tactical actions in beach volleyball

    Directory of Open Access Journals (Sweden)

    José Manuel Palao

    2015-06-01

    Full Text Available Technical and tactical actions determine performance in beach volleyball. This research develops and tests an instrument to monitor and evaluate the manner of execution and efficacy of the actions in beach volleyball. The purpose of this paper was to design and validate an observational instrument to analyze technical and tactical actions in beach volleyball. The instrument collects information regarding: a information about the match (context, b information about game situations, c information about technical situations (serve, reception, set, attack, block, and court defense in relation to player execution, role, manner of execution, execution zone, and efficacy, and d information about the result of the play (win-lose and way point is obtained. Instrument design and validation was done in seven stages: a review of literature and consultation of experts; b pilot observation and data analysis; c expert review of instrument (qualitative and quantitative evaluation; d observer training test; e expert review of instrument (content validity; f measurement of the ability of the instrument to discriminate the result of the set; and g measurement of the ability of the instrument to differentiate between competition age groups. The results show that the instrument allows for obtaining objective and valid information about the players and team from offensive and defensive technical and tactical actions, as well as indirectly from physical actions. The instrument can be used, in its entirety or partially, for researching and coaching purposes.

  6. Development of an instrument for direct ozone production rate measurements: measurement reliability and current limitations

    Science.gov (United States)

    Sklaveniti, Sofia; Locoge, Nadine; Stevens, Philip S.; Wood, Ezra; Kundu, Shuvashish; Dusanter, Sébastien

    2018-02-01

    Ground-level ozone (O3) is an important pollutant that affects both global climate change and regional air quality, with the latter linked to detrimental effects on both human health and ecosystems. Ozone is not directly emitted in the atmosphere but is formed from chemical reactions involving volatile organic compounds (VOCs), nitrogen oxides (NOx = NO + NO2) and sunlight. The photochemical nature of ozone makes the implementation of reduction strategies challenging and a good understanding of its formation chemistry is fundamental in order to develop efficient strategies of ozone reduction from mitigation measures of primary VOCs and NOx emissions. An instrument for direct measurements of ozone production rates (OPRs) was developed and deployed in the field as part of the IRRONIC (Indiana Radical, Reactivity and Ozone Production Intercomparison) field campaign. The OPR instrument is based on the principle of the previously published MOPS instrument (Measurement of Ozone Production Sensor) but using a different sampling design made of quartz flow tubes and a different Ox (O3 and NO2) conversion-detection scheme composed of an O3-to-NO2 conversion unit and a cavity attenuated phase shift spectroscopy (CAPS) NO2 monitor. Tests performed in the laboratory and in the field, together with model simulations of the radical chemistry occurring inside the flow tubes, were used to assess (i) the reliability of the measurement principle and (ii) potential biases associated with OPR measurements. This publication reports the first field measurements made using this instrument to illustrate its performance. The results showed that a photo-enhanced loss of ozone inside the sampling flow tubes disturbs the measurements. This issue needs to be solved to be able to perform accurate ambient measurements of ozone production rates with the instrument described in this study. However, an attempt was made to investigate the OPR sensitivity to NOx by adding NO inside the instrument

  7. Instruments evaluating the self-directed learning abilities among nursing students and nurses: a systematic review of psychometric properties.

    Science.gov (United States)

    Cadorin, Lucia; Bressan, Valentina; Palese, Alvisa

    2017-11-25

    Modern healthcare institutions are continuously changing, and Self-Directed Learning (SDL) abilities are considered a prerequisite for both nursing students and nurses in order to be proactive about these demanding challenges. To date, no systematic reviews of existing instruments aimed at detecting and critically evaluating SDL abilities have been published. Therefore, the aims of this review are: 1) identify the instruments for assessment of SDL abilities among nursing students and nurses; 2) critically evaluate the methodological studies quality; and 3) compare the psychometric properties of the available instruments. A psychometric-systematic-review was performed. CDSR, CINAHL, ERIC, MEDLINE, PROSPERO, SCOPUS databases were searched without restrictions in time and setting. All primary studies involving nursing students or nurses, written in English and aimed at validating SDL assessment tools, were included. Studies retrieved were evaluated according to the COnsensus-based-Standards for the selection of health Measurement-INstruments (COSMIN) panel. Study inclusion, data extraction and quality assessment were performed by researchers independently. Eleven studies were included and four tools based on Knowles's theory have emerged: 1) the Self-Directed Learning Readiness Scale; 2) the Self-Directed Learning Readiness Scale for Nursing Education; 3) the Self-Rating Scale of Self-Directed Learning, and 4) the Self-Directed Learning Instrument. A few psychometric properties have been considered in each study, from two to four out of the ten required. The quality of the methodologies used was in general, from fair to poor with the exception of one instrument (the Self-Directed-Learning-Instrument). The psychometric proprieties that emerged across the tools were good in general: the Cronbach α was from 0.73 to 0.91; structural validities have also reported good indexes both in the explorative and in the confirmative factor analyses. On the basis of the findings

  8. Instruments evaluating the self-directed learning abilities among nursing students and nurses: a systematic review of psychometric properties

    Directory of Open Access Journals (Sweden)

    Lucia Cadorin

    2017-11-01

    Full Text Available Abstract Background Modern healthcare institutions are continuously changing, and Self-Directed Learning (SDL abilities are considered a prerequisite for both nursing students and nurses in order to be proactive about these demanding challenges. To date, no systematic reviews of existing instruments aimed at detecting and critically evaluating SDL abilities have been published. Therefore, the aims of this review are: 1 identify the instruments for assessment of SDL abilities among nursing students and nurses; 2 critically evaluate the methodological studies quality; and 3 compare the psychometric properties of the available instruments. Methods A psychometric-systematic-review was performed. CDSR, CINAHL, ERIC, MEDLINE, PROSPERO, SCOPUS databases were searched without restrictions in time and setting. All primary studies involving nursing students or nurses, written in English and aimed at validating SDL assessment tools, were included. Studies retrieved were evaluated according to the COnsensus-based-Standards for the selection of health Measurement-INstruments (COSMIN panel. Study inclusion, data extraction and quality assessment were performed by researchers independently. Results Eleven studies were included and four tools based on Knowles’s theory have emerged: 1 the Self-Directed Learning Readiness Scale; 2 the Self-Directed Learning Readiness Scale for Nursing Education; 3 the Self-Rating Scale of Self-Directed Learning, and 4 the Self-Directed Learning Instrument. A few psychometric properties have been considered in each study, from two to four out of the ten required. The quality of the methodologies used was in general, from fair to poor with the exception of one instrument (the Self-Directed-Learning-Instrument. The psychometric proprieties that emerged across the tools were good in general: the Cronbach α was from 0.73 to 0.91; structural validities have also reported good indexes both in the explorative and in the confirmative

  9. Performing T-tests to Compare Autocorrelated Time Series Data Collected from Direct-Reading Instruments.

    Science.gov (United States)

    O'Shaughnessy, Patrick; Cavanaugh, Joseph E

    2015-01-01

    Industrial hygienists now commonly use direct-reading instruments to evaluate hazards in the workplace. The stored values over time from these instruments constitute a time series of measurements that are often autocorrelated. Given the need to statistically compare two occupational scenarios using values from a direct-reading instrument, a t-test must consider measurement autocorrelation or the resulting test will have a largely inflated type-1 error probability (false rejection of the null hypothesis). A method is described for both the one-sample and two-sample cases which properly adjusts for autocorrelation. This method involves the computation of an "equivalent sample size" that effectively decreases the actual sample size when determining the standard error of the mean for the time series. An example is provided for the one-sample case, and an example is given where a two-sample t-test is conducted for two autocorrelated time series comprised of lognormally distributed measurements.

  10. Direct Observations of ULF and Whistler-Mode Chorus Modulation of 500eV EDI Electrons by MMS

    Science.gov (United States)

    Paulson, K. W.; Argall, M. R.; Ahmadi, N.; Torbert, R. B.; Le Contel, O.; Ergun, R.; Khotyaintsev, Y. V.; Strangeway, R. J.; Magnes, W.; Russell, C. T.

    2016-12-01

    We present here direct observations of chorus-wave modulated field-aligned 500 eV electrons using the Electron Drift Instrument (EDI) on board the Magnetospheric Multiscale mission. These periods of wave activity were additionally observed to be modulated by Pc5-frequency magnetic perturbations, some of which have been identified as drifting mirror-mode structures. The spacecraft encountered these mirror-mode structures just inside of the duskside magnetopause. Using the high sampling rate provided by EDI in burst sampling mode, we are able to observe the individual count fluctuations of field-aligned electrons in this region up to 512 Hz. We use the multiple look directions of EDI to generate both pitch angle and gyrophase plots of the fluctuating counts. Our observations often show unidirectional flow of these modulated electrons along the background field, and in some cases demonstrate gyrophase bunching in the wave region.

  11. The high resolution optical instruments for the Pleiades HR Earth observation satellites

    Science.gov (United States)

    Gaudin-Delrieu, Catherine; Lamard, Jean-Luc; Cheroutre, Philippe; Bailly, Bruno; Dhuicq, Pierre; Puig, Olivier

    2017-11-01

    Coming after the SPOT satellites series, PLEIADESHR is a CNES optical high resolution satellite dedicated to Earth observation, part of a larger optical and radar multi-sensors system, ORFEO, which is developed in cooperation between France and Italy for dual Civilian and Defense use. The development of the two PLEIADES-HR cameras was entrusted by CNES to Thales Alenia Space. This new generation of instrument represents a breakthrough in comparison with the previous SPOT instruments owing to a significant step in on-ground resolution, which approaches the capabilities of aerial photography. The PLEIADES-HR instrument program benefits from Thales Alenia Space long and successful heritage in Earth observation from space. The proposed solution benefits from an extensive use of existing products, Cannes Space Optics Centre facilities, unique in Europe, dedicated to High Resolution instruments. The optical camera provides wide field panchromatic images supplemented by 4 multispectral channels with narrow spectral bands. The optical concept is based on a four mirrors Korsch telescope. Crucial improvements in detector technology, optical fabrication and electronics make it possible for the PLEIADES-HR instrument to achieve the image quality requirements while respecting the drastic limitations of mass and volume imposed by the satellite agility needs and small launchers compatibility. The two flight telescopes were integrated, aligned and tested. After the integration phase, the alignment, mainly based on interferometric measurements in vacuum chamber, was successfully achieved within high accuracy requirements. The wave front measurements show outstanding performances, confirmed, after the integration of the PFM Detection Unit, by MTF measurements on the Proto-Flight Model Instrument. Delivery of the proto flight model occurred mi-2008. The FM2 Instrument delivery is planned Q2-2009. The first optical satellite launch of the PLEIADES-HR constellation is foreseen

  12. Validity and reliability of the Mastication Observation and Evaluation (MOE) instrument.

    Science.gov (United States)

    Remijn, Lianne; Speyer, Renée; Groen, Brenda E; van Limbeek, Jacques; Nijhuis-van der Sanden, Maria W G

    2014-07-01

    The Mastication Observation and Evaluation (MOE) instrument was developed to allow objective assessment of a child's mastication process. It contains 14 items and was developed over three Delphi rounds. The present study concerns the further development of the MOE using the COSMIN (Consensus based Standard for the Selection of Measurement Instruments) and investigated the instrument's internal consistency, inter-observer reliability, construct validity and floor and ceiling effects. Consumption of three bites of bread and biscuit was evaluated using the MOE. Data of 59 healthy children (6-48 mths) and 38 children (bread) and 37 children (biscuit) with cerebral palsy (24-72 mths) were used. Four items were excluded before analysis due to zero variance. Principal Components Analysis showed one factor with 8 items. Internal consistency was >0.70 (Chronbach's alpha) for both food consistencies and for both groups of children. Inter-observer reliability varied from 0.51 to 0.98 (weighted Gwet's agreement coefficient). The total MOE scores for both groups showed normal distribution for the population. There were no floor or ceiling effects. The revised MOE now contains 8 items that (a) have a consistent concept for mastication and can be scored on a 4-point scale with sufficient reliability and (b) are sensitive to stages of chewing development in young children. The removed items are retained as part of a criterion referenced list within the MOE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Qualitative observation instrument to measure the quality of parent-child interactions in young children with type 1 diabetes mellitus.

    Science.gov (United States)

    Nieuwesteeg, Anke; Hartman, Esther; Pouwer, Frans; Emons, Wilco; Aanstoot, Henk-Jan; Van Mil, Edgar; Van Bakel, Hedwig

    2014-06-10

    In young children with type 1 diabetes mellitus (T1DM), parents have complete responsibility for the diabetes-management. In toddlers and (pre)schoolers, the tasks needed to achieve optimal blood glucose control may interfere with normal developmental processes and could negatively affect the quality of parent-child interaction. Several observational instruments are available to measure the quality of the parent-child interaction. However, no observational instrument for diabetes-specific situations is available. Therefore, the aim of the present study was to develop a qualitative observation instrument, to be able to assess parent-child interaction during diabetes-specific situations. First, in a pilot study (n = 15), the observation instrument was developed in four steps: (a) defining relevant diabetes-specific situations; (b) videotaping these situations; (c) describing all behaviors in a qualitative observation instrument; (d) evaluating usability and reliability. Next, we examined preliminary validity (total n = 77) by testing hypotheses about correlations between the observation instrument for diabetes-specific situations, a generic observation instrument and a behavioral questionnaire. The observation instrument to assess parent-child interaction during diabetes-specific situations, which consists of ten domains: "emotional involvement", "limit setting", "respect for autonomy", "quality of instruction", "negative behavior", "avoidance", "cooperative behavior", "child's response to injection", "emphasis on diabetes", and "mealtime structure", was developed for use during a mealtime situation (including glucose monitoring and insulin administration). The present study showed encouraging indications for the usability and inter-rater reliability (weighted kappa was 0.73) of the qualitative observation instrument. Furthermore, promising indications for the preliminary validity of the observation instrument for diabetes-specific situations were found (r ranged

  14. Multi-instrument observations of midlatitude summer nighttime anomaly from satellite and ground

    Science.gov (United States)

    Yamamoto, Mamoru; Thampi, Smitha V.; Liu, Huixin; Lin, Charles

    "Midlatitude Summer Nighttime Anomaly (MSNA)" is a phenomenon that the nighttime elec-tron densities exceed the daytime values on almost all days in summer over latitudes of 33-34N of more. We recently found the MSNA over the northeast Asian region from multi-instrument observations. The observations include the tomography analysis based on the chain of digital beacon receivers at Shionomisaki (33.45N, 135.8E), Shigaraki (34.85N, 136.1E), and Fukui (36.06N,136E), the ionosonde network over Japan (especially data from Wakkanai (45.4N, 141.7E)), ground-based GPS TEC observations using the GEONET. Also from satellites, CHAMP in situ electron density measurements, and Formosat3/COSMIC (F3/C) occultation measurements are useful to confirm the presence of MSNA over this region. In the presen-tation we show detailed features of the MSNA based on these multi-instrument, and discuss importance of the neutral atmosphere as a driver of the phenomenon.

  15. An Exploration into Integrating Daylight and Artificial Light via an Observational Instrument

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin

    2015-01-01

    An Exploration into Integrating Daylight and Artificial Light via an Observational Instrument Daylight is dynamic and dependent upon weather conditions; unfolding with both subtle and dramatic variations in qualities of light. Through a building’s apertures, daylight creates a connection between...... abstract and blurred phenomena, these diffused luminous reflections rouse us into interactions with the world. In this book we are interested in identifying the qualitative parameters involved in the integration of dynamic artificial lighting and daylight; the latter being already highly dynamic by nature...... that examine how the dynamic artificial lighting in the observational instrument unfolds during the changing of the daylight situations that are generated by the weather outside. This research employs the concept of coupling between interior and exterior, in order to identify a spectrum of design parameters...

  16. Analysis on detection accuracy of binocular photoelectric instrument optical axis parallelism digital calibration instrument

    Science.gov (United States)

    Ying, Jia-ju; Yin, Jian-ling; Wu, Dong-sheng; Liu, Jie; Chen, Yu-dan

    2017-11-01

    Low-light level night vision device and thermal infrared imaging binocular photoelectric instrument are used widely. The maladjustment of binocular instrument ocular axises parallelism will cause the observer the symptom such as dizziness, nausea, when use for a long time. Binocular photoelectric equipment digital calibration instrument is developed for detecting ocular axises parallelism. And the quantitative value of optical axis deviation can be quantitatively measured. As a testing instrument, the precision must be much higher than the standard of test instrument. Analyzes the factors that influence the accuracy of detection. Factors exist in each testing process link which affect the precision of the detecting instrument. They can be divided into two categories, one category is factors which directly affect the position of reticle image, the other category is factors which affect the calculation the center of reticle image. And the Synthesize error is calculated out. And further distribute the errors reasonably to ensure the accuracy of calibration instruments.

  17. The new rosetta targets observations, simulations and instrument performances

    CERN Document Server

    Epifani, Elena; Palumbo, Pasquale

    2004-01-01

    The Rosetta mission was successfully launched on March 2nd, 2004 for a rendezvous with the short period comet 67PChuryumov-Gerasimenko in 2014 The new baseline mission foresees also a double fly-by with asteroids 21 Lutetia and 2867 Steins, on the way towards the primary target This volume collects papers presented at the workshop on "The NEW Rosetta targets Observations, simulations and instrument performances", held in Capri on October 13-15, 2003 The papers cover the fields of observations of the new Rosetta targets, laboratory experiments and theoretical simulation of cometary processes, and the expected performances of Rosetta experiments Until real operations around 67PChuryumov-Gerasimenko will start in 10 years from now, new astronomical observations, laboratory experiments and theoretical models are required The goals are to increase knowledge about physics and chemistry of comets and to prepare to exploit at best Rosetta data

  18. Validity, reliability, feasibility, acceptability and educational impact of direct observation of procedural skills (DOPS).

    Science.gov (United States)

    Naeem, Naghma

    2013-01-01

    Direct observation of procedural skills (DOPS) is a new workplace assessment tool. The aim of this narrative review of literature is to summarize the available evidence about the validity, reliability, feasibility, acceptability and educational impact of DOPS. A PubMed database and Google search of the literature on DOPS published from January 2000 to January 2012 was conducted which yielded 30 articles. Thirteen articles were selected for full text reading and review. In the reviewed literature, DOPS was found to be a useful tool for assessment of procedural skills, but further research is required to prove its utility as a workplace based assessment instrument.

  19. A direct observation method for auditing large urban centers using stratified sampling, mobile GIS technology and virtual environments.

    Science.gov (United States)

    Lafontaine, Sean J V; Sawada, M; Kristjansson, Elizabeth

    2017-02-16

    With the expansion and growth of research on neighbourhood characteristics, there is an increased need for direct observational field audits. Herein, we introduce a novel direct observational audit method and systematic social observation instrument (SSOI) for efficiently assessing neighbourhood aesthetics over large urban areas. Our audit method uses spatial random sampling stratified by residential zoning and incorporates both mobile geographic information systems technology and virtual environments. The reliability of our method was tested in two ways: first, in 15 Ottawa neighbourhoods, we compared results at audited locations over two subsequent years, and second; we audited every residential block (167 blocks) in one neighbourhood and compared the distribution of SSOI aesthetics index scores with results from the randomly audited locations. Finally, we present interrater reliability and consistency results on all observed items. The observed neighbourhood average aesthetics index score estimated from four or five stratified random audit locations is sufficient to characterize the average neighbourhood aesthetics. The SSOI was internally consistent and demonstrated good to excellent interrater reliability. At the neighbourhood level, aesthetics is positively related to SES and physical activity and negatively correlated with BMI. The proposed approach to direct neighbourhood auditing performs sufficiently and has the advantage of financial and temporal efficiency when auditing a large city.

  20. Calibration method based on direct radioactivity measurement for radioactive gas monitoring instruments

    International Nuclear Information System (INIS)

    Yoshida, Makoto; Ohi, Yoshihiro; Chida, Tohru; Wu, Youyang.

    1993-01-01

    A calibration method for radioactive gas monitoring instruments was studied. In the method, gaseous radioactivity standards were provided on the basis of the direct radioactivity measurement by the diffusion-in long proportional counter method (DLPC method). The radioactivity concentration of the gas mixture through a monitoring instrument was determined by sampling the known volume of the gas mixture into the proportional counter used for the DLPC method. Since oxygen in the gas mixture decreased the counting efficiency in a proportional counter, the influence on calibration was experimentally estimated. It was not serious and able to be easily corrected. By the present method, the relation between radioactivity concentration and ionization current was determined for a gas-flow ionization chamber with 1.5 l effective volume. It showed good agreement with the results in other works. (author)

  1. The Harvard experiment on OSO-6 - Instrumentation, calibration, operation, and description of observations.

    Science.gov (United States)

    Huber, M. C. E.; Dupree, A. K.; Goldberg, L.; Parkinson, W. H.; Reeves, E. M.; Withbroe, G. L.; Noyes, R. W.

    1973-01-01

    The Harvard experiment carried by OSO-6 was an extreme-ultraviolet (EUV) spectrometer-spectroheliometer with a wavelength range of 285 to 1385 A, a spatial and spectral bandwidth of 35 x 35(arc sec) squared and 3 A, respectively. The instrument acquired data that have been deposited with the National Space Science Data Center and World Data Center A at the Goddard Space Flight Center in Greenbelt, Maryland, and are now available in their entirety to the scientific community. Aspects of the experiment that are relevant to potential users of the data are described - namely, instrument configuration and parameters, laboratory and inflight calibrations, as well as operational capabilities and procedures. The observations obtained are reported, and the nature, number, and dates of observation, where relevant, are listed.

  2. The High Visible Resolution (HVR) instrument of the spot ground observation satellite

    Science.gov (United States)

    Otrio, G.

    1980-01-01

    Two identical high resolution cameras, capable of attaining a track width of 116 km in an almost vertical line of sight from the two 60 km images of each instrument, will be carried on the initial mission of the space observation of Earth satellite (SPOT). Specifications for the instrument, including the telescope and CCD devices are summarized. The present status of development is described including the optical characteristics, structure and thermal control, detector assembly, electronic equipment, and calibration. SPOT mission objectives include the developments relating to soil use, the exploration of EART Earth resources, the discrimination of plant species, and cartography.

  3. Pharmacological Blockade of Adenosine A2A but Not A1 Receptors Enhances Goal-Directed Valuation in Satiety-Based Instrumental Behavior

    Directory of Open Access Journals (Sweden)

    Yan Li

    2018-04-01

    Full Text Available The balance and smooth shift between flexible, goal-directed behaviors and repetitive, habitual actions are critical to optimal performance of behavioral tasks. The striatum plays an essential role in control of goal-directed versus habitual behaviors through a rich interplay of the numerous neurotransmitters and neuromodulators to modify the input, processing and output functions of the striatum. The adenosine receptors (namely A2AR and A1R, with their high expression pattern in the striatum and abilities to interact and integrate dopamine, glutamate and cannabinoid signals in the striatum, may represent novel therapeutic targets for modulating instrumental behavior. In this study, we examined the effects of pharmacological blockade of the A2ARs and A1Rs on goal-directed versus habitual behaviors in different information processing phases of instrumental learning using a satiety-based instrumental behavior procedure. We found that A2AR antagonist acts at the coding, consolidation and expression phases of instrumental learning to modulate animals’ sensitivity to goal-directed valuation without modifying action-outcome contingency. However, pharmacological blockade and genetic knockout of A1Rs did not affect acquisition or sensitivity to goal-valuation of instrumental behavior. These findings provide pharmacological evidence for a potential therapeutic strategy to control abnormal instrumental behaviors associated with drug addiction and obsessive-compulsive disorder by targeting the A2AR.

  4. Direct observation limits on antimatter gravitation

    International Nuclear Information System (INIS)

    Fischler, Mark; Lykken, Joe; Roberts, Tom; Fermilab

    2008-01-01

    The proposed Antihydrogen Gravity experiment at Fermilab (P981) will directly measure the gravitational attraction g between antihydrogen and the Earth, with an accuracy of 1% or better. The following key question has been asked by the PAC: Is a possible 1% difference between g and g already ruled out by other evidence? This memo presents the key points of existing evidence, to answer whether such a difference is ruled out (a) on the basis of direct observational evidence; and/or (b) on the basis of indirect evidence, combined with reasoning based on strongly held theoretical assumptions. The bottom line is that there are no direct observations or measurements of gravitational asymmetry which address the antimatter sector. There is evidence which by indirect reasoning can be taken to rule out such a difference, but the analysis needed to draw that conclusion rests on models and assumptions which are in question for other reasons and are thus worth testing. There is no compelling evidence or theoretical reason to rule out such a difference at the 1% level

  5. Interaction of Instrumental and Goal-Directed Learning Modulates Prediction Error Representations in the Ventral Striatum.

    Science.gov (United States)

    Guo, Rong; Böhmer, Wendelin; Hebart, Martin; Chien, Samson; Sommer, Tobias; Obermayer, Klaus; Gläscher, Jan

    2016-12-14

    Goal-directed and instrumental learning are both important controllers of human behavior. Learning about which stimulus event occurs in the environment and the reward associated with them allows humans to seek out the most valuable stimulus and move through the environment in a goal-directed manner. Stimulus-response associations are characteristic of instrumental learning, whereas response-outcome associations are the hallmark of goal-directed learning. Here we provide behavioral, computational, and neuroimaging results from a novel task in which stimulus-response and response-outcome associations are learned simultaneously but dominate behavior at different stages of the experiment. We found that prediction error representations in the ventral striatum depend on which type of learning dominates. Furthermore, the amygdala tracks the time-dependent weighting of stimulus-response versus response-outcome learning. Our findings suggest that the goal-directed and instrumental controllers dynamically engage the ventral striatum in representing prediction errors whenever one of them is dominating choice behavior. Converging evidence in human neuroimaging studies has shown that the reward prediction errors are correlated with activity in the ventral striatum. Our results demonstrate that this region is simultaneously correlated with a stimulus prediction error. Furthermore, the learning system that is currently dominating behavioral choice dynamically engages the ventral striatum for computing its prediction errors. This demonstrates that the prediction error representations are highly dynamic and influenced by various experimental context. This finding points to a general role of the ventral striatum in detecting expectancy violations and encoding error signals regardless of the specific nature of the reinforcer itself. Copyright © 2016 the authors 0270-6474/16/3612650-11$15.00/0.

  6. Directly observed therapy for treating tuberculosis

    Science.gov (United States)

    Karumbi, Jamlick; Garner, Paul

    2015-01-01

    Background Tuberculosis (TB) requires at least six months of treatment. If treatment is incomplete, patients may not be cured and drug resistance may develop. Directly Observed Therapy (DOT) is a specific strategy, endorsed by the World Health Organization, to improve adherence by requiring health workers, community volunteers or family members to observe and record patients taking each dose. Objectives To evaluate DOT compared to self-administered therapy in people on treatment for active TB or on prophylaxis to prevent active disease. We also compared the effects of different forms of DOT. Search methods We searched the following databases up to 13 January 2015: the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE; EMBASE; LILACS and mRCT. We also checked article reference lists and contacted relevant researchers and organizations. Selection criteria Randomized controlled trials (RCTs) and quasi-RCTs comparing DOT with routine self-administration of treatment or prophylaxis at home. Data collection and analysis Two review authors independently assessed risk of bias of each included trial and extracted data. We compared interventions using risk ratios (RR) with 95% confidence intervals (CI). We used a random-effects model if meta-analysis was appropriate but heterogeneity present (I2 statistic = 50%). We assessed the quality of the evidence using the GRADE approach. Main results Eleven trials including 5662 participants met the inclusion criteria. DOT was performed by a range of people (nurses, community health workers, family members or former TB patients) in a variety of settings (clinic, the patient's home or the home of a community volunteer). DOT versus self-administered Six trials from South Africa, Thailand, Taiwan, Pakistan and Australia compared DOT with self-administered therapy for treatment. Trials included DOT at home by family members

  7. Aerosols and surface UV products form Ozone Monitoring Instrument observations: An overview

    NARCIS (Netherlands)

    Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, J.P.; Levelt, P.F.

    2007-01-01

    We present an overview of the theoretical and algorithmic aspects of the Ozone Monitoring Instrument (OMI) aerosol and surface UV algorithms. Aerosol properties are derived from two independent algorithms. The nearUV algorithm makes use of OMI observations in the 350-390 nm spectral region to

  8. Cyclic fatigue resistance of newly manufactured rotary nickel titanium instruments used in different rotational directions.

    Science.gov (United States)

    Gambarini, Gianlucca; Gergi, Richard; Grande, Nicola Maria; Osta, Nada; Plotino, Gianluca; Testarelli, Luca

    2013-12-01

    The aim of this study was to investigate whether cyclic fatigue resistance is increased for nickel titanium instruments manufactured with improved heating processes in clockwise or counterclockwise continuous rotation. The instruments compared were produced either using the R-phase heat treatment (K3XF; SybronEndo, Orange, CA, USA) or the M-wire alloy (ProFile Vortex; DENTSPLY Tulsa Dental Specialties, Tulsa, OK, USA). Tests were performed with a specific cyclic fatigue device that evaluated cycles to failure of rotary instruments in curved artificial canals. Results indicated no significant difference in resistance to cyclic fatigue when rotary nickel titanium instruments are used in clockwise or counterclockwise continuous rotation. In both directions of rotation, size 04-25 K3XF showed a significant increase (P < 0.05) in the mean number of cycles to failure when compared with size 04-25 ProFile Vortex. © 2012 The Authors. Australian Endodontic Journal © 2012 Australian Society of Endodontology.

  9. Directly observed therapy for treating tuberculosis

    OpenAIRE

    Karumbi, Jamlick; Garner, Paul

    2015-01-01

    Background Tuberculosis (TB) requires at least six months of treatment. If treatment is incomplete, patients may not be cured and drug resistance may develop. Directly Observed Therapy (DOT) is a specific strategy, endorsed by the World Health Organization, to improve adherence by requiring health workers, community volunteers or family members to observe and record patients taking each dose. Objectives To evaluate DOT compared to self-administered therapy in people on treatment for active TB...

  10. Neutron scattering instrumentation. A guide to future directions

    International Nuclear Information System (INIS)

    Crawford, R.K.

    2001-01-01

    Many of the neutron scattering instruments being designed or built now are the first generation of pulsed source instruments to provide nearly optimal scattering angle coverage with good spatial resolution in a single setting of the instrument while making full use of modern optics to maximize the useful flux on the sample. Spectacular gains have resulted from such optimization, but in most of these cases there is little room for further large improvements. However, other types of pulsed source instruments are currently less well optimized, and there is room for significant improvements in these types of pulsed source instruments. Several examples will illustrate these points. In the longer term, we can expect source strengths to continue to increase, but only slowly. However, we can expect new science and new ways of doing experiments to emerge. Many of these changes will be driven by enhancements in sample environment capabilities leading to more innovative sample conditions and to efficient parametric studies. Kinetic studies and parametric studies will take on much greater roles with the high data rates now available. Implications of these trends will be discussed. (author)

  11. Direct Observation vs. Video-Based Assessment in Flexible Cystoscopy

    DEFF Research Database (Denmark)

    Dagnaes-Hansen, Julia; Mahmood, Oria; Bube, Sarah

    2018-01-01

    .86. Interrater reliability was 0.74 for single measure and 0.85 for average measures. A hawk-dove effect was seen between the 2 raters. Direct observer bias was detected when comparing direct observer scores to the assessment by an independent video-rater (p

  12. Detection of instrument or component failures in a nuclear plant by Luenberger observers

    International Nuclear Information System (INIS)

    Wilburn, N.P.; Colley, R.W.; Alexandro, F.J.; Clark, R.N.

    1985-01-01

    A diagnostic system, which will distinguish between instrument failures (flowmeters, etc.) and component failures (valves, filters, etc.) that show the same symptoms, has been developed for nuclear Plants using Luenberger observers. Luenberger observers are online computer based modules constructed following the technology of Clark [3]. A seventh order model of an FFTF subsystem was constructed using the Advanced Continuous Simulation Language (ACSL) and was used to show through simulation that Luenberger observers can be applied to nuclear systems

  13. Validation of an instrument to measure tutor performance in promoting self-directed learning by using confirmatory factor analysis

    Directory of Open Access Journals (Sweden)

    Genoveva Amador Fierros

    Full Text Available Objective.This work sought to validate and propose an instrument to measure the performance of tutors in promoting self-directed learning in students involved in processes of problem-based learning. Methods. Confirmatory factor analysis (CFA was applied to validate the instrument composed of 60 items and six factors (self-assessment of learning gaps within the United Nations specific context: self-assessment, reflexion, critical thinking, administration of information, group skills, using a sample of 207 students from a total of 279, which comprise the student population of the Faculty of Nursing at Universidad de Colima in Mexico. (2007. Results. The CFA results demonstrated that the instrument is acceptable to measure performance of tutors in promoting self-directed learning, given that all the indicators, variances, covariances, and thresholds are statistically significant. Conclusion. The instrument permits obtaining students' opinions on how much professors contribute for them to develop each of the 60 skills described in the scale. Lastly, the results could report if professors are placing more emphasis in some areas than in other areas they should address during the problem-based learning (PBL process, or if definitely their actions are removed from the premises of PBL, information that will be useful for school management in decision making on the direction of teaching as a whole.

  14. Instrument for observing transient cosmic gamma-ray sources for the ISEE-C Heliocentric spacecraft

    International Nuclear Information System (INIS)

    Evans, W.D.; Aiello, W.P.; Klebesadel, R.W.

    1977-12-01

    Satellite instrumentation that would serve as one element of a three-satellite network to provide precise directional information for the recently discovered cosmic gamma-ray bursts is described. The proposed network would be capable of determining source locations with uncertainties of less than one arc minute, sufficient for a meaningful optical and radio search. The association of the gamma bursts with a known type of astrophysical object provides the most direct method for establishing source distances and thus defining the overall energetics of the emission process

  15. The Gaia spectrophotometric standard stars survey: II. Instrumental effects of six ground-based observing campaigns

    Science.gov (United States)

    Altavilla, G.; Marinoni, S.; Pancino, E.; Galleti, S.; Ragaini, S.; Bellazzini, M.; Cocozza, G.; Bragaglia, A.; Carrasco, J. M.; Castro, A.; Di Fabrizio, L.; Federici, L.; Figueras, F.; Gebran, M.; Jordi, C.; Masana, E.; Schuster, W.; Valentini, G.; Voss, H.

    2015-08-01

    The Gaia SpectroPhotometric Standard Stars (SPSS) survey started in 2006, was awarded almost 450 observing nights and accumulated almost 100 000 raw data frames with both photometric and spectroscopic observations. Such large observational effort requires careful, homogeneous, and automatic data reduction and quality control procedures. In this paper, we quantitatively evaluate instrumental effects that might have a significant (i.e., ≥ 1 %) impact on the Gaia SPSS flux calibration. The measurements involve six different instruments, monitored over the eight years of observations dedicated to the Gaia flux standards campaigns: DOLORES@TNG in La Palma, EFOSC2@NTT and ROSS@REM in La Silla, CAFOS@2.2 m in Calar Alto, BFOSC@Cassini in Loiano, and LaRuca@1.5 m in San Pedro Mártir. We examine and quantitatively evaluate the following effects: CCD linearity and shutter times, calibration frames stability, lamp flexures, second order contamination, light polarization, and fringing. We present methods to correct for the relevant effects which can be applied to a wide range of observational projects at similar instruments. Based on data obtained with BFOSC@Cassini in Loiano, Italy; EFOSC2@NTT in La Silla, Chile; DOLORES@TNG in La Palma, Spain; CAFOS@2.2 m in Calar Alto, Spain; LaRuca@1.5 m in San Pedro Mártir, Mexico (see acknowledgements for more details).

  16. Global Observations of Aerosols and Clouds from Combined Lidar and Passive Instruments to Improve Radiation Budget and Climate Studies

    Science.gov (United States)

    Winker, David M.

    1999-01-01

    Current uncertainties in the effects of clouds and aerosols on the Earth radiation budget limit our understanding of the climate system and the potential for global climate change. Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations - Climatologie Etendue des Nuages et des Aerosols (PICASSO-CENA) is a recently approved satellite mission within NASA's Earth System Science Pathfinder (ESSP) program which will address these uncertainties with a unique suite of active and passive instruments. The Lidar In-space Technology Experiment (LITE) demonstrated the potential benefits of space lidar for studies of clouds and aerosols. PICASSO-CENA builds on this experience with a payload consisting of a two-wavelength polarization-sensitive lidar, an oxygen A-band spectrometer (ABS), an imaging infrared radiometer (IIR), and a wide field camera (WFC). Data from these instruments will be used to measure the vertical distributions of aerosols and clouds in the atmosphere, as well as optical and physical properties of aerosols and clouds which influence the Earth radiation budget. PICASSO-CENA will be flown in formation with the PM satellite of the NASA Earth Observing System (EOS) to provide a comprehensive suite of coincident measurements of atmospheric state, aerosol and cloud optical properties, and radiative fluxes. The mission will address critical uncertainties iin the direct radiative forcing of aerosols and clouds as well as aerosol influences on cloud radiative properties and cloud-climate radiation feedbacks. PICASSO-CENA is planned for a three year mission, with a launch in early 2003. PICASSO-CENA is being developed within the framework of a collaboration between NASA and CNES.

  17. Normal-mode Magnetoseismology as a Virtual Instrument for the Plasma Mass Density in the Inner Magneotsphere: MMS Observations during Magnetic Storms

    Science.gov (United States)

    Chi, P. J.; Takahashi, K.; Denton, R. E.

    2017-12-01

    Previous studies have demonstrated that the electric and magnetic field measurements on closed field lines can detect harmonic frequencies of field line resonance (FLR) and infer the plasma mass density distribution in the inner magnetosphere. This normal-mode magnetoseismology technique can act as a virtual instrument for spacecraft with a magnetometer and/or an electric field instrument, and it can convert the electromagnetic measurements to knowledge about the plasma mass, of which the dominant low-energy core is difficult to detect directly due to the spacecraft potential. The additional measurement of the upper hybrid frequency by the plasma wave instrument can well constrain the oxygen content in the plasma. In this study, we use field line resonance (FLR) frequencies observed by the Magnetospheric Multiscale (MMS) satellites to estimate the plasma mass density during magnetic storms. At FLR frequencies, the phase difference between the azimuthal magnetic perturbation and the radial electric perturbation is approximately ±90°, which is consistent with the characteristic of standing waves. During the magnetic storm in October 2015, the FLR observations indicate a clear enhancement in the plasma mass density on the first day of the recovery phase, but the added plasma was quickly removed on the following day. We will compare with the FLR observations by other operating satellites such as the Van Allen Probes and GOES to examine the spatial variations of the plasma mass density in the magnetosphere. Also discussed are how the spacing in harmonic frequencies can infer the distribution of plasma mass density along the field line as well as its implications.

  18. [Instrumental, directive, and affective communication in hospital leaflets].

    Science.gov (United States)

    Vasconcellos-Silva, Paulo Roberto; Uribe Rivera, Francisco Javier; Castiel, Luis David

    2003-01-01

    This study focuses on the typical semantic systems extracted from hospital staff communicative resources which attempt to validate information as an "object" to be transferred to patients. We describe the models of textual communication in 58 patient information leaflets from five hospital units in Brazil, gathered from 1996 to 2002. Three categories were identified, based on the theory of speech acts (Austin, Searle, and Habermas): 1) cognitive-instrumental utterances: descriptions by means of technical terms validated by self-referred, incomplete, or inaccessible argumentation, with an implicit educational function; 2) technical-directive utterances: self-referred (to the context of the source domains), with a shifting of everyday acts to a technical terrain with a disciplinary function and impersonal features; and 3) expressive modulations: need for inter-subjective connections to strengthen bonds of trust and a tendency to use childish arguments. We conclude that the three categories displayed: fragmentary sources; assumption of univocal messages and invariable use of information (idealized motivations and interests, apart from individualized perspectives); and assumption of universal interests as generators of knowledge.

  19. Optimization of Orchestral Layouts Based on Instrument Directivity Patterns

    Science.gov (United States)

    Stroud, Nathan Paul

    The experience of hearing an exceptional symphony orchestra perform in an excel- lent concert hall can be profound and moving, causing a level of excitement not often reached for listeners. Romantic period style orchestral music, recognized for validating the use of intense emotion for aesthetic pleasure, was the last significant development in the history of the orchestra. In an age where orchestral popularity is waning, the possibil- ity of evolving the orchestral sound in our modern era exists through the combination of our current understanding of instrument directivity patterns and their interaction with architectural acoustics. With the aid of wave field synthesis (WFS), newly proposed variations on orchestral layouts are tested virtually using a 64-channel WFS array. Each layout is objectively and subjectively compared for determination of which layout could optimize the sound of the orchestra and revitalize the excitement of the performance.

  20. Interpreting the Ultraviolet Aerosol Index Observed with the OMI Satellite Instrument to Understand Absorption by Organic Aerosols: Implications for Atmospheric Oxidation and Direct Radiative Effects

    Science.gov (United States)

    Hammer, Melanie S.; Martin, Randall V.; Donkelaar, Aaron van; Buchard, Virginie; Torres, Omar; Ridley, David A.; Spurr, Robert J. D.

    2016-01-01

    Satellite observations of the ultraviolet aerosol index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOSChem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Angstrom exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30% over South America in September, up to 20% over southern Africa in July, and up to 15% over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years, thus

  1. Assimilation of wind speed and direction observations: results from real observation experiments

    Directory of Open Access Journals (Sweden)

    Feng Gao

    2015-06-01

    Full Text Available The assimilation of wind observations in the form of speed and direction (asm_sd by the Weather Research and Forecasting Model Data Assimilation System (WRFDA was performed using real data and employing a series of cycling assimilation experiments for a 2-week period, as a follow-up for an idealised post hoc assimilation experiment. The satellite-derived Atmospheric Motion Vectors (AMV and surface dataset in Meteorological Assimilation Data Ingest System (MADIS were assimilated. This new method takes into account the observation errors of both wind speed (spd and direction (dir, and WRFDA background quality control (BKG-QC influences the choice of wind observations, due to data conversions between (u,v and (spd, dir. The impacts of BKG-QC, as well as the new method, on the wind analysis were analysed separately. Because the dir observational errors produced by different platforms are not known or tuned well in WRFDA, a practical method, which uses similar assimilation weights in comparative trials, was employed to estimate the spd and dir observation errors. The asm_sd produces positive impacts on analyses and short-range forecasts of spd and dir with smaller root-mean-square errors than the u,v-based system. The bias of spd analysis decreases by 54.8%. These improvements result partly from BKG-QC screening of spd and dir observations in a direct way, but mainly from the independent impact of spd (dir data assimilation on spd (dir analysis, which is the primary distinction from the standard WRFDA method. The potential impacts of asm_sd on precipitation forecasts were evaluated. Results demonstrate that the asm_sd is able to indirectly improve the precipitation forecasts by improving the prediction accuracies of key wind-related factors leading to precipitation (e.g. warm moist advection and frontogenesis.

  2. Airborne hyperspectral observations of surface and cloud directional reflectivity using a commercial digital camera

    Directory of Open Access Journals (Sweden)

    A. Ehrlich

    2012-04-01

    Full Text Available Spectral radiance measurements by a digital single-lens reflex camera were used to derive the directional reflectivity of clouds and different surfaces in the Arctic. The camera has been calibrated radiometrically and spectrally to provide accurate radiance measurements with high angular resolution. A comparison with spectral radiance measurements with the Spectral Modular Airborne Radiation measurement sysTem (SMART-Albedometer showed an agreement within the uncertainties of both instruments (6% for both. The directional reflectivity in terms of the hemispherical directional reflectance factor (HDRF was obtained for sea ice, ice-free ocean and clouds. The sea ice, with an albedo of ρ = 0.96 (at 530 nm wavelength, showed an almost isotropic HDRF, while sun glint was observed for the ocean HDRF (ρ = 0.12. For the cloud observations with ρ = 0.62, the cloudbow – a backscatter feature typically for scattering by liquid water droplets – was covered by the camera. For measurements above heterogeneous stratocumulus clouds, the required number of images to obtain a mean HDRF that clearly exhibits the cloudbow has been estimated at about 50 images (10 min flight time. A representation of the HDRF as a function of the scattering angle only reduces the image number to about 10 (2 min flight time.

    The measured cloud and ocean HDRF have been compared to radiative transfer simulations. The ocean HDRF simulated with the observed surface wind speed of 9 m s−1 agreed best with the measurements. For the cloud HDRF, the best agreement was obtained by a broad and weak cloudbow simulated with a cloud droplet effective radius of Reff = 4 μm. This value agrees with the particle sizes derived from in situ measurements and retrieved from the spectral radiance of the SMART-Albedometer.

  3. Digital Processing for Modifying and Rearranging Rectilinear and Section Scan Data under Direct Observation

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, D. E.; Edwards, R. Q. [University of Pennsylvania, Philadelphia, PA (United States)

    1969-01-15

    Our digital processor for scan data is an on-site instrument that is intermediate in complexity between conventional optical processing devices and large digital computers. It is designed to provide for a wide and flexible range of secondary data operations, direct picture display on a CRT screen, and full operator control of both processing and display operations at the time of viewing. The instrument does not require the user to learn complicated programing schemes. The operator is expected to be a physician who will control the parameters of interest by punching preset buttons on a keyboard while observing changes displayed on a CRT screen. The system functions primarily as an investigative tool for studying perception of scan information and ways of making this information more meaningful. Data operations include data bounding, spatial averaging, iso-count line generation, image addition and subtraction, and several forms of quantitative read-out for analysis of regional data. The instrument is intended to serve as a central processor and reader for data from several units. Investigations with this processor have served as a source of information leading to the design of more simple processing devices suitable for wider acceptance. For example, the Mark III rectilinear and transverse section brain scanner that has evolved from this project is expected to be a practical improvement of the brain study method. This instrument is designed especially for rapid brain scanning using {sup 99m}Tc pertechnetate. It has a self-contained computer, integrated digital circuits for compactness and economy, and provision for transverse section scanning. The advantages of this system are that it provides a more thorough study using both transverse section and rectilinear modes, rapid performance, precise orientation of section and rectilinear views to the patient position, efficient transfer of information between physician and machine during studies, and economy of design

  4. Atmospheric boundary layer CO2 remote sensing with a direct detection LIDAR instrument based on a widely tunable optical parametric source.

    Science.gov (United States)

    Cadiou, Erwan; Mammez, Dominique; Dherbecourt, Jean-Baptiste; Gorju, Guillaume; Pelon, Jacques; Melkonian, Jean-Michel; Godard, Antoine; Raybaut, Myriam

    2017-10-15

    We report on the capability of a direct detection differential absorption lidar (DIAL) for range resolved and integrated path (IPDIAL) remote sensing of CO 2 in the atmospheric boundary layer (ABL). The laser source is an amplified nested cavity optical parametric oscillator (NesCOPO) emitting approximately 8 mJ at the two measurement wavelengths selected near 2050 nm. Direct detection atmospheric measurements are taken from the ground using a 30 Hz frequency switching between emitted wavelengths. Results show that comparable precision measurements are achieved in DIAL and IPDIAL modes (not better than a few ppm) on high SNR targets such as near range ABL aerosol and clouds, respectively. Instrumental limitations are analyzed and degradation due to cloud scattering variability is discussed to explain observed DIAL and IPDIAL limitations.

  5. SWE-based Observation Data Delivery from the Instrument to the User - Sensor Web Technology in the NeXOS Project

    Science.gov (United States)

    Jirka, Simon; del Rio, Joaquin; Toma, Daniel; Martinez, Enoc; Delory, Eric; Pearlman, Jay; Rieke, Matthes; Stasch, Christoph

    2017-04-01

    The rapidly evolving technology for building Web-based (spatial) information infrastructures and Sensor Webs, there are new opportunities to improve the process how ocean data is collected and managed. A central element in this development is the suite of Sensor Web Enablement (SWE) standards specified by the Open Geospatial Consortium (OGC). This framework of standards comprises on the one hand data models as well as formats for measurement data (ISO/OGC Observations and Measurement, O&M) and metadata describing measurement processes and sensors (OGC Sensor Model Language, SensorML). On the other hand the SWE standards comprise (Web service) interface specifications for pull-based access to observation data (OGC Sensor Observation Service, SOS) and for controlling or configuring sensors (OGC Sensor Planning Service, SPS). Also within the European INSPIRE framework the SWE standards play an important role as the SOS is the recommended download service interface for O&M-encoded observation data sets. In the context of the EU-funded Oceans of Tomorrow initiative the NeXOS (Next generation, Cost-effective, Compact, Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management) project is developing a new generation of in-situ sensors that make use of the SWE standards to facilitate the data publication process and the integration into Web based information infrastructures. This includes the development of a dedicated firmware for instruments and sensor platforms (SEISI, Smart Electronic Interface for Sensors and Instruments) maintained by the Universitat Politècnica de Catalunya (UPC). Among other features, SEISI makes use of OGC SWE standards such OGC-PUCK, to enable a plug-and-play mechanism for sensors based on SensorML encoded metadata. Thus, if a new instrument is attached to a SEISI-based platform, it automatically configures the connection to these instruments, automatically generated data files compliant with the ISO

  6. Large micro-mirror arrays: key components in future space instruments for Universe and Earth Observation

    Directory of Open Access Journals (Sweden)

    Zamkotsian Frederic

    2015-01-01

    Full Text Available In future space missions for Universe and Earth Observation, scientific return could be optimized using MOEMS devices. Micro-mirror arrays are used for designing new generation of instruments, multi-object spectrographs in Universe Observation and programmable wide field spectrographs in Earth Observation. Mock-ups have been designed and built for both applications and they show very promising results.

  7. [German translation of Suicidal Patient Observation Chart (SPOC) - an instrument for practice].

    Science.gov (United States)

    Löhr, Michael; Schulz, Michael; Hemkendreis, Bruno; Björkdahl, Anna; Nienaber, André

    2013-12-01

    Nursing of suicidal in-patients is a complex and responsible task. A direct and immediate intensive caring and therapeutic supervision, also known as special observation is still recommended in guidelines (DGPPN, 2012) and maybe one of the most used interventions in the caring of suicidal patients in inpatient settings. It involves many kinds to develop the relationship between the observer and the patient. The original SPOC was developed in Sweden with the aim to increase the quality of a systematically documentation during the supervision of suicidal patients. It is an instrument to ensure systematic documentation of observational behavior or noticeable mood during acute suicidal crisis, for example feelings like "worried, anxious" or other possible influencing factors like "sudden mood variation". By this means the SPOC can ensure the process of systematic documentation of special observation and increase its quality, i. e. who documented what at what time. Furthermore SPOC can facilitate a better communication of the observation process to the multidisciplinary team and to the patient as well. The SPOC includes the 28 items and covers 24 separate observation periods. The aim of this paper is to constitute the translation process from the English to the German SPOC version. The translation process followed a five step model. In the first step the English version was translated from two German native speakers. In the second step, the first two translation results where discussed by the Expert group (authors) and a new version was developed. In the third step the first german version was translated back (two English native Speakers) into English. The fourth step was taken, to review the results by the expert groups (authors) and set up the so called "pre version". The last step includes the proof of content validity by 52 nurses. The proof was able to identify a few misunderstandings and helped to enhance the tool in its final version. With the translation, the

  8. Inter-rater reliability of direct observations of the physical and psychosocial working conditions in eldercare

    DEFF Research Database (Denmark)

    Karstad, Kristina; Rugulies, Reiner; Skotte, Jørgen

    2018-01-01

    The aim of the study was to develop and evaluate the reliability of the "Danish observational study of eldercare work and musculoskeletal disorders" (DOSES) observation instrument to assess physical and psychosocial risk factors for musculoskeletal disorders (MSD) in eldercare work. During 1.5 ye...... is appropriate for assessing physical and psychosocial risk factors for MSD among eldercare workers.......The aim of the study was to develop and evaluate the reliability of the "Danish observational study of eldercare work and musculoskeletal disorders" (DOSES) observation instrument to assess physical and psychosocial risk factors for musculoskeletal disorders (MSD) in eldercare work. During 1...

  9. New Platforms for Suborbital Astronomical Observations and In Situ Atmospheric Measurements: Spacecraft, Instruments, and Facilities

    Science.gov (United States)

    Rodway, K.; DeForest, C. E.; Diller, J.; Vilas, F.; Sollitt, L. S.; Reyes, M. F.; Filo, A. S.; Anderson, E.

    2014-12-01

    Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. The new commercial space industry is developing suborbital reusable launch vehicles (sRLV's) to provide low-cost, flexible, and frequent access to space at ~100 km altitude. In the case of XCOR Aerospace's Lynx spacecraft, the vehicle design and capabilities work well for hosting specially designed experiments that can be flown with a human-tended researcher or alone with the pilot on a customized mission. Some of the first-generation instruments and facilities that will conduct solar observations on dedicated Lynx science missions include the SwRI Solar Instrument Pointing Platform (SSIPP) and Atsa Suborbital Observatory, as well as KickSat sprites, which are picosatellites for in situ atmospheric and solar phenomena measurements. The SSIPP is a demonstration two-stage pointed solar observatory that operates inside the Lynx cockpit. The coarse pointing stage includes the pilot in the feedback loop, and the fine stage stabilizes the solar image to achieve arcsecond class pointing. SSIPP is a stepping-stone to future external instruments that can operate with larger apertures and shorter wavelengths in the solar atmosphere. The Planetary Science Institute's Atsa Suborbital Observatory combines the strengths of ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with either in-house facility instruments or user-provided instruments. The Atsa prototype is a proof of concept, hand-guided camera that mounts on the interior of the Lynx cockpit to test target acquisition and tracking for human-operated suborbital astronomy. KickSat sprites are mass-producible, one inch printed circuit boards (PCBs) populated by programmable off the shelf microprocessors and radios for real time data transmission. The sprite PCBs can integrate chip-based radiometers, magnetometers

  10. Interpreting the ultraviolet aerosol index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects

    Directory of Open Access Journals (Sweden)

    M. S. Hammer

    2016-03-01

    Full Text Available Satellite observations of the ultraviolet aerosol index (UVAI are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOS-Chem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT. The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (−0.32 to −0.97 exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC, and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from −0.57 to −0.09 over West Africa in January, from −0.32 to +0.0002 over South Asia in April, from −0.97 to −0.22 over southern Africa in July, and from −0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Ångström exponent (AAE values ranging from 2.9 in the ultraviolet (UV to 1.3 across the UV–Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30 % over South America in September, up to 20 % over southern Africa in July, and up to 15 % over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform

  11. Sentinel-5/UVNS instrument: the principle ability of a slit homogenizer to reduce scene contrast for earth observation spectrometer

    Science.gov (United States)

    Meister, Ch.; Keim, C.; Irizar, J.; Bauer, M.

    2017-09-01

    Sentinel-5/UVNS 1 is an Earth observation spectrometer system that is operating in nadir looking push broom mode from a low Earth orbit. While having a wide across-track field of view (≈ 2700 km) it covers approximately 7 km at nadir in flight direction during one dwell. However a high contrast in the scene in along track may lead to disturbance of the Instrument Spectral Response Function (ISRF) and with this a variation of measured spectrum. In order to reduce the effect of scene contrast along track, instead of a spectrometer slit two mirrors are introduced, in between which the light path is extended such as a one dimensional wave guide. The entrance length across track however is wide enough to let light pass unchanged. This new concept is called Slit Homogenizer (SH) within theSentinel-5 project. The entrance of the SH is placed on the image plane of the preceding op- tics. The exit of the SH represents the object plane of the subsequent spectrometer in the along track (spectral) direction. This article proposes a simulation model of a SH together with a preced- ing generic optics based on scalar diffraction theory. The model is used to evaluate quantitatively the homogenizing ability of the device. Some parameters in the discussed examples are taken from Sentinel-5/UVNS instrument but the model and its application is not limited to that mission.

  12. Laws, directives and policy instruments important for the development of the waste management system; Lagar, direktiv och styrmedel viktiga foer avfallssystemets utveckling

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Karolina; Sundberg, Johan

    2010-01-15

    This report gives a survey and a description of present and future policy instruments that have been or will become important for the development of the waste management system. Policy instruments here refers to laws, directives, taxes/fees, national/local goals and other regulating measures that the society introduce to steer the development of the waste management system. This work can thus be used as a dictionary or a guideline for these measures. The investigation has two goals: 1. To give representatives of the Swedish waste management system a summary of important policy instruments for the future development of the waste management system. 2. To give Waste Refinery a summary of these policy instruments that can be used for the discussions of how the research within the centre should develop during stage 2. A large number of policy instruments have been found during the study. These instruments have been, most likely will become, or may become important for the development of the waste management system. Most of them are described in this report. The selection made is presented in Table 1. Focus for the selection has been policy instruments that are important for the research activities within Waste Refinery, meaning policy instruments that direct or indirect can change the use of thermal and/or biological treatment as well as techniques and methods supporting these treatment methods. [Table 1. Policy instruments that are presented in the report

  13. FIRST NuSTAR OBSERVATIONS OF MRK 501 WITHIN A RADIO TO TeV MULTI-INSTRUMENT CAMPAIGN

    International Nuclear Information System (INIS)

    Furniss, A.; Noda, K.; Boggs, S.; Chiang, J.; Madejski, G.; Nalewajko, K.; Christensen, F.; Craig, W.; Giommi, P.; Hailey, C.; Harisson, F.; Perri, M.; Verrecchia, F.; Stern, D.; Urry, M.; Zhang, W.; Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.

    2015-01-01

    We report on simultaneous broadband observations of the TeV-emitting blazar Markarian 501 between 2013 April 1 and August 10, including the first detailed characterization of the synchrotron peak with Swift and NuSTAR. During the campaign, the nearby BL Lac object was observed in both a quiescent and an elevated state. The broadband campaign includes observations with NuSTAR, MAGIC, VERITAS, the Fermi Large Area Telescope, Swift X-ray Telescope and UV Optical Telescope, various ground-based optical instruments, including the GASP-WEBT program, as well as radio observations by OVRO, Metsähovi, and the F-Gamma consortium. Some of the MAGIC observations were affected by a sand layer from the Saharan desert, and had to be corrected using event-by-event corrections derived with a Light Detection and Ranging (LIDAR) facility. This is the first time that LIDAR information is used to produce a physics result with Cherenkov Telescope data taken during adverse atmospheric conditions, and hence sets a precedent for the current and future ground-based gamma-ray instruments. The NuSTAR instrument provides unprecedented sensitivity in hard X-rays, showing the source to display a spectral energy distribution (SED) between 3 and 79 keV consistent with a log-parabolic spectrum and hard X-ray variability on hour timescales. None (of the four extended NuSTAR observations) show evidence of the onset of inverse-Compton emission at hard X-ray energies. We apply a single-zone equilibrium synchrotron self-Compton (SSC) model to five simultaneous broadband SEDs. We find that the SSC model can reproduce the observed broadband states through a decrease in the magnetic field strength coinciding with an increase in the luminosity and hardness of the relativistic leptons responsible for the high-energy emission

  14. Comparison of piezosurgery and conventional rotative instruments in direct sinus lifting.

    Science.gov (United States)

    Delilbasi, Cagri; Gurler, Gokhan

    2013-12-01

    The purpose of this study was to compare the intraoperative and postoperative effects of Piezosurgery and conventional rotative instruments in direct sinus lifting procedure. Twenty-three patients requiring direct sinus lifting were enrolled. The osteotomy and sinus membrane elevation were performed either with Piezosurgery tips or rotative diamond burs and manual membrane elevators. Time elapsed between bony window opening and completion of membrane elevation (duration), incidence of membrane perforation, visibility of the operation site, postoperative pain, swelling, sleeping, eating, phonetics, daily routine, and missed work as well as patient's expectation before and experience after the operation were evaluated. There was no significant difference between Piezosurgery and conventional groups regarding incidence of membrane perforation, duration, and operation site visibility as well as patient's expectation before and experience after the operation (P > 0.05). However, there were significantly more pain and swelling in the conventional group compared with the Piezosurgery group (P ≤ 0.05). Sinus lifting procedure performed with Piezosurgery causes less pain and swelling postoperatively compared with conventional technique. Patients' daily life activities and experience about the operation are not affected from the surgical technique.

  15. Instrument-related Skin Disorders in Musicians.

    Science.gov (United States)

    Patruno, Cataldo; Napolitano, Maddalena; La Bella, Serena; Ayala, Fabio; Balato, Nicola; Cantelli, Mariateresa; Balato, Anna

    2016-01-01

    Among artists, musicians may suffer from occupational skin problems; notwithstanding, these conditions have been rarely reviewed. The characteristics of individual performer and the type of instrument will determine the kind of disease. Moreover, the hours that the musician spent to advance artistic skill may influence the severity. The frequency and risk factors of instrument-related skin disorders in musicians from southern Italy were analyzed. An observational study was conducted in 628 musicians. A questionnaire including questions related to age, sex, instrument played, musical activity, previous or current skin disorders, and impact of skin symptoms on music making was submitted. Of 628 musicians, 199 (31.7%) reported suffering from at least 1 skin disease. Cutaneous diseases likely directly correlated with the use of the musical instrument were found in 129 (20.5%) of the 628 subjects. In particular, different patterns of irritant contact dermatitis were found. Skin conditions may be a significant problem in professional instrumentalists. They are mainly related to musical activity. Preventive measures should be established.

  16. Direct observation of rectified motion of vortices by Lorentz microscopy

    Indian Academy of Sciences (India)

    We have investigated the vortex dynamics for the `ratchet' operation in a niobium superconductor via a direct imaging of Lorentz microscopy. We directly observe one-directional selective motion of field-gradient-driven vortices along fabricated channels. This results from the rectification of vortices in a spatially asymmetric ...

  17. Canal preparation with nickel-titanium or stainless steel instruments without the risk of instrument fracture: preliminary observations

    Directory of Open Access Journals (Sweden)

    Ghassan Yared

    2015-02-01

    Full Text Available This report introduces a novel technique that allows a safe and predictable canal negotiation, creation of a glide path and canal preparation with reciprocating nickel-titanium or stainless steel engine-driven instruments in canals where the use of rotary and the newly developed reciprocating instruments is contraindicated. In this novel technique, the instruments are used in reciprocating motion with very small angles. Hand files are not used regardless of the complexity of the canal anatomy. It also allows achieving predictable results in canal negotiation and glide path creation in challenging canals without the risk of instrument fracture.

  18. OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. II. HIPPARCOS STARS OBSERVED IN 2010 JANUARY AND JUNE

    International Nuclear Information System (INIS)

    Horch, Elliott P.; Gomez, Shamilia C.; Anderson, Lisa M.; Sherry, William H.; Howell, Steve B.; Ciardi, David R.; Van Altena, William F.

    2011-01-01

    The results of 497 speckle observations of Hipparcos stars and selected other targets are presented. Of these, 367 were resolved into components and 130 were unresolved. The data were obtained using the Differential Speckle Survey Instrument at the WIYN 3.5 m Telescope. (The WIYN Observatory is a joint facility of the University of Wisconsin-Madison, Indiana University, Yale University, and the National Optical Astronomy Observatories.) Since the first paper in this series, the instrument has been upgraded so that it now uses two electron-multiplying CCD cameras. The measurement precision obtained when comparing to ephemeris positions of binaries with very well known orbits is approximately 1-2 mas in separation and better than 0. 0 6 in position angle. Differential photometry is found to be in very good agreement with Hipparcos measures in cases where the comparison is most relevant. We derive preliminary orbits for two systems.

  19. Direct observation of lubricant additives using tomography techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yunyun [Department of Materials Science and Engineering, Texas A& M University, College Station, Texas 77843 (United States); Sanchez, Carlos [Mechanical Engineering, Texas A& M University, College Station, Texas 77843 (United States); Parkinson, Dilworth Y. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Liang, Hong, E-mail: hliang@tamu.edu [Department of Materials Science and Engineering, Texas A& M University, College Station, Texas 77843 (United States); Mechanical Engineering, Texas A& M University, College Station, Texas 77843 (United States)

    2016-07-25

    Lubricants play important roles in daily activities such as driving, walking, and cooking. The current understanding of mechanisms of lubrication, particularly in mechanical systems, has been limited by the lack of capability in direct observation. Here, we report an in situ approach to directly observe the motion of additive particles in grease under the influence of shear. Using the K-edge tomography technique, it is possible to detect particular additives in a grease and observe their distribution through 3D visualization. A commercial grease as a reference was studied with and without an inorganic additive of Fe{sub 3}O{sub 4} microparticles. The results showed that it was possible to identify these particles and track their movement. Under a shear stress, Fe{sub 3}O{sub 4} particles were found to adhere to the edge of calcium complex thickeners commonly used in grease. Due to sliding, the grease formed a film with increased density. This approach enables in-line monitoring of a lubricant and future investigation in mechanisms of lubrication.

  20. Global and Seasonal Distributions of CHOCHO and HCHO Observed by the Ozone Monitoring Instrument on EOS Aura

    Science.gov (United States)

    Kurosu, T. P.; Fu, T.; Volkamer, R.; Millet, D. B.; Chance, K.

    2006-12-01

    Over the two years since its launch in July 2004, the Ozone Monitoring Instrument (OMI) on EOS Aura has demonstrated the capability to routinely monitor the volatile organic compounds (VOCs) formaldehyde (HCHO) and glyoxal (CHOCHO). OMI's daily global coverage and spatial resolution as high as 13x24 km provides a unique data set of these molecules for the study of air quality from space. We present the first study of global seasonal distributions of CHOCHO from space, derived from a year of OMI observations. CHOCHO distributions are compared to simultaneous retrievals of HCHO from OMI, providing a first indication of seasonally resolved ratios of these VOCs on a global scale. Satellite retrievals are compared to global simulations of HCHO and CHOCHO, based on current knowledge of sources and sinks, using the GEOS-Chem global chemistry and transport model. Formaldehyde is both directly emitted and also produced from the oxidation of many VOCs, notably biogenic isoprene, and is removed by photolysis and oxidation. Precursors of glyoxal include isoprene, monoterpenes, and aromatics from anthropogenic, biogenic, and biomass burning emissions; it is removed by photolysis, oxidation by OH, dry/wet deposition, and aerosol uptake. As a case study, satellite observations will also be compared to ground-based measurements taken during the Pearl River Delta 2006 field campaign near Guangzhou, China, where high glyoxal concentrations are frequently observed from space.

  1. Three-item Direct Observation Screen (TIDOS) for autism spectrum disorder.

    Science.gov (United States)

    Oner, Pinar; Oner, Ozgur; Munir, Kerim

    2014-08-01

    We compared ratings on the Three-Item Direct Observation Screen test for autism spectrum disorders completed by pediatric residents with the Social Communication Questionnaire parent reports as an augmentative tool for improving autism spectrum disorder screening performance. We examined three groups of children (18-60 months) comparable in age (18-24 month, 24-36 month, 36-60 preschool subgroups) and gender distribution: n = 86 with Diagnostic and Statistical Manual of Mental Disorders (4th ed., text rev.) autism spectrum disorders; n = 76 with developmental delay without autism spectrum disorders; and n = 97 with typical development. The Three-Item Direct Observation Screen test included the following (a) Joint Attention, (b) Eye Contact, and (c) Responsiveness to Name. The parent Social Communication Questionnaire ratings had a sensitivity of .73 and specificity of .70 for diagnosis of autism spectrum disorders. The Three-Item Direct Observation Screen test item Joint Attention had a sensitivity of .82 and specificity of .90, Eye Contact had a sensitivity of .89 and specificity of .91, and Responsiveness to Name had a sensitivity of .67 and specificity of .87. In the Three-Item Direct Observation Screen test, having at least one of the three items positive had a sensitivity of .95 and specificity of .85. Age, diagnosis of autism spectrum disorder, and developmental level were important factors affecting sensitivity and specificity. The results indicate that augmentation of autism spectrum disorder screening by observational items completed by trained pediatric-oriented professionals can be a highly effective tool in improving screening performance. If supported by future population studies, the results suggest that primary care practitioners will be able to be trained to use this direct procedure to augment screening for autism spectrum disorders in the community. © The Author(s) 2013.

  2. Canal preparation with nickel-titanium or stainless steel instruments without the risk of instrument fracture: preliminary observations

    OpenAIRE

    Ghassan Yared

    2015-01-01

    This report introduces a novel technique that allows a safe and predictable canal negotiation, creation of a glide path and canal preparation with reciprocating nickel-titanium or stainless steel engine-driven instruments in canals where the use of rotary and the newly developed reciprocating instruments is contraindicated. In this novel technique, the instruments are used in reciprocating motion with very small angles. Hand files are not used regardless of the complexity of the canal anatomy...

  3. Goal-directed behaviour and instrumental devaluation: a neural system-level computational model

    Directory of Open Access Journals (Sweden)

    Francesco Mannella

    2016-10-01

    Full Text Available Devaluation is the key experimental paradigm used to demonstrate the presence of instrumental behaviours guided by goals in mammals. We propose a neural system-level computational model to address the question of which brain mechanisms allow the current value of rewards to control instrumental actions. The model pivots on and shows the computational soundness of the hypothesis for which the internal representation of instrumental manipulanda (e.g., levers activate the representation of rewards (or `action-outcomes', e.g. foods while attributing to them a value which depends on the current internal state of the animal (e.g., satiation for some but not all foods. The model also proposes an initial hypothesis of the integrated system of key brain components supporting this process and allowing the recalled outcomes to bias action selection: (a the sub-system formed by the basolateral amygdala and insular cortex acquiring the manipulanda-outcomes associations and attributing the current value to the outcomes; (b the three basal ganglia-cortical loops selecting respectively goals, associative sensory representations, and actions; (c the cortico-cortical and striato-nigro-striatal neural pathways supporting the selection, and selection learning, of actions based on habits and goals. The model reproduces and integrates the results of different devaluation experiments carried out with control rats and rats with pre- and post-training lesions of the basolateral amygdala, the nucleus accumbens core, the prelimbic cortex, and the dorso-medial striatum. The results support the soundness of the hypotheses of the model and show its capacity to integrate, at the system-level, the operations of the key brain structures underlying devaluation. Based on its hypotheses and predictions, the model also represents an operational framework to support the design and analysis of new experiments on the motivational aspects of goal-directed behaviour.

  4. Large Instrument Development for Radio Astronomy

    Science.gov (United States)

    Fisher, J. Richard; Warnick, Karl F.; Jeffs, Brian D.; Norrod, Roger D.; Lockman, Felix J.; Cordes, James M.; Giovanelli, Riccardo

    2009-03-01

    This white paper offers cautionary observations about the planning and development of new, large radio astronomy instruments. Complexity is a strong cost driver so every effort should be made to assign differing science requirements to different instruments and probably different sites. The appeal of shared resources is generally not realized in practice and can often be counterproductive. Instrument optimization is much more difficult with longer lists of requirements, and the development process is longer and less efficient. More complex instruments are necessarily further behind the technology state of the art because of longer development times. Including technology R&D in the construction phase of projects is a growing trend that leads to higher risks, cost overruns, schedule delays, and project de-scoping. There are no technology breakthroughs just over the horizon that will suddenly bring down the cost of collecting area. Advances come largely through careful attention to detail in the adoption of new technology provided by industry and the commercial market. Radio astronomy instrumentation has a very bright future, but a vigorous long-term R&D program not tied directly to specific projects needs to be restored, fostered, and preserved.

  5. Health physics instrument manual

    International Nuclear Information System (INIS)

    Gupton, E.D.

    1978-08-01

    The purpose of this manual is to provide apprentice health physics surveyors and other operating groups not directly concerned with radiation detection instruments a working knowledge of the radiation detection and measuring instruments in use at the Laboratory. The characteristics and applications of the instruments are given. Portable instruments, stationary instruments, personnel monitoring instruments, sample counters, and miscellaneous instruments are described. Also, information sheets on calibration sources, procedures, and devices are included. Gamma sources, beta sources, alpha sources, neutron sources, special sources, a gamma calibration device for badge dosimeters, and a calibration device for ionization chambers are described

  6. Intact goal-directed control in treatment-seeking drug users indexed by outcome-devaluation and Pavlovian to instrumental transfer: Critique of habit theory.

    Science.gov (United States)

    Hogarth, Lee; Lam-Cassettari, Christa; Pacitti, Helena; Currah, Tara; Mahlberg, Justin; Hartley, Lucie; Moustafa, Ahmed

    2018-05-22

    Animal studies have demonstrated that chronic exposure to drugs of abuse impairs goal-directed control over action selection indexed by the outcome-devaluation and specific Pavlovian to instrumental transfer procedures, suggesting this impairment might underpin addiction. However, there is currently only weak evidence for impaired goal-directed control in human drug users. Two experiments were undertaken in which treatment-seeking drug users and non-matched normative reference samples (controls) completed outcome-devaluation and specific Pavlovian to instrumental transfer procedures notionally translatable to animal procedures (Experiment 2 used a more challenging biconditional schedule). The two experiments found significant outcome-devaluation and specific Pavlovian to instrumental transfer effects overall and there was no significant difference between groups in the magnitude of these effects. Moreover, Bayes factor supported the null hypothesis for these group comparisons. Although limited by non-matched group comparisons and small sample sizes, the two studies suggest that treatment-seeking drug users have intact goal-directed control over action selection, adding uncertainty to already mixed evidence concerning the role of habit learning in human drug dependence. Neuro-interventions might seek to tackle goal-directed drug-seeking rather than habit formation in drug users. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Multi-Instrument Observations of a Geomagnetic Storm and its Effects on the Arctic Ionosphere: A Case Study of the 19 February 2014 Storm

    DEFF Research Database (Denmark)

    Durgonics, Tibor; Komjathy, Attila; Verkhoglyadova, Olga

    2017-01-01

    We present a multi-instrumented approach for the analysis of the Arctic ionosphere during the 19 February 2014 highly complex, multiphase geomagnetic storm, which had the largest impact on the disturbance storm-time (Dst) index that year. The geomagnetic storm was the result of two powerful Earth......-directed coronal mass ejections (CMEs). It produced a strong long lasting negative storm phase over Greenland with a dominant energy input in the polar-cap. We employed GNSS networks, geomagnetic observatories, and a specific ionosonde station in Greenland. We complemented the approach with spaceborne measurements...... specifically found that, (1) Thermospheric O/N2 measurements demonstrated significantly lower values over the Greenland sector than prior to the storm-time. (2) An increased ion flow in the topside ionosphere was observed during the negative storm phase. (3) Negative storm phase was a direct consequence...

  8. Development and application of network virtual instrument for emission spectrum of pulsed high-voltage direct current discharge

    Science.gov (United States)

    Gong, X.; Wu, Q.

    2017-12-01

    Network virtual instrument (VI) is a new development direction in current automated test. Based on LabVIEW, the software and hardware system of VI used for emission spectrum of pulsed high-voltage direct current (DC) discharge is developed and applied to investigate pulsed high-voltage DC discharge of nitrogen. By doing so, various functions are realized including real time collection of emission spectrum of nitrogen, monitoring operation state of instruments and real time analysis and processing of data. By using shared variables and DataSocket technology in LabVIEW, the network VI system based on field VI is established. The system can acquire the emission spectrum of nitrogen in the test site, monitor operation states of field instruments, realize real time face-to-face interchange of two sites, and analyze data in the far-end from the network terminal. By employing the network VI system, the staff in the two sites acquired the same emission spectrum of nitrogen and conducted the real time communication. By comparing with the previous results, it can be seen that the experimental data obtained by using the system are highly precise. This implies that the system shows reliable network stability and safety and satisfies the requirements for studying the emission spectrum of pulsed high-voltage discharge in high-precision fields or network terminals. The proposed architecture system is described and the target group gets the useful enlightenment in many fields including engineering remote users, specifically in control- and automation-related tasks.

  9. Instrument Design of the Large Aperture Solar UV Visible and IR Observing Telescope (SUVIT) for the SOLAR-C Mission

    Science.gov (United States)

    Suematsu, Y.; Katsukawa, Y.; Shimizu, T.; Ichimoto, K.; Takeyama, N.

    2012-12-01

    We present an instrumental design of one major solar observation payload planned for the SOLAR-C mission: the Solar Ultra-violet Visible and near IR observing Telescope (SUVIT). The SUVIT is designed to provide high-angular-resolution investigation of the lower solar atmosphere, from the photosphere to the uppermost chromosphere, with enhanced spectroscopic and spectro-polarimetric capability in wide wavelength regions from 280 nm (Mg II h&k lines) to 1100 nm (He I 1083 nm line) with 1.5 m class aperture and filtergraphic and spectrographic instruments.

  10. Direct observation of vibrational energy dispersal via methyl torsions.

    Science.gov (United States)

    Gardner, Adrian M; Tuttle, William D; Whalley, Laura E; Wright, Timothy G

    2018-02-28

    Explicit evidence for the role of methyl rotor levels in promoting energy dispersal is reported. A set of coupled zero-order vibration/vibration-torsion (vibtor) levels in the S 1 state of para -fluorotoluene ( p FT) are investigated. Two-dimensional laser-induced fluorescence (2D-LIF) and two-dimensional zero-kinetic-energy (2D-ZEKE) spectra are reported, and the assignment of the main features in both sets of spectra reveals that the methyl torsion is instrumental in providing a route for coupling between vibrational levels of different symmetry classes. We find that there is very localized, and selective, dissipation of energy via doorway states, and that, in addition to an increase in the density of states, a critical role of the methyl group is a relaxation of symmetry constraints compared to direct vibrational coupling.

  11. Contribution to the study of solar prominences from observations performed on the LPSP instrument aboard the OSO-8 satellite

    International Nuclear Information System (INIS)

    Vial, Jean-Claude

    1981-01-01

    Notably by reprinting various documents and articles, this research reports works undertaken from the design of an experiment performed with the LPSP instrument aboard the OSO-8 satellite, to its data processing and interpretation. This experiment aimed at the study of the chromosphere fine structure by means of simultaneous high resolution observations of the L α, L β, Mg II, Ca II, H and K lines. The first part presents the on-board LPSP instrument. The second part reports observations of active and quiescent solar prominences. The third part reports the transfer calculation for five resonance lines (H Lα, Mg II H and K, Ca II H and K), and the comparison with observations performed on OSO-8

  12. Tropospheric Aerosol Radiative Forcing Observational eXperiment - University of Washington instrumented C-131A aircraft Data Set

    Data.gov (United States)

    National Aeronautics and Space Administration — TARFOX_UWC131A is the Tropospheric Aerosol Radiative Forcing Observational eXperiment (TARFOX) - University of Washington instrumented C-131A aircraft data set. The...

  13. Distributions of δD observations from IASI/MetOp across the globe and intercomparison with other instruments/measurements

    Science.gov (United States)

    Lacour, Jean-Lionel; Clarisse, Lieven; Hurtmans, Daniel; Clerbaux, Cathy; Worden, John; Schneider, Matthias; Risi, Camille; Coheur, Pierre-François

    2014-05-01

    The Infrared Atmospheric Sounding Interferometer (IASI) onboard MetOp, through its observations of the water isotopologues, has great potential to support research on hydrological processes responsible for the moistening/drying of the atmosphere. The instrumental characteristics of the spectrometer (low radiometric noise and good spectral resolution) combined with its high sampling (global coverage twice a day) make it particularly suitable for providing numerous observations of the isotopologues ratio (δD) of water vapour in the troposphere. Retrieving isotopologues ratios at the required accuracy is, however, a challenging task. To get meaningful results, the retrieval needs to be well constrained. This can be achieved, with the optimal estimation method, by using an a priori probability density function containing correlation information between HDO and H2O. In this presentation, first, we will show that the measurements are mainly sensitive to δD in the troposphere between 3 and 6 km. We will illustrate the capabilities of IASI to provide δD observations at high spatio-temporal resolution with some distributions across the globe and we will discuss their added values to constrain hydrological processes. Second, we will document how IASI observations compare to other remote sounding observations of δD in the troposphere. Comparisons of IASI observations with the TES sounder and with three ground-based NDACC FTIR (Izaña, Kalsruhe and Kiruna, data generated within the project MUSICA) will be presented. The differences between the instruments as well as the methodology to compare them will be exposed. We will show that the different instruments agree within their own uncertainties and vertical sensitivities, asserting the use of IASI δD observations for scientific purposes.

  14. Instrumentation development

    International Nuclear Information System (INIS)

    Ubbes, W.F.; Yow, J.L. Jr.

    1988-01-01

    Instrumentation is developed for the Civilian Radioactive Waste Management Program to meet several different (and sometimes conflicting) objectives. This paper addresses instrumentation development for data needs that are related either directly or indirectly to a repository site, but does not touch on instrumentation for work with waste forms or other materials. Consequently, this implies a relatively large scale for the measurements, and an in situ setting for instrument performance. In this context, instruments are needed for site characterization to define phenomena, develop models, and obtain parameter values, and for later design and performance confirmation testing in the constructed repository. The former set of applications is more immediate, and is driven by the needs of program design and performance assessment activities. A host of general technical and nontechnical issues have arisen to challenge instrumentation development. Instruments can be classed into geomechanical, geohydrologic, or other specialty categories, but these issues cut across artificial classifications. These issues are outlined. Despite this imposing list of issues, several case histories are cited to evaluate progress in the area

  15. High degree modes and instrumental effects

    Energy Technology Data Exchange (ETDEWEB)

    Korzennik, S G [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Rabello-Soares, M C; Schou, J [Stanford University, Stanford, CA (United States)], E-mail: skorzennik@cfa.harvard.edu

    2008-10-15

    Full-disk observations taken with the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) spacecraft, or the upgraded Global Oscillations Network Group (GONG) instruments, have enough spatial resolution to resolve modes up to {iota} = 1000 if not {iota} = 1500. The inclusion of such high-degree modes (i.e., {iota} {<=} 1000) improves dramatically inferences near the surface. Unfortunately, observational and instrumental effects cause the characterization of high degree modes to be quite complicated. Indeed, the characteristics of the solar acoustic spectrum are such that, for a given order, mode lifetimes get shorter and spatial leaks get closer in frequency as the degree of a mode increases. A direct consequence of this property is that individual modes are resolved only at low and intermediate degrees. At high degrees the individual modes blend into ridges and the power distribution of the ridge defines the ridge central frequency, masking the underlying mode frequency. An accurate model of the amplitude of the peaks that contribute to the ridge power distribution is needed to recover the underlying mode frequency from fitting the ridge. We present a detailed discussion of the modeling of the ridge power distribution, and the contribution of the various observational and instrumental effects on the spatial leakage, in the context of the MDI instrument. We have constructed a physically motivated model (rather than an ad hoc correction scheme) that results in a methodology that can produce unbiased estimates of high-degree modes. This requires that the instrumental characteristics are well understood, a task that has turned out to pose a major challenge. We also present our latest results, where most of the known instrumental and observational effects that affect specifically high-degree modes were removed. These new results allow us to focus our attention on changes with solar activity. Finally, we present variations of mode

  16. Economic instruments for environmental mitigation

    International Nuclear Information System (INIS)

    Wilkinson, A.

    1995-01-01

    A joint International Chamber of Commerce (ICC)/World Energy Council (WEC) Working Group has been studying a range of policy instruments which are being used or considered for use to address the question of ever increasing energy demand versus environmental protection, and pollution reduction. Economic instruments for such environmental protection include direct regulation, market-based instruments, and voluntary approaches. No single policy or device was likely to suffice in addressing the diversity of environmental problems currently faced. Altering energy prices must be seen in a social context, but some direct regulation may also be inevitable. Generally economic instruments of change were preferred as these were viewed as more flexible and cost-effective. (UK)

  17. Instrument Modeling and Synthesis

    Science.gov (United States)

    Horner, Andrew B.; Beauchamp, James W.

    During the 1970s and 1980s, before synthesizers based on direct sampling of musical sounds became popular, replicating musical instruments using frequency modulation (FM) or wavetable synthesis was one of the “holy grails” of music synthesis. Synthesizers such as the Yamaha DX7 allowed users great flexibility in mixing and matching sounds, but were notoriously difficult to coerce into producing sounds like those of a given instrument. Instrument design wizards practiced the mysteries of FM instrument design.

  18. CIMEX: a prototype Instrument to observe from space the amazon forest In the near and shortwave infrared

    Science.gov (United States)

    Guerin, François; Dantes, Didier; Savaria, Eric; Selingardi, Mario Luis; Montes, Amauri Silva

    2018-04-01

    This paper, "CIMEX: a prototype Instrument to observe from space the amazon forest In the near and shortwave infrared," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  19. Directly Observed Treatment Short Course (DOTS) appears to have ...

    African Journals Online (AJOL)

    Directly Observed Treatment Short Course (DOTS) appears to have reduced the self-care role of pulmonary tuberculosis patient: evidence from a correctional study between Personal Health Beliefs (PHB) and Self Care Practices (SCP)

  20. Direct observation of free-exciton thermalization in quantum-well structures

    DEFF Research Database (Denmark)

    Umlauff, M.; Hoffmann, J.; Kalt, H.

    1998-01-01

    We report on a direct observation of free-exciton thermalization in quantum-well structures. A narrow energy distribution of free 1s excitons is created in ZnSe-based quantum wells by emission of one LO phonon after optical excitation of the continuum stales with picosecond laser pulses. The subs......We report on a direct observation of free-exciton thermalization in quantum-well structures. A narrow energy distribution of free 1s excitons is created in ZnSe-based quantum wells by emission of one LO phonon after optical excitation of the continuum stales with picosecond laser pulses...

  1. Effects of walker gender and observer gender on biological motion walking direction discrimination.

    Science.gov (United States)

    Yang, Xiaoying; Cai, Peng; Jiang, Yi

    2014-09-01

    The ability to recognize the movements of other biological entities, such as whether a person is walking toward you, is essential for survival and social interaction. Previous studies have shown that the visual system is particularly sensitive to approaching biological motion. In this study, we examined whether the gender of walkers and observers influenced the walking direction discrimination of approaching point-light walkers in fine granularity. The observers were presented a walker who walked in different directions and were asked to quickly judge the walking direction (left or right). The results showed that the observers demonstrated worse direction discrimination when the walker was depicted as male than when the walker was depicted as female, probably because the observers tended to perceive the male walkers as walking straight ahead. Intriguingly, male observers performed better than female observers at judging the walking directions of female walkers but not those of male walkers, a result indicating perceptual advantage with evolutionary significance. These findings provide strong evidence that the gender of walkers and observers modulates biological motion perception and that an adaptive perceptual mechanism exists in the visual system to facilitate the survival of social organisms. © 2014 The Institute of Psychology, Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  2. Observational methodology in football: Development of an instrument to study the offensive game in football

    Directory of Open Access Journals (Sweden)

    H. Sarmento

    2009-01-01

    Full Text Available The following paper introduces a new approach to the analysis of offensive game in football. Therefore, the main aim of this study was to create an instrument for collecting information for the analysis of offensive action and interactions game. The observation instrument that was used to accomplish the main objective of this work consists of a combination of format fields (FC and systems of categories (SC. This methodology is a particular strategy of the scientific method that has as an objective to analyse the perceptible behaviour that occurs in habitual contexts, allowing them to be formally recorded and quantified and using an ad hoc instrument in order to obtain a behaviour systematic registration that, since they have been transformed in quantitative data with the necessary reliability and validity determined level, will allow analysis of the relations between these behaviours. The codifications undertaken to date in various games of football have shown that it serves the purposes for which it was developed, allowing more research into the offensive game methods in football.

  3. Jupiter Trojan's Shallow Subsurface: Direct Observation By Radar Sounding

    Science.gov (United States)

    Herique, A.; Plettemeier, D.; Beck, P.; Michel, P.; Kumamoto, A.; Kofman, W. W.

    2017-12-01

    Most of the Jupiter's Trojan are classified as spectral type P or D from visible and near-IR observations. Still, major question remain regarding theire origin and geological evolution: What ices are present in their interior, and in what amount? What is the abundance and the nature of the organic fraction? Did they experience some level of differentiation powered by 26Al? Answering theses question is the goal of the Solar-Power Sail JAXA mission [1, 2]. This mission plans to study the surface by remote sensing in the optical in IR domain. This probe will carry a large-sized lander with a drill to sample the constitutive material at meter depth in order to complement physical and chemical properties measured by on-board instruments. The sample return is an option under study.Radar sounding of the shallow subsurface would be envisaged in complement to this payload. Sounding radar could provide the structure of the first tens of meters of the Trojan surface. It will allow identifying layering, ice lens, and embedded block. It also will enable to reconnect the surface with the deep interior in order to identify exogenous / pristine material. For the surface package, the drilling and the sample return, radar sounding is a unique opportunity to support the selection of the landing site and to provide the greater geological context of the samples that will be returned to Earth.In this paper, we will detail the objective of this instrument and then we will outline the proposed instrument, which is inheriting from the radar developed for the AIDA/AIM mission.[1] Mori, O. et al., Science experiments on a Jupiter Trojan Asteroid in the solar powerd sail mission. LPSC 2016 - 1822.[2] Okada, T. et al., Science and Exploration of a Jupiter Trojan Asteroid in the solar-power sail mission. LPSC 2017 - 1828.

  4. Instrumentation reference book

    CERN Document Server

    Boyes, Walt

    2002-01-01

    Instrumentation is not a clearly defined subject, having a 'fuzzy' boundary with a number of other disciplines. Often categorized as either 'techniques' or 'applications' this book addresses the various applications that may be needed with reference to the practical techniques that are available for the instrumentation or measurement of a specific physical quantity or quality. This makes it of direct interest to anyone working in the process, control and instrumentation fields where these measurements are essential.* Comprehensive and authoritative collection of technical information* Writte

  5. TROPOMI, the Sentinel 5 precursor instrument for air quality and climate observations: status of the current design

    Science.gov (United States)

    Voors, Robert; de Vries, Johan; Bhatti, Ianjit S.; Lobb, Dan; Wood, Trevor; van der Valk, Nick; Aben, Ilse; Veefkind, Pepijn

    2017-11-01

    TROPOMI, the Tropospheric Monitoring Instrument, is a passive UV-VIS-NIR-SWIR trace gas spectrograph in the line of SCIAMACHY (2002) and OMI (2004), instruments with the Netherlands in a leading role. Both instruments are very successful and remained operational long after their nominal life time. TROPOMI is the next step, scheduled for launch in 2015. It combines the broad wavelength range from SCIAMACHY from UV to SWIR and the broad viewing angle push-broom concept from OMI, which makes daily global coverage in combination with good spatial resolution possible. Using spectral bands from 270-500nm (UV-VIS) 675-775nm (NIR) and 2305-2385nm (SWIR) at moderate resolution (0.25 to 0.6nm) TROPOMI will measure O3, NO2, SO2, BrO, HCHO and H2O tropospheric columns from the UV-VIS-NIR wavelength range and CO and CH4 tropospheric columns from the SWIR wavelength range. Cloud information will be derived primarily from the O2A band in the NIR. This will help, together with the aerosol information, in constraining the light path of backscattered solar radiation. Methane (CH4), CO2 and Carbon monoxide (CO) are the key gases of the global carbon cycle. Of these, Methane is by far the least understood in terms of its sources and is most difficult to predict its future trend. Global space observations are needed to inform atmospheric models. The SWIR channel of TROPOMI is designed to achieve the spectral, spatial and SNR resolution required for this task. TROPOMI will yield an improved accuracy of the tropospheric products compared to the instruments currently in orbit. TROPOMI will take a major step forward in spatial resolution and sensitivity. The nominal observations are at 7 x 7 km2 at nadir and the signal-to-noises are sufficient for trace gas retrieval even at very low albedos (down to 2%). This spatial resolution allows observation of air quality at sub-city level and the high signal-to-noises means that the instrument can perform useful measurements in the darkest

  6. Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A): Instrumentation interface control document

    Science.gov (United States)

    1994-01-01

    This Interface Control Document (ICD) defines the specific details of the complete accomodation information between the Earth Observing System (EOS) PM Spacecraft and the Advanced Microwave Sounding Unit (AMSU-A)Instrument. This is the first submittal of the ICN: it will be updated periodically throughout the life of the program. The next update is planned prior to Critical Design Review (CDR).

  7. An Analysis of Ionospheric Thermal Ions Using a SIMION-based Forward Instrument Model: In Situ Observations of Vertical Thermal Ion Flows as Measured by the MICA Sounding Rocket

    Science.gov (United States)

    Fernandes, P. A.; Lynch, K. A.; Zettergren, M. D.; Hampton, D. L.; Fisher, L. E.; Powell, S. P.

    2013-12-01

    The MICA sounding rocket launched on 19 Feb. 2012 into several discrete, localized arcs in the wake of a westward traveling surge. In situ and ground-based observations provide a measured response of the ionosphere to preflight and localized auroral drivers. In this presentation we focus on in situ measurements of the thermal ion distribution. We observe thermal ions flowing both up and down the auroral field line, with upflows concentrated in Alfvénic and downward current regions. The in situ data are compared with recent ionospheric modeling efforts (Zettergren et al., this session) which show structured patterns of ion upflow and downflow consistent with these observations. In the low-energy thermal plasma regime, instrument response to the measured thermal ion population is very sensitive to the presence of the instrument. The plasma is shifted and accelerated in the frame of the instrument due to flows, ram, and acceleration through the payload sheath. The energies associated with these processes are large compared to the thermal energy. Rigorous quantitative analysis of the instrument response is necessary to extract the plasma properties which describe the full 3D distribution function at the instrument aperture. We introduce an instrument model, developed in the commercial software package SIMION, to characterize instrument response at low energies. The instrument model provides important insight into how we would modify our instrument for future missions, including fine-tuning parameters such as the analyzer sweep curve, the geometry factor, and the aperture size. We use the results from the instrument model to develop a forward model, from which we can extract anisotropic ion temperatures, flows, and density of the thermal plasma at the aperture. Because this plasma has transited a sheath to reach the aperture, we must account for the acceleration due to the sheath. Modeling of this complex sheath is being conducted by co-author Fisher, using a PIC code

  8. Direct observation of OH production from the ozonolysis of olefins

    Science.gov (United States)

    Donahue, Neil M.; Kroll, Jesse H.; Anderson, James G.; Demerjian, Kenneth L.

    Ozone olefin reactions may be a significant source of OH in the urban atmosphere, but current evidence for OH production is indirect and contested. We report the first direct observation of OH radicals from the reaction of ozone with a series of olefins (ethene, isoprene, trans-2-butene and 2,3 dimethyl-2-butene) in 4-6 torr of nitrogen. Using LIF to directly observe the steady-state of OH produced by the initial ozone-olefin reaction and subsequently destroyed by the OH-olefin reaction, we are able to establish OH yields broadly consistent with indirect values. The identification of the OH is unequivocal, and there is no indication that it is produced by a secondary process. To support these observations, we present a complete ab-initio potential energy surface for the O3-ethene reaction, extending from the reactants to available products.

  9. WMAP haze: Directly observing dark matter?

    International Nuclear Information System (INIS)

    Forbes, Michael McNeil; Zhitnitsky, Ariel R.

    2008-01-01

    In this paper, we show that dark matter in the form of dense matter/antimatter nuggets could provide a natural and unified explanation for several distinct bands of diffuse radiation from the core of the Galaxy spanning over 13 orders of magnitude in frequency. We fix all of the phenomenological properties of this model by matching to x-ray observations in the keV band, and then calculate the unambiguously predicted thermal emission in the microwave band, at frequencies smaller by 11 orders of magnitude. Remarkably, the intensity and spectrum of the emitted thermal radiation are consistent with - and could entirely explain - the so-called 'WMAP haze': a diffuse microwave excess observed from the core of our Galaxy by the Wilkinson Microwave Anisotropy Probe (WMAP). This provides another strong constraint of our proposal, and a remarkable nontrivial validation. If correct, our proposal identifies the nature of the dark matter, explains baryogenesis, and provides a means to directly probe the matter distribution in our Galaxy by analyzing several different types of diffuse emissions.

  10. Direct observations of blob deformation during a substorm

    Directory of Open Access Journals (Sweden)

    T. Ishida

    2015-05-01

    Full Text Available Ionospheric blobs are localized plasma density enhancements, which are mainly produced by the transportation process of plasma. To understand the deformation process of a blob, observations of plasma parameters with good spatial–temporal resolution are desirable. Thus, we conducted the European Incoherent Scatter radar observations with high-speed meridional scans (60–80 s during October and December 2013, and observed the temporal evolution of a blob during a substorm on 4 December 2013. This paper is the first report of direct observations of blob deformation during a substorm. The blob deformation arose from an enhanced plasma flow shear during the substorm expansion phase, and then the blob split into two smaller-scale blobs, whose scale sizes were more than ~100 km in latitude. Our analysis indicates that the Kelvin–Helmholtz instability and dissociative recombination could have deformed the blob structure.

  11. Inter-rater reliability of direct observations of the physical and psychosocial working conditions in eldercare

    DEFF Research Database (Denmark)

    Karstad, Kristina; Rugulies, Reiner; Skotte, Jørgen

    2018-01-01

    The aim of the study was to develop and evaluate the reliability of the "Danish observational study of eldercare work and musculoskeletal disorders" (DOSES) observation instrument to assess physical and psychosocial risk factors for musculoskeletal disorders (MSD) in eldercare work. During 1...... is appropriate for assessing physical and psychosocial risk factors for MSD among eldercare workers....

  12. Experimental study of the response functions of direct-reading instruments measuring surface-area concentration of airborne nanostructured particles

    International Nuclear Information System (INIS)

    Bau, Sebastien; Witschger, Olivier; Gensdarmes, Francois; Thomas, Dominique

    2009-01-01

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment to move forward our understanding of the hazards, the actual exposures in the workplace, and the limits of engineering controls and personal protective equipment with regard to NP. As a consequence, generating airborne NP with controlled properties constitutes an important challenge. In parallel, toxicological studies have been carried out, and most of them support the concept that surface-area could be a relevant metric for characterizing exposure to airborne NP. To provide NP surface-area concentration measurements, some direct-reading instruments have been designed, based on attachment rate of unipolar ions to NP by diffusion. However, very few information is available concerning the performances of these instruments and the parameters that could affect their responses. In this context, our work aims at characterizing the actual available instruments providing airborne NP surface-area concentration. The instruments (a- LQ1-DC, Matter Engineering; b-AeroTrak x2122 9000, TSI; c- NSAM, TSI model 3550;) are thought to be relevant for further workplace exposure characterization and monitoring. To achieve our work, an experimental facility (named CAIMAN) was specially designed, built and characterized.

  13. Experimental study of the response functions of direct-reading instruments measuring surface-area concentration of airborne nanostructured particles

    Energy Technology Data Exchange (ETDEWEB)

    Bau, Sebastien; Witschger, Olivier [Institut National de Recherche et de Securite, INRS, Laboratoire de Metrologie des Aerosols, Rue du Morvan, CS 60027, 54519 Vandoeuvre Cedex (France); Gensdarmes, Francois [Institut de Radioprotection et de Surete Nucleaire, IRSN, Laboratoire de Physique et de Metrologie des Aerosols, BP 68, 91192 Gif-sur-Yvette Cedex (France); Thomas, Dominique [Laboratoire des Sciences du Genie Chimique, LSGC/CNRS, Nancy Universite, BP 2041, 54001 Nancy Cedex (France)], E-mail: sebastien.bau@inrs.fr

    2009-05-01

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment to move forward our understanding of the hazards, the actual exposures in the workplace, and the limits of engineering controls and personal protective equipment with regard to NP. As a consequence, generating airborne NP with controlled properties constitutes an important challenge. In parallel, toxicological studies have been carried out, and most of them support the concept that surface-area could be a relevant metric for characterizing exposure to airborne NP. To provide NP surface-area concentration measurements, some direct-reading instruments have been designed, based on attachment rate of unipolar ions to NP by diffusion. However, very few information is available concerning the performances of these instruments and the parameters that could affect their responses. In this context, our work aims at characterizing the actual available instruments providing airborne NP surface-area concentration. The instruments (a- LQ1-DC, Matter Engineering; b-AeroTrak{sup x2122} 9000, TSI; c- NSAM, TSI model 3550;) are thought to be relevant for further workplace exposure characterization and monitoring. To achieve our work, an experimental facility (named CAIMAN) was specially designed, built and characterized.

  14. Direct observations and analyses of dislocation substructures in the α phase of an α/β Ti-alloy formed by nanoindentation

    International Nuclear Information System (INIS)

    Viswanathan, G.B.; Lee, Eunha; Maher, Dennis M.; Banerjee, S.; Fraser, Hamish L.

    2005-01-01

    The hardness of α-titanium grains as a function of both indentation depth and orientation has been assessed using nanoindentation. Direct observations and analyses of the dislocation substructures have been achieved by cutting thin-foil membranes exactly through given indents with a dual-beam focused-ion-beam instrument and from diffraction-contrast experiments in a transmission electron microscope. It was found, as expected, that the hardness varied with the depth of indentation. Regarding the orientation dependence of hardness, the nature of the statistically stored dislocations as well as that of the geometrically necessary dislocations has been identified. Thus, the occurrence of the majority of the former dislocations can be predicted on the basis of Schmid's law, while noting the presence of minor densities of other dislocations required presumably because of the arbitrary shape change imposed by the nanoindenter. The geometrically necessary dislocations have been identified as the appropriate combinations of slip dislocations such that an overall displacement parallel to the direction of the indentation results

  15. Technological considerations in emergency instrument preparedness

    International Nuclear Information System (INIS)

    Selby, J.M.

    1975-01-01

    The types of emergency instrumentation systems necessary to characterize the severity and extent of radiation accidents and to aid in the protection of operating personnel and personnel living near the plant are discussed. These include instruments for direct measurement of the airborne radioactive material within the facility, fixed instrumentation for ambient dose rate monitoring or area monitoring, and portable instruments for environmental monitoring

  16. Observation of nurse-patient interaction in oncology: review of assessment instruments.

    NARCIS (Netherlands)

    Caris-Verhallen, W.; Timmermans, L.; Dulmen, S. van

    2004-01-01

    The aim of this review is to identify assessment instruments that can be used for analyzing sequences and can be applied to research into nurse-patient communication in cancer care. A systematic search of the literature revealed a variety of methods and instruments applicable to studies recording

  17. In situ energetic particle observations at comet Halley recorded by instrumentation aboard the Giotto and Vega 1 missions

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S.; Daly, P.; Kirsch, E.; Wilken, B.; O' Sullivan, D.; Thompson, A.; Kecskemety, K.; Somogyi, A.; Coates, A.

    1989-04-01

    Three important observations recorded in the energetic particle data secured at Halley's comet during March 1986 are reviewed. These include (a) quasi periodic variations of cometary ion fluxes observed inbound and outbound by both the EPONA instrument aboard Giotto and by the Tunde-M instrument aboard Vega 1. A possible explanation of the results in terms of a spin modulation of the outgassing rate of the nucleus is discussed; (b) by combining the EPONA data with JPA-IIS data it is possible to infer that the ion fluxes measured at encounter by EPONA were of the water group. These particles displayed energies in excess of those attained by the pick-up process acting alone. Comparisons between energy spectra prepared using the composite observational data and, corresponding, theoretically derived plots suggest that, downstream of the shock (inbound), stochastic (second-order-Fermi) acceleration may have contributed to energizing the particles; (c) large fluxes of electrons (E>300keV) and ions (E>3.5 MeV) were unexpectedly recorded by EPONA in the magnetic cavity. The observed enhancements (up to approximately three orders of magnitude) appear to be cometary in origin.

  18. In situ energetic particle observations at comet Halley recorded by instrumentation aboard the Giotto and Vega 1 missions

    International Nuclear Information System (INIS)

    McKenna-Lawlor, S.; Daly, P.; Kirsch, E.; Wilken, B.; O'Sullivan, D.; Thompson, A.; Kecskemety, K.; Somogyi, A.

    1989-01-01

    Three important observations recorded in the energetic particle data secured at Halley's comet during March 1986 are reviewed. These include (a) quasi periodic variations of cometary ion fluxes observed inbound and outbound by both the EPONA instrument aboard Giotto and by the Tunde-M instrument aboard Vega 1. A possible explanation of the results in terms of a spin modulation of the outgassing rate of the nucleus is discussed; (b) by combining the EPONA data with JPA-IIS data it is possible to infer that the ion fluxes measured at encounter by EPONA were of the water group. These particles displayed energies in excess of those attained by the pick-up process acting alone. Comparisons between energy spectra prepared using the composite observational data and, corresponding, theoretically derived plots suggest that, downstream of the shock (inbound), stochastic (second-order-Fermi) acceleration may have contributed to energizing the particles; (c) large fluxes of electrons (E>300keV) and ions (E>3.5 MeV) were unexpectedly recorded by EPONA in the magnetic cavity. The observed enhancements (up to approximately three orders of magnitude) appear to be cometary in origin

  19. Developing Instrumentation for Ground and Balloon-Borne Observing Platforms

    Data.gov (United States)

    National Aeronautics and Space Administration — In my research I will focus on developing hardware and software technology for two instruments searching for polarization in the Cosmic Microwave Background (CMB)....

  20. Concordance of chart and billing data with direct observation in dental practice.

    Science.gov (United States)

    Demko, Catherine A; Victoroff, Kristin Zakariasen; Wotman, Stephen

    2008-10-01

    The commonly used methods of chart review, billing data summaries and practitioner self-reporting have not been examined for their ability to validly and reliably represent time use and service delivery in routine dental practice. A more thorough investigation of these data sources would provide insight into the appropriateness of each approach for measuring various clinical behaviors. The aim of this study was to assess the validity of commonly used methods such as dental chart review, billing data, or practitioner self-report compared with a 'gold standard' of information derived from direct observation of routine dental visits. A team of trained dental hygienists directly observed 3751 patient visits in 120 dental practices and recorded the behaviors and procedures performed by dentists and hygienists during patient contact time. Following each visit, charts and billing records were reviewed for the performed and billed procedures. Dental providers characterized their frequency of preventive service delivery through self-administered surveys. We standardized the observation and abstraction methods to obtain optimal measures from each of the multiple data sources. Multi-rater kappa coefficients were computed to monitor standardization, while sensitivity, specificity, and kappa coefficients were calculated to compare the various data sources with direct observation. Chart audits were more sensitive than billing data for all observed procedures and demonstrated higher agreement with directly observed data. Chart and billing records were not sensitive for several prevention-related tasks (oral cancer screening and oral hygiene instruction). Provider self-reports of preventive behaviors were always over-estimated compared with direct observation. Inter-method reliability kappa coefficients for 13 procedures ranged from 0.197 to 0.952. These concordance findings suggest that strengths and weaknesses of data collection sources should be considered when investigating

  1. Musical Expression: An Observational Study of Instrumental Teaching

    Science.gov (United States)

    Karlsson, Jessika; Juslin, Patrik N.

    2008-01-01

    Research has shown that both music students and teachers think that expression is important. Yet, we know little about how expression is taught to students. Such knowledge is needed in order to enhance teaching of expression. The aim of this study was thus to explore the nature of instrumental music teaching in its natural context, with a focus on…

  2. Vision though afocal instruments: generalized magnification and eye-instrument interaction

    Science.gov (United States)

    Harris, William F.; Evans, Tanya

    2018-04-01

    In Gaussian optics all observers experience the same magnification, the instrument's angular magnification, when viewing distant objects though a telescope or other afocal instruments. However, analysis in linear optics shows that this is not necessarily so in the presence of astigmatism. Because astigmatism may distort and rotate images it is appropriate to work with generalized angular magnification represented by a 2 × 2 matrix. An expression is derived for the generalized magnification for an arbitrary eye looking through an arbitrary afocal instrument. With afocal instruments containing astigmatic refracting elements not all eyes experience the same generalized magnification; there is interaction between eye and instrument. Eye-instrument interaction may change as the instrument is rotated about its longitudinal axis, there being no interaction in particular orientations. A simple numerical example is given. For sake of completeness, expressions for generalized magnification are also presented in the case of instruments that are not afocal and objects that are not distant.

  3. An Airborne Infrared Spectrometer for Solar Eclipse Observations

    Science.gov (United States)

    Samra, Jenna; DeLuca, Edward E.; Golub, Leon; Cheimets, Peter; Philip, Judge

    2016-05-01

    The airborne infrared spectrometer (AIR-Spec) is an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). AIR-Spec will image five infrared coronal emission lines to determine whether they may be useful probes of coronal magnetism.The solar magnetic field provides the free energy that controls coronal heating, structure, and dynamics. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections and ultimately drives space weather. Therefore, direct coronal field measurements have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind.While current instruments routinely observe only the photospheric and chromospheric magnetic fields, AIR-Spec will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. During the total solar eclipse of 2017, AIR-Spec will observe five magnetically sensitive coronal emission lines between 1.4 and 4 µm from the HIAPER Gulfstream V at an altitude above 14.9 km. The instrument will measure emission line intensity, width, and Doppler shift, map the spatial distribution of infrared emitting plasma, and search for waves in the emission line velocities.AIR-Spec consists of an optical system (feed telescope, grating spectrometer, and infrared detector) and an image stabilization system, which uses a fast steering mirror to correct the line-of-sight for platform perturbations. To ensure that the instrument meets its research goals, both systems are undergoing extensive performance modeling and testing. These results are shown with reference to the science requirements.

  4. LiNbO/sub 3/:Ti directional-coupler modulators for high-bandwidth, single-shot instrumentation systems operating at 800 nm

    International Nuclear Information System (INIS)

    Lowry, M.; Jander, D.; Lancaster, G.; Kwiat, P.; McWright, G.; Peterson, R.T.; Tindall, W.; Roeske, F.

    1987-01-01

    The authors update their work on optical directional-coupler modulators (ODCMs) for single-shot, analog instrumentation systems operating at -- 800 nm. They can now fabricate directional-coupler devices that have one input and two output pigtails with insertion losses of 8.9 dB on average. Data for the ODCMs indicate an impulse response of less than 40 ps. They have implemented these devices in an ultrafast, x-ray measurement system. They discuss our data from this implementation and their implications for continued ODCM development

  5. Ground-Based Observations of Terrestrial Gamma Ray Flashes Associated with Downward-Directed Lightning Leaders

    Science.gov (United States)

    Belz, J.; Abbasi, R.; Krehbiel, P. R.; LeVon, R.; Remington, J.; Rison, W.; Thomas, R. J.

    2017-12-01

    Terrestrial Gamma Flashes (TGFs) have been observed in satellite-borne gamma ray detectors for several decades, starting with the BATSE instrument on the Compton Gamma-Ray observatory in 1994. TGFs consist of bursts of upwards of 1018 primary gamma rays, with a duration of up to a few milliseconds, originating in the Earth's atmosphere. More recent observations have shown that satellite-observed TGFs are generated in upward-propagating negative leaders of intracloud lightning, suggesting that they may be sensitive to the processes responsible for the initial lightning breakdown. Here, we present the first evidence that TGFs are also produced at the beginning of negative cloud-to-ground flashes, and that they may provide a new window through which ground-based observatories may contribute to understanding the breakdown process. The Telescope Array Surface Detector (TASD) is a 700 square kilometer cosmic ray observatory, an array of 507 3m2 scintillators on a 1.2 km grid. The array is triggered and read out when at least three adjacent detectors observe activity within an 8 μs window. Following the observation of bursts of anomalous TASD triggers, lasting a few hundred microseconds and correlated with local lightning activity, a Lightning Mapping Array (LMA) and slow electric field antenna were installed at the TASD site in order to study the effect. From data obtained between 2014 and 2016, correlated observations were obtained for ten -CG flashes. In 9 out of 10 cases, bursts of up to five anomalous triggers were detected during the first ms of the flash, as negative breakdown was descending into lower positive storm charge. The triggers occurred when the LMA-detected VHF radiation sources were at altitudes between 1.5 to 4.5 km AGL. The tenth flash was initiated by an unusually energetic leader that reached the ground in 2.5 ms and produced increasingly powerful triggers down to about 500 m AGL. While the TASD is not optimized for individual gamma ray detection

  6. Astronomical Instruments in India

    Science.gov (United States)

    Sarma, Sreeramula Rajeswara

    The earliest astronomical instruments used in India were the gnomon and the water clock. In the early seventh century, Brahmagupta described ten types of instruments, which were adopted by all subsequent writers with minor modifications. Contact with Islamic astronomy in the second millennium AD led to a radical change. Sanskrit texts began to lay emphasis on the importance of observational instruments. Exclusive texts on instruments were composed. Islamic instruments like the astrolabe were adopted and some new types of instruments were developed. Production and use of these traditional instruments continued, along with the cultivation of traditional astronomy, up to the end of the nineteenth century.

  7. The determination of some impurities in zirconium metal by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Eddy, B.T.; Pearton, D.C.G.; Watterson, J.J.

    1976-01-01

    This report describes the work done on the development of an instrumental neutron-activation method for the analysis of impurities in reactor-grade zirconium. Nine samples were analysed, and the results were compared with those obtained by other techniques. No statistically significant differences were observed for ten of the twelve elements that could possibly be determined by instrumental neutron-activation analysis. Cadmium cannot be determined at the 0,5 p.p.m. level, and there is doubt about the comparative values recorded for aluminium. The precision of the measurement by direct instrumental neutron-activation analysis ranges from 1,4 per cent for tungsten to 17 per cent for chromium [af

  8. Recent Directions in Remote Engineering and Virtual Instrumentation

    Directory of Open Access Journals (Sweden)

    Tarek M. Sobh

    2009-08-01

    Full Text Available The 6th Remote Engineering and Virtual instrumentation Conference (REV 2009 was held at the University of Bridgeport in Bridgeport, Connecticut, USA during the period of June 22 – 25, 2009. The conference brought together engineering researchers, educators, and professionals to explore the fundamentals, future, and application of remote engineering in both industry and academia. Participants delivered papers, presented demonstrations, research posters, and shared experiences in virtual engineering. REV’09 drew more than 100 engineers, scientists and educators from around the world. Most of the participants were from Europe, but many came from Asia, North and South America, the Middle East and as far as Australia. More than 60 papers were presented on topics ranging from Telerobotics to Virtual and Remote Labs. Workshops and Tutorials drew widespread interest and exhibitors displayed their products for integrating remote engineering into academia. Poster sessions discussed topics such as Robotic Surgery and Development of Remote Labs in Physics. The general objective of REV 2009 was to discuss fundamentals, applications and experiences within the field of online engineering, both in industry and academia. The conference presentations and papers addressed several emerging trends in online engineering, remote laboratories, virtual instrumentation and educational applications of remote engineering.

  9. Characterization of the Geosynchronous Plasma Environment for the SENSER/RROE Optical Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Woodroffe, Jesse Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-08

    In this report, we summarize available research in order to characterize expected rates of particle incidence on the SENSER/RROE optical instrument. We first investigate the “normal” background levels using data from statistical studies of spacecraft in geosynchronous orbit and empirical models. We then consider “worst case” scenarios based on event studies in which extreme fluxes have been observed. We use these data to define “maximum” rates of particle incidence. We then consider how incident particles will actually produce counts in the instrument by considering the effects of screening by the instrument housing and the possibility of direct particle access to the housing, with rates for both primary access and secondary electron generation.

  10. Conception d'instrument pour une mission d'observation haute resolution et grand champ

    Science.gov (United States)

    Fayret, Jean-Philippe; Gaudin-Delrieu, Catherine; Lamard, Jean-Luc; Devilliers, Christophe; Costes, Vincent

    2017-11-01

    The future Earth observation missions aim at delivering images with a high resolution and a large field of view. The PLEIADES mission, coming after the SPOT satellites, lead to enhance the resolution to submetric values with a swath over 20km. Panchromatic and multispectral images will be proposed. Starting with the mission requirements elaborated by the CNES, Alcatel Space Industries has conducted a study to identify the instrument concepts most suited to comply with these performance. In addition, to minimise the development costs, a mini satellite approach has been selected, leading to a compact concept for the instrument design. During the study, various detection techniques and the associated detectors have been investigated from classical pushbroom to supermode acquisition modes. For each of these options, different optical lay-outs were proposed and evaluated with respect to performance as well as interfaces requirements. Optical performance, mechanical design constraints and manufacturing processes were taken into account to assess the performances of the various solutions. Eventually the most promising concept was selected and a preliminary design study performed. This concept, based on a Korsch optical scheme associated with TDI detectors, complies with the mission requirements and allows for a wide number of possibilities of accommodation with a minisatellite class platform.

  11. Observations of a bi-directional lightning leader producing an M-component

    Science.gov (United States)

    Kotovsky, D. A.; Uman, M. A.; Wilkes, R.; Carvalho, F. L.; Jordan, D. M.

    2017-12-01

    Lightning discharges to ground often exhibit millisecond-scale surges in the continuing currents following return strokes, called M-components. Relatively little is known regarding the source of M-component charge and the mechanisms by which that charge is transferred to ground. In this work, we seek to directly address these questions by presenting correlated high-speed video and Lightning Mapping Array (LMA) observations of a bi-directional leader that resulted in an M-component occurring in a rocket-and-wire triggered lightning flash. The observed leader initiated in the decayed remnants of a positive leader channel that had traversed virgin air approximately 90 msec prior. Three-dimensional locations and speeds of the photographed bi-directional leader and M-component processes are calculated by mapping video images to the observed LMA channel geometry. Both ends of the bi-directional leader exhibited speeds on the order of 2 x106 m sec-1 over 570 meters of the visible channel. Propagation of the luminosity wave from the in-cloud leader to ground ( 8.8 km channel length) exhibited appreciable dispersion, with rise-times (10-90%) increasing from 330 to 410 μsec and pulse-widths (half-maximum) increasing from 380 to 810 μsec - the M-component current pulse measured at ground-level exhibited a rise-time of 290 μsec and a pulse-width of 770 μsec. Group velocities of the luminosity wave have been calculated as a function of frequency, increasing from 2 x107 to 6 x107 m sec-1 over the dominant signal bandwidth (DC to 2 kHz). Additionally, multiple waves of luminosity are observed within the in-cloud channel, indicating nuanced wave phenomena possibly associated with reflection from the end of the leader channel and attachment with the main lightning channel carrying continuing current to ground.

  12. The PhotoElectron Boundary as observed by MAVEN instruments

    Science.gov (United States)

    Garnier, P.; Steckiewicz, M.; Mazelle, C. X.; Xu, S.; Mitchell, D. L.; Holmberg, M.; Halekas, J. S.; Andersson, L.; Brain, D.; Connerney, J. E. P.; Espley, J. R.; Lillis, R. J.; Luhmann, J. G.; Savaud, J. A.; Jakosky, B. M.

    2017-12-01

    Photoelectron peaks in the 20-30 eV energy range are commonly observed in planetary atmospheres (Earth, Mars, Titan...), produced by the intense photoionization from solar 30.4 nm photons. At Mars, these photoelectrons result from the ionization of CO2 and O atmospheric neutrals, and are known to escape the planet down its tail, making them tracers for the atmospheric escape (Frahm et al., 2006). Furthermore, their presence or absence allows us to define the so-called PhotoElectron Boundary (PEB), that separates the sunlit photoelectron-dominated ionosphere from the solar wind controlled environment, as initially observed by the Mars Global Surveyor (MGS) MAG/ER instrument (Mitchell et al. (2000, 2001). We provide here a detailed statistical analysis of the location and properties of the PEB based on the Mars Atmosphere and Volatile Evolution (MAVEN) mission electron and magnetic field data. Our dataset includes 1696 dayside PEB crossings obtained from September 2014 until May 2016 (the observations of escaping photoelectrons in the wake being not included). The PEB appears as mostly sensitive to the solar wind dynamic and crustal magnetic fields pressures, for which a quantitative dependance is derived and compared with two other important boundaries : the bow shock and magnetic pileup boundary. The PEB altitude is highly variable, leading to a variable wake cross section for escape (up to +- 50%), which is important for deriving global escape rates from in situ photoelectron escape rates. The PEB is not always sharp, and is, despite a strong variability, characterized on average by : a magnetic field topology typical for the edge of the Magnetic Pile Up Region above it, more field aligned fluxes above than below, and a clear change of the altitude dependence of both electron fluxes and total density (that appears different from the ionopause). The PEB thus appears as a transition region between two plasma and field configurations which is determined by the

  13. CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations

    Directory of Open Access Journals (Sweden)

    C. Clerbaux

    2008-05-01

    Full Text Available The Atmospheric Chemistry Experiment (ACE mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO, a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS. This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006. We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES as well as limb-viewing remote sensors (MIPAS, SMR and MLS were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above. These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km, than 30% in the lower stratosphere (12–30 km, and than 25% from 30 to 100 km.

  14. Developing the Coach Analysis and Intervention System (CAIS): establishing validity and reliability of a computerised systematic observation instrument.

    Science.gov (United States)

    Cushion, Christopher; Harvey, Stephen; Muir, Bob; Nelson, Lee

    2012-01-01

    We outline the evolution of a computerised systematic observation tool and describe the process for establishing the validity and reliability of this new instrument. The Coach Analysis and Interventions System (CAIS) has 23 primary behaviours related to physical behaviour, feedback/reinforcement, instruction, verbal/non-verbal, questioning and management. The instrument also analyses secondary coach behaviour related to performance states, recipient, timing, content and questioning/silence. The CAIS is a multi-dimensional and multi-level mechanism able to provide detailed and contextualised data about specific coaching behaviours occurring in complex and nuanced coaching interventions and environments that can be applied to both practice sessions and competition.

  15. Raman Lidar for Meteorological Observations, RALMO – Part 1: Instrument description

    Directory of Open Access Journals (Sweden)

    T. Dinoev

    2013-05-01

    Full Text Available A new Raman lidar for unattended, round-the-clock measurement of vertical water vapor profiles for operational use by the MeteoSwiss has been developed during the past years by the Swiss Federal Institute of Technology, Lausanne. The lidar uses narrow field-of-view, narrowband configuration, a UV laser, and four 30 cm in diameter mirrors, fiber-coupled to a grating polychromator. The optical design allows water vapor retrieval from the incomplete overlap region without instrument-specific range-dependent corrections. The daytime vertical range covers the mid-troposphere, whereas the nighttime range extends to the tropopause. The near range coverage is extended down to 100 m AGL by the use of an additional fiber in one of the telescopes. This paper describes the system layout and technical realization. Day- and nighttime lidar profiles compared to Vaisala RS92 and Snow White® profiles and a six-day continuous observation are presented as an illustration of the lidar measurement capability.

  16. Template-Directed Instrumentation Reduces Cost and Improves Efficiency for Total Knee Arthroplasty: An Economic Decision Analysis and Pilot Study.

    Science.gov (United States)

    McLawhorn, Alexander S; Carroll, Kaitlin M; Blevins, Jason L; DeNegre, Scott T; Mayman, David J; Jerabek, Seth A

    2015-10-01

    Template-directed instrumentation (TDI) for total knee arthroplasty (TKA) may streamline operating room (OR) workflow and reduce costs by preselecting implants and minimizing instrument tray burden. A decision model simulated the economics of TDI. Sensitivity analyses determined thresholds for model variables to ensure TDI success. A clinical pilot was reviewed. The accuracy of preoperative templates was validated, and 20 consecutive primary TKAs were performed using TDI. The model determined that preoperative component size estimation should be accurate to ±1 implant size for 50% of TKAs to implement TDI. The pilot showed that preoperative template accuracy exceeded 97%. There were statistically significant improvements in OR turnover time and in-room time for TDI compared to an historical cohort of TKAs. TDI reduces costs and improves OR efficiency. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The trend of foreign direct investment movement: Did unintended nation brand of legal-families play an instrumental role?

    OpenAIRE

    Tse, Chin-Bun; Kam, Oi-Yan

    2018-01-01

    Combining the suggestion from Fan (2006) that a nation can have a brand image without deliberating efforts of nation branding and the work from Klerman et al. (2011) on Colonial History and effects on legal systems, we view that legal-systems could be an unintended nation brand that could instrumentally affect foreign direct investment (FDI) activities. We classify 193 countries according to their Colonial History or no-Colonial History into 5 legal-families. Applying Generalised Methods of M...

  18. Cluster observations of the high-latitude magnetopause and cusp: initial results from the CIS ion instruments

    Directory of Open Access Journals (Sweden)

    J. M. Bosqued

    2001-09-01

    Full Text Available Launched on an elliptical high inclination orbit (apogee: 19.6 RE since January 2001 the Cluster satellites have been conducting the first detailed three-dimensional studies of the high-latitude dayside magnetosphere, including the exterior cusp, neighbouring boundary layers and magnetopause regions. Cluster satellites carry the CIS ion spectrometers that provide high-precision, 3D distributions of low-energy (<35 keV/e ions every 4 s. This paper presents the first two observations of the cusp and/or magnetopause behaviour made under different interplanetary magnetic field (IMF conditions. Flow directions, 3D distribution functions, density profiles and ion composition profiles are analyzed to demonstrate the high variability of high-latitude regions. In the first crossing analyzed (26 January 2001, dusk side, IMF-BZ < 0, multiple, isolated boundary layer, magnetopause and magnetosheath encounters clearly occurred on a quasi-steady basis for ~ 2 hours. CIS ion instruments show systematic accelerated flows in the current layer and adjacent boundary layers on the Earthward side of the magnetopause. Multi-point analysis of the magnetopause, combining magnetic and plasma data from the four Cluster spacecraft, demonstrates that oscillatory outward-inward motions occur with a normal speed of the order of ± 40 km/s; the thickness of the high-latitude current layer is evaluated to be of the order of 900–1000 km. Alfvénic accelerated flows and D-shaped distributions are convincing signatures of a magnetic reconnection occurring equatorward of the Cluster satellites. Moreover, the internal magnetic and plasma structure of a flux transfer event (FTE is analyzed in detail; its size along the magnetopause surface is ~ 12 000 km and it convects with a velocity of ~ 200 km/s. The second event analyzed (2 February 2001 corresponds to the first Cluster pass within the cusp when the IMF-BZ component was northward directed. The analysis of relevant CIS plasma

  19. Cosmic curvature tested directly from observations

    Science.gov (United States)

    Denissenya, Mikhail; Linder, Eric V.; Shafieloo, Arman

    2018-03-01

    Cosmic spatial curvature is a fundamental geometric quantity of the Universe. We investigate a model independent, geometric approach to measure spatial curvature directly from observations, without any derivatives of data. This employs strong lensing time delays and supernova distance measurements to measure the curvature itself, rather than just testing consistency with flatness. We define two curvature estimators, with differing error propagation characteristics, that can crosscheck each other, and also show how they can be used to map the curvature in redshift slices, to test constancy of curvature as required by the Robertson-Walker metric. Simulating realizations of redshift distributions and distance measurements of lenses and sources, we estimate uncertainties on the curvature enabled by next generation measurements. The results indicate that the model independent methods, using only geometry without assuming forms for the energy density constituents, can determine the curvature at the ~6×10‑3 level.

  20. An attempt to observe directly beauty particles in nuclear emulsions

    International Nuclear Information System (INIS)

    Albanese, J.P.; Arnold, R.; Matteuzzi, C.; Musset, P.; Piuz, F.; Poulard, G.; Price, M.J.; Ramello, L.; Sletten, H.; Allasia, D.; Bisi, V.; Gamba, D.; Marzari-Chiesa, A.; Riccati, L.; Romero, A.; Armenise, N.; Calicchio, M.; Erriquez, O.; Lavopa, P.; Maggi, G.; Muciaccia, M.T.; Natali, S.; Nuzzo, S.; Romano, F.; Ruggieri, F.; Baroni, G.; Di Ciaccio, L.; Di Liberto, S.; Manfredini, A.; Meddi, F.; Petrera, S.; Romano, G.; Rosa, G.; Santonico, R.; Sebastiani, F.; Barth, M.; Bertrand, D.; Bertrand-Coremans, G.; Roosen, R.; Sacton, J.; Schorochoff, G.; Wickens, J.; Breslin, A.C.; Montwill, A.; O'Connor, A.; Davis, D.G.; Davis, D.H.; Downes, J.K.; Duff, B.G.; Esten, M.J.; Gjerpe, I.; Heymann, F.F.; Imrie, D.C.; Lush, G.J.; Tovee, D.N.; Hazama, M.; Isokane, Y.; Tsuneoka, Y.; Maeda, Y.; Tasaka, S.

    1983-01-01

    An attempt at the direct observation of the cascade decay of beauty particles, produced by π - of 350 GeV/c leading to 3 muons or 4 muons in the final state, has been made in an emulsion/counter hybrid experiment at CERN. Under the assumption that the lifetime of beauty particles is of the order of 10 - 13 s the non-observation of any candidates provides an upper limit for beauty production of approx.=90 nb at the 90% confidence level. (orig.)

  1. Data acquisition instruments: Psychopharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.S. III

    1998-01-01

    This report contains the results of a Direct Assistance Project performed by Lockheed Martin Energy Systems, Inc., for Dr. K. O. Jobson. The purpose of the project was to perform preliminary analysis of the data acquisition instruments used in the field of psychiatry, with the goal of identifying commonalities of data and strategies for handling and using the data in the most advantageous fashion. Data acquisition instruments from 12 sources were provided by Dr. Jobson. Several commonalities were identified and a potentially useful data strategy is reported here. Analysis of the information collected for utility in performing diagnoses is recommended. In addition, further work is recommended to refine the commonalities into a directly useful computer systems structure.

  2. The Pediatrics Milestones Assessment Pilot: Development of Workplace-Based Assessment Content, Instruments, and Processes.

    Science.gov (United States)

    Hicks, Patricia J; Margolis, Melissa; Poynter, Sue E; Chaffinch, Christa; Tenney-Soeiro, Rebecca; Turner, Teri L; Waggoner-Fountain, Linda; Lockridge, Robin; Clyman, Stephen G; Schwartz, Alan

    2016-05-01

    To report on the development of content and user feedback regarding the assessment process and utility of the workplace-based assessment instruments of the Pediatrics Milestones Assessment Pilot (PMAP). One multisource feedback instrument and two structured clinical observation instruments were developed and refined by experts in pediatrics and assessment to provide evidence for nine competencies based on the Pediatrics Milestones (PMs) and chosen to inform residency program faculty decisions about learners' readiness to serve as pediatric interns in the inpatient setting. During the 2012-2013 PMAP study, 18 U.S. pediatric residency programs enrolled interns and subinterns. Faculty, residents, nurses, and other observers used the instruments to assess learner performance through direct observation during a one-month rotation. At the end of the rotation, data were aggregated for each learner, milestone levels were assigned using a milestone classification form, and feedback was provided to learners. Learners and site leads were surveyed and/or interviewed about their experience as participants. Across the sites, 2,338 instruments assessing 239 learners were completed by 630 unique observers. Regarding end-of-rotation feedback, 93% of learners (128/137) agreed the assessments and feedback "helped me understand how those with whom I work perceive my performance," and 85% (117/137) agreed they were "useful for constructing future goals or identifying a developmental path." Site leads identified several benefits and challenges to the assessment process. PM-based instruments used in workplace-based assessment provide a meaningful and acceptable approach to collecting evidence of learner competency development. Learners valued feedback provided by PM-based assessment.

  3. Bright points and ejections observed on the sun by the KORONAS-FOTON instrument TESIS

    Science.gov (United States)

    Ulyanov, A. S.; Bogachev, S. A.; Kuzin, S. V.

    2010-10-01

    Five-second observations of the solar corona carried out in the FeIX 171 Å line by the KORONAS-FOTON instrument TESIS are used to study the dynamics of small-scale coronal structures emitting in and around coronal bright points. The small-scale structures of the lower corona display complex dynamics similar to those of magnetic loops located at higher levels of the solar corona. Numerous detected oscillating structures with sizes below 10 000 km display oscillation periods from 50 to 350 s. The period distributions of these structures are different for P 150 s, which implies that different oscillation modes are excited at different periods. The small-scale structures generate numerous flare-like events with energies 1024-1026 erg (nanoflares) and with a spatial density of one event per arcsecond or more observed over an area of 4 × 1011 km2. Nanoflares are not associated with coronal bright points, and almost uniformly cover the solar disk in the observation region. The ejections of solar material from the coronal bright points demonstrate velocities of 80-110 km/s.

  4. Multi-Instrument Observations of Prolonged Stratified Wind Layers at Iqaluit, Nunavut

    Science.gov (United States)

    Mariani, Zen; Dehghan, Armin; Gascon, Gabrielle; Joe, Paul; Hudak, David; Strawbridge, Kevin; Corriveau, Julien

    2018-02-01

    Data collected between October 2015 and May 2016 at Environment and Climate Change Canada's Iqaluit research site (64°N, 69°W) have revealed a high frequency (40% of all days for which observations were available) of stratified wind layer events that occur from near the surface up to about 7.2 km above sea level. These stratified wind layers are clearly visible as wind shifts (90 to 180°) with height in range-height indicator scans from the Doppler lidar and Ka-band radar and in wind direction profiles from the Doppler lidar and radiosonde. During these events, the vertical structure of the flow appears to be a stack of 4 to 10 layers ranging in vertical width from 0.1 to 4.4 km. The stratification events that were observed occurred predominantly (81%) during light precipitation and lasted up to 27.5 h. The integrated measurement platforms at Iqaluit permitted continuous observations of the evolution of stratification events in different meteorological conditions.

  5. A Primer on Observational Measurement.

    Science.gov (United States)

    Girard, Jeffrey M; Cohn, Jeffrey F

    2016-08-01

    Observational measurement plays an integral role in a variety of scientific endeavors within biology, psychology, sociology, education, medicine, and marketing. The current article provides an interdisciplinary primer on observational measurement; in particular, it highlights recent advances in observational methodology and the challenges that accompany such growth. First, we detail the various types of instrument that can be used to standardize measurements across observers. Second, we argue for the importance of validity in observational measurement and provide several approaches to validation based on contemporary validity theory. Third, we outline the challenges currently faced by observational researchers pertaining to measurement drift, observer reactivity, reliability analysis, and time/expense. Fourth, we describe recent advances in computer-assisted measurement, fully automated measurement, and statistical data analysis. Finally, we identify several key directions for future observational research to explore.

  6. The James Webb Space Telescope's Plan for Operations and Instrument Capabilities for Observations in the Solar System

    Science.gov (United States)

    Milam, Stefanie N.; Stansberry, John A.; Sonneborn, George; Thomas, Cristina

    2016-01-01

    The James Webb Space Telescope (JWST) is optimized for observations in the near- and mid-infrared and will provide essential observations for targets that cannot be conducted from the ground or other missions during its lifetime. The state-of-the-art science instruments, along with the telescope's moving target tracking, will enable the infrared study, with unprecedented detail, for nearly every object (Mars and beyond) in the Solar System. The goals of this special issue are to stimulate discussion and encourage participation in JWST planning among members of the planetary science community. Key science goals for various targets, observing capabilities for JWST, and highlights for the complementary nature with other missions/observatories are described in this paper.

  7. The Status of MUSIC: A Multicolor Sub/millimeter MKID Instrument

    Science.gov (United States)

    Schlaerth, J. A.; Czakon, N. G.; Day, P. K.; Downes, T. P.; Duan, R.; Glenn, J.; Golwala, S. R.; Hollister, M. I.; LeDuc, H. G.; Maloney, P. R.; Mazin, B. A.; Nguyen, H. T.; Noroozian, O.; Sayers, J.; Siegel, S.; Zmuidzinas, J.

    2012-05-01

    We report on the recent progress of the Multicolor Submillimeter (kinetic) Inductance Camera, or MUSIC. MUSIC will use antenna-coupled Microwave Kinetic Inductance Detectors to observe in four colors (150 GHz, 230 GHz, 290 GHz and 350 GHz) with 2304 detectors, 576 per band, at the Caltech Submillimeter Observatory. It will deploy in 2012. Here we provide an overview of the instrument, focusing on the array design. We have also used a pathfinder demonstration instrument, DemoCam, to identify problems in advance of the deployment of MUSIC. In particular, we identified two major limiters of our sensitivity: out-of-band light directly coupling to the detectors (i.e. not through the antenna), effectively an excess load, and a large 1/f contribution from our amplifiers and electronics. We discuss the steps taken to mitigate these effects to reach background-limited performance (BLIP) in observation.

  8. A New Observing Tool for the James Clerk Maxwell Telescope

    Science.gov (United States)

    Folger, Martin; Bridger, Alan; Dent, Bill; Kelly, Dennis; Adamson, Andy; Economou, Frossie; Hirst, Paul; Jenness, Tim

    A new Observing Tool (OT) has been developed at the UK Astronomy Technology Centre, Edinburgh, UK and the Joint Astronomy Centre, Hilo, Hawaii, USA. It is based on the Gemini Observing Tool and provides the first graphical observation preparation tool for the James Clerk Maxwell Telescope (JCMT) as well as being the first use of the OT for a non-optical/IR telescope. The OT allows the observer to assemble high level Science Programs using graphical representations of observation components such as instrument, target, and filter. This is later translated into low level control sequences for telescope and instruments. The new OT is designed to work on multiple telescopes: currently the UK Infrared Telescope (UKIRT) and JCMT. Object-oriented design makes the inclusion of telescope and instrument specific packages easy. The OT is written in Java using GUI packages such as Swing and JSky. A new component for the JCMT OT is the graphical Frequency Editor for Heterodyne instruments. It can be used to specify parameters such as frequencies, bandwidths, and sidebands of multiple subsystems, while graphically displaying the front-end frequency, emission lines and atmospheric transmission. In addition, Flexible Scheduling support has been added to the OT. The observer can define scheduling constraints by arranging observations graphically. Science Programs can be saved as XML or sent directly from the OT to a database (via SOAP).

  9. Critical Science Instrument Alignment of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    Science.gov (United States)

    Rohrbach, Scott O.; Kubalak, David A.; Gracey, Renee M.; Sabatke, Derek S.; Howard, Joseph M.; Telfer, Randal C.; Zielinski, Thomas P.

    2016-01-01

    This paper describes the critical instrument alignment terms associated with the six-degree of freedom alignment of each the Science Instrument (SI) in the James Webb Space Telescope (JWST), including focus, pupil shear, pupil clocking, and boresight. We present the test methods used during cryogenic-vacuum tests to directly measure the performance of each parameter, the requirements levied on each, and the impact of any violations of these requirements at the instrument and Observatory level.

  10. Analysis of multidimensional difference-of-Gaussians filters in terms of directly observable parameters.

    Science.gov (United States)

    Cope, Davis; Blakeslee, Barbara; McCourt, Mark E

    2013-05-01

    The difference-of-Gaussians (DOG) filter is a widely used model for the receptive field of neurons in the retina and lateral geniculate nucleus (LGN) and is a potential model in general for responses modulated by an excitatory center with an inhibitory surrounding region. A DOG filter is defined by three standard parameters: the center and surround sigmas (which define the variance of the radially symmetric Gaussians) and the balance (which defines the linear combination of the two Gaussians). These parameters are not directly observable and are typically determined by nonlinear parameter estimation methods applied to the frequency response function. DOG filters show both low-pass (optimal response at zero frequency) and bandpass (optimal response at a nonzero frequency) behavior. This paper reformulates the DOG filter in terms of a directly observable parameter, the zero-crossing radius, and two new (but not directly observable) parameters. In the two-dimensional parameter space, the exact region corresponding to bandpass behavior is determined. A detailed description of the frequency response characteristics of the DOG filter is obtained. It is also found that the directly observable optimal frequency and optimal gain (the ratio of the response at optimal frequency to the response at zero frequency) provide an alternate coordinate system for the bandpass region. Altogether, the DOG filter and its three standard implicit parameters can be determined by three directly observable values. The two-dimensional bandpass region is a potential tool for the analysis of populations of DOG filters (for example, populations of neurons in the retina or LGN), because the clustering of points in this parameter space may indicate an underlying organizational principle. This paper concentrates on circular Gaussians, but the results generalize to multidimensional radially symmetric Gaussians and are given as an appendix.

  11. The Broader Autism Phenotype in Mothers is Associated with Increased Discordance between Maternal-Reported and Clinician-Observed Instruments That Measure Child Autism Spectrum Disorder

    Science.gov (United States)

    Rubenstein, Eric; Edmondson Pretzel, Rebecca; Windham, Gayle C.; Schieve, Laura A.; Wiggins, Lisa D.; DiGuiseppi, Carolyn; Olshan, Andrew F.; Howard, Annie G.; Pence, Brian W.; Young, Lisa; Daniels, Julie

    2017-01-01

    Autism spectrum disorder (ASD) diagnosis relies on parent-reported and clinician-observed instruments. Sometimes, results between these instruments disagree. The broader autism phenotype (BAP) in parent-reporters may be associated with discordance. Study to Explore Early Development data (N = 712) were used to address whether mothers with BAP and…

  12. How To Control Color Appearance With Instrumentation

    Science.gov (United States)

    Burns, Margaret E.

    1980-05-01

    Colorimetry, as defined by the International Commission on Illumination, is the measurement of colors, made possible by the properties of the eye and based on a set of conventions. Instrumentation for measuring object color, therefore, must be based on a human observer. The intent is to design an instrument that in effect responds as a person would, so that research development, production control and quality control areas have some means of assessing the acceptability of the appearance of a product. Investigations of a human observer's psychological response to color, and the manner in which visual observations are made, give the instrument designer and manufacturer data necessary to answer two questions: a. How can we put numbers (instrument read-out) on a perception that occurs in the brain of the observer? b. What can we learn from examination of a visual observing situation that will guide us in our design of an instrumental simulation of this situation? Involving as it does our own daily, almost unconscious, practice of making judgments concerning the things we see, the design and manufacture of color measurement instruments is an exceedingly interesting field. The advances being made concurrently today in research concerning human color vision and in optical and electronic technology will make possible increasingly useful instrumentation for quality control of product color.

  13. Direct observation of crystal texture by neutron diffraction topography

    International Nuclear Information System (INIS)

    Tomimitsu, Hiroshi

    1982-02-01

    This document reports the development and the applications of the neutron diffraction topography (NDT), which have been carried out at JAERI in these 10 years. This describes how the substructure of Cu-5%Ge single crystal of large-scale (3 cm in diameter and 10 cm in length) was revealed by the NDT-observation. It was discovered that the specimen crystal was made up from the layer-substructures parallel to (001) and to the [110] growth direction, and that each (001) layer-substructure mentioned above was further subdivided into the central thin sublayer parallel to (001) and thick plates of [100] and [010] directions, attached symmetrically to both sides of the central (001) sublayer with regular intervals. The model of the substructure described above was supported by the calculation of the diffraction intensities. The model of the layer-substructure described above, on the other hand, suggested a simple mechanism of crystal growth of the specimen. This document also reports the NDT-observation of the three-dimensional distribution of the lattice strains within a hot-pressed Ge single crystal, and the equal thickness fringes and the coherent boundaries of a twinned Si crystal. The powerfulness and the reliability of the NDT-technique were thus demonstrated. (author)

  14. Optical instrumentation for science and formation flying with a starshade observatory

    Science.gov (United States)

    Martin, Stefan; Scharf, Daniel; Cady, Eric; Liebe, Carl; Tang, Hong

    2015-09-01

    In conjunction with a space telescope of modest size, a starshade enables observation of small exoplanets close to the parent star by blocking the direct starlight while the planet light remains unobscured. The starshade is flown some tens of thousands of kilometers ahead of the telescope. Science instruments may include a wide field camera for imaging the target exoplanetary system as well as an integral field spectrometer for characterization of exoplanet atmospheres. We show the preliminary designs of the optical instruments for observatories such as Exo-S, discuss formation flying and control, retargeting maneuvers and other aspects of a starshade mission. The implementation of a starshade-ready WFIRST-AFTA is discussed and we show how a compact, standalone instrument package could be developed as an add-on to future space telescopes, requiring only minor additions to the telescope spacecraft.

  15. Simulating a Direction-Finder Search for an ELT

    Science.gov (United States)

    Bream, Bruce

    2005-01-01

    A computer program simulates the operation of direction-finding equipment engaged in a search for an emergency locator transmitter (ELT) aboard an aircraft that has crashed. The simulated equipment is patterned after the equipment used by the Civil Air Patrol to search for missing aircraft. The program is designed to be used for training in radio direction-finding and/or searching for missing aircraft without incurring the expense and risk of using real aircraft and ground search resources. The program places a hidden ELT on a map and enables the user to search for the location of the ELT by moving a 14 NASA Tech Briefs, March 2005 small aircraft image around the map while observing signal-strength and direction readings on a simulated direction- finding locator instrument. As the simulated aircraft is turned and moved on the map, the program updates the readings on the direction-finding instrument to reflect the current position and heading of the aircraft relative to the location of the ELT. The software is distributed in a zip file that contains an installation program. The software runs on the Microsoft Windows 9x, NT, and XP operating systems.

  16. Design of a portable directional neutron source finder

    International Nuclear Information System (INIS)

    Yamanishi, Hirokuni

    2005-01-01

    An instrument that determines the direction of a remote existing neutron source has been designed. This instrument combines a polyethylene block and four 3 He counter tubes. The advantages of the instrument are portability and good angular resolution. The count from the detector was varied with the neutron incident angle due to the moderator. Using this characteristic, the direction of the neutron source can be measured precisely by revising the axis of the instrument so that the difference between the four detectors measurements is minimized. Consequently, the direction of the central axis of the instrument in which the response difference of the four detectors reaches a minimum indicates the direction of the neutron source. The practical use of the instrument was demonstrated by 252 Cf source irradiation experiment and MCNP simulation

  17. Solar diffusers in Earth observation instruments with an illumination angle of up to 70°: design and verification of performance in BRDF

    NARCIS (Netherlands)

    Gür, B.; Bol, H.; Xu, P.; Li, B.

    2015-01-01

    The present paper describes the challenging diffuser design and verification activities of TNO under contract of a customer for an earth observation instrument with observation conditions that require feasible BRDF under large angles of incidence of up to 70° with respect to the surface normal. Not

  18. Multi-instrumentation observations of a transpolar arc in the northern hemisphere

    Directory of Open Access Journals (Sweden)

    A. Goudarzi

    2008-02-01

    Full Text Available A transpolar arc was imaged by the FUV instrument on the IMAGE spacecraft during a 3-h interval on 5 February 2002. Observations indicate that a burst of reconnection in the geomagnetic tail, which was not associated with a substorm, was responsible for the formation of the arc. The arc initially formed across the central polar cap, extending from near midnight to noon such that the polar cap was approximately divided in half. The subsequent motion of the arc was controlled by the amount of open flux being added to the dawn sector cap from a magnetopause reconnection site on the post-noon side of the magnetosphere. The dayside reconnection happened during a period when the IMF By component was dominant, although the Bz component initially remained positive, and resulted in strong westward azimuthal flows in the noon sector. The arc continued to move towards the duskside auroral oval after the IMF Bz turned southward. A keogram of the FUV/WIC auroral observations along the dawn-dusk meridian provides further evidence of the expansion and contraction of the polar cap during the period in which different IMF orientations occurred. Furthermore, comparing images from IMAGE and ionospheric convection flow from SuperDARN measurements, vortical convection flows occurred exactly at the time and location of the formation of the transpolar arc and subsequently followed the head of the transpolar arc as it moved across the polar cap. The observations are consistent with the prediction of a recent model for the formation of the transpolar cap by the closure of open flux in the geomagnetic tail, and its subsequent motion through changes in the open flux distribution within the polar cap.

  19. Multi-instrumentation observations of a transpolar arc in the northern hemisphere

    Directory of Open Access Journals (Sweden)

    A. Goudarzi

    2008-02-01

    Full Text Available A transpolar arc was imaged by the FUV instrument on the IMAGE spacecraft during a 3-h interval on 5 February 2002. Observations indicate that a burst of reconnection in the geomagnetic tail, which was not associated with a substorm, was responsible for the formation of the arc. The arc initially formed across the central polar cap, extending from near midnight to noon such that the polar cap was approximately divided in half. The subsequent motion of the arc was controlled by the amount of open flux being added to the dawn sector cap from a magnetopause reconnection site on the post-noon side of the magnetosphere. The dayside reconnection happened during a period when the IMF By component was dominant, although the Bz component initially remained positive, and resulted in strong westward azimuthal flows in the noon sector. The arc continued to move towards the duskside auroral oval after the IMF Bz turned southward. A keogram of the FUV/WIC auroral observations along the dawn-dusk meridian provides further evidence of the expansion and contraction of the polar cap during the period in which different IMF orientations occurred. Furthermore, comparing images from IMAGE and ionospheric convection flow from SuperDARN measurements, vortical convection flows occurred exactly at the time and location of the formation of the transpolar arc and subsequently followed the head of the transpolar arc as it moved across the polar cap. The observations are consistent with the prediction of a recent model for the formation of the transpolar cap by the closure of open flux in the geomagnetic tail, and its subsequent motion through changes in the open flux distribution within the polar cap.

  20. Possible new basis for fast reactor subassembly instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, A G

    1977-03-01

    This is a digest of a paper presented to the Risley Engineering Society. The theme is a speculation that the core instrumentation problem for a liquid metal fast breeder reactor might be transformed by developments in the realm of infrared television and in pattern recognition by computer. There is a possible need to measure coolant flow and cooled exit temperature for each subassembly, with familiar fail-to-safety characteristics. Present methods use electrical devices, for example thermocouples, but this gives rise to cabling problems. It might be possible, however, to instal at the top of each subassembly a mechanical device that gives a direct indication of temperature and flow visible to an infrared television camera. Signal transmission by cable would then be replaced by direct observation. A possible arrangement for such a system is described and is shown in schematic form. It includes pattern recognition by computer. It may also be possible to infer coolant temperature directly from the characteristics of the infrared radiation emitted by a thin stainless steel sheet in contact with the sodium, and an arrangement for this is shown. The type of pattern produced for on-line interpretation by computer is also shown. It is thought that this new approach to the problem of subassembly instrumentation is sufficiently attractive to justify a close study of the problems involved.

  1. Comparison of OH Reactivity Instruments in the Atmosphere Simulation Chamber SAPHIR.

    Science.gov (United States)

    Fuchs, H.; Novelli, A.; Rolletter, M.; Hofzumahaus, A.; Pfannerstill, E.; Edtbauer, A.; Kessel, S.; Williams, J.; Michoud, V.; Dusanter, S.; Locoge, N.; Zannoni, N.; Gros, V.; Truong, F.; Sarda Esteve, R.; Cryer, D. R.; Brumby, C.; Whalley, L.; Stone, D. J.; Seakins, P. W.; Heard, D. E.; Schoemaecker, C.; Blocquet, M.; Fittschen, C. M.; Thames, A. B.; Coudert, S.; Brune, W. H.; Batut, S.; Tatum Ernest, C.; Harder, H.; Elste, T.; Bohn, B.; Hohaus, T.; Holland, F.; Muller, J. B. A.; Li, X.; Rohrer, F.; Kubistin, D.; Kiendler-Scharr, A.; Tillmann, R.; Andres, S.; Wegener, R.; Yu, Z.; Zou, Q.; Wahner, A.

    2017-12-01

    Two campaigns were conducted performing experiments in the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich in October 2015 and April 2016 to compare hydroxyl (OH) radical reactivity (kOH) measurements. Chemical conditions were chosen either to be representative of the atmosphere or to test potential limitations of instruments. The results of these campaigns demonstrate that OH reactivity can be accurately measured for a wide range of atmospherically relevant chemical conditions (e.g. water vapor, nitrogen oxides, various organic compounds) by all instruments. The precision of the measurements is higher for instruments directly detecting hydroxyl radicals (OH), whereas the indirect Comparative Reactivity Method (CRM) has a higher limit of detection of 2s-1 at a time resolution of 10 to 15 min. The performances of the instruments were systematically tested by stepwise increasing, for example, the concentrations of carbon monoxide (CO), water vapor or nitric oxide (NO). In further experiments, mixtures of organic reactants were injected in the chamber to simulate urban and forested environments. Overall, the results show that instruments are capable of measuring OH reactivity in the presence of CO, alkanes, alkenes and aromatic compounds. The transmission efficiency in Teflon inlet lines could have introduced systematic errors in measurements for low-volatile organic compounds in some instruments. CRM instruments exhibited a larger scatter in the data compared to the other instruments. The largest differences to the reference were observed by CRM instruments in the presence of terpenes and oxygenated organic compounds. In some of these experiments, only a small fraction of the reactivity is detected. The accuracy of CRM measurements is most likely limited by the corrections that need to be applied in order to account for known effects of, for example, deviations from pseudo-first order conditions, nitrogen oxides or water vapor on the measurement

  2. Design of the high resolution optical instrument for the Pleiades HR Earth observation satellites

    Science.gov (United States)

    Lamard, Jean-Luc; Gaudin-Delrieu, Catherine; Valentini, David; Renard, Christophe; Tournier, Thierry; Laherrere, Jean-Marc

    2017-11-01

    As part of its contribution to Earth observation from space, ALCATEL SPACE designed, built and tested the High Resolution cameras for the European intelligence satellites HELIOS I and II. Through these programmes, ALCATEL SPACE enjoys an international reputation. Its capability and experience in High Resolution instrumentation is recognised by the most customers. Coming after the SPOT program, it was decided to go ahead with the PLEIADES HR program. PLEIADES HR is the optical high resolution component of a larger optical and radar multi-sensors system : ORFEO, which is developed in cooperation between France and Italy for dual Civilian and Defense use. ALCATEL SPACE has been entrusted by CNES with the development of the high resolution camera of the Earth observation satellites PLEIADES HR. The first optical satellite of the PLEIADES HR constellation will be launched in mid-2008, the second will follow in 2009. To minimize the development costs, a mini satellite approach has been selected, leading to a compact concept for the camera design. The paper describes the design and performance budgets of this novel high resolution and large field of view optical instrument with emphasis on the technological features. This new generation of camera represents a breakthrough in comparison with the previous SPOT cameras owing to a significant step in on-ground resolution, which approaches the capabilities of aerial photography. Recent advances in detector technology, optical fabrication and electronics make it possible for the PLEIADES HR camera to achieve their image quality performance goals while staying within weight and size restrictions normally considered suitable only for much lower performance systems. This camera design delivers superior performance using an innovative low power, low mass, scalable architecture, which provides a versatile approach for a variety of imaging requirements and allows for a wide number of possibilities of accommodation with a mini

  3. Critical review of directional neutron survey meters

    International Nuclear Information System (INIS)

    Balmer, Matthew J.I.; Gamage, Kelum A.A.; Taylor, Graeme C.

    2014-01-01

    Having been overlooked for many years, research is now starting to take into account the directional distribution of the neutron work place field. The impact of not taking this into account has led to overly conservative estimates of dose in neutron workplace fields. This paper provides a critical review of this existing research into directional survey meters which could improve these estimates of dose. Instruments which could be adapted for use as directional neutron survey meters are also considered within this review. Using Monte-Carlo techniques, two of the most promising existing designs are evaluated; a boron-doped liquid scintillator and a multi-detector directional spectrometer. As an outcome of these simulations, possible adaptations to these instruments are suggested with a view to improving the portability of the instrument. -- Highlights: • We critically review the existing literature into directional survey meters. • Instruments which could be adapted for this purpose are also reviewed. • Investigate the potential of much lighter portable real-time instrument. • Improvements to existing instruments are suggested to improve their design. • Boron-Doped liquid scintillator design is the most promising, but needs further work

  4. Second international tsunami workshop on the technical aspects of tsunami warning systems, tsunami analysis, preparedness, observation and instrumentation

    International Nuclear Information System (INIS)

    1989-01-01

    The Second Workshop on the Technical Aspects of Tsunami Warning Systems, Tsunami Analysis, Preparedness, Observation, and Instrumentation, sponsored and convened by the Intergovernmental Oceanographic Commission (IOC), was held on 1-2 August 1989, in the modern and attractive research town of Academgorodok, which is located 20 km south from downtown Novosibirsk, the capital of Siberia, USSR. The Program was arranged in eight major areas of interest covering the following: Opening and Introduction; Survey of Existing Tsunami Warning Centers - present status, results of work, plans for future development; Survey of some existing seismic data processing systems and future projects; Methods for fast evaluation of Tsunami potential and perspectives of their implementation; Tsunami data bases; Tsunami instrumentation and observations; Tsunami preparedness; and finally, a general discussion and adoption of recommendations. The Workshop presentations not only addressed the conceptual improvements that have been made, but focused on the inner workings of the Tsunami Warning System, as well, including computer applications, on-line processing and numerical modelling. Furthermore, presentations reported on progress has been made in the last few years on data telemetry, instrumentation and communications. Emphasis was placed on new concepts and their application into operational techniques that can result in improvements in data collection, rapid processing of the data, in analysis and prediction. A Summary Report on the Second International Tsunami Workshop, containing abstracted and annotated proceedings has been published as a separate report. The present Report is a Supplement to the Summary Report and contains the full text of the papers presented at this Workshop. Refs, figs and tabs

  5. Robotic-surgical instrument wrist pose estimation.

    Science.gov (United States)

    Fabel, Stephan; Baek, Kyungim; Berkelman, Peter

    2010-01-01

    The Compact Lightweight Surgery Robot from the University of Hawaii includes two teleoperated instruments and one endoscope manipulator which act in accord to perform assisted interventional medicine. The relative positions and orientations of the robotic instruments and endoscope must be known to the teleoperation system so that the directions of the instrument motions can be controlled to correspond closely to the directions of the motions of the master manipulators, as seen by the the endoscope and displayed to the surgeon. If the manipulator bases are mounted in known locations and all manipulator joint variables are known, then the necessary coordinate transformations between the master and slave manipulators can be easily computed. The versatility and ease of use of the system can be increased, however, by allowing the endoscope or instrument manipulator bases to be moved to arbitrary positions and orientations without reinitializing each manipulator or remeasuring their relative positions. The aim of this work is to find the pose of the instrument end effectors using the video image from the endoscope camera. The P3P pose estimation algorithm is used with a Levenberg-Marquardt optimization to ensure convergence. The correct transformations between the master and slave coordinate frames can then be calculated and updated when the bases of the endoscope or instrument manipulators are moved to new, unknown, positions at any time before or during surgical procedures.

  6. Cluster observations of the high-latitude magnetopause and cusp: initial results from the CIS ion instruments

    Directory of Open Access Journals (Sweden)

    J. M. Bosqued

    Full Text Available Launched on an elliptical high inclination orbit (apogee: 19.6 RE since January 2001 the Cluster satellites have been conducting the first detailed three-dimensional studies of the high-latitude dayside magnetosphere, including the exterior cusp, neighbouring boundary layers and magnetopause regions. Cluster satellites carry the CIS ion spectrometers that provide high-precision, 3D distributions of low-energy (<35 keV/e ions every 4 s. This paper presents the first two observations of the cusp and/or magnetopause behaviour made under different interplanetary magnetic field (IMF conditions. Flow directions, 3D distribution functions, density profiles and ion composition profiles are analyzed to demonstrate the high variability of high-latitude regions. In the first crossing analyzed (26 January 2001, dusk side, IMF-BZ < 0, multiple, isolated boundary layer, magnetopause and magnetosheath encounters clearly occurred on a quasi-steady basis for ~ 2 hours. CIS ion instruments show systematic accelerated flows in the current layer and adjacent boundary layers on the Earthward side of the magnetopause. Multi-point analysis of the magnetopause, combining magnetic and plasma data from the four Cluster spacecraft, demonstrates that oscillatory outward-inward motions occur with a normal speed of the order of ± 40 km/s; the thickness of the high-latitude current layer is evaluated to be of the order of 900–1000 km. Alfvénic accelerated flows and D-shaped distributions are convincing signatures of a magnetic reconnection occurring equatorward of the Cluster satellites. Moreover, the internal magnetic and plasma structure of a flux transfer event (FTE is analyzed in detail; its size along the magnetopause surface is ~ 12 000 km and it convects with a velocity of ~ 200 km/s. The second event analyzed (2 February 2001 corresponds to the first Cluster pass within the cusp when the IMF-BZ component was northward directed. The analysis of

  7. How discriminating are discriminative instruments?

    Science.gov (United States)

    Hankins, Matthew

    2008-05-27

    The McMaster framework introduced by Kirshner & Guyatt is the dominant paradigm for the development of measures of health status and health-related quality of life (HRQL). The framework defines the functions of such instruments as evaluative, predictive or discriminative. Evaluative instruments are required to be sensitive to change (responsiveness), but there is no corresponding index of the degree to which discriminative instruments are sensitive to cross-sectional differences. This paper argues that indices of validity and reliability are not sufficient to demonstrate that a discriminative instrument performs its function of discriminating between individuals, and that the McMaster framework would be augmented by the addition of a separate index of discrimination. The coefficient proposed by Ferguson (Delta) is easily adapted to HRQL instruments and is a direct, non-parametric index of the degree to which an instrument distinguishes between individuals. While Delta should prove useful in the development and evaluation of discriminative instruments, further research is required to elucidate the relationship between the measurement properties of discrimination, reliability and responsiveness.

  8. How discriminating are discriminative instruments?

    Directory of Open Access Journals (Sweden)

    Hankins Matthew

    2008-05-01

    Full Text Available Abstract The McMaster framework introduced by Kirshner & Guyatt is the dominant paradigm for the development of measures of health status and health-related quality of life (HRQL. The framework defines the functions of such instruments as evaluative, predictive or discriminative. Evaluative instruments are required to be sensitive to change (responsiveness, but there is no corresponding index of the degree to which discriminative instruments are sensitive to cross-sectional differences. This paper argues that indices of validity and reliability are not sufficient to demonstrate that a discriminative instrument performs its function of discriminating between individuals, and that the McMaster framework would be augmented by the addition of a separate index of discrimination. The coefficient proposed by Ferguson (Delta is easily adapted to HRQL instruments and is a direct, non-parametric index of the degree to which an instrument distinguishes between individuals. While Delta should prove useful in the development and evaluation of discriminative instruments, further research is required to elucidate the relationship between the measurement properties of discrimination, reliability and responsiveness.

  9. Setup of an interface for operation of IAGOS (In-service Aircraft Global Observing System) CORE instruments onboard the IAGOS CARIBIC platform.

    Science.gov (United States)

    Bundke, Ulrich; Berg, Marcel; Franke, Harald; Zahn, Andreas; Boenisch, Harald; Perim de Faria, Julia; Berkes, Florian; Petzold, Andreas

    2017-04-01

    The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in-situ observational data by using commercial passenger aircraft as measurement platforms. The infrastructure is built from two complementary approaches: The "CORE" component comprises the implementation and operation of autonomous instruments installed on up to 20 long-range aircraft of international airlines for continuous measurements of important reactive gases and greenhouse gases, as well as aerosol particles, dust and cloud particles. The fully automated instruments are designed for operation aboard the aircraft in unattended mode for several months and the data are transmitted automatically. The complementary "CARIBIC" component consists of the monthly deployment of a cargo container equipped with instrumentation for a larger suite of components. The CARIBIC container has equipment for measuring ozone, carbon monoxide, nitrogen oxides, water vapor and airborne particles. Furthermore the container is equipped with a system for collecting air samples. These air samples are analyzed in the laboratory. For each sample measurements for more than 40 trace gases including CFC's prohibited by the Montreal protocol, and all greenhouse gases are performed. The Interface described in this work is designed to host one of IAGOS CORE (Package2) instruments. Available are: P2a, P2b, measuring { NO_y} and {NO_x} em P2c, measuring the aerosol size-distribution (0.25

  10. Constraining supersymmetric models using Higgs physics, precision observables and direct searches

    International Nuclear Information System (INIS)

    Zeune, Lisa

    2014-08-01

    We present various complementary possibilities to exploit experimental measurements in order to test and constrain supersymmetric (SUSY) models. Direct searches for SUSY particles have not resulted in any signal so far, and limits on the SUSY parameter space have been set. Measurements of the properties of the observed Higgs boson at ∝126 GeV as well as of the W boson mass (M W ) can provide valuable indirect constraints, supplementing the ones from direct searches. This thesis is divided into three major parts: In the first part we present the currently most precise prediction for M W in the Minimal Supersymmetric Standard Model (MSSM) with complex parameters and in the Next-to-Minimal Supersymmetric Standard Model (NMSSM). The evaluation includes the full one-loop result and all relevant available higher order corrections of Standard Model (SM) and SUSY type. We perform a detailed scan over the MSSM parameter space, taking into account the latest experimental results, including the observation of a Higgs signal. We find that the current measurements for M W and the top quark mass (m t ) slightly favour a non-zero SUSY contribution. The impact of different SUSY sectors on the prediction of M W as well as the size of the higher-order SUSY corrections are analysed both in the MSSM and the NMSSM. We investigate the genuine NMSSM contribution from the extended Higgs and neutralino sectors and highlight differences between the M W predictions in the two SUSY models. In the second part of the thesis we discuss possible interpretations of the observed Higgs signal in SUSY models. The properties of the observed Higgs boson are compatible with the SM so far, but many other interpretations are also possible. Performing scans over the relevant parts of the MSSM and the NMSSM parameter spaces and applying relevant constraints from Higgs searches, flavour physics and electroweak measurements, we find that a Higgs boson at ∝126 GeV, which decays into two photons, can in

  11. Validation of ultraviolet radiation budgets using satellite observations from the OMI instrument

    International Nuclear Information System (INIS)

    Den Outer, P.N.; Van Dijk, A.; Slaper, H.

    2008-11-01

    Satellite retrieval of ozone, clouds, aerosols and ground albedo allows the modelling of ultraviolet (UV)-doses received at the ground. UV-doses derived from satellite observations are highly useful in analyzing regional differences in the effects of ozone depletion and climate change on the biologically effective UV-radiation levels. RIVM has developed and used UV-mapping and UV-risk mapping techniques in environmental assessments in evaluating the effects of ozone depletion and climate change. This project provides a validation study on the OMUVB product by means of a comparison with ground-based measurements. This validation should demonstrate if the OMUVB product can be used from the perspective of long-term environmental trend assessments. Comparing ground-based UV-measurements with the OMUVB product, we show that the product consistently overestimates the UV-doses received at the ground in Europe. The systematic comparison with data from 8 European sites shows on average a 15% overestimate in the yearly integrated UV with a site-to-site variability of around 8%. For four of the more northern sites the overestimation in yearly doses is between 5-10%, and for the four sites that are more southern the deviation is 20-27%. Using the ozone and reflectivity data from the OMI-instrument (Ozone Monitoring Instrument) in combination with the AMOUR-algorithm (Assessment Model for Ultraviolet radiation and Risks) shows smaller overestimates of on average 5-6% with a similar variability between the sites. The variability between sites is largely caused by aerosol and albedo effects and is reduced to 3% if local data on aerosol and albedo are used. The overestimates in the OMUVB product are primarily due to too low (tropospheric) aerosol loads used for the European sites. In addition, our comparison shows that under heavy clouded conditions the cloud modification factors are too high. This contributes to the overall too high UV-doses of the OMUVB product. Environmental

  12. Validation of ultraviolet radiation budgets using satellite observations from the OMI instrument

    Energy Technology Data Exchange (ETDEWEB)

    Den Outer, P.N.; Van Dijk, A.; Slaper, H.

    2008-11-15

    Satellite retrieval of ozone, clouds, aerosols and ground albedo allows the modelling of ultraviolet (UV)-doses received at the ground. UV-doses derived from satellite observations are highly useful in analyzing regional differences in the effects of ozone depletion and climate change on the biologically effective UV-radiation levels. RIVM has developed and used UV-mapping and UV-risk mapping techniques in environmental assessments in evaluating the effects of ozone depletion and climate change. This project provides a validation study on the OMUVB product by means of a comparison with ground-based measurements. This validation should demonstrate if the OMUVB product can be used from the perspective of long-term environmental trend assessments. Comparing ground-based UV-measurements with the OMUVB product, we show that the product consistently overestimates the UV-doses received at the ground in Europe. The systematic comparison with data from 8 European sites shows on average a 15% overestimate in the yearly integrated UV with a site-to-site variability of around 8%. For four of the more northern sites the overestimation in yearly doses is between 5-10%, and for the four sites that are more southern the deviation is 20-27%. Using the ozone and reflectivity data from the OMI-instrument (Ozone Monitoring Instrument) in combination with the AMOUR-algorithm (Assessment Model for Ultraviolet radiation and Risks) shows smaller overestimates of on average 5-6% with a similar variability between the sites. The variability between sites is largely caused by aerosol and albedo effects and is reduced to 3% if local data on aerosol and albedo are used. The overestimates in the OMUVB product are primarily due to too low (tropospheric) aerosol loads used for the European sites. In addition, our comparison shows that under heavy clouded conditions the cloud modification factors are too high. This contributes to the overall too high UV-doses of the OMUVB product. Environmental

  13. Intercomparison of stratospheric gravity wave observations with AIRS and IASI

    Directory of Open Access Journals (Sweden)

    L. Hoffmann

    2014-12-01

    Full Text Available Gravity waves are an important driver for the atmospheric circulation and have substantial impact on weather and climate. Satellite instruments offer excellent opportunities to study gravity waves on a global scale. This study focuses on observations from the Atmospheric Infrared Sounder (AIRS onboard the National Aeronautics and Space Administration Aqua satellite and the Infrared Atmospheric Sounding Interferometer (IASI onboard the European MetOp satellites. The main aim of this study is an intercomparison of stratospheric gravity wave observations of both instruments. In particular, we analyzed AIRS and IASI 4.3 μm brightness temperature measurements, which directly relate to stratospheric temperature. Three case studies showed that AIRS and IASI provide a clear and consistent picture of the temporal development of individual gravity wave events. Statistical comparisons based on a 5-year period of measurements (2008–2012 showed similar spatial and temporal patterns of gravity wave activity. However, the statistical comparisons also revealed systematic differences of variances between AIRS and IASI that we attribute to the different spatial measurement characteristics of both instruments. We also found differences between day- and nighttime data that are partly due to the local time variations of the gravity wave sources. While AIRS has been used successfully in many previous gravity wave studies, IASI data are applied here for the first time for that purpose. Our study shows that gravity wave observations from different hyperspectral infrared sounders such as AIRS and IASI can be directly related to each other, if instrument-specific characteristics such as different noise levels and spatial resolution and sampling are carefully considered. The ability to combine observations from different satellites provides an opportunity to create a long-term record, which is an exciting prospect for future climatological studies of stratospheric

  14. Bicep2. III. INSTRUMENTAL SYSTEMATICS

    Energy Technology Data Exchange (ETDEWEB)

    Ade, P. A. R. [School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA (United Kingdom); Aikin, R. W.; Bock, J. J.; Brevik, J. A.; Filippini, J. P.; Golwala, S. R.; Hildebrandt, S. R. [Department of Physics, California Institute of Technology, Pasadena, CA 91125 (United States); Barkats, D. [Joint ALMA Observatory, ESO, Santiago (Chile); Benton, S. J. [Department of Physics, University of Toronto, Toronto, ON (Canada); Bischoff, C. A.; Buder, I.; Karkare, K. S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS 42, Cambridge, MA 02138 (United States); Bullock, E. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Dowell, C. D. [Jet Propulsion Laboratory, Pasadena, CA 91109 (United States); Duband, L. [SBT, Commissariat à l’Energie Atomique, Grenoble (France); Fliescher, S. [Department of Physics, University of Minnesota, Minneapolis, MN 55455 (United States); Halpern, M.; Hasselfield, M. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC (Canada); Hilton, G. C.; Irwin, K. D., E-mail: csheehy@uchicago.edu [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Collaboration: Bicep2 Collaboration; and others

    2015-12-01

    In a companion paper, we have reported a >5σ detection of degree scale B-mode polarization at 150 GHz by the Bicep2 experiment. Here we provide a detailed study of potential instrumental systematic contamination to that measurement. We focus extensively on spurious polarization that can potentially arise from beam imperfections. We present a heuristic classification of beam imperfections according to their symmetries and uniformities, and discuss how resulting contamination adds or cancels in maps that combine observations made at multiple orientations of the telescope about its boresight axis. We introduce a technique, which we call “deprojection,” for filtering the leading order beam-induced contamination from time-ordered data, and show that it reduces power in Bicep2's actual and null-test BB spectra consistent with predictions using high signal-to-noise beam shape measurements. We detail the simulation pipeline that we use to directly simulate instrumental systematics and the calibration data used as input to that pipeline. Finally, we present the constraints on BB contamination from individual sources of potential systematics. We find that systematics contribute BB power that is a factor of ∼10× below Bicep2's three-year statistical uncertainty, and negligible compared to the observed BB signal. The contribution to the best-fit tensor/scalar ratio is at a level equivalent to r = (3–6) × 10{sup −3}.

  15. Bicep2. III. INSTRUMENTAL SYSTEMATICS

    International Nuclear Information System (INIS)

    Ade, P. A. R.; Aikin, R. W.; Bock, J. J.; Brevik, J. A.; Filippini, J. P.; Golwala, S. R.; Hildebrandt, S. R.; Barkats, D.; Benton, S. J.; Bischoff, C. A.; Buder, I.; Karkare, K. S.; Bullock, E.; Dowell, C. D.; Duband, L.; Fliescher, S.; Halpern, M.; Hasselfield, M.; Hilton, G. C.; Irwin, K. D.

    2015-01-01

    In a companion paper, we have reported a >5σ detection of degree scale B-mode polarization at 150 GHz by the Bicep2 experiment. Here we provide a detailed study of potential instrumental systematic contamination to that measurement. We focus extensively on spurious polarization that can potentially arise from beam imperfections. We present a heuristic classification of beam imperfections according to their symmetries and uniformities, and discuss how resulting contamination adds or cancels in maps that combine observations made at multiple orientations of the telescope about its boresight axis. We introduce a technique, which we call “deprojection,” for filtering the leading order beam-induced contamination from time-ordered data, and show that it reduces power in Bicep2's actual and null-test BB spectra consistent with predictions using high signal-to-noise beam shape measurements. We detail the simulation pipeline that we use to directly simulate instrumental systematics and the calibration data used as input to that pipeline. Finally, we present the constraints on BB contamination from individual sources of potential systematics. We find that systematics contribute BB power that is a factor of ∼10× below Bicep2's three-year statistical uncertainty, and negligible compared to the observed BB signal. The contribution to the best-fit tensor/scalar ratio is at a level equivalent to r = (3–6) × 10 −3

  16. PASSCAL Instrument Center Support for Cryoseismology: Methodologies, Challenges, Development and Instrumentation

    Science.gov (United States)

    Beaudoin, B. C.; Anderson, K. R.; Bilek, S. L.; Carpenter, P.; Childs, D.; Chung, P.; Huerta, A. D.; Lingutla, N.; Nikolaus, K.; Winberry, J. P.

    2017-12-01

    Remote portable seismic stations are, in most cases, constrained by logistics and cost. High latitude operations introduce environmental, technical and logistical challenges that require substantially more engineering work to ensure robust, high quality data return. Since 2006, IRIS PASSCAL has been funded by NSF to develop, deploy, and maintain a pool of polar specific seismic stations. At roughly the same time, PASSCAL began supporting experiments specifically targeting glacier dynamics such as the mechanisms of subglacial hydrology, basal shear stress, ice stream stick slip mechanisms, and glacier seismicity. Although much of the development for high-latitude deployments was directly applicable to cryoseismology, these new experiments introduced a unique series of challenges including high ablation, standing water, and moving stations. Our polar development objectives have focused on: Reducing station power requirements, size and weight; Extending the operational temperature of a station; Simplifying logistics; Engineering solutions that are cost effective, manufacturable, serviceable and reusable; And, developing high-latitude communications for both state-of-health and data transmission. To these ends, PASSCAL continues testing new power storage technology, refining established power systems for lighter and smaller power banks, and exploring telemetry solutions to increase high-bandwidth communication options and abilities for remote seismic stations. Further enhancing PASSCAL's ability to support cryoseismology is a recent NSF funded collaborative effort lead by Central Washing University joined by IRIS and New Mexico Tech to build a Geophysical Earth Observatory for Ice Covered Environments (GEOICE). The GEOICE instrument, power system and other integrated ancillary components are designed to require minimal installation time and logistical load (i.e., size and weight), while maximizing ease-of-use in the field and optimizing costs of instrumentation and

  17. Decision-Making by Handball Referees: Design of an ad hoc Observation Instrument and Polar Coordinate Analysis.

    Science.gov (United States)

    Morillo, Juan P; Reigal, Rafael E; Hernández-Mendo, Antonio; Montaña, Alejandro; Morales-Sánchez, Verónica

    2017-01-01

    Referees are essential for sports such as handball. However, there are few tools available to analyze the activity of handball referees. The aim of this study was to design an instrument for observing the behavior of referees in handball competitions and to analyze the resulting data by polar coordinate analysis. The instrument contained 6 criteria and 18 categories and can be used to monitor and describe the actions of handball referees according to their role/position on the playing court. For the data quality control analysis, we calculated Pearson's (0.99), Spearman's (0.99), and Tau Kendall's (1.00) correlation coefficients and Cohen's kappa (entre 0.72 y 0.75) and Phi (entre 0.83 y 0.87) coefficients. In the generalizability analysis, the absolute and relative generalizability coefficients were 0.99 in both cases. Polar coordinate analysis of referee decisions showed that correct calls were more common for central court and 7-meter throw calls. Likewise, calls were more likely to be incorrect (in terms of both errors of omission and commission) when taken from the goal-line position.

  18. Decision-Making by Handball Referees: Design of an ad hoc Observation Instrument and Polar Coordinate Analysis

    Directory of Open Access Journals (Sweden)

    Juan P. Morillo

    2017-10-01

    Full Text Available Referees are essential for sports such as handball. However, there are few tools available to analyze the activity of handball referees. The aim of this study was to design an instrument for observing the behavior of referees in handball competitions and to analyze the resulting data by polar coordinate analysis. The instrument contained 6 criteria and 18 categories and can be used to monitor and describe the actions of handball referees according to their role/position on the playing court. For the data quality control analysis, we calculated Pearson's (0.99, Spearman's (0.99, and Tau Kendall's (1.00 correlation coefficients and Cohen's kappa (entre 0.72 y 0.75 and Phi (entre 0.83 y 0.87 coefficients. In the generalizability analysis, the absolute and relative generalizability coefficients were 0.99 in both cases. Polar coordinate analysis of referee decisions showed that correct calls were more common for central court and 7-meter throw calls. Likewise, calls were more likely to be incorrect (in terms of both errors of omission and commission when taken from the goal-line position.

  19. Direct Power Control for Three-Phase Two-Level Voltage-Source Rectifiers Based on Extended-State Observation

    DEFF Research Database (Denmark)

    Song, Zhanfeng; Tian, Yanjun; Yan, Zhuo

    2016-01-01

    This paper proposed a direct power control strategy for three-phase two-level voltage-source rectifiers based on extended-state observation. Active and reactive powers are directly regulated in the stationary reference frame. Similar to the family of predictive controllers whose inherent characte......This paper proposed a direct power control strategy for three-phase two-level voltage-source rectifiers based on extended-state observation. Active and reactive powers are directly regulated in the stationary reference frame. Similar to the family of predictive controllers whose inherent...

  20. Community Participation in the Development and Validation of a School Violence Observation Instrument.

    Science.gov (United States)

    Medina, Nilda; Fernández, Gisely; Cruz, Tania; Jordán, Natalia; Trenche, Maryanes

    2016-01-01

    School violence is a worldwide public health issue with negative effects on education. Official statistics and reports do not include daily occurrences of violent behavior that may precede severe incidents. This project aimed to engage school community members in the development, validation, and implementation of an observation instrument to identify characteristics of school violence in two Puerto Rican schools. The role of school community members in all phases of the research is described. The input of community partners contributed to enrich the process by providing insight into the problem studied and a more informed framework for interpreting results. Taking into account distinctive features of each particular school made results meaningful to the school community and fostered a sense of empowerment of community members as they recognized their knowledge is essential to the solution of their problems.

  1. Sensitivity analysis and power for instrumental variable studies.

    Science.gov (United States)

    Wang, Xuran; Jiang, Yang; Zhang, Nancy R; Small, Dylan S

    2018-03-31

    In observational studies to estimate treatment effects, unmeasured confounding is often a concern. The instrumental variable (IV) method can control for unmeasured confounding when there is a valid IV. To be a valid IV, a variable needs to be independent of unmeasured confounders and only affect the outcome through affecting the treatment. When applying the IV method, there is often concern that a putative IV is invalid to some degree. We present an approach to sensitivity analysis for the IV method which examines the sensitivity of inferences to violations of IV validity. Specifically, we consider sensitivity when the magnitude of association between the putative IV and the unmeasured confounders and the direct effect of the IV on the outcome are limited in magnitude by a sensitivity parameter. Our approach is based on extending the Anderson-Rubin test and is valid regardless of the strength of the instrument. A power formula for this sensitivity analysis is presented. We illustrate its usage via examples about Mendelian randomization studies and its implications via a comparison of using rare versus common genetic variants as instruments. © 2018, The International Biometric Society.

  2. Development of Instrumentation for Direct Validation of Regional Carbon Flux Estimates

    Data.gov (United States)

    National Aeronautics and Space Administration — We are pursuing three tasks under internal research and development: 1) procure a state-of-the-art, commercial instrument for measuring atmospheric methane (CH4) in...

  3. Experimenting with string musical instruments

    Science.gov (United States)

    LoPresto, Michael C.

    2012-03-01

    What follows are several investigations involving string musical instruments developed for and used in a Science of Sound & Light course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when used in physics, represent reality that can actually be observed, in this case, the operation of string musical instruments.

  4. Impact of instrumental response on observed ozonesonde profiles: First-order estimates and implications for measures of variability

    Science.gov (United States)

    Clifton, G. T.; Merrill, J. T.; Johnson, B. J.; Oltmans, S. J.

    2009-12-01

    Ozonesondes provide information on the ozone distribution up to the middle stratosphere. Ozone profiles often feature layers, with vertically discrete maxima and minima in the mixing ratio. Layers are especially common in the UT/LS regions and originate from wave breaking, shearing and other transport processes. ECC sondes, however, have a moderate response time to significant changes in ozone. A sonde can ascend over 350 meters before it responds fully to a step change in ozone. This results in an overestimate of the altitude assigned to layers and an underestimate of the underlying variability in the amount of ozone. An estimate of the response time is made for each instrument during the preparation for flight, but the profile data are typically not processed to account for the response. Here we present a method of categorizing the response time of ECC instruments and an analysis of a low-pass filter approximation to the effects on profile data. Exponential functions were fit to the step-up and step-down responses using laboratory data. The resulting response time estimates were consistent with results from standard procedures, with the up-step response time exceeding the down-step value somewhat. A single-pole Butterworth filter that approximates the instrumental effect was used with synthetic layered profiles to make first-order estimates of the impact of the finite response time. Using a layer analysis program previously applied to observed profiles we find that instrumental effects can attenuate ozone variability by 20-45% in individual layers, but that the vertical offset in layer altitudes is moderate, up to about 150 meters. We will present results obtained using this approach, coupled with data on the distribution of layer characteristics found using the layer analysis procedure on profiles from Narragansett, Rhode Island and other US sites to quantify the impact on overall variability estimates given ambient distributions of layer occurrence, thickness

  5. A possible new basis for fast reactor subassembly instrumentation

    International Nuclear Information System (INIS)

    Edwards, A.G.

    1977-01-01

    This is a digest of a paper presented to the Risley Engineering Society. The theme is a speculation that the core instrumentation problem for a liquid metal fast breeder reactor might be transformed by developments in the realm of infrared television and in pattern recognition by computer. There is a possible need to measure coolant flow and cooled exit temperature for each subassembly, with familiar fail-to-safety characteristics. Present methods use electrical devices, for example thermocouples, but this gives rise to cabling problems. It might be possible, however, to instal at the top of each subassembly a mechanical device that gives a direct indication of temperature and flow visible to an infrared television camera. Signal transmission by cable would then be replaced by direct observation. A possible arrangement for such a system is described and is shown in schematic form. It includes pattern recognition by computer. It may also be possible to infer coolant temperature directly from the characteristics of the infrared radiation emitted by a thin stainless steel sheet in contact with the sodium, and an arrangement for this is shown. The type of pattern produced for on-line interpretation by computer is also shown. It is thought that this new approach to the problem of subassembly instrumentation is sufficiently attractive to justify a close study of the problems involved. (U.K.)

  6. Validation of Reverse-Engineered and Additive-Manufactured Microsurgical Instrument Prototype.

    Science.gov (United States)

    Singh, Ramandeep; Suri, Ashish; Anand, Sneh; Baby, Britty

    2016-12-01

    With advancements in imaging techniques, neurosurgical procedures are becoming highly precise and minimally invasive, thus demanding development of new ergonomically aesthetic instruments. Conventionally, neurosurgical instruments are manufactured using subtractive manufacturing methods. Such a process is complex, time-consuming, and impractical for prototype development and validation of new designs. Therefore, an alternative design process has been used utilizing blue light scanning, computer-aided designing, and additive manufacturing direct metal laser sintering (DMLS) for microsurgical instrument prototype development. Deviations of DMLS-fabricated instrument were studied by superimposing scan data of fabricated instrument with the computer-aided designing model. Content and concurrent validity of the fabricated prototypes was done by a group of 15 neurosurgeons by performing sciatic nerve anastomosis in small laboratory animals. Comparative scoring was obtained for the control and study instrument. T test was applied to the individual parameters and P values for force (P direct application of these additive-manufactured instruments in the operating room requires further validation. © The Author(s) 2016.

  7. Psychological contract and organizational citizenship behavior in China: investigating generalizability and instrumentality.

    Science.gov (United States)

    Hui, Chun; Lee, Cynthia; Rousseau, Denise M

    2004-04-01

    This study examined the generalizability of psychological contract forms observed in the West (D. M. Rousseau, 2000) to China. Using 2 independent samples, results confirmed the generalizability of 3 psychological contract forms: transactional, relational, and balanced. This study also examined the nature of relationships of psychological contracts with organizational citizenship behavior (OCB). In particular, this study explored the role of instrumentality as a mediating psychological process. The authors found evidence that instrumentality mediates the relationship of relational and balanced forms with OCB; however, the transactional contract form is directly related to OCB. The authors discuss the implications of these results for the meaning of psychological contracts and OCB in China and raise issues for future research.

  8. Direct observation of stochastic domain-wall depinning in magnetic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Im, Mi-Young; Bocklage, Lars; Fischer, Peter; Meier, Guido

    2008-11-01

    The stochastic field-driven depinning of a domain wall pinned at a notch in a magnetic nanowire is directly observed using magnetic X-ray microscopy with high lateral resolution down to 15 nm. The depinning-field distribution in Ni{sub 80}Fe{sub 20} nanowires considerably depends on the wire width and the notch depth. The difference in the multiplicity of domain-wall types generated in the vicinity of a notch is responsible for the observed dependence of the stochastic nature of the domain wall depinning field on the wire width and the notch depth. Thus the random nature of the domain wall depinning process is controllable by an appropriate design of the nanowire.

  9. Latest Observations of Interstellar Plasma Waves, Radio Emissions, and Dust Impacts from the Voyager 1 Plasma Wave Instrument

    Science.gov (United States)

    Gurnett, D. A.

    2017-12-01

    Voyager 1, which is now 140 AU (Astronomical Units) from the Sun, crossed the heliopause into interstellar space in 2012 at a heliospheric radial distance of 121 AU. Since crossing the heliopause the plasma wave instrument has on several occasions detected plasma oscillations and radio emissions at or near the electron plasma frequency. The most notable of these events occurred in Oct.-Nov. 2012, April-May 2013, Feb.-Nov. 2014, and Sept.-Nov. 2015. Most recently, a very weak emission has been observed at or near the electron plasma frequency through most of 2016. These emissions are all believed to be produced by shock waves propagating into the interstellar medium from energetic solar events. The oscillation frequency of the plasma indicates that the electron density in the interstellar plasma has gradually increased from about 0.06 cm-3 near the heliopause to about 0.12 cm-3 in the most recent data. The plasma wave instrument also continues to detect impacts of what are believed to be interstellar dust grains at an impact rate of a few per year. Comparisons with Ulysses observations of similar interstellar dust near 5 AU suggest that the dust grains have sizes in the range from about 0.1 to 1 micrometer. Although the statistics are poor due to the low count rate, the dust flux observed in the outer heliosphere appears to be as much as a factor of two greater than that observed in the interstellar medium. Since the dust particles are likely to be charged, this increase in the heliosphere suggests that there may be a significant electrodynamic interaction of the dust particles with the heliospheric magnetic field.

  10. Observations of whistler mode waves in the Jovian system and their consequences for the onboard processing within the RPWI instrument for JUICE

    Science.gov (United States)

    Santolik, O.; Soucek, J.; Kolmasova, I.; Grison, B.; Wahlund, J.-E.; Bergmann, J.

    2013-09-01

    Evidence for a magnetosphere at Ganymede has been found in 1996 using measurements of plasma waves onboard the Galileo spacecraft (fig. 1). This discovery demonstrates the importance of measurements of waves in plasmas around Jovian moons [1]. Galileo also observed whistler-mode waves in the magnetosphere of Ganymede similar to important classes of waves in the Earth magnetosphere: chorus and hiss [2]. Data from the Galileo spacecraft have therefore shown the importance of measurements of waves in plasmas around Jovian moons, especially in the light of recent advances in analysis of whistler-mode waves in the Earth magnetosphere and their importance for acceleration of radiation belt electrons to relativistic energies. Multicomponent measurements of the fluctuating magnetic and electric fields are needed for localization and characterization of source regions of these waves. Radio & Plasma Waves Investigation (RPWI) experiment will be implemented on the JUICE (JUpiter ICy moon Explorer) spacecraft. RPWI is a highly integrated instrument package that provides a comprehensive set of plasma and fields measurements. Proposed measurement modes for the low frequency receiver subsystem of RPWI include onboard processing which will be suitable for analysis of whistler-mode waves: (1) Polarization and propagation analysis based on phase relations to identify wave modes and propagation directions (2) Poynting vector to determine source regions (3) Detailed frequency-time structure, polarization, wave vector directions to identify linear or nonlinear source mechanisms

  11. Self-administered Versus Directly Observed Once-Weekly Isoniazid and Rifapentine Treatment of Latent Tuberculosis Infection

    Science.gov (United States)

    Belknap, Robert; Holland, David; Feng, Pei-Jean; Millet, Joan-Pau; Caylà, Joan A.; Martinson, Neil A.; Wright, Alicia; Chen, Michael P.; Moro, Ruth N.; Scott, Nigel A.; Arevalo, Bert; Miró, José M.; Villarino, Margarita E.; Weiner, Marc; Borisov, Andrey S.

    2017-01-01

    Background Expanding latent tuberculosis treatment is important to decrease active disease globally. Once-weekly isoniazid and rifapentine for 12 doses is effective but limited by requiring direct observation. Objective To compare treatment completion and safety of once-weekly isoniazid and rifapentine by self-administration versus direct observation. Design An open-label, phase 4 randomized clinical trial designed as a noninferiority study with a 15% margin. Seventy-five percent or more of study patients were enrolled from the United States for a prespecified subgroup analysis. (ClinicalTrials.gov: NCT01582711) Setting Outpatient tuberculosis clinics in the United States, Spain, Hong Kong, and South Africa. Participants 1002 adults (aged ≥18 years) recommended for treatment of latent tuberculosis infection. Intervention Participants received once-weekly isoniazid and rifapentine by direct observation, self-administration with monthly monitoring, or self-administration with weekly text message reminders and monthly monitoring. Measurements The primary outcome was treatment completion, defined as 11 or more doses within 16 weeks and measured using clinical documentation and pill counts for direct observation, and self-reports, pill counts, and medication event–monitoring devices for self-administration. The main secondary outcome was adverse events. Results Median age was 36 years, 48% of participants were women, and 77% were enrolled at the U.S. sites. Treatment completion was 87.2% (95% CI, 83.1% to 90.5%) in the direct-observation group, 74.0% (CI, 68.9% to 78.6%) in the self-administration group, and 76.4% (CI, 71.3% to 80.8%) in the self-administration–with–reminders group. In the United States, treatment completion was 85.4% (CI, 80.4% to 89.4%), 77.9% (CI, 72.7% to 82.6%), and 76.7% (CI, 70.9% to 81.7%), respectively. Self-administered therapy without reminders was noninferior to direct observation in the United States; no other comparisons met

  12. The Hawthorne effect in direct observation research with physicians and patients.

    Science.gov (United States)

    Goodwin, Meredith A; Stange, Kurt C; Zyzanski, Stephen J; Crabtree, Benjamin F; Borawski, Elaine A; Flocke, Susan A

    2017-12-01

    This study examines the degree to which a "Hawthorne effect" alters outpatient-visit content. Trained research nurses directly observed 4454 visits to 138 family physicians. Multiple data sources were used to examine the Hawthorne effect including differences in medical record documentation for observed visits and the prior visit by the same patient, time use during visits on the first versus the second observation day of each physician, and report by the patient, physician, and observer of the effect of observation. Visits on the first versus the second observation day were longer by an average of 1 minute (P effect of the observer on the interaction was reported by 74% of patients and 55% of physicians. Most of those that reported an affect indicated it was slight. Patients with non-White race, lower-educational level, and poorer health were more likely to report being affected by the observer. In a study that was designed to minimize the Hawthorne effect, the presence of an observer had little effect on most patient-physician visits but appeared to at least slightly effect a subgroup of vulnerable patients. © 2017 John Wiley & Sons, Ltd.

  13. SHARK-NIR: from K-band to a key instrument, a status update

    Science.gov (United States)

    Farinato, Jacopo; Bacciotti, Francesca; Baffa, Carlo; Baruffolo, Andrea; Bergomi, Maria; Bongiorno, Angela; Carbonaro, Luca; Carolo, Elena; Carlotti, Alexis; Centrone, Mauro; Close, Laird; De Pascale, Marco; Dima, Marco; D'Orazi, Valentina; Esposito, Simone; Fantinel, Daniela; Farisato, Giancarlo; Gaessler, Wolfgang; Giallongo, Emanuele; Greggio, Davide; Guyon, Olivier; Hinz, Philip; Lisi, Franco; Magrin, Demetrio; Marafatto, Luca; Mohr, Lars; Montoya, Manny; Pedichini, Fernando; Pinna, Enrico; Puglisi, Alfio; Ragazzoni, Roberto; Salasnich, Bernardo; Stangalini, Marco; Vassallo, Daniele; Verinaud, Christophe; Viotto, Valentina

    2016-07-01

    SHARK-NIR channel is one of the two coronagraphic instruments proposed for the Large Binocular Telescope, in the framework of the call for second generation instruments, issued in 2014. Together with the SHARK-VIS channel, it will offer a few observing modes (direct imaging, coronagraphic imaging and coronagraphic low resolution spectroscopy) covering a wide wavelength domain, going from 0.5μm to 1.7μm. Initially proposed as an instrument covering also the K-band, the current design foresees a camera working from Y to H bands, exploiting in this way the synergy with other LBT instruments such as LBTI, which is actually covering wavelengths greater than L' band, and it will be soon upgraded to work also in K band. SHARK-NIR has been undergoing the conceptual design review at the end of 2015 and it has been approved to proceed to the final design phase, receiving the green light for successive construction and installation at LBT. The current design is significantly more flexible than the previous one, having an additional intermediate pupil plane that will allow the usage of coronagraphic techniques very efficient in term of contrast and vicinity to the star, increasing the instrument coronagraphic performance. The latter is necessary to properly exploit the search of giant exo-planets, which is the main science case and the driver for the technical choices of SHARK-NIR. We also emphasize that the LBT AO SOUL upgrade will further improve the AO performance, making possible to extend the exo-planet search to target fainter than normally achieved by other 8-m class telescopes, and opening in this way to other very interesting scientific scenarios, such as the characterization of AGN and Quasars (normally too faint to be observed) and increasing considerably the sample of disks and jets to be studied. Finally, we emphasize that SHARK-NIR will offer XAO direct imaging capability on a FoV of about 15"x15", and a simple coronagraphic spectroscopic mode offering spectral

  14. Instrument evaluation no. 9. Mini-instruments dose rate meter type 5 - 1OR

    International Nuclear Information System (INIS)

    Iles, W.J.; Burgess, P.H.; Callowhill, K.

    1977-04-01

    This instrument is a portable, battery powered dose rate meter covering the dose rate range from 0 to 200 mrad h -1 . The instrument is designed to measure X- and γ-radiation dose rates over the energy range from 45 keV to 3 MeV. The radiation detector of the instrument is a GM tube with a specially designed energy compensation sheath. This detector is incorporated in a probe connected to the rate meter by an extensible cable which may be either hand-held or clipped on to the top of the instrument case. All the measurements in this report have been taken with the long axis of the probe normal to the direction of the incident radiation, the orientation recommended by the manufacturer. The information is given under the following headings: facilities and controls; radiation characteristics; electrical characteristics; effect of ambient temperature; mechanical characteristics; summary of performance; conclusions. (U.K.)

  15. Intercomparison of two comparative reactivity method instruments inf the Mediterranean basin during summer 2013

    Science.gov (United States)

    Zannoni, N.; Dusanter, S.; Gros, V.; Sarda Esteve, R.; Michoud, V.; Sinha, V.; Locoge, N.; Bonsang, B.

    2015-09-01

    The hydroxyl radical (OH) plays a key role in the atmosphere, as it initiates most of the oxidation processes of volatile organic compounds (VOCs), and can ultimately lead to the formation of ozone and secondary organic aerosols (SOAs). There are still uncertainties associated with the OH budget assessed using current models of atmospheric chemistry and direct measurements of OH sources and sinks have proved to be valuable tools to improve our understanding of the OH chemistry. The total first order loss rate of OH, or total OH reactivity, can be directly measured using three different methods, such as the following: total OH loss rate measurement, laser-induced pump and probe technique and comparative reactivity method. Observations of total OH reactivity are usually coupled to individual measurements of reactive compounds in the gas phase, which are used to calculate the OH reactivity. Studies using the three methods have highlighted that a significant fraction of OH reactivity is often not explained by individually measured reactive compounds and could be associated to unmeasured or unknown chemical species. Therefore accurate and reproducible measurements of OH reactivity are required. The comparative reactivity method (CRM) has demonstrated to be an advantageous technique with an extensive range of applications, and for this reason it has been adopted by several research groups since its development. However, this method also requires careful corrections to derive ambient OH reactivity. Herein we present an intercomparison exercise of two CRM instruments, CRM-LSCE (Laboratoire des Sciences du Climat et de l'Environnement) and CRM-MD (Mines Douai), conducted during July 2013 at the Mediterranean site of Ersa, Cape Corsica, France. The intercomparison exercise included tests to assess the corrections needed by the two instruments to process the raw data sets as well as OH reactivity observations. The observation was divided in three parts: 2 days of plant

  16. Instrumentation development

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Areas being investigated for instrumentation improvement during low-level pollution monitoring include laser opto-acoustic spectroscopy, x-ray fluorescence spectroscopy, optical fluorescence spectroscopy, liquid crystal gas detectors, advanced forms of atomic absorption spectroscopy, electro-analytical chemistry, and mass spectroscopy. Emphasis is also directed toward development of physical methods, as opposed to conventional chemical analysis techniques for monitoring these trace amounts of pollution related to energy development and utilization

  17. GLORI (GLObal navigation satellite system Reflectometry Instrument): A New Airborne GNSS-R receiver for land surface applications

    Science.gov (United States)

    Motte, Erwan; Zribi, Mehrez; Fanise, Pascal

    2015-04-01

    GLORI (GLObal navigation satellite system Reflectometry Instrument) is a new receiver dedicated to the airborne measurement of surface parameters such as soil moisture and biomass above ground and sea state (wave height and direction) above oceans. The instrument is based on the PARIS concept [Martin-Neira, 1993] using both the direct and surface-reflected L-band signals from the GPS constellation as a multistatic radar source. The receiver is based on one up-looking and one down-looking dual polarization hemispherical active antennas feeding a low-cost 4-channel SDR direct down-conversion receiver tuned to the GPS L1 frequency. The raw measurements are sampled at 16.368MHz and stored as 2-bit, IQ binary files. In post-processing, GPS acquisition and tracking are performed on the direct up-looking signal while the down-looking signal is processed blindly using tracking parameters from the direct signal. The obtained direct and reflected code-correlation waveforms are the basic observables for geophysical parameters inversion. The instrument was designed to be installed aboard the ATR42 experimental aircraft from the French SAFIRE fleet as a permanent payload. The long term goal of the project is to provide real-time continuous surface information for every flight performed. The aircraft records attitude information through its Inertial Measurement Unit and a commercial GPS receiver records additional information such as estimated doppler and code phase, receiver location, satellites azimuth and elevation. A series of test flights were performed over both the Toulouse and Gulf of Lion (Mediterranean Sea) regions during the period 17-21 Nov 2014 together with the KuROS radar [Hauser et al., 2014]. Using processing methods from the literature [Egido et al., 2014], preliminary results demonstrate the instrument sensitivity to both ground and ocean surface parameters estimation. A dedicated scientific flight campaign is planned at the end of second quarter 2015 with

  18. Feedback in formative OSCEs: comparison between direct observation and video-based formats

    Science.gov (United States)

    Junod Perron, Noëlle; Louis-Simonet, Martine; Cerutti, Bernard; Pfarrwaller, Eva; Sommer, Johanna; Nendaz, Mathieu

    2016-01-01

    Introduction Medical students at the Faculty of Medicine, University of Geneva, Switzerland, have the opportunity to practice clinical skills with simulated patients during formative sessions in preparation for clerkships. These sessions are given in two formats: 1) direct observation of an encounter followed by verbal feedback (direct feedback) and 2) subsequent review of the videotaped encounter by both student and supervisor (video-based feedback). The aim of the study was to evaluate whether content and process of feedback differed between both formats. Methods In 2013, all second- and third-year medical students and clinical supervisors involved in formative sessions were asked to take part in the study. A sample of audiotaped feedback sessions involving supervisors who gave feedback in both formats were analyzed (content and process of the feedback) using a 21-item feedback scale. Results Forty-eight audiotaped feedback sessions involving 12 supervisors were analyzed (2 direct and 2 video-based sessions per supervisor). When adjusted for the length of feedback, there were significant differences in terms of content and process between both formats; the number of communication skills and clinical reasoning items addressed were higher in the video-based format (11.29 vs. 7.71, p=0.002 and 3.71 vs. 2.04, p=0.010, respectively). Supervisors engaged students more actively during the video-based sessions than during direct feedback sessions (self-assessment: 4.00 vs. 3.17, p=0.007; active problem-solving: 3.92 vs. 3.42, p=0.009). Students made similar observations and tended to consider that the video feedback was more useful for improving some clinical skills. Conclusion Video-based feedback facilitates discussion of clinical reasoning, communication, and professionalism issues while at the same time actively engaging students. Different time and conceptual frameworks may explain observed differences. The choice of feedback format should depend on the educational

  19. Feedback in formative OSCEs: comparison between direct observation and video-based formats

    Directory of Open Access Journals (Sweden)

    Noëlle Junod Perron

    2016-11-01

    Full Text Available Introduction: Medical students at the Faculty of Medicine, University of Geneva, Switzerland, have the opportunity to practice clinical skills with simulated patients during formative sessions in preparation for clerkships. These sessions are given in two formats: 1 direct observation of an encounter followed by verbal feedback (direct feedback and 2 subsequent review of the videotaped encounter by both student and supervisor (video-based feedback. The aim of the study was to evaluate whether content and process of feedback differed between both formats. Methods: In 2013, all second- and third-year medical students and clinical supervisors involved in formative sessions were asked to take part in the study. A sample of audiotaped feedback sessions involving supervisors who gave feedback in both formats were analyzed (content and process of the feedback using a 21-item feedback scale. Results: Forty-eight audiotaped feedback sessions involving 12 supervisors were analyzed (2 direct and 2 video-based sessions per supervisor. When adjusted for the length of feedback, there were significant differences in terms of content and process between both formats; the number of communication skills and clinical reasoning items addressed were higher in the video-based format (11.29 vs. 7.71, p=0.002 and 3.71 vs. 2.04, p=0.010, respectively. Supervisors engaged students more actively during the video-based sessions than during direct feedback sessions (self-assessment: 4.00 vs. 3.17, p=0.007; active problem-solving: 3.92 vs. 3.42, p=0.009. Students made similar observations and tended to consider that the video feedback was more useful for improving some clinical skills. Conclusion: Video-based feedback facilitates discussion of clinical reasoning, communication, and professionalism issues while at the same time actively engaging students. Different time and conceptual frameworks may explain observed differences. The choice of feedback format should depend on

  20. Development and validation of Dutch version of Lasater Clinical Judgment Rubric in hospital practice: An instrument design study

    NARCIS (Netherlands)

    Vreugdenhil, Jettie; Spek, Bea

    2017-01-01

    Clinical reasoning in patient care is a skill that cannot be observed directly. So far, no reliable, valid instrument exists for the assessment of nursing students' clinical reasoning skills in hospital practice. Lasater's clinical judgment rubric (LCJR), based on Tanner's model "Thinking like a

  1. First direct observation of time-reversal violation

    International Nuclear Information System (INIS)

    Angelopoulos, A.; Apostolakis, A.; Aslanides, E.; Bertin, V.; Ealet, A.; Henry-Couannier, F.; Le Gac, R.; Montanet, F.; Touchard, F.; Backenstoss, G.; Benelli, A.; Kokkas, P.; Leimgruber, F.; Pavlopoulos, P.; Polivka, G.; Rickenbach, R.; Schietinger, T.; Tauscher, L.; Vlachos, S.; Bargassa, P.

    2000-01-01

    Using its unique capability of strangeness tagging at K 0 production in pp-bar→K ± π ± K 0 (K-bar) 0 ) and at decay with the lepton charge in semileptonic decays CPLEAR measured the semileptonic decay-rate asymmetry (R(K-bar) 0 →e + π - ν)-R(K 0 →e - π + ν-bar)/R(K-bar) 0 →e + π - ν)+R(K 0 →e - π + ν-bar). The asymmetry, fitted over the eigentime interval 1-20 τ S , yielded a non-zero result of (6.6±1.3 stat ±1.1 syst )x10 -3 . A thorough phenomenological analysis identifies T violation in K 0 mixing and/or CPT violation in semileptonic decays as possible interpretations. A confrontation with world data on neutral kaon decays, however, excludes the latter with sufficient precision to establish the result as the first direct observation of time reversal non-invariance

  2. The SPICE concept - An approach to providing geometric and other ancillary information needed for interpretation of data returned from space science instruments

    Science.gov (United States)

    Acton, Charles H., Jr.

    1990-01-01

    The Navigation Ancillary Information Facility (NAIF), acting under the direction of NASA's Office of Space Science and Applications, and with substantial participation of the planetary science community, is designing and implementing an ancillary data system - called SPICE - to assist scientists in planning and interpreting scientific observations taken from spaceborne instruments. The principal objective of the implemented SPICE system is that it will hold the essential geometric and related ancillary information needed to recover the full value of science instrument data, and that it will facilitate correlations of individual instrument datasets with data obtained from other instruments on the same or other spacecraft.

  3. Key issues in the thermal design of spaceborne cryogenic infrared instruments

    Science.gov (United States)

    Schember, Helene R.; Rapp, Donald

    1992-12-01

    Thermal design and analysis play an integral role in the development of spaceborne cryogenic infrared (IR) instruments. From conceptual sketches to final testing, both direct and derived thermal requirements place significant constraints on the instrument design. Although in practice these thermal requirements are interdependent, the sources of most thermal constraints may be grouped into six distinct categories. These are: (1) Detector temperatures, (2) Optics temperatures, (3) Pointing or alignment stability, (4) Mission lifetime, (5) Orbit, and (6) Test and Integration. In this paper, we discuss these six sources of thermal requirements with particular regard to development of instrument packages for low background infrared astronomical observatories. In the end, the thermal performance of these instruments must meet a set of thermal requirements. The development of these requirements is typically an ongoing and interactive process, however, and the thermal design must maintain flexibility and robustness throughout the process. The thermal (or cryogenic) engineer must understand the constraints imposed by the science requirements, the specific hardware, the observing environment, the mission design, and the testing program. By balancing these often competing factors, the system-oriented thermal engineer can work together with the experiment team to produce an effective overall design of the instrument.

  4. Inter-rater reliability of direct observations of the physical and psychosocial working conditions in eldercare: An evaluation in the DOSES project

    NARCIS (Netherlands)

    Karstad, K. (Kristina); Rugulies, R. (Reiner); Skotte, J. (Jørgen); Munch, P.K. (Pernille Kold); Greiner, B.A. (Birgit A.); Burdorf, A. (Alex); Søgaard, K. (Karen); A. Holtermann (Andreas)

    2018-01-01

    textabstractThe aim of the study was to develop and evaluate the reliability of the “Danish observational study of eldercare work and musculoskeletal disorders” (DOSES) observation instrument to assess physical and psychosocial risk factors for musculoskeletal disorders (MSD) in eldercare work.

  5. Compendium of Instrumentation Whitepapers on Frontier Physics Needs for Snowmass 2013

    Energy Technology Data Exchange (ETDEWEB)

    Lipton, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-01-01

    Contents of collection of whitepapers include: Operation of Collider Experiments at High Luminosity; Level 1 Track Triggers at HL-LHC; Tracking and Vertex Detectors for a Muon Collider; Triggers for hadron colliders at the energy frontier; ATLAS Upgrade Instrumentation; Instrumentation for the Energy Frontier; Particle Flow Calorimetry for CMS; Noble Liquid Calorimeters; Hadronic dual-readout calorimetry for high energy colliders; Another Detector for the International Linear Collider; e+e- Linear Colliders Detector Requirements and Limitations; Electromagnetic Calorimetry in Project X Experiments The Project X Physics Study; Intensity Frontier Instrumentation; Project X Physics Study Calorimetry Report; Project X Physics Study Tracking Report; The LHCb Upgrade; Neutrino Detectors Working Group Summary; Advanced Water Cherenkov R&D for WATCHMAN; Liquid Argon Time Projection Chamber (LArTPC); Liquid Scintillator Instrumentation for Physics Frontiers; A readout architecture for 100,000 pixel Microwave Kinetic In- ductance Detector array; Instrumentation for New Measurements of the Cosmic Microwave Background polarization; Future Atmospheric and Water Cherenkov ?-ray Detectors; Dark Energy; Can Columnar Recombination Provide Directional Sensitivity in WIMP Search?; Instrumentation Needs for Detection of Ultra-high Energy Neu- trinos; Low Background Materials for Direct Detection of Dark Matter; Physics Motivation for WIMP Dark Matter Directional Detection; Solid Xenon R&D at Fermilab; Ultra High Energy Neutrinos; Instrumentation Frontier: Direct Detection of WIMPs; nEXO detector R&D; Large Arrays of Air Cherenkov Detectors; and Applications of Laser Interferometry in Fundamental Physics Experiments.

  6. Direct observation of ionic structure at solid-liquid interfaces

    DEFF Research Database (Denmark)

    Siretanu, Igor; Ebeling, Daniel; Andersson, Martin Peter

    2014-01-01

    The distribution of ions and charge at solid-water interfaces plays an essential role in a wide range of processes in biology, geology and technology. While theoretical models of the solid-electrolyte interface date back to the early 20th century, a detailed picture of the structure of the electric...... double layer has remained elusive, largely because of experimental techniques have not allowed direct observation of the behaviour of ions, i.e. with subnanometer resolution. We have made use of recent advances in high-resolution Atomic Force Microscopy to reveal, with atomic level precision, the ordered...

  7. Novel Semi-Direct OH Reactivity (kOH) Measurements by Chemical Ionization Mass Spectrometry during a Chamber Instrument Comparison Campaign and Continuous Ambient Air Sampling at a Central European GAW Station

    Science.gov (United States)

    Muller, J.; Kubistin, D.; Elste, T.; Plass-Duelmer, C.; Claude, A.; Englert, J.; Holla, R.; Fuchs, H.; Hofzumahaus, A.; Holland, F.; Novelli, A.; Tillmann, R.; Wegener, R.; Rohrer, F.; Yu, Z.; Bohn, B.; Williams, J.; Pfannerstill, E.; Edtbauer, A.; Kluepfel, T.

    2016-12-01

    Total OH reactivity (kOH) has been recognized as a useful measure to gauge the potential atmospheric oxidation capacity and a few different in-situ measurement techniques have been developed over the last 15 years. Here results are presented from a novel semi-direct method developed by the German Weather Service (DWD) utilizing a chemical ionization mass spectrometer (CIMS). Recently in April 2016, the CIMS system participated in a half-blind kOH instrument comparison campaign at the Forschungszentrum Jülich (FZJ) SAPHIR chamber. Experiments provided controlled conditions with a range of different VOC mixtures and varying NOx levels, representing environments dominated by biogenic or urban emissions. Alongside CIMS, kOH was also measured by systems using the comparative reactivity method (CRM) and the pump-probe technique with OH detection. The intercomparison revealed a good performance of CIMS at lower OH reactivities (0-15 s-1), a range for which the instrumental set up was optimized. Limitations of the CIMS system consist of an upper limit for kOH detection and the need for applying a chemical correction function as a result of instrument-internal HOx recycling. Findings and instrument parameters obtained from the FZJ SAPHIR campaign and flow tube experiments are then applied to ambient air kOH measurements at the Meteorological Observatory Hohenpeissenberg (MOHp), Germany. The CIMS instrument is used there for long-term measurements of OH, H2SO4, ROx and kOH. Here, we show ambient air kOH measurements, interpreted in conjunction with volatile organic compounds (VOC) and inorganic trace gases also measured at the GAW station Hohenpeissenberg. These observations provide a unique dataset to investigate turnover rates and seasonal cycles of reactive trace gases, i.e. sources that make up total OH reactivity in this central European, rural setting.

  8. Three-item Direct Observation Screen (TIDOS) for autism spectrum disorder

    OpenAIRE

    Oner, Pinar; Oner, Ozgur; Munir, Kerim

    2013-01-01

    We compared ratings on the Three-Item Direct Observation Screen test for autism spectrum disorders completed by pediatric residents with the Social Communication Questionnaire parent reports as an augmentative tool for improving autism spectrum disorder screening performance. We examined three groups of children (18–60 months) comparable in age (18–24 month, 24–36 month, 36–60 preschool subgroups) and gender distribution: n = 86 with Diagnostic and Statistical Manual of Mental Disorders (4th ...

  9. An intelligent instrument for measuring the dynamic parameters of groundwater

    International Nuclear Information System (INIS)

    Du Guoping

    2002-01-01

    An intelligent instrument was developed for measuring direction and velocity of the groundwater, permeability coefficient, hydraulic transmitting coefficient, static level, hydraulic gradient and flow direction of each layer. The instrument can be widely applied for detecting seepage of abutment and river bank, exploitation of groundwater, conservation of water and soil, water surging in mine, survey of groundwater resource and environment protection etc

  10. Anna Freud: the Hampstead War Nurseries and the role of the direct observation of children for psychoanalysis.

    Science.gov (United States)

    Midgley, Nick

    2007-08-01

    The psychoanalytic tradition of direct observation of children has a long history, going back to the early 20th century, when psychoanalysis and the emerging field of 'child studies' came into fruitful contact in Freud's Vienna. As a leading figure in the attempted integration of direct observation with the new psychoanalytic knowledge emerging from the consulting room, Anna Freud played a crucial role in the emergence of this field. But her major contribution to the theory and practice of observing children came during the Second World War, when she founded the Hampstead War Nurseries. The author describes in detail this important period of Anna Freud's career, and discusses the impact it had on later work. He explores the theoretical contribution that Anna Freud made in the post-war years to the debate about the place of direct observation in psychoanalysis, and concludes that Anna Freud's 'double approach' (direct observation plus analytic reconstruction) still has a great deal to offer as a method of both psychoanalytic research and education.

  11. An accuracy measurement method for star trackers based on direct astronomic observation.

    Science.gov (United States)

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-03-07

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers.

  12. Direct observation of the spin-dependent Peltier effect.

    Science.gov (United States)

    Flipse, J; Bakker, F L; Slachter, A; Dejene, F K; van Wees, B J

    2012-02-05

    The Peltier coefficient describes the amount of heat that is carried by an electrical current when it passes through a material. When two materials with different Peltier coefficients are placed in contact with one another, the Peltier effect causes a net flow of heat either towards or away from the interface between them. Spintronics describes the transport of electric charge and spin angular momentum by separate spin-up and spin-down channels in a device. The observation that spin-up and spin-down charge transport channels are able to transport heat independently of each other has raised the possibility that spin currents could be used to heat or cool the interface between materials with different spin-dependent Peltier coefficients. Here, we report the direct observation of the heating and cooling of such an interface by a spin current. We demonstrate this spin-dependent Peltier effect in a spin-valve pillar structure that consists of two ferromagnetic layers separated by a non-ferromagnetic metal. Using a three-dimensional finite-element model, we extract spin-dependent Peltier coefficients in the range -0.9 to -1.3 mV for permalloy. The magnetic control of heat flow could prove useful for the cooling of nanoscale electronic components or devices.

  13. Calibration methodology for instruments utilized in X radiation beams, diagnostic level

    International Nuclear Information System (INIS)

    Penha, M. da; Potiens, A.; Caldas, L.V.E.

    2004-01-01

    Methodologies for the calibration of diagnostic radiology instruments were established at the Calibration Laboratory of IPEN. The methods may be used in the calibration procedures of survey meters used in radiation protection measurements (scattered radiation), instruments used in direct beams (attenuated and non attenuated beams) and quality control instruments. The established qualities are recommended by the international standards IEC 1267 and ISO 4037-3. Two ionization chambers were used as reference systems, one with a volume of 30 cm 3 for radiation protection measurements, and the other with a volume of 1 cm 3 for direct beam measurements. Both are traceable to the German Primary Laboratory of Physikalisch-Technische Bundesanstalt (PTB). In the case of calibration of quality control instruments, a non-invasive method using the measurement of the spectrum endpoint was established with a portable gamma and X-ray Intertechnique spectrometer system. The methods were applied to survey meters (radiation protection measurements), ionization chambers (direct beam measurements) and k Vp meters (invasive and non-invasive instruments). (Author)

  14. Calibration methodology for instruments utilized in X radiation beams, diagnostic level

    Energy Technology Data Exchange (ETDEWEB)

    Penha, M. da; Potiens, A.; Caldas, L.V.E. [Instituto de Pesquisas Energeticas e Nucleares, Comissao Nacional de Energia Nuclear, Sao Paulo (Brazil)]. E-mail: mppalbu@ipen.br

    2004-07-01

    Methodologies for the calibration of diagnostic radiology instruments were established at the Calibration Laboratory of IPEN. The methods may be used in the calibration procedures of survey meters used in radiation protection measurements (scattered radiation), instruments used in direct beams (attenuated and non attenuated beams) and quality control instruments. The established qualities are recommended by the international standards IEC 1267 and ISO 4037-3. Two ionization chambers were used as reference systems, one with a volume of 30 cm{sup 3} for radiation protection measurements, and the other with a volume of 1 cm{sup 3} for direct beam measurements. Both are traceable to the German Primary Laboratory of Physikalisch-Technische Bundesanstalt (PTB). In the case of calibration of quality control instruments, a non-invasive method using the measurement of the spectrum endpoint was established with a portable gamma and X-ray Intertechnique spectrometer system. The methods were applied to survey meters (radiation protection measurements), ionization chambers (direct beam measurements) and k Vp meters (invasive and non-invasive instruments). (Author)

  15. Determination of the Integral/SPI instrumental response and his application to the observation of gamma ray lines in the Vela region

    International Nuclear Information System (INIS)

    Attie, D.

    2005-01-01

    The INTEGRAL/SPI spectrometer was designed to observe the sky in the energy band of 20 keV to 8 MeV. The specificity of instrument SPI rests on the excellent spectral resolution (2.3 keV with 1 MeV) of its detecting plan, composed of 19 cooled germanium crystals; covering an effective area of 508 cm 2 . The use of a coded mask, located at 1.7 m above the detection plan ensures to it a resolving power of 2.5 degrees. The aim of this thesis, begun before the INTEGRAL launch, is made up of two parts. The first part relates to the analysis of the spectrometer calibration data. The objective was to measure and check the performances of the telescope, in particular to validate simulations of the INTEGRAL/SPI instrument response. This objective was successfully achieved. This analysis also highlights the presence of a significant instrumental background noise. Whereas, the second part concentrates on the data analysis of the Vela region observations. I have approached two astrophysical topics dealing with: - the search for radioactive decays lines of titanium-44, which is produced by explosive nucleosynthesis, in the supernova remnant of Vela Junior and, - the search of cyclotron resonance scattering features expected towards 25 keV and 52 keV in the accreting pulsar spectrum of the x-ray binary star Vela X-1. Putting forward the hypothesis that the result obtained previously by COMPTEL is correct and considering the no-detection of the titanium-44 lines by SPI, we give a lower limit at 4500 km s -1 for the ejecta velocity from Vela Junior. The analysis on the research of the cyclotron lines have shown that the results are very sensitive to the instrumental background. Thorough studies will be necessary to guarantee an unambiguous detection of these lines. (author)

  16. Cellular telephone-based radiation detection instrument

    Science.gov (United States)

    Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA

    2011-06-14

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  17. The 2007 ESO Instrument Calibration Workshop

    CERN Document Server

    Kaufer, Andreas; ESO Workshop

    2008-01-01

    The 2007 ESO Instrument Calibration workshop brought together more than 120 participants with the objective to a) foster the sharing of information, experience and techniques between observers, instrument developers and instrument operation teams, b) review the actual precision and limitations of the applied instrument calibration plans, and c) collect the current and future requirements by the ESO users. These present proceedings include the majority of the workshop’s contributions and document the status quo of instrument calibration at ESO in large detail. Topics covered are: Optical Spectro-Imagers, Optical Multi-Object Spectrographs, NIR and MIR Spectro-Imagers, High-Resolution Spectrographs, Integral Field Spectrographs, Adaptive Optics Instruments, Polarimetric Instruments, Wide Field Imagers, Interferometric Instruments as well as other crucial aspects such as data flow, quality control, data reduction software and atmospheric effects. It was stated in the workshop that "calibration is a life-long l...

  18. Direct Observation of Radiation Defects: Experiment and Interpretation

    International Nuclear Information System (INIS)

    Dudarev, S.L.

    2012-01-01

    Electron microscopy is arguably the only available experimental method suitable for the direct visualization of nano-scale defect structures formed under irradiation. Images of dislocation loops and point-defect clusters in crystals are usually produced using diffraction contrast methods. For relatively large defects, a combination of dynamical imaging and image contrast simulations is required for determining the nature of visible radiation defects. At the same time, density functional theory (DFT) models developed over the last decade have provided unique information about the structure of nano-scale defects produced by irradiation, including the defects that are so small that they cannot be observed in an electron microscope, and about the pathways of migration and interaction between radiation defects. DFT models, involving no experimental input parameters and being as quantitatively accurate and informative as the most advanced experimental techniques for the direct observation of defects, have created a new paradigm for the scientific investigation of radiation damage phenomena. In particular, DFT models offer new insight into the origin of temperature-dependent response of materials to irradiation, a problem of pivotal significance for applications. By combining information derived from the first-principles models for radiation defects with information derived from small-scale experimental observations it may be possible to acquire quantitative knowledge about how materials respond to irradiation and, using this knowledge, develop materials suitable for advanced applications in fission and fusion. It now appears possible to pose the question about the development of integrated fusion power plant models, combining neutron transport calculations and microscopic models for microstructural evolution of materials, for example models for ab initio prediction of helium embrittlement. Such models, based on scientific principles and quantitative data, and developed

  19. Methane Flux Estimation from Point Sources using GOSAT Target Observation: Detection Limit and Improvements with Next Generation Instruments

    Science.gov (United States)

    Kuze, A.; Suto, H.; Kataoka, F.; Shiomi, K.; Kondo, Y.; Crisp, D.; Butz, A.

    2017-12-01

    Atmospheric methane (CH4) has an important role in global radiative forcing of climate but its emission estimates have larger uncertainties than carbon dioxide (CO2). The area of anthropogenic emission sources is usually much smaller than 100 km2. The Thermal And Near infrared Sensor for carbon Observation Fourier-Transform Spectrometer (TANSO-FTS) onboard the Greenhouse gases Observing SATellite (GOSAT) has measured CO2 and CH4 column density using sun light reflected from the earth's surface. It has an agile pointing system and its footprint can cover 87-km2 with a single detector. By specifying pointing angles and observation time for every orbit, TANSO-FTS can target various CH4 point sources together with reference points every 3 day over years. We selected a reference point that represents CH4 background density before or after targeting a point source. By combining satellite-measured enhancement of the CH4 column density and surface measured wind data or estimates from the Weather Research and Forecasting (WRF) model, we estimated CH4emission amounts. Here, we picked up two sites in the US West Coast, where clear sky frequency is high and a series of data are available. The natural gas leak at Aliso Canyon showed a large enhancement and its decrease with time since the initial blowout. We present time series of flux estimation assuming the source is single point without influx. The observation of the cattle feedlot in Chino, California has weather station within the TANSO-FTS footprint. The wind speed is monitored continuously and the wind direction is stable at the time of GOSAT overpass. The large TANSO-FTS footprint and strong wind decreases enhancement below noise level. Weak wind shows enhancements in CH4, but the velocity data have large uncertainties. We show the detection limit of single samples and how to reduce uncertainty using time series of satellite data. We will propose that the next generation instruments for accurate anthropogenic CO2 and CH

  20. Inter-instrument calibration using magnetic field data from Flux Gate Magnetometer (FGM) and Electron Drift Instrument (EDI) onboard Cluster

    Science.gov (United States)

    Nakamura, R.; Plaschke, F.; Teubenbacher, R.; Giner, L.; Baumjohann, W.; Magnes, W.; Steller, M.; Torbert, R. B.; Vaith, H.; Chutter, M.; Fornaçon, K.-H.; Glassmeier, K.-H.; Carr, C.

    2013-07-01

    We compare the magnetic field data obtained from the Flux-Gate Magnetometer (FGM) and the magnetic field data deduced from the gyration time of electrons measured by the Electron Drift Instrument (EDI) onboard Cluster to determine the spin axis offset of the FGM measurements. Data are used from orbits with their apogees in the magnetotail, when the magnetic field magnitude was between about 20 nT and 500 nT. Offset determination with the EDI-FGM comparison method is of particular interest for these orbits, because no data from solar wind are available in such orbits to apply the usual calibration methods using the Alfvén waves. In this paper, we examine the effects of the different measurement conditions, such as direction of the magnetic field relative to the spin plane and field magnitude in determining the FGM spin-axis offset, and also take into account the time-of-flight offset of the EDI measurements. It is shown that the method works best when the magnetic field magnitude is less than about 128 nT and when the magnetic field is aligned near the spin-axis direction. A remaining spin-axis offset of about 0.4 ~ 0.6 nT was observed between July and October 2003. Using multi-point multi-instrument measurements by Cluster we further demonstrate the importance of the accurate determination of the spin-axis offset when estimating the magnetic field gradient.

  1. Consistency of direct integral estimator for partially observed systems of ordinary differential equations

    NARCIS (Netherlands)

    Vujačić, Ivan; Dattner, Itai

    In this paper we use the sieve framework to prove consistency of the ‘direct integral estimator’ of parameters for partially observed systems of ordinary differential equations, which are commonly used for modeling dynamic processes.

  2. Comparing surgical trays with redundant instruments with trays with reduced instruments: a cost analysis.

    Science.gov (United States)

    John-Baptiste, A; Sowerby, L J; Chin, C J; Martin, J; Rotenberg, B W

    2016-01-01

    When prearranged standard surgical trays contain instruments that are repeatedly unused, the redundancy can result in unnecessary health care costs. Our objective was to estimate potential savings by performing an economic evaluation comparing the cost of surgical trays with redundant instruments with surgical trays with reduced instruments ("reduced trays"). We performed a cost-analysis from the hospital perspective over a 1-year period. Using a mathematical model, we compared the direct costs of trays containing redundant instruments to reduced trays for 5 otolaryngology procedures. We incorporated data from several sources including local hospital data on surgical volume, the number of instruments on redundant and reduced trays, wages of personnel and time required to pack instruments. From the literature, we incorporated instrument depreciation costs and the time required to decontaminate an instrument. We performed 1-way sensitivity analyses on all variables, including surgical volume. Costs were estimated in 2013 Canadian dollars. The cost of redundant trays was $21 806 and the cost of reduced trays was $8803, for a 1-year cost saving of $13 003. In sensitivity analyses, cost savings ranged from $3262 to $21 395, based on the surgical volume at the institution. Variation in surgical volume resulted in a wider range of estimates, with a minimum of $3253 for low-volume to a maximum of $52 012 for high-volume institutions. Our study suggests moderate savings may be achieved by reducing surgical tray redundancy and, if applied to other surgical specialties, may result in savings to Canadian health care systems.

  3. The Inelastic Instrument suite at the SNS

    International Nuclear Information System (INIS)

    Granroth, Garrett E; Abernathy, Douglas L; Ehlers, Georg; Hagen, Mark E; Herwig, Kenneth W; Mamontov, Eugene; Ohl, Michael E; Wildgruber, Christoph U

    2008-01-01

    The instruments in the extensive suite of spectrometers at the SNS are in various stages of installation and commissioning. The Back Scattering Spectrometer (BASIS) is installed and is in commissioning. It's near backscattering analyzer crystals provide the 3 eV resolution as expected. BASIS will enter the user program in the fall of 2007. The ARCS wide angular-range thermal to epithermal neutron spectrometer will come on line in the fall of 2007 followed shortly by the Cold Neutron Chopper Spectrometer. These two direct geometry instruments provide moderate resolution and the ability to trade resolution for flux. In addition both instruments have detector coverage out to 140o to provide a large Q range. The SEQUOIA spectrometer, complete in 2008, is the direct geometry instrument that will provide fine resolution in the thermal to epithermal range. The Spin-Echo spectrometer, to be completed on a similar time scale, will provide the finest energy resolution worldwide. The HYSPEC spectrometer, available no later than 2011, will provide polarized capabilities and optimized flux in the thermal energy range. Finally, the Vision chemical spectrometer will use crystal analyzers to study energy transfers into the epithermal range

  4. Assessment of the measurement control program for solution assay instruments at the Los Alamos National Laboratory Plutonium Facility

    International Nuclear Information System (INIS)

    Goldman, A.S.

    1985-05-01

    This report documents and reviews the measurement control program (MCP) over a 27-month period for four solution assay instruments (SAIs) Facility. SAI measurement data collected during the period January 1982 through March 1984 were analyzed. The sources of these data included computer listings of measurements emanating from operator entries on computer terminals, logbook entries of measurements transcribed by operators, and computer listings of measurements recorded internally in the instruments. Data were also obtained from control charts that are available as part of the MCP. As a result of our analyses we observed agreement between propagated and historical variances and concluded instruments were functioning properly from a precision aspect. We noticed small, persistent biases indicating slight instrument inaccuracies. We suggest that statistical tests for bias be incorporated in the MCP on a monthly basis and if the instrument bias is significantly greater than zero, the instrument should undergo maintenance. We propose the weekly precision test be replaced by a daily test to provide more timely detection of possible problems. We observed that one instrument showed a trend of increasing bias during the past six months and recommend a randomness test be incorporated to detect trends in a more timely fashion. We detected operator transcription errors during data transmissions and advise direct instrument transmission to the MCP to eliminate these errors. A transmission error rate based on those errors that affected decisions in the MCP was estimated as 1%. 11 refs., 10 figs., 4 tabs

  5. Support tube of in-core instruments

    International Nuclear Information System (INIS)

    Suzumura, Takeshi; Saito, Shozo; Yasuda, Tetsuo; Shirosaki, Kiyotaka.

    1975-01-01

    Object: To permit satisfactory output measurement by preventing the bending of a in-core instrument tube within a reactor due to vibrations by means of a spring and thereby preventing mechanical damage of an adjacent fuel channel box. Structure: At a corner of a channel box of a fuel assembly, a in-core instrument tube is arranged along a channel box and has its surface provided with a plurality of removable leaf springs arranged in the direction of axis of the in-core instrument tube and each having an arcular tip. Thus, when the in-core instrument tube is inserted into the reactor, the arcular tip portions of the leaf springs are brought into plane contact with the corner of the channel box so that the in-core instrument tube is elastically supported on the channel box. Thus, there is no possibility of causing damage to the adjacent fuel channel box. (Kamimura, M.)

  6. Facilitation of voluntary goal-directed action by reward cues.

    Science.gov (United States)

    Lovibond, Peter F; Colagiuri, Ben

    2013-10-01

    Reward-associated cues are known to influence motivation to approach both natural and man-made rewards, such as food and drugs. However, the mechanisms underlying these effects are not well understood. To model these processes in the laboratory with humans, we developed an appetitive Pavlovian-instrumental transfer procedure with a chocolate reward. We used a single unconstrained response that led to an actual rather than symbolic reward to assess the strength of reward motivation. Presentation of a chocolate-paired cue, but not an unpaired cue, markedly enhanced instrumental responding over a 30-s period. The same pattern was observed with 10-s and 30-s cues, showing that close cue-reward contiguity is not necessary for facilitation of reward-directed action. The results confirm that reward-related cues can instigate voluntary action to obtain that reward. The effectiveness of long-duration cues suggests that in clinical settings, attention should be directed to both proximal and distal cues for reward.

  7. Critical review of directional neutron survey meters

    Science.gov (United States)

    Balmer, Matthew J. I.; Gamage, Kelum A. A.; Taylor, Graeme C.

    2014-01-01

    Having been overlooked for many years, research is now starting to take into account the directional distribution of the neutron work place field. The impact of not taking this into account has led to overly conservative estimates of dose in neutron workplace fields. This paper provides a critical review of this existing research into directional survey meters which could improve these estimates of dose. Instruments which could be adapted for use as directional neutron survey meters are also considered within this review. Using Monte-Carlo techniques, two of the most promising existing designs are evaluated; a boron-doped liquid scintillator and a multi-detector directional spectrometer. As an outcome of these simulations, possible adaptations to these instruments are suggested with a view to improving the portability of the instrument.

  8. Critical Review of Directional Neutron Survey Meters

    International Nuclear Information System (INIS)

    Balmer, M.J.I.; Gamage, K.A.A.; Taylor, G.C.

    2013-06-01

    Having been overlooked for many years, research is now starting to take into account the directional distribution of the neutron work place field. The impact of not taking this into account has led to overly conservative estimates of dose in neutron workplace fields. This paper provides a critical review of this existing research into directional survey meters which could improve these estimates of dose. Instruments which could be adapted for use as directional neutron survey meters are also considered within this review. Using Monte-Carlo techniques, two of the most promising existing designs are evaluated; a boron-doped liquid scintillator and a multi-detector directional spectrometer. As an outcome of these simulations, possible adaptations to these instruments are suggested with a view to improving the portability of the instrument. (authors)

  9. Top-of-Atmosphere Direct Radiative Effect of Aerosols from the Clouds and the Earth's Radiant Energy System Satellite Instrument (CERES)

    Science.gov (United States)

    Loeb, N. G.; Kato, S.

    2002-01-01

    Nine months of CERES/TRMM broadband fluxes combined with VIRS high-resolution imager measurements are used to estimate the daily average direct radiative effect of aerosols for clear-sky conditions over the tropical oceans. On average, aerosols have a cooling effect over the tropics of 4.6 +/- 1 W/sq m. The magnitude is approx.2 W/sq m smaller over the southern tropical oceans than it is over northern tropical oceans. The direct effect derived from CERES is highly correlated with coincident aerosol optical depth retrievals inferred from 0.63 microns VIRS radiances (correlation coefficient of 0.96). The slope of the regression line is approx. -32 W/sq m/t over the equatorial Pacific Ocean, but changes both regionally and seasonally, depending on the aerosol characteristics. Near sources of biomass burning and desert dust, the aerosol direct effect reaches -25 W sq m to -30 W/sq m. The direct effect from CERES also shows a dependence on wind speed. The reason for this dependence is unclear-it may be due to increased aerosol (e.g. sea-salt or aerosol transport) or increased surface reflection (e.g. due to whitecaps). The uncertainty in the tropical average direct effect from CERES is approx. 1 W/sq m (approx. 20%) due mainly to cloud contamination, the radiance-to-flux conversion, and instrument calibration. By comparison, uncertainties in the direct effect from the ERBE and CERES "ERBE-Like" products are a factor of 3 to 5 larger.

  10. NASA's Newest SeaWinds Instrument Breezes Into Operation

    Science.gov (United States)

    2003-01-01

    One of NASA's newest Earth-observing instruments, the SeaWinds scatterometer aboard Japan's Advanced Earth Observing Satellite (Adeos) 2--now renamed Midori 2--has successfully transmitted its first radar data to our home planet, generating its first high-quality images.From its orbiting perch high above Earth, SeaWinds on Midori 2 ('midori' is Japanese for the color green, symbolizing the environment) will provide the world's most accurate, highest resolution and broadest geographic coverage of ocean wind speed and direction, sea ice extent and properties of Earth's land surfaces. It will complement and eventually replace an identical instrument orbiting since June 1999 on NASA's Quick Scatterometer (QuikScat) satellite. Its three- to five-year mission will augment a long-term ocean surface wind data series that began in 1996 with launch of the NASA Scatterometer on Japan's first Adeos spacecraft.Climatologists, meteorologists and oceanographers will soon routinely use data from SeaWinds on Midori 2 to understand and predict severe weather patterns, climate change and global weather abnormalities like El Nino. The data are expected to improve global and regional weather forecasts, ship routing and marine hazard avoidance, measurements of sea ice extent and the tracking of icebergs, among other uses.'Midori 2, its SeaWinds instrument and associated ground processing systems are functioning very smoothly,' said Moshe Pniel, scatterometer projects manager at NASA's Jet Propulsion Laboratory, Pasadena, Calif. 'Following initial checkout and calibration, we look forward to continuous operations, providing vital data to scientists and weather forecasters around the world.' 'These first images show remarkable detail over land, ice and oceans,' said Dr. Michael Freilich, Ocean Vector Winds Science Team Leader, Oregon State University, Corvallis, Ore. 'The combination of SeaWinds data and measurements from other instruments on Midori 2 with data from other international

  11. A fluorescence XAFS measurement instrument in the soft x-ray region toward observation under operando conditions

    Energy Technology Data Exchange (ETDEWEB)

    Honda, M., E-mail: honda.mitsunori@jaea.go.jp; Baba, Y.; Shimoyama, I.; Sekiguchi, T. [Quantum Beam Science Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2015-03-15

    X-ray absorption fine structure (XAFS) measurements are widely used for the analysis of electronic structure. Generally, XAFS in the soft X-ray region is measured under vacuum, but chemical structures under vacuum are typically different from those under operando conditions, where chemical species exhibit their function. Here, we developed an XAFS measurement instrument, as a step toward operando fluorescent, which yields XAFS measurement using synchrotron radiation in the soft X-ray region. We applied this method to analyze the local electronic structure of the sulfur atoms in L-cysteine in different pH solutions. In water at pH 7, the hydrogen atom does not dissociate from the thiol (-SH) group in L-cysteine, which forms a structure surrounded by and interacting with water molecules. The XAFS spectrum of L-cysteine in solution was altered by changing the pH. At pH 9, the hydrogen atom dissociated and a thiolate anion was formed. Although the -SH group was oxidized to SO{sub 4}{sup 2−} when L-cysteine was adsorbed on a metal surface and dried, no oxidation was observed in solution. This may be because the water molecules were densely packed and protected the -SH group from oxidation. Our results show that this instrument aimed toward operando fluorescence XAFS measurements in the soft X-ray region is useful for structural analysis of sulfur atoms in organic molecules in air and in solution. The instrument will be applied to the structural analysis of materials containing elements that have absorption edges in soft X-ray region, such as phosphorus and alkali metals (potassium and cesium). It will be also particularly useful for the analysis of samples that are difficult to handle under vacuum and materials that have specific functions in solution.

  12. The interaction between room and musical instruments studied by multi-channel auralization

    DEFF Research Database (Denmark)

    Rindel, Jens Holger; Otondo, Felipe

    2005-01-01

    in the anechoic recording. With this technique the variations in sound radiation from the musical instrument during the performance e.g. due to changes in level or movements can be reproduced with the influence of the surrounding room surfaces. Examples include a grand piano and a clarinet.......The directivity of musical instruments is very complicated and typically changes from one tone to the next. So, instead of measuring the average directivity, a multi-channel auralization method has been developed, which allows a highly accurate and realistic sounding auralization of musical...... instruments in rooms. Anechoic recordings have been made with 5 and 13 evenly distributed microphones around the musical instrument. The reproduction is made with a room acoustics simulation software using a compound source, which is in fact a number of highly directive sources, one for each of the channels...

  13. The OCO-3 Mission: Science Objectives and Instrument Performance

    Science.gov (United States)

    Eldering, A.; Basilio, R. R.; Bennett, M. W.

    2017-12-01

    The Orbiting Carbon Observatory 3 (OCO-3) will continue global CO2 and solar-induced chlorophyll fluorescence (SIF) using the flight spare instrument from OCO-2. The instrument is currently being tested, and will be packaged for installation on the International Space Station (ISS) (launch readiness in early 2018.) This talk will focus on the science objectives, updated simulations of the science data products, and the outcome of recent instrument performance tests. The low-inclination ISS orbit lets OCO-3 sample the tropics and sub-tropics across the full range of daylight hours with dense observations at northern and southern mid-latitudes (+/- 52º). The combination of these dense CO2 and SIF measurements provides continuity of data for global flux estimates as well as a unique opportunity to address key deficiencies in our understanding of the global carbon cycle. The instrument utilizes an agile, 2-axis pointing mechanism (PMA), providing the capability to look towards the bright reflection from the ocean and validation targets. The PMA also allows for a snapshot mapping mode to collect dense datasets over 100km by 100km areas. Measurements over urban centers could aid in making estimates of fossil fuel CO2 emissions. Similarly, the snapshot mapping mode can be used to sample regions of interest for the terrestrial carbon cycle. In addition, there is potential to utilize data from ISS instruments ECOSTRESS (ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station) and GEDI (Global Ecosystem Dynamics Investigation), which measure other key variables of the control of carbon uptake by plants, to complement OCO-3 data in science analysis. In 2017, the OCO-2 instrument was transformed into the ISS-ready OCO-3 payload. The transformed instrument was thoroughly tested and characterized. Key characteristics, such as instrument ILS, spectral resolution, and radiometric performance will be described. Analysis of direct sun measurements taken during testing

  14. Evaluation of fault-normal/fault-parallel directions rotated ground motions for response history analysis of an instrumented six-story building

    Science.gov (United States)

    Kalkan, Erol; Kwong, Neal S.

    2012-01-01

    According to regulatory building codes in United States (for example, 2010 California Building Code), at least two horizontal ground-motion components are required for three-dimensional (3D) response history analysis (RHA) of buildings. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak responses of engineering demand parameters (EDPs) were obtained for rotation angles ranging from 0° through 180° for evaluating the FN/FP directions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.

  15. Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Parent, Lucas R. [Department; amp, Biochemistry, University of California, San Diego, La Jolla, California 92093, United States; Bakalis, Evangelos [Dipartimento; Ramírez-Hernández, Abelardo [Materials; Institute; Kammeyer, Jacquelin K. [Department; amp, Biochemistry, University of California, San Diego, La Jolla, California 92093, United States; Park, Chiwoo [Department; de Pablo, Juan [Materials; Institute; Zerbetto, Francesco [Dipartimento; Patterson, Joseph P. [Department; amp, Biochemistry, University of California, San Diego, La Jolla, California 92093, United States; Laboratory; Gianneschi, Nathan C. [Department; amp, Biochemistry, University of California, San Diego, La Jolla, California 92093, United States

    2017-11-16

    Amphiphilic small molecules and polymers form commonplace nanoscale macromolecular compartments and bilayers, and as such are truly essential components in all cells and in many cellular processes. The nature of these architectures, including their formation, phase changes, and stimuli-response behaviors, is necessary for the most basic functions of life, and over the past half-century, these natural micellar structures have inspired a vast diversity of industrial products, from biomedicines to detergents, lubricants, and coatings. The importance of these materials and their ubiquity have made them the subject of intense investigation regarding their nanoscale dynamics with increasing interest in obtaining sufficient temporal and spatial resolution to directly observe nanoscale processes. However, the vast majority of experimental methods involve either bulk-averaging techniques including light, neutron, and X-ray scattering, or are static in nature including even the most advanced cryogenic transmission electron microscopy techniques. Here, we employ in situ liquid-cell transmission electron microscopy (LCTEM) to directly observe the evolution of individual amphiphilic block copolymer micellar nanoparticles in solution, in real time with nanometer spatial resolution. These observations, made on a proof-of-concept bioconjugate polymer amphiphile, revealed growth and evolution occurring by unimer addition processes and by particle-particle collision-and-fusion events. The experimental approach, combining direct LCTEM observation, quantitative analysis of LCTEM data, and correlated in silico simulations, provides a unique view of solvated soft matter nanoassemblies as they morph and evolve in time and space, enabling us to capture these phenomena in solution.

  16. Direct observation of cascade defect formation at low temperatures in ion-irradiated metals

    International Nuclear Information System (INIS)

    Muroga, T.; Hirooka, K.; Ishino, S.

    1984-01-01

    Direct transmission electron microscopy observations of cascade defect formation have been carried out in gold, Type 316 stainless steel, and aluminum irradiated by Al + , Ar - , and Xe + ions with energies between 80 and 400 keV. By utilizing a link of an ion accelerator to an electron microscope, in situ observations at low temperature (-150 0 C) have become possible. In gold, subcascade structures are clearly observed in all cases. Obvious dependence on projectile mass and energy is observed for cascade structure and vacancy clustering efficiency in gold and for defect visibility in aluminum and Type 316 stainless steel. A computer simulation calculation using MARLOWE shows subcascade distributions a little smaller in size and larger in number than the present observation

  17. High-Level Disinfection of Otorhinolaryngology Clinical Instruments: An Evaluation of the Efficacy and Cost-effectiveness of Instrument Storage.

    Science.gov (United States)

    Yalamanchi, Pratyusha; Yu, Jason; Chandler, Laura; Mirza, Natasha

    2018-01-01

    Objectives Despite increasing interest in individual instrument storage, risk of bacterial cross-contamination of otorhinolaryngology clinic instruments has not been assessed. This study is the first to determine the clinical efficacy and cost-effectiveness of standard high-level disinfection and clinic instrument storage. Methods To assess for cross-contamination, surveillance cultures of otorhinolaryngology clinic instruments subject to standard high-level disinfection and storage were obtained at the start and end of the outpatient clinical workday. Rate of microorganism recovery was compared with cultures of instruments stored in individual peel packs and control cultures of contaminated instruments. Based on historical clinic data, the direct allocation method of cost accounting was used to determine aggregate raw material cost and additional labor hours required to process and restock peel-packed instruments. Results Among 150 cultures of standard high-level disinfected and co-located clinic instruments, 3 positive bacterial cultures occurred; 100% of control cultures were positive for bacterial species ( P cost of individual semicritical instrument storage at $97,852.50 per year. Discussion With in vitro inoculation of >200 otorhinolaryngology clinic instruments, this study demonstrates that standard high-level disinfection and storage are equally efficacious to more time-consuming and expensive individual instrument storage protocols, such as peel packing, with regard to bacterial contamination. Implications for Practice Standard high-level disinfection and storage are equally effective to labor-intensive and costly individual instrument storage protocols.

  18. Costs and cost-effectiveness of different DOT strategies for the treatment of tuberculosis in Pakistan. Directly Observed Treatment.

    Science.gov (United States)

    Khan, M A; Walley, J D; Witter, S N; Imran, A; Safdar, N

    2002-06-01

    An economic study was conducted alongside a clinical trial at three sites in Pakistan to establish the costs and effectiveness of different strategies for implementing directly observed treatment (DOT) for tuberculosis. Patients were randomly allocated to one of three arms: DOTS with direct observation by health workers (at health centres or by community health workers); DOTS with direct observation by family members; and DOTS without direct observation. The clinical trial found no statistically significant difference in cure rate for the different arms. The economic study collected data on the full range of health service costs and patient costs of the different treatment arms. Data were also disaggregated by gender, rural and urban patients, by treatment site and by economic categories, to investigate the costs of the different strategies, their cost-effectiveness and the impact that they might have on patient compliance with treatment. The study found that direct observation by health centre-based health workers was the least cost-effective of the strategies tested (US dollars 310 per case cured). This is an interesting result, as this is the model recommended by the World Health Organization and International Union against Tuberculosis and Lung Disease. Attending health centres daily during the first 2 months generated high patient costs (direct and in terms of time lost), yet cure rates for this group fell below those of the non-observed group (58%, compared with 62%). One factor suggested by this study is that the high costs of attending may be deterring patients, and in particular, economically active patients who have most to lose from the time taken by direct observation. Without stronger evidence of benefits, it is hard to justify the costs to health services and patients that this type of direct observation imposes. The self-administered group came out as most cost-effective (164 dollars per case cured). The community health worker sub-group achieved the

  19. A Comparison of Assessment Tools: Is Direct Observation an Improvement Over Objective Structured Clinical Examinations for Communications Skills Evaluation?

    Science.gov (United States)

    Goch, Abraham M; Karia, Raj; Taormina, David; Kalet, Adina; Zuckerman, Joseph; Egol, Kenneth A; Phillips, Donna

    2018-04-01

    Evaluation of resident physicians' communications skills is a challenging task and is increasingly accomplished with standardized examinations. There exists a need to identify the effective, efficient methods for assessment of communications skills. We compared objective structured clinical examination (OSCE) and direct observation as approaches for assessing resident communications skills. We conducted a retrospective cohort analysis of orthopaedic surgery resident physicians at a single tertiary care academic institution, using the Institute for Healthcare Communication "4 Es" model for effective communication. Data were collected between 2011 and 2015. A total of 28 residents, each with OSCE and complete direct observation assessment checklists, were included in the analysis. Residents were included if they had 1 OSCE assessment and 2 or more complete direct observation assessments. There were 28 of a possible 59 residents (47%) included. A total of 89% (25 of 28) of residents passed the communications skills OSCE; only 54% (15 of 28) of residents passed the direct observation communications assessment. There was a positive, moderate correlation between OSCE and direct observation scores overall ( r  = 0.415, P  = .028). There was no agreement between OSCE and direct observation in categorizing residents into passing and failing scores (κ = 0.205, P  = .16), after adjusting for chance agreement. Our results suggest that OSCE and direct observation tools provide different insights into resident communications skills (simulation of rare and challenging situations versus real-life daily encounters), and may provide useful perspectives on resident communications skills in different contexts.

  20. Analysis of Solar Wind Precipitation on Mars Using MAVEN/SWIA Observations of Spacecraft-Scattered Ions

    Science.gov (United States)

    Lue, C.; Halekas, J. S.

    2017-12-01

    Particle sensors on the MAVEN spacecraft (SWIA, SWEA, STATIC) observe precipitating solar wind ions during MAVEN's periapsis passes in the Martian atmosphere (at 120-250 km altitude). The signature is observed as positive and negative particles at the solar wind energy, traveling away from the Sun. The observations can be explained by the solar wind penetrating the Martian magnetic barrier in the form of energetic neutral atoms (ENAs) due to charge-exchange with the Martian hydrogen corona, and then being reionized in positive or negative form upon impact with the atmosphere (1). These findings have elucidated solar wind precipitation dynamics at Mars, and can also be used to monitor the solar wind even when MAVEN is at periapsis (2). In the present study, we focus on a SWIA instrument background signal that has been interpreted as spacecraft/instrument-scattered ions (2). We aim to model and subtract the scattered ion signal from the observations including those of reionized solar wind. We also aim to use the scattered ion signal to track hydrogen ENAs impacting the spacecraft above the reionization altitude. We characterize the energy spectrum and directional scattering function for solar wind scattering off the SWIA aperture structure, the radome and the spacecraft body. We find a broad scattered-ion energy spectrum up to the solar wind energy, displaying increased energy loss and reduced flux with increasing scattering angle, allowing correlations with the solar wind direction, energy, and flux. We develop models that can be used to predict the scattered signal based on the direct solar wind observations or to infer the solar wind properties based on the observed scattered signal. We then investigate deviations to the models when the spacecraft is in the Martian atmosphere and evaluate the plausibility of that these are caused by ENAs. We also perform SIMION modeling of the scattering process and the resulting signal detection by SWIA, to study the results from

  1. Direct observation of labelled aerosols deposition into the respiratory tract of the rat

    International Nuclear Information System (INIS)

    Duport, P.

    1977-01-01

    With a new process the deposition of labelled aerosols into the respiratory tract of the rat can be directly observed. A qualitative convergence between the theoretical retention and real retention for a large scale of aerosol dimensions, is found out [fr

  2. Adaptive Optics Observations of Exoplanets, Brown Dwarfs, and Binary Stars

    Science.gov (United States)

    Hinkley, Sasha

    2012-04-01

    The current direct observations of brown dwarfs and exoplanets have been obtained using instruments not specifically designed for overcoming the large contrast ratio between the host star and any wide-separation faint companions. However, we are about to witness the birth of several new dedicated observing platforms specifically geared towards high contrast imaging of these objects. The Gemini Planet Imager, VLT-SPHERE, Subaru HiCIAO, and Project 1640 at the Palomar 5m telescope will return images of numerous exoplanets and brown dwarfs over hundreds of observing nights in the next five years. Along with diffraction-limited coronagraphs and high-order adaptive optics, these instruments also will return spectral and polarimetric information on any discovered targets, giving clues to their atmospheric compositions and characteristics. Such spectral characterization will be key to forming a detailed theory of comparative exoplanetary science which will be widely applicable to both exoplanets and brown dwarfs. Further, the prevalence of aperture masking interferometry in the field of high contrast imaging is also allowing observers to sense massive, young planets at solar system scales (~3-30 AU)- separations out of reach to conventional direct imaging techniques. Such observations can provide snapshots at the earliest phases of planet formation-information essential for constraining formation mechanisms as well as evolutionary models of planetary mass companions. As a demonstration of the power of this technique, I briefly review recent aperture masking observations of the HR 8799 system. Moreover, all of the aforementioned techniques are already extremely adept at detecting low-mass stellar companions to their target stars, and I present some recent highlights.

  3. Observations of fast, transient gamma-ray phenomena

    International Nuclear Information System (INIS)

    Kouveliotou, C.

    1981-09-01

    The present work is devoted primarily to the study of the solar GRBs as seen by the ISEE-3 satellite, in the energy range between 100 keV and 6.5 MeV. We have also included the cosmic GRB observations from ISEE-3, as a direct comparison for the two phenomena. Thus this thesis comprises 7 chapters: introduction, a chapter providing information on the instruments used, a discussion on the physics of the gamma-ray emission, a chapter describing the cosmic GRBs, and a chapter analysing the solar ones. Finally, we give the conclusions and a summary of our results and indications for the future observations. (orig./WL)

  4. Observations of fast, transient gamma-ray phenomena

    International Nuclear Information System (INIS)

    Kouveliotou, C.

    1981-01-01

    The present work is devoted primarily to the study of the solar GRBs as seen by the ISEE-3 satellite, in the energy range between 100 keV and 6.5 MeV. We have also included the cosmic GRB observations from ISEE-3, as a direct comparison for the two phenomena. Thus this thesis comprises 7 chapters: introduction, a chapter providing information on the instruments used, a discussion on the physics of the gamma-ray emission, a chapter describing the cosmic GRBs, and a chapter analysing the solar ones. Finally, we give the conclusions and a summary of our results and indications for the future observations. (orig./UPO)

  5. Health physics instruments: what are the current needs

    International Nuclear Information System (INIS)

    Armantrout, G.A.

    1982-01-01

    Health Physics instruments are used to measure the risk which may be incurred by an individual exposed to a given radiation field. The response of the instrument sensors will differ markedly from actual human risk factors for a variety of reasons, and this requires the use of instrument modifications and conversion factors. The values of these conversion factors continue to be updated and will likely change in the future. To accommodate the effects of different types of radiation and new conversion and usage factors, new instruments should be able to determine the type, energy distribution, and direction of incoming radiation and then apply the proper weighting factors to determine relative human risk. Such instrumentation will need to utilize modern sensor elements and microprocessor electronics

  6. A New Method to Directly Observe Tuberculosis Treatment: Skype Observed Therapy, a Patient-Centered Approach.

    Science.gov (United States)

    Buchman, Tavora; Cabello, Celina

    Tuberculosis (TB) treatment completion is in part determined by patient's adherence to long-term drug regimens. To best ensure compliance, directly observed therapy (DOT) is considered the standard of practice. Nassau County Department of Health TB Control is responsible for providing DOT to patients with TB. Tuberculosis Control sought to use and evaluate Skype Observed Therapy (SOT) as an alternative to DOT for eligible patients. The evaluation included analysis of patient's acceptance and adherence to drug regimen using SOT. Tuberculosis Control assessed staff efficiency and cost savings for this program. Percentages of SOT of patients and successful SOT visits, mileage, and travel time savings. Twenty percent of the caseload used SOT and 100% of patients who were eligible opted in. Average SOT success was 79%. Total mileage savings and time saved were $9,929.07 and 614 hours. Because SOT saves cost and time and is a suitable alternative to DOT for patients, it should be considered as part of new policies and practices in TB control programs.

  7. Development of a surface topography instrument for automotive textured steel plate

    Science.gov (United States)

    Wang, Zhen; Wang, Shenghuai; Chen, Yurong; Xie, Tiebang

    2010-08-01

    The surface topography of automotive steel plate is decisive to its stamping, painting and image clarity performances. For measuring this kind of surface topography, an instrument has been developed based on the principle of vertical scanning white light microscopy interference principle. The microscopy interference system of this instrument is designed based on the structure of Linnik interference microscopy. The 1D worktable of Z direction is designed and introduced in details. The work principle of this instrument is analyzed. In measuring process, the interference microscopy is derived as a whole and the measured surface is scanned in vertical direction. The measurement accuracy and validity is verified by templates. Surface topography of textured steel plate is also measured by this instrument.

  8. Recent observations of distant matter - Direct clues to birth and evolution

    International Nuclear Information System (INIS)

    Koo, D.C.

    1988-01-01

    Highlights of recent deep observations of field galaxies, clusters of galaxies, radio galaxies, quasar absorption lines, and quasars are used to illustrate our progress since the 1981 Vatican Conference on Astrophysical Cosmology and to review the current status of evidence for evolution in their intrinsic properties and large-scale clustering. The birth and ages of galaxies can be explored directly by exploiting these classes of objects to search for primeval galaxies. 96 refs

  9. Ultrasonic imaging with a fixed instrument configuration

    Energy Technology Data Exchange (ETDEWEB)

    Witten, A.; Tuggle, J.; Waag, R.C.

    1988-07-04

    Diffraction tomography is a technique based on an inversion of the wave equation which has been proposed for high-resolution ultrasonic imaging. While this approach has been considered for diagnostic medical applications, it has, until recently, been limited by practical limitations on the speed of data acquisition associated with instrument motions. This letter presents the results of an experimental study directed towards demonstrating tomography utilizing a fixed instrument configuration.

  10. Direct observations of low-energy solar electrons associated with a type 3 solar radio burst

    Science.gov (United States)

    Frank, L. A.; Gurnett, D. A.

    1972-01-01

    On 6 April 1971 a solar X-ray flare and a type 3 solar radio noise burst were observed with instrumentation on the eccentric-orbiting satellite IMP 6. The type 3 solar radio noise burst was detected down to a frequency of 31 kHz. A highly anisotropic packet of low-energy solar electron intensities arrived at the satellite approximately 6000 seconds after the onset of the solar flare. This packet of solar electron intensities was observed for 4200 seconds. Maximum differential intensities of the solar electrons were in the energy range of one to several keV. The frequency drift rate of the type 3 radio noise at frequencies below 178 kHz also indicated an average particle speed corresponding to that of a 3-keV electron. The simultaneous observations of these solar electron intensities and of the type 3 solar radio burst are presented, and their interrelationships are explored.

  11. Innovative instrumentation for VVERs based in non-invasive techniques

    International Nuclear Information System (INIS)

    Jeanneau, H.; Favennec, J.M.; Tournu, E.; Germain, J.L.

    2000-01-01

    Nuclear power plants such as VVERs can greatly benefit from innovative instrumentation to improve plant safety and efficiency. In recent years innovative instrumentation has been developed for PWRs with the aim of providing additional measurements of physical parameters on the primary and secondary circuits: the addition of new instrumentation is made possible by using non-invasive techniques such as ultrasonics and radiation detection. These innovations can be adapted for upgrading VVERs presently in operation and also in future VVERs. The following innovative instrumentation for the control, monitoring or testing at VVERs is described: 1. instrumentation for more accurate primary side direct measurements (for a better monitoring of the primary circuit); 2. instrumentation to monitor radioactivity leaks (for a safer plant); 3. instrumentation-related systems to improve the plant efficiency (for a cheaper kWh)

  12. Overview of intercalibration of satellite instruments

    Science.gov (United States)

    Chander, G.; Hewison, T.J.; Fox, N.; Wu, X.; Xiong, X.; Blackwell, W.J.

    2013-01-01

    Inter-calibration of satellite instruments is critical for detection and quantification of changes in the Earth’s environment, weather forecasting, understanding climate processes, and monitoring climate and land cover change. These applications use data from many satellites; for the data to be inter-operable, the instruments must be cross-calibrated. To meet the stringent needs of such applications requires that instruments provide reliable, accurate, and consistent measurements over time. Robust techniques are required to ensure that observations from different instruments can be normalized to a common scale that the community agrees on. The long-term reliability of this process needs to be sustained in accordance with established reference standards and best practices. Furthermore, establishing physical meaning to the information through robust Système International d'unités (SI) traceable Calibration and Validation (Cal/Val) is essential to fully understand the parameters under observation. The processes of calibration, correction, stability monitoring, and quality assurance need to be underpinned and evidenced by comparison with “peer instruments” and, ideally, highly calibrated in-orbit reference instruments. Inter-calibration between instruments is a central pillar of the Cal/Val strategies of many national and international satellite remote sensing organizations. Inter-calibration techniques as outlined in this paper not only provide a practical means of identifying and correcting relative biases in radiometric calibration between instruments but also enable potential data gaps between measurement records in a critical time series to be bridged. Use of a robust set of internationally agreed upon and coordinated inter-calibration techniques will lead to significant improvement in the consistency between satellite instruments and facilitate accurate monitoring of the Earth’s climate at uncertainty levels needed to detect and attribute the mechanisms

  13. Direct observation during surgery shows preservation of cerebral microcirculation in patients with traumatic brain injury

    NARCIS (Netherlands)

    Pérez-Bárcena, Jon; Romay, Eduardo; Llompart-Pou, Juan Antonio; Ibáñez, Javier; Brell, Marta; Llinás, Pedro; González, Elsa; Merenda, Amedeo; Ince, Can; Bullock, Ross

    2015-01-01

    To describe the alterations of the cortical microcirculation of the brain (blood flow and vessel density) in TBI patients who and compare them with a control group. Prospective and observational study in a third-level university hospital. Cortical microcirculation in the brain was directly observed

  14. Identifying instruments to quantify financial management skills in adults with acquired cognitive impairments.

    Science.gov (United States)

    Engel, Lisa; Bar, Yael; Beaton, Dorcas E; Green, Robin E; Dawson, Deirdre R

    2016-01-01

    Financial management skills-that is, the skills needed to handle personal finances such as banking and paying bills-are essential to a person's autonomy, independence, and community living. To date, no comprehensive review of financial management skills instruments exists, making it difficult for clinicians and researchers to choose relevant instruments. The objectives of this review are to: (a) identify all available instruments containing financial management skill items that have been used with adults with acquired cognitive impairments; (b) categorize the instruments by source (i.e., observation based, self-report, proxy report); and (c) describe observation-based performance instruments by populations, overarching concepts measured, and comprehensiveness of financial management items. Objective (c) focuses on observation-based performance instruments as these measures can aid in situations where the person with cognitive impairment has poor self-awareness or where the proxy has poor knowledge of the person's current abilities. Two reviewers completed two systematic searches of five databases. Instruments were categorized by reviewing published literature, copies of the instruments, and/or communication with instrument authors. Comprehensiveness of items was based on nine key domains of financial management skills developed by the authors. A total of 88 discrete instruments were identified. Of these, 44 were categorized as observation-based performance and 44 as self- and/or proxy-reports. Of the 44 observation-based performance instruments, 8 had been developed for acquired brain injury populations and 24 for aging and dementia populations. Only 7 of the observation-based performance instruments had items spanning 6 or more of the 9 financial management skills domains. The majority of instruments were developed for aging and dementia populations, and few were comprehensive. This review provides foundation for future instrument psychometric and clinimetric

  15. OH Airglow and Equatorial Variations Observed by ISUAL Instrument on Board the FORMOSAT 2 Satellite

    Directory of Open Access Journals (Sweden)

    Jan-Bai Nee

    2010-01-01

    Full Text Available OH airglow observed by the ISUAL (Imager of Sprites and Upper Atmospheric Lightning instrument on board the FORMOSAT 2 satellite is reported in this paper. The satellite is sun-synchronous and it returns to the same orbit at the same local time daily. By using this property, we can study the upper atmosphere in detail. With a CCD camera, ISUAL has measured the emission layers of OH Meinel band at 630 nm for several two-week periods in 2004 and 2007 in equatorial regions. ISUAL images are snapshots of the atmosphere 250 km (height ¡_ 1200 km (horizontal distance. These images of OH airglow are analyzed to derive its peak height and latitudinal variations. ISUAL observation is unique in its capability of continuous observation of the upper atmosphere as the satellite travels from south to north along a specific orbit. However, 630 nm filter also measured O(1D at 200 km, and there are interferences between O(1D and OH airglows as as observed from a distance in space. We have studied the overlap of two airglows by simulations, and our final analyses show that OH airglow can be correctly derived with its average peak height of 89 ¡_ 2.1 km usually lying within ¡_10¢X latitude about the equator. ISUAL data reveal detailed structures of equatorial OH airglow such as the existences of a few secondary maxima within the equatorial regions, and the oscillations of the peak latitudes. These results are discussed and compared with previous reports.

  16. Transuranic waste assay instrumentation: new developments and directions at the Los Alamos Scientific Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Close, D.A.; Umbarger, C.J.; West, L.; Smith, W.J.; Cates, M.R.; Noel, B.W.; Honey, F.J.; Franks, L.A.; Pigg, J.L.; Trundle, A.S.

    1978-01-01

    The Los Alamos Scientific Laboratory is developing assay instrumentation for the quantitative analysis of transuranic materials found in bulk solid wastes generated by Department of Energy facilities and by the commercial nuclear power industry. This also includes wastes generated in the decontamination and decommissioning of facilities and wastes generated during burial ground exhumation. The assay instrumentation will have a detection capability for the transuranics of less than 10 nCi of activity per gram of waste whenever practicable.

  17. Transuranic waste assay instrumentation: new developments and directions at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Close, D.A.; Umbarger, C.J.; West, L.; Smith, W.J.; Cates, M.R.; Noel, B.W.; Honey, F.J.; Franks, L.A.; Pigg, J.L.; Trundle, A.S.

    1978-01-01

    The Los Alamos Scientific Laboratory is developing assay instrumentation for the quantitative analysis of transuranic materials found in bulk solid wastes generated by Department of Energy facilities and by the commercial nuclear power industry. This also includes wastes generated in the decontamination and decommissioning of facilities and wastes generated during burial ground exhumation. The assay instrumentation will have a detection capability for the transuranics of less than 10 nCi of activity per gram of waste whenever practicable

  18. A method for evaluating spatially-resolved NOx emissions using Kalman filter inversion, direct sensitivities, and space-based NO2 observations

    Directory of Open Access Journals (Sweden)

    R. V. Martin

    2008-09-01

    Full Text Available An inverse modeling method was developed and tested for identifying possible biases in emission inventories using satellite observations. The relationships between emission inputs and modeled ambient concentrations were estimated using sensitivities calculated with the decoupled direct method in three dimensions (DDM-3D implemented within the framework of the Community Multiscale Air Quality (CMAQ regional model. As a case study to test the approach, the method was applied to regional ground-level NOx emissions in the southeastern United States as constrained by observations of NO2 column densities derived from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY satellite instrument. A controlled "pseudodata" scenario with a known solution was used to establish that the methodology can achieve the correct solution, and the approach was then applied to a summer 2004 period where the satellite data are available. The results indicate that emissions biases differ in urban and rural areas of the southeast. The method suggested slight downward (less than 10% adjustment to urban emissions, while rural region results were found to be highly sensitive to NOx processes in the upper troposphere. As such, the bias in the rural areas is likely not solely due to biases in the ground-level emissions. It was found that CMAQ was unable to predict the significant level of NO2 in the upper troposphere that was observed during the NASA Intercontinental Chemical Transport Experiment (INTEX measurement campaign. The best correlation between satellite observations and modeled NO2 column densities, as well as comparison to ground-level observations of NO2, was obtained by performing the inverse while accounting for the significant presence of NO2 in the upper troposphere not captured by the regional model.

  19. Solar Energy Research Center Instrumentation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Thomas, J.; Papanikolas, John, P.

    2011-11-11

    SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR

  20. Future Direction of the Instrumentation and Control System for Security of Nuclear Facilities

    International Nuclear Information System (INIS)

    Kim, Woo Jin; Kim, Jae Kwang

    2014-01-01

    Instrumentation and control systems are pervasively used as a vital component in modern industries. Nuclear facilities, such as nuclear power plants (NPPs), originally use I and C systems for plant status monitoring, processes control, and many other purposes. After some events that raised security concerns, application areas of I and C systems have been expanded to physical protection of nuclear material and facilities. As nuclear policies over the world are strengthening security issues, the future direction of roles and technical requirements of security related I and C systems is described: An introduction of I and C systems, especially digitalized I and C systems, to security of nuclear facilities requires many careful considerations, such as system integration, verification and validation (V/V), etc. Institute of Nuclear Nonproliferation and Control (KINAC) established 'International Nuclear Nonproliferation and Security Academy, INSA' in 2014. One of the main achievements of INSA is test-bed implementation for technical criteria development of nuclear facilities' physical protection systems (PPSs) as well as for education and training of those systems. The test bed was modified and improved more suitably from the previous version to modern PPSs including state-of-the-art I and C technologies. KINAC is confident in the new test bed to become a fundamental technical basis of security related I and C systems in near future

  1. THE STRUCTURE OF A SELF-GRAVITATING PROTOPLANETARY DISK AND ITS IMPLICATIONS FOR DIRECT IMAGING OBSERVATIONS

    International Nuclear Information System (INIS)

    Muto, Takayuki

    2011-01-01

    We consider the effects of self-gravity on the hydrostatic balance in the vertical direction of a gaseous disk and discuss the possible signature of the self-gravity that may be captured by direct imaging observations of protoplanetary disks in the future. In this paper, we consider a vertically isothermal disk in order to isolate the effects of self-gravity. The specific disk model we consider in this paper is the one with a radial surface density gap, at which the Toomre's Q-parameter of the disk varies rapidly in the radial direction. We calculate the vertical structure of the disk including the effects of self-gravity. We then calculate the scattered light and the dust thermal emission. We find that if the disk is massive enough and the effects of self-gravity come into play, a weak bump-like structure at the gap edge appears in the near-infrared (NIR) scattered light, while no such bump-like structure is seen in the submillimeter (sub-mm) dust continuum image. The appearance of the bump is caused by the variation of the height of the surface in the NIR wavelength. If such a bump-like feature is detected in future direct imaging observations, combined with sub-mm observations, it will give us useful information about the physical states of the disk.

  2. Direct observation, study and control of molecular super rotors

    Science.gov (United States)

    Korobenko, Aleksey; Milner, Alexander; Hepburn, John; Milner, Valery

    2014-05-01

    Extremely fast rotating molecules whose rotational energy is comparable with or exceeds the molecular bond strength are known as ``super rotors''. It has been speculated that super rotors may exhibit a number of unique properties, yet only indirect evidence of these molecular objects has been reported to date. We demonstrate the first direct observation of molecular super rotors by detecting coherent unidirectional molecular rotation with extreme frequencies exceeding 10 THz. The technique of an ``optical centrifuge'' is used to control the degree of rotational excitation in an ultra-broad range of rotational quantum numbers, reaching as high as N = 95 in oxygen and N = 60 in nitrogen. State-resolved detection enables us to determine the shape of the excited rotational wave packet and quantify the effect of centrifugal distortion on the rotational spectrum. Femtosecond time resolution reveals coherent rotational dynamics with increasing coherence times at higher angular momentum. We demonstrate that molecular super rotors can be created and observed in dense samples under normal conditions where the effects of ultrafast rotation on many-body interactions, inter-molecular collisions and chemical reactions can be readily explored.

  3. Proceedings of the advanced research and technology development direct utilization, instrumentation and diagnostics contractors' review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Geiling, D.W. (USDOE Morgantown Energy Technology Center, WV (USA)); Goldberg, P.M. (eds.) (USDOE Pittsburgh Energy Technology Center, PA (USA))

    1990-01-01

    The 1990 Advanced Research and Technology Development (AR TD) Direct Utilization, and Instrumentation and Diagnostics Contractors Review Meeting was held September 16--18, 1990, at the Hyatt at Chatham Center in Pittsburgh, PA. The meeting was sponsored by the US Department of Energy (DOE), Office of Fossil Energy, and the Pittsburgh and Morgantown Energy Technology Centers. Each year the meeting provides a forum for the exchange of information among the DOE AR TD contractors and interested parties. This year's meeting was hosted by the Pittsburgh Energy Technology Center and was attended by 120 individuals from industry, academia, national laboratories, and other governmental agencies. Papers were presented on research addressing coal surface, science, devolatilization and combustion, ash behavior, emission controls for gases particulates, fluid bed combustion and utilization in diesels and turbines. Individual reports are processed separately for the data bases.

  4. UAVSAR Program: Initial Results from New Instrument Capabilities

    Science.gov (United States)

    Lou, Yunling; Hensley, Scott; Moghaddam, Mahta; Moller, Delwyn; Chapin, Elaine; Chau, Alexandra; Clark, Duane; Hawkins, Brian; Jones, Cathleen; Marks, Phillip; hide

    2013-01-01

    UAVSAR is an imaging radar instrument suite that serves as NASA's airborne facility instrument to acquire scientific data for Principal Investigators as well as a radar test-bed for new radar observation techniques and radar technology demonstration. Since commencing operational science observations in January 2009, the compact, reconfigurable, pod-based radar has been acquiring L-band fully polarimetric SAR (POLSAR) data with repeat-pass interferometric (RPI) observations underneath NASA Dryden's Gulfstream-III jet to provide measurements for science investigations in solid earth and cryospheric studies, vegetation mapping and land use classification, archaeological research, soil moisture mapping, geology and cold land processes. In the past year, we have made significant upgrades to add new instrument capabilities and new platform options to accommodate the increasing demand for UAVSAR to support scientific campaigns to measure subsurface soil moisture, acquire data in the polar regions, and for algorithm development, verification, and cross-calibration with other airborne/spaceborne instruments.

  5. ISSUERS OF FINANCIAL INSTRUMENTS

    Directory of Open Access Journals (Sweden)

    Cristian GHEORGHE

    2016-05-01

    Full Text Available The rules laid down by Romanian Capital Market Law and the regulations put in force for its implementation apply to issuers of financial instruments admitted to trading on the regulated market established in Romania. But the issuers remain companies incorporated under Company Law of 1990. Such dual regulations need increased attention in order to observe the legal status of the issuers/companies and financial instruments/shares. Romanian legislator has chosen to implement in Capital Market Law special rules regarding the administration of the issuers of financial instruments, not only rules regarding admitting and maintaining to a regulated market. Thus issuers are, in Romanian Law perspective, special company that should comply special rule regarding board of administration and general shareholders meeting.

  6. 3D printing of surgical instruments for long-duration space missions.

    Science.gov (United States)

    Wong, Julielynn Y; Pfahnl, Andreas C

    2014-07-01

    The first off-Earth fused deposition modeling (FDM) 3D printer will explore thermoplastic manufacturing capabilities in microgravity. This study evaluated the feasibility of FDM 3D printing 10 acrylonitrile butadiene styrene (ABS) thermoplastic surgical instruments on Earth. Three-point bending tests compared stiffness and yield strength between FDM 3D printed and conventionally manufactured ABS thermoplastic. To evaluate the relative speed of using four printed instruments compared to conventional instruments, 13 surgeons completed simulated prepping, draping, incising, and suturing tasks. Each surgeon ranked the performance of six printed instruments using a 5-point Likert scale. At a thickness of 5.75 mm or more, the FDM printing process had a less than 10% detrimental effect on the tested yield strength and stiffness of horizontally printed ABS thermoplastic relative to conventional ABS thermoplastic. Significant weakness was observed when a bending load was applied transversely to a 3D printed layer. All timed tasks were successfully performed using a printed sponge stick, towel clamp, scalpel handle, and toothed forceps. There was no substantial difference in time to completion of simulated surgical tasks with control vs. 3D printed instruments. Of the surgeons, 100%, 92%, 85%, 77%, 77%, and 69% agreed that the printed smooth and tissue forceps, curved and straight hemostats, tissue and right angle clamps, respectively, would perform adequately. It is feasible to 3D print ABS thermoplastic surgical instruments on Earth. Loadbearing structures were designed to be thicker, when possible. Printing orientations were selected so that the printing layering direction of critical structures would not be transverse to bending loads.

  7. Direct observation of syringeal muscle function in songbirds and a parrot

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Goller, Franz

    2002-01-01

    on the syrinx. Contraction of m. tracheobronchialis ventralis enlarges the syringeal lumen and thus increases airflow by abducting the LL but does not affect the ML. The largest syringeal muscle, m. syringealis ventralis, plays a minor role, if any, in direct aperture control and thus in gating airflow...... the LTMs further into the tracheal lumen but does not close the syringeal aperture fully. The intrinsic deep muscle, m. syringealis profundus, abducts the LTMs through cranio-laterad movement of a paired, protruding half-ring. The weakly developed extrinsic m. sternotrachealis seems to increase tension......The role of syringeal muscles in controlling the aperture of the avian vocal organ, the syrinx, was evaluated directly for the first time by observing and filming through an endoscope while electrically stimulating different muscle groups of anaesthetised birds. In songbirds (brown thrashers...

  8. Trace Gas Measurements from the GeoTASO and GCAS Airborne Instruments: An Instrument and Algorithm Test-Bed for Air Quality Observations from Geostationary Orbit

    Science.gov (United States)

    Nowlan, C. R.; Liu, X.; Janz, S. J.; Leitch, J. W.; Al-Saadi, J. A.; Chance, K.; Cole, J.; Delker, T.; Follette-Cook, M. B.; Gonzalez Abad, G.; Good, W. S.; Kowalewski, M. G.; Loughner, C.; Pickering, K. E.; Ruppert, L.; Soo, D.; Szykman, J.; Valin, L.; Zoogman, P.

    2016-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) and the GEO-CAPE Airborne Simulator (GCAS) instruments are pushbroom sensors capable of making remote sensing measurements of air quality and ocean color. Originally developed as test-bed instruments for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey, these instruments are now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions, and will provide validation capabilities after the satellite instruments are in orbit. GeoTASO and GCAS flew on two different aircraft in their first intensive air quality field campaigns during the DISCOVER-AQ missions over Texas in 2013 and Colorado in 2014. GeoTASO was also deployed in 2016 during the KORUS-AQ field campaign to make measurements of trace gases and aerosols over Korea. GeoTASO and GCAS collect spectra of backscattered solar radiation in the UV and visible that can be used to derive 2-D maps of trace gas columns below the aircraft at spatial resolutions on the order of 250 x 500 m. We present spatially resolved maps of trace gas retrievals of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the field campaigns, and comparisons with data from ground-based spectrometers, in situ monitoring instruments, and satellites.

  9. Psychiatric Advance Directives: Getting Started

    Science.gov (United States)

    ... News Legal Issues Search for: About PADs A psychiatric advance directive (PAD) is a legal document that ... decisions during a mental health crisis. Getting Started Psychiatric advance directives (PADs) are relatively new legal instruments ...

  10. Using direct clinical observation to assess the quality of cesarean delivery in Afghanistan: an exploratory study

    Science.gov (United States)

    2014-01-01

    Background As part of a National Emergency Obstetric and Newborn Care (EmONC) Needs Assessment, a special study was undertaken in July 2010 to examine the quality of cesarean deliveries in Afghanistan and examine the utility of direct clinical observation as an assessment method in low-resource settings. Methods This cross-sectional assessment of the quality of cesareans at 14 facilities in Afghanistan included a survey of surgeons regarding their routine cesarean practices, direct observation of 29 cesarean deliveries and comparison of observations with facility records for 34 additional cesareans conducted during the 3 days prior to the observation period at each facility. For both observed cases and record reviews, we assessed time intervals between specified points of care-arrival to the ward, first evaluation, detection of a complication, decision for cesarean, incision, and birth. Results All time intervals with the exception of “decision to skin incision” were longer in the record reviews than in observed cases. Prior cesarean was the most common primary indication for all cases. All mothers in both groups observed survived through one hour postpartum. Among newborns there were two stillbirths (7%) in observed births and seven (21%) record reviews. Although our sample is too small to show statistical significance, the difference is noteworthy. In six of the reviewed cesareans resulting in stillbirth, a fetal heart rate was recorded in the operating theater, although four were recorded as macerated. For the two fresh stillbirths, the cesarean surgeries were recorded as scheduled and not urgent. Conclusions Direct observation of cesarean deliveries enabled us to assess a number of preoperative, postoperative, and intraoperative procedures that are often not described in medical records in low resource settings. Comparison of observations with findings from provider interviews and facility records allowed us to infer whether observed practices were typical

  11. Development of NPTC-11 intelligence control instrument with digital display

    International Nuclear Information System (INIS)

    Wang Chengming; Pu Li; Yu Jiang; Xue Yuping; Zhang Bo; Chen Yong

    2007-01-01

    The accurate of the process control gauge has direct influence on the safe operation of nuclear power plants. Therefore it is necessary to accumulate experiences for the domestic development of this Instrument. In this paper, NPTC-11 intelligence control Instrument with digital display is developed based on the design code for nuclear Instrument, considering the actual application requirements and technical redundancy. Its application in nuclear power plant for almost one year indicates that this Instrument satisfies the development purpose and requirements. (authors)

  12. Antennas and Electromagnetics Instrumentation for Research and Education

    Science.gov (United States)

    2016-06-01

    Antennas and Electromagnetics Instrumentation for Research and Education The objective of this proposal is to enhance the instrumentation of FIU’s... ElectroMagnetics Lab (EMLab) directed by Dr. Georgakopoulos and create a state-of-the art lab that will support the following: (a) Dr. Georgakopoulos...funded research on reconfigurable antennas and wireless power transfer, (b) other research on advanced electromagnetic technologies that support

  13. Transverse plane pelvic rotation increase (TPPRI following rotationally corrective instrumentation of adolescent idiopathic scoliosis double curves

    Directory of Open Access Journals (Sweden)

    Asher Marc A

    2010-08-01

    Full Text Available Abstract Background We have occasionally observed clinically noticeable postoperative transverse plane pelvic rotation increase (TPPRI in the direction of direct thoracolumbar/lumbar rotational corrective load applied during posterior instrumentation and arthrodesis for double (Lenke 3 and 6 adolescent idiopathic scoliosis (AIS curves. Our purposes were to document this occurrence; identify its frequency, associated variables, and natural history; and determine its effect upon patient outcome. Methods Transverse plane pelvic rotation (TPPR can be quantified using the left/right hemipelvis width ratio as measured on standing posterior-anterior scoliosis radiographs. Descriptive statistics were done to determine means and standard deviations. Non-parametric statistical tests were used due to the small sample size and non-normally distributed data. Significance was set at P Results Seventeen of 21 (81% consecutive patients with double curves (7 with Lenke 3 curves and 10 with Lenke 6 instrumented with lumbar pedicle screw anchors to achieve direct rotation had a complete sequence of measurable radiographs. While 10 of these 17 had no postoperative TPPRI, 7 did all in the direction of the rotationally corrective thoracolumbar instrumentation load. Two preoperative variables were associated with postoperative TPPRI: more tilt of the vertebra below the lower instrumented vertebra (-23° ± 3.1° vs. -29° ± 4.6°, P = 0.014 and concurrent anterior thoracolumbar discectomy and arthrodesis (5 of 10 vs. 7 of 7, P = 0.044. Patients with a larger thoracolumbar/lumbar angle of trunk inclination or larger lower instrumented vertebra plus one to sacrum fractional/hemicurve were more likely to have received additional anterior thoracolumbar discectomy and arthrodesis (c = 0.90 and c = 0.833, respectively. Postoperative TPPRI resolved in 5 of the 7 by intermediate follow-up at 12 months. Patient outcome was not adversely affected by postoperative TPPRI

  14. Development of electrical-erosion instrument for direct write micro-patterning on large area conductive thin films

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez, Ángel Luis; Coya, Carmen; García-Vélez, Miguel [Departamento Teoría de la Señal y Comunicaciones, Sistemas Telemáticos y Computación, Escuela Técnica Superior de Ingeniería de Telecomunicación, Universidad Rey Juan Carlos, Fuenlabrada, Madrid 28943 (Spain)

    2015-08-15

    We have developed a complete instrument to perform direct, dry, and cost-effective lithography on conductive materials, based on localized electrical discharges, which avoids using masks or chemicals typical of conventional photolithography. The technique is considered fully compatible with substrate transport based systems, like roll-to-roll technology. The prototype is based on two piezo nano-steppers coupled to three linear micro-stages to cover a large scale operation from micrometers to centimeters. The operation mode consists of a spring probe biased at low DC voltage with respect to a grounded conductive layer. The tip slides on the target layer keeping contact with the material in room conditions, allowing continuous electric monitoring of the process, and also real-time tilt correction via software. The sliding tip leaves an insulating path (limited by the tip diameter) along the material, enabling to draw electrically insulated tracks and pads. The physical principle of operation is based in the natural self-limitation of the discharge due to material removal or insulation. The so produced electrical discharges are very fast, in the range of μs, so features may be performed at speeds of few cm/s, enabling scalability to large areas. The instrument has been tested on different conducting materials as gold, indium tin oxide, and aluminum, allowing the fabrication of alphanumeric displays based on passive matrix of organic light emitting diodes without the use of masks or photoresists. We have verified that the highest potential is achieved on graphene, where no waste material is detected, producing excellent well defined edges. This allows manufacturing graphene micro-ribbons with a high aspect ratio up to 1200:1.

  15. NEW COMPLETENESS METHODS FOR ESTIMATING EXOPLANET DISCOVERIES BY DIRECT DETECTION

    International Nuclear Information System (INIS)

    Brown, Robert A.; Soummer, Remi

    2010-01-01

    We report on new methods for evaluating realistic observing programs that search stars for planets by direct imaging, where observations are selected from an optimized star list and stars can be observed multiple times. We show how these methods bring critical insight into the design of the mission and its instruments. These methods provide an estimate of the outcome of the observing program: the probability distribution of discoveries (detection and/or characterization) and an estimate of the occurrence rate of planets (η). We show that these parameters can be accurately estimated from a single mission simulation, without the need for a complete Monte Carlo mission simulation, and we prove the accuracy of this new approach. Our methods provide tools to define a mission for a particular science goal; for example, a mission can be defined by the expected number of discoveries and its confidence level. We detail how an optimized star list can be built and how successive observations can be selected. Our approach also provides other critical mission attributes, such as the number of stars expected to be searched and the probability of zero discoveries. Because these attributes depend strongly on the mission scale (telescope diameter, observing capabilities and constraints, mission lifetime, etc.), our methods are directly applicable to the design of such future missions and provide guidance to the mission and instrument design based on scientific performance. We illustrate our new methods with practical calculations and exploratory design reference missions for the James Webb Space Telescope (JWST) operating with a distant starshade to reduce scattered and diffracted starlight on the focal plane. We estimate that five habitable Earth-mass planets would be discovered and characterized with spectroscopy, with a probability of zero discoveries of 0.004, assuming a small fraction of JWST observing time (7%), η = 0.3, and 70 observing visits, limited by starshade fuel.

  16. New early instrumental series since the beginning of the 19th century in eastern Iberia (Valencia, Spain)

    Science.gov (United States)

    Sanchez-Lorenzo, Arturo; Barriendos, Mariano; Guinaldo, Elena; Lopez-Bustins, Joan A.

    2010-05-01

    Early instrumental series are the main source for climate information in the 18th and the first part of the 19th century, which is when systematic meteorological observations started in most national meteorological services. The first continuous series in Spain starts in 1780 in Barcelona due to meteorological observations made by the medical doctor Francisco Salvá Campillo. Moreover, only two other series have been recovered at the present in Spain: Madrid and Cádiz/San Fernando. Until present, in Spain the major part of the meteorological observations detected in early instrumental periods were made by medical doctors, who started to pay attention to the environmental factors influencing population health under the Hippocrates oath, although also there are military institutions and academic university staff (e.g. physicists, mathematicians, etc.). Due to the high spatial and temporal climate variability in the Iberian Peninsula, it is important to recover and digitize more climatic series, and this is one of the main goals of the Salvá-Sinobas project (http://salva-sinobas.uvigo.es/) funded by the Spanish Ministry of Environment, and Rural and Marine Affairs for the 2009-2011 period. The first new series with systematic observations was detected in the city of Valencia, in the eastern façade of the Iberian Peninsula. The meteorological observations were daily published in the newspapers Diario de Valencia (1804-1834) and Diario Mercantil de Valencia (1837-1863) until official meteorological observations started in 1858 at the University of Valencia. Each day 3-daily observations (morning, midday, afternoon) were published with five climatic variables: temperature, air pressure, humidity, wind direction and the sky state. Only during the 1804-1808 period daily rainfall data is available. We checked the observer comments published in the newspapers to obtain metadata about the instruments and meteorological station information. Unfortunately, temperature data

  17. Holdup Measures on an SRNL Mossbauer Spectroscopy Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Dewberry, R.; Brown, T.; Salaymeh, S.

    2010-05-05

    Gamma-ray holdup measurements of a Mossbauer spectroscopy instrument are described and modeled. In the qualitative acquisitions obtained in a low background area of Savannah River National Laboratory, only Am-241 and Np-237 activity were observed. The Am-241 was known to be the instrumental activation source, while the Np-237 is clearly observed as a source of contamination internal to the instrument. The two sources of activity are modeled separately in two acquisition configurations using two separate modeling tools. The results agree well, demonstrating a content of (1980 {+-} 150) {mu}Ci Am-241 and (110 {+-} 50) {mu}Ci of Np-237.

  18. An overview of instrumentation for the Large Binocular Telescope

    Science.gov (United States)

    Wagner, R. Mark

    2012-09-01

    An overview of instrumentation for the Large Binocular Telescope (LBT) is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' x 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the left and right direct F/15 Gregorian foci incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 2000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCI), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at the left and right front bent F/15 Gregorian foci and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multiobject spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 × 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development that can utilize the full 23-m baseline of the LBT include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). LBTI is currently undergoing commissioning on the LBT and utilizing the installed adaptive secondary mirrors in both single- sided and two-sided beam combination modes. In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. Over the past four years the LBC pair, LUCI1, and MODS1 have been commissioned and are now scheduled for routine partner science observations. The delivery of both LUCI2 and MODS2 is anticipated before the end of 2012. The

  19. INTEGRAL Observations of GW170104

    Energy Technology Data Exchange (ETDEWEB)

    Savchenko, V.; Ferrigno, C.; Bozzo, E.; Courvoisier, T. J.-L. [ISDC, Department of Astronomy, University of Geneva, chemin d’Écogia, 16 CH-1290 Versoix (Switzerland); Bazzano, A. [INAF-Institute for Space Astrophysics and Planetology, Via Fosso del Cavaliere 100, I-00133-Rome (Italy); Brandt, S.; Chenevez, J.; Ubertini, P. [DTU Space—National Space Institute Elektrovej, Building 327, DK-2800 Kongens Lyngby (Denmark); Diehl, R.; Von Kienlin, A. [Max-Planck-Institut für Extraterrestrische Physik, Garching (Germany); Hanlon, L.; Martin-Carillo, A. [Space Science Group, School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Kuulkers, E. [European Space Research and Technology Centre (ESA/ESTEC), Keplerlaan 1, 2201 AZ Noordwijk (Netherlands); Laurent, P. [APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris Sorbonne Paris Cité, 10 rue Alice Domont et Léonie Duquet, F-75205 Paris Cedex 13 (France); Lebrun, F. [DSM/Irfu/Service d’Astrophysique, Bat. 709 Orme des Merisiers CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); Lutovinov, A.; Sunyaev, R. [Space Research Institute of Russian Academy of Sciences, Profsoyuznaya 84/32, 117997 Moscow (Russian Federation); Mereghetti, S. [INAF, IASF-Milano, via E.Bassini 15, I-20133 Milano (Italy); Roques, J. P. [Université Toulouse, UPS-OMP, CNRS, IRAP, 9 Av. Roche, BP 44346, F-31028 Toulouse (France)

    2017-09-10

    We used data from the International Gamma-Ray Astrophysics Laboratory ( INTEGRAL ) to set upper limits on the γ -ray and hard X-ray prompt emission associated with the gravitational-wave event GW170104, discovered by the Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo collaboration. The unique omnidirectional viewing capability of the instruments on board INTEGRAL allowed us to examine the full 90% confidence level localization region of the LIGO trigger. Depending on the particular spectral model assumed and the specific position within this region, the upper limits inferred from the INTEGRAL observations range from F {sub γ} = 1.9 × 10{sup −7} erg cm{sup −2} to F {sub γ} = 10{sup −6} erg cm{sup −2} (75 keV–2 MeV energy range). This translates into a ratio between the prompt energy released in γ -rays along the direction to the observer and the gravitational-wave energy of E {sub γ} / E {sub GW} < 2.6 × 10{sup −5}. Using the INTEGRAL results, we cannot confirm the γ -ray proposed counterpart to GW170104 by the Astro—Rivelatore Gamma a Immagini Leggero (AGILE) team with the mini-Calorimeter (MCAL) instrument. The reported flux of the AGILE/MCAL event, E2, is not compatible with the INTEGRAL upper limits within most of the 90% LIGO localization region. There is only a relatively limited portion of the sky where the sensitivity of the INTEGRAL instruments was not optimal and the lowest-allowed fluence estimated for E2 would still be compatible with the INTEGRAL results. This region was also observed independently by Fermi /Gamma-ray Burst Monitor and AstroSAT, from which, as far as we are aware, there are no reports of any significant detection of a prompt high-energy event.

  20. Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments

    Science.gov (United States)

    van Peet, Jacob C. A.; van der A, Ronald J.; Kelder, Hennie M.; Levelt, Pieternel F.

    2018-02-01

    A three-dimensional global ozone distribution has been derived from assimilation of ozone profiles that were observed by satellites. By simultaneous assimilation of ozone profiles retrieved from the nadir looking satellite instruments Global Ozone Monitoring Experiment 2 (GOME-2) and Ozone Monitoring Instrument (OMI), which measure the atmosphere at different times of the day, the quality of the derived atmospheric ozone field has been improved. The assimilation is using an extended Kalman filter in which chemical transport model TM5 has been used for the forecast. The combined assimilation of both GOME-2 and OMI improves upon the assimilation results of a single sensor. The new assimilation system has been demonstrated by processing 4 years of data from 2008 to 2011. Validation of the assimilation output by comparison with sondes shows that biases vary between -5 and +10 % between the surface and 100 hPa. The biases for the combined assimilation vary between -3 and +3 % in the region between 100 and 10 hPa where GOME-2 and OMI are most sensitive. This is a strong improvement compared to direct retrievals of ozone profiles from satellite observations.

  1. The breakup of large tabular icebergs - direct observations and theoretical considerations

    Science.gov (United States)

    Wadhams, P.

    2013-12-01

    Peter Wadhams and Till Wagner Dept. of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge. We review the factors governing the stability, dynamics and decay of icebergs and describe areas where current models are inadequate. These include questions such as draft changes in capsizing icebergs; iceberg trajectory modelling; the melt rate of the ice underside and ways of reducing it; and wave-induced flexure and its role in the break-up of tabular icebergs. In July 2012 the authors worked on a very large (42 sq km) tabular iceberg in Baffin Bay, which had calved from the Petermann Glacier in NW Greenland. We measured incoming swell spectrum and the iceberg response; also the role of buoyancy forces due to erosion of a waterline wave cut and the creation of an underwater ram. The iceberg broke up while we were on it, allowing an instrumental measurement of the calving event. The experiments were included in the BBC-2 film 'Operation Iceberg' shown on Nov 1 2012 and repeated on Nov 18. We conclude that two processes interacted in the break-up event: increased bending stress due to buoyancy of underwater rams; and direct flexural strain due to incidence of ocean swell. Implications for icebergs in the open sea are estimated.

  2. Tracking individual membrane proteins and their biochemistry: The power of direct observation.

    Science.gov (United States)

    Barden, Adam O; Goler, Adam S; Humphreys, Sara C; Tabatabaei, Samaneh; Lochner, Martin; Ruepp, Marc-David; Jack, Thomas; Simonin, Jonathan; Thompson, Andrew J; Jones, Jeffrey P; Brozik, James A

    2015-11-01

    The advent of single molecule fluorescence microscopy has allowed experimental molecular biophysics and biochemistry to transcend traditional ensemble measurements, where the behavior of individual proteins could not be precisely sampled. The recent explosion in popularity of new super-resolution and super-localization techniques coupled with technical advances in optical designs and fast highly sensitive cameras with single photon sensitivity and millisecond time resolution have made it possible to track key motions, reactions, and interactions of individual proteins with high temporal resolution and spatial resolution well beyond the diffraction limit. Within the purview of membrane proteins and ligand gated ion channels (LGICs), these outstanding advances in single molecule microscopy allow for the direct observation of discrete biochemical states and their fluctuation dynamics. Such observations are fundamentally important for understanding molecular-level mechanisms governing these systems. Examples reviewed here include the effects of allostery on the stoichiometry of ligand binding in the presence of fluorescent ligands; the observation of subdomain partitioning of membrane proteins due to microenvironment effects; and the use of single particle tracking experiments to elucidate characteristics of membrane protein diffusion and the direct measurement of thermodynamic properties, which govern the free energy landscape of protein dimerization. The review of such characteristic topics represents a snapshot of efforts to push the boundaries of fluorescence microscopy of membrane proteins to the absolute limit. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Direct observation of weight-related communication in primary care: a systematic review.

    Science.gov (United States)

    McHale, Calum T; Laidlaw, Anita H; Cecil, Joanne E

    2016-08-01

    Primary care is ideally placed to play an effective role in patient weight management; however, patient weight is seldom discussed in this context. A synthesis of studies that directly observe weight discussion in primary care is required to more comprehensively understand and improve primary care weight-related communication. To systematically identify and examine primary care observational research that investigates weight-related communication and its relationship to patient weight outcomes. A systematic review of literature published up to August 2015, using seven electronic databases (including MEDLINE, Scopus and PsycINFO), was conducted using search terms such as overweight, obese and/or doctor-patient communication. Twenty papers were included in the final review. Communication analysis focused predominantly on 'practitioner' use of specific patient-centred communication. Practitioner use of motivational interviewing was associated with improved patient weight-related outcomes, including patient weight loss and increased patient readiness to lose weight; however, few studies measured patient weight-related outcomes. Studies directly observing weight-related communication in primary care are scarce and limited by a lack of focus on patient communication and patient weight-related outcomes. Future research should measure practitioner and patient communications during weight discussion and their impact on patient weight-related outcomes. This knowledge may inform the development of a communication intervention to assist practitioners to more effectively discuss weight with their overweight and/or obese patients. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Ergonomic investigation of weight distribution of laparoscopic instruments.

    Science.gov (United States)

    Lin, Chiuhsiang Joe; Chen, Hung-Jen; Lo, Ying-Chu

    2011-06-01

    Laparoscopic surgery procedures require highly specialized visually controlled movements. Investigations of industrial applications indicate that the length as well as the weight of hand-held tools substantially affects movement time (MT). Different weight distributions may have similar effects on long-shafted laparoscopic instruments when performing surgical procedures. For this reason, the current experiment aimed at finding direct evidence of the weight distribution effect in an accurate task. Ten right-handed subjects made continuous Fitts' pointing tasks using a long laparoscopic instrument. The factors and levels were target width: (2.5, 3, 3.5, and 4 cm), target distance (14, 23, and 37 cm), and weight distribution (uniform, front, middle, and rear). Weight distribution was made by chips of lead attached to the laparoscopic instrument. MT, error rate, and throughput (TP) were recorded as dependent variables. There were significant differences between the weight distribution in MT and in TP. The middle position was found to require the least time to manipulate the laparoscopic instrument in pointing tasks and also obtained the highest TP. These analyses and findings pointed to a design direction for the ergonomics and usability of the long hand-held tool such as the laparoscopic instrument in this study. To optimize efficiency in using these tools, the consideration of a better weight design is important and should not be neglected.

  5. Direct instrumental identification of catalytically active surface sites

    Science.gov (United States)

    Pfisterer, Jonas H. K.; Liang, Yunchang; Schneider, Oliver; Bandarenka, Aliaksandr S.

    2017-09-01

    The activity of heterogeneous catalysts—which are involved in some 80 per cent of processes in the chemical and energy industries—is determined by the electronic structure of specific surface sites that offer optimal binding of reaction intermediates. Directly identifying and monitoring these sites during a reaction should therefore provide insight that might aid the targeted development of heterogeneous catalysts and electrocatalysts (those that participate in electrochemical reactions) for practical applications. The invention of the scanning tunnelling microscope (STM) and the electrochemical STM promised to deliver such imaging capabilities, and both have indeed contributed greatly to our atomistic understanding of heterogeneous catalysis. But although the STM has been used to probe and initiate surface reactions, and has even enabled local measurements of reactivity in some systems, it is not generally thought to be suited to the direct identification of catalytically active surface sites under reaction conditions. Here we demonstrate, however, that common STMs can readily map the catalytic activity of surfaces with high spatial resolution: we show that by monitoring relative changes in the tunnelling current noise, active sites can be distinguished in an almost quantitative fashion according to their ability to catalyse the hydrogen-evolution reaction or the oxygen-reduction reaction. These data allow us to evaluate directly the importance and relative contribution to overall catalyst activity of different defects and sites at the boundaries between two materials. With its ability to deliver such information and its ready applicability to different systems, we anticipate that our method will aid the rational design of heterogeneous catalysts.

  6. Customisation of an instrument to assess anaesthesiologists' non-technical skills.

    Science.gov (United States)

    Jepsen, Rikke M H G; Spanager, Lene; Lyk-Jensen, Helle T; Dieckmann, Peter; Østergaard, Doris

    2015-02-22

    The objectives of the study were to identify Danish anaesthesiologists' non-technical skills and to customise the Scottish-developed Anaesthetists' Non-Technical Skills instrument for Danish anaesthesiologists. Six semi-structured group interviews were conducted with 31 operating room team members: anaes-thesiologists, nurse anaesthetists, surgeons, and scrub nurses. Interviews were transcribed verbatim and analysed using directed content analysis. Anaesthesiologists' non-technical skills were identified, coded, and sorted using the original instrument as a basis. The resulting prototype instrument was discussed with anaesthesiologists from 17 centres to ensure face validity. Interviews lasted 46-67 minutes. Identified examples of anaesthesiologists' good or poor non-technical skills fit the four categories in the original instrument: situation awareness; decision making; team working; and task management. Anaesthesiologists' leadership role in the operating room was emphasised: the original 'Task Management' category was named 'Leadership'. One new element, 'Demonstrating self-awareness' was added under the category 'Situation Awareness'. Compared with the original instrument, half of the behavioural markers were new, which reflected that being aware of and communicating one's own abilities to the team; working systematically; and speaking up to avoid adverse events were important skills. The Anaesthetists' Non-Technical Skills instrument was customised to a Danish setting using the identified non-technical skills for anaesthesiologists and the original instrument as basis. The customised instrument comprises four categories and 16 underpinning elements supported by multiple behavioural markers. Identifying non-technical skills through semi-structured group interviews and analysing them using direct content analysis proved a useful method for customising an assessment instrument to another setting.

  7. OECD/CSNI specialist meeting on advanced instrumentation and measurements techniques: summary and conclusions

    International Nuclear Information System (INIS)

    1997-01-01

    This specialist meeting on Advanced Instrumentation and Measurements Techniques was held in Santa Barbara (USA) in 1997 and attracted some 70 participants in ten technical sessions and a session of the round table discussions, with a total of 41 papers. It was intended to bring together the international experts in multi-phase flow instrumentation, experiment and modeling to review the state-of-the-art of the two-phase flow instrumentation methods and to discuss the relation between modeling needs and instrumentation capabilities. The following topics were included: Modeling needs and future direction for improved constitutive relations, interfacial area transport equation, and multi-dimensional two-fluid model formulation; local instrumentation developments for void fraction, interfacial area, phase velocities, turbulence, entrainment, particle size, thermal non-equilibrium, shear stress, nucleation, condensation and boiling; global instrumentation developments for void fraction, mass flow, two-phase level, non-condensable concentration, flow regimes, low flow and break flow; relation between modeling needs and instrumentation capabilities, future directions for experiments focused on modeling needs and for instrumentation developments

  8. International economic association on production of nuclear instrumentation - ''INTERINSTRUMENT''

    International Nuclear Information System (INIS)

    Twardon, Z.

    1979-01-01

    History of establishment and development of the International economic association ''Interinstrument'' is stated. Structure of the Association is given and directions of its activity, as well as structure of its budget. List is given of organizations, performing works according to the agreements with the Association. Main directions are stated of activity of the Association in the field of specialization of production of items of nuclear equipment; co-ordination of activity in the sphere of foreign trade; information about new instruments. Activity is stated of the branch offices of the Association, engaged in maintenance of instruments and nuclear equipment [ru

  9. Legal instruments for the promotion of a sustainable consumption. Using products as an example; Rechtliche Instrumente zur Foerderung des nachhaltigen Konsums. Am Beispiel von Produkten

    Energy Technology Data Exchange (ETDEWEB)

    Schlacke, Sabine; Stadermann, Michael; Grunow, Moritz [Forschungsstelle fuer Europaeisches Umweltrecht (FEU), Bremen (Germany)

    2012-06-15

    The expertise under consideration attempts to identify, to analyze and to develop further the legal instruments for the promotion of asustainable consumption. Legal possibilities of impacting the consumer behaviour in the utilization phase of products shall be highlighted in order to promote the sustainable consumption. The focus of this expertise are instruments directly aimed at consumers. The activation of these instruments shall effectuate a more sustainable behaviour of consumption.

  10. LEAP: An Innovative Direction Dependent Ionospheric Calibration Scheme for Low Frequency Arrays

    Science.gov (United States)

    Rioja, María J.; Dodson, Richard; Franzen, Thomas M. O.

    2018-05-01

    The ambitious scientific goals of the SKA require a matching capability for calibration of atmospheric propagation errors, which contaminate the observed signals. We demonstrate a scheme for correcting the direction-dependent ionospheric and instrumental phase effects at the low frequencies and with the wide fields of view planned for SKA-Low. It leverages bandwidth smearing, to filter-out signals from off-axis directions, allowing the measurement of the direction-dependent antenna-based gains in the visibility domain; by doing this towards multiple directions it is possible to calibrate across wide fields of view. This strategy removes the need for a global sky model, therefore all directions are independent. We use MWA results at 88 and 154 MHz under various weather conditions to characterise the performance and applicability of the technique. We conclude that this method is suitable to measure and correct for temporal fluctuations and direction-dependent spatial ionospheric phase distortions on a wide range of scales: both larger and smaller than the array size. The latter are the most intractable and pose a major challenge for future instruments. Moreover this scheme is an embarrassingly parallel process, as multiple directions can be processed independently and simultaneously. This is an important consideration for the SKA, where the current planned architecture is one of compute-islands with limited interconnects. Current implementation of the algorithm and on-going developments are discussed.

  11. Observational Cosmology with the Planck satellite: extraction of the astrophysical signal from raw data of HFI instrument and study of the impact of cosmic rays

    International Nuclear Information System (INIS)

    Girard, D.

    2010-01-01

    Cosmology is a very old science. It's goal is to describe the Universe at large scales. The standard model of cosmology is an inflation-CDM Big-Bang model. It is based on General Relativity. The cosmic microwave background is one of the three pillars of this model, with the expansion of the Universe and the primordial nucleosynthesis. It is the oldest detectable radiation in the Universe. The study of its temperature and polarisation anisotropies allow us to access direct information about the content and the geometry of the primordial Universe. The Planck satellite, launched on May 14 of 2009, represents the third generation of satellite missions which study the cosmic microwave background. The exceptional sensitivity of its instruments, High Frequency Instrument and Low Frequency Instrument, will allow us to constrain very strongly the cosmological models describing the early Universe, particularly the inflationary period, and to measure the cosmological parameters which describe the evolution of the Universe with an accuracy down to the percent. To reach these ambitious scientific objectives, each systematic instrumental effect has to be severely controlled and corrected by the data analysis. The effect of cosmic rays interacting with the bolometers of HFI, which is one of the most important effects, and which differs significatively from predictions, is corrected during the time ordered data analysis. The detailed understanding of this phenomenon and its modeling are necessary to correct it and to reach an optimal effective sensitivity. They will permit to take this effect into account in the conception of the future instruments detectors. This thesis proposes a first part focused on cosmology, a second part describing the Planck satellite, the HFI instrument and particularly its detectors and a third part dedicated to the HFI instrument data analysis. I concentrate on time ordered data analysis and on the corrections of instrumental systematic effects. Then I

  12. Requirements and design reference mission for the WFIRST/AFTA coronagraph instrument

    Science.gov (United States)

    Demers, Richard T.; Dekens, Frank; Calvet, Rob; Chang, Zensheu; Effinger, Robert; Ek, Eric; Hovland, Larry; Jones, Laura; Loc, Anthony; Nemati, Bijan; Noecker, Charley; Neville, Timothy; Pham, Hung; Rud, Mike; Tang, Hong; Villalvazo, Juan

    2015-09-01

    The WFIRST-AFTA coronagraph instrument takes advantage of AFTAs 2.4-meter aperture to provide novel exoplanet imaging science at approximately the same instrument cost as an Explorer mission. The AFTA coronagraph also matures direct imaging technologies to high TRL for an Exo-Earth Imager in the next decade. The coronagraph Design Reference Mission (DRM) optical design is based on the highly successful High Contrast Imaging Testbed (HCIT), with modifications to accommodate the AFTA telescope design, service-ability, volume constraints, and the addition of an Integral Field Spectrograph (IFS). In order to optimally satisfy the three science objectives of planet imaging, planet spectral characterization and dust debris imaging, the coronagraph is designed to operate in two different modes: Hybrid Lyot Coronagraph or Shaped Pupil Coronagraph. Active mechanisms change pupil masks, focal plane masks, Lyot masks, and bandpass filters to shift between modes. A single optical beam train can thus operate alternatively as two different coronagraph architectures. Structural Thermal Optical Performance (STOP) analysis predicts the instrument contrast with the Low Order Wave Front Control loop closed. The STOP analysis was also used to verify that the optical/structural/thermal design provides the extreme stability required for planet characterization in the presence of thermal disturbances expected in a typical observing scenario. This paper describes the instrument design and the flow down from science requirements to high level engineering requirements.

  13. Requirements and Design Reference Mission for the WFIRST-AFTA Coronagraph Instrument

    Science.gov (United States)

    Demers, Richard T.; Dekens, Frank; Calvet, Rob; Chang, Zensheu; Effinger, Robert; Ek, Eric; Hovland, Larry; Jones, Laura; Loc, Anthony; Nemati, Bijan; hide

    2015-01-01

    The WFIRST-AFTA coronagraph instrument take s advantage of AFTA s 2.4 -meter aperture to provide novel exoplanet imaging science at approximately the same instrument cost as an Explorer mission. The AFTA coronagraph also matures direct imaging technologies to high TRL for an Exo-Earth Imager in the next decade. The coronagraph Design Reference Mission (DRM) optical design is based on the highly successful High Contrast Imaging Testbed (HCIT), with modifications to accommodate the AFTA telescope design, service-ability, volume constraints, and the addition of an Integral Field Spectrograph (IFS). In order to optimally satisfy the three science objectives of planet imaging, planet spectral characterization and dust debris imaging, the coronagraph is designed to operate in two different modes : Hybrid Lyot Coronagraph or Shaped Pupil Coronagraph. Active mechanisms change pupil masks, focal plane masks, yot masks, and bandpass filters to shift between modes. A single optical beam train can thus operate alternatively as two different coronagraph architecture s. Structural Thermal Optical Performance (STOP) analysis predict s the instrument contrast with the Low Order Wave Front Control loop closed. The STOP analysis was also used to verify that the optical/structural/thermal design provides the extreme stability required for planet characterization in the presence of thermal disturbances expected in a typical observing scenario. This paper describes the instrument design and the flow down from science requirements to high level engineering requirements.

  14. Teaching Strategies and Gender in Higher Education Instrumental Studios

    Science.gov (United States)

    Zhukov, Katie

    2012-01-01

    This study investigates instrumental music teaching strategies in higher education settings, in order to identify those employed and their frequency and context of use. An instrument- and gender-balanced sample of 24 lessons from five institutions was analysed using a researcher-designed observational instrument. The results reveal the…

  15. Low-Dimensional Feature Representation for Instrument Identification

    Science.gov (United States)

    Ihara, Mizuki; Maeda, Shin-Ichi; Ikeda, Kazushi; Ishii, Shin

    For monophonic music instrument identification, various feature extraction and selection methods have been proposed. One of the issues toward instrument identification is that the same spectrum is not always observed even in the same instrument due to the difference of the recording condition. Therefore, it is important to find non-redundant instrument-specific features that maintain information essential for high-quality instrument identification to apply them to various instrumental music analyses. For such a dimensionality reduction method, the authors propose the utilization of linear projection methods: local Fisher discriminant analysis (LFDA) and LFDA combined with principal component analysis (PCA). After experimentally clarifying that raw power spectra are actually good for instrument classification, the authors reduced the feature dimensionality by LFDA or by PCA followed by LFDA (PCA-LFDA). The reduced features achieved reasonably high identification performance that was comparable or higher than those by the power spectra and those achieved by other existing studies. These results demonstrated that our LFDA and PCA-LFDA can successfully extract low-dimensional instrument features that maintain the characteristic information of the instruments.

  16. A fundamental role for context in instrumental learning and extinction.

    Science.gov (United States)

    Bouton, Mark E; Todd, Travis P

    2014-05-01

    The purpose of this article is to review recent research that has investigated the effects of context change on instrumental (operant) learning. The first part of the article discusses instrumental extinction, in which the strength of a reinforced instrumental behavior declines when reinforcers are withdrawn. The results suggest that extinction of either simple or discriminated operant behavior is relatively specific to the context in which it is learned: As in prior studies of Pavlovian extinction, ABA, ABC, and AAB renewal effects can all be observed. Further analysis supports the idea that the organism learns to refrain from making a specific response in a specific context, or in more formal terms, an inhibitory context-response association. The second part of the article then discusses research suggesting that the context also controls instrumental behavior before it is extinguished. Several experiments demonstrate that a context switch after either simple or discriminated operant training causes a decrement in the strength of the response. Over a range of conditions, the animal appears to learn a direct association between the context and the response. Under some conditions, it can also learn a hierarchical representation of context and the response-reinforcer relation. Extinction is still more context-specific than conditioning, as indicated by ABC and AAB renewal. Overall, the results establish that the context can play a significant role in both the acquisition and extinction of operant behavior. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. HPS instrument calibration laboratory accreditation program

    Energy Technology Data Exchange (ETDEWEB)

    Masse, F.X; Eisenhower, E.H.; Swinth, K.L.

    1993-12-31

    The purpose of this paper is to provide an accurate overview of the development and structure of the program established by the Health Physics Society (HPS) for accrediting instrument calibration laboratories relative to their ability to accurately calibrate portable health physics instrumentation. The purpose of the program is to provide radiation protection professionals more meaningful direct and indirect access to the National Institute of Standards and Technology (NIST) national standards, thus introducing a means for improving the uniformity, accuracy, and quality of ionizing radiation field measurements. The process is designed to recognize and document the continuing capability of each accredited laboratory to accurately perform instrument calibration. There is no intent to monitor the laboratory to the extent that each calibration can be guaranteed by the program; this responsibility rests solely with the accredited laboratory.

  18. Technical Note: Validation of Odin/SMR limb observations of ozone, comparisons with OSIRIS, POAM III, ground-based and balloon-borne instruments

    Directory of Open Access Journals (Sweden)

    F. Jégou

    2008-06-01

    Full Text Available The Odin satellite carries two instruments capable of determining stratospheric ozone profiles by limb sounding: the Sub-Millimetre Radiometer (SMR and the UV-visible spectrograph of the OSIRIS (Optical Spectrograph and InfraRed Imager System instrument. A large number of ozone profiles measurements were performed during six years from November 2001 to present. This ozone dataset is here used to make quantitative comparisons with satellite measurements in order to assess the quality of the Odin/SMR ozone measurements. In a first step, we compare Swedish SMR retrievals version 2.1, French SMR ozone retrievals version 222 (both from the 501.8 GHz band, and the OSIRIS retrievals version 3.0, with the operational version 4.0 ozone product from POAM III (Polar Ozone Atmospheric Measurement. In a second step, we refine the Odin/SMR validation by comparisons with ground-based instruments and balloon-borne observations. We use observations carried out within the framework of the Network for Detection of Atmospheric Composition Change (NDACC and balloon flight missions conducted by the Canadian Space Agency (CSA, the Laboratoire de Physique et de Chimie de l'{}Environnement (LPCE, Orléans, France, and the Service d'Aéronomie (SA, Paris, France. Coincidence criteria were 5° in latitude×10° in longitude, and 5 h in time in Odin/POAM III comparisons, 12 h in Odin/NDACC comparisons, and 72 h in Odin/balloons comparisons. An agreement is found with the POAM III experiment (10–60 km within −0.3±0.2 ppmv (bias±standard deviation for SMR (v222, v2.1 and within −0.5±0.2 ppmv for OSIRIS (v3.0. Odin ozone mixing ratio products are systematically slightly lower than the POAM III data and show an ozone maximum lower by 1–5 km in altitude. The comparisons with the NDACC data (10–34 km for ozonesonde, 10–50 km for lidar, 10–60 for microwave instruments yield a good agreement within −0.15±0.3 ppmv for the SMR data and −0.3±0.3 ppmv

  19. Intensity-Stabilized Fast-Scanned Direct Absorption Spectroscopy Instrumentation Based on a Distributed Feedback Laser with Detection Sensitivity down to 4 × 10−6

    Directory of Open Access Journals (Sweden)

    Gang Zhao

    2016-09-01

    Full Text Available A novel, intensity-stabilized, fast-scanned, direct absorption spectroscopy (IS-FS-DAS instrumentation, based on a distributed feedback (DFB diode laser, is developed. A fiber-coupled polarization rotator and a fiber-coupled polarizer are used to stabilize the intensity of the laser, which significantly reduces its relative intensity noise (RIN. The influence of white noise is reduced by fast scanning over the spectral feature (at 1 kHz, followed by averaging. By combining these two noise-reducing techniques, it is demonstrated that direct absorption spectroscopy (DAS can be swiftly performed down to a limit of detection (LOD (1σ of 4 × 10−6, which opens up a number of new applications.

  20. Instrument-mounted displays for reducing cognitive load during surgical navigation.

    Science.gov (United States)

    Herrlich, Marc; Tavakol, Parnian; Black, David; Wenig, Dirk; Rieder, Christian; Malaka, Rainer; Kikinis, Ron

    2017-09-01

    Surgical navigation systems rely on a monitor placed in the operating room to relay information. Optimal monitor placement can be challenging in crowded rooms, and it is often not possible to place the monitor directly beside the situs. The operator must split attention between the navigation system and the situs. We present an approach for needle-based interventions to provide navigational feedback directly on the instrument and close to the situs by mounting a small display onto the needle. By mounting a small and lightweight smartwatch display directly onto the instrument, we are able to provide navigational guidance close to the situs and directly in the operator's field of view, thereby reducing the need to switch the focus of view between the situs and the navigation system. We devise a specific variant of the established crosshair metaphor suitable for the very limited screen space. We conduct an empirical user study comparing our approach to using a monitor and a combination of both. Results from the empirical user study show significant benefits for cognitive load, user preference, and general usability for the instrument-mounted display, while achieving the same level of performance in terms of time and accuracy compared to using a monitor. We successfully demonstrate the feasibility of our approach and potential benefits. With ongoing technological advancements, instrument-mounted displays might complement standard monitor setups for surgical navigation in order to lower cognitive demands and for improved usability of such systems.

  1. First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks

    Science.gov (United States)

    Spong, D. A.; Heidbrink, W. W.; Paz-Soldan, C.; Du, X. D.; Thome, K. E.; Van Zeeland, M. A.; Collins, C.; Lvovskiy, A.; Moyer, R. A.; Austin, M. E.; Brennan, D. P.; Liu, C.; Jaeger, E. F.; Lau, C.

    2018-04-01

    DIII-D experiments at low density (ne˜1019 m-3 ) have directly measured whistler waves in the 100-200 MHz range excited by multi-MeV runaway electrons. Whistler activity is correlated with runaway intensity (hard x-ray emission level), occurs in novel discrete frequency bands, and exhibits nonlinear limit-cycle-like behavior. The measured frequencies scale with the magnetic field strength and electron density as expected from the whistler dispersion relation. The modes are stabilized with increasing magnetic field, which is consistent with wave-particle resonance mechanisms. The mode amplitudes show intermittent time variations correlated with changes in the electron cyclotron emission that follow predator-prey cycles. These can be interpreted as wave-induced pitch angle scattering of moderate energy runaways. The tokamak runaway-whistler mechanisms have parallels to whistler phenomena in ionospheric plasmas. The observations also open new directions for the modeling and active control of runaway electrons in tokamaks.

  2. Intelligent type sodium instrumentations for LMFBR

    International Nuclear Information System (INIS)

    Chen Daolong

    1996-07-01

    The constructions and performances of lots of newly developed intelligent type sodium instrumentations are described. The graduation characteristic equations for corresponding transducer using the medium temperature as the parameter are given. These intelligent type sodium instrumentations are possessed of good linearity. The accurate measurement data of sodium process parameters (flowrate, pressure and level) can be obtained by means of their on-line compensation function of the temperature effect. Moreover, these intelligent type sodium instrumentations are possessed of the self-inspection, the electric shutoff protection, the setting of full-scale, the setting of alarm limits (two upper limits and two lower limits alarms), the thermocouple breaking alarm, mutual isolative the 0∼10 V direct-current analogue output and the CENTRONICS standard digital output, and the alarm relay contact output. Theses intelligent type sodium instrumentations are suitable particularly for the instrument, control and protective systems of LMFBR by means of these excellent functions based on microprocessor. The basic errors of the intelligent type sodium flowmeter, immersed sodium flowmeter, sodium manometer and sodium level gauge are +-2%, +-2.3%, +-0.3% and +-1.9% of measuring ranges respectively. (9 figs.)

  3. Detection of organic compound signatures in infra-red, limb emission spectra observed by the MIPAS-B2 balloon instrument

    Directory of Open Access Journals (Sweden)

    J. J. Remedios

    2007-01-01

    Full Text Available Organic compounds play a central role in troposphere chemistry and increasingly are a viable target for remote sensing observations. In this paper, infra-red spectral features of three organic compounds are investigated in thermal emission spectra recorded on a flight on 8 May 1998 near Aire sur l'Adour by a balloon-borne instrument, MIPAS-B2, operating at high spectral resolution. It is demonstrated, for the first time, that PAN and acetone can be detected in infra-red remote sensing spectra of the upper troposphere; detection results are presented at tangent altitudes of 10.4 km and 7.5 km (not acetone. In addition, the results provide the first observation of spectral features of formic acid in thermal emission, as opposed to solar occultation, and confirm that concentrations of this gas are measurable in the mid-latitude upper troposphere, given accurate spectroscopic data. For PAN, two bands are observed centred at 794 cm−1 and 1163 cm−1. For acetone and formic acid, one band has been detected for each so far with band centres at 1218 cm−1 and 1105 cm−1 respectively. Mixing ratios inferred at 10.4 km tangent altitude are 180 pptv and 530 pptv for PAN and acetone respectively, and 200 pptv for formic acid with HITRAN 2000 spectroscopy. Accuracies are on the order of 15 to 40%. The detection technique applied here is verified by examining weak but known signatures of CFC-12 and HCFC-22 in the same spectral regions as those of the organic compounds, with results confirming the quality of both the instrument and the radiative transfer model. The results suggest the possibility of global sensing of the organic compounds studied here which would be a major step forward in verifying and interpreting global tropospheric model calculations.

  4. Tools for the direct observation and assessment of psychomotor skills in medical trainees: a systematic review.

    Science.gov (United States)

    Jelovsek, J Eric; Kow, Nathan; Diwadkar, Gouri B

    2013-07-01

    The Accreditation Council for Graduate Medical Education (ACGME) Milestone Project mandates programmes to assess the attainment of training outcomes, including the psychomotor (surgical or procedural) skills of medical trainees. The objectives of this study were to determine which tools exist to directly assess psychomotor skills in medical trainees on live patients and to identify the data indicating their psychometric and edumetric properties. An electronic search was conducted for papers published from January 1948 to May 2011 using the PubMed, Education Resource Information Center (ERIC), Cumulative Index to Nursing and Allied Health Literature (CINAHL) and Web of Science electronic databases and the review of references in article bibliographies. A study was included if it described a tool or instrument designed for the direct observation of psychomotor skills in patient care settings by supervisors. Studies were excluded if they referred to tools that assessed only clinical or non-technical skills, involved non-medical health professionals, or assessed skills performed on a simulator. Overall, 4114 citations were screened, 168 (4.1%) articles were reviewed for eligibility and 51 (1.2%) manuscripts were identified as meeting the study inclusion criteria. Three authors abstracted and reviewed studies using a standardised form for the presence of key psychometric and edumetric elements as per ACGME and American Psychological Association (APA) recommendations, and also assigned an overall grade based on the ACGME Committee on Educational Outcome Assessment grading system. A total of 30 tools were identified. Construct validity based on associations between scores and training level was identified in 24 tools, internal consistency in 14, test-retest reliability in five and inter-rater reliability in 20. The modification of attitudes, knowledge or skills was reported using five tools. The seven-item Global Rating Scale and the Procedure-Based Assessment received an

  5. Assessment of Work Performance (AWP)--development of an instrument.

    Science.gov (United States)

    Sandqvist, Jan L; Törnquist, Kristina B; Henriksson, Chris M

    2006-01-01

    Adequate work assessments are a matter of importance both for individuals and society [5,29,31,38,40,46,52]. However, there is a lack of adequate and reliable instruments for use in work rehabilitation [14,15,20,21,31,44]. The purpose of this study was to develop and evaluate an observation instrument for assessing work performance, the AWP (Assessment of Work Performance). The purpose of the 14-item instrument is to assess the individual's observable working skills in three different areas: motor skills, process skills, and communication and interaction skills. This article describes the development and results of preliminary testing of the AWP. The testing indicates a satisfactory face validity and utility for the AWP and supports further research and testing of the instrument.

  6. Multi-spacecraft observations of solar hard X-ray bursts

    International Nuclear Information System (INIS)

    Kane, S.R.

    1981-01-01

    The role of multi-spacecraft observations in solar flare research is examined from the point of view of solar hard X-ray bursts and their implications with respect to models of the impulsive phase. Multi-spacecraft measurements provide a stereoscopic view of the flare region, and hence represent the only direct method of measuring directivity of X-rays. In absence of hard X-ray imaging instruments with high spatial and temporal resolution, multi-spacecraft measurements provide the only means of determining the radial (vertical) structure of the hard X-ray source. This potential of the multi-spacecraft observations is illustrated with an analysis of the presently available observations of solar hard X-ray bursts made simultaneously by two or more of the following spacecraft: International Sun Earth Explorer-3 (ISEE-3), Pioneer Venus Orbiter (PVO), Helios-B and High Energy Astrophysical Observatory-A (HEAO-A). In particular, some conclusions have been drawn about the spatial structure and directivity of 50-100 keV X-rays from impulsive flares. Desirable features of future multi-spacecraft missions are briefly discussed followed by a short description of the hard X-ray experiment on the International Solar Polar Mission which has been planned specifically for multi-spacecraft observations of the Sun. (orig.)

  7. Direct observation of the orbital spin Kondo effect in gallium arsenide quantum dots

    Science.gov (United States)

    Shang, Ru-Nan; Zhang, Ting; Cao, Gang; Li, Hai-Ou; Xiao, Ming; Guo, Guang-Can; Guo, Guo-Ping

    2018-02-01

    Besides the spin Kondo effect, other degrees of freedom can give rise to the pseudospin Kondo effect. We report a direct observation of the orbital spin Kondo effect in a series-coupled gallium arsenide (GaAs) double quantum dot device where orbital degrees act as pseudospin. Electron occupation in both dots induces a pseudospin Kondo effect. In a region of one net spin impurity, complete spectra with three resonance peaks are observed. Furthermore, we observe a pseudo-Zeeman effect and demonstrate its electrical controllability for the artificial pseudospin in this orbital spin Kondo process via gate voltage control. The fourfold degeneracy point is realized at a specific value supplemented by spin degeneracy, indicating a transition from the SU(2) to the SU(4) Kondo effect.

  8. Useful technique for submucous myomectomy under direct transcervical resectoscope observation

    Directory of Open Access Journals (Sweden)

    Tatsuji Hoshino

    2017-08-01

    Full Text Available The transcervical resectoscope (TCR is used for resecting a submucous myoma (SMM. Safe grasping of an SMM with forceps and its complete resection under transabdominal ultrasound (TAUS guidance is not always easy. SMMs are slippery, making them difficult to grasp. The SMM moves right to left and anterior to posterior when the surgeon tries to grasp it with placental forceps. Surgeons could use small Martin forceps (65% smaller to grasp SMMs safely and tightly under direct TCR (transcervical resectoscope observation. We present a case in which this operative procedure was used to remove an SMM with Figure and Video. The benefits of this procedure are enormous and could be immeasurably important to hysteroscopists and gynecologists.

  9. Direct observation of thermal disorder and decomposition of black phosphorus

    Science.gov (United States)

    Yoo, Seung Jo; Kim, Heejin; Lee, Ji-Hyun; Kim, Jin-Gyu

    2018-02-01

    Theoretical research has been devoted to reveal the properties of black phosphorus as a two-dimensional nanomaterial, but little attention has been paid for the experimental characterization. In this study, the thermal disorder and decomposition of black phosphorus were examined using in situ heating transmission electron microscopy experiments. We observed that the breaking of crystallographic symmetry begins at 380 °C under vacuum condition, followed by the phosphorus evaporates after long-term heating at 400 °C. This decomposition process can be initiated by the surficial vacancy and proceeds toward both interlayer ([010]) and intralayer ([001]) directions. The results on the thermal behavior of black phosphorus provide useful guidance for thin film deposition and fabrication processes with black phosphorus.

  10. Iodine monoxide at a clean marine coastal site: observations of high frequency variations and inhomogeneous distributions

    Directory of Open Access Journals (Sweden)

    R. Commane

    2011-07-01

    Full Text Available The first in situ point observations of iodine monoxide (IO at a clean marine site were made using a laser-induced fluorescence instrument deployed at Mace Head, Ireland in August 2007. IO mixing ratios of up to 49.8 pptv (equivalent to pmol mol−1; 1 s average were observed at day-time low tide, well in excess of previous observed spatially-averaged maxima. A strong anti-correlation of IO mixing ratios with tide height was evident and the high time resolution of the observations showed IO peaked in the hour after low tide. The temporal delay in peak IO compared to low tide has not been observed previously but coincides with the time of peak aerosol number previously observed at Mace Head.

    A long path-differential optical absorption spectroscopy instrument (with a 2 × 6.8 km folded path across Roundstone Bay was also based at the site for 3 days during the point measurement observation period. Both instruments show similar temporal trends but the point measurements of IO are a factor of ~6–10 times greater than the spatially averaged IO mixing ratios, providing direct empirical evidence of the presence of inhomogeneities in the IO mixing ratio near the intertidal region.

  11. Directional Wave Spectra Observed During Intense Tropical Cyclones

    Science.gov (United States)

    Collins, C. O.; Potter, H.; Lund, B.; Tamura, H.; Graber, H. C.

    2018-02-01

    Two deep-sea moorings were deployed 780 km off the coast of southern Taiwan for 4-5 months during the 2010 typhoon season. Directional wave spectra, wind speed and direction, and momentum fluxes were recorded on two Extreme Air-Sea Interaction buoys during the close passage of Severe Tropical Storm Dianmu and three tropical cyclones (TCs): Typhoon Fanapi, Super Typhoon Megi, and Typhoon Chaba. Conditions sampled include significant wave heights up to 11 m and wind speeds up to 26 m s-1. Details varied for large-scale spectral structure in frequency and direction but were mostly bimodal. The modes were generally composed of a swell system emanating from the most intense storm region and local wind-seas. The peak systems were consistently young, meaning actively forced by winds, when the storms were close. During the peaks of the most intense passages—Chaba at the northern mooring and Megi at the southern—the bimodal seas coalesced. During Chaba, the swell and wind-sea coupling directed the high frequency waves and the wind stress away from the wind direction. A spectral wave model was able reproduce many of the macrofeatures of the directional spectra.

  12. Trace Gas Retrievals from the GeoTASO Aircraft Instrument

    Science.gov (United States)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Cole, J.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Soo, D.; Loughner, C.; Follette-Cook, M. B.; Janz, S. J.; Kowalewski, M. G.; Pickering, K. E.; Zoogman, P.; Al-Saadi, J. A.

    2015-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a passive remote sensing instrument capable of making 2-D measurements of trace gases and aerosols from aircraft. The instrument measures backscattered UV and visible radiation, allowing the retrieval of trace gas amounts below the aircraft at horizontal resolutions on the order of 250 m x 250 m. GeoTASO was originally developed under NASA's Instrument Incubator Program as a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey mission, and is now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions. We present spatially resolved observations of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the DISCOVER-AQ field campaigns in Texas and Colorado, as well as comparisons with observations made by ground-based Pandora spectrometers, in situ monitoring instruments and other aircraft instruments deployed during these campaigns. These measurements at various times of day are providing a very useful data set for testing and improving TEMPO and GEMS retrieval algorithms, as well as demonstrating prototype validation strategies.

  13. Fires and Smoke Observed from the Earth Observing System MODIS Instrument: Products, Validation, and Operational Use

    Science.gov (United States)

    Kaufman, Y. J.; Ichoku, C.; Giglio, L.; Korontzi, S.; Chu, D. A.; Hao, W. M.; Justice, C. O.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The MODIS sensor, launched on NASA's Terra satellite at the end of 1999, was designed with 36 spectral channels for a wide array of land, ocean, and atmospheric investigations. MODIS has a unique ability to observe fires, smoke, and burn scars globally. Its main fire detection channels saturate at high brightness temperatures: 500 K at 4 microns and 400 K at 11 microns, which can only be attained in rare circumstances at the I kin fire detection spatial resolution. Thus, unlike other polar orbiting satellite sensors with similar thermal and spatial resolutions, but much lower saturation temperatures (e.g. AVHRR and ATSR), MODIS can distinguish between low intensity ground surface fires and high intensity crown forest fires. Smoke column concentration over land is for the first time being derived from the MOMS solar channels, extending from 0.41 microns to 2.1 microns. The smoke product has been provisionally validated both globally and regionally over southern Africa and central and south America. Burn scars are observed from MODIS even in the presence of smoke, using the 1.2 to 2.1 micron channels. MODIS burned area information is used to estimate pyrogenic emissions. A wide range of these fire and related products and validation are demonstrated for the wild fires that occurred in northwestern United States in the summer of 2000. The MODIS rapid response system and direct broadcast capability is being developed to enable users to obtain and generate data in near real time. It is expected that health and land management organizations will use these systems for monitoring the occurrence of fires and the dispersion of smoke within two to six hours after data acquisition.

  14. Assessing patient-centred communication in teaching: a systematic review of instruments.

    Science.gov (United States)

    Brouwers, Marianne; Rasenberg, Ellemieke; van Weel, Chris; Laan, Roland; van Weel-Baumgarten, Evelyn

    2017-11-01

    Patient-centred communication is a key component of patient centredness in medical care. Therefore, adequate education in and assessment of patient-centred communication skills are necessary. In general, feedback on communication skills is most effective when it is provided directly and is systematic. This calls for adequate measurement instruments. The aim of this study was to provide a systematic review of existing instruments that measure patient centredness in doctor-patient communication and can be used to provide direct feedback. A systematic review was conducted using an extensive validated search strategy for measurement instruments in PubMed, EMBASE, PsycINFO and CINAHL. The databases were searched from their inception to 1 July 2016. Articles describing the development or evaluation of the measurement properties of instruments that measure patient centredness (by applying three or more of the six dimensions of a published definition of patient centredness) in doctor-patient communication and that can be used for the provision of direct feedback were included. The methodological quality of measurement properties was evaluated using the COSMIN checklist. Thirteen articles describing 14 instruments measuring patient centredness in doctor-patient communication were identified. These studies cover a wide range of settings and patient populations, and vary in the dimensions of patient centredness applied and in methodological quality on aspects of reliability and validity. This review gives a comprehensive overview of all instruments available for the measurement of patient centredness in doctor-patient communication that can be used for the provision of direct feedback and are described in the literature. Despite the widely felt need for valid and reliable instruments for the measurement of patient-centred communication, most of the instruments currently available have not been thoroughly investigated. Therefore, we recommend further research into and

  15. Performance specifications for health physics instrumentation: portable instrumentation for use in normal work environments. Part 2. Test results

    International Nuclear Information System (INIS)

    Kenoyer, J.L.; Swinth, K.L.; Stoetzel, G.A.; Selby, J.M.

    1986-09-01

    The Pacific Northwest Laboratory evaluated a draft American National Standards Institute Standard N42.17 (ANSI N42.17) on performance specifications for health physics instrumentation through a project jointly funded by the US Department of Energy and the US Nuclear Regulatory Commission. The evaluation involved testing a representative cross section of instruments against criteria in the standard. This report presents results of the testing program. A brief history of the project is included in the introduction. The instrumentation tested is described in general terms (i.e., types, ranges); however, no direct relationship between the results and a specific instrument model is made in this report. Testing requirements in ANSI N42.17D4, Revision 1 (May 1985) are summarized and the methods by which the tests are performed are discussed. Brief descriptions of the testing equipment are included in the methods section of the report. More detailed information about the draft standard, testing requirements and procedures, and the test equipment is included in ''Performance Specifications for Health Physics Instrumentation - Portable Instrumentation for Use in Normal Work Environments, Part 1: Manual of Testing Procedures.'' Results of testing are given in two formats: test-by-test and instrument-by-instrument. Discussion is included on significant and interesting findings, on comparisons of results from the same type of instruments from same and different manufacturers, and on data grouped by manufacturer. Conclusions are made on the applicability and practicality of the proposed standard and on instrument performance. Changes that have been made to the proposed standard based on findings of the testing program are listed and discussed. 22 refs., 11 figs., 77 tabs

  16. Associations between informant ratings of personality disorder traits, self-reports of personality, and directly observed behavior.

    Science.gov (United States)

    Kaurin, Aleksandra; Sauerberger, Kyle S; Funder, David C

    2018-03-02

    Diagnoses of personality disorders (PD) must rely on judgments of observers-either clinicians or acquaintances-because personality disorders are primarily defined in terms of maladaptive interpersonal behavior. Little is known, however, about how closely acquaintances' judgments of PD traits relate to self-reports of theoretically relevant Big Five traits or directly observed behavioral outcomes in interpersonal situations. The present study examines associations between judgments of the 10 PD traits provided by close acquaintances, self-reports of PD-relevant Big Five personality traits, and observed interpersonal behaviors across three different three-person laboratory interactions (i.e., unstructured chat, cooperative task, competitive game). The sample consisted of 256 undergraduate students (130 females; M age  = 19.83, SD = 1.25). Four unacquainted observers independently rated participants' behaviors from video recordings. In line with previous work, informant reports of PD traits demonstrate strong convergent validity with relevant self-reported Big Five traits (as identified by Lynam & Widiger, 2001). Directly observed behavior is meaningfully associated with acquaintances' judgments and self-reports of PD-relevant traits, and the associations between these judgments and behavior are strongest for traits associated with histrionic and schizoid PD. Vector correlations between behavioral profiles associated with informant and self-reports show that both assessments have similar behavioral correlates. Associations between PD trait ratings and behavior appeared to differ as a function of gender, with males showing more and stronger correlations. Informants' ratings of PD traits are impressively accurate, converging both with self-reports of relevant traits and directly observed interpersonal behavior. Therefore, a comprehensive understanding of PDs and associated traits can be augmented by information from multiple acquaintances who have the

  17. The ozone monitoring instrument

    NARCIS (Netherlands)

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.R.; Mälkki, A.; Visser, H.; Vries, J. de; Stammes, P.; Lundell, J.O.V.; Saari, H.

    2006-01-01

    The Ozone Monitoring Instrument (OMI) flies on the National Aeronautics and Space Adminsitration's Earth Observing System Aura satellite launched in July 2004. OMI is a ultraviolet/visible (UV/VIS) nadir solar backscatter spectrometer, which provides nearly global coverage in one day with a spatial

  18. Hubble Space Telescope: Faint object spectrograph instrument handbook. Version 1.1

    Science.gov (United States)

    Ford, Holland C. (Editor)

    1990-01-01

    The Faint Object Spectrograph (FOS) has undergone substantial rework since the 1985 FOS Instrument Handbook was published, and we are now more knowledgeable regarding the spacecraft and instrument operations requirements and constraints. The formal system for observation specification has also evolved considerably, as the GTO programs were defined in detail. This supplement to the FOS Instrument Handbook addresses the important aspects of these changes, to facilitate proper selection and specification of FOS observing programs. Since the Handbook was published, the FOS red detector has been replaced twice, first with the best available spare in 1985 (which proved to have a poor, and steadily degrading red response), and later with a newly developed Digicon, which exhibits a high, stable efficiency and a dark-count rate less than half that of its predecessors. Also, the FOS optical train was realigned in 1987-88 to eliminate considerable beam-vignetting losses, and the collimators were both removed and recoated for greater reflectivity. Following the optics and detector rework, the FOS was carefully recalibrated (although only ambient measurements were possible, so the far-UV characteristics could not be re-evaluated directly). The resulting efficiency curves, including improved estimates of the telescope throughput, are shown. A number of changes in the observing-mode specifications and addition of several optional parameters resulted as the Proposal Instructions were honed during the last year. Target-brightness limitations, which have only recently been formulated carefully, are described. Although these restrictions are very conservative, it is imperative that the detector safety be guarded closely, especially during the initial stages of flight operations. Restrictions on the use of the internal calibration lamps and aperture-illumination sources (TA LEDs), also resulting from detector safety considerations, are outlined. Finally, many changes have been made to

  19. Fission gas release modelling: developments arising from instrumented fuel assemblies, out-of-pile experiments and microstructural observations

    International Nuclear Information System (INIS)

    Leech, N.A.; Smith, M.R.; Pearce, J.H.; Ellis, W.E.; Beatham, N.

    1990-01-01

    This paper reviews the development of fission gas release modelling in thermal reactor fuel (both steady-state and transient) and in particular, illustrates the way in which experimental data have been, and continue to be, the main driving force behind model development. To illustrate this point various aspects of fuel performance are considered: temperature calculation, steady-state and transient fission gas release, grain boundary gas atom capacity and microstructural phenomena. The sources of experimental data discussed include end-of-life fission gas release measurements, instrumented fuel assemblies (e.g. rods with internal pressure transducers, fuel centre thermocouples), swept capsule experiments, out-of-pile annealing experiments and microstructural techniques applied during post-irradiation evaluation. In the case of the latter, the benefit of applying many observation and analysis techniques on the same fuel samples (the approach adopted at NRL Windscale) is emphasized. This illustrates a shift of emphasis in the modelling field from the development of large, complex thermo-mechanical computer codes to the assessment of key experimental data in order to develop and evaluate sub-models which correctly predict the observed behaviour. (author)

  20. Direct Observation of Sub-100 fs Mobile Charge Generation in a Polymer-Fullerene Film

    DEFF Research Database (Denmark)

    Cooke, D. G.; Krebs, Frederik C; Jepsen, Peter Uhd

    2012-01-01

    The formation of mobile charges in a roll-to-roll processed poly-3-hexylthiophene-fullerene bulk heterojunction film is observed directly by using transient terahertz spectroscopy with sub-100 fs temporal resolution. The transient terahertz ac conductivity reveals that 20% of the incident pump...

  1. Sliding rocks on Racetrack Playa, Death Valley National Park: first observation of rocks in motion.

    Directory of Open Access Journals (Sweden)

    Richard D Norris

    Full Text Available The engraved trails of rocks on the nearly flat, dry mud surface of Racetrack Playa, Death Valley National Park, have excited speculation about the movement mechanism since the 1940s. Rock movement has been variously attributed to high winds, liquid water, ice, or ice flotation, but has not been previously observed in action. We recorded the first direct scientific observation of rock movements using GPS-instrumented rocks and photography, in conjunction with a weather station and time-lapse cameras. The largest observed rock movement involved > 60 rocks on December 20, 2013 and some instrumented rocks moved up to 224 m between December 2013 and January 2014 in multiple move events. In contrast with previous hypotheses of powerful winds or thick ice floating rocks off the playa surface, the process of rock movement that we have observed occurs when the thin, 3 to 6 mm, "windowpane" ice sheet covering the playa pool begins to melt in late morning sun and breaks up under light winds of -4-5 m/s. Floating ice panels 10 s of meters in size push multiple rocks at low speeds of 2-5 m/min. along trajectories determined by the direction and velocity of the wind as well as that of the water flowing under the ice.

  2. Direct spectroscopic observation of charge-exchange recombination of medium-Z elements in the PLT tokamak

    International Nuclear Information System (INIS)

    Skinner, C.H.; Suckewer, S.; Cohen, S.A.; Schilling, G.; Wilson, R.; Stratton, B.

    1984-03-01

    We report the first observation of line emission resulting directly from charge-exchange recombination of medium-Z elements (Al, Sc) injected into a PLT discharge. Transitions due to the radiative cascade immediately following charge-exchange of He-like Al and Sc were observed by a VUV spectrograph and two air monochromators. In two cases, AlXI 3209 A and ScXIX 112.1 A, the observed transition had not previously been experimentally identified. Spatial scans provided information on the profile of the neutral beam in the plasma

  3. The Overtone Fiddle: an Actuated Acoustic Instrument

    DEFF Research Database (Denmark)

    Overholt, Daniel

    2011-01-01

    both traditional violin techniques, as well as extended playing techniques that incorporate shared man/machine control of the resulting sound. A magnetic pickup system is mounted to the end of the fiddle’s fingerboard in order to detect the signals from the vibrating strings, deliberately not capturing...... vibrations from the full body of the instrument. This focused sensing approach allows less restrained use of DSP-generated feedback signals, as there is very little direct leakage from the actuator embedded in the body of the instrument back to the pickup....

  4. Repairing method of color TV with measuring instrument

    International Nuclear Information System (INIS)

    1996-01-01

    This book concentrates on repairing method of color TV with measuring instrument, which deals with direction and sorts of measuring instrument for service, application and basic technique of an oscilloscope and a synchroscope, constituent of TV and wave reading, everything for test skill for service man, service technique by electronic voltmeter, service technique by sweep generator and maker generator, dot-bar generator and support skill for color TV and color bar generator and application technology of color circuit.

  5. Calibration of passive remote observing optical and microwave instrumentation; Proceedings of the Meeting, Orlando, FL, Apr. 3-5, 1991

    Science.gov (United States)

    Guenther, Bruce W.

    Various papers on the calibration of passive remote observing optical and microwave instrumentation are presented. Individual topics addressed include: on-board calibration device for a wide field-of-view instrument, calibration for the medium-resolution imaging spectrometer, cryogenic radiometers and intensity-stabilized lasers for EOS radiometric calibrations, radiometric stability of the Shuttle-borne solar backscatter ultraviolet spectrometer, ratioing radiometer for use with a solar diffuser, requirements of a solar diffuser and measurements of some candidate materials, reflectance stability analysis of Spectralon diffuse calibration panels, stray light effects on calibrations using a solar diffuser, radiometric calibration of SPOT 23 HRVs, surface and aerosol models for use in radiative transfer codes. Also addressed are: calibrated intercepts for solar radiometers used in remote sensor calibration, radiometric calibration of an airborne multispectral scanner, in-flight calibration of a helicopter-mounted Daedalus multispectral scanner, technique for improving the calibration of large-area sphere sources, remote colorimetry and its applications, spatial sampling errors for a satellite-borne scanning radiometer, calibration of EOS multispectral imaging sensors and solar irradiance variability. (For individual items see A93-23576 to A93-23603)

  6. Moving scanning emitter tracking by a single observer using time of interception: Observability analysis and algorithm

    Directory of Open Access Journals (Sweden)

    Yifei ZHANG

    2017-06-01

    Full Text Available The target motion analysis (TMA for a moving scanning emitter with known fixed scan rate by a single observer using the time of interception (TOI measurements only is investigated in this paper. By transforming the TOI of multiple scan cycles into the direction difference of arrival (DDOA model, the observability analysis for the TMA problem is performed. Some necessary conditions for uniquely identifying the scanning emitter trajectory are obtained. This paper also proposes a weighted instrumental variable (WIV estimator for the scanning emitter TMA, which does not require any initial solution guess and is closed-form and computationally attractive. More importantly, simulations show that the proposed algorithm can provide estimation mean square error close to the Cramer-Rao lower bound (CRLB at moderate noise levels with significantly lower estimation bias than the conventional pseudo-linear least square (PLS estimator.

  7. [work motivation -- assessment instruments and their relevance for medical care].

    Science.gov (United States)

    Fiedler, Rolf G; Ranft, Andreas; Greitemann, Bernhard; Heuft, Gereon

    2005-11-01

    The relevance of work motivation for medical research and healthcare, in particular rehabilitation, is described. Four diagnostic instruments in the German language are introduced which can assess work motivation using a scale system: AVEM, JDS, LMI and FBTM. Their possible application and potential usage for the clinical area are discussed. Apart from the FBTM, none of these instruments can be directly used as a general instrument in a normal medical clinical setting. Finally, a current model for work motivation (compensatory model of work motivation and volition) is presented that contains basis concepts, which are judged as important for future research questions concerning the development of motivation diagnostic instruments.

  8. Formation Flying and Deformable Instruments

    International Nuclear Information System (INIS)

    Rio, Yvon

    2009-01-01

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  9. Formation Flying and Deformable Instruments

    Science.gov (United States)

    Rio, Yvon

    2009-05-01

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  10. Regulatory requirements on the calibration and use of survey instruments

    International Nuclear Information System (INIS)

    Domondon, D.B.

    1989-01-01

    Regulatory requirements on the provision, calibration and occasions of use of survey instruments are enumerated for a number of licensed activities. Two methods of calibrating survey instruments are described. Factors that must be taken into consideration in conducting calibrations, contents of calibration reports and of the sticker attached to the instrument which are needed for the correct use of the instrument are discussed. The precautions to be observed in order to insure correct use of survey instruments are described. (Auth.)

  11. Mars Science Laboratory relative humidity observations: Initial results.

    Science.gov (United States)

    Harri, A-M; Genzer, M; Kemppinen, O; Gomez-Elvira, J; Haberle, R; Polkko, J; Savijärvi, H; Rennó, N; Rodriguez-Manfredi, J A; Schmidt, W; Richardson, M; Siili, T; Paton, M; Torre-Juarez, M De La; Mäkinen, T; Newman, C; Rafkin, S; Mischna, M; Merikallio, S; Haukka, H; Martin-Torres, J; Komu, M; Zorzano, M-P; Peinado, V; Vazquez, L; Urqui, R

    2014-09-01

    The Mars Science Laboratory (MSL) made a successful landing at Gale crater early August 2012. MSL has an environmental instrument package called the Rover Environmental Monitoring Station (REMS) as a part of its scientific payload. REMS comprises instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity (REMS-H), and UV measurements. We concentrate on describing the REMS-H measurement performance and initial observations during the first 100 MSL sols as well as constraining the REMS-H results by comparing them with earlier observations and modeling results. The REMS-H device is based on polymeric capacitive humidity sensors developed by Vaisala Inc., and it makes use of transducer electronics section placed in the vicinity of the three humidity sensor heads. The humidity device is mounted on the REMS boom providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The final relative humidity results appear to be convincing and are aligned with earlier indirect observations of the total atmospheric precipitable water content. The water mixing ratio in the atmospheric surface layer appears to vary between 30 and 75 ppm. When assuming uniform mixing, the precipitable water content of the atmosphere is ranging from a few to six precipitable micrometers. Atmospheric water mixing ratio at Gale crater varies from 30 to 140 ppmMSL relative humidity observation provides good dataHighest detected relative humidity reading during first MSL 100 sols is RH75.

  12. Direct and inverse Staebler-Wronski effects observed in carbon-doped hydrogenated amorphous silicon photo-detectors

    International Nuclear Information System (INIS)

    Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C.; Brochero, J.; Calderon, A.; Fernandez, M.G.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Scodellaro, L.; Sobron, M.

    2011-01-01

    The photo-response behaviour of Amorphous Silicon Position Detectors (ASPDs) under prolonged illumination with a 681 nm diode-laser and a 633 nm He-Ne laser is presented. Both direct and inverse Staebler-Wronski effects are observed.

  13. Inspector-instrument interface in portable NDA instrumentation

    International Nuclear Information System (INIS)

    Halbig, J.K.; Klosterbuer, S.F.

    1981-01-01

    Recent electronics technology advances make it possible to design sophisticated instruments in small packages for convenient field implementation. An inspector-instrument interface design that allows communication of procedures, responses, and results between the instrument and user is presented. This capability has been incorporated into new spent-fuel instrumentation and a battery-powered multichannel analyzer

  14. Inspector-instrument interface in portable NDA instrumentation

    International Nuclear Information System (INIS)

    Halbig, J.K.; Klosterbuer, S.F.

    1981-01-01

    Recent electronics technology advances make it possible to design sophisticated instruments in small packages for convenient field implementation. This report describes an inspector-instrument interface design which allows communication of procedures, responses, and results between the instrument and user. The interface has been incorporated into new spent-fuel instrumentation and a battery-powered multichannel analyzer

  15. Social communication with virtual agents: The effects of body and gaze direction on attention and emotional responding in human observers.

    Science.gov (United States)

    Marschner, Linda; Pannasch, Sebastian; Schulz, Johannes; Graupner, Sven-Thomas

    2015-08-01

    In social communication, the gaze direction of other persons provides important information to perceive and interpret their emotional response. Previous research investigated the influence of gaze by manipulating mutual eye contact. Therefore, gaze and body direction have been changed as a whole, resulting in only congruent gaze and body directions (averted or directed) of another person. Here, we aimed to disentangle these effects by using short animated sequences of virtual agents posing with either direct or averted body or gaze. Attention allocation by means of eye movements, facial muscle response, and emotional experience to agents of different gender and facial expressions were investigated. Eye movement data revealed longer fixation durations, i.e., a stronger allocation of attention, when gaze and body direction were not congruent with each other or when both were directed towards the observer. This suggests that direct interaction as well as incongruous signals increase the demands of attentional resources in the observer. For the facial muscle response, only the reaction of muscle zygomaticus major revealed an effect of body direction, expressed by stronger activity in response to happy expressions for direct compared to averted gaze when the virtual character's body was directed towards the observer. Finally, body direction also influenced the emotional experience ratings towards happy expressions. While earlier findings suggested that mutual eye contact is the main source for increased emotional responding and attentional allocation, the present results indicate that direction of the virtual agent's body and head also plays a minor but significant role. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Observations of Infrared Radiative Cooling in the Thermosphere on Daily to Multiyear Timescales from the TIMED/SABER Instrument

    Science.gov (United States)

    Mlynczak, Martin G.; Hunt, Linda A.; Marshall, B. Thomas; Martin-Torres, F. Javier; Mertens, Christopher J.; Russell, James M., III; Remsberg, Ellis E.; Lopez-Puertas, Manuel; Picard, Richard; Winick, Jeremy; hide

    2009-01-01

    We present observations of the infrared radiative cooling by carbon dioxide (CO2) and nitric oxide (NO) in Earth s thermosphere. These data have been taken over a period of 7 years by the SABER instrument on the NASA TIMED satellite and are the dominant radiative cooling mechanisms for the thermosphere. From the SABER observations we derive vertical profiles of radiative cooling rates (W/cu m), radiative fluxes (W/sq m), and radiated power (W). In the period from January 2002 through January 2009 we observe a large decrease in the cooling rates, fluxes, and power consistent with the declining phase of solar cycle. The power radiated by NO during 2008 when the Sun exhibited few sunspots was nearly one order of magnitude smaller than the peak power observed shortly after the mission began. Substantial short-term variability in the infrared emissions is also observed throughout the entire mission duration. Radiative cooling rates and radiative fluxes from NO exhibit fundamentally different latitude dependence than do those from CO2, with the NO fluxes and cooling rates being largest at high latitudes and polar regions. The cooling rates are shown to be derived relatively independent of the collisional and radiative processes that drive the departure from local thermodynamic equilibrium (LTE) in the CO2 15 m and the NO 5.3 m vibration-rotation bands. The observed NO and CO2 cooling rates have been compiled into a separate dataset and represent a climate data record that is available for use in assessments of radiative cooling in upper atmosphere general circulation models.

  17. Direct Observation of Asperity Deformation of Specimen with Random Rough Surface in Upsetting Process

    DEFF Research Database (Denmark)

    Azushima, A.; Kuba, S.; Tani, S.

    2004-01-01

    The trapping behavior of liquid lubricant and contact behavior of asperities at the workpiece-tool interface during upsetting and indentation are observed directly using a compression subpress which consists of a transparent die made of sapphire, a microscope with a CCD camera and a video system....... The experiments are carried out without lubricant and with lubricant. Specimens used are commercially pure A1100 Aluminum with a random rough surface. From this observation, the change in the fraction of real contact area is measured by an image processor. The real contact area ratios in upsetting experiment...

  18. Instrumentation Cables Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Muna, Alice Baca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaFleur, Chris Bensdotter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    A fire at a nuclear power plant (NPP) has the potential to damage structures, systems, and components important to safety, if not promptly detected and suppressed. At Browns Ferry Nuclear Power Plant on March 22, 1975, a fire in the reactor building damaged electrical power and control systems. Damage to instrumentation cables impeded the function of both normal and standby reactor coolant systems, and degraded the operators’ plant monitoring capability. This event resulted in additional NRC involvement with utilities to ensure that NPPs are properly protected from fire as intended by the NRC principle design criteria (i.e., general design criteria 3, Fire Protection). Current guidance and methods for both deterministic and performance based approaches typically make conservative (bounding) assumptions regarding the fire-induced failure modes of instrumentation cables and those failure modes effects on component and system response. Numerous fire testing programs have been conducted in the past to evaluate the failure modes and effects of electrical cables exposed to severe thermal conditions. However, that testing has primarily focused on control circuits with only a limited number of tests performed on instrumentation circuits. In 2001, the Nuclear Energy Institute (NEI) and the Electric Power Research Institute (EPRI) conducted a series of cable fire tests designed to address specific aspects of the cable failure and circuit fault issues of concern1. The NRC was invited to observe and participate in that program. The NRC sponsored Sandia National Laboratories to support this participation, whom among other things, added a 4-20 mA instrumentation circuit and instrumentation cabling to six of the tests. Although limited, one insight drawn from those instrumentation circuits tests was that the failure characteristics appeared to depend on the cable insulation material. The results showed that for thermoset insulated cables, the instrument reading tended to drift

  19. Direct Observation of Individual Charges and Their Dynamics on Graphene by Low-Energy Electron Holography.

    Science.gov (United States)

    Latychevskaia, Tatiana; Wicki, Flavio; Longchamp, Jean-Nicolas; Escher, Conrad; Fink, Hans-Werner

    2016-09-14

    Visualizing individual charges confined to molecules and observing their dynamics with high spatial resolution is a challenge for advancing various fields in science, ranging from mesoscopic physics to electron transfer events in biological molecules. We show here that the high sensitivity of low-energy electrons to local electric fields can be employed to directly visualize individual charged adsorbates and to study their behavior in a quantitative way. This makes electron holography a unique probing tool for directly visualizing charge distributions with a sensitivity of a fraction of an elementary charge. Moreover, spatial resolution in the nanometer range and fast data acquisition inherent to lens-less low-energy electron holography allows for direct visual inspection of charge transfer processes.

  20. Preparing astronomical observations and observing with OHP facilities

    Directory of Open Access Journals (Sweden)

    Patris J.

    2010-12-01

    Full Text Available In addition to the general introduction to observational astronomy given in a past paper (J. Phys. IV France, ERCA 07 (2006 pp 373-390 some tools are given to the observer. These include the general knowledge of what is going to be observed and of the instruments used. A guideline is given to prepare an observing program and to follow it as efficiently as possible. Finally, some examples are given of observations to be made by ERCA participants at OHP observatory.

  1. Instrument for Airborne Measurement of Carbonyl Sulfide, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes to develop small, low power instrumentation for the real-time direct measurement of carbonyl sulfide (OCS) in the atmosphere, especially...

  2. Direct observation of short-circuit diffusion during the formation of a single cupric oxide nanowire

    International Nuclear Information System (INIS)

    Cheng, C-L; Ma, Y-R; Chou, M H; Huang, C Y; Yeh, V; Wu, S Y

    2007-01-01

    Short-circuit diffusion was observed in a single CuO nanowire synthesized using a thermal oxidation method. The confocal Raman spectra of a single CuO nanowire permit direct observation of the nature of an individual CuO nanowire. The parameter order obtained from the inverse Raman B g 2 peak linewidth results in the length dependence of the linewidth and a short-circuit diffusion length of 3.3 μm. The observed structural information is also consistent with the energy dispersive x-ray spectroscopic mapping. The results confirm that the growth of CuO nanowires occurs through the short-circuit diffusion mechanism

  3. Absorption coefficient instrument for turbid natural waters

    Science.gov (United States)

    Friedman, E.; Cherdak, A.; Poole, L.; Houghton, W.

    1980-01-01

    The paper presents an instrument that directly measures multispectral absorption coefficient of turbid natural water. Attention is given to the design, which is shown to incorporate methods for the compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in the background light level. In addition, when used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Finally, it is reported that systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.

  4. MID-INFRARED PROPERTIES OF DISK AVERAGED OBSERVATIONS OF EARTH WITH AIRS

    International Nuclear Information System (INIS)

    Hearty, Thomas; Song, Inseok; Kim, Sam; Tinetti, Giovanna

    2009-01-01

    We have investigated mid-infrared spectra of Earth obtained by the Atmospheric Infrared Sounder (AIRS) instrument on-board the AQUA spacecraft to explore the characteristics that may someday be observed in extrasolar terrestrial planets. We have used the AIRS infrared (R ∼ 1200; 3.75-15.4 μm) spectra to construct directly observed high-resolution spectra of the only known life bearing planet, Earth. The AIRS spectra are the first such spectra that span the seasons. We investigate the rotational and seasonal spectral variations that would arise due to varying cloud amount and viewing geometry and we explore what signatures may be observable in the mid-infrared by the next generation of telescopes capable of observing extrasolar terrestrial planets.

  5. High resolution earth observation from geostationary orbit by optical aperture synthesys

    Science.gov (United States)

    Mesrine, M.; Thomas, E.; Garin, S.; Blanc, P.; Alis, C.; Cassaing, F.; Laubier, D.

    2017-11-01

    In this paper, we describe Optical Aperture Synthesis (OAS) imaging instrument concepts studied by Alcatel Alenia Space under a CNES R&T contract in term of technical feasibility. First, the methodology to select the aperture configuration is proposed, based on the definition and quantification of image quality criteria adapted to an OAS instrument for direct imaging of extended objects. The following section presents, for each interferometer type (Michelson and Fizeau), the corresponding optical configurations compatible with a large field of view from GEO orbit. These optical concepts take into account the constraints imposed by the foreseen resolution and the implementation of the co-phasing functions. The fourth section is dedicated to the analysis of the co-phasing methodologies, from the configuration deployment to the fine stabilization during observation. Finally, we present a trade-off analysis allowing to select the concept wrt mission specification and constraints related to instrument accommodation under launcher shroud and in-orbit deployment.

  6. Interstellar Neutral Helium in the Heliosphere from IBEX Observations. V. Observations in IBEX-Lo ESA Steps 1, 2, and 3

    Science.gov (United States)

    Swaczyna, Paweł; Bzowski, Maciej; Kubiak, Marzena A.; Sokół, Justyna M.; Fuselier, Stephen A.; Galli, André; Heirtzler, David; Kucharek, Harald; McComas, David J.; Möbius, Eberhard; Schwadron, Nathan A.; Wurz, P.

    2018-02-01

    Direct-sampling observations of interstellar neutral (ISN) He by the Interstellar Boundary Explorer (IBEX) provide valuable insight into the physical state of and processes operating in the interstellar medium ahead of the heliosphere. The ISN He atom signals are observed at the four lowest ESA steps of the IBEX-Lo sensor. The observed signal is a mixture of the primary and secondary components of ISN He and H. Previously, only data from one of the ESA steps have been used. Here, we extend the analysis to data collected in the three lowest ESA steps with the strongest ISN He signal, for the observation seasons 2009–2015. The instrument sensitivity is modeled as a linear function of the atom impact speed onto the sensor’s conversion surface separately for each ESA step of the instrument. We find that the sensitivity increases from lower to higher ESA steps, but within each of the ESA steps it is a decreasing function of the atom impact speed. This result may be influenced by the hydrogen contribution, which was not included in the adopted model, but seems to exist in the signal. We conclude that the currently accepted temperature of ISN He and velocity of the Sun through the interstellar medium do not need a revision, and we sketch a plan of further data analysis aiming at investigating ISN H and a better understanding of the population of ISN He originating in the outer heliosheath.

  7. Instrument comparison for Aerosolized Titanium Dioxide

    Science.gov (United States)

    Ranpara, Anand

    Recent toxicological studies have shown that the surface area of ultrafine particles (UFP i.e., particles with diameters less than 0.1 micrometer) has a stronger correlation with adverse health effects than does mass of these particles. Ultrafine titanium dioxide (TiO2) particles are widely used in industry, and their use is associated with adverse health outcomes, such as micro vascular dysfunctions and pulmonary damages. The primary aim of this experimental study was to compare a variety of laboratory and industrial hygiene (IH) field study instruments all measuring the same aerosolized TiO2. The study also observed intra-instrument variability between measurements made by two apparently identical devices of the same type of instrument placed side-by-side. The types of instruments studied were (1) DustTrak(TM) DRX, (2) Personal Data RAMs(TM) (PDR), (3) GRIMM, (4) Diffusion charger (DC) and (5) Scanning Mobility Particle Sizer (SMPS). Two devices of each of the four IH field study instrument types were used to measure six levels of mass concentration of fine and ultrafine TiO2 aerosols in controlled chamber tests. Metrics evaluated included real-time mass, active surface area and number/geometric surface area distributions, and off-line gravimetric mass and morphology on filters. DustTrak(TM) DRXs and PDRs were used for mass concentration measurements. DCs were used for active surface area concentration measurements. GRIMMs were used for number concentration measurements. SMPS was used for inter-instrument comparisons of surface area and number concentrations. The results indicated that two apparently identical devices of each DRX and PDR were statistically not different with each other for all the trials of both the sizes of powder (p < 5%). Mean difference between mass concentrations measured by two DustTrak DRX devices was smaller than that measured by two PDR devices. DustTrak DRX measurements were closer to the reference method, gravimetric mass concentration

  8. Instrument for Airborne Measurement of Carbonyl Sulfide, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II SBIR program, Southwest Sciences will continue the development of small, low power instrumentation for real-time direct measurement of carbonyl...

  9. Technological considerations in emergency instrumentation preparedness. Phase II-D. Evaluation testing and calibration methodology for emergency radiological instrumentation

    International Nuclear Information System (INIS)

    Bramson, P.E.; Andersen, B.V.; Fleming, D.M.; Kathren, R.L.; Mulhern, O.R.; Newton, C.E.; Oscarson, E.E.; Selby, J.M.

    1976-09-01

    In response to recommendations from the Advisory Committee on Reactor Safeguards, the Division of Operational Safety, U.S. ERDA has contracted with Battelle, Pacific Northwest Laboratories to survey the adequacy of existing instrumentation at nuclear fuel cycle facilities to meet emergency requirements and to develop technical criteria for instrumentation systems to be used in assessment of environmental conditions following plant emergencies. This report, the fifth in a series, provides: (1) calibration methods to assure the quality of radiological measurements and (2) testing procedures for determining whether an emergency radiological instrument meets the performance specifications. Three previous reports in this series identified the emergency instrumentation needs for power reactors, mixed oxide fuel plants, and fuel reprocessing facilities. Each of these three reports contains a Section VI, which sets forth applicable radiological instrument performance criteria and calibration requirements. Testing and calibration procedures in this report have been formatted in two parts: IV and V, each divided into three subsections: (1) Power Reactors, (2) Mixed Oxide Fuel Plants, and (3) Fuel Reprocessing Facilities. The three performance criteria subsections directly coincide with the performance criteria sections of the previous reports. These performance criteria sections have been reproduced in this report as Part III with references of ''required action'' added

  10. Instrumentation for Monitoring around Marine Renewable Energy Converters: Workshop Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Polagye, B. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Copping, A. E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Brown-Saracino, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suryan, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kramer, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-01-14

    To better understand the state of instrumentation and capabilities for monitoring around marine energy converters, the U.S. Department of Energy directed Pacific Northwest National Laboratory and the Northwest National Marine Renewable Energy Center at the University of Washington to convene an invitation-only workshop of experts from around the world to address instrumentation needs.

  11. Current direction, chemical, benthic organisms, and wind wave spectra data from moored current meter casts and other instruments in the Gulf of Mexico as part of the Brine Disposal project, 1977-10-14 to 1979-08-24 (NODC Accession 7900335)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, chemical, benthic organisms, and wind direction data were collected using moored current meter casts and other instruments in the Gulf of Mexico...

  12. Observational astrophysics

    CERN Document Server

    Smith, Robert C

    1995-01-01

    Combining a critical account of observational methods (telescopes and instrumentation) with a lucid description of the Universe, including stars, galaxies and cosmology, Smith provides a comprehensive introduction to the whole of modern astrophysics beyond the solar system. The first half describes the techniques used by astronomers to observe the Universe: optical telescopes and instruments are discussed in detail, but observations at all wavelengths are covered, from radio to gamma-rays. After a short interlude describing the appearance of the sky at all wavelengths, the role of positional astronomy is highlighted. In the second half, a clear description is given of the contents of the Universe, including accounts of stellar evolution and cosmological models. Fully illustrated throughout, with exercises given in each chapter, this textbook provides a thorough introduction to astrophysics for all physics undergraduates, and a valuable background for physics graduates turning to research in astronomy.

  13. ASIM - an Instrument Suite for the International Space Station

    DEFF Research Database (Denmark)

    Neubert, Torsten; Crosby, B.; Huang, T.-Y.

    2009-01-01

    ASIM (Atmosphere-Space Interactions Monitor) is an instrument suite for studies of severe thunderstorms and their effects on the atmosphere and ionosphere. The instruments are designed to observe transient luminous events (TLEs)—sprites, blue jets and elves—and terrestrial gamma-ray flashes (TGFs...

  14. Increased Science Instrumentation Funding Strengthens Mars Program

    Science.gov (United States)

    Graham, Lee D.; Graff, T. G.

    2012-01-01

    As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.

  15. Instrumentation

    International Nuclear Information System (INIS)

    Prieur, G.; Nadi, M.; Hedjiedj, A.; Weber, S.

    1995-01-01

    This second chapter on instrumentation gives little general consideration on history and classification of instrumentation, and two specific states of the art. The first one concerns NMR (block diagram of instrumentation chain with details on the magnets, gradients, probes, reception unit). The first one concerns precision instrumentation (optical fiber gyro-meter and scanning electron microscope), and its data processing tools (programmability, VXI standard and its history). The chapter ends with future trends on smart sensors and Field Emission Displays. (D.L.). Refs., figs

  16. Instrumentation for tomograph positioning

    International Nuclear Information System (INIS)

    Frenkel, A.D.B.; Castello Branco, L.M.; Reznik, D.S.; Santos, C.A.C.; Borges, J.C.

    1986-01-01

    The COPPE's Nuclear Instrumentation Lab. has been developing researches directed towards the implementation of a Computer-Based Tomography System. Basically, the system reported in this paper can be divided into three major parts: the mechanical part, responsible for the physical movement (Stepper-Motors, table, etc.); the electronic part, which controls the mechanical part and handles the data-acquisition process (microcomputer, interfaces, etc.); and finally, the support of a software-oriented system, including control programs and information processing routines. (Author) [pt

  17. Medical instruments and devices principles and practices

    CERN Document Server

    Schreiner, Steven; Peterson, Donald R

    2015-01-01

    Medical Instruments and Devices: Principles and Practices originates from the medical instruments and devices section of The Biomedical Engineering Handbook, Fourth Edition. Top experts in the field provide material that spans this wide field. The text examines how biopotential amplifiers help regulate the quality and content of measured signals. It includes instruments and devices that span a range of physiological systems and the physiological scale: molecular, cellular, organ, and system. The book chronicles the evolution of pacemakers and their system operation and discusses oscillometry, cardiac output measurement, and the direct and indirect methods of measuring cardiac output. The authors also expound on the mechanics and safety of defibrillators and cover implantable stimulators, respiration, and the structure and function of mechanical ventilators. In addition, this text covers in depth: Anesthesia Delivery Electrosurgical Units and Devices Biomedical Lasers Measuring Cellular Traction Forces Blood G...

  18. Proceedings of the symposium on advanced measurement techniques and instrumentation: abstract book

    International Nuclear Information System (INIS)

    Kale, Y.B.; Kushwaha, M.; Somkuwar, S.P.; Ajayakumar, S.; Sampathkumar, R.

    2011-01-01

    In order to consolidate the existing knowledge base and further to focus on the future directions of the field of advanced measurement techniques and instrumentation, Bhabha Atomic Research Centre has organized a three-day symposium on 'Advanced Measurement Techniques and Instrumentation' at Multi Purpose Hall, Training School Hostel, Anushaktinagar, Mumbai during February 02-04, 2011. The symposium is aimed at providing a forum to discuss the emerging trends and challenges ahead in the important area of measurement science and technology. This is a unique symposium, which brings together scientists and engineers from all disciplines and provides them a platform for close interaction to exchange ideas, methodologies and expertise, which is extremely important for synergic growth of this field. The symposium consists of 27 talks, which include keynote address, plenary and invited talks, and 63 contributory papers. The abstracts of these papers are brought to you in this volume. Readers may observe that the scientific programme of the symposium covers a wide ranging issues including advanced scientific concepts in measurements, instrumentation strategies, mathematical techniques and development of devices for applications in fundamental physics, astrophysics, fusion plasmas, nuclear reactors, accelerators, environment, chemical and biological sciences, and national security. Papers relevant to INIS are indexed separately

  19. The sound of oscillating air jets: Physics, modeling and simulation in flute-like instruments

    Science.gov (United States)

    de La Cuadra, Patricio

    Flute-like instruments share a common mechanism that consists of blowing across one open end of a resonator to produce an air jet that is directed towards a sharp edge. Analysis of its operation involves various research fields including fluid dynamics, aero-acoustics, and physics. An effort has been made in this study to extend this description from instruments with fixed geometry like recorders and organ pipes to flutes played by the lips. An analysis of the jet's response to a periodic excitation is the focus of this study, as are the parameters under the player's control in forming the jet. The jet is excited with a controlled excitation consisting of two loudspeakers in opposite phase. A Schlieren system is used to visualize the jet, and image detection algorithms are developed to extract quantitative information from the images. In order to study the behavior of jets observed in different flute-like instruments, several geometries of the excitation and jet shapes are studied. The obtained data is used to propose analytical models that correctly fit the observed measurements and can be used for simulations. The control exerted by the performer on the instrument is of crucial importance in the quality of the sound produced for a number of flute-like instruments. The case of the transverse flute is experimentally studied. An ensemble of control parameters are measured and visualized in order to describe some aspects of the subtle control attained by an experienced flautist. Contrasting data from a novice flautist are compared. As a result, typical values for several non-dimensional parameters that characterize the normal operation of the instrument have been measured, and data to feed simulations has been collected. The information obtained through experimentation is combined with research developed over the last decades to put together a time-domain simulation. The model proposed is one-dimensional and driven by a single physical input. All the variables in the

  20. An Observational Study of Score Study Practices among Undergraduate Instrumental Music Education Majors

    Science.gov (United States)

    Silvey, Brian A.; Montemayor, Mark; Baumgartner, Christopher M.

    2017-01-01

    The purpose of this study was to investigate undergraduate instrumental music education majors' score study practices as they related to the effectiveness of their simulated conducting. Participants (N = 30) were video recorded in two sessions in which they completed a 20-min score study session and a simulated conducting performance. In the first…

  1. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  2. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor

  3. Current direction, temperature, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 1977-09-14 to 1981-04-20 (NODC Accession 8100585)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, temperature, salinity, and other data were collected using moored current meter casts and other instruments in the Gulf of Mexico from September...

  4. Development of a video-simulation instrument for assessing cognition in older adults.

    Science.gov (United States)

    Ip, Edward H; Barnard, Ryan; Marshall, Sarah A; Lu, Lingyi; Sink, Kaycee; Wilson, Valerie; Chamberlain, Dana; Rapp, Stephen R

    2017-12-06

    Commonly used methods to assess cognition, such as direct observation, self-report, or neuropsychological testing, have significant limitations. Therefore, a novel tablet computer-based video simulation was created with the goal of being valid, reliable, and easy to administer. The design and implementation of the SIMBAC (Simulation-Based Assessment of Cognition) instrument is described in detail, as well as informatics "lessons learned" during development. The software emulates 5 common instrumental activities of daily living (IADLs) and scores participants' performance. The modules were chosen by a panel of geriatricians based on relevance to daily functioning and ability to be modeled electronically, and included facial recognition, pairing faces with the correct names, filling a pillbox, using an automated teller machine (ATM), and automatic renewal of a prescription using a telephone. Software development included three phases 1) a period of initial design and testing (alpha version), 2) pilot study with 10 cognitively normal and 10 cognitively impaired adults over the age of 60 (beta version), and 3) larger validation study with 162 older adults of mixed cognitive status (release version). Results of the pilot study are discussed in the context of refining the instrument; full results of the validation study are reported in a separate article. In both studies, SIMBAC reliably differentiated controls from persons with cognitive impairment, and performance was highly correlated with Mini Mental Status Examination (MMSE) score. Several informatics challenges emerged during software development, which are broadly relevant to the design and use of electronic assessment tools. Solutions to these issues, such as protection of subject privacy and safeguarding against data loss, are discussed in depth. Collection of fine-grained data (highly detailed information such as time spent reading directions and the number of taps on screen) is also considered. SIMBAC provides

  5. Direct observations of the charge states of low energy solar particles

    Science.gov (United States)

    Gloeckler, G.; Fan, C. Y.; Hovestadt, D.

    1974-01-01

    The charge states of carbon and oxygen of solar origin have been measured directly in interplanetary space. At 100 keV per nucleon the C(+5)/C(+6) and O(+7)/O(+8) ratios are 1.8 and 1.6, respectively. Abundance ratios of low energy heavy nuclei to He are found which are significantly larger than the corresponding photospheric values. The enhancement of O/He is 35, and both Si/He and Fe/He are overabundant by a factor of 100. To explain these observations a mechanism is proposed which first preferentially accelerates heavy ions and is followed by either storage of these ions in the coronal regions or strong adiabatic deceleration.

  6. Advances in instrumentation for nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    S. D. Pain

    2014-04-01

    Full Text Available The study of the nuclear physics properties which govern energy generation and nucleosynthesis in the astrophysical phenomena we observe in the universe is crucial to understanding how these objects behave and how the chemical history of the universe evolved to its present state. The low cross sections and short nuclear lifetimes involved in many of these reactions make their experimental determination challenging, requiring developments in beams and instrumentation. A selection of developments in nuclear astrophysics instrumentation is discussed, using as examples projects involving the nuclear astrophysics group at Oak Ridge National Laboratory. These developments will be key to the instrumentation necessary to fully exploit nuclear astrophysics opportunities at the Facility for Rare Isotope Beams which is currently under construction.

  7. Direct observation of TALE protein dynamics reveals a two-state search mechanism.

    Science.gov (United States)

    Cuculis, Luke; Abil, Zhanar; Zhao, Huimin; Schroeder, Charles M

    2015-06-01

    Transcription activator-like effector (TALE) proteins are a class of programmable DNA-binding proteins for which the fundamental mechanisms governing the search process are not fully understood. Here we use single-molecule techniques to directly observe TALE search dynamics along DNA templates. We find that TALE proteins are capable of rapid diffusion along DNA using a combination of sliding and hopping behaviour, which suggests that the TALE search process is governed in part by facilitated diffusion. We also observe that TALE proteins exhibit two distinct modes of action during the search process-a search state and a recognition state-facilitated by different subdomains in monomeric TALE proteins. Using TALE truncation mutants, we further demonstrate that the N-terminal region of TALEs is required for the initial non-specific binding and subsequent rapid search along DNA, whereas the central repeat domain is required for transitioning into the site-specific recognition state.

  8. Advance on solar instrumentation in China

    Science.gov (United States)

    Yan, Yihua

    2015-08-01

    The solar observing facilities in China are introduced with the emphasis on the development in recent years and future plans for both ground and space-based solar instrumentations. The recent solar instruments are as follows: A new generation Chinese Spectral Radioreliograph (CSRH) has been constructed at Mingantu Observing Station in Zhengxiangbaiqi, inner Mongolia of China since 2013 and is in test observations now. CSRH has two arrays with 40 × 4.5 m and 60 × 2 m parabolic antennas covering 0.4-2 GHz and 2-15 GHz frequency range. CSRH is renamed as MUSER (Mingantu Ultrawide Spectral Radiheliograph) after its accomplishment. A new 1 m vacuum solar telescope (NVST) has been installed in 2010 at Fuxian lake, 60 km away from Kunming, Yunana. At present it is the best seeing place in China. A new telescope called ONSET (Optical and NIR Solar Eruption Tracer) has been established at the same site as NVST in 2011. ONSET has been put into operation since 2013. For future ground-based plans, Chinese Giant Solar Telescope (CGST) with spatial resolution equivalent to 8m and effective area of 5m full-aperture telescope has been proposed and was formally listed into the National Plans of Major Science & Technology Infrastructures in China. The pre-study and site survey for CGST have been pursued. A 1-meter mid-infrared telescope for precise measurement of the solar magnetic field has been funded by NSFC in 2014 as a national major scientific instrument development project. This project will develop the first mid-infrared solar magnetic observation instrument in the world aiming at increasing the precision of the transverse magnetic field measurement by one order of magnitude. For future ground-based plans, we promote the Deep-space Solar Observatory (DSO) with 1-m aperture telescope to be formally funded. The ASO-S (an Advanced Space-based Solar Observatory) has been supported in background phase by Space Science Program as a small mission. Other related space solar

  9. Comparison of instruments for dual-energy X-ray bone mineral densitometry

    International Nuclear Information System (INIS)

    Vainio, P.; Koski, E.; Ahonen, E.; Leinonen, K.; Sievaenen, H.

    1992-01-01

    While bone mineral densitometry has become a common laboratory test, it is important to pay attention to the compatability of the results from different instruments. In this study results from three commercially available bone densitometers are compared using both patient and phantom studies. Overall correlation between instruments was good but there were systematic discrepancies in the results. The three instruments provided bone mineral density (BMD) values that differed by as much as 13.5% due to differences as large as 6% in bone mineral content and as large as 7% in bone area. Thus, the BMD values obtained from different manufacturers' instruments are not directly comparable. (author)

  10. Balances instruments, manufacturers, history

    CERN Document Server

    Robens, Erich; Kiefer, Susanne

    2014-01-01

    The book deals mainly with direct mass determination by means of a conventional balances. It covers the history of the balance from the beginnings in Egypt earlier than 3000 BC to recent developments. All balance types are described with emphasis on scientific balances. Methods of indirect mass determination, which are applied to very light objects like molecules and the basic particles of matter and celestial bodies, are included.  As additional guidance, today’s manufacturers are listed and the profile of important companies is reviewed. Several hundred photographs, reproductions and drawings show instruments and their uses. This book includes commercial weighing instruments for merchandise and raw materials in workshops as well as symbolic weighing in the ancient Egyptian’s ceremony of ‘Weighing of the Heart’, the Greek fate balance, the Roman  Justitia, Juno Moneta and Middle Ages scenes of the Last Judgement with Jesus or St. Michael and of modern balances. The photographs are selected from the...

  11. Spitzer/MIPS 24 {mu}m OBSERVATIONS OF HD 209458b: THREE ECLIPSES, TWO AND A HALF TRANSITS, AND A PHASE CURVE CORRUPTED BY INSTRUMENTAL SENSITIVITY VARIATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Crossfield, Ian J. M. [Department of Physics, and Astronomy, University of California, Los Angeles, CA 90095 (United States); Knutson, Heather [Caltech Division of Geological and Planetary Sciences, Pasadena, CA 91125 (United States); Fortney, Jonathan [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Showman, Adam P. [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Cowan, Nicolas B. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Deming, Drake, E-mail: ianc@astro.ucla.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2012-06-20

    We report the results of an analysis of all Spitzer/MIPS 24 {mu}m observations of HD 209458b, one of the touchstone objects in the study of irradiated giant planet atmospheres. Altogether, we analyze two and a half transits, three eclipses, and a 58 hr near-continuous observation designed to detect the planet's thermal phase curve. The results of our analysis are: (1) a mean transit depth of 1.484% {+-} 0.033%, consistent with previous measurements and showing no evidence of variability in transit depth at the 3% level. (2) A mean eclipse depth of 0.338% {+-} 0.026%, somewhat higher than that previously reported for this system; this new value brings observations into better agreement with models. From this eclipse depth we estimate an average dayside brightness temperature of 1320 {+-} 80 K; the dayside flux shows no evidence of variability at the 12% level. (3) Eclipses in the system occur 32 {+-} 129 s earlier than would be expected from a circular orbit, which constrains the orbital quantity ecos {omega} to be 0.00004 {+-} 0.00033. This result is fully consistent with a circular orbit and sets an upper limit of 140 m s{sup -1} (3{sigma}) on any eccentricity-induced velocity offset during transit. The phase curve observations (including one of the transits) exhibit an anomalous trend similar to the detector ramp seen in previous Spitzer/IRAC observations; by modeling this ramp we recover the system parameters for this transit. The long-duration photometry which follows the ramp and transit exhibits a gradual {approx}0.2% decrease in flux over {approx}30 hr. This effect is similar to that seen in pre-launch calibration data taken with the 24 {mu}m array and is better fit by an instrumental model than a model invoking planetary emission. The large uncertainties associated with this poorly understood, likely instrumental effect prevent us from usefully constraining the planet's thermal phase curve. Our observations highlight the need for a thorough

  12. Policy instruments for pollution control in developing countries.

    Science.gov (United States)

    Eskeland, G S; Jimenez, E

    1992-07-01

    Economic development in developing countries must be accomplished in a manner that does not harm the environment with pollution. Pollution harms human health and productivity. Thus appropriate strategies must be developed that promote growth, reduce poverty, and protect the environment. A review of the current literature is performed with attention paid to cost-effective interventions i.e., comparisons of regulatory and fiscal instruments that can reduce pollution. Both direct instruments (like effluent charges, tradable permits, deposit refund systems, emission regulations and regulatory agency funding for purification, cleanup, waste disposal, and enforcement) and indirect instruments (like input/output taxes and subsidies, substitution subsidies, abatement inputs, regulation of equipment and processes, and development of clean technologies) are examined. Examples are used to show how indirect instruments can be successful when monitoring and enforcement is too costly. A careful examination of distributive concerns illustrate how the effect on the poor may need particular consideration and how groups with vested interests can help evaluate the probable success of such interventions.

  13. Development of direct observation aparatus of coal carbonization process by x-ray computerized tomography method

    International Nuclear Information System (INIS)

    Sakawa, Mitsuhiro; Shiraishi, Katsuhiko; Sakurai, Yoshihisa; Shimomura, Yasuto

    1987-01-01

    Coke production by chamber ovens has a long history and efforts are being continued to make the manufacturing process efficient and to preserve the environment. In this production by this method, however, it is hardly possible to obtain direct information during coal carbonization. Since the elements that compose coal and coke are carbon, hydrogen, oxygen, etc. and are similar to those of the human body, authors has developed a coke oven that permits the direct observation of the coal carbonization process using a soft X-ray computerized tomography (CT) apparatus used in medical treatment. The following phenomena can be observed as images by the coke oven for the CT method : 1) Changes in the bulk density of charge coal (including the difference in the water content), 2) Width of the plastic layer and movement of the plastic layer in the coke oven chamber, 3) Expansion and shrinkage of the charge in the coke oven chamber, 4) Initiation and growth of cracks. (author)

  14. Instrumentation for high-frequency meteorological observations from research vessel

    Digital Repository Service at National Institute of Oceanography (India)

    VijayKumar, K.; Khalap, S.; Mehra, P.

    Ship provides an attractive platform from which high-frequency meteorological observations (e.g., wind components, water vapor density, and air temperature) can be made accurately. However, accurate observations of meteorological variables depend...

  15. 8 years of Solar Spectral Irradiance Observations from the ISS with the SOLAR/SOLSPEC Instrument

    Science.gov (United States)

    Damé, L.; Bolsée, D.; Meftah, M.; Irbah, A.; Hauchecorne, A.; Bekki, S.; Pereira, N.; Cessateur, G.; Marchand, M.; Thiéblemont, R.; Foujols, T.

    2016-12-01

    Accurate measurements of Solar Spectral Irradiance (SSI) are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry). The acquisition of a top of atmosphere reference solar spectrum and of its temporal and spectral variability during the unusual solar cycle 24 is of prime interest for these studies. These measurements are performed since April 2008 with the SOLSPEC spectro-radiometer from the far ultraviolet to the infrared (166 nm to 3088 nm). This instrument, developed under a fruitful LATMOS/BIRA-IASB collaboration, is part of the Solar Monitoring Observatory (SOLAR) payload, externally mounted on the Columbus module of the International Space Station (ISS). The SOLAR mission, with its actual 8 years duration, will cover almost the entire solar cycle 24. We present here the in-flight operations and performances of the SOLSPEC instrument, including the engineering corrections, calibrations and improved know-how procedure for aging corrections. Accordingly, a SSI reference spectrum from the UV to the NIR will be presented, together with its UV variability, as measured by SOLAR/SOLSPEC. Uncertainties on these measurements and comparisons with other instruments will be briefly discussed.

  16. Realistic Simulations of Coronagraphic Observations with WFIRST

    Science.gov (United States)

    Rizzo, Maxime; Zimmerman, Neil; Roberge, Aki; Lincowski, Andrew; Arney, Giada; Stark, Chris; Jansen, Tiffany; Turnbull, Margaret; WFIRST Science Investigation Team (Turnbull)

    2018-01-01

    We present a framework to simulate observing scenarios with the WFIRST Coronagraphic Instrument (CGI). The Coronagraph and Rapid Imaging Spectrograph in Python (crispy) is an open-source package that can be used to create CGI data products for analysis and development of post-processing routines. The software convolves time-varying coronagraphic PSFs with realistic astrophysical scenes which contain a planetary architecture, a consistent dust structure, and a background field composed of stars and galaxies. The focal plane can be read out by a WFIRST electron-multiplying CCD model directly, or passed through a WFIRST integral field spectrograph model first. Several elementary post-processing routines are provided as part of the package.

  17. The cost-effectiveness of directly observed highly-active antiretroviral therapy in the third trimester in HIV-infected pregnant women.

    Directory of Open Access Journals (Sweden)

    Caitlin J McCabe

    Full Text Available BACKGROUND: In HIV-infected pregnant women, viral suppression prevents mother-to-child HIV transmission. Directly observed highly-active antiretroviral therapy (HAART enhances virological suppression, and could prevent transmission. Our objective was to project the effectiveness and cost-effectiveness of directly observed administration of antiretroviral drugs in pregnancy. METHODS AND FINDINGS: A mathematical model was created to simulate cohorts of one million asymptomatic HIV-infected pregnant women on HAART, with women randomly assigned self-administered or directly observed antiretroviral therapy (DOT, or no HAART, in a series of Monte Carlo simulations. Our primary outcome was the quality-adjusted life expectancy in years (QALY of infants born to HIV-infected women, with the rates of Caesarean section and HIV-transmission after DOT use as intermediate outcomes. Both self-administered HAART and DOT were associated with decreased costs and increased life-expectancy relative to no HAART. The use of DOT was associated with a relative risk of HIV transmission of 0.39 relative to conventional HAART; was highly cost-effective in the cohort as a whole (cost-utility ratio $14,233 per QALY; and was cost-saving in women whose viral loads on self-administered HAART would have exceeded 1000 copies/ml. Results were stable in wide-ranging sensitivity analyses, with directly observed therapy cost-saving or highly cost-effective in almost all cases. CONCLUSIONS: Based on the best available data, programs that optimize adherence to HAART through direct observation in pregnancy have the potential to diminish mother-to-child HIV transmission in a highly cost-effective manner. Targeted use of DOT in pregnant women with high viral loads, who could otherwise receive self-administered HAART would be a cost-saving intervention. These projections should be tested with randomized clinical trials.

  18. The cost-effectiveness of directly observed highly-active antiretroviral therapy in the third trimester in HIV-infected pregnant women.

    Science.gov (United States)

    McCabe, Caitlin J; Goldie, Sue J; Fisman, David N

    2010-04-13

    In HIV-infected pregnant women, viral suppression prevents mother-to-child HIV transmission. Directly observed highly-active antiretroviral therapy (HAART) enhances virological suppression, and could prevent transmission. Our objective was to project the effectiveness and cost-effectiveness of directly observed administration of antiretroviral drugs in pregnancy. A mathematical model was created to simulate cohorts of one million asymptomatic HIV-infected pregnant women on HAART, with women randomly assigned self-administered or directly observed antiretroviral therapy (DOT), or no HAART, in a series of Monte Carlo simulations. Our primary outcome was the quality-adjusted life expectancy in years (QALY) of infants born to HIV-infected women, with the rates of Caesarean section and HIV-transmission after DOT use as intermediate outcomes. Both self-administered HAART and DOT were associated with decreased costs and increased life-expectancy relative to no HAART. The use of DOT was associated with a relative risk of HIV transmission of 0.39 relative to conventional HAART; was highly cost-effective in the cohort as a whole (cost-utility ratio $14,233 per QALY); and was cost-saving in women whose viral loads on self-administered HAART would have exceeded 1000 copies/ml. Results were stable in wide-ranging sensitivity analyses, with directly observed therapy cost-saving or highly cost-effective in almost all cases. Based on the best available data, programs that optimize adherence to HAART through direct observation in pregnancy have the potential to diminish mother-to-child HIV transmission in a highly cost-effective manner. Targeted use of DOT in pregnant women with high viral loads, who could otherwise receive self-administered HAART would be a cost-saving intervention. These projections should be tested with randomized clinical trials.

  19. Tomographic intensity mapping versus galaxy surveys: observing the Universe in H α emission with new generation instruments

    Science.gov (United States)

    Silva, B. Marta; Zaroubi, Saleem; Kooistra, Robin; Cooray, Asantha

    2018-04-01

    The H α line emission is an important probe for a number of fundamental quantities in galaxies, including their number density, star formation rate (SFR), and overall gas content. A new generation of low-resolution intensity mapping (IM) probes, e.g. SPHEREx and CDIM, will observe galaxies in H α emission over a large fraction of the sky from the local Universe till a redshift of z ˜ 6 - 10, respectively. This will also be the target line for observations by the high-resolution Euclid and WFIRST instruments in the z ˜ 0.7-2 redshift range. In this paper, we estimate the intensity and power spectra of the H α line in the z ˜ 0-5 redshift range using observed line luminosity functions (LFs), when possible, and simulations, otherwise. We estimate the significance of our predictions by accounting for the modelling uncertainties (e.g. SFR, extinction, etc.) and observational contamination. We find that IM surveys can make a statistical detection of the full H α emission between z ˜ 0.8 and 5. Moreover, we find that the high-frequency resolution and the sensitivity of the planned CDIM surveys allow for the separation of H α emission from several interloping lines. We explore ways to use the combination of these line intensities to probe galaxy properties. As expected, our study indicates that galaxy surveys will only detect bright galaxies that contribute up to a few per cent of the overall H α intensity. However, these surveys will provide important constraints on the high end of the H α LF and put strong constraints on the active galactic nucleus LF.

  20. 26 CFR 1.508-3 - Governing instruments.

    Science.gov (United States)

    2010-04-01

    ... foundation shall not be exempt from taxation under section 501(a) for a taxable year unless by the end of... described in section 4947(a)) that its governing instrument contains no mandatory directions which conflict...(e), such organization will not be exempt from taxation. (6) Retroactive application to grants or...

  1. Current direction, chemical, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 1980-12-13 to 1982-03-01 (NODC Accession 8200097)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, chemical, and other data were collected using moored current meter casts and other instruments in the Gulf of Mexico from December 13, 1980 to...

  2. The use of fiscal instruments in European environmental policy: review essay

    Energy Technology Data Exchange (ETDEWEB)

    Deketelaere, K. [University of Leuven, Leuven (Belgium). Inst. for Environmental and Energy Law

    1999-08-01

    Once a government has defined its environmental goals, it can execute them by means of different policy instruments. The following environmental policy instruments can be distinguished: (1) instruments of social regulation, such as transfer of information (environmental education, environmental labels, environmental impact reports, etc.), self-regulation (environmental policy agreements, self-control), and environmental care systems; (2) instruments of financial aid, such as subsidies, soft loans, and fiscal incentives (investment deduction, tax reduction and tax exemption); (3) instruments of planning such as macro-planning and micro-planning, binding planning and non-binding planning, sectoral planning and non-sectoral planning; (4) instruments of direct regulation, such as permits, prohibitions and restrictions, and different sorts of requirements (quality-demands, product-demands, emission-demands, design demands, construction demands and production demands); (5) instruments of market regulation, such as liability rules, marketable emission rights, deposit and refund system, enforcement incentives and environmental levies. In this contribution, each of these environmental policy instruments is analyzed in general. After that, the instruments which have already been used in European environmental policy are examined. Finally, attention paid to the use of fiscal instruments in European environmental policy. 80 refs.

  3. Cloud-edge mixing: Direct numerical simulation and observations in Indian Monsoon clouds

    Science.gov (United States)

    Kumar, Bipin; Bera, Sudarsan; Prabha, Thara V.; Grabowski, Wojceich W.

    2017-03-01

    A direct numerical simulation (DNS) with the decaying turbulence setup has been carried out to study cloud-edge mixing and its impact on the droplet size distribution (DSD) applying thermodynamic conditions observed in monsoon convective clouds over Indian subcontinent during the Cloud Aerosol Interaction and Precipitation Enhancement EXperiment (CAIPEEX). Evaporation at the cloud-edges initiates mixing at small scale and gradually introduces larger-scale fluctuations of the temperature, moisture, and vertical velocity due to droplet evaporation. Our focus is on early evolution of simulated fields that show intriguing similarities to the CAIPEEX cloud observations. A strong dilution at the cloud edge, accompanied by significant spatial variations of the droplet concentration, mean radius, and spectral width, are found in both the DNS and in observations. In DNS, fluctuations of the mean radius and spectral width come from the impact of small-scale turbulence on the motion and evaporation of inertial droplets. These fluctuations decrease with the increase of the volume over which DNS data are averaged, as one might expect. In cloud observations, these fluctuations also come from other processes, such as entrainment/mixing below the observation level, secondary CCN activation, or variations of CCN activation at the cloud base. Despite large differences in the spatial and temporal scales, the mixing diagram often used in entrainment/mixing studies with aircraft data is remarkably similar for both DNS and cloud observations. We argue that the similarity questions applicability of heuristic ideas based on mixing between two air parcels (that the mixing diagram is designed to properly represent) to the evolution of microphysical properties during turbulent mixing between a cloud and its environment.

  4. Quality assurance of nuclear medicine instruments

    International Nuclear Information System (INIS)

    Soni, P.S.

    1998-01-01

    Quality assurance in nuclear medicine refers collectively to all aspects of a nuclear medicine programme that may contribute directly or indirectly to the quality of the results obtained. For examples, patients scheduling; preparation and dispensing of radiopharmaceutical; the protection of patients, staff and the general public against radiation hazards and accidents caused by faulty instruments; methodology, data interpretation and record keeping

  5. The FluxCompensator: Making Radiative Transfer Models of Hydrodynamical Simulations Directly Comparable to Real Observations

    Science.gov (United States)

    Koepferl, Christine M.; Robitaille, Thomas P.

    2017-11-01

    When modeling astronomical objects throughout the universe, it is important to correctly treat the limitations of the data, for instance finite resolution and sensitivity. In order to simulate these effects, and to make radiative transfer models directly comparable to real observations, we have developed an open-source Python package called the FluxCompensator that enables the post-processing of the output of 3D Monte Carlo radiative transfer codes, such as Hyperion. With the FluxCompensator, realistic synthetic observations can be generated by modeling the effects of convolution with arbitrary point-spread functions, transmission curves, finite pixel resolution, noise, and reddening. Pipelines can be applied to compute synthetic observations that simulate observatories, such as the Spitzer Space Telescope or the Herschel Space Observatory. Additionally, this tool can read in existing observations (e.g., FITS format) and use the same settings for the synthetic observations. In this paper, we describe the package as well as present examples of such synthetic observations.

  6. The FluxCompensator: Making Radiative Transfer Models of Hydrodynamical Simulations Directly Comparable to Real Observations

    Energy Technology Data Exchange (ETDEWEB)

    Koepferl, Christine M.; Robitaille, Thomas P., E-mail: koepferl@usm.lmu.de [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2017-11-01

    When modeling astronomical objects throughout the universe, it is important to correctly treat the limitations of the data, for instance finite resolution and sensitivity. In order to simulate these effects, and to make radiative transfer models directly comparable to real observations, we have developed an open-source Python package called the FluxCompensator that enables the post-processing of the output of 3D Monte Carlo radiative transfer codes, such as Hyperion. With the FluxCompensator, realistic synthetic observations can be generated by modeling the effects of convolution with arbitrary point-spread functions, transmission curves, finite pixel resolution, noise, and reddening. Pipelines can be applied to compute synthetic observations that simulate observatories, such as the Spitzer Space Telescope or the Herschel Space Observatory . Additionally, this tool can read in existing observations (e.g., FITS format) and use the same settings for the synthetic observations. In this paper, we describe the package as well as present examples of such synthetic observations.

  7. PCA determination of the radiometric noise of high spectral resolution infrared observations from spectral residuals: Application to IASI

    Science.gov (United States)

    Serio, C.; Masiello, G.; Camy-Peyret, C.; Jacquette, E.; Vandermarcq, O.; Bermudo, F.; Coppens, D.; Tobin, D.

    2018-02-01

    The problem of characterizing and estimating the instrumental or radiometric noise of satellite high spectral resolution infrared spectrometers directly from Earth observations is addressed in this paper. An approach has been developed, which relies on the Principal Component Analysis (PCA) with a suitable criterion to select the optimal number of PC scores. Different selection criteria have been set up and analysed, which is based on the estimation theory of Least Squares and/or Maximum Likelihood Principle. The approach is independent of any forward model and/or radiative transfer calculations. The PCA is used to define an orthogonal basis, which, in turn, is used to derive an optimal linear reconstruction of the observations. The residual vector that is the observation vector minus the calculated or reconstructed one is then used to estimate the instrumental noise. It will be shown that the use of the spectral residuals to assess the radiometric instrumental noise leads to efficient estimators, which are largely independent of possible departures of the true noise from that assumed a priori to model the observational covariance matrix. Application to the Infrared Atmospheric Sounder Interferometer (IASI) has been considered. A series of case studies has been set up, which make use of IASI observations. As a major result, the analysis confirms the high stability and radiometric performance of IASI. The approach also proved to be efficient in characterizing noise features due to mechanical micro-vibrations of the beam splitter of the IASI instrument.

  8. Detecting frontal ablation processes from direct observations of submarine terminus morphology

    Science.gov (United States)

    Fried, M.; Carroll, D.; Catania, G. A.; Sutherland, D. A.; Stearns, L. A.; Bartholomaus, T. C.; Shroyer, E.; Nash, J. D.

    2017-12-01

    Tidewater glacier termini couple glacier and ocean systems. Subglacial discharge emerging from the terminus produces buoyant plumes that modulate submarine melting, calving, fjord circulation and, in turn, changes in ice dynamics from back-stress perturbations. However, the absence of critical observational data at the ice-ocean interface limits plume and, by extension, melt models from incorporating realistic submarine terminus face morphologies and assessing their impact on terminus behavior at tidewater glaciers. Here we present a comprehensive inventory and characterization of submarine terminus face shapes from a side-looking, multibeam echo sounding campaign across Kangerdlugssuaq Sermerssua glacier, central-west Greenland. We combine these observations with in-situ measurements of ocean stratification and remotely sensed subglacial discharge, terminus positions, ice velocity, and ice surface datasets to infer the spectrum of processes sculpting the submarine terminus face. Subglacial discharge outlet locations are confirmed through observations of sediment plumes, localized melt-driven undercutting of the terminus face, and bathymetry of the adjacent seafloor. From our analysis, we differentiate terminus morphologies resulting from submarine melt and calving and assess the contribution of each process to the net frontal ablation budget. Finally, we constrain a plume model using direct observations of the submarine terminus face and conduit geometry. Plume model simulations demonstrate that the majority of discharge outlets are fed by small discharge fluxes, suggestive of a distributed subglacial hydrologic system. Outlets with the largest, concentrated discharge fluxes are morphologically unique and strongly control seasonal terminus position. At these locations, we show that the spatiotemporal pattern of terminus retreat is well correlated with time periods when local melt rate exceeds ice velocity.

  9. Current direction, chemical, phytoplankton, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 1977-11-21 to 1981-09-09 (NODC Accession 8200008)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, chemical, phytoplankton, zooplankton, and other data were collected using moored current meter casts and other instruments in the Gulf of Mexico...

  10. Direct Observation of Magnetocrystalline Anisotropy Tuning Magnetization Configurations in Uniaxial Magnetic Nanomaterials

    KAUST Repository

    Zhu, Shimeng; Fu, Jiecai; Li, Hongli; Zhu, Liu; Hu, Yang; Xia, Weixing; Zhang, Xixiang; Peng, Yong; Zhang, Junli

    2018-01-01

    Discovering the effect of magnetic anisotropy on the magnetization configurations of magnetic nanomaterials is essential and significant for not only enriching the fundamental knowledge of magnetics but also facilitating the designs of desired magnetic nanostructures for diverse technological applications, such as data storage devices, spintronic devices, and magnetic nanosensors. Herein, we present a direct observation of magnetocrystalline anisotropy tuning magnetization configurations in uniaxial magnetic nanomaterials with hexagonal structure by means of three modeled samples. The magnetic configuration in polycrystalline BaFe12O19 nanoslice is a curling structure, revealing that the effect of magnetocrystalline anisotropy in uniaxial magnetic nanomaterials can be broken by forming an amorphous structure or polycrystalline structure with tiny grains. Both single crystalline BaFe12O19 nanoslice and individual particles of single-particle-chain BaFe12O19 nanowire appear in a single domain state, revealing a dominant role of magnetocrystalline anisotropy in the magnetization configuration of uniaxial magnetic nanomaterials. These observations are further verified by micromagnetic computational simulations.

  11. Direct Observation of Magnetocrystalline Anisotropy Tuning Magnetization Configurations in Uniaxial Magnetic Nanomaterials

    KAUST Repository

    Zhu, Shimeng

    2018-03-20

    Discovering the effect of magnetic anisotropy on the magnetization configurations of magnetic nanomaterials is essential and significant for not only enriching the fundamental knowledge of magnetics but also facilitating the designs of desired magnetic nanostructures for diverse technological applications, such as data storage devices, spintronic devices, and magnetic nanosensors. Herein, we present a direct observation of magnetocrystalline anisotropy tuning magnetization configurations in uniaxial magnetic nanomaterials with hexagonal structure by means of three modeled samples. The magnetic configuration in polycrystalline BaFe12O19 nanoslice is a curling structure, revealing that the effect of magnetocrystalline anisotropy in uniaxial magnetic nanomaterials can be broken by forming an amorphous structure or polycrystalline structure with tiny grains. Both single crystalline BaFe12O19 nanoslice and individual particles of single-particle-chain BaFe12O19 nanowire appear in a single domain state, revealing a dominant role of magnetocrystalline anisotropy in the magnetization configuration of uniaxial magnetic nanomaterials. These observations are further verified by micromagnetic computational simulations.

  12. Direct observation of interfacial Au atoms on TiO₂ in three dimensions.

    Science.gov (United States)

    Gao, Wenpei; Sivaramakrishnan, Shankar; Wen, Jianguo; Zuo, Jian-Min

    2015-04-08

    Interfacial atoms, which result from interactions between the metal nanoparticles and support, have a large impact on the physical and chemical properties of nanoparticles. However, they are difficult to observe; the lack of knowledge has been a major obstacle toward unraveling their role in chemical transformations. Here we report conclusive evidence of interfacial Au atoms formed on the rutile (TiO2) (110) surfaces by activation using high-temperature (∼500 °C) annealing in air. Three-dimensional imaging was performed using depth-sectioning enabled by aberration-corrected scanning transmission electron microscopy. Results show that the interface between Au nanocrystals and TiO2 (110) surfaces consists of a single atomic layer with Au atoms embedded inside Ti-O. The number of interfacial Au atoms is estimated from ∼1-8 in an interfacial atomic column. Direct impact of interfacial Au atoms is observed on an enhanced Au-TiO2 interaction and the reduction of surface TiO2; both are critical to Au catalysis.

  13. Mars Science Laboratory (MSL) - First Results of Pressure Observations

    Science.gov (United States)

    Harri, Ari-Matti; Kahanpää, Henrik; Kemppinen, Osku; Genzer, Maria; Gómez-Elvira, Javier; Haberle, Robert M.; Schmidt, Walter; Savijärvi, Hannu; Rodríquez-Manfredi, Jose Antonio; Rafkin, Scott; Polkko, Jouni; Richardson, Mark; Newman, Claire; de la Torre Juárez, Manuel; Martín-Torres, Javier; Paz Zorzano-Mier, Maria; Atlaskin, Evgeny; Kauhanen, Janne; Paton, Mark; Haukka, Harri

    2013-04-01

    The Mars Science laboratory (MSL) called Curiosity made a successful landing at Gale crater early August 2012. MSL has an environmental instrument package called the Rover Environmental Monitoring Station (REMS) as a part of its scientific payload. REMS comprises instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity, and UV measurements. The REMS instrument suite is described at length in [1]. We concentrate on describing the first results from the REMS pressure observations and comparison of the measurements with modeling results. The REMS pressure device is provided by the Finnish Meteorological Institute. It is based on silicon micro-machined capacitive pressure sensors developed by Vaisala Inc. The pressure device makes use of two transducer electronics sections placed on a single multi-layer PCB inside the REMS Instrument Control Unit (ICU) with a filter-protected ventilation inlet to the ambient atmosphere. The absolute accuracy of the pressure device (< 3 Pa) and zero-drift (< 1 Pa/year) enables the investigations of long term and seasonal cycles of the Martian atmosphere. The relative accuracy, or repeatability, in the diurnal time scale is < 1.5 Pa, less than 2 % of the observed diurnal pressure variation at the landing site. The pressure device has special sensors with very high precision (less than 0.2 Pa) that makes it a good tool to study short-term atmospheric phenomena, e.g., dust devils and other convective vortices. The observed MSL pressure data enable us to study both the long term and short-term phenomena of the Martian atmosphere. This would add knowledge of these phenomena to that gathered by earlier Mars missions and modeling experiments [2,3]. Pressure observations are revealing new information on the local atmosphere and climate at Gale crater, and will shed light on the mesoscale and micrometeorological phenomena. Pressure observations show also

  14. The resolution of TOF low-Q diffractometers: Instrumental, data acquisition and reduction factors

    International Nuclear Information System (INIS)

    Hjelm, R.P. Jr.

    1988-01-01

    The resolution of scattering vector, Q, in small-angle neutron scattering (SANS) measurements derives from uncertainties in scattered neutron wavelength and direction. The manner in which these are manifest on brod-band time-of-flight (TOF) spectrometers at pulsed sources is different from that for instruments using monochromated sources. In TOF instruments the uncertainties arise from the TOF measurement as well as the directional uncertainties due to collimation, finite sample and detector-element size that are present in any small-angle scattering instrument. Further, data from a TOF instrument must be mapped into Q space, and the strategy used to accomplish this affects the final resolution of the measurement. Thus for TOF-SANS instruments the question of resolution is more complicated than for instruments on monochromated sources. There is considerable flexibility in TOF data acquisition and Q mapping that can be utilized to optimize for intensity and Q resolution requirements of a particular measurement. In this work, present understanding of the effects of instrument geometry, TOF data acquisition and Q mapping strategies on the precision of the measurement is outlined. The goal is to establish guidelines on the best manner in which a particular measurement can be set up. Toward this end some new aspects are presented of optimal Q-mapping procedures, the effect of inelastic scattering on the measurement, and the calculation of instrument resolution functions. Some of these ideas are tested by comparison of simulations with measurement. (orig.)

  15. A direct observation the asteroid's structure from deep interior to regolith: why and how do it?

    Science.gov (United States)

    Herique, A.; Kofman, W. W.

    2013-12-01

    The internal structure of asteroids is still poorly known and has never been measured directly. Our knowledge is relying entirely on inferences from remote sensing observations of the surface, and theoretical modeling. Is the body a monolithic piece of rock or a rubble-pile, an aggregate of boulders held together by gravity and how much porosity it contains, both in the form of micro-scale or macro-scale porosity? What is the typical size of the constituent blocs? Are these blocs homogeneous or heterogeneous? Is the body a defunct or dormant comet and such MBC can become active? The body is covered by a regolith from whose properties remains largely unknown in term of depth, size distribution and spatial variation. Is resulting from fine particles re-accretion or from thermal fracturing? What are its coherent forces? How to model is thermal conductivity while this parameter is so important to estimate Yarkowsky and Yorp effects? Knowing asteroid deep interior and regolith structure is a key point for a better understanding of the asteroid accretion and dynamical evolution. There is no way to determine this from ground-based observation. Radar operating from a spacecraft is the only technique capable of achieving this science objective of characterizing the internal structure and heterogeneity from submetric to global scale for the science benefit as well as for the planetary defence and human exploration. The deep interior structure tomography requires low-frequency radar to penetrate throughout the complete body. The radar wave propagation delay and the received power are related to the complex dielectric permittivity (i.e to the composition and microporosity) and the small scale heterogeneities (scattering losses) while the spatial variation of the signal and the multiple paths provide information on the presence of heterogeneities (variations in composition or porosity), layers, ice lens. A partial coverage will provide "cuts" of the body when a dense coverage

  16. Direct observation of shear piezoelectricity in poly-l-lactic acid nanowires

    Directory of Open Access Journals (Sweden)

    Michael Smith

    2017-07-01

    Full Text Available Piezoelectric polymers are capable of interconverting mechanical and electrical energy, and are therefore candidate materials for biomedical applications such as sensors, actuators, and energy harvesters. In particular, nanowires of these materials are attractive as they can be unclamped, flexible and sensitive to small vibrations. Poly-l-lactic acid (PLLA nanowires have been investigated for their use in biological applications, but their piezoelectric properties have never been fully characterised, even though macroscopic films and fibres have been shown to exhibit shear piezoelectricity. This piezoelectric mode is particularly interesting for in vivo applications where shear forces are especially relevant, and is similar to what has been observed in natural materials such as bone and DNA. Here, using piezo-response force microscopy (PFM, we report the first direct observation of shear piezoelectricity in highly crystalline and oriented PLLA nanowires grown by a novel template-wetting method. Our results are validated using finite-element simulations and numerical analysis, which importantly and more generally allow for accurate interpretation of PFM signals in soft nanostructured materials. Our work opens up the possibility for the development of biocompatible and sustainable piezoelectric nanogenerators and sensors based on polymer nanowires.

  17. Direct observation of microtwin formation at crack tips in InP

    International Nuclear Information System (INIS)

    Vanderschaeve, G.; Caillard, D.; Peyrade, J.P.

    1992-01-01

    This paper reports that in brittle materials which contain cracks, stress concentrations arise at crack tips. At low temperatures, when the load is increased, brittle fracture happens for a critical stress intensity factor, which is an intrinsic material property, depending on the loading mode and on the cleavage plane. At higher temperatures dislocations may be emitted at the crack tip: a plastic zone is formed, which releases the stresses and increases the critical load for crack propagation. It is generally accepted that the brittle-to ductile transition is controlled directly or indirectly by dislocation mobility. During the course of an in situ transmission electron microscopy, study of dislocation mobility in the III-V compound InP, we have observed the nucleation at a crack tip and the propagation of partial dislocations of same Burgers vectors, resulting in a microtwinning of the crystal. Such an observation provides information on both the way stress relaxation occurs and the relative mobilities of the partial dislocations in this material. In spite of the importance of twin formation on the quality of the material used as substrate in semiconducting devices, this last point is rather poorly documented

  18. Direct observation of shear piezoelectricity in poly-l-lactic acid nanowires

    Science.gov (United States)

    Smith, Michael; Calahorra, Yonatan; Jing, Qingshen; Kar-Narayan, Sohini

    2017-07-01

    Piezoelectric polymers are capable of interconverting mechanical and electrical energy, and are therefore candidate materials for biomedical applications such as sensors, actuators, and energy harvesters. In particular, nanowires of these materials are attractive as they can be unclamped, flexible and sensitive to small vibrations. Poly-l-lactic acid (PLLA) nanowires have been investigated for their use in biological applications, but their piezoelectric properties have never been fully characterised, even though macroscopic films and fibres have been shown to exhibit shear piezoelectricity. This piezoelectric mode is particularly interesting for in vivo applications where shear forces are especially relevant, and is similar to what has been observed in natural materials such as bone and DNA. Here, using piezo-response force microscopy (PFM), we report the first direct observation of shear piezoelectricity in highly crystalline and oriented PLLA nanowires grown by a novel template-wetting method. Our results are validated using finite-element simulations and numerical analysis, which importantly and more generally allow for accurate interpretation of PFM signals in soft nanostructured materials. Our work opens up the possibility for the development of biocompatible and sustainable piezoelectric nanogenerators and sensors based on polymer nanowires.

  19. Results of Joint Observations of Jupiter's Atmosphere by Juno and a Network of Earth-Based Observing Stations

    Science.gov (United States)

    Orton, G. S.; Momary, T.; Tabataba-Vakili, F.; Bolton, S.; Levin, S.; Adriani, A.; Gladstone, G. R.; Hansen, C. J.; Janssen, M.

    2017-09-01

    Well over sixty investigator/instrument investigations are actively engaged in the support of the Juno mission. These observations range from X-ray to the radio wavelengths and involve both space- and ground-based astronomical facilities. These observations enhance and expand Juno measurements by (1) providing a context that expands the area covered by often narrow spatial coverage of Juno's instruments, (2) providing a temporal context that shows how phenomena evolve over Juno's 53-day orbit period, (3) providing observations in spectral ranges not covered by Juno's instruments, and (4) monitoring the behavior of external influences to Jupiter's magnetosphere. Intercommunication between the Juno scientists and the support program is maintained by reference to a Google table that describes the observation and its current status, as well as by occasional group emails. A non-interactive version of this invitation-only site is mirrored in a public site. Several sets of these supporting observations are described at this meeting.

  20. Aversive pavlovian responses affect human instrumental motor performance.

    Science.gov (United States)

    Rigoli, Francesco; Pavone, Enea Francesco; Pezzulo, Giovanni

    2012-01-01

    IN NEUROSCIENCE AND PSYCHOLOGY, AN INFLUENTIAL PERSPECTIVE DISTINGUISHES BETWEEN TWO KINDS OF BEHAVIORAL CONTROL: instrumental (habitual and goal-directed) and Pavlovian. Understanding the instrumental-Pavlovian interaction is fundamental for the comprehension of decision-making. Animal studies (as those using the negative auto-maintenance paradigm), have demonstrated that Pavlovian mechanisms can have maladaptive effects on instrumental performance. However, evidence for a similar effect in humans is scarce. In addition, the mechanisms modulating the impact of Pavlovian responses on instrumental performance are largely unknown, both in human and non-human animals. The present paper describes a behavioral experiment investigating the effects of Pavlovian conditioned responses on performance in humans, focusing on the aversive domain. Results showed that Pavlovian responses influenced human performance, and, similar to animal studies, could have maladaptive effects. In particular, Pavlovian responses either impaired or increased performance depending on modulator variables such as threat distance, task controllability, punishment history, amount of training, and explicit punishment expectancy. Overall, these findings help elucidating the computational mechanisms underlying the instrumental-Pavlovian interaction, which might be at the base of apparently irrational phenomena in economics, social behavior, and psychopathology.

  1. Aversive Pavlovian responses affect human instrumental motor performance

    Directory of Open Access Journals (Sweden)

    Francesco eRigoli

    2012-10-01

    Full Text Available In neuroscience and psychology, an influential perspective distinguishes between two kinds of behavioural control: instrumental (habitual and goal-directed and Pavlovian. Understanding the instrumental-Pavlovian interaction is fundamental for the comprehension of decision-making. Animal studies (as those using the negative auto-maintenance paradigm, have demonstrated that Pavlovian mechanisms can have maladaptive effects on instrumental performance. However, evidence for a similar effect in humans is scarce. In addition, the mechanisms modulating the impact of Pavlovian responses on instrumental performance are largely unknown, both in human and non-human animals. The present paper describes a behavioural experiment investigating the effects of Pavlovian conditioned responses on performance in humans, focusing on the aversive domain. Results showed that Pavlovian responses influenced human performance, and, similar to animal studies, could have maladaptive effects. In particular, Pavlovian responses either impaired or increased performance depending on modulator variables such as threat distance, task controllability, punishment history, amount of training, and explicit punishment expectancy. Overall, these findings help elucidating the computational mechanisms underlying the instrumental-Pavlovian interaction, which might be at the base of apparently irrational phenomena in economics, social behaviour, and psychopathology.

  2. Individual animals and other data collected using visual observations and other instruments from AIRCRAFT in the Arctic Ocean from 02 August 1979 to 18 October 1982 (NODC Accession 8400149)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Individual animals and other data were collected using visual observations and other instruments in the Arctic Ocean by AIRCRAFT. Data were collected from 02 August...

  3. Current direction, chemical, zooplankton, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 1978-09-22 to 1979-01-22 (NODC Accession 7900212)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, chemical, zooplankton, and other data were collected using moored current meter casts and other instruments in the Gulf of Mexico from September...

  4. Meteorological Instrumentation and Measurements Open Resource Training Modules for Undergraduate and Graduate Education

    Science.gov (United States)

    Rockwell, A.; Clark, R. D.; Stevermer, A.

    2017-12-01

    The National Center for Atmospheric Research Earth Observing Laboratory, Millersville University and The COMET Program are collaborating to produce a series of nine online modules on the the topic of meteorological instrumentation and measurements. These interactive, multimedia educational modules can be integrated into undergraduate and graduate meteorology courses on instrumentation, measurement science, and observing systems to supplement traditional pedagogies and enhance blended instruction. These freely available and open-source training tools are designed to supplement traditional pedagogies and enhance blended instruction. Three of the modules are now available and address the theory and application of Instrument Performance Characteristics, Meteorological Temperature Instrumentation and Measurements, and Meteorological Pressure Instrumentation and Measurements. The content of these modules is of the highest caliber as it has been developed by scientists and engineers who are at the forefront of the field of observational science. Communicating the availability of these unique and influential educational resources with the community is of high priority. These modules will have a profound effect on the atmospheric observational sciences community by fulfilling a need for contemporary, interactive, multimedia guided education and training modules integrating the latest instructional design and assessment tools in observational science. Thousands of undergraduate and graduate students will benefit, while course instructors will value a set of high quality modules to use as supplements to their courses. The modules can serve as an alternative to observational research training and fill the void between field projects or assist those schools that lack the resources to stage a field- or laboratory-based instrumentation experience.

  5. Metallurgical characterization of controlled memory wire nickel-titanium rotary instruments.

    Science.gov (United States)

    Shen, Ya; Zhou, Hui-Min; Zheng, Yu-Feng; Campbell, Les; Peng, Bin; Haapasalo, Markus

    2011-11-01

    To improve the fracture resistance of nickel-titanium (NiTi) files, manufacturers have introduced new alloys and developed new manufacturing processes for the fabrication of NiTi files. This study aimed to examine the phase transformation behavior and microstructure of NiTi instruments from a novel controlled memory NiTi wire (CM wire). Instruments of EndoSequence (ES), ProFile (PF), ProFile Vortex (Vortex), Twisted Files (TF), Typhoon (TYP), and Typhoon™ CM (TYP CM), all size 25/.04, were examined by differential scanning calorimetry (DSC) and x-ray diffraction (XRD). Microstructures of etched instruments were observed by optical microscopy and scanning electron microscopy with x-ray energy-dispersive spectrometric (EDS) analyses. The DSC analyses showed that each segment of the TYP CM and Vortex instruments had an austenite transformation completion or austenite-finish (A(f)) temperature exceeding 37°C, whereas the NiTi instruments made from conventional superelastic NiTi wire (ES, PF, and TYP) and TF had A(f) temperatures substantially below mouth temperature. The higher A(f) temperature of TYP CM instruments was consistent with a mixture of austenite and martensite structure, which was observed at room temperature with XRD. All NiTi instruments had room temperature martensite microstructures consisting of colonies of lenticular features with substantial twinning. EDS analysis indicated that the precipitates in all NiTi instruments were titanium-rich, with an approximate composition of Ti(2)Ni. The TYP CM and Vortex instruments with heat treatment contribute to increase austenite transformation temperature. The CM instrument has significant changes in the phase transformation behavior, compared with conventional superelastic NiTi instruments. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Regulatory instrument review: Aging management of LWR cables, containment and basemat, reactor coolant pumps, and motor-operated valves

    International Nuclear Information System (INIS)

    Werry, E.V.; Somasundaram, S.

    1995-09-01

    The results of Stage 2 of the Regulatory Instrument Review are presented in this volume. Selected regulatory instruments, such as the Code of Federal Regulations (CFR), US Nuclear Regulatory Commission (NRC), Regulatory Guides, and ASME Codes, were investigated to determine the extent to which these regulations apply aging management to selected safety-related components in nuclear power plants. The Regulatory Instrument Review was funded by the NRC under the Nuclear Plant Aging Research (NPAR) program. Stage 2 of the review focused on four safety-related structures and components; namely, cables, containment and basemat, reactor coolant pumps, and motor-operated valves. The review suggests that the primary-emphasis of the regulatory instruments was on the design, construction, start-up, and operation of a nuclear power plant, and that aging issues were primarily addressed after an aging-related problem was recognized. This Stage 2 review confirms the results of the prior review; (see Regulatory Instrument Review: Management of Aging of LWR Major Safety-Related Components NUREG/CR-5490. The observations indicate that the regulations generally address management of age-related degradation indirectly. Specific age-related degradation phenomena frequently are dealt with in bulletins and notices or through generic issues, letters, etc. The major recommendation of this report, therefore, is that the regulatory instruments should more directly and explicitly address the aging phenomenon and the management of the age-related degradation process

  7. Mobile Instruments Measure Atmospheric Pollutants

    Science.gov (United States)

    2009-01-01

    As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.

  8. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  9. Instruments to measure behavioural and psychological symptoms of dementia.

    Science.gov (United States)

    van der Linde, Rianne M; Stephan, Blossom C M; Dening, Tom; Brayne, Carol

    2014-03-01

    Reliable and valid measurement of behavioural and psychological symptoms of dementia (BPSD) is important for research and clinical practice. Here we provide an overview of the different instruments and discuss issues involved in the choice of the most appropriate instrument to measure BPSD in research. A list of BPSD instruments was generated. For each instrument Pubmed and SCOPUS were searched for articles that reported on their use or quality. Eighty-three instruments that are used to measure BPSD were identified. Instruments differ in length and detail, whether the interview is with participants, informants or by observation, the target sample and the time frames for use. Reliability and validity is generally good, but reported in few independent samples. When choosing a BPSD instrument for research the research question should be carefully scrutinised and the symptoms of interest, population, quality, detail, time frame and practical issues should be considered. Copyright © 2014 John Wiley & Sons, Ltd.

  10. WFIRST: Data/Instrument Simulation Support at IPAC

    Science.gov (United States)

    Laine, Seppo; Akeson, Rachel; Armus, Lee; Bennett, Lee; Colbert, James; Helou, George; Kirkpatrick, J. Davy; Meshkat, Tiffany; Paladini, Roberta; Ramirez, Solange; Wang, Yun; Xie, Joan; Yan, Lin

    2018-01-01

    As part of WFIRST Science Center preparations, the IPAC Science Operations Center (ISOC) maintains a repository of 1) WFIRST data and instrument simulations, 2) tools to facilitate scientific performance and feasibility studies using the WFIRST, and 3) parameters summarizing the current design and predicted performance of the WFIRST telescope and instruments. The simulation repository provides access for the science community to simulation code, tools, and resulting analyses. Examples of simulation code with ISOC-built web-based interfaces include EXOSIMS (for estimating exoplanet yields in CGI surveys) and the Galaxy Survey Exposure Time Calculator. In the future the repository will provide an interface for users to run custom simulations of a wide range of coronagraph instrument (CGI) observations and sophisticated tools for designing microlensing experiments. We encourage those who are generating simulations or writing tools for exoplanet observations with WFIRST to contact the ISOC team so we can work with you to bring these to the attention of the broader astronomical community as we prepare for the exciting science that will be enabled by WFIRST.

  11. DEVELOPMENT OF PERFORMANCE ASSESSMENT INSTRUMENT FOR NURSES BASED ON WEB IN INPATIENT UNIT

    Directory of Open Access Journals (Sweden)

    Aprilia Nuryanti

    2017-06-01

    Full Text Available Introduction: Performance assessment instrument will be problematic when it is not representative in describing the competency because it is not obvious indicators and inappropriate performance standard to nursing’s task. The purpose of this study is to develop nurses’ performance assessment instrument based on the web from multi sources assessment inpatient unit at SMC Hospital. Methods: This study had two phases. The first phase was an explanatory overview of the performance assessment system using questionnaires completed by 53 respondents of nurses, selected by purposive sampling. Instrument development based on FGD with six decision makers in the hospital. Validity was tested by Pearson Product Moment Correlation and reliability of instrument’s was tested by alpha Cronbach. The second phase was socialization and instrument test to observe the quality of instrument using a questionnaire by 47 respondents and recommendations made by 8 participants of FGD. The samples were selected by purposive sampling technique. Performance assessment system was moderate at 58.49%. All questions which aimed to measure the performance of nurses were valid and reliable. The quality of nurses’ performance assessment instruments based on the web was a good category, which was functionality: 81.60; reliability: 78.16; efficiency: 80.85; usability: 81.70 and portability: 81.70. Results: The result was a web-based assessment format, scoring with Likert scale, resource assessment by the direct supervisor which was a multisource evaluator, the development of performance graph, and confidentiality of data on the database server. Discussion: Recommendations for hospital is to make policy based on the final value of the performance assessment by the supervisor which was multisource feedback and it needs a global writing on a form of performance assessment result.

  12. Polar cap mesosphere wind observations: comparisons of simultaneous measurements with a Fabry-Perot interferometer and a field-widened Michelson interferometer.

    Science.gov (United States)

    Fisher, G M; Killeen, T L; Wu, Q; Reeves, J M; Hays, P B; Gault, W A; Brown, S; Shepherd, G G

    2000-08-20

    Polar cap mesospheric winds observed with a Fabry-Perot interferometer with a circle-to-line interferometer optical (FPI/CLIO) system have been compared with measurements from a field-widened Michelson interferometer optimized for E-region winds (ERWIN). Both instruments observed the Meinel OH emission emanating from the mesopause region (approximately 86 km) at Resolute Bay, Canada (74.9 degrees N, 94.9 degrees W). This is the first time, to our knowledge, that winds measured simultaneously from a ground-based Fabry-Perot interferometer and a ground-based Michelson interferometer have been compared at the same location. The FPI/CLIO and ERWIN instruments both have a capability for high temporal resolution (less than 10 min for a full scan in the four cardinal directions and the zenith). Statistical comparisons of hourly mean winds for both instruments by scatterplots show excellent agreement, indicating that the two optical techniques provide equivalent observations of mesopause winds. Small deviations in the measured wind can be ascribed to the different zenith angles used by the two instruments. The combined measurements illustrate the dominance of the 12-h wave in the mesopause winds at Resolute Bay, with additional evidence for strong gravity wave activity with much shorter periods (tens of minutes). Future operations of the two instruments will focus on observation of complementary emissions, providing a unique passive optical capability for the determination of neutral winds in the geomagnetic polar cap at various altitudes near the mesopause.

  13. Upstream particles observed in the earth's foreshock region

    International Nuclear Information System (INIS)

    Eastman, T.E.; Anderson, R.R.; Frank, L.A.; Parks, G.K.

    1981-01-01

    On the basis of primarily an extensive study of fully three-dimensional plasma data, we describe the interrelationships of the upstream particles and plasma waves observed in the earth's foreshock region. The University of Iowa LEPEDEAs detect ions and electrons from 1 eV to 45 keV over all except approx.2% of the unit sphere. Comparisons are made with high time resolution particle data obtained by the University of California (Berkeley) instruments and plasma wave data collected by the University of Iowa plasma wave instruments on the two ISEE spacecraft. The presence of ion beams or dispersed ion distributions is found to be a sufficient condition for the presence of electrostatic and electromagnetic wave emissions. Detailed correlations of ions with plasma waves down to a tenth of an ion gyroperiod indicate that ion acoustic emission is enhanced when increased anisotropies and gyrophase organization are observed. Time aliasing effects limit the interpretation of velocity distributions taken within the foreshock region. High time resolution correlations between the different instruments, however, demonstrate that time variations of a single isotropic or anisotropic distribution cannot produce the dispersed ion distributions. Detailed analysis of high time resolution data reveals that the upstream particles undergo significant spatial and temporal variations including gyrophase organization. Gyrophase organization comprises groups of ion clusters each one of which includes ions with similar pitch angles that gyrate together about a common guiding center. On the basis of our high time resolution analysis of three-dimensional plasma data combined with magnetic field and plasma wave data, we conclude that (1) ions observed in the foreshock region display gyrophase organization produced by ion clusters with a spatial scale <1 R/sub g/, and (2) dispersed ion distributions are produced primarily by direct sources at or near the bow shock

  14. The Ecology of Human-Machine Systems II: Mediating 'Direct Perception' in Complex Work Domains

    DEFF Research Database (Denmark)

    Vicente, Kim J.; Rasmussen, Jens

    1990-01-01

    Recently, a new class of artifacts has appeared in our environment: complex, high-technology work domains. An important characteristic of such systems is that their goal-relevant properties cannot be directly observed by the unaided eye. As a result, interface design is a ubiquitous problem in th...... in the design of these work environments. Nevertheless, the problem is one that has yet to be addressed in an adequate manner. An analogy to human perceptual mechanisms suggests that a smart instrument approach to interface design is needed to supplant the rote instrument (single......-sensor-single-indicator) approach that has dominated to this point. Ecological interface design (ED) is a theoretical framework in the smart instrument vein that postulates a set of general, prescriptive principles for design. The goal of E D is twofold: first, to reveal the affordances of the work domain through the interface...

  15. FJ-2207 measuring instrument detection pipe surface a level of pollution method

    International Nuclear Information System (INIS)

    Wang Jiangong

    2010-01-01

    On the pipe surface contamination were detected α level of pollution is a frequently encountered dose-detection work. Because the pipeline surface arc, while the measuring probe for the plane, which for accurate measurement difficult. In this paper, on the FJ-2207-type pipe surface contamination measuring instrument measuring pollution levels in the α method was studied. Introduced the FJ-2207 measuring instrument detection pipe surface α pollution levels. Studied this measuring instrument on the same sources of surface, plane α level of radioactivity measured differences in the results obtained control of the apparatus when the direct measurement of the surface correction factor, and gives 32-216 specifications commonly used pipe direct measurement of the amendment factor. Convenient method, test results are reliable for the accurate measurement of pipe pollution levels in the surface of α as a reference and learning. (authors)

  16. The instruments of higher order thinking skills

    Science.gov (United States)

    Ahmad, S.; Prahmana, R. C. I.; Kenedi, A. K.; Helsa, Y.; Arianil, Y.; Zainil, M.

    2017-12-01

    This research developed the standard of instrument for measuring the High Order Thinking Skill (HOTS) ability of PGSD students. The research method used is development research with eight steps namely theoretical studies, operational definition, designation construct, dimensions and indicators, the preparation of the lattice, the preparation of grain, an analysis of legibility and Social desirability, field trials, and data analysis. In accordance with the type of data to be obtained in this study, the research instrument using validation sheet, implementation observation, and questionnaire. The results show that the instruments are valid and feasible to be used by expert and have been tested on PGSD students with 60% of PGSD students with low categorization.

  17. OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. III. MEASURES BELOW THE DIFFRACTION LIMIT OF THE WIYN TELESCOPE

    International Nuclear Information System (INIS)

    Horch, Elliott P.; Van Altena, William F.; Howell, Steve B.; Sherry, William H.; Ciardi, David R.

    2011-01-01

    In this paper, we study the ability of CCD- and electron-multiplying-CCD-based speckle imaging to obtain reliable astrometry and photometry of binary stars below the diffraction limit of the WIYN 3.5 m Telescope. We present a total of 120 measures of binary stars, 75 of which are below the diffraction limit. The measures are divided into two groups that have different measurement accuracy and precision. The first group is composed of standard speckle observations, that is, a sequence of speckle images taken in a single filter, while the second group consists of paired observations where the two observations are taken on the same observing run and in different filters. The more recent paired observations were taken simultaneously with the Differential Speckle Survey Instrument, which is a two-channel speckle imaging system. In comparing our results to the ephemeris positions of binaries with known orbits, we find that paired observations provide the opportunity to identify cases of systematic error in separation below the diffraction limit and after removing these from consideration, we obtain a linear measurement uncertainty of 3-4 mas. However, if observations are unpaired or if two observations taken in the same filter are paired, it becomes harder to identify cases of systematic error, presumably because the largest source of this error is residual atmospheric dispersion, which is color dependent. When observations are unpaired, we find that it is unwise to report separations below approximately 20 mas, as these are most susceptible to this effect. Using the final results obtained, we are able to update two older orbits in the literature and present preliminary orbits for three systems that were discovered by Hipparcos.

  18. Instrument Remote Control via the Astronomical Instrument Markup Language

    Science.gov (United States)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  19. Comparison of nanoparticle measurement instruments for occupational health applications

    International Nuclear Information System (INIS)

    Leskinen, J.; Joutsensaari, J.; Lyyränen, J.; Koivisto, J.; Ruusunen, J.; Järvelä, M.; Tuomi, T.; Hämeri, K.; Auvinen, A.; Jokiniemi, J.

    2012-01-01

    Nanoparticles are used in many applications because of their novel properties compared to bulk material. A growing number of employees are working with nanomaterials and their exposure to nanoparticles trough inhalation must be evaluated and monitored continuously. However, there is an ongoing debate in the scientific literature about what are the relevant parameters to measure to evaluate exposure to level. In this study, three types of nanoparticles (ammonium sulphate, synthesised TiO 2 agglomerates and aerosolised TiO 2 powder, modes in a range of 30–140 nm mobility size) were measured with commonly used aerosol measurement instruments: scanning and fast mobility particle sizers (SMPS, FMPS), electrical low pressure impactor (ELPI), condensation particle counter (CPC) together with nanoparticle surface area monitor (NSAM) to achieve information about the interrelations of the outputs of the instruments. In addition, the ease of use of these instruments was evaluated. Differences between the results of different instruments can mainly be attributed to the nature of test particles. For spherical ammonium sulphate nanoparticles, the data from the instruments were in good agreement while larger differences were observed for particles with more complex morphology, the TiO 2 agglomerates and powder. For instance, the FMPS showed a smaller particle size, a higher number concentration and a narrower size distribution compared with the SMPS for TiO 2 particles. Thus, the type of the nanoparticle was observed to influence the data obtained from these different instruments. Therefore, care and expertise are essential when interpreting results from aerosol measurement instruments to estimate nanoparticle concentrations and properties.

  20. Simultaneous recording of electroretinogram and visual evoked response. Focal stimulation under direct observation.

    Science.gov (United States)

    Hirose, T; Miyake, Y; Hara, A

    1977-07-01

    A system has been tested that allows simultaneous recording of the retinal response (electroretinogram [ERG]) and the occipital response (visual evoked response [VER]) with focal photic stimulation of the retina under direct observation of the fundus. A helium-neon gas laser is used as a stimulus source. The laser is chopped either by a pen motor or a rotating disc. The laser is attached to a biomicroscope through which the examiner can observe the fundus of the subject during the entire recording session. The optically clear contact lens is made with a flat surface that neutralizes refraction due to the cornea, thereby allowing fundus observation by microscope. Two metal wires mounted inside and outside of the lens serve as the electrode for the ERG. Graticules consisting of concentric circles and radial lines are projected onto the subject's fundus, providing a pattern that the examiner can use to determine the exact location to be stimulated in the fundus. With proper adjustment of stimulus and background illumination, local ERG and VER can be recorded simultaneously by stimulating the macula.

  1. FIRST VLTI-MIDI DIRECT DETERMINATIONS OF ASTEROID SIZES

    International Nuclear Information System (INIS)

    Delbo, M.; Ligori, S.; Cellino, A.; Matter, A.; Berthier, J.

    2009-01-01

    We have obtained the first successful interferometric measurements of asteroid sizes and shapes by means of the Very Large Telescope Interferometer-Mid-Infrared Interferometric Instrument (VLTI-MIDI). The VLTI can spatially resolve asteroids in a range of sizes and heliocentric distances that are not accessible to other techniques such as adaptive optics and radar. We have observed, as a typical bench mark, the asteroid (951) Gaspra, visited in the past by the Galileo space probe, and we derive a size in good agreement with the ground truth coming from the in situ measurements by the Galileo mission. Moreover, we have also observed the asteroid (234) Barbara, known to exhibit unusual polarimetric properties, and we found evidence of a potential binary nature. In particular, our data are best fit by a system of two bodies of 37 and 21 km in diameter, separated by a center-to-center distance of ∼24 km (projected along the direction of the baseline at the epoch of our observations).

  2. Reconstructing pre-instrumental streamflow in Eastern Australia using a water balance approach

    Science.gov (United States)

    Tozer, C. R.; Kiem, A. S.; Vance, T. R.; Roberts, J. L.; Curran, M. A. J.; Moy, A. D.

    2018-03-01

    Streamflow reconstructions based on paleoclimate proxies provide much longer records than the short instrumental period records on which water resource management plans are currently based. In Australia there is a lack of in-situ high resolution paleoclimate proxy records, but remote proxies with teleconnections to Australian climate have utility in producing streamflow reconstructions. Here we investigate, via a case study for a catchment in eastern Australia, the novel use of an Antarctic ice-core based rainfall reconstruction within a Budyko-framework to reconstruct ∼1000 years of annual streamflow. The resulting streamflow reconstruction captures interannual to decadal variability in the instrumental streamflow, validating both the use of the ice core rainfall proxy record and the Budyko-framework method. In the preinstrumental era the streamflow reconstruction shows longer wet and dry epochs and periods of streamflow variability that are higher than observed in the instrumental era. Importantly, for both the instrumental record and preinstrumental reconstructions, the wet (dry) epochs in the rainfall record are shorter (longer) in the streamflow record and this non-linearity must be considered when inferring hydroclimatic risk or historical water availability directly from rainfall proxy records alone. These insights provide a better understanding of present infrastructure vulnerability in the context of past climate variability for eastern Australia. The streamflow reconstruction presented here also provides a better understanding of the range of hydroclimatic variability possible, and therefore represents a more realistic baseline on which to quantify the potential impacts of anthropogenic climate change on water security.

  3. Friction of elastomer-on-glass system and direct observation of its frictional interface

    International Nuclear Information System (INIS)

    Okamoto, Yoshihiro; Nishio, Kazuyuki; Sugiura, Jun-ichi; Hirano, Motohisa; Nitta, Takahiro

    2007-01-01

    We performed a study on the static friction of PDMS elastomers with well-defined surface topography sliding over glass. An experimental setup for simultaneous measurements of friction force and direct observations of frictional interface has been developed. The static friction force was nearly proportional to normal load. The static friction force was independent of stick time. The simultaneous measurements revealed that the static friction force was proportional to the total area of contact. The coefficient was nearly independent of the surface topography of PDMS elastomers

  4. Direct observation of surface reconstruction and termination on a complex metal oxide catalyst by electron microscopy

    KAUST Repository

    Zhu, Yihan

    2012-03-19

    On the surface: The surface reconstruction of an MoVTeO complex metal oxide catalyst was observed directly by various electron microscopic techniques and the results explain the puzzling catalytic behavior. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Avoidance-based human Pavlovian-to-instrumental transfer

    Science.gov (United States)

    Lewis, Andrea H.; Niznikiewicz, Michael A.; Delamater, Andrew R.; Delgado, Mauricio R.

    2013-01-01

    The Pavlovian-to-instrumental transfer (PIT) paradigm probes the influence of Pavlovian cues over instrumentally learned behavior. The paradigm has been used extensively to probe basic cognitive and motivational processes in studies of animal learning but, more recently, PIT and its underlying neural basis have been extended to investigations in humans. These initial neuroimaging studies of PIT have focused on the influence of appetitively conditioned stimuli on instrumental responses maintained by positive reinforcement, and highlight the involvement of the striatum. In the current study, we sought to understand the neural correlates of PIT in an aversive Pavlovian learning situation when instrumental responding was maintained through negative reinforcement. Participants exhibited specific PIT, wherein selective increases in instrumental responding to conditioned stimuli occurred when the stimulus signaled a specific aversive outcome whose omission negatively reinforced the instrumental response. Additionally, a general PIT effect was observed such that when a stimulus was associated with a different aversive outcome than was used to negatively reinforce instrumental behavior, the presence of that stimulus caused a non-selective increase in overall instrumental responding. Both specific and general PIT behavioral effects correlated with increased activation in corticostriatal circuitry, particularly in the striatum, a region involved in cognitive and motivational processes. These results suggest that avoidance-based PIT utilizes a similar neural mechanism to that seen with PIT in an appetitive context, which has implications for understanding mechanisms of drug-seeking behavior during addiction and relapse. PMID:24118624

  6. Direct illumination LED calibration for telescope photometry

    International Nuclear Information System (INIS)

    Barrelet, E.; Juramy, C.

    2008-01-01

    A calibration method for telescope photometry, based on the direct illumination of a telescope with a calibrated light source regrouping multiple LEDs, is proposed. Its purpose is to calibrate the instrument response. The main emphasis of the proposed method is the traceability of the calibration process and a continuous monitoring of the instrument in order to maintain a 0.2% accuracy over a period of years. Its specificity is to map finely the response of the telescope and its camera as a function of all light ray parameters. This feature is essential to implement a computer model of the instrument representing the variation of the overall light collection efficiency of each pixel for various filter configurations. We report on hardware developments done for SNDICE, the first application of this direct illumination calibration system which will be installed in Canada France Hawaii telescope (CFHT) for its leading supernova experiment (SNLS)

  7. Direct observation of superconducting gaps in MgB 2 by angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Souma, S.; Machida, Y.; Sato, T.; Takahashi, T.; Matsui, H.; Wang, S.-C.; Ding, H.; Kaminski, A.; Campuzano, J. C.; Sasaki, S.; Kadowaki, K.

    2004-08-01

    High-resolution angle-resolved photoemission spectroscopy has been carried out to clarify the anomalous superconductivity of MgB 2. We observed three bands crossing the Fermi level, which are ascribed to B2p-σ, π and surface bands. We have succeeded for the first time in directly observing the superconducting gaps of these bands separately. We have found that the superconducting-gap sizes of σ and surface bands are 6.5 ± 0.5 and 6.0 ± 0.5 meV, respectively, while that of the π band is much smaller (1.5 ± 0.5 meV). The present experimental result unambiguously demonstrates the validity of the two-band superconductivity in MgB 2.

  8. Direct observation of superconducting gaps in MgB2 by angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Souma, S.; Machida, Y.; Sato, T.; Takahashi, T.; Matsui, H.; Wang, S.-C.; Ding, H.; Kaminski, A.; Campuzano, J.C.; Sasaki, S.; Kadowaki, K.

    2004-01-01

    High-resolution angle-resolved photoemission spectroscopy has been carried out to clarify the anomalous superconductivity of MgB 2 . We observed three bands crossing the Fermi level, which are ascribed to B2p-σ, π and surface bands. We have succeeded for the first time in directly observing the superconducting gaps of these bands separately. We have found that the superconducting-gap sizes of σ and surface bands are 6.5 ± 0.5 and 6.0 ± 0.5 meV, respectively, while that of the π band is much smaller (1.5 ± 0.5 meV). The present experimental result unambiguously demonstrates the validity of the two-band superconductivity in MgB 2

  9. Practical implications of neutron survey instrument performance

    International Nuclear Information System (INIS)

    Tanner, R. J.; Bartlett, D. T.; Hager, I. G.; Jones, I. N.; Molinos, C.; Roberts, N. J.; Taylor, G. C.; Thomas, D. J.

    2004-01-01

    Improvements have been made to the Monte Carlo modelling used to calculate the response of the neutron survey instruments most commonly used in the UK, for neutron energies up to 20 MeV. The improved modelling of the devices includes the electronics and battery pack, allowing better calculations of both the energy and angle dependence of response. These data are used to calculate the response of the instruments in rotationally and fully isotropic, as well as unidirectional fields. Experimental measurements with radionuclide sources and monoenergetic neutron fields have been, and continue to be made, to test the calculated response characteristics. The enhancements to the calculations have involved simulation of the sensitivity of the response to variations in instrument manufacture, and will include the influence of the user and floor during measurements. The practical implications of the energy and angle dependence of response, variations in manufacture, and the influence of the user are assessed by folding the response characteristics with workplace energy and direction distributions. (authors)

  10. Instrumentation database specific to Trillo I NPP

    International Nuclear Information System (INIS)

    Pereira Pagan, M.B.; Saenz de Tejada, P.; Fernandez Alvarez, A.; Haya, J.

    1997-01-01

    The analysis of data on electronic instrumentation components in the Trillo I PSA has involved and extra effort, basically due to the particular characteristics of these equipment items. This analysis has different aspects depending on the type of information used: Components whose data have been obtained from generic information sources (with or without Bayesian processing). Components whose data have been obtained from specific German studies (TUV) Components whose data have been based directly on the historical experience of Trillo I NPP Components whose data have been based on miscellaneous generic and specific sources This information can also be classified into: Micro components formed by a single module ar card Micro components: formed by set of instrumentation elements It can be further subdivided according to the operating conditions of the components: Equipment whose operation depends on the functions they perform in a particular system (eg. reactor protection system instrumentation channels) Equipment whose operation is not associated with particular conditions (eg. modules for motor-operated equipment). (Author)

  11. Instrumental and atmospheric background lines observed by the SMM gamma-ray spectrometer

    Science.gov (United States)

    Share, G. H.; Kinzer, R. L.; Strickman, M. S.; Letaw, J. R.; Chupp, E. L.

    1989-01-01

    Preliminary identifications of instrumental and atmospheric background lines detected by the gamma-ray spectrometer on NASA's Solar Maximum Mission satellite (SMM) are presented. The long-term and stable operation of this experiment has provided data of high quality for use in this analysis. Methods are described for identifying radioactive isotopes which use their different decay times. Temporal evolution of the features are revealed by spectral comparisons, subtractions, and fits. An understanding of these temporal variations has enabled the data to be used for detecting celestial gamma-ray sources.

  12. Direct correlation of observed phonon anomalies and maxima in the generalized susceptibilities of transition metal carbides

    International Nuclear Information System (INIS)

    Gupta, M.J.; Freeman, A.B.

    1976-01-01

    The generalized susceptibility, chi(q), of both NbC and TaC determined from APW energy band calculations show large maxima to occur at precisely those q/sub max/ values at which soft phonon modes were observed by Smith. Maxima in chi(q) are predicted for other directions. The locus of these q/sub max/ values can be represented by a warped cube of dimension approximately 1.2(2π/a) in momentum space--in striking agreement with the soft mode surface proposed phenomenologically by Weber. In sharp contrast, the chi(q) calculated for both ZrC and HfC--for which no phonon anomalies have been observed--fall off in all symmetry directions away from the zone center. The phonon anomalies in the transition metal carbides are thus interpreted as due to an ''overscreening'' effect resulting from an anomalous increase of the response function of the conduction electrons

  13. Current direction, zooplankton, phytoplankton, benthic organisms, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 17 February 1981 - 22 June 1982 (NODC Accession 8200230)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, phytoplankton, zooplankton, benthic organisms, and other data were collected using moored current meter casts and other instruments in the Gulf of...

  14. Current direction, chemical, zooplankton, phytoplankton, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 1980-01-24 to 1981-06-22 (NODC Accession 8100704)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, chemical, phytoplankton, zooplankton, and other data were collected using moored current meter casts and other instruments in the Gulf of Mexico...

  15. Current direction, chemical, phytoplankton, zooplankton, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 1977-09-15 to 1981-05-27 (NODC Accession 8100657)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, chemical, phytoplankton, zooplankton, and other data were collected using moored current meter casts and other instruments in the Gulf of Mexico...

  16. Current direction, chemical, zooplankton, phytoplankton, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 1982-02-19 to 1983-03-23 (NODC Accession 8300099)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, chemical, phytoplankton, zooplankton, and other data were collected using moored current meter casts and other instruments in the Gulf of Mexico...

  17. ARCADO - Adding random case analysis to direct observation in workplace-based formative assessment of general practice registrars.

    Science.gov (United States)

    Ingham, Gerard; Fry, Jennifer; Morgan, Simon; Ward, Bernadette

    2015-12-10

    Workplace-based formative assessments using consultation observation are currently conducted during the Australian general practice training program. Assessment reliability is improved by using multiple assessment methods. The aim of this study was to explore experiences of general practice medical educator assessors and registrars (trainees) when adding random case analysis to direct observation (ARCADO) during formative workplace-based assessments. A sample of general practice medical educators and matched registrars were recruited. Following the ARCADO workplace assessment, semi-structured qualitative interviews were conducted. The data was analysed thematically. Ten registrars and eight medical educators participated. Four major themes emerged - formative versus summative assessment; strengths (acceptability, flexibility, time efficiency, complementarity and authenticity); weaknesses (reduced observation and integrity risks); and contextual factors (variation in assessment content, assessment timing, registrar-medical educator relationship, medical educator's approach and registrar ability). ARCADO is a well-accepted workplace-based formative assessment perceived by registrars and assessors to be valid and flexible. The use of ARCADO enabled complementary insights that would not have been achieved with direct observation alone. Whilst there are some contextual factors to be considered in its implementation, ARCADO appears to have utility as formative assessment and, subject to further evaluation, high-stakes assessment.

  18. Cavity Attenuated Phase Shift (CAPS) Method for Airborne Aerosol Light Extinction Measurement: Instrument Validation and First Results from Field Deployment

    Science.gov (United States)

    Petzold, A.; Perim de Faria, J.; Berg, M.; Bundke, U.; Freedman, A.

    2015-12-01

    Monitoring the direct impact of aerosol particles on climate requires the continuous measurement of aerosol optical parameters like the aerosol extinction coefficient on a regular basis. Remote sensing and ground-based networks are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. In this work, the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, the results from subsequent laboratory tests for evaluating the modified instrument prototype, and first results from a field deployment aboard a research aircraft will be covered. In laboratory studies, the instrument showed excellent agreement (deviation CAPS PMex instrument response within 10% deviation. During the field deployment, aerosol extinction coefficients and associated aerosol size distributions have been measured and will be presented as comparison studies between measured and calculated data.

  19. High Spectral Resolution Observation of the Soft Diffuse X-ray Background in the Direction of the Galactic Anti-Center

    Science.gov (United States)

    Wulf, Dallas; Eckart, Mega E.; Galeazzi, Massimiliano; Jaeckel, Felix; Kelley, Richard L.; Kilbourne, Caroline A.; McCammon, Dan; Morgan, Kelsey M.; Porter, Frederick S.; Szymkowiak, Andrew E.

    2018-01-01

    High spectral resolution observations in the soft x-rays are necessary for understanding and modelling the hot component of the interstellar medium and its contribution to the Soft X-ray Background (SXRB). This extended source emission cannot be resolved with most wavelength dispersive spectrometers, making energy dispersive microcalorimeters the ideal choice for these observations. We present here the analysis of the most recent sounding rocket flight of the University of Wisconsin-Madison/Goddard Space Flight Center X-ray Quantum Calorimeter (XQC), a large area silicon thermistor microcalorimeter. This 111 second observation integrates a nearly 1 steradian field of view in the direction of the galactic anti-center (l, b = 165°, -5°) and features ~5 eV spectral resolution below 1 keV. Direct comparison will also be made to the previous, high-latitude observations.

  20. Satellite observations of middle atmosphere–thermosphere vertical coupling by gravity waves

    Directory of Open Access Journals (Sweden)

    Q. T. Trinh

    2018-03-01

    Full Text Available Atmospheric gravity waves (GWs are essential for the dynamics of the middle atmosphere. Recent studies have shown that these waves are also important for the thermosphere/ionosphere (T/I system. Via vertical coupling, GWs can significantly influence the mean state of the T/I system. However, the penetration of GWs into the T/I system is not fully understood in modeling as well as observations. In the current study, we analyze the correlation between GW momentum fluxes observed in the middle atmosphere (30–90 km and GW-induced perturbations in the T/I. In the middle atmosphere, GW momentum fluxes are derived from temperature observations of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER satellite instrument. In the T/I, GW-induced perturbations are derived from neutral density measured by instruments on the Gravity field and Ocean Circulation Explorer (GOCE and CHAllenging Minisatellite Payload (CHAMP satellites. We find generally positive correlations between horizontal distributions at low altitudes (i.e., below 90 km and horizontal distributions of GW-induced density fluctuations in the T/I (at 200 km and above. Two coupling mechanisms are likely responsible for these positive correlations: (1 fast GWs generated in the troposphere and lower stratosphere can propagate directly to the T/I and (2 primary GWs with their origins in the lower atmosphere dissipate while propagating upwards and generate secondary GWs, which then penetrate up to the T/I and maintain the spatial patterns of GW distributions in the lower atmosphere. The mountain-wave related hotspot over the Andes and Antarctic Peninsula is found clearly in observations of all instruments used in our analysis. Latitude–longitude variations in the summer midlatitudes are also found in observations of all instruments. These variations and strong positive correlations in the summer midlatitudes suggest that GWs with origins related to convection also

  1. Satellite observations of middle atmosphere-thermosphere vertical coupling by gravity waves

    Science.gov (United States)

    Trinh, Quang Thai; Ern, Manfred; Doornbos, Eelco; Preusse, Peter; Riese, Martin

    2018-03-01

    Atmospheric gravity waves (GWs) are essential for the dynamics of the middle atmosphere. Recent studies have shown that these waves are also important for the thermosphere/ionosphere (T/I) system. Via vertical coupling, GWs can significantly influence the mean state of the T/I system. However, the penetration of GWs into the T/I system is not fully understood in modeling as well as observations. In the current study, we analyze the correlation between GW momentum fluxes observed in the middle atmosphere (30-90 km) and GW-induced perturbations in the T/I. In the middle atmosphere, GW momentum fluxes are derived from temperature observations of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite instrument. In the T/I, GW-induced perturbations are derived from neutral density measured by instruments on the Gravity field and Ocean Circulation Explorer (GOCE) and CHAllenging Minisatellite Payload (CHAMP) satellites. We find generally positive correlations between horizontal distributions at low altitudes (i.e., below 90 km) and horizontal distributions of GW-induced density fluctuations in the T/I (at 200 km and above). Two coupling mechanisms are likely responsible for these positive correlations: (1) fast GWs generated in the troposphere and lower stratosphere can propagate directly to the T/I and (2) primary GWs with their origins in the lower atmosphere dissipate while propagating upwards and generate secondary GWs, which then penetrate up to the T/I and maintain the spatial patterns of GW distributions in the lower atmosphere. The mountain-wave related hotspot over the Andes and Antarctic Peninsula is found clearly in observations of all instruments used in our analysis. Latitude-longitude variations in the summer midlatitudes are also found in observations of all instruments. These variations and strong positive correlations in the summer midlatitudes suggest that GWs with origins related to convection also propagate up to the T

  2. Direct observation of organic layer growth by dynamic spectro-microscopy using high-brilliance synchrotron

    International Nuclear Information System (INIS)

    Umbach, E.

    2004-01-01

    It was always the dream of scientists to watch microscopic objects directly on an atomic scale, to follow their dynamical behaviour, and to know everything about them, i.e. to get as much spectroscopic information as possible. While instruments have become available which may fulfill two of these wishes simultaneously, it is much more difficult to get all three at once. The development of so called spectro-microscopes which operate at 3rd generation synchrotron sources nourishes the hope that this dream will become true in the near future. The talk intends to show how much can be learned about organic thin films and interfaces if high-brilliance synchrotron radiation is combined with new instruments, for instance a high energy resolution beamline and a high-spatial resolution spectro-microscope. While the former is standard technology of today, the latter is a new development, combining brilliant undulator radiation of variable polarization with a specially developed, energy-filtered low energy electron microscope. First, it will be shown that many new details about the electronic structure of organic materials and their interaction with one another or with an interface can be obtained using high-resolution photoemission and x-ray absorption. For instance, from a careful analysis of the fine structure of photoemission spectra one can derive details about the interface bonding, about the interaction between molecules, and about the dynamic response of the molecular system upon creation of a core hole. Or, from a careful analysis of the fine structure of high resolution x-ray absorption spectra one gets insight into the intermolecular interaction, the coupling between electronic and vibronic excitations, and even about the shapes of potential curves. Second, the dynamic growth of highly-ordered organic thin films will be followed as a function of molecule and preparation conditions. The formation of islands, the inner structure of organic crystallites, diffusion

  3. Proceedings of the OECD/CSNI specialist meeting on advanced instrumentation and measurement techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, J [comp.

    1998-09-01

    In the last few years, tremendous advances in the local instrumentation technology for two-phase flow have been accomplished by the applications of new sensor techniques, optical or beam methods and electronic technology. The detailed measurements gave new insight to the true nature of local mechanisms of interfacial transfer between phases, interfacial structure and two-phase flow turbulent transfers. These new developments indicate that more accurate and reliable two-phase flow models can be obtained, if focused experiments are designed and performed by utilizing this advanced instrumentation. The purpose of this Specialist Meeting on Advanced Instrumentation and Measurement Techniques was to review the recent instrumentation developments and the relation between thermal-hydraulic codes and instrumentation capabilities. Four specific objectives were identified for this meeting: bring together international experts on instrumentation, experiments, and modeling; review recent developments in multiphase flow instrumentation; discuss the relation between modeling needs and instrumentation capabilities, and discuss future directions for instrumentation development, modeling, and experiments.

  4. Proceedings of the OECD/CSNI specialist meeting on advanced instrumentation and measurement techniques

    International Nuclear Information System (INIS)

    Lehner, J.

    1998-09-01

    In the last few years, tremendous advances in the local instrumentation technology for two-phase flow have been accomplished by the applications of new sensor techniques, optical or beam methods and electronic technology. The detailed measurements gave new insight to the true nature of local mechanisms of interfacial transfer between phases, interfacial structure and two-phase flow turbulent transfers. These new developments indicate that more accurate and reliable two-phase flow models can be obtained, if focused experiments are designed and performed by utilizing this advanced instrumentation. The purpose of this Specialist Meeting on Advanced Instrumentation and Measurement Techniques was to review the recent instrumentation developments and the relation between thermal-hydraulic codes and instrumentation capabilities. Four specific objectives were identified for this meeting: bring together international experts on instrumentation, experiments, and modeling; review recent developments in multiphase flow instrumentation; discuss the relation between modeling needs and instrumentation capabilities, and discuss future directions for instrumentation development, modeling, and experiments

  5. Can we identify others' intentions from seeing their movements? Comment on "Seeing mental states: An experimental strategy for measuring the observability of other minds" by Cristina Becchio et al.

    Science.gov (United States)

    Curioni, Arianna; Sebanz, Natalie; Knoblich, Günther

    2018-03-01

    In their review, Becchio and colleagues describe the 'unobservability principle' and the 'direct social perception thesis' as two competing accounts of how people identify others' intentions [4]. The former treats intentions as private information that is hidden within individual minds. The latter treats intentions as public information that can be directly perceived from observed movements. The authors propose a new method for quantifying cues to intention from human movement, providing support for the 'direct social perception thesis' in the domain of instrumental actions. Without doubt this new approach is valuable in establishing whether there is a dissociation between the presence of movement cues in the perceptual input and people's ability to make use of these cues for identifying intentions. It is also valuable in identifying movement parameters that could be crucial for improving the planning of instrumental actions in robotic agents so that their movements become better identifiable for human observers.

  6. Direct Observation of Domain-Wall Surface Tension by Deflating or Inflating a Magnetic Bubble

    Science.gov (United States)

    Zhang, Xueying; Vernier, Nicolas; Zhao, Weisheng; Yu, Haiming; Vila, Laurent; Zhang, Yue; Ravelosona, Dafiné

    2018-02-01

    The surface energy of a magnetic domain wall (DW) strongly affects its static and dynamic behaviors. However, this effect is seldom directly observed, and some of the related phenomena are not well understood. Moreover, a reliable method to quantify the DW surface energy is still absent. Here, we report a series of experiments in which the DW surface energy becomes a dominant parameter. We observe that a semicircular magnetic domain bubble can spontaneously collapse under the Laplace pressure induced by DW surface energy. We further demonstrate that the surface energy can lead to a geometrically induced pinning when the DW propagates in a Hall cross or from a nanowire into a nucleation pad. Based on these observations, we develop two methods to quantify the DW surface energy, which can be very helpful in the estimation of intrinsic parameters such as Dzyaloshinskii-Moriya interactions or exchange stiffness in magnetic ultrathin films.

  7. A summary of the performance of exposure rate and dose rate instruments contained in instrument evaluation reports NRPB-IE1 to NRPB-IE13

    International Nuclear Information System (INIS)

    Burgess, P.H.; Iles, W.J.

    1979-06-01

    The various radiations encountered in radiological protection cover a wide range of energies and radiation measurements have to be carried out under an equally broad spectrum of environmental conditions. This report is one of a series intended to give information on the performance characteristics of radiological protection instruments, to assist in the selection of appropriate instruments for a given purpose, to interpret the results obtained with such instruments, and, in particular, to know the likely sources and magnitude of errors that might be associated with measurements in the field. The radiation, electrical and environmental characteristics of radiation protection instruments are considered together with those aspects of the construction which make an instrument convenient for routine use. To provide consistent criteria for instrument performance, the range of tests performed on any particular class of instrument, the test methods and the criteria of acceptable performance are based broadly on the appropriate Recommendations of the International Electrotechnical Commission. The radiations in the tests are, in general, selected from the range of reference radiations for instrument calibration being drawn up by the International Standards Organisation. Normally, each report deals with the capabilities and limitations of one model of instrument and no direct comparison with other instruments intended for similar purposes is made, since the significance of particular performance characteristics largely depends on the radiations and environmental conditions in which the instrument is to be used. The results quoted here have all been obtained from tests on instruments in routine production, with the appropriate measurements being made by the NRPB. This report provides a concise summary of measurements of the more important performance characteristics of radiation protection dose rate or exposure rate survey instruments which have been assessed by NRPB as part

  8. Instrumentation

    International Nuclear Information System (INIS)

    Umminger, K.

    2008-01-01

    A proper measurement of the relevant single and two-phase flow parameters is the basis for the understanding of many complex thermal-hydraulic processes. Reliable instrumentation is therefore necessary for the interaction between analysis and experiment especially in the field of nuclear safety research where postulated accident scenarios have to be simulated in experimental facilities and predicted by complex computer code systems. The so-called conventional instrumentation for the measurement of e. g. pressures, temperatures, pressure differences and single phase flow velocities is still a solid basis for the investigation and interpretation of many phenomena and especially for the understanding of the overall system behavior. Measurement data from such instrumentation still serves in many cases as a database for thermal-hydraulic system codes. However some special instrumentation such as online concentration measurement for boric acid in the water phase or for non-condensibles in steam atmosphere as well as flow visualization techniques were further developed and successfully applied during the recent years. Concerning the modeling needs for advanced thermal-hydraulic codes, significant advances have been accomplished in the last few years in the local instrumentation technology for two-phase flow by the application of new sensor techniques, optical or beam methods and electronic technology. This paper will give insight into the current state of instrumentation technology for safety-related thermohydraulic experiments. Advantages and limitations of some measurement processes and systems will be indicated as well as trends and possibilities for further development. Aspects of instrumentation in operating reactors will also be mentioned.

  9. Direct observation of forward-scattering oscillations in the H+HD→H2+D reaction

    Science.gov (United States)

    Yuan, Daofu; Yu, Shengrui; Chen, Wentao; Sang, Jiwei; Luo, Chang; Wang, Tao; Xu, Xin; Casavecchia, Piergiorgio; Wang, Xingan; Sun, Zhigang; Zhang, Dong H.; Yang, Xueming

    2018-06-01

    Accurate measurements of product state-resolved angular distributions are central to fundamental studies of chemical reaction dynamics. Yet, fine quantum-mechanical structures in product angular distributions of a reactive scattering process, such as the fast oscillations in the forward-scattering direction, have never been observed experimentally and the nature of these oscillations has not been fully explored. Here we report the crossed-molecular-beam experimental observation of these fast forward-scattering oscillations in the product angular distribution of the benchmark chemical reaction, H + HD → H2 + D. Clear oscillatory structures are observed for the H2(v' = 0, j' = 1, 3) product states at a collision energy of 1.35 eV, in excellent agreement with the quantum-mechanical dynamics calculations. Our analysis reveals that the oscillatory forward-scattering components are mainly contributed by the total angular momentum J around 28. The partial waves and impact parameters responsible for the forward scatterings are also determined from these observed oscillations, providing crucial dynamics information on the transient reaction process.

  10. Intelligent type sodium instrumentations for LMFR

    International Nuclear Information System (INIS)

    Daolong Chen

    1996-01-01

    The constructions and their performances of a lot of newly developed intelligent type sodium instrumentations that consist of the intelligent type sodium flowmeter, the intelligent type immersed sodium flowmeter, the intelligent type sodium manometer and the intelligent type sodium level gauge are described. The graduation characteristic equations for corresponding transducer using the medium temperature as the parameter are given. Because the operating temperature limit of measured medium (sodium) is wide, so the on-line compensation of the temperature effect of their graduation characteristics much be considered. The tests show that these intelligent type sodium instrumentations possess of good linearity. The accurate sodium process parameter (flowrate, pressure and level) measurement data can be obtained by means of their on-line compensation function of the temperature effect. Moreover, these intelligent type sodium instrumentations possess of the self-inspection, the electric shutoff protection, the setting of full-scale, the setting of alarm limits (two upper limits and two lower limits alarms), the thermocouple breaking alarm, each other isolative the 0-10V direct-current analogue output and CENTRONICS standard digital output, and the alarm relay contact output. These intelligent type sodium instrumentations are suitable particularly for the instrument, control and protective systems of LMFR by means of these excellent functions based on microprocessor. The basic error of the intelligent type sodium flowmeter, immersed sodium flowmeter, sodium manometer and sodium level gauge is respectively ±2%, ±2.3%, ±0.3% and ±1.9% of measuring range. (author). 4 refs, 9 figs

  11. Neonatal and maternal outcomes of successful manual rotation to correct malposition of the fetal head; A retrospective and prospective observational study.

    Science.gov (United States)

    Tempest, Nicola; McGuinness, Naomi; Lane, Steven; Hapangama, Dharani K

    2017-01-01

    To evaluate the neonatal and maternal outcomes associated with successful operative vaginal births assisted by manual rotation. Prospective and retrospective observational study. Delivery suite in a tertiary referral teaching hospital in England. A cohort of 2,426 consecutive operative births, in the second stage of labour, complicated with malposition of the fetal head during 2006-2013. Outcomes of all births successfully assisted by manual rotation followed by direct traction instruments were compared with other methods of operative birth for fetal malposition in the second stage of labour (rotational ventouse, Kielland forceps and caesarean section). Associated neonatal outcomes (admission to the special care baby unit, low cord pH, low Apgar and shoulder dystocia) and maternal outcomes (massive obstetric haemorrhage (blood loss of >1500ml) and obstetric anal sphincter injury). Births successfully assisted with manual rotation followed by direct traction instruments, resulted in 10% (36/346) of the babies being admitted to the Special Care Baby Unit, 4.9% (17/349) shoulder dystocia, 2% (7/349) massive obstetric haemorrhage and 1.7% (6/349) obstetric anal sphincter injury, similar to other methods of rotational births. Adverse neonatal and maternal outcomes associated with successful manual rotations followed by direct traction instruments were comparable to traditional methods of operative births. There is an urgent need to standardise the practice (guidance, training) and documentation of manual rotation followed by direct traction instrumental deliveries that will enable assessment of its efficacy and the absolute safety in achieving a vaginal birth.

  12. Current direction, chemical, and marine toxic substances data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 1978-09-09 to 1979-11-19 (NODC Accession 8000043)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, marine toxic substances, and chemical data were collected using moored current meter casts and other instruments in the Gulf of Mexico from...

  13. Current direction, chemical, benthic organisms, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 1981-01-21 to 1982-07-27 (NODC Accession 8200207)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, chemical, benthic organisms, and other data were collected using moored current meter casts and other instruments in the Gulf of Mexico from...

  14. Robotic instrumentation: Evolution and microsurgical applications

    Directory of Open Access Journals (Sweden)

    Sijo J Parekattil

    2010-01-01

    Full Text Available This article presents a review of the history and evolution of robotic instrumentation and its applications in urology. A timeline for the evolution of robotic instrumentation is presented to better facilitate an understanding of our current-day applications. Some new directions including robotic microsurgical applications (robotic assisted denervation of the spermatic cord for chronic orchialgia and robotic assisted vasectomy reversal are presented. There is a paucity of prospective comparative effectiveness studies for a number of robotic applications. However, right or wrong, human nature has always led to our infatuation with the concept of using tools to meet our needs. This chapter is a brief tribute to where we have come from and where we may be potentially heading in the field of robotic assisted urologic surgery.

  15. Direct AFM observation of an opening event of a DNA cuboid constructed via a prism structure.

    Science.gov (United States)

    Endo, Masayuki; Hidaka, Kumi; Sugiyama, Hiroshi

    2011-04-07

    A cuboid structure was constructed using a DNA origami design based on a square prism structure. The structure was characterized by atomic force microscopy (AFM) and dynamic light scattering. The real-time opening event of the cuboid was directly observed by high-speed AFM.

  16. Irradiation technology (1). Development of new in-pile instrumentation at JMTR

    International Nuclear Information System (INIS)

    Shibata, Akira; Kimura, Nobuaki; Tanimoto, Masataka; Nakamura, Jinichi; Saito, Takashi; Tsuchiya, Kunihiko

    2012-01-01

    Development of instrumentation which can use under severe accident condition is important issue for the purpose to cope with severe accident at nuclear reactors. And also to improve the quality of irradiation tests data and to increase the reliability of safety management system of reactors, the development of new instrumentation is key issue. JAEA is developing several in-pile instrumentations to conduct irradiation tests at JMTR. This study includes the developments of three new instrumentations and describes the characteristics of the instrumentations. These are ECP sensor, new water level indicator and in-reactor observation system using Cherenkov light. (author)

  17. Geomagnetic Observations for Main Field Studies

    DEFF Research Database (Denmark)

    Matzka, Jürgen; Chulliat, A.; Mandea, M.

    2010-01-01

    Direct measurements of the geomagnetic field have been made for more than 400 years, beginning with individual determinations of the angle between geographic and magnetic North. This was followed by the start of continuous time series of full vector measurements at geomagnetic observatories...... and the beginning of geomagnetic repeat stations surveys in the 19th century. In the second half of the 20th century, true global coverage with geomagnetic field measurements was accomplished by magnetometer payloads on low-Earth-orbiting satellites. This article describes the procedures and instruments...... for magnetic field measurements on ground and in space and covers geomagnetic observatories, repeat stations, automatic observatories, satellites and historic observations. Special emphasis is laid on the global network of geomagnetic observatories....

  18. MAVEN observations of magnetic reconnection in the Martian magnetotail

    Science.gov (United States)

    Harada, Y.; Halekas, J. S.; McFadden, J. P.; Mitchell, D. L.; Mazelle, C. X.; Connerney, J. E. P.; Espley, J. R.; Larson, D. E.; Brain, D. A.; Andersson, L.; DiBraccio, G. A.; Collinson, G.; Livi, R.; Hara, T.; Ruhunusiri, S.; Jakosky, B. M.

    2015-12-01

    Magnetic reconnection is a fundamental process that changes magnetic field topology and converts magnetic energy into particle energy. Although reconnection may play a key role in controlling ion escape processes at Mars, the fundamental properties of local physics and global dynamics of magnetic reconnection in the Martian environment remain unclear owing to the lack of simultaneous measurements of ions, electrons, and magnetic fields by modern instrumentation. Here we present comprehensive MAVEN observations of reconnection signatures in the near-Mars magnetotail. The observed reconnection signatures include (i) Marsward bulk flows of H+, O+, and O2+ ions, (ii) counterstreaming ion beams along the current sheet normal direction, (iii) Hall magnetic fields, and (iv) trapped electrons with two-sided loss cones. The measured velocity distribution functions of different ion species exhibit mass-dependent characteristics which are qualitatively consistent with previous multi-species kinetic simulations and terrestrial tail observations. The MAVEN observations demonstrate that the near-Mars magnetotail provides a unique environment for studying multi-ion reconnection.

  19. Instrument evaluation no. 33. Automess Szintomat 6134 radiation survey meter

    International Nuclear Information System (INIS)

    McClure, D.R.

    1986-04-01

    The various radiations encountered in radiological protection cover a wide range of energies and radiation measurements have to be carried out under an equally broad spectrum of environmental conditions. This report is one of a series intended to give information on the performance characteristics of radiological protection instruments, to assist in the selection of appropriate instruments for a given purpose, to interpret the results obtained with such instruments, and, in particular, to know the likely sources and magnitude of errors that might be associated with measurements in the field. The radiation, electrical and environmental characteristics of radiation protection instruments are considered together with those aspects of the construction which make an instrument convenient for routine use. To provide consistent criteria for instrument performance, the range of tests performed on any particular class of instrument, the test methods and the criteria of acceptable performance are based broadly on the appropriate Recommendations of the International Electrotechnical Commission. The radiations in the tests are, in general, selected from the range of reference radiations for instrument calibration being drawn up by the International Standards Organisation. Normally, each report deals with the capabilities and limitations of one model of instrument and no direct comparison with other instruments intended for similar purposes is made, since the significance of particular performance characteristics largely depends on the radiations and environmental conditions in which the instrument is to be used. The results quoted here have all been obtained from tests on instruments in routine production, with the appropriate measurements being made by the NRPB. This instrument evaluation report deals with the Automess Szintomat 6134 Radiation Survey Meter

  20. Pictorial instrument of food and nutrition education for promoting healthy eating

    OpenAIRE

    MICALI,Flávia Gonçalves; DIEZ-GARCIA,Rosa Wanda

    2016-01-01

    ABSTRACT To trace the course of building a pictorial instrument that explores semiotic resources about food and nutrition education. The instrument is directed at the treatment and prevention of obesity, considering the food and nutrition problems of the Brazilian population. The criteria for photo production were: images that could cause visual impact and transmit applied nutrition information, insinuating positive and negative eating practices for promoting healthy eating, and preventing an...

  1. A Comparison of seismic instrument noise coherence analysis techniques

    Science.gov (United States)

    Ringler, A.T.; Hutt, C.R.; Evans, J.R.; Sandoval, L.D.

    2011-01-01

    The self-noise of a seismic instrument is a fundamental characteristic used to evaluate the quality of the instrument. It is important to be able to measure this self-noise robustly, to understand how differences among test configurations affect the tests, and to understand how different processing techniques and isolation methods (from nonseismic sources) can contribute to differences in results. We compare two popular coherence methods used for calculating incoherent noise, which is widely used as an estimate of instrument self-noise (incoherent noise and self-noise are not strictly identical but in observatory practice are approximately equivalent; Holcomb, 1989; Sleeman et al., 2006). Beyond directly comparing these two coherence methods on similar models of seismometers, we compare how small changes in test conditions can contribute to incoherent-noise estimates. These conditions include timing errors, signal-to-noise ratio changes (ratios between background noise and instrument incoherent noise), relative sensor locations, misalignment errors, processing techniques, and different configurations of sensor types.

  2. Current direction, chemical, zooplankton, phytoplankton, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 1981-03-24 to 1981-11-03 (NODC Accession 8200042)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, temperature, salinity, and other data were collected using moored current meter casts and other instruments in the Gulf of Mexico from March 24,...

  3. Current direction, chemical, benthic organisms, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 1980-03-10 to 1981-07-29 (NODC Accession 8100727)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, chemical, benthic organisms, and other data were collected using moored current meter casts and other instruments in the Gulf of Mexico from March...

  4. A Secure System Architecture for Measuring Instruments in Legal Metrology

    Directory of Open Access Journals (Sweden)

    Daniel Peters

    2015-03-01

    Full Text Available Embedded systems show the tendency of becoming more and more connected. This fact combined with the trend towards the Internet of Things, from which measuring instruments are not immune (e.g., smart meters, lets one assume that security in measuring instruments will inevitably play an important role soon. Additionally, measuring instruments have adopted general-purpose operating systems to offer the user a broader functionality that is not necessarily restricted towards measurement alone. In this paper, a flexible software system architecture is presented that addresses these challenges within the framework of essential requirements laid down in the Measuring Instruments Directive of the European Union. This system architecture tries to eliminate the risks general-purpose operating systems have by wrapping them, together with dedicated applications, in secure sandboxes, while supervising the communication between the essential parts and the outside world.

  5. Nuclear instrumentation cable end seal

    International Nuclear Information System (INIS)

    Cannon, C.P.; Brown, D.P.

    1979-01-01

    An improved coaxial end seal for hermetically sealed nuclear instrumentation cable exhibiting an improved breakdown pulse noise characteristic under high voltage, high temperature conditions is described. A tubular insulator body has metallized interior and exterior surface portions which are braze sealed to a center conductor and an outer conductive sheath. The end surface of the insulator body which is directed toward the coaxial cable to which it is sealed has a recessed surface portion within which the braze seal material terminates

  6. Instrumental interaction

    OpenAIRE

    Luciani , Annie

    2007-01-01

    International audience; The expression instrumental interaction as been introduced by Claude Cadoz to identify a human-object interaction during which a human manipulates a physical object - an instrument - in order to perform a manual task. Classical examples of instrumental interaction are all the professional manual tasks: playing violin, cutting fabrics by hand, moulding a paste, etc.... Instrumental interaction differs from other types of interaction (called symbolic or iconic interactio...

  7. Microfluidic Apps for off-the-shelf instruments.

    Science.gov (United States)

    Mark, Daniel; von Stetten, Felix; Zengerle, Roland

    2012-07-21

    Within the last decade a huge increase in research activity in microfluidics could be observed. However, despite several commercial success stories, microfluidic chips are still not sold in high numbers in mass markets so far. Here we promote a new concept that could be an alternative approach to commercialization: designing microfluidic chips for existing off-the-shelf instruments. Such "Microfluidic Apps" could significantly lower market entry barriers and provide many advantages: developers of microfluidic chips make use of existing equipment or platforms and do not have to develop instruments from scratch; end-users can profit from microfluidics without the need to invest in new equipment; instrument manufacturers benefit from an expanded customer base due to the new applications that can be implemented in their instruments. Microfluidic Apps could be considered as low-cost disposables which can easily be distributed globally via web-shops. Therefore they could be a door-opener for high-volume mass markets.

  8. Validity evidence and reliability of a simulated patient feedback instrument.

    Science.gov (United States)

    Schlegel, Claudia; Woermann, Ulrich; Rethans, Jan-Joost; van der Vleuten, Cees

    2012-01-27

    In the training of healthcare professionals, one of the advantages of communication training with simulated patients (SPs) is the SP's ability to provide direct feedback to students after a simulated clinical encounter. The quality of SP feedback must be monitored, especially because it is well known that feedback can have a profound effect on student performance. Due to the current lack of valid and reliable instruments to assess the quality of SP feedback, our study examined the validity and reliability of one potential instrument, the 'modified Quality of Simulated Patient Feedback Form' (mQSF). Content validity of the mQSF was assessed by inviting experts in the area of simulated clinical encounters to rate the importance of the mQSF items. Moreover, generalizability theory was used to examine the reliability of the mQSF. Our data came from videotapes of clinical encounters between six simulated patients and six students and the ensuing feedback from the SPs to the students. Ten faculty members judged the SP feedback according to the items on the mQSF. Three weeks later, this procedure was repeated with the same faculty members and recordings. All but two items of the mQSF received importance ratings of > 2.5 on a four-point rating scale. A generalizability coefficient of 0.77 was established with two judges observing one encounter. The findings for content validity and reliability with two judges suggest that the mQSF is a valid and reliable instrument to assess the quality of feedback provided by simulated patients.

  9. Direct correlation of observed phonon anomalies and maxima in the generalized susceptibilities of transition metal carbides

    International Nuclear Information System (INIS)

    Gupta, M.; Freeman, A.J.

    1976-01-01

    The generalized susceptibility, chi(q vector), of both NbC and TaC determined from APW energy band calculations show large maxima to occur at precisely those q vector/sub max/ values at which soft phonon modes were observed by Smith. Maxima in chi (q vector) are predicted for other directions. The locus of these q vector/sub max/ values can be represented by a warped cube of dimension approximately 1.2 (2π/a) in momentum space, in striking agreement with the soft mode surface proposed phenomenologically by Weber. In sharp contrast, the chi(q vector) calculated for both ZrC and HfC (for which no phonon anomalies have been observed) fall off in all symmetry directions away from the zone center. The phonon anomalies in the transition metal carbides are interpreted as due to an ''overscreening'' effect resulting from an anomalous increase of the response function of the conduction electrons. 8 figures, 41 references

  10. Direct atomic force microscopy observation of DNA tile crystal growth at the single-molecule level.

    Science.gov (United States)

    Evans, Constantine G; Hariadi, Rizal F; Winfree, Erik

    2012-06-27

    While the theoretical implications of models of DNA tile self-assembly have been extensively researched and such models have been used to design DNA tile systems for use in experiments, there has been little research testing the fundamental assumptions of those models. In this paper, we use direct observation of individual tile attachments and detachments of two DNA tile systems on a mica surface imaged with an atomic force microscope (AFM) to compile statistics of tile attachments and detachments. We show that these statistics fit the widely used kinetic Tile Assembly Model and demonstrate AFM movies as a viable technique for directly investigating DNA tile systems during growth rather than after assembly.

  11. Current direction, wind wave spectra, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 1978-10-11 to 1980-03-19 (NODC Accession 8000368)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, wind wave spectra, and other data were collected using moored current meter casts and other instruments from the CAPT JACK and EXCELLENCE in the...

  12. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described

  13. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described.

  14. Student Evaluation of Teaching: An Instrument and a Development Process

    Science.gov (United States)

    Alok, Kumar

    2011-01-01

    This article describes the process of faculty-led development of a student evaluation of teaching instrument at Centurion School of Rural Enterprise Management, a management institute in India. The instrument was to focus on teacher behaviors that students get an opportunity to observe. Teachers and students jointly contributed a number of…

  15. ExoMars Trace Gas Orbiter Instrument Modelling Approach to Streamline Science Operations

    Science.gov (United States)

    Munoz Fernandez, Michela; Frew, David; Ashman, Michael; Cardesin Moinelo, Alejandro; Garcia Beteta, Juan Jose; Geiger, Bernhard; Metcalfe, Leo; Nespoli, Federico; Muniz Solaz, Carlos

    2018-05-01

    ExoMars Trace Gas Orbiter (TGO) science operations activities are centralised at ESAC's Science Operations Centre (SOC). The SOC receives the inputs from the principal investigators (PIs) in order to implement and deliver the spacecraft pointing requests and instrument timelines to the Mission Operations Centre (MOC). The high number of orbits per planning cycle has made it necessary to abstract the planning interactions between the SOC and the PI teams at the observation level. This paper describes the modelling approach we have conducted for TGOís instruments to streamline science operations. We have created dynamic observation types that scale to adapt to the conditions specified by the PI teams including observation timing, and pointing block parameters calculated from observation geometry. This approach is considered and improvement with respect to previous missions where the generation of the observation pointing and commanding requests was performed manually by the instrument teams. Automation software assists us to effectively handle the high density of planned orbits with increasing volume of scientific data and to successfully meet opportunistic scientific goals and objectives. Our planning tool combines the instrument observation definition files provided by the PIs together with the flight dynamics products to generate the Pointing Requests and the instrument timeline (ITL). The ITL contains all the validated commands at the TC sequence level and computes the resource envelopes (data rate, power, data volume) within the constraints. At the SOC, our main goal is to maximise the science output while minimising the number of iterations among the teams, ensuring that the timeline does not violate the state transitions allowed in the Mission Operations Rules and Constraints Document.

  16. A numerical study of self-sustained oscillations in wind instruments

    Science.gov (United States)

    Rendon, Pablo L.; Velasco-Segura, Roberto

    2017-11-01

    The study of sustained notes in wind musical instruments in realistic conditions requires consideration of both excitation and propagation mechanisms, and the manner in which these two interact. Further, to model adequately acoustic propagation inside the instrument, a variety of competing effects must be taken into account, such as nonlinearity, thermoviscous attenuation and radiation at the open end. Physical solutions also involve some degree of feedback at the excitation end, and here we propose the simplest boundary conditions possible at this end, given by a simple harmonic oscillator with fixed stiffness. By feeding single-frequency acoustic waves into the system we are able to study the formation of self-sustained oscillations, which are stationary states associated with resonance frequencies, and also to observe transitory states. Visualizations are presented of waves traveling in both directions. As expected, resonance frequencies are dependent on the stiffness parameter, and this dependence is examined. The full-wave simulation is performed in the time domain over a 2D spatial domain assuming axial symmetry, and it is based on a previously validated open source code, using a finite volume method (FiVoNAGI) implemented in a GPU [Velasco-Segura & Rendn, 2015]. The authors acknowledge the financial support of DGAPA-UNAM through project PAPIIT IG100717.

  17. Stability and lifetime testing of photomultiplier detectors for the Earth observing system SOLSTICE program

    Science.gov (United States)

    Hadler, Joshua A.; van de Kop, Toni; Drake, Virginia A.; McClintock, William E.; Murphy, John; Rodgers, Paul

    1998-10-01

    The primary objective of the Earth Observing System (EOS) Solar Stellar Irradiance Comparison Experiment (SOLSTICE) is to accurately measure the absolute value of the solar UV irradiance at the top of the earth's atmosphere for a minimum mission lifetime of 5 years. To meet this objective, SOLSTICE employs a unique design to determine changes in instrument performance by routinely observing a series of early-type stars and comparing the irradiances directly with the solar value. Although the comparison techniques allows us to track instrument performance, the success of the SOLSTICE experiment depends upon photomultiplier detectors which have graceful degradation properties. Therefore, we have established a laboratory program to evaluate the characteristics of photomultiplier tubes which are exposed to long term fluxes similar to those we expected to encounter in flight. Three types of Hamamatsu photomultiplier tubes were tested as candidates for use in the EOS-SOLSTICE project. The results of these studies: pulse height distribution; quantum efficiency; surface maps,; and lifetime analysis are presented in this paper.

  18. What can we expect from near to mid-term direct imaging programs?

    Science.gov (United States)

    Boccaletti, A.

    2015-10-01

    Direct imaging for exoplanets has made enormous progress in the last decades owing to the advent of new technologies, efficient algorithms for postprocessing and dedicated observing strategies. A few young giant exoplanets were detected with the previous generation of instruments (beta Pic b, HS3799bcde, HR95086b ...). While SPHERE and GPI were conceived with this very purpose, we are thus expecting many more discoveries in the next years. SPHERE comes with a series of facilities to characterize the atmosphere of these planets, from the visible to the near IR, with broad band, narrow band filters, and low to medium resolution spectroscopy as well. It is also a fabulous instrument to study circumstellar disks both intensity and polarimetry in order to establish the link between planets and their environments. A large survey of 600 targets on a 5 years baseline has been started. The next space telescope, JWST equipped with MIRI and NIRCAM will extend the ability to characterize young giants in the mid IR. NO doubt we will learn more about their atmospheres. Finally, by the next decade, very large apertures will become available on the ground. Extremely Large Telescope will have general first light instruments (MICADO, HARMONI), but some programs to image and characterize young giant planets around very distant stars (>100pc) will be feasible. For much ambitious goal, detecting telluric planets and studying their atmosphere, two paths are now considered either from space (WFIRST AFTA-C is good candidate) and from the Ground with SPHERE-like instruments on ELTs. A review of achievments and perspectives in the context of direct imaging will be presented.

  19. Instrument evaluation no. 13. Nuclear enterprises portable meter type PDR

    International Nuclear Information System (INIS)

    Burgess, P.H.; Iles, W.J.

    1978-06-01

    The various radiations encountered in radiological protection cover a wide range of energies and radiation measurements have to be carried out under an equally broad spectrum of environmental conditions. This report is one of a series intended to give information on the performance characteristics of radiological protection instruments, to assist in the selection of appropriate instruments for a given purpose, to interpret the results obtained with such instruments, and, in particular, to know the likely sources and magnitude of errors that might be associated with measurements in the field. The radiation, electrical and environmental characteristics of radiation protection instruments are considered together with those aspects of the construction which make an instrument convenient for routine use. To provide consistent criteria for instrument performance, the range of tests performed on any particular class of instrument, the test methods and the criteria of acceptable performance are based broadly on the appropriate Recommendations of the International Electrotechnical Commission. The radiations in the tests are, in general, selected from the range of reference radiations for instrument calibration being drawn up by the International Standards Organisation. Normally, each report deals with the capabilities and limitations of one model of instrument and no direct comparison with other instruments intended for similar purposes is made, since the significance of particular performance characteristics largely depends on the radiations and environmental conditions in which the instrument is to be used. The results quoted here have all been obtained from tests on instruments in routine production, with the appropriate measurements being made by the NRPB. This report deals with the evaluation of Nuclear Enterprises Portable Dose Rate Meter Type PDR 2

  20. Gamma Ray Bursts - Observations

    Science.gov (United States)

    Gehrels, N.; Cannizzo, J. K.

    2010-01-01

    We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. The Fermi observatory is observing 250 bursts per year with its medium-energy GRB instrument and about 10 bursts per year with its high-energy LAT instrument. In addition, rapid-response telescopes on the ground are providing new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and high energy emission.

  1. Instrumental analytical techniques in geochemistry: Requirements and applications

    International Nuclear Information System (INIS)

    Willis, J.P.

    1986-01-01

    Geochemists must analyse an extremely wide range of terrestrial and planetary materials. The instrumental techniques necessary to cope with this difficult task are considered. The most important analytical techniques in use by the geochemist today are AAS, ICP-OES, INAA, MSID and XRFS, and the electron microscope for in situ mineral analysis. Some applications of these techniques to solving major problems in geochemistry are discussed. The importance of certified reference materials and of high quality geochemical data are emphasized. It is concluded that the general quality of trace element data has improved over the past 25 years, as a direct result of the application of modern instrumental techniques. Surprisingly, the quality of data reported for certain major elements has deteriorated over that time, when compared with data obtainable by classical chemical methods. Predictions are made concerning the instrumentation needs of the next generation of geochemists. (orig.) [de

  2. Tax system competition – instruments and beneficiaries

    OpenAIRE

    Krzysztof Biernacki

    2014-01-01

    Tax competition among states and jurisdictions has already been examined many times in the economic literature. However, the main scope of the research was focused on a tax rates competition in income taxes and its consequences in bringing direct investments. This scripture/commentary tries to analyze various instruments and beneficiaries of the tax system competition and provide a general overview on this subject.

  3. Instrument Response Modeling and Simulation for the GLAST Burst Monitor

    International Nuclear Information System (INIS)

    Kippen, R. M.; Hoover, A. S.; Wallace, M. S.; Pendleton, G. N.; Meegan, C. A.; Fishman, G. J.; Wilson-Hodge, C. A.; Kouveliotou, C.; Lichti, G. G.; Kienlin, A. von; Steinle, H.; Diehl, R.; Greiner, J.; Preece, R. D.; Connaughton, V.; Briggs, M. S.; Paciesas, W. S.; Bhat, P. N.

    2007-01-01

    The GLAST Burst Monitor (GBM) is designed to provide wide field of view observations of gamma-ray bursts and other fast transient sources in the energy range 10 keV to 30 MeV. The GBM is composed of several unshielded and uncollimated scintillation detectors (twelve NaI and two BGO) that are widely dispersed about the GLAST spacecraft. As a result, reconstructing source locations, energy spectra, and temporal properties from GBM data requires detailed knowledge of the detectors' response to both direct radiation as well as that scattered from the spacecraft and Earth's atmosphere. This full GBM instrument response will be captured in the form of a response function database that is derived from computer modeling and simulation. The simulation system is based on the GEANT4 Monte Carlo radiation transport simulation toolset, and is being extensively validated against calibrated experimental GBM data. We discuss the architecture of the GBM simulation and modeling system and describe how its products will be used for analysis of observed GBM data. Companion papers describe the status of validating the system

  4. Source location of chorus emissions observed by Cluster

    Directory of Open Access Journals (Sweden)

    M. Parrot

    Full Text Available One of the objectives of the Cluster mission is to study sources of various electromagnetic waves using the four satellites. This paper describes the methods we have applied to data recorded from the STAFF spectrum analyser. This instrument provides the cross spectral matrix of three magnetic and two electric field components. This spectral matrix is analysed to determine, for each satellite, the direction of the wave normal relative to the Earth’s magnetic field as a function of frequency and of time. Due to the Cluster orbit, chorus emissions are often observed close to perigee, and the data analysis determines the direction of these waves. Three events observed during different levels of magnetic activity are reported. It is shown that the component of the Poynting vector parallel to the magnetic field changes its sense when the satellites cross the magnetic equator, which indicates that the chorus waves propagate away from the equator. Detailed analysis indicates that the source is located in close vicinity of the plane of the geomagnetic equator.

    Key words. Magnetospheric physics (plasma waves and instabilities; storms and substorms; Space plasma physics (waves and instabilities

  5. Design and Implementation of Data Collection Instruments for Neonatology Research

    Directory of Open Access Journals (Sweden)

    Monica G. HĂŞMĂŞANU

    2014-12-01

    Full Text Available im: The aim of our research was to design and implement data collection instruments to be use in context of an observational prospective clinical study with follow-up conducted on new born with intrauterine growth restriction. Methods: The structure of the data collection forms (paper based and electronic based was first identified and for each variable the best type to accomplish the research aim was established. The code for categorical variables has also been decided as well as the units of measurements for quantitative variables. In respect of good practice, a set of confounding factors (as gender, date of birth, etc. have also been identified and integrated in data collection instruments. Data-entry validation rules were implemented for each variable to reduce data input errors when the electronic data collection instrument was created. Results: Two data collection instruments have been developed and successfully implemented: a paper-based form and an electronic data collection instrument. The developed forms included demographics, neonatal complications (as hypoglycemia, hypocalcemia, etc., biochemical data at birth and follow-up, immunological data, as well as basal and follow-up echocardiographic data. Data-entry validation criteria have been implemented in electronic data collection instrument to assure validity and precision when paper-based data are translated in electronic form. Furthermore, to assure subject’s confidentiality a careful attention was given to HIPPA identifiers when electronic data collection instrument was developed. Conclusion: Data collection instruments were successfully developed and implemented as an a priori step in a clinical research for assisting data collection and management in a case of an observational prospective study with follow-up visits.

  6. Structured Parent-Child Observations Predict Development of Conduct Problems: the Importance of Parental Negative Attention in Child-Directed Play.

    Science.gov (United States)

    Fleming, Andrew P; McMahon, Robert J; King, Kevin M

    2017-04-01

    Structured observations of parent-child interactions are commonly used in research and clinical settings, but require additional empirical support. The current study examined the capacity of child-directed play, parent-directed play, and parent-directed chore interaction analogs to uniquely predict the development of conduct problems across a 6-year follow-up period. Parent-child observations were collected from 338 families from high-risk neighborhoods during the summer following the child's first-grade year. Participating children were 49.2 % female, 54.4 % white, and 45.6 % black, and had an average age of 7.52 years at the first assessment. Conduct problems were assessed via parent report and teacher report at five assessment points between first grade and seventh grade. Latent growth curve modeling was used to analyze predictors of conduct problem trajectory across this 6-year follow-up period. When race, sex, socioeconomic status, and maternal depressive symptoms were controlled, parental negative attention during child-directed play predicted higher levels of parent-reported conduct problems concurrently and after a 6-year follow-up period. Parental negative attention during child-directed play also predicted higher teacher-reported conduct problems 6 years later. Findings support the use of child-directed play and parent-directed chore analogs in predicting longitudinal development of conduct problems. The presence of parental negative attention during child-directed play appears to be an especially important predictor of greater conduct problems over time and across multiple domains. Additionally, the potential importance of task-incongruent behavior is proposed for further study.

  7. Gamma-ray burst observations with the Compton/Ulysses/Pioneer-Venus network

    International Nuclear Information System (INIS)

    Cline, T.L.; Hurley, K.C.; Sommer, M.; Boer, M.; Niel, M.; Fishman, G.J.; Kouveliotou, C.; Meegan, C.A.; Paciesas, W.S.; Wilson, R.B.; Fenimore, E.E.; Laros, J.G.; Klebesadel, R.W.

    1993-01-01

    The third and latest interplanetary network for the precise directional analysis of gamma ray bursts consists of the Burst and Transient Source Experiment in Compton Gamma Ray Observatory and instruments on Pioneer-Venus Orbiter and the deep-space mission Ulysses. The unsurpassed resolution of the BATSE instrument, the use of refined analysis techniques, and Ulysses' distance of up to 6 AU all contribute to a potential for greater precision than had been achieved with former networks. Also, the departure of Ulysses from the ecliptic plane in 1992 avoids any positional alignment of the three instruments that would lessen the source directional accuracy

  8. Direct observation of hematopoietic progenitor chimerism in fetal freemartin cattle

    Directory of Open Access Journals (Sweden)

    Taponen Juhani

    2007-11-01

    Full Text Available Abstract Background Cattle twins are well known as blood chimeras. However, chimerism in the actual hematopoietic progenitor compartment has not been directly investigated. Here, we analyzed fetal liver of chimeric freemartin cattle by combining a new anti-bovine CD34 antibody and Y-chromosome specific in situ hybridization. Results Bull-derived CD34+ cells were detected in the liver of the female sibling (freemartin at 60 days gestation. The level of bull-derived CD34+ cells was lower in the freemartin than in its male siblings. Bull (Y+ and cow hematopoietic cells often occurred in separate clusters. Around clusters of Y+CD34+ cells, Y+CD34- cells were typically observed. The thymi were also strongly chimeric at 60 days of gestation. Conclusion The fetal freemartin liver contains clusters of bull-derived hematopoietic progenitors, suggesting clonal expansion and differentiation. Even the roots of the hematopoietic system in cattle twins are thus strongly chimeric from the early stages of fetal development. However, the hematopoietic seeding of fetal liver apparently started already before the onset of functional vascular anastomosis.

  9. Conducting Classroom Observations : Stallings 'Classroom Snapshot' Observation System for an Electronic Tablet

    OpenAIRE

    World Bank Group

    2017-01-01

    The “Stallings Classroom Snapshot” instrument, technically called the “Stanford Research Institute Classroom Observation System”, was developed by Professor Jane Stallings for research on the efficiency and quality of basic education teachers in the United States in the 1970s. (Stallings, 1977; Stallings and Mohlman, 1988). The Stallings instrument generates robust quantitative data on the interaction of teachers and students in the classroom, with a high degree of inter-rater rel...

  10. The novel programmable riometer for in-depth ionospheric and magnetospheric observations (PRIAMOS) using direct sampling DSP techniques

    OpenAIRE

    Dekoulis, G.; Honary, F.

    2005-01-01

    This paper describes the feasibility study and simulation results for the unique multi-frequency, multi-bandwidth, Programmable Riometer for in-depth Ionospheric And Magnetospheric ObservationS (PRIAMOS) based on direct sampling digital signal processing (DSP) techniques. This novel architecture is based on sampling the cosmic noise wavefront at the antenna. It eliminates the usage of any intermediate frequency (IF) mixer stages (-6 dB) and the noise balancing technique (-3 dB), providing a m...

  11. Spatial Heterodyne Observation of Water (SHOW) from a high altitude aircraft

    Science.gov (United States)

    Bourassa, A. E.; Langille, J.; Solheim, B.; Degenstein, D. A.; Letros, D.; Lloyd, N. D.; Loewen, P.

    2017-12-01

    The Spatial Heterodyne Observations of Water instrument (SHOW) is limb-sounding satellite prototype that is being developed in collaboration between the University of Saskatchewan, York University, the Canadian Space Agency and ABB. The SHOW instrument combines a field-widened SHS with an imaging system to observe limb-scattered sunlight in a vibrational band of water (1363 nm - 1366 nm). Currently, the instrument has been optimized for deployment on NASA's ER-2 aircraft. Flying at an altitude of 70, 000 ft the ER-2 configuration and SHOW viewing geometry provides high spatial resolution (limb-measurements of water vapor in the Upper troposphere and lower stratosphere region. During an observation campaign from July 15 - July 22, the SHOW instrument performed 10 hours of observations from the ER-2. This paper describes the SHOW measurement technique and presents the preliminary analysis and results from these flights. These observations are used to validate the SHOW measurement technique and demonstrate the sampling capabilities of the instrument.

  12. Minimal Function Graphs are not Instrumented

    DEFF Research Database (Denmark)

    Mycroft, Alan; Rosendahl, Mads

    1992-01-01

    The minimal function graph semantics of Jones and Mycroft is a standard denotational semantics modified to include only `reachable' parts of a program. We show that it may be expressed directly in terms of the standard semantics without the need for instrumentation at the expression level and......, in doing so, bring out a connection with strictness. This also makes it possible to prove a stronger theorem of correctness for the minimal function graph semantics....

  13. Direct observation of asperity deformation of specimens with random rough surfaces in upsetting and indentation processes

    DEFF Research Database (Denmark)

    Azushima, A.; Kuba, S.; Tani, S.

    2006-01-01

    The trapping behavior of liquid lubricant and contact behavior of asperities at the workpiece-tool interface during upsetting and indentation are observed directly using a compression subpress which consists of a transparent die made of sapphire, a microscope with a CCD camera and a video system....... The experiments are carried out without lubricant and with lubricant. Specimens used are commercially pure A1100 aluminum with a random rough surface. From these observations, the change in the fraction of real contact area is measured by an image processor. The real contact area ratios in upsetting experiments...

  14. Direct observation of mother-child communication in pediatric cancer: assessment of verbal and non-verbal behavior and emotion.

    Science.gov (United States)

    Dunn, Madeleine J; Rodriguez, Erin M; Miller, Kimberly S; Gerhardt, Cynthia A; Vannatta, Kathryn; Saylor, Megan; Scheule, C Melanie; Compas, Bruce E

    2011-06-01

    To examine the acceptability and feasibility of coding observed verbal and nonverbal behavioral and emotional components of mother-child communication among families of children with cancer. Mother-child dyads (N=33, children ages 5-17 years) were asked to engage in a videotaped 15-min conversation about the child's cancer. Coding was done using the Iowa Family Interaction Rating Scale (IFIRS). Acceptability and feasibility of direct observation in this population were partially supported: 58% consented and 81% of those (47% of all eligible dyads) completed the task; trained raters achieved 78% agreement in ratings across codes. The construct validity of the IFIRS was demonstrated by expected associations within and between positive and negative behavioral/emotional code ratings and between mothers' and children's corresponding code ratings. Direct observation of mother-child communication about childhood cancer has the potential to be an acceptable and feasible method of assessing verbal and nonverbal behavior and emotion in this population.

  15. Regional cooperation on nuclear instrument maintenance

    International Nuclear Information System (INIS)

    1991-04-01

    Proper nuclear instrument maintenance is the essential precondition for any experimental work in nuclear sciences and technology. With the rapidly increasing sophistication of nuclear instrumentation, and considering the rather specific conditions that prevail in many IAEA Member States, this topic is gaining in importance, and has a strong economic implication. There is a general opinion that a regional, and possibly interregional cooperation in the field might be advantageous, and economically beneficial to all participating parties. The experience in such cooperation is limited, but sufficient that some reliable observations can be made, some conclusion can be drawn, and some recommendation for the possible future development can be presented

  16. Policy instruments to decrease the climate impact of housing, personal transport and food. Detailed instrument descriptions; Ohjauskeinoja asumisen, henkiloeliikenteen ja ruoan ilmastovaikutusten hillintaeaen. Yksityiskohtaiset ohjauskeinokuvaukset

    Energy Technology Data Exchange (ETDEWEB)

    Heiskanen, E.; Perrels, A.; Nissinen, A.; Berghaell, E.; Liesimaa, V.; Mattinen, M. (eds.)

    2012-03-15

    Reducing consumption volumes or introducing climate conscious consumption patterns can be efficient ways to mitigate climate change. Twenty existing policy instruments affecting the greenhouse gas emissions of housing, passenger traffic and food are described in this report of the KUILU-project. The policy instruments and the possibilities to develop effective instrument packages were discussed in two expert workshops, the results of which are presented in annexes of this report. There are already several policy instruments that target on housing and passenger traffic. Their differences in estimated emission reductions are large, which can ease the prioritization and selection of the instruments for further development. So far, only one policy instrument exists that aims to reduce the climate impacts of food choices, namely a Council of State Decision of Principle on Promoting Sustainability in Public Purchasing. However, it includes several measures that can be used to influence private companies and citizens, and thus it opens the field of policy instrument for mitigation of climate impacts of food. According to the expert survey, the most effective policy instrument involved in the analysis was building regulations, and the four most effective instruments after this were the following: gradated procurement tax of cars based on emissions, gradation of car tax, taxation of transport fuels, energy taxes of housing, and the effect of ecodesign directive on appliances. The effectiveness of policy instruments related to food was assessed to be on average level. The five least effective instruments were: EU energy label, voluntary energy experts, the tax of beverage packing, energy certificates, and subsidies for energy efficiency reparation in buildings. However, the expert opinions on the effectiveness of the policy instruments varied significantly. After this report, the KUILU project continued with an analysis of the policy instrument packages and with suggestions

  17. Policy instruments to decrease the climate impact of housing, personal transport and food. Detailed instrument descriptions; Ohjauskeinoja asumisen, henkiloeliikenteen ja ruoan ilmastovaikutusten hillintaeaen. Yksityiskohtaiset ohjauskeinokuvaukset

    Energy Technology Data Exchange (ETDEWEB)

    Heiskanen, E.; Perrels, A.; Nissinen, A.; Berghaell, E.; Liesmaa, V.; Mattinen, M. (eds.)

    2012-07-01

    Reducing consumption volumes or introducing climate conscious consumption patterns can be efficient ways to mitigate climate change. Twenty existing policy instruments affecting the greenhouse gas emissions of housing, passenger traffic and food are described in this report of the KUILU-project. The policy instruments and the possibilities to develop effective instrument packages were discussed in two expert workshops, the results of which are presented in annexes of this report. There are already several policy instruments that target on housing and passenger traffic. Their differences in estimated emission reductions are large, which can ease the prioritization and selection of the instruments for further development. So far, only one policy instrument exists that aims to reduce the climate impacts of food choices, namely a Council of State Decision of Principle on Promoting Sustainability in Public Purchasing. However, it includes several measures that can be used to influence private companies and citizens, and thus it opens the field of policy instrument for mitigation of climate impacts of food. According to the expert survey, the most effective policy instrument involved in the analysis was building regulations, and the four most effective instruments after this were the following: gradated procurement tax of cars based on emissions, gradation of car tax, taxation of transport fuels, energy taxes of housing, and the effect of ecodesign directive on appliances. The effectiveness of policy instruments related to food was assessed to be on average level. The five least effective instruments were: EU energy label, voluntary energy experts, the tax of beverage packing, energy certificates, and subsidies for energy efficiency reparation in buildings. However, the expert opinions on the effectiveness of the policy instruments varied significantly. After this report, the KUILU project continued with an analysis of the policy instrument packages and with suggestions

  18. Current direction, wind wave spectra, phytoplankton, zooplankton, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 1977-09-24 to 1981-08-31 (NODC Accession 8100681)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, chemical, phytoplankton, zooplankton, wind wave spectra, and other data were collected using moored current meter casts and other instruments in...

  19. Design of instrumentation and software for precise laser machining

    Science.gov (United States)

    Wyszyński, D.; Grabowski, Marcin; Lipiec, Piotr

    2017-10-01

    The paper concerns the design of instrumentation and software for precise laser machining. Application of advanced laser beam manipulation instrumentation enables noticeable improvement of cut quality and material loss. This factors have significant impact on process efficiency and cutting edge quality by means of machined part size and shape accuracy, wall taper, material loss reduction (e.g. diamond) and time effectiveness. The goal can be reached by integration of laser drive, observation and optical measurement system, beam manipulation system and five axis mechanical instrumentation with use of advanced tailored software enabling full laser cutting process control and monitoring.

  20. Interactions between C and Cu atoms in single-layer graphene: direct observation and modelling.

    Science.gov (United States)

    Kano, Emi; Hashimoto, Ayako; Kaneko, Tomoaki; Tajima, Nobuo; Ohno, Takahisa; Takeguchi, Masaki

    2016-01-07

    Metal doping into the graphene lattice has been studied recently to develop novel nanoelectronic devices and to gain an understanding of the catalytic activities of metals in nanocarbon structures. Here we report the direct observation of interactions between Cu atoms and single-layer graphene by transmission electron microscopy. We document stable configurations of Cu atoms in the graphene sheet and unique transformations of graphene promoted by Cu atoms. First-principles calculations based on density functional theory reveal a reduction of energy barrier that caused rotation of C-C bonds near Cu atoms. We discuss two driving forces, electron irradiation and in situ heating, and conclude that the observed transformations were mainly promoted by electron irradiation. Our results suggest that individual Cu atoms can promote reconstruction of single-layer graphene.