Direct numerical simulation of vector-controlled free jets
Tsujimoto, K; Ao, K; Shakouchi, T; Ando, T, E-mail: tujimoto@mach.mie-u.ac.jp [Graduate School of Engineering, Mie University, Tsu, 514-8507 (Japan)
2011-12-22
We conduct DNS (direct numerical simulation) of vector controlled free jets. The inflow velocity of jet is periodically oscillated perpendicular to the jet axis. In order to realize the high accurate computation, a discretization in space is performed with hybrid scheme in which Fourier spectral and 6th order compact scheme are adopted. From visualized instantaneous vortex structures, it is found that the flow pattern considerably changes according to the oscillating frequency, i.e., according to the increasing the frequency, wave, bifurcating and flapping modes appear in turn. In order to quantify mixing efficiency under the vector control, as the mixing measure, statistical entropy is investigated. Compared to the uncontrolled jet, the mixing efficiency is improved in order of wavy, flapping and bifurcating modes. Thus the vector control can be expected for the improvement of mixing efficiency. Further to make clear the reason for the mixing enhancement, Snapshot POD and DMD method are applied. The primary flow structures under the vector control are demonstrated.
Lieu, Binh K; Jovanović, Mihailo R
2010-01-01
This work builds on and confirms the theoretical findings of Part 1 of this paper, Moarref & Jovanovi\\'c (2010). We use direct numerical simulations of the Navier-Stokes equations to assess the efficacy of blowing and suction in the form of streamwise traveling waves for controlling the onset of turbulence in a channel flow. We highlight the effects of the modified base flow on the dynamics of velocity fluctuations and net power balance. Our simulations verify the theoretical predictions of Part 1 that the upstream traveling waves promote turbulence even when the uncontrolled flow stays laminar. On the other hand, the downstream traveling waves with parameters selected in Part 1 are capable of reducing the fluctuations' kinetic energy, thereby maintaining the laminar flow. In flows driven by a fixed pressure gradient, a positive net efficiency as large as 25 % relative to the uncontrolled turbulent flow can be achieved with downstream waves. Furthermore, we show that these waves can also relaminarize full...
Becus, Georges A.; Chan, Alistair K.
1993-01-01
Three neural network processing approaches in a direct numerical optimization model reduction scheme are proposed and investigated. Large structural systems, such as large space structures, offer new challenges to both structural dynamicists and control engineers. One such challenge is that of dimensionality. Indeed these distributed parameter systems can be modeled either by infinite dimensional mathematical models (typically partial differential equations) or by high dimensional discrete models (typically finite element models) often exhibiting thousands of vibrational modes usually closely spaced and with little, if any, damping. Clearly, some form of model reduction is in order, especially for the control engineer who can actively control but a few of the modes using system identification based on a limited number of sensors. Inasmuch as the amount of 'control spillover' (in which the control inputs excite the neglected dynamics) and/or 'observation spillover' (where neglected dynamics affect system identification) is to a large extent determined by the choice of particular reduced model (RM), the way in which this model reduction is carried out is often critical.
Mehrmann, Volker; Xu, Hongguo
2000-11-01
We study classical control problems like pole assignment, stabilization, linear quadratic control and H[infinity] control from a numerical analysis point of view. We present several examples that show the difficulties with classical approaches and suggest reformulations of the problems in a more general framework. We also discuss some new algorithmic approaches.
Direct numerical simulation of turbulent reacting flows
Chen, J.H. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.
Zhang, Wei
2015-05-05
We present results of direct numerical simulations of a synthetic jet (SJ) based separation control of flow past a NACA-0018 (National Advisory Committee for Aeronautics) airfoil, at 10° angle of attack and Reynolds number 104 based on the airfoil chord length C and uniform inflow velocity U 0. The actuator of the SJ is modeled as a spanwise slot on the airfoil leeward surface and is placed just upstream of the leading edge separation position of the uncontrolled flow. The momentum coefficient of the SJ is chosen at a small value 2.13 × 10−4 normalized by that of the inflow. Three forcing frequencies are chosen for the present investigation: the low frequency (LF) F + = feC/U 0 = 0.5, the medium frequency (MF) F + = 1.0, and the high frequency (HF) F + = 4.0. We quantify the effects of forcing frequency for each case on the separation control and related vortex dynamics patterns. The simulations are performed using an energy conservative fourth-order parallel code. Numerical results reveal that the geometric variation introduced by the actuator has negligible effects on the mean flow field and the leading edge separation pattern; thus, the separation control effects are attributed to the SJ. The aerodynamic performances of the airfoil, characterized by lift and lift-to-drag ratio, are improved for all controlled cases, with the F + = 1.0 case being the optimal one. The flow in the shear layer close to the actuator is locked to the jet, while in the wake this lock-in is maintained for the MF case but suppressed by the increasing turbulent fluctuations in the LF and HF cases. The vortex evolution downstream of the actuator presents two modes depending on the frequency: the vortex fragmentation and merging mode in the LF case where the vortex formed due to the SJ breaks up into several vortices and the latter merge as convecting downstream; the discrete vortices mode in the HF case where discrete vortices form and convect downstream without any fragmentation and
Direct numerical simulation of compressible isotropic turbulence
LI; Xinliang(李新亮); FU; Dexun(傅德薰); MAYanwen(马延文)
2002-01-01
Direct numerical simulation (DNS) of decaying compressible isotropic turbulence at tur-bulence Mach numbers of Mt = 0.2-0.7 and Taylor Reynolds numbers of 72 and 153 is per-formed by using the 7th order upwind-biased difference and 8th order center difference schemes.Results show that proper upwind-biased difference schemes can release the limit of "start-up"problem to Mach numbers.Compressibility effects on the statistics of turbulent flow as well as the mechanics of shockletsin compressible turbulence are also studied, and the conclusion is drawn that high Mach numberleads to more dissipation. Scaling laws in compressible turbulence are also analyzed. Evidence isobtained that scaling laws and extended self similarity (ESS) hold in the compressible turbulentflow in spite of the presence of shocklets, and compressibility has little effect on scaling exponents.
Direct numerical simulation of axisymmetric turbulence
Qu, Bo; Bos, Wouter J. T.; Naso, Aurore
2017-09-01
The dynamics of decaying, strictly axisymmetric, incompressible turbulence is investigated using direct numerical simulations. It is found that the angular momentum is a robust invariant of the system. It is further shown that long-lived coherent structures are generated by the flow. These structures can be associated with stationary solutions of the Euler equations. The structures obey relations in agreement with predictions from selective decay principles, compatible with the decay laws of the system. Two different types of decay scenarios are highlighted. The first case results in a quasi-two-dimensional flow with a dynamical behavior in the poloidal plane similar to freely decaying two-dimensional turbulence. In a second regime, the long-time dynamics is dominated by a single three-dimensional mode.
Direct numerical simulation of human phonation
Saurabh, Shakti; Bodony, Daniel
2016-11-01
A direct numerical simulation study of the generation and propagation of the human voice in a full-body domain is conducted. A fully compressible fluid flow model, anatomically representative vocal tract geometry, finite deformation model for vocal fold (VF) motion and a fully coupled fluid-structure interaction model are employed. The dynamics of the multi-layered VF tissue with varying stiffness are solved using a quadratic finite element code. The fluid-solid domains are coupled through a boundary-fitted interface and utilize a Poisson equation-based mesh deformation method. A new inflow boundary condition, based upon a quasi-1D formulation with constant sub-glottal volume velocity, linked to the VF movement, has been adopted. Simulations for both child and adult phonation were performed. Acoustic characteristics obtained from these simulation are consistent with expected values. A sensitivity analysis based on VF stiffness variation is undertaken and sound pressure level/fundamental frequency trends are established. An evaluation of the data against the commonly-used quasi-1D equations suggest that the latter are not sufficient to model phonation. Phonation threshold pressures are measured for several VF stiffness variations and comparisons to clinical data are carried out. Supported by the National Science Foundation (CAREER Award Number 1150439).
Direct Numerical Simulation of Cell Printing
Qiao, Rui; He, Ping
2010-11-01
Structural cell printing, i.e., printing three dimensional (3D) structures of cells held in a tissue matrix, is gaining significant attention in the biomedical community. The key idea is to use desktop printer or similar devices to print cells into 3D patterns with a resolution comparable to the size of mammalian cells, similar to that in living organs. Achieving such a resolution in vitro can lead to breakthroughs in areas such as organ transplantation and understanding of cell-cell interactions in truly 3D spaces. Although the feasibility of cell printing has been demonstrated in the recent years, the printing resolution and cell viability remain to be improved. In this work, we investigate one of the unit operations in cell printing, namely, the impact of a cell-laden droplet into a pool of highly viscous liquids using direct numerical simulations. The dynamics of droplet impact (e.g., crater formation and droplet spreading and penetration) and the evolution of cell shape and internal stress are quantified in details.
Direct numerical simulation of dynamo transition for nonhelical MHD
Nath, Dinesh; Verma, Mahendra K [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Lessinnes, Thomas; Carati, Daniele [Physique Statistique et Plasmas, Universite Libre de Bruxellers, B-1050 Bruxelles (Belgium); Sarris, Ioannis [Department of Mechanical and Industrial Engineering, University of Thessaly, Volos (Greece)
2010-02-01
Pseudospectral Direct Numerical Simulation (DNS) has been performed to simulate dynamo transition for nonhelical magnetohydrodynamics turbulence. The numerical results are compared with a recent low-dimensional model [Verma et al. [13
Numerical Analysis of Dynamic Direct Tension and Direct Compression Tests
1993-01-01
material model employed in the nonlinear analysis is a hypoelastic model based on a uniaxial stress-strain relation (Figure 18) that is generalized to...rates. Both an elastic and inelastic concrete material model were employed in all numerical analyses. The modes of failure predicted by the numerical... models ; (2) augmenting the system by adding other typical scenarios, with the ultimate goal of expanding it into a general task-oriented system/shell; and
Direct Numerical Simulation of Automobile Cavity Tones
Kurbatskii, Konstantin; Tam, Christopher K. W.
2000-01-01
The Navier Stokes equation is solved computationally by the Dispersion-Relation-Preserving (DRP) scheme for the flow and acoustic fields associated with a laminar boundary layer flow over an automobile door cavity. In this work, the flow Reynolds number is restricted to R(sub delta*) < 3400; the range of Reynolds number for which laminar flow may be maintained. This investigation focuses on two aspects of the problem, namely, the effect of boundary layer thickness on the cavity tone frequency and intensity and the effect of the size of the computation domain on the accuracy of the numerical simulation. It is found that the tone frequency decreases with an increase in boundary layer thickness. When the boundary layer is thicker than a certain critical value, depending on the flow speed, no tone is emitted by the cavity. Computationally, solutions of aeroacoustics problems are known to be sensitive to the size of the computation domain. Numerical experiments indicate that the use of a small domain could result in normal mode type acoustic oscillations in the entire computation domain leading to an increase in tone frequency and intensity. When the computation domain is expanded so that the boundaries are at least one wavelength away from the noise source, the computed tone frequency and intensity are found to be computation domain size independent.
Manuel Ninaus
2017-08-01
Full Text Available There is accumulating evidence suggesting an association of numbers with physical space. However, the origin of such spatial-numerical associations (SNAs is still debated. In the present study we investigated the development of two SNAs in a cross-sectional study involving children, young and middle-aged adults as well as the elderly: (1 the SNARC (spatial-numerical association of response codes effect, reflecting a directional SNA; and (2 the numerical bisection bias in a line bisection task with numerical flankers. Results revealed a consistent SNARC effect in all age groups that continuously increased with age. In contrast, a numerical bisection bias was only observed for children and elderly participants, implying an U-shaped distribution of this bias across age groups. Additionally, individual SNARC effects and numerical bisection biases did not correlate significantly. We argue that the SNARC effect seems to be influenced by longer-lasting experiences of cultural constraints such as reading and writing direction and may thus reflect embodied representations. Contrarily, the numerical bisection bias may originate from insufficient inhibition of the semantic influence of irrelevant numerical flankers, which should be more pronounced in children and elderly people due to development and decline of cognitive control, respectively. As there is an ongoing debate on the origins of SNAs in general and the SNARC effect in particular, the present results are discussed in light of these differing accounts in an integrative approach. However, taken together, the present pattern of results suggests that different cognitive mechanisms underlie the SNARC effect and the numerical bisection bias.
Value-Engineering Review for Numerical Control
Warner, J. L.
1984-01-01
Selecting parts for conversion from conventional machining to numerical control, value-engineering review performed for every part to identify potential changes to part design that result in increased production efficiency.
Bedrock incision by bedload: insights from direct numerical simulations
Aubert, Guilhem; Langlois, Vincent J.; Allemand, Pascal
2016-04-01
Bedload sediment transport is one of the main processes that contribute to bedrock incision in a river and is therefore one of the key control parameters in the evolution of mountainous landscapes. In recent years, many studies have addressed this issue through experimental setups, direct measurements in the field, or various analytical models. In this article, we present a new direct numerical approach: using the classical methods of discrete-element simulations applied to granular materials, we explicitly compute the trajectories of a number of pebbles entrained by a turbulent water stream over a rough solid surface. This method allows us to extract quantitatively the amount of energy that successive impacts of pebbles deliver to the bedrock, as a function of both the amount of sediment available and the Shields number. We show that we reproduce qualitatively the behaviour observed experimentally by Sklar and Dietrich (2001) and observe both a "tool effect" and a "cover effect". Converting the energy delivered to the bedrock into an average long-term incision rate of the river leads to predictions consistent with observations in the field. Finally, we reformulate the dependency of this incision rate with Shields number and sediment flux, and predict that the cover term should decay linearly at low sediment supply and exponentially at high sediment supply.
Numerical Simulation on CCOS Controllable Variable
CHENG Hao-bo; FENG Zhi-jing
2003-01-01
On the basis of Preston hypothesis,the motion relationship between tool and workpiece upon the tool's motion in planar model is analyzed.The effect on computer controlled optical surfacing (CCOS) caused by controllable variable is simulated except for the dwelling time,thus,some reference on theory is provided to optimize the former numerical control (NC) model,and fast manufacturing of large departure aspherics is realized.
Induction and direct resistance heating theory and numerical modeling
Lupi, Sergio; Aliferov, Aleksandr
2015-01-01
This book offers broad, detailed coverage of theoretical developments in induction and direct resistance heating and presents new material on the solution of problems in the application of such heating. The physical basis of induction and conduction heating processes is explained, and electromagnetic phenomena in direct resistance and induction heating of flat workpieces and cylindrical bodies are examined in depth. The calculation of electrical and energetic characteristics of induction and conduction heating systems is then thoroughly reviewed. The final two chapters consider analytical solutions and numerical modeling of problems in the application of induction and direct resistance heating, providing industrial engineers with the knowledge needed in order to use numerical tools in the modern design of installations. Other engineers, scientists, and technologists will find the book to be an invaluable reference that will assist in the efficient utilization of electrical energy.
Direct Numerical Simulation and Visualization of Subcooled Pool Boiling
Tomoaki Kunugi
2014-01-01
Full Text Available A direct numerical simulation of the boiling phenomena is one of the promising approaches in order to clarify their heat transfer characteristics and discuss the mechanism. During these decades, many DNS procedures have been developed according to the recent high performance computers and computational technologies. In this paper, the state of the art of direct numerical simulation of the pool boiling phenomena during mostly two decades is briefly summarized at first, and then the nonempirical boiling and condensation model proposed by the authors is introduced into the MARS (MultiInterface Advection and Reconstruction Solver developed by the authors. On the other hand, in order to clarify the boiling bubble behaviors under the subcooled conditions, the subcooled pool boiling experiments are also performed by using a high speed and high spatial resolution camera with a highly magnified telescope. Resulting from the numerical simulations of the subcooled pool boiling phenomena, the numerical results obtained by the MARS are validated by being compared to the experimental ones and the existing analytical solutions. The numerical results regarding the time evolution of the boiling bubble departure process under the subcooled conditions show a very good agreement with the experimental results. In conclusion, it can be said that the proposed nonempirical boiling and condensation model combined with the MARS has been validated.
Numerically Controlled Machine Tools and Worker Skills.
Keefe, Jeffrey H.
1991-01-01
Analysis of data from "Industry Wage Surveys of Machinery Manufacturers" on the skill levels of 57 machining jobs found that introduction of numerically controlled machine tools has resulted in a very small reduction in skill levels or no significant change, supporting neither the deskilling argument nor argument that skill levels…
Numerically Controlled Machine Tools and Worker Skills.
Keefe, Jeffrey H.
1991-01-01
Analysis of data from "Industry Wage Surveys of Machinery Manufacturers" on the skill levels of 57 machining jobs found that introduction of numerically controlled machine tools has resulted in a very small reduction in skill levels or no significant change, supporting neither the deskilling argument nor argument that skill levels…
A History of Computer Numerical Control.
Haggen, Gilbert L.
Computer numerical control (CNC) has evolved from the first significant counting method--the abacus. Babbage had perhaps the greatest impact on the development of modern day computers with his analytical engine. Hollerith's functioning machine with punched cards was used in tabulating the 1890 U.S. Census. In order for computers to become a…
Multiaxis Computer Numerical Control Internship Report
Rouse, Sharon M.
2012-01-01
(Purpose) The purpose of this paper was to examine the issues associated with bringing new technology into the classroom, in particular, the vocational/technical classroom. (Methodology) A new Haas 5 axis vertical Computer Numerical Control machining center was purchased to update the CNC machining curriculum at a community college and the process…
Argonne Code Center numerical control postprocessor inventory
Vollink, S. (comp.)
1977-12-21
A survey to identify numerical control postprocessors available at Department of Energy facilities is reported. The data are presented in the body of the report under the postprocessor identification. Information supplied includes the vendor name and address, the N/C and postprocessor languages, the machine tools and control unit supported, the computers used, and the identification of the DOE installation. The body of the report is followed by five indexes permitting users to refer to the postprocessor data by product number, DOE installation, machine tool, control unit, or computer. (RWR)
Direct Numerical Simulation of a Shocked Helium Jet
Cloutman, L D
2002-02-01
We present direct numerical simulations of a shock tube experiment in which a cylindrical laminar jet of helium doped with biacetyl is injected into air and subjected to a weak shock wave. Computed species distributions in a planar cross section of the jet are compared to planar laser-induced fluorescence (PLIF) images produced by the experiment. The calculations are in excellent agreement with the experimental images. We find that differential diffusion of species is an important feature of this experiment.
Adapting Inspection Data for Computer Numerical Control
Hutchison, E. E.
1986-01-01
Machining time for repetitive tasks reduced. Program converts measurements of stub post locations by coordinate-measuring machine into form used by numerical-control computer. Work time thus reduced by 10 to 15 minutes for each post. Since there are 600 such posts on each injector, time saved per injector is 100 to 150 hours. With modifications this approach applicable to machining of many precise holes on large machine frames and similar objects.
Study of numerical errors in direct numerical simulation and large eddy simulation
YANG Xiao-long; FU Song
2008-01-01
By comparing the energy spectrum and total kinetic energy, the effects of numerical errors (which arise from aliasing and discretization errors), subgrid-scale (SGS) models, and their interactions on direct numerical simulation (DNS) and large eddy simulation (LES) are investigated. The decaying isotropic turbulence is chosen as the test case. To simulate complex geometries, both the spectral method and Pade compact difference schemes are studied. The truncated Navier-Stokes (TNS) equation model with Pade discrete filter is adopted as the SGS model. It is found that the discretization error plays a key role in DNS. Low order difference schemes may be unsuitable. However, for LES, it is found that the SGS model can represent the effect of small scales to large scales and dump the numerical errors. Therefore, reasonable results can also be obtained with a low order discretization scheme.
Norman, Michael L; So, Geoffrey C; Harkness, Robsert P
2013-01-01
We describe an extension of the {\\em Enzo} code to enable the direct numerical simulation of inhomogeneous reionization in large cosmological volumes. By direct we mean all dynamical, radiative, and chemical properties are solved self-consistently on the same mesh, as opposed to a postprocessing approach which coarse-grains the radiative transfer. We do, however, employ a simple subgrid model for star formation, which we calibrate to observations. The numerical method presented is a modification of an earlier method presented in Reynolds et al. Radiation transport is done in the grey flux-limited diffusion (FLD) approximation, which is solved by implicit time integration split off from the gas energy and ionization equations, which are solved separately. This results in a faster and more robust scheme for cosmological applications compared to the earlier method. The FLD equation is solved using the {\\em hypre} optimally scalable geometric multigrid solver from LLNL. By treating the ionizing radiation as a gri...
Numerical methods for solving terminal optimal control problems
Gornov, A. Yu.; Tyatyushkin, A. I.; Finkelstein, E. A.
2016-02-01
Numerical methods for solving optimal control problems with equality constraints at the right end of the trajectory are discussed. Algorithms for optimal control search are proposed that are based on the multimethod technique for finding an approximate solution of prescribed accuracy that satisfies terminal conditions. High accuracy is achieved by applying a second-order method analogous to Newton's method or Bellman's quasilinearization method. In the solution of problems with direct control constraints, the variation of the control is computed using a finite-dimensional approximation of an auxiliary problem, which is solved by applying linear programming methods.
Direct numerical simulation of double-diffusive gravity currents
Penney, Jared; Stastna, Marek
2016-08-01
This paper presents three-dimensional direct numerical simulations of laboratory-scale double-diffusive gravity currents. Flow is governed by the incompressible Navier-Stokes equations under the Boussinesq approximation, with salinity and temperature coupled to the equations of motion using a nonlinear approximation to the UNESCO equation of state. The effects of vertical boundary conditions and current volume are examined, with focus on flow pattern development, current propagation speed, three-dimensionalization, dissipation, and stirring and mixing. It was observed that no-slip boundaries cause the gravity current head to take the standard lobe-and-cleft shape and encourage both a greater degree and an earlier onset of three-dimensionalization when compared to what occurs in the case of a free-slip boundary. Additionally, numerical simulations with no-slip boundary conditions experience greater viscous dissipation, stirring, and mixing when compared to similar configurations using free-slip conditions.
NOVEL STRUCTURE FOR DISTRIBUTED NUMERICAL CONTROL
Wang Shilong; Jian Yi; Liu Fei; Robert Young
2003-01-01
Because of an unexpected signal noise within the network or an unpredicted fault with personal computers (PCs), many problems emerge in the implementation of distributed numerical control (DNC) with PCs-based network. To solve the problems, an industrial solution of involving the field-bus technology in DNC communicating area is provided. A kind of advanced Field-bus, named controller area network (CAN), is originally developed to support cheap and rather simple automotive applications. However, because of its good performance and low cost, it is also being considered in automatedmanufacturing and process control environments to interconnect intelligent devices, such as modern sensors and actuators. Recently it creates a new role for CANBus in DNC that brings new thinking to DNC. CAN is used as the network platform for connecting machine tools to share information with each other reliably. Additionally, thanks to also applying of "plug-in" technology and a special interface of hardware, this solution exhibits some high compatibility with different pedigree numerical control (NC) systems, such as Fanuc, Siemens, Cincinnati and so on. In order to improve CANBus for DNC application, a communicating competition model of the basic CAN protocol, called CC model, is then highlighted. This model is able to satisfy the requirements that different machine tools share the communicating bandwidth fairly when they run concurrently. Finally the novel view of the latest advancement in CANBus-based DNC in combination with the manufacturing paradigm is also presented.
Direct numerical simulations of gas-liquid multiphase flows
Tryggvason, Grétar; Zaleski, Stéphane
2011-01-01
Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and
A fast direct numerical simulation method for characterising hydraulic roughness
Chung, Daniel; MacDonald, Michael; Hutchins, Nicholas; Ooi, Andrew
2015-01-01
We describe a fast direct numerical simulation (DNS) method that promises to directly characterise the hydraulic roughness of any given rough surface, from the hydraulically smooth to the fully rough regime. The method circumvents the unfavourable computational cost associated with simulating high-Reynolds-number flows by employing minimal-span channels (Jimenez & Moin 1991). Proof-of-concept simulations demonstrate that flows in minimal-span channels are sufficient for capturing the downward velocity shift, that is, the Hama roughness function, predicted by flows in full-span channels. We consider two sets of simulations, first with modelled roughness imposed by body forces, and second with explicit roughness described by roughness-conforming grids. Owing to the minimal cost, we are able to conduct DNSs with increasing roughness Reynolds numbers while maintaining a fixed blockage ratio, as is typical in full-scale applications. The present method promises a practical, fast and accurate tool for character...
Reckinger, Scott J.; Livescu, Daniel; Vasilyev, Oleg V.
2016-05-01
An investigation of compressible Rayleigh-Taylor instability (RTI) using Direct Numerical Simulations (DNS) requires efficient numerical methods, advanced boundary conditions, and consistent initialization in order to capture the wide range of scales and vortex dynamics present in the system, while reducing the computational impact associated with acoustic wave generation and the subsequent interaction with the flow. An advanced computational framework is presented that handles the challenges introduced by considering the compressive nature of RTI systems, which include sharp interfacial density gradients on strongly stratified background states, acoustic wave generation and removal at computational boundaries, and stratification dependent vorticity production. The foundation of the numerical methodology described here is the wavelet-based grid adaptivity of the Parallel Adaptive Wavelet Collocation Method (PAWCM) that maintains symmetry in single-mode RTI systems to extreme late-times. PAWCM is combined with a consistent initialization, which reduces the generation of acoustic disturbances, and effective boundary treatments, which prevent acoustic reflections. A dynamic time integration scheme that can handle highly nonlinear and potentially stiff systems, such as compressible RTI, completes the computational framework. The numerical methodology is used to simulate two-dimensional single-mode RTI to extreme late-times for a wide range of flow compressibility and variable density effects. The results show that flow compressibility acts to reduce the growth of RTI for low Atwood numbers, as predicted from linear stability analysis.
Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames
Im, Hong G.
2016-07-15
Direct numerical simulations (DNS) of turbulent combustion have evolved tremendously in the past decades, thanks to the rapid advances in high performance computing technology. Today’s DNS is capable of incorporating detailed reaction mechanisms and transport properties of hydrocarbon fuels, with physical parameter ranges approaching laboratory scale flames, thereby allowing direct comparison and cross-validation against laser diagnostic measurements. While these developments have led to significantly improved understanding of fundamental turbulent flame characteristics, there are increasing demands to explore combustion regimes at higher levels of turbulent Reynolds (Re) and Karlovitz (Ka) numbers, with a practical interest in new combustion engines driving towards higher efficiencies and lower emissions. The article attempts to provide a brief overview of the state-of-the-art DNS of turbulent premixed flames at high Re/Ka conditions, with an emphasis on homogeneous and isotropic turbulent flow configurations. Some important qualitative findings from numerical studies are summarized, new analytical approaches to investigate intensely turbulent premixed flame dynamics are discussed, and topics for future research are suggested. © 2016 Taylor & Francis.
Numerical simulation of thin layer coffee drying by control volumes
CIRO-VELÁSQUEZ, HÉCTOR J.; ABUD-CANO, LUIS C.; PÉREZ-ALEGRÍA, LUIS. R.
2011-01-01
The thin layer drying model proposed by Sokhansanj and Bruce (1987) was implemented to model the drying process of parchment coffee beans. A computational model based on a control volume approach was developed to simulate the drying process of parchment coffee. A one dimensional transient analysis was implemented in the radial direction applied to a spherical coffee bean of equivalent radius. The results found that, even though the numerical value for the mass transfer coefficient is a small ...
Numerical Investigations of Dynamic Stall Control
Florin FRUNZULICA
2014-04-01
Full Text Available In this paper we investigated numerically the dynamic stall phenomenon and the possibilities to control it, with application to vertical axis wind turbines (for urban users. The Phenomenon appear at low tip speed ratio (TSR<4 and it has a great impact on structural integrity of the wind turbine and power performances. For this reason we performed a computational study of dynamic stall around NACA 0012 airfoil in pitching motion at relative low Reynolds number (105. Also, we performed the same analysis for four flow control methods: two passive (Gurney flap and slot and two active (blowing jet on the rounded trailing edge and synthetic jet periodically activated. The Results are compared to those of an existing experimental case test.
Direct numerical simulation of bluff-body-stabilized premixed flames
Arias, Paul G.
2014-01-10
To enable high fidelity simulation of combustion phenomena in realistic devices, an embedded boundary method is implemented into direct numerical simulations (DNS) of reacting flows. One of the additional numerical issues associated with reacting flows is the stable treatment of the embedded boundaries in the presence of multicomponent species and reactions. The implemented method is validated in two test con gurations: a pre-mixed hydrogen/air flame stabilized in a backward-facing step configuration, and reactive flows around a square prism. The former is of interest in practical gas turbine combustor applications in which the thermo-acoustic instabilities are a strong concern, and the latter serves as a good model problem to capture the vortex shedding behind a bluff body. In addition, a reacting flow behind the square prism serves as a model for the study of flame stabilization in a micro-channel combustor. The present study utilizes fluid-cell reconstruction methods in order to capture important flame-to-solid wall interactions that are important in confined multicomponent reacting flows. Results show that the DNS with embedded boundaries can be extended to more complex geometries without loss of accuracy and the high fidelity simulation data can be used to develop and validate turbulence and combustion models for the design of practical combustion devices.
Direct Numerical Simulation of Multiphase Flows with Unstable Interfaces
Schillaci, Eugenio; Lehmkuhl, Oriol; Antepara, Oscar; Oliva, Assensi
2016-09-01
This paper presents a numerical model that intends to simulate efficiently the surface instability that arise in multiphase flows, typically liquid-gas, both for laminar or turbulent regimes. The model is developed on the in-house computing platform TermoFluids, and operates the finite-volume, direct numerical simulation (DNS) of multiphase flows by means of a conservative level-set method for the interface-capturing. The mesh size is optimized by means of an adaptive mesh refinement (AMR) strategy, that allows the dynamic re-concentration of the mesh in the vicinity of the interfaces between fluids, in order to correctly represent the diverse structures (as ligaments and droplets) that may rise from unstable phenomena. In addition, special attention is given to the discretization of the various terms of the momentum equations, to ensure stability of the flow and correct representation of turbulent vortices. As shown, the method is capable of truthfully simulate the interface phenomena as the Kelvin-Helmholtz instability and the Plateau-Rayleigh instability, both in the case of 2-D and 3-D configurations. Therefore it is suitable for the simulation of complex phenomena such as simulation of air-blast atomization, with several important application in the field of automotive and aerospace engines. A prove is given by our preliminary study of the 3-D coaxial liquid-gas jet.
Direct numerical simulation of turbulent channel flow over porous walls
Rosti, Marco E; Cortelezzi, Luca
2014-01-01
We perform direct numerical simulations (DNS) of a turbulent channel flow over porous walls. In the fluid region the flow is governed by the incompressible Navier-Stokes equations, while in the porous layers the Volume-Averaged Navier-Stokes (VANS) equations are used, which are obtained by volume-averaging the microscopic flow field over a small volume that is larger than the typical dimensions of the pores. In this way the porous medium has a continuum description, and can be specified via global properties like permeability and porosity, without the need of a detailed knowledge of the pore microstructure. At the interface between the porous material and the fluid region, following literature momentum-transfer conditions are applied, in which an available coefficient related to the unknown structure of the interface can be used as an error estimate. To formulate the numerical problem, the velocity-vorticity formulation of the coupled Navier--Stokes and VANS equations is derived and implement into a pseudo-sp...
DIRECT NUMERICAL SIMUIATION OF BUBBLE-CLUSTER'S DYNAMIC CHARACTERISTICS
无
2008-01-01
A Direct Numerical Simulation (DNS) for understanding the dynamic response of bubble cluster to pulses of pressure perturbations has been studied by using a front-tracking method. The results show that owing to high nonlinearity, the bubble shape and volume oscillations caused by passing by pressure wave will be transformed into an in-phase volumetric oscillation of whole bubble cluster at a particular low-frequency. The value of the frequency is independent of the pulse excitations but the characteristics of the bubble cluster such as its bubble size, bulk void fraction and its spacial distribution etc. It is believed that this study provides important information for us to understand the coupling mechanism of cavitation cloud involved in cavitation resonance, a phenomenon noticed by one of the authors more than two decades ago.
Direct numerical simulations of helical dynamo action: MHD and beyond
D. O. Gómez
2004-01-01
Full Text Available Magnetohydrodynamic dynamo action is often invoked to explain the existence of magnetic fields in several astronomical objects. In this work, we present direct numerical simulations of MHD helical dynamos, to study the exponential growth and saturation of magnetic fields. Simulations are made within the framework of incompressible flows and using periodic boundary conditions. The statistical properties of the flow are studied, and it is found that its helicity displays strong spatial fluctuations. Regions with large kinetic helicity are also strongly concentrated in space, forming elongated structures. In dynamo simulations using these flows, we found that the growth rate and the saturation level of magnetic energy and magnetic helicity reach an asymptotic value as the Reynolds number is increased. Finally, extensions of the MHD theory to include kinetic effects relevant in astrophysical environments are discussed.
Direct numerical simulation of pattern formation in subaqueous sediment
Kidanemariam, Aman G
2014-01-01
We present results of direct numerical simulation of incompressible fluid flow over a thick bed of mobile, spherically-shaped particles. The algorithm is based upon the immersed boundary technique for fluid-solid coupling and uses a soft-sphere model for the solid-solid contact. Two parameter points in the laminar flow regime are chosen, leading to the emergence of sediment patterns classified as `small dunes', while one case under turbulent flow conditions leads to `vortex dunes' with significant flow separation on the lee side. Wavelength, amplitude and propagation speed of the patterns extracted from the spanwise-averaged fluid-bed interface are found to be consistent with available experimental data. The particle transport rates are well represented by available empirical models for flow over a plane sediment bed in both the laminar and the turbulent regimes.
Direct numerical simulation of turbulence using GPU accelerated supercomputers
Khajeh-Saeed, Ali; Blair Perot, J.
2013-02-01
Direct numerical simulations of turbulence are optimized for up to 192 graphics processors. The results from two large GPU clusters are compared to the performance of corresponding CPU clusters. A number of important algorithm changes are necessary to access the full computational power of graphics processors and these adaptations are discussed. It is shown that the handling of subdomain communication becomes even more critical when using GPU based supercomputers. The potential for overlap of MPI communication with GPU computation is analyzed and then optimized. Detailed timings reveal that the internal calculations are now so efficient that the operations related to MPI communication are the primary scaling bottleneck at all but the very largest problem sizes that can fit on the hardware. This work gives a glimpse of the CFD performance issues will dominate many hardware platform in the near future.
Cascade processes in stratified media: experiment and direct numerical simulation.
Sibgatullin, Ilias; Brouzet, Christophe; Joubaud, Sylvain; Ermanyuk, Evgeny; Dauxois, Thierry
2016-04-01
Internal gravity waves may transfer substantial part of energy in oceans and astrophysical objects, influence the background stratification, and angular momentum. Internal waves can be generated by convection in astrophysical objects, by tidal motion and interaction with orography in oceans. Internal and inertial waves obey similar system of equations. Due to very particular type of dispersive relation and the way internal waves are reflected from surfaces, in confined domains the monochromatic internal waves after sequence of reflections may form closed paths, the "wave attractors" [1]. Presently, linear theory of wave attractors is quite elaborated and a principal interest of research is focused on nonlinear regimes and unstable configurations, overturning events and mixing. We have performed direct numerical simulation of wave attractors which closely reproduces experiments [2] being carried out in Ecole Normal Superior de Lyon (ENS de Lyon). Direct numerical simulation is realized with the help of spectral element approach and code nek5000. Triadic resonance is confirmed as the first instability which appears on the most energetic ray of the attractor at sufficiently large forcing. With further increase of the forcing amplitude the daughter waves also become unstable resulting in a sophisticated cascade process which was first observed experimentally. For very high forcing amplitude interaction of focused waves with the walls results in appearance of small-scale folded structures. Their interaction with principal flow is the subject of further research. 1. Maas, L. R. M. & Lam, F.-P. A., Geometric focusing of internal waves. J. Fluid Mech, 1995,. 300, 1-41 2. Scolan, H., Ermanyuk, E., Dauxois, T., 2013, Physical Review Letters, 110, 234501
Direct numerical simulation of turbulence in a bent pipe
Schlatter, Philipp; Noorani, Azad
2013-11-01
A series of direct numerical simulations of turbulent flow in a bent pipe is presented. The setup employs periodic (cyclic) boundary conditions in the axial direction, leading to a nominally infinitely long pipe. The discretisation is based on the high-order spectral element method, using the code Nek5000. Four different curvatures, defined as the ratio between pipe radius and coil radius, are considered: κ = 0 (straight), 0.01 (mild curvature), 0.1 and 0.3 (strong curvature), at bulk Reynolds numbers of up to 11700 (corresponding to Reτ = 360 in the straight pipe case). The result show the turbulence-reducing effect of the curvature (similar to rotation), leading close to relaminarisation in the inner side; the outer side, however, remains fully turbulent. Prpoer orthogonal decomposition (POD) is used to extract the dominant modes, in an effort to explain low-frequency switching of sides inside the pipe. A number of additional interesting features are explored, which include sub-straight and sub-laminar drag for specific choices of curvature and Reynolds number: In particular the case with sub-laminar drag is investigated further, and our analysis shows the existence of a spanwise wave in the bent pipe, which in fact leads to lower overall pressure drop.
Design of a single-phase PTS numerical experiment for a reference Direct Numerical Simulation
Shams, A., E-mail: shams@nrg.eu; Damiani, G.; Rosa, D.; Komen, E.M.J.
2016-04-15
Highlights: • A numerical experiment is designed to perform DNS for a PTS scenario. • A wide range of RANS calculations are performed to design this numerical experiment. • Mesh estimation for the targeted DNS is also performed. - Abstract: The integrity assessment of the Reactor Pressure Vessel (RPV) is considered to be an important issue for lifetime extension of nuclear reactors. A severe transient that can threaten the integrity of the RPV is the existence of a Pressurized Thermal Shock (PTS) during a Loss-of-Coolant Accident (LOCA). A PTS consists of a rapid cooling of the RPV wall under pressurized conditions that may induce the criticality of existing or postulated defects inside the vessel wall. The most severe PTS event has been identified by Emergency Core Cooling (ECC) injection during a LOCA. The traditional one-dimensional system codes fail to reliably predict the complex three-dimensional thermal mixing phenomena in the downcomer occurring during the ECC injection. Hence, CFD can bring real benefits in terms of more realistic and more predictive capabilities. However, to gain trust in the application of CFD modelling for PTS, a comprehensive validation programme is necessary. In the absence of detailed experimental data for the RPV cooling during ECC injection, high fidelity Direct Numerical Simulation (DNS) databases constitute a valid alternative and can serve as a reference. The aim of this work is to design a numerical experiment aimed to generate a high quality reference DNS database for a simplified PTS scenario. This takes into account the turbulent mixing in the downcomer and the evolution of the temperature distribution for both structures and fluid during a single-phase flow PTS scenario. In spite of simplifications, such a DNS analysis represents a very demanding application. A priori, it should be demonstrated that all the relevant turbulent scales will be fully resolved, which requires a huge computational power. A wide range of
Machine Shop. Module 8: CNC (Computerized Numerical Control). Instructor's Guide.
Crosswhite, Dwight
This document consists of materials for a five-unit course on the following topics: (1) safety guidelines; (2) coordinates and dimensions; (3) numerical control math; (4) programming for numerical control machines; and (5) setting and operating the numerical control machine. The instructor's guide begins with a list of competencies covered in the…
Machine Shop. Module 8: CNC (Computerized Numerical Control). Instructor's Guide.
Crosswhite, Dwight
This document consists of materials for a five-unit course on the following topics: (1) safety guidelines; (2) coordinates and dimensions; (3) numerical control math; (4) programming for numerical control machines; and (5) setting and operating the numerical control machine. The instructor's guide begins with a list of competencies covered in the…
Direct Numerical Simulations of Turbulent Autoigniting Hydrogen Jets
Asaithambi, Rajapandiyan
Autoignition is an important phenomenon and a tool in the design of combustion engines. To study autoignition in a canonical form a direct numerical simulation of a turbulent autoigniting hydrogen jet in vitiated coflow conditions at a jet Reynolds number of 10,000 is performed. A detailed chemical mechanism for hydrogen-air combustion and non-unity Lewis numbers for species transport is used. Realistic inlet conditions are prescribed by obtaining the velocity eld from a fully developed turbulent pipe flow simulation. To perform this simulation a scalable modular density based method for direct numerical simulation (DNS) and large eddy simulation (LES) of compressible reacting flows is developed. The algorithm performs explicit time advancement of transport variables on structured grids. An iterative semi-implicit time advancement is developed for the chemical source terms to alleviate the chemical stiffness of detailed mechanisms. The algorithm is also extended from a Cartesian grid to a cylindrical coordinate system which introduces a singularity at the pole r = 0 where terms with a factor 1/r can be ill-defined. There are several approaches to eliminate this pole singularity and finite volume methods can bypass this issue by not storing or computing data at the pole. All methods however face a very restrictive time step when using a explicit time advancement scheme in the azimuthal direction (theta) where the cell sizes are of the order DelrDeltheta. We use a conservative finite volume based approach to remove the severe time step restriction imposed by the CFL condition by merging cells in the azimuthal direction. In addition, fluxes in the radial direction are computed with an implicit scheme to allow cells to be clustered along the jet's shear layer. This method is validated and used to perform the large scale turbulent reacting simulation. The resulting flame structure is found to be similar to a turbulent diusion flame but stabilized by autoignition at the
Wang, Yi
2016-07-21
Velocity of fluid flow in underground porous media is 6~12 orders of magnitudes lower than that in pipelines. If numerical errors are not carefully controlled in this kind of simulations, high distortion of the final results may occur [1-4]. To fit the high accuracy demands of fluid flow simulations in porous media, traditional finite difference methods and numerical integration methods are discussed and corresponding high-accurate methods are developed. When applied to the direct calculation of full-tensor permeability for underground flow, the high-accurate finite difference method is confirmed to have numerical error as low as 10-5% while the high-accurate numerical integration method has numerical error around 0%. Thus, the approach combining the high-accurate finite difference and numerical integration methods is a reliable way to efficiently determine the characteristics of general full-tensor permeability such as maximum and minimum permeability components, principal direction and anisotropic ratio. Copyright © Global-Science Press 2016.
Direct numerical simulation of turbulent plane Couette flow
Lee, Moon Joo
1991-01-01
Turbulent plane Couette flow was numerically simulated at a Reynolds number (U(sub w)h/nu) of 6000, where U(sub w) is the relative wall speed and h is half the channel-height. Unlike in Poiseuille flow, where the mean shear rate changes its sign at the centerline, the sign of mean shear rate in plane Couette flow remains the same across the whole channel. This difference is expected to yield several differences between the two flows, especially in the core region. The most significant and dramatic difference observed was the existence of large-scale structures in the core region of the plane Couette flow. The large eddies are extremely long in the flow direction and fill the entire channel (i.e., their vertical extent is 2h). The large-scale structures have the largest contribution from the wavenumber (k(sub x)h,k(sub z)h) = (0, plus or minus 1.5), corresponding to a wavelength lambda(sub z)/h is approximately equal to 4. The secondary motion associated with the k(sub x)h = 0 mode consists of the large-scale vortices. The large eddies contribute about 30 percent of turbulent kinetic energy.
Inertial particles in a shearless mixing layer: direct numerical simulations
Ireland, Peter; Collins, Lance
2010-11-01
Entrainment, the drawing in of external fluid by a turbulent flow, is present in nearly all turbulent processes, from exhaust plumes to oceanic thermoclines to cumulus clouds. While the entrainment of fluid and of passive scalars in turbulent flows has been studied extensively, comparatively little research has been undertaken on inertial particle entrainment. We explore entrainment of inertial particles in a shearless mixing layer across a turbulent-non-turbulent interface (TNI) and a turbulent-turbulent interface (TTI) through direct numerical simulation (DNS). Particles are initially placed on one side of the interface and are advanced in time in decaying turbulence. Our results show that the TTI is more efficient in mixing droplets than the TNI. We also find that without the influence of gravity, over the range of Stokes numbers present in cumulus clouds, particle concentration statistics are essentially independent of the dissipation scale Stokes number. The DNS data agrees with results from experiments performed in a wind tunnel with close parametric overlap. We anticipate that a better understanding of the role of gravity and turbulence in inertial particle entrainment will lead to improved cloud evolution predictions and more accurate climate models. Sponsored by the U.S. NSF.
Direct Numerical Simulation of Combustion Using Principal Component Analysis
Owoyele, Opeoluwa; Echekki, Tarek
2016-11-01
We investigate the potential of accelerating chemistry integration during the direct numerical simulation (DNS) of complex fuels based on the transport equations of representative scalars that span the desired composition space using principal component analysis (PCA). The transported principal components (PCs) offer significant potential to reduce the computational cost of DNS through a reduction in the number of transported scalars, as well as the spatial and temporal resolution requirements. The strategy is demonstrated using DNS of a premixed methane-air flame in a 2D vortical flow and is extended to the 3D geometry to further demonstrate the computational efficiency of PC transport. The PCs are derived from a priori PCA of a subset of the full thermo-chemical scalars' vector. The PCs' chemical source terms and transport properties are constructed and tabulated in terms of the PCs using artificial neural networks (ANN). Comparison of DNS based on a full thermo-chemical state and DNS based on PC transport based on 6 PCs shows excellent agreement even for species that are not included in the PCA reduction. The transported PCs reproduce some of the salient features of strongly curved and strongly strained flames. The 2D DNS results also show a significant reduction of two orders of magnitude in the computational cost of the simulations, which enables an extension of the PCA approach to 3D DNS under similar computational requirements. This work was supported by the National Science Foundation Grant DMS-1217200.
Mean-field concept and direct numerical simulations of rotating magnetoconvection and the geodynamo
Schrinner, M; Schmitt, D; Rheinhardt, M; Christensen, U R
2006-01-01
A comparison is made between mean-field models and direct numerical simulations of rotating magnetoconvection and the geodynamo. The mean-field coefficients are calculated with the fluid velocity taken from the direct numerical simulations. The magnetic fields resulting from mean-field models are then compared with the mean magnetic field from the direct numerical simulations.
Technical Report on Occupations in Numerically Controlled Metal-Cutting Machining.
Manpower Administration (DOL), Washington, DC. U.S. Employment Service.
At the present time, only 5 percent of the short-run metal-cutting machining in the United States is done by numerically controlled machined tools, but within the next decade it is expected to increase by 50 percent. Numerically controlled machines use taped data which is changed into instructions and directs the machine to do certain steps…
Numerical GPR Imaging through Directional Antenna Systems in Complex Scenarios
Comite, Davide; Murgia, Federica; Barbara, Martina; Catapano, Ilaria; Soldovieri, Francesco; Galli, Alessandro
2017-04-01
The capability of imaging hidden targets and interfaces in non-accessible and complex scenarios is a topic of increasing interest for several practical applications, such as civil engineering, geophysics, and planetary explorations [1]. In this frame, Ground Penetrating Radar (GPR) has been proven as an efficient and reliable technique, also thanks to the development of effective imaging procedures based on linear modeling of the scattering phenomenon, which is usually considered as activated by ideal sources [1],[2]. Actually, such modeling simplifications are rarely verified in typical operative scenarios, when a number of heterogeneous targets can interact each other and with the surrounding environment, producing undesired contributions such as clutter and ghosts targets. From a physical viewpoint, these phenomena are mainly due to multipath contributions at the receiving antenna system, and different solutions have been proposed to mitigate these effects on the final image reconstruction (see, e.g., [2] and references therein). In this work we investigate on the possible improvements achievable when the directional features of the transmitting antenna system are taken into account in the imaging algorithm. Following and extending the recent investigations illustrated in [2] and [3], we consider in particular arrays of antennas, made by arbitrary types of elements, as activating the scattering phenomenon: hence, the effects of neglecting or accounting for the inherent directional radiation of the considered array are investigated as regards the accuracy of the final reconstruction of targets. Taking into account the resolution losses linked to the relevant synthetic aperture, we analyze the possibility of improving the quality of imaging, mitigating the presence of spurious contributions. By implementing a 'synthetic setup' that analyzes the scenarios under test through different electromagnetic CAD tools (mainly CST Microwave Studio and gprMax), it has been
High performance Python for direct numerical simulations of turbulent flows
Mortensen, Mikael; Langtangen, Hans Petter
2016-06-01
Direct Numerical Simulations (DNS) of the Navier Stokes equations is an invaluable research tool in fluid dynamics. Still, there are few publicly available research codes and, due to the heavy number crunching implied, available codes are usually written in low-level languages such as C/C++ or Fortran. In this paper we describe a pure scientific Python pseudo-spectral DNS code that nearly matches the performance of C++ for thousands of processors and billions of unknowns. We also describe a version optimized through Cython, that is found to match the speed of C++. The solvers are written from scratch in Python, both the mesh, the MPI domain decomposition, and the temporal integrators. The solvers have been verified and benchmarked on the Shaheen supercomputer at the KAUST supercomputing laboratory, and we are able to show very good scaling up to several thousand cores. A very important part of the implementation is the mesh decomposition (we implement both slab and pencil decompositions) and 3D parallel Fast Fourier Transforms (FFT). The mesh decomposition and FFT routines have been implemented in Python using serial FFT routines (either NumPy, pyFFTW or any other serial FFT module), NumPy array manipulations and with MPI communications handled by MPI for Python (mpi4py). We show how we are able to execute a 3D parallel FFT in Python for a slab mesh decomposition using 4 lines of compact Python code, for which the parallel performance on Shaheen is found to be slightly better than similar routines provided through the FFTW library. For a pencil mesh decomposition 7 lines of code is required to execute a transform.
Numerical estimation of aircrafts' unsteady lateral-directional stability derivatives
Maričić N.L.
2006-01-01
Full Text Available A technique for predicting steady and oscillatory aerodynamic loads on general configuration has been developed. The prediction is based on the Doublet-Lattice Method, Slender Body Theory and Method of Images. The chord and span wise loading on lifting surfaces and longitudinal bodies (in horizontal and vertical plane load distributions are determined. The configuration may be composed of an assemblage of lifting surfaces (with control surfaces and bodies (with circular cross sections and a longitudinal variation of radius. Loadings predicted by this method are used to calculate (estimate steady and unsteady (dynamic lateral-directional stability derivatives. The short outline of the used methods is given in [1], [2], [3], [4] and [5]. Applying the described methodology software DERIV is developed. The obtained results from DERIV are compared to NASTRAN examples HA21B and HA21D from [4]. In the first example (HA21B, the jet transport wing (BAH wing is steady rolling and lateral stability derivatives are determined. In the second example (HA21D, lateral-directional stability derivatives are calculated for forward- swept-wing (FSW airplane in antisymmetric quasi-steady maneuvers. Acceptable agreement is achieved comparing the results from [4] and DERIV.
Direct Numerical Simulation of Three-Dimensional Richtmyer-Meshkov Instability
FU De-Xun; MA Yan-Wen; LI Xin-Liang
2008-01-01
Direct numerical simulation(DNS)is used to study flow characteristics after interaction of a planar shock with a spherical media interface in each side of which the density is different.This interfacial instability is known as the Richtmyer-Meshkov(R-M)instability.The compressible Nayier-Stoke equations are discretized with group velocity control(GVC)modified fourth order accurate compact difference scheme.Three-dimensional numerical simulations are performed for R-M instability installed passing a shock through a spherical interface.Based on numerical results the characteristics of 3D R-M instability are analysed.The evaluation for distortion of the interface.the deformation of the incident shock wave and effects of refraction,reflection and diffraction are Dresented.The effects of the interfacial instability on produced vorticity and mixing is discussed.
Direct numerical simulation of the dynamics of sliding rough surfaces
Dang, Viet Hung; Scheibert, Julien; Bot, Alain Le
2013-01-01
The noise generated by the friction of two rough surfaces under weak contact pressure is usually called roughness noise. The underlying vibration which produces the noise stems from numerous instantaneous shocks (in the microsecond range) between surface micro-asperities. The numerical simulation of this problem using classical mechanics requires a fine discretization in both space and time. This is why the finite element method takes much CPU time. In this study, we propose an alternative numerical approach which is based on a truncated modal decomposition of the vibration, a central difference integration scheme and two algorithms for contact: The penalty algorithm and the Lagrange multiplier algorithm. Not only does it reproduce the empirical laws of vibration level versus roughness and sliding speed found experimentally but it also provides the statistical properties of local events which are not accessible by experiment. The CPU time reduction is typically a factor of 10.
Direct Numerical Simulation of Liquid Transport Through Fibrous Porous Media
Palakurthi, Nikhil Kumar
Fluid flow through fibrous media occurs in many industrial processes, including, but not limited, to fuel cell technology, drug delivery patches, sanitary products, textile reinforcement, filtration, heat exchangers, and performance fabrics. Understanding the physical processes involved in fluid flow through fibrous media is essential for their characterization as well as for the optimization and development of new products. Macroscopic porous-media equations require constitutive relations, which account for the physical processes occurring at the micro-scale, to predict liquid transport at the macro-scale. In this study, micro-scale simulations were conducted using conventional computational fluid dynamics (CFD) technique (finite-volume method) to determine the macroscopic constitutive relations. The first part of this thesis deals with the single-phase flow in fibrous media, following which multi-phase flow through fibrous media was studied. Darcy permeability is an important parameter that characterizes creeping flow through a fibrous porous medium. It has a complex dependence on the medium's properties such as fibers' in-plane and through-plane orientation, diameter, aspect ratio, curvature, and porosity. A suite of 3D virtual fibrous structures with a wide range of geometric properties were constructed, and the permeability values of the structures were calculated by solving the 3D incompressible Navier-Stokes equations. The through-plane permeability was found to be a function of only the fiber diameter, the fibers' through-plane orientation, and the porosity of the medium. The numerical results were used to extend a permeability-porosity relation, developed in literature for 3D isotropic fibrous media, to a wide range of fibers' through-plane orientations. In applications where rate of capillary penetration is important, characterization of porous media usually involves determination of either the effective pore radius from capillary penetration experiments
Optimal Taylor-Couette flow: direct numerical simulations
Mónico, Rodolfo Ostilla; Grossman, Siegfried; Verzicco, Roberto; Lohse, Detlef
2013-01-01
We numerically simulate turbulent Taylor-Couette flow for independently rotating inner and outer cylinders, focusing on the analogy with turbulent Rayleigh-B\\'enard flow. Reynolds numbers of Re_i = 8\\times10^3 and Re_o =\\pm4\\times10^3 of the inner and outer cylinders, respectively, are reached, corresponding to Taylor numbers Ta up to 10^8 . Effective scaling laws for the torque and other system responses are found. Recent experiments with the Twente turbulent Taylor-Couette (T^3C) setup at very high Reynolds numbers have vealed an optimum transport at a certain non-zero rotation rate ratio a = -{\\omega}_o/{\\omega}_i that depends on Ta. For large enough Ta in the numerically accessible range we find such an optimum at non-zero counter-rotation also in the numerics. We furthermore numerically calculate the corresponding angular velocity profiles and visualize the different flow structures for the various regimes. By writing the equations in a frame co-rotating with the outer cylinder a link is found between th...
Numerical characterization of nanopillar photonic crystal waveguides and directional couplers
Chigrin, Dmitry N.; Lavrinenko, Andrei; Sotomayor Torres, Clivia M.
2005-01-01
We numerically characterize a novel type of a photonic crystal waveguide, which consists of several rows of periodically arranged dielectric cylinders. In such a nanopillar photonic crystal waveguide, light confinement is due to the total internal reflection. A nanopillar waveguide is a multimode...
A direct numerical method for quantifying regular and chaotic orbits
Awrejcewicz, J. E-mail: awrejcew@ck-sg.p.lodz.pl; Dzyubak, L.; Grebogi, C
2004-02-01
Both a theoretical argument and a numerical algorithm to identify periodic and chaotic orbits are presented and discussed. Reliability of the approach is verified using the Duffing oscillator through the standard computation of Lyapunov exponents. Advantages of the proposed approach are given.
Direct Numerical Simulation Sediment Transport in Horizontal Channel
Uhlmann, M.
2006-07-01
We numerically simulate turbulent flow in a horizontal plane channel over a bed of mobile particles. All scales of fluid motion are resolved without modeling and the phase interface is accurately represented. Our results indicate a possible scenario for the onset of erosion through collective motion induced by buffer-layer streaks. (Author) 27 refs.
Mukhadiyev, Nurzhan
2017-05-01
Combustion at extreme conditions, such as a turbulent flame at high Karlovitz and Reynolds numbers, is still a vast and an uncertain field for researchers. Direct numerical simulation of a turbulent flame is a superior tool to unravel detailed information that is not accessible to most sophisticated state-of-the-art experiments. However, the computational cost of such simulations remains a challenge even for modern supercomputers, as the physical size, the level of turbulence intensity, and chemical complexities of the problems continue to increase. As a result, there is a strong demand for computational cost reduction methods as well as in acceleration of existing methods. The main scope of this work was the development of computational and numerical tools for high-fidelity direct numerical simulations of premixed planar flames interacting with turbulence. The first part of this work was KAUST Adaptive Reacting Flow Solver (KARFS) development. KARFS is a high order compressible reacting flow solver using detailed chemical kinetics mechanism; it is capable to run on various types of heterogeneous computational architectures. In this work, it was shown that KARFS is capable of running efficiently on both CPU and GPU. The second part of this work was numerical tools for direct numerical simulations of planar premixed flames: such as linear turbulence forcing and dynamic inlet control. DNS of premixed turbulent flames conducted previously injected velocity fluctuations at an inlet. Turbulence injected at the inlet decayed significantly while reaching the flame, which created a necessity to inject higher than needed fluctuations. A solution for this issue was to maintain turbulence strength on the way to the flame using turbulence forcing. Therefore, a linear turbulence forcing was implemented into KARFS to enhance turbulence intensity. Linear turbulence forcing developed previously by other groups was corrected with net added momentum removal mechanism to prevent mean
Semi Active Control of Civil Structures, Analytical and Numerical Studies
Kerboua, M.; Benguediab, M.; Megnounif, A.; Benrahou, K. H.; Kaoulala, F.
Structural control for civil structures was born out of a need to provide safer and more efficient designs with the reality of limited resources. The purpose of structural control is to absorb and to reflect the energy introduced by dynamic loads such as winds, waves, earthquakes, and traffic. Today, the protection of civil structures from severe dynamic loading is typically achieved by allowing the structures to be damaged. Semi-active control devices, also called "smart" control devices, assume the positive aspects of both the passive and active control devices. A semi-active control strategy is similar to the active control strategy. Only here, the control actuator does not directly apply force to the structure, but instead it is used to control the properties of a passive energy device, a controllable passive damper. Semi-active control strategies can be used in many of the same civil applications as passive and active control. One method of operating smart cable dampers is in a purely passive capacity, supplying the dampers with constant optimal voltage. The advantages to this strategy are the relative simplicity of implementing the control strategy as compared to a smart or active control strategy and that the dampers are more easily optimally tuned in- place, eliminating the need to have passive dampers with unique optimal damping coefficients. This research investigated semi-active control of civil structures for natural hazard mitigation. The research has two components, the seismic protection of buildings and the mitigation of wind-induced vibration in structures. An ideal semi-active motion equation of a composite beam that consists of a cantilever beam bonded with a PZT patch using Hamilton's principle and Galerkin's method was treated. A series R-L and a parallel R-L shunt circuits are coupled into the motion equation respectively by means of the constitutive relation of piezoelectric material and Kirchhoff's law to control the beam vibration. A
Pyszczek, R.; Mazuro, P.; Teodorczyk, A.
2016-09-01
This paper is focused on the CAI combustion control in a turbocharged 2-stroke Opposed-Piston (OP) engine. The barrel type OP engine arrangement is of particular interest for the authors because of its robust design, high mechanical efficiency and relatively easy incorporation of a Variable Compression Ratio (VCR). The other advantage of such design is that combustion chamber is formed between two moving pistons - there is no additional cylinder head to be cooled which directly results in an increased thermal efficiency. Furthermore, engine operation in a Controlled Auto-Ignition (CAI) mode at high compression ratios (CR) raises a possibility of reaching even higher efficiencies and very low emissions. In order to control CAI combustion such measures as VCR and water injection were considered for indirect ignition timing control. Numerical simulations of the scavenging and combustion processes were performed with the 3D CFD multipurpose AVL Fire solver. Numerous cases were calculated with different engine compression ratios and different amounts of directly and indirectly injected water. The influence of the VCR and water injection on the ignition timing and engine performance was determined and their application in the real engine was discussed.
Parallel direct numerical simulation of three-dimensional spray formation
Chergui, Jalel; Juric, Damir; Shin, Seungwon; Kahouadji, Lyes; Matar, Omar
2015-11-01
We present numerical results for the breakup mechanism of a liquid jet surrounded by a fast coaxial flow of air with density ratio (water/air) ~ 1000 and kinematic viscosity ratio ~ 60. We use code BLUE, a three-dimensional, two-phase, high performance, parallel numerical code based on a hybrid Front-Tracking/Level Set algorithm for Lagrangian tracking of arbitrarily deformable phase interfaces and a precise treatment of surface tension forces. The parallelization of the code is based on the technique of domain decomposition where the velocity field is solved by a parallel GMRes method for the viscous terms and the pressure by a parallel multigrid/GMRes method. Communication is handled by MPI message passing procedures. The interface method is also parallelized and defines the interface both by a discontinuous density field as well as by a triangular Lagrangian mesh and allows the interface to undergo large deformations including the rupture and/or coalescence of interfaces. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.
Direct numerical simulation of solidification microstructures affected by fluid flow
Juric, D.
1997-12-01
The effects of fluid flow on the solidification morphology of pure materials and solute microsegregation patterns of binary alloys are studied using a computational methodology based on a front tracking/finite difference method. A general single field formulation is presented for the full coupling of phase change, fluid flow, heat and solute transport. This formulation accounts for interfacial rejection/absorption of latent heat and solute, interfacial anisotropies, discontinuities in material properties between the liquid and solid phases, shrinkage/expansion upon solidification and motion and deformation of the solid. Numerical results are presented for the two dimensional dendritic solidification of pure succinonitrile and the solidification of globulitic grains of a plutonium-gallium alloy. For both problems, comparisons are made between solidification without fluid flow and solidification within a shear flow.
Hierarchy in directed random networks: analytical and numerical results
Mones, Enys
2012-01-01
In recent years, the theory and application of complex networks has been quickly developing in a markable way due to the increasing amount of data from real systems and to the fruitful application of powerful methods used in statistical physics. Many important characteristics of social or biological systems can be described by the study of their underlying structure of interactions. Hierarchy is one of these features that can be formulated in the language of networks. In this paper we present the analytic results on the hierarchical properties of random network models with zero correlations and also investigate the effects of different type of correlations. The behavior of hierarchy is different in the absence and the presence of the giant components. We show that the hierarchical structure can be drastically different if there are one-point correlations in the network. We also show numerical results suggesting that hierarchy does not change monotonously with the correlations and there is an optimal level of ...
Three dimensional direct numerical simulation of complex jet flows
Shin, Seungwon; Kahouadji, Lyes; Juric, Damir; Chergui, Jalel; Craster, Richard; Matar, Omar
2016-11-01
We present three-dimensional simulations of two types of very challenging jet flow configurations. The first consists of a liquid jet surrounded by a faster coaxial air flow and the second consists of a global rotational motion. These computations require a high spatial resolution and are performed with a newly developed high performance parallel code, called BLUE, for the simulation of two-phase, multi-physics and multi-scale incompressible flows, tested on up to 131072 threads with excellent scalability performance. The method for the treatment of the fluid interfaces uses a hybrid Front Tracking/Level Set technique that defines the interface both by a discontinuous density field as well as by a local triangular Lagrangian mesh. Coriolis forces are taken into account and solved via an exact time-integration method that ensures numerical accuracy and stability. EPSRC UK Programme Grant EP/K003976/1.
On numerical methods for direct and inverse problems in electromagnetism
Zemanova, Viera
2009-01-01
This thesis is devoted to the study of processes in the propagation of electromagnetic fields. We do not aim at one particular problem, actually very different kinds of topics are analyzed here. We deal with direct problems as well as with inverse ones, low frequency electromagnetism is discussed and consequently the wave propagation problem in high frequency domain is studied. Study of electromagnetic materials and their behavior is of a huge interest for the technological world. Its impo...
Key technologies for the novel distributed numerical control integrated system
TAO Guibao; LlU Fei; WANG Shilong
2004-01-01
A novel distributed numerical control (DNC) integrated system based on plug-in software technology is proposed. It connects new or old numerical control (NC) machine tools which haveinhomogeneous numerical control systems with CAD/CAM system by CANbus network. A DNC computer is able to control 15 sets of NC machine tools reliably at the same time. The novel DNC system increases the efficiency of machine tools and improve the production management level by realizing non-paper production, agile manufacturing, networked manufacturing and so on in the near future. Key technologies to construct the novel DNC integrated system include the integration of inhomogeneous numerical control systems, NC program restart, and algorithm for communication competition. Such system has demonstrated successful applications in some corporations that have acquired good economic benefits and social effects.
Research and Development of an Embedded Numerical Control System
ZHANG Jinhuan
2006-01-01
This paper puts forward a new scheme of Embedded Numerical Control System based on ARM and DSP, which is at the base of research on traditional numerical control system and embedded technology. And the paper also describes the development of hardware and software platform. All the development and realization are based on the idea of module design. The embedded numerical control system, using ARM and DSP to construct the main control platform, realizes the real-time operation of system and improves the stability and reliability with the modular designing ideas of hardware and software and with the support of embedded real-time operating system (uc/os-II). And the system could realize the multi-network supporting, which is also accord with the development of modularization, flexibility and latticing of numerical control system.
Operating System For Numerically Controlled Milling Machine
Ray, R. B.
1992-01-01
OPMILL program is operating system for Kearney and Trecker milling machine providing fast easy way to program manufacture of machine parts with IBM-compatible personal computer. Gives machinist "equation plotter" feature, which plots equations that define movements and converts equations to milling-machine-controlling program moving cutter along defined path. System includes tool-manager software handling up to 25 tools and automatically adjusts to account for each tool. Developed on IBM PS/2 computer running DOS 3.3 with 1 MB of random-access memory.
Operating System For Numerically Controlled Milling Machine
Ray, R. B.
1992-01-01
OPMILL program is operating system for Kearney and Trecker milling machine providing fast easy way to program manufacture of machine parts with IBM-compatible personal computer. Gives machinist "equation plotter" feature, which plots equations that define movements and converts equations to milling-machine-controlling program moving cutter along defined path. System includes tool-manager software handling up to 25 tools and automatically adjusts to account for each tool. Developed on IBM PS/2 computer running DOS 3.3 with 1 MB of random-access memory.
SNARC Struggles: Instant Control over Spatial-Numerical Associations
Pfister, Roland; Schroeder, Philipp A.; Kunde, Wilfried
2013-01-01
Numbers and space are tightly linked--a phenomenon that is referred to as the spatial-numerical association of response codes (SNARC) effect (Dehaene, Bossini, & Giraux, 1993). The present study investigates how quickly and flexibly the behavioral impact of such spatial-numerical associations can be controlled. Participants performed a parity…
Direct numerical simulation of incompressible multiphase flow with phase change
Lee, Moon Soo; Riaz, Amir; Aute, Vikrant
2017-09-01
Simulation of multiphase flow with phase change is challenging because of the potential for unphysical pressure oscillations, spurious velocity fields and mass flux errors across the interface. The resulting numerical errors may become critical when large density contrasts are present. To address these issues, we present a new approach for multiphase flow with phase change that features, (i) a smooth distribution of sharp velocity jumps and mass flux within a narrow region surrounding the interface, (ii) improved mass flux projection from the implicit interface onto the uniform Cartesian grid and (iii) post-advection velocity correction step to ensure accurate velocity divergence in interfacial cells. These new features are implemented in combination with a sharp treatment of the jumps in pressure and temperature gradient. A series of 1-D, 2-D, axisymmetric and 3-D problems are solved to verify the improvements afforded by the new approach. Axisymmetric film boiling results are also presented, which show good qualitative agreement with heat transfer correlations as well as experimental observations of bubble shapes.
Numerical and experimental analysis of vertical spray control patternators
F. Sarghini
2013-09-01
Full Text Available The experimental vertical spray control walls have the purpose of picking up the liquid delivered by trained sprayer for providing the liquid distribution profile in height. Theoretically this should correspond to the ideal profile, which consists in a uniform distribution on the vegetation. If the profile is different from the ideal, a parameter setup is required on the sprayer. Nonetheless, some problems are hidden in the aforementioned statements: i no wall measures exactly the distribution profile (i.e. the flow through the sections in the vertical plane, parallel to the direction of advancement of the sprayer. Compared to real profile, sensitive errors are introduced: the evaporation of the drops, the deviation of the air flows caused by the sensors panel themselves; by the possibility that the drops bounce on the wall panels, also due to the current of air that can push the liquid veil laterally or upwards, Moreover, everything varies depending on the geometry of the sensors, air velocity, air humidity; ii no one knows what exactly is the optimal distribution profile. It is often considered as optimal a profile that reflects the amount of leaf area subtended by each section absorber: however, it is evident that the path of the droplets changes according to the sprayer typology (eg. radial-flow or horizontal flows. In this work a combined numerical-experimental approach is adopted, in order to assess some of the aforementioned issues: numerical data obtained by using computational fluid dynamics models are compared and validated with experimental data, in order to assess the reliability of numerical simulations in configurations which are difficult to analyze using an experimental setup.
Analysis of Multipoint Correlations in Direct Numerical Simulation
Stoevesandt, Bernhard; Shishkin, Andrei; Stresing, Robert; Wagner, Claus; Peinke, Joachim
2010-01-01
We examine the Markov properties of the three velocity components of a turbulent flow generated by a DNS simulation of the flow around an airfoil section. The spectral element code Nektar has been used to generate a well resolved flow field around an fx79w-151a airfoil profile at a Reynolds number of Re=5000 and an angle of attack of {\\alpha} = 12{\\deg}. Due to a homogeneous geometry in the spanwise direction, a Fourier expansion has been used for the third dimension of the simulation. In the...
Reckinger, Scott James [Montana State Univ., Bozeman, MT (United States); Livescu, Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vasilyev, Oleg V. [Univ. of Colorado, Boulder, CO (United States)
2016-09-02
A comprehensive numerical methodology has been developed that handles the challenges introduced by considering the compressive nature of Rayleigh-Taylor instability (RTI) systems, which include sharp interfacial density gradients on strongly stratified background states, acoustic wave generation and removal at computational boundaries, and stratification-dependent vorticity production. The computational framework is used to simulate two-dimensional single-mode RTI to extreme late-times for a wide range of flow compressibility and variable density effects. The results show that flow compressibility acts to reduce the growth of RTI for low Atwood numbers, as predicted from linear stability analysis.
Numerical Controlled Rolling Process of Thick Metal Plate
无
2002-01-01
Thick metal plate rolling process has become more and more important in building a flat roof of drilling on the bottom at sea. This is because not only the product quality requirement higher and higher but also the marketing competition. To improve the process of thick metal plate rolling and to increase productivity a numerical controlled rolling process is developed, which include the process planning, the mathematical model establishment and the numerical control system development. The process is for ...
Numerical model of compressible gas flow in soil pollution control
无
2002-01-01
Based on the theory of fluid dynamics in porous media, a numerical model of gas flow in unsaturated zone is developed with the consideration of gas density change due to variation of air pressure. This model is characterized of its wider range of availability. The accuracy of this numerical model is analyzed through comparison with modeling results by previous model with presumption of little pressure variation and the validity of this numerical model is shown. Thus it provides basis for the designing and management of landfill gas control system or soil vapor ex.action system in soil pollution control.
Numerical methods for control optimization in linear systems
Tyatyushkin, A. I.
2015-05-01
Numerical methods are considered for solving optimal control problems in linear systems, namely, terminal control problems with control and phase constraints and time-optimal control problems. Several algorithms with various computer storage requirements are proposed for solving these problems. The algorithms are intended for finding an optimal control in linear systems having certain features, for example, when the reachable set of a system has flat faces.
Analysis of Multipoint Correlations in Direct Numerical Simulation
Stoevesandt, Bernhard; Stresing, Robert; Wagner, Claus; Peinke, Joachim
2010-01-01
We examine the Markov properties of the three velocity components of a turbulent flow generated by a DNS simulation of the flow around an airfoil section. The spectral element code Nektar has been used to generate a well resolved flow field around an fx79w-151a airfoil profile at a Reynolds number of Re=5000 and an angle of attack of {\\alpha} = 12{\\deg}. Due to a homogeneous geometry in the spanwise direction, a Fourier expansion has been used for the third dimension of the simulation. In the wake of the profile the flow field shows a von Karman street like behavior with the vortices decaying in the wake which trigger a turbulent field. Time series of the 3D flow field were extracted from the flow at different locations to analyze the stochastic features. In particular the existence of Markov properties in the flow have been shown for different cases in the surrounding of the airfoil. This is of basic interest as it indicates that fine structures of turbulence can be replaced by stochastic processes. Turbulen...
Numerical investigations on unstable direct contact condensation of cryogenic fluids
Jayachandran, K. N.; Arnab, Roy; Parthasarathi, Ghosh
2017-02-01
A typical problem of Direct Contact Condensation (DCC) occurs at the liquid oxygen (LOX) booster turbopump exit of oxidiser rich staged combustion cycle based semi-cryogenic rocket engines, where the hot gas mixture (predominantly oxygen and small amounts of combustion products) that runs the turbine mixes with LOX from the pump exit. This complex multiphase phenomena leads to the formation of solid CO2 & H2O, which is undesirable for the functioning of the main LOX turbopump. As a starting point for solving this complex problem, in this study, the hot gas mixture is taken as pure oxygen and hence, DCC of pure oxygen vapour jets in subcooled liquid oxygen is simulated using the commercial CFD package ANSYS CFX®. A two fluid model along with the thermal phase change model is employed for capturing the heat and mass transfer effects. The study mainly focuses on the subsonic DCC bubbling regime, which is reported as unstable with bubble formation, elongation, necking and collapsing effects. The heat transfer coefficients over a period of time have been computed and the various stages of bubbling have been analysed with the help of vapour volume fraction and pressure profiles. The results obtained for DCC of oxygen vapour-liquid mixtures is in qualitative agreement with the experimental results on DCC of steam-water mixtures.
Directional and Attitude Stability Control Kit
2014-07-01
and Attitude Stability Control Kit Final Progress Report This report outlines progress on the DARPA M3 Program, project “Directional and Attitude ...2 ABSTRACT Number of Papers published in peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Directional and Attitude ...Stability Control Kit Final Progress Report Report Title This report outlines progress on the DARPA M3 Program, project “Directional and Attitude
Breugem, W.P.; Boersma, B.J.
2005-01-01
A direct numerical simulation (DNS) has been performed of turbulent channel flow over a three-dimensional Cartesian grid of 30×20×9 cubes in, respectively, the streamwise, spanwise, and wall-normal direction. The grid of cubes mimics a permeable wall with a porosity of 0.875. The flow field is resol
Direct numerical simulation of inertial flows in porous media
Apte, S.; Finn, J.; Wood, B. D.
2010-12-01
At modest flow rates (10 ≤ Re ≤ 300) through porous media and packed beds, fluid inertia can result in complex steady and unsteady recirculation regions, dependent on the local pore geometry. Body fitted CFD is a broadly used design and analysis tool for flows in porous media and packed bed type reactors. Unfortunately, the inherent complexities of porous media make unstructured mesh generation a difficult and time consuming step in the simulation process. To accurately capture the inertial dynamics using high-fidelity direct simulations, body fitted meshes must be high quality and sufficiently refined. We present methods to parameterize and simplify mesh generation for packed beds, with an eye toward obtaining efficient mesh independence for Reynolds numbers in the inertial and unsteady regimes. The crux of mesh generation for packed beds is dealing with sphere-sphere or sphere-wall contact points, where a geometric singularity exists. To handle the sphere-sphere and sphere-wall contact points, we use a fillet bridge model, in which every pair of contacting entities are bridged by a fillet, eliminating a small fluid region near the contact point. This results in a continuous surface mesh which does not require resizing of the spheres and can accommodate prism cells for improved boundary layer resolution. A second order accurate, parallel, incompressible flow solver [Moin and Apte, AIAA J. 2006] is used to simulate flow through three different sphere packings: a periodic simple cubic packing, a wall bounded hexagonal close packing, and a randomly packed tube. Mesh independence is assessed using several measures including Ergun pressure drop coefficients, viscous and pressure components of drag force, kinetic energy, kinetic energy dissipation and interstitial velocity profiles. The results of these test cases are used to determine the feasibility of accurate and very large scale simulations of flow through a randomly packed bed of 103 pores. Preliminary results
Direct Numerical Simulation of Supersonic Turbulent Boundary Layer with Spanwise Wall Oscillation
Weidan Ni
2016-03-01
Full Text Available Direct numerical simulations (DNS of Mach = 2.9 supersonic turbulent boundary layers with spanwise wall oscillation (SWO are conducted to investigate the turbulent heat transport mechanism and its relation with the turbulent momentum transport. The turbulent coherent structures are suppressed by SWO and the drag is reduced. Although the velocity and temperature statistics are disturbed by SWO differently, the turbulence transports of momentum and heat are simultaneously suppressed. The Reynolds analogy and the strong Reynolds analogy are also preserved in all the controlled flows, proving the consistent mechanisms of momentum transport and heat transport in the turbulent boundary layer with SWO. Despite the extra dissipation and heat induced by SWO, a net wall heat flux reduction can be achieved with the proper selected SWO parameters. The consistent mechanism of momentum and heat transports supports the application of turbulent drag reduction technologies to wall heat flux controls in high-speed vehicles.
Numerical evaluation of the performance of active noise control systems
Mollo, C. G.; Bernhard, R. J.
1990-01-01
This paper presents a generalized numerical technique for evaluating the optimal performance of active noise controllers. In this technique, the indirect BEM numerical procedures are used to derive the active noise controllers for optimal control of enclosed harmonic sound fields where the strength of the noise sources or the description of the enclosure boundary may not be known. The performance prediction for a single-input single-output system is presented, together with the analysis of the stability and observability of an active noise-control system employing detectors. The numerical procedures presented can be used for the design of both the physical configuration and the electronic components of the optimal active noise controller.
Direct numerical simulations of on-demand vortex generators: Mathematical formulation
Koumoutsakos, Petros
1994-01-01
The objective of the present research is the development and application of efficient adaptive numerical algorithms for the study, via direct numerical simulations, of active vortex generators. We are using innovative computational schemes to investigate flows past complex configurations undergoing arbitrary motions. Some of the questions we try to answer are: Can and how may we control the dynamics of the wake? What is the importance of body shape and motion in the active control of the flow? What is the effect of three-dimensionality in laboratory experiments? We are interested not only in coupling our results to ongoing, related experimental work, but furthermore to develop an extensive database relating the above mechanisms to the vortical wake structures with the long-range objective of developing feedback control mechanisms. This technology is very important to aircraft, ship, automotive, and other industries that require predictive capability for fluid mechanical problems. The results would have an impact in high angle of attack aerodynamics and help design ways to improve the efficiency of ships and submarines (maneuverability, vortex induced vibration, and noise).
W. Kapturkiewicz
2008-12-01
Full Text Available The, developed in this study, simple model and numerical solution of diffusion growth of the solid phase under the conditions of directional solidification allow for the effect of constituent diffusion in both liquid and solid phase and assume the process run in which (like in reality the preset parameter is the velocity of sample (pulling velocity at a preset temperature gradient. The solid/liquid interface velocity is not the process parameter (like it is in numerous other solutions proposed so far but a function of this process. The effect of convection outside the diffusion layer has been included in mass balance under the assumption that in the zone of convection the mixing is complete. The above assumptions enabled solving the kinetics of growth of the solid phase (along with the diffusion field in solid and liquid phase under the conditions of diffusion well reflecting the process run starting with the initial transient state, going through the steady state period in central part of the casting, and ending in a terminal transient state. In the numerical solution obtained by the finite difference method with variable grid dimensions, the error of the mass control balance over the whole process range was 1 - 2 %.
Thruster direction controlling of assembled spacecraft based on gimbal suspension
Hongliang Xu; Hai Huang
2016-01-01
The attitude control system design and its control effect are affected considerably by the mass-property pa-rameters of the spacecraft. In the mission of on-orbit servicing, as fuel is expended, or the payloads are added or removed, the center of mass wil be changed in certain axe; conse-quently, some thrusters' directions are deviated from the center of mass (CM) in certain plane. The CM of assembled spacecraft estimation and thruster direction control are studied. Firstly, the attitude dynamics of the assembled spacecraft is established based on the Newton-Euler method. Secondly, the estimation can be identified by the least recursive squares algorithm. Then, a scheme to control the thrusters’ directions is proposed. By using the gimbal instaled at the end of the boom, the angle of the thruster is controled by driving the gimbal; therefore, thrusters can be directed to the CM again. Finaly, numerical simulations are used to verify this scheme. Results of the numerical simulations clearly show that this control scheme is rational and feasible.
Lu, Tianfeng [Univ. of Connecticut, Storrs, CT (United States)
2017-02-16
The goal of the proposed research is to create computational flame diagnostics (CFLD) that are rigorous numerical algorithms for systematic detection of critical flame features, such as ignition, extinction, and premixed and non-premixed flamelets, and to understand the underlying physicochemical processes controlling limit flame phenomena, flame stabilization, turbulence-chemistry interactions and pollutant emissions etc. The goal has been accomplished through an integrated effort on mechanism reduction, direct numerical simulations (DNS) of flames at engine conditions and a variety of turbulent flames with transport fuels, computational diagnostics, turbulence modeling, and DNS data mining and data reduction. The computational diagnostics are primarily based on the chemical explosive mode analysis (CEMA) and a recently developed bifurcation analysis using datasets from first-principle simulations of 0-D reactors, 1-D laminar flames, and 2-D and 3-D DNS (collaboration with J.H. Chen and S. Som at Argonne, and C.S. Yoo at UNIST). Non-stiff reduced mechanisms for transportation fuels amenable for 3-D DNS are developed through graph-based methods and timescale analysis. The flame structures, stabilization mechanisms, local ignition and extinction etc., and the rate controlling chemical processes are unambiguously identified through CFLD. CEMA is further employed to segment complex turbulent flames based on the critical flame features, such as premixed reaction fronts, and to enable zone-adaptive turbulent combustion modeling.
Jun LI; Ying-wei KANG; Guang-yi CAO; Xin-jian ZHU; Heng-yong TU; Jian LI
2008-01-01
A detailed mathematical model of a direct internal reforming solid oxide fuel cell (DIR-SOFC) incorporating with simulation of chemical and physical processes in the fuel cell is presented. The model is developed based on the reforming and electrochemical reaction mechanisms, mass and energy conservation, and heat transfer. A computational fluid dynamics (CFD) method is used for solving the complicated multiple partial differential equations (PDEs) to obtain the numerical approximations.The resulting distributions of chemical species concentrations, temperature and current density in a cross-flow DIR-SOFC are given and analyzed in detail. Further, the influence between distributions of chemical species concentrations, temperature and current density during the simulation is illustrated and discussed. The heat and mass transfer, and the kinetics of reforming and electrochemical reactions have significant effects on the parameter distributions within the cell. The results show the particularchar acteristics of the DIR-SOFC among fuel cells, and can aid in stack design and control.
Multiresolution strategies for the numerical solution of optimal control problems
Jain, Sachin
There exist many numerical techniques for solving optimal control problems but less work has been done in the field of making these algorithms run faster and more robustly. The main motivation of this work is to solve optimal control problems accurately in a fast and efficient way. Optimal control problems are often characterized by discontinuities or switchings in the control variables. One way of accurately capturing the irregularities in the solution is to use a high resolution (dense) uniform grid. This requires a large amount of computational resources both in terms of CPU time and memory. Hence, in order to accurately capture any irregularities in the solution using a few computational resources, one can refine the mesh locally in the region close to an irregularity instead of refining the mesh uniformly over the whole domain. Therefore, a novel multiresolution scheme for data compression has been designed which is shown to outperform similar data compression schemes. Specifically, we have shown that the proposed approach results in fewer grid points in the grid compared to a common multiresolution data compression scheme. The validity of the proposed mesh refinement algorithm has been verified by solving several challenging initial-boundary value problems for evolution equations in 1D. The examples have demonstrated the stability and robustness of the proposed algorithm. The algorithm adapted dynamically to any existing or emerging irregularities in the solution by automatically allocating more grid points to the region where the solution exhibited sharp features and fewer points to the region where the solution was smooth. Thereby, the computational time and memory usage has been reduced significantly, while maintaining an accuracy equivalent to the one obtained using a fine uniform mesh. Next, a direct multiresolution-based approach for solving trajectory optimization problems is developed. The original optimal control problem is transcribed into a
Hierarchical cooperative control for multiagent systems with switching directed topologies.
Hu, Jianqiang; Cao, Jinde
2015-10-01
The hierarchical cooperative control problem is concerned for a two-layer networked multiagent system under switching directed topologies. The group cooperative objective is to achieve finite-time formation control for the upper layer of leaders and containment control for the lower layer of followers. Two kinds of cooperative strategies, including centralized-distributed control and distributed-distributed control, are proposed for two types of switching laws: 1) random switching law with the dwell time and 2) Markov switching law with stationary distribution. Utilizing the state transition matrix methods and matrix measure techniques, some sufficient conditions are derived for asymptotical containment control and exponential almost sure containment control, respectively. Finally, some numerical examples are provided to demonstrate the effectiveness of the proposed control schemes.
A direct-numerical-simulation-based second-moment closure for turbulent magnetohydrodynamic flows
Kenjereš, S.; Hanjalić, K.; Bal, D.
2004-01-01
A magnetic field, imposed on turbulent flow of an electrically conductive fluid, is known to cause preferential damping of the velocity and its fluctuations in the direction of Lorentz force, thus leading to an increase in stress anisotropy. Based on direct numerical simulations (DNS), we have devel
Adaptive Numerical Dissipation Controls for High Order Methods
Yee, Helen C.; Sjogreen, B.; Sandham, N. D.; Mansour, Nagi (Technical Monitor)
2001-01-01
A numerical scheme for direct numerical simulation of shock-turbulence interactions of high speed compressible flows would ideally not be significantly more expensive than the standard fourth or sixth-order compact or non-compact central differencing scheme. It should be possible to resolve all scales down to scales of order of the Kolmogorov scales of turbulence accurately and efficiently, while at the same time being able to capture steep gradients occurring at much smaller scales efficiently. The goal of this lecture is to review the progress and new development of the low dissipative high order shock-capturing schemes proposed by Yee et al. Comparison on the efficiency and accuracy of this class of schemes with spectral and the fifth-order WENO (weighted essentially nonoscillatory) scheme will be presented. A new approach to dynamically sense the appropriate amount of numerical dissipation to be added at each grid point using non-orthogonal wavelets will be discussed.
Numerical Analysis of Lead-Bismuth-Water Direct Contact Boiling Heat Transfer
Yamada, Yumi; Takahashi, Minoru
Direct contact boiling heat transfer of sub-cooled water with lead-bismuth eutectic (Pb-Bi) was investigated for the evaluation of the performance of steam generation in direct contact of feed water with primary Pb-Bi coolant in upper plenum above the core in Pb-Bi-cooled direct contact boiling water fast reactor. An analytical two-fluid model was developed to estimate the heat transfer numerically. Numerical results were compared with experimental ones for verification of the model. The overall volumetric heat transfer coefficient was calculated from heat exchange rate in the chimney. It was confirmed that the calculated results agreed well with the experimental result.
Computer-Numerical-Control and the EMCO Compact 5 Lathe.
Mullen, Frank M.
This laboratory manual is intended for use in teaching computer-numerical-control (CNC) programming using the Emco Maier Compact 5 Lathe. Developed for use at the postsecondary level, this material contains a short introduction to CNC machine tools. This section covers CNC programs, CNC machine axes, and CNC coordinate systems. The following…
Integrated product definition representation for agile numerical control applications
Simons, W.R. Jr.; Brooks, S.L.; Kirk, W.J. III; Brown, C.W.
1994-11-01
Realization of agile manufacturing capabilities for a virtual enterprise requires the integration of technology, management, and work force into a coordinated, interdependent system. This paper is focused on technology enabling tools for agile manufacturing within a virtual enterprise specifically relating to Numerical Control (N/C) manufacturing activities and product definition requirements for these activities.
Numerical Study of Active Flow Control for a Transitional Highly-Loaded Low-Pressure Turbine
2008-02-01
Count Using Vortex Generator Jet Separation Control,” ASME Paper GT-2002-30602, Jun. 2002. [16] Eulitz, F. and Engel , K., “Numerical Investigation of...Around a Low Pressure Turbine Blade,” Direct and Large-Eddy Simulation IV, ERCOFTAC Series Vol. 8 , edited by B. J. Guerts, R. Friedrich , and O
Sensorless vector and direct torque control
Vas, Peter
1998-01-01
This is the first comprehensive book on sensorless high performance a.c. drives. It is essential reading for anyone interested in acquiring a solid background on sensorless torque-controlled drives. It presents a detailed and unified treatment of sensorless vector-controlled and direct-torque controlled drive systems. It also discusses the applications of artificial intelligence to drives. Where possible, space vector theory is used and emphasis is laid on detailed mathematical and physical analysis. Sensorless drive schemes for different types of permanent magnet synchronous motors, synchronous reluctance motors, and induction motors are also presented. These include more than twenty vector drives e.g. five types of MRAS-based vector drives, and eleven types of direct-torque-controlled (DTC) drives, e.g. the ABB DTC drive. However, torque-controlled switched reluctance motor drives are also discussed due to their emerging importance. The book also covers various drive applications using artificial intellige...
Controlled quantum teleportation and secure direct communication
Gao Ting; Yan Feng-Li; Wang Zhi-Xi
2005-01-01
We present a controlled quantum teleportation protocol. In the protocol, quantum information of an unknown state of a 2-level particle is faithfully transmitted from a sender Alice to a remote receiver Bob via an initially shared triplet of entangled particles under the control of the supervisor Charlie. The distributed entangled particles shared by Alice, Bob and Charlie function as a quantum information channel for faithful transmission. We also propose a controlled and secure direct communication scheme by means of this teleportation. After ensuring the security of the quantum channel, Alice encodes the secret message directly on a sequence of particle states and transmits them to Bob supervised by Charlie using this controlled quantum teleportation. Bob can read out the encoded message directly by the measurement on his qubit. In this scheme, the controlled quantum teleportation transmits Alice's message without revealing any information to a potential eavesdropper. Because there is not a transmission of the qubit carrying the secret message between Alice and Bob in the public channel, it is completely secure for controlled and direct secret communication if perfect quantum channel is used. The special feature of this scheme is that the communication between two sides depends on the agreement of a third side to co-operate.
,
2012-01-01
During previous numerical experiments on isotropic turbulence of surface gravity waves we observed formation of the long wave background (condensate). It was shown (Korotkevich, Phys. Rev. Lett. vol. 101 (7), 074504 (2008)), that presence of the condensate changes a spectrum of direct cascade, corresponding to the flux of energy to the small scales from pumping region (large scales). Recent experiments show that the inverse cascade spectrum is also affected by the condensate. In this case mechanism proposed as a cause for the change of direct cascade spectrum cannot work. But inverse cascade is directly influenced by the linear dispersion relation for waves, as a result direct measurement of the dispersion relation in the presence of condensate is necessary. We performed the measurement of this dispersion relation from the direct numerical experiment. The results demonstrate that in the region of inverse cascade influence of the condensate cannot be neglected.
Climate modification directed by control theory
Liang, Wang
2008-01-01
Climate modification measures to counteract global warming receive some more new attentions in these years. Most current researches only discuss the impact of these measures to climate, but how to design such a climate regulator is still unknown. This paper shows the control theory could give the systematic direction for climate modification. But the control analyzing also reveals that climate modifications should only be regarded as a last-ditch measure.
Review of numerical methods for simulation of the aortic root: Present and future directions
Mohammadi, Hossein; Cartier, Raymond; Mongrain, Rosaire
2016-05-01
Heart valvular disease is still one of the main causes of mortality and morbidity in develop countries. Numerical modeling has gained considerable attention in studying hemodynamic conditions associated with valve abnormalities. Simulating the large displacement of the valve in the course of the cardiac cycle needs a well-suited numerical method to capture the natural biomechanical phenomena which happens in the valve. The paper aims to review the principal progress of the numerical approaches for studying the hemodynamic of the aortic valve. In addition, the future directions of the current approaches as well as their potential clinical applications are discussed.
Hang Zhang
2014-02-01
Full Text Available The rapid development of numerical modeling techniques has led to more accurate results in modeling metal solidification processes. In this study, the cellular automaton-finite difference (CA-FD method was used to simulate the directional solidification (DS process of single crystal (SX superalloy blade samples. Experiments were carried out to validate the simulation results. Meanwhile, an intelligent model based on fuzzy control theory was built to optimize the complicate DS process. Several key parameters, such as mushy zone width and temperature difference at the cast-mold interface, were recognized as the input variables. The input variables were functioned with the multivariable fuzzy rule to get the output adjustment of withdrawal rate (v (a key technological parameter. The multivariable fuzzy rule was built, based on the structure feature of casting, such as the relationship between section area, and the delay time of the temperature change response by changing v, and the professional experience of the operator as well. Then, the fuzzy controlling model coupled with CA-FD method could be used to optimize v in real-time during the manufacturing process. The optimized process was proven to be more flexible and adaptive for a steady and stray-grain free DS process.
Efficient Controlled Quantum Secure Direct Communication Protocols
Patwardhan, Siddharth; Moulick, Subhayan Roy; Prasanta K. Panigrahi
2015-01-01
We study controlled quantum secure direct communication (CQSDC), a cryptographic scheme where a sender can send a secret bit-string to an intended recipient, without any secure classical channel, who can obtain the complete bit-string only with the permission of a controller. We report an efficient protocol to realize CQSDC using Cluster state and then go on to construct a (2-3)-CQSDC using Brown state, where a coalition of any two of the three controllers is required to retrieve the complete...
Editing of EIA coded, numerically controlled, machine tool tapes
Weiner, J. M.
1975-01-01
Editing of numerically controlled (N/C) machine tool tapes (8-level paper tape) using an interactive graphic display processor is described. A rapid technique required for correcting production errors in N/C tapes was developed using the interactive text editor on the IMLAC PDS-ID graphic display system and two special programs resident on disk. The correction technique and special programs for processing N/C tapes coded to EIA specifications are discussed.
Numerical modelling of structural controls on fluid flow and mineralization
Yanhua Zhang
2011-07-01
Full Text Available This paper presents the results of a set of numerical models focussing on structural controls on hydrothermal mineralization. We first give an overview of natural phenomena of structurally-controlled ore formation and the background theory and mechanisms for such controls. We then provide the results of a group of simple 2D numerical models validated through comparison with Cu-vein structure observed near the Shilu Copper deposit (Yangchun, Guangdong Province, China and finally a case study of 3D numerical modelling applied to the Hodgkinson Province in North Queensland (Australia. Two modelling approaches, discrete deformation modelling and continuum coupled deformation and fluid flow modelling, are involved. The 2D model-derived patterns are remarkably consistent with the Cu-vein structure from the Shilu Copper deposit, and show that both modelling approaches can realistically simulate the mechanical behaviours of shear and dilatant fractures. The continuum coupled deformation and fluid flow model indicates that pattern of the Cu-veins near the Shilu deposit is the result of shear strain localization, development of dilation and fluid focussing into the dilatant fracture segments. The 3D case-study models (with deformation and fluid flow coupling on the Hodgkinson Province generated a number of potential gold mineralization targets.
Direct numerical simulation of scalar transport using unstructured finite-volume schemes
Rossi, Riccardo
2009-03-01
An unstructured finite-volume method for direct and large-eddy simulations of scalar transport in complex geometries is presented and investigated. The numerical technique is based on a three-level fully implicit time advancement scheme and central spatial interpolation operators. The scalar variable at cell faces is obtained by a symmetric central interpolation scheme, which is formally first-order accurate, or by further employing a high-order correction term which leads to formal second-order accuracy irrespective of the underlying grid. In this framework, deferred-correction and slope-limiter techniques are introduced in order to avoid numerical instabilities in the resulting algebraic transport equation. The accuracy and robustness of the code are initially evaluated by means of basic numerical experiments where the flow field is assigned a priori. A direct numerical simulation of turbulent scalar transport in a channel flow is finally performed to validate the numerical technique against a numerical dataset established by a spectral method. In spite of the linear character of the scalar transport equation, the computed statistics and spectra of the scalar field are found to be significantly affected by the spectral-properties of interpolation schemes. Although the results show an improved spectral-resolution and greater spatial-accuracy for the high-order operator in the analysis of basic scalar transport problems, the low-order central scheme is found superior for high-fidelity simulations of turbulent scalar transport.
Yadollahi Bijan
2014-01-01
Full Text Available In this study, a numerical model has been developed in AVL FIRE software to perform investigation of Direct Natural Gas Injection into the cylinder of Spark Ignition Internal Combustion Engines. In this regard two main parts have been taken into consideration, aiming to convert an MPFI gasoline engine to direct injection NG engine. In the first part of study multi-dimensional numerical simulation of transient injection process, mixing and flow field have been performed via three different validation cases in order to assure the numerical model validity of results. Adaption of such a modeling was found to be a challenging task because of required computational effort and numerical instabilities. In all cases present results were found to have excellent agreement with experimental and numerical results from literature. In the second part, using the moving mesh capability the validated model has been applied to methane Injection into the cylinder of a Direct Injection engine. Five different piston head shapes along with two injector types have been taken into consideration in investigations. A centrally mounted injector location has been adapted to all cases. The effects of injection parameters, combustion chamber geometry, injector type and engine RPM have been studied on mixing of air-fuel inside cylinder. Based on the results, suitable geometrical configuration for a NG DI Engine has been discussed.
Numerical Tracking of Limit Points for Direct Parametric Analysis in Nonlinear Rotordynamics
Xie, Lihan; Baguet, Sébastien; Prabel, Benoit; Dufour, Régis
2016-01-01
International audience; A frequency-domain approach for direct parametric analysis of limit points of nonlinear dynamical systems is presented in this paper. Instead of computing responses curves for several values of a given system parameter, the direct tracking of limit points is performed. The whole numerical procedure is based on the Harmonic Balance Method and can be decomposed in three distinct steps. Firstly, a response curve is calculated by HBM combined with a continuation technique ...
Numerical stability analysis in respiratory control system models
Laszlo E. Kollar
2005-04-01
Full Text Available Stability of the unique equilibrium in two mathematical models (based on chemical balance dynamics of human respiration is examined using numerical methods. Due to the transport delays in the respiratory control system these models are governed by delay differential equations. First, a simplified two-state model with one delay is considered, then a five-state model with four delays (where the application of numerical methods is essential is investigated. In particular, software is developed to perform linearized stability analysis and simulations of the model equations. Furthermore, the Matlab package DDE-BIFTOOL v.~2.00 is employed to carry out numerical bifurcation analysis. Our main goal is to study the effects of transport delays on the stability of the model equations. Critical values of the transport delays (i.e., where Hopf bifurcations occur are determined, and stable periodic solutions are found as the delays pass their critical values. The numerical findings are in good agreement with analytic results obtained earlier for the two-state model.
Direct numerical simulation of the very large anisotropic scales in a turbulent channel
del Alamo, Juan C
2013-01-01
Over the last decades the knowledge on the small scales of turbulent wall flows has experienced a significant advance, especially in the near-wall region where the highest production of turbulent energy and the maximum turbulence intensity occur. The development of computers has played an important role in this progress, making direct numerical simulations affordable (Kim, Moin & Moser, 1987), and offering wider observational possibilities than most laboratory experiments. The large scales have received less attention, and it has not been until recently that their significance and their real size have been widely recognized, thanks in part to the experiments by Hites (1997) and Kim & Adrian (1999), and to the compilation of experimental and numerical data by Jimenez (1998). The requirements of both a very large box and a high Reynolds number has made direct numerical simulation of the VLAS unapproachable until today. The purpose of this report is to serve as a preliminary description of a newly compil...
Control strategies for friction dampers: numerical assessment and experimental investigations.
Coelho H.T.
2014-01-01
Full Text Available The use of friction dampers has been proposed in a wide variety of mechanical systems for which it is not possible to apply viscoelastic materials, fluid based dampers or others viscous dampers. An important example is the application of friction dampers in aircraft engines to reduce the blades vibration amplitudes. In most cases, friction dampers have been studied in a passive way, however, a significant improvement can be achieved by controlling the normal force in the dampers. The aim of this paper is to study three control strategies for friction dampers based on the hysteresis cycle. The first control strategy maximizes the energy removal in each harmonic oscillation cycle, by calculating the optimum normal force based on the last displacement peak. The second control strategy combines the first one with the maximum energy removal strategy used in the smart spring devices. Finally, is presented the strategy which homogenously modulates the friction force. Numerical studies were performed with these three strategies defining the performance metrics. The best control strategy was applied experimentally. The experimental test rig was fully identified and its parameters were used for the numerical simulations. The obtained results show the good performance for the friction damper and the selected strategy.
Direct Numerical Simulation of the Influence of Plasmas on Turbulent Flows
2006-12-31
the doctoral research of Mr. Shankar Chosh. Publications associated with this work are listed below. " Direct numerical simulation of the thermal...addition. AIAA paper 2003-3862. [4] MAKER, P., TERHUNE, R. & SAVAGE, C. 1963 Proceedings of the Third International Quantum Mechanics Conference, Paris
Direct Numerical Simulation of biomass pyrolysis and combustion with gas phase reactions
Aswasthi, A.; Kuerten, J.G.M.; Geurts, B.J.
2016-01-01
We present Direct Numerical Simulation of biomass pyrolysis and combustion in a turbulent channel flow. The model includes simplified models for biomass pyrolysis and char combustion along with a model for particle tracking. The gas phase is modelled as a mixture of reacting gas species. The gas-pa
Versluis, R.; Dorsman, R.; Thielen, L.; Roos, M.E.
2009-01-01
A new approach for performing numerical direct simulation Monte Carlo (DSMC) simulations on turbomolecular pumps in the free molecular and transitional flow regimes is described. The chosen approach is to use surfaces that move relative to the grid to model the effect of rotors and stators on a gas
Direct Numerical Simulation of structural vacillation in the transition to geostrophic turbulence
Randriamampianina, Anthony; Fruh, Wolf-Gerrit; Read, Peter L
2007-01-01
The onset of small-scale fluctuations around a steady convection pattern in a rotating baroclinic annulus filled with air is investigated using Direct Numerical Simulation. In previous laboratory experiments of baroclinic waves, such fluctuations have been associated with a flow regime termed Structural Vacillation which is regarded as the first step in the transition to fully-developed geostrophic turbulence.
Controller-independent bidirectional quantum direct communication
Mohapatra, Amit Kumar; Balakrishnan, S.
2017-06-01
Recently, Chang et al. (Quantum Inf Process 14:3515-3522, 2015) proposed a controlled bidirectional quantum direct communication protocol using Bell states. In this work, the significance of Bell states, which are being used as initial states in Chang et al. protocol, is elucidated. The possibility of preparing initial state based on the secret message of the communicants is explored. In doing so, the controller-independent bidirectional quantum direct communication protocol has evolved naturally. It is shown that any communicant cannot read the secret message without knowing the initial states generated by the other communicant. Further, intercept-and-resend attack and information leakage can be avoided. The proposed protocol is like a conversion between two persons without the help of any third person with high-level security.
Numerical investigation of local defectiveness control of diblock copolymer patterns
D. Jeong
2016-09-01
Full Text Available We numerically investigate local defectiveness control of self-assembled diblock copolymer patterns through appropriate substrate design. We use a nonlocal Cahn-Hilliard (CH equation for the phase separation dynamics of diblock copolymers. We discretize the nonlocal CH equation by an unconditionally stable finite difference scheme on a tapered trench design and, in particular, we use Dirichlet, Neumann, and periodic boundary conditions. The value at the Dirichlet boundary comes from an energy-minimizing equilibrium lamellar profile. We solve the resulting discrete equations using a Gauss-Seidel iterative method. We perform various numerical experiments such as effects of channel width, channel length, and angle on the phase separation dynamics. The simulation results are consistent with the previous experimental observations.
Error Control Strategies for Numerical Integrations in Fast Collocation Methods
陈仲英; 巫斌; 许跃生
2005-01-01
We propose two error control techniques for numerical integrations in fast multiscale collocation methods for solving Fredholm integral equations of the second kind with weakly singular kernels. Both techniques utilize quadratures for singular integrals using graded points. One has a polynomial order of accuracy if the integrand has a polynomial order of smoothness except at the singular point and the other has exponential order of accuracy if the integrand has an infinite order of smoothness except at the singular point. We estimate the order of convergence and computational complexity of the corresponding approximate solutions of the equation. We prove that the second technique preserves the order of convergence and computational complexity of the original collocation method. Numerical experiments are presented to illustrate the theoretical estimates.
Yu, Rixin; Lipatnikov, Andrei N.
2017-06-01
A three-dimensional (3D) direct numerical simulation (DNS) study of the propagation of a reaction wave in forced, constant-density, statistically stationary, homogeneous, isotropic turbulence is performed by solving Navier-Stokes and reaction-diffusion equations at various (from 0.5 to 10) ratios of the rms turbulent velocity U' to the laminar wave speed, various (from 2.1 to 12.5) ratios of an integral length scale of the turbulence to the laminar wave thickness, and two Zeldovich numbers Ze=6.0 and 17.1. Accordingly, the Damköhler and Karlovitz numbers are varied from 0.2 to 25.1 and from 0.4 to 36.2, respectively. Contrary to an earlier DNS study of self-propagation of an infinitely thin front in statistically the same turbulence, the bending of dependencies of the mean wave speed on U' is simulated in the case of a nonzero thickness of the local reaction wave. The bending effect is argued to be controlled by inefficiency of the smallest scale turbulent eddies in wrinkling the reaction-zone surface, because such small-scale wrinkles are rapidly smoothed out by molecular transport within the local reaction wave.
Direct numerical simulation of powder electrification in a turbulent channel flow
Grosshans, Holger; Papalexandris, Miltiadis
2016-11-01
Particle electrification is often encountered in process industries. Sometimes it has useful applications, such as the control of particle trajectories through an electric field. In other situations is has negative effects. For example, during pneumatic transport it can cause particle deposition or, even worse, spark discharges and subsequent fires and explosions. Despite its frequent occurrence, due to the complexity of the underlying physical mechanisms, there are still many open questions regarding particle electrification and inconsistent theoretical predictions have been reported. The objective of our work is to gain a better understanding and physical insight of this phenomenon. To this end, we performed Direct Numerical Simulations to analyze the turbulent flow of a carrier fluid with immersed particles in a channel. Moreover, the motion of the particles was computed in a Lagrangian framework and dynamic models accounting for the particle-wall and particle-particle charge exchange were implemented. In our talk, we discuss in detail the effect of the fluid turbulence to the build-up of the electrostatic charge of the particles. Furthermore, we elaborate on the influence of the particle Stokes number and gravitational forces to the process of powder charging. Supported by the National Research Fund of Belgium (FNRS) under the GRANMIX Projet de Recherche Grant.
Numerical simulation of flow separation control by oscillatory fluid injection
Resendiz Rosas, Celerino
2005-07-01
In this work, numerical simulations of flow separation control are performed. The separation control technique studied is called "synthetic jet actuation". The developed code employs a cell centered finite volume scheme which handles viscous, steady and unsteady compressible turbulent flows. The pulsating zero mass jet flow is simulated by imposing a harmonically varying transpiration boundary condition on the airfoil's surface. Turbulence is modeled with the algebraic model of Baldwin and Lomax. The application of synthetic jet actuators is based in their ability to energize the boundary layer, thereby providing significant increase in the lift coefficient. This has been corroborated experimentally and it is corroborated numerically in this research. The performed numerical simulation investigates the flow over a NACA0015 airfoil. For this flow Re = 9 x 105 and the reduced frequency and momentum coefficient are F + = 1.1 and Cmu = 0.04 respectively. The oscillatory injection takes place at 12.27% chord from the leading edge. A maximum increase in the mean lift coefficient of 93% is predicted by the code. A discrepancy of approximately 10% is observed with corresponding experimental data from the literature. The general trend is, however, well captured. The discrepancy is attributed to the modeling of the injection boundary condition and to the turbulence model. A sensitivity analysis of the lift coefficient to different values of the oscillation parameters is performed. It is concluded that tangential injection, F+ ≈ O(1) and the utilized grid resolution around the site of injection are optimal. Streamline fields obtained for different angles of injection are analyzed. Flow separation and attachment as functions of the injection angle and of the velocity of injection can be observed. It is finally concluded that a reliable numerical tool has been developed which can be utilized as a support tool in the optimization of the synthetic jet operation and in the
Direct Numerical Simulation of Interaction Between Wave and Porous Breakwater Based on N-S Equation
WANG Deng-ting
2012-01-01
In this paper,a numerical model is established.A modified N-S equation is used as a control equation for the wave field and porous flow area.The control equations are discreted and solved by the finite difference method.The free surface is tracked by the VOF method.The pressure field and velocity field of the whole flow area are solved by the reiterative iteration method.Finally,compared with the physical model test results of wave flume,the numerical model established in the present study is validated.
Efficient Controlled Quantum Secure Direct Communication Protocols
Patwardhan, Siddharth; Moulick, Subhayan Roy; Panigrahi, Prasanta K.
2016-07-01
We study controlled quantum secure direct communication (CQSDC), a cryptographic scheme where a sender can send a secret bit-string to an intended recipient, without any secure classical channel, who can obtain the complete bit-string only with the permission of a controller. We report an efficient protocol to realize CQSDC using Cluster state and then go on to construct a (2-3)-CQSDC using Brown state, where a coalition of any two of the three controllers is required to retrieve the complete message. We argue both protocols to be unconditionally secure and analyze the efficiency of the protocols to show it to outperform the existing schemes while maintaining the same security specifications.
Komiwes, V.
1999-09-01
Numerical models applied to simulation of granular flow with fluid are developed. The physical model selected to describe particles flow is a discrete approach. Particle trajectories are calculated by the Newton law and collision is describe by a soft-sphere approach. The fluid flow is modelled by Navier-Stokes equations. The modelling of the momentum transfer depends on the resolution scale: for a scale of the order of the particle diameter, it is modelled by a drag-law and for a scale smaller than the particle diameter, it is directly calculated by stress tensor computation around particles. The direct model is used to find representative elementary volume and prove the local character of the Ergun's law. This application shows the numerical (mesh size), physical (Reynolds number) and computational (CPU time and memory consumptions) limitations. The drag law model and the direct model are validated with analytical and empirical solutions and compared. For the two models, the CPU time and the memory consumptions are discussed. The drag law model is applied to the simulation of gas-solid dense fluidized-beds. In the case of uniform gas distribution, the fluidized-bed simulation heights are compared to experimental data for particle of group A and B of the Geldart classification. (author)
Lavrinenko, Andrei; Jacobsen, Rune Shim; Fage-Pedersen, Jacob
2005-01-01
a one-row line defect. Both the numerical and experimental methods are based on the time of flight approach for an optical pulse. An increase of the group index by approximately 45 times (from 4 to 155) has been observed when approaching the cutoff of the fundamental photonic bandgap mode. Numerical 2D...... and 3D simulations of pulse dynamics in the waveguide made by the time-domain method shows excellent agreement with measured data in most of the band. These group index values in a photonic crystal waveguide are to the best of our knowledge the largest numbers reported so far by direct tracking of pulse...
Electrokinetic Particle Transport in Micro-Nanofluidics Direct Numerical Simulation Analysis
Qian, Shizhi
2012-01-01
Numerous applications of micro-/nanofluidics are related to particle transport in micro-/nanoscale channels, and electrokinetics has proved to be one of the most promising tools to manipulate particles in micro/nanofluidics. Therefore, a comprehensive understanding of electrokinetic particle transport in micro-/nanoscale channels is crucial to the development of micro/nano-fluidic devices. Electrokinetic Particle Transport in Micro-/Nanofluidics: Direct Numerical Simulation Analysis provides a fundamental understanding of electrokinetic particle transport in micro-/nanofluidics involving elect
NUMERICAL SIMULATION OF AL-SI ALLOYS WITH AND WITHOUT A DIRECTIONAL SOLIDIFICATION
Michael Roland
2014-03-01
Full Text Available Numerical simulations are presented to analyze the influence of the casting process on the resulting strength of Strontium modified Al–Si alloys. A relationship is identified between the mechanical behavior and the different 3D morphologies of the eutectic silicon of the samples obtained by the die cast procedure and the directional solidification. It is shown that the mechanical behavior of the die cast alloy is isotropic in all three directions. In contrary, for the directional solidified alloy, the mechanical strength in the direction of the temperature gradient is higher than in the transverse direction. This fact has to be taken into account when analyzing structures issued from different casting processes. The volume meshes for the simulations are generated from experimental 3D FIB/SEM data sets. The influence of several levels of coarsening of the meshes as well as the order of the Lagrange element in the finite element setup are also analyzed.
Geometric, control and numeric aspects of nonholonomic systems
Cortés Monforte, Jorge
2002-01-01
Nonholonomic systems are a widespread topic in several scientific and commercial domains, including robotics, locomotion and space exploration. This work sheds new light on this interdisciplinary character through the investigation of a variety of aspects coming from several disciplines. The main aim is to illustrate the idea that a better understanding of the geometric structures of mechanical systems unveils new and unknown aspects to them, and helps both analysis and design to solve standing problems and identify new challenges. In this way, separate areas of research such as Classical Mechanics, Differential Geometry, Numerical Analysis or Control Theory are brought together in this study of nonholonomic systems.
Lardeau, Sylvain; Ferrari, Simone; Rossi, Lionel
2008-12-01
Three-dimensional (3D) direct numerical simulations of a flow driven by multiscale electromagnetic forcing are performed in order to reproduce with maximum accuracy the quasi-two-dimensional (2D) flow generated by the same multiscale forcing in the laboratory. The method presented is based on a 3D description of the flow and the electromagnetic forcing. Very good agreements between our simulations and the experiments are found both on velocity and acceleration field, this last comparison being, to our knowledge, done for the first time. Such agreement requires that both experiments and simulations are carefully performed and, more importantly, that the underlying simplification to model the experiments and the multiscale electromagnetic forcing do not introduce significant errors. The results presented in this paper differ significantly from previous 2D direct numerical simulation in which a classical linear Rayleigh friction modeling term was used to mimic the effect of the wall-normal friction. Indeed, purely 2D simulations are found to underestimate the Reynolds number and, due to the dominance of nonhomogeneous bottom friction, lead to the wrong physical mechanism. For the range of conditions presented in this paper, the Reynolds number, defined by the ratio between acceleration and viscous terms, remains the order of unity, and the Hartmann number, defined by the ratio between electromagnetic force terms and viscous terms, is about 2. The main conclusion is that 3D simulations are required to model the (3D) electromagnetic forces and the wall-normal shear. Indeed, even if the flow is quasi-2D in terms of energy, a full 3D approach is required to simulate these shallow layer flows driven by multiscale electromagnetic forcing. In the range of forcing intensity investigated in this paper, these multiscale flows remain quasi-2D, with negligible energy in the wall-normal velocity component. It is also shown that the driving terms are the electromagnetic forcing and
Jou, Jerwen
2003-01-01
In 3 experiments, subjects made comparativejudgments on a set of 2 numbers or letters, 3 numbers or letters, or 5 numbers or letters. Numeric and alphabetic serial order memories were contrasted. Three aspects of serial order memory processes were identified: computational complexity, directionality, and accessibility. Computational complexity is the number of algorithmic steps involved in identifying a target. Directional bias is measured as the speed differences in identifying serial targets of equal computational complexity in a stimulus array. Memory accessibility is measured as the numeric and alphabetic serial position effects. Subjects had a slight directional bias favoring backward ordering for single digits but no bias in 2-digit number ordering, in contrast to a strong forward directional advantage in letter ordering. The speed of number access was found to steadily and evenly decrease along the numeric scale, in contrast to a systematic pattern of variations in alphabet access along the alphabetic scale. Finally, the middle item effect (the middle item in a multi-item array is identified most slowly) found in Jou's (1997) multiple-letter comparison study was generalized to numbers.
Direct numerical simulations of an inertial wave attractor in linear and nonlinear regimes
Jouve, Laurène
2014-01-01
In a uniformly rotating fluid, inertial waves propagate along rays that are inclined to the rotation axis by an angle that depends on the wave frequency. In closed domains, multiple reflections from the boundaries may cause inertial waves to focus on to particular structures known as wave attractors. Such structures have previously been studied from a theoretical point of view, in laboratory experiments, in linear numerical calculations and in some recent numerical simulations. In the present paper, two-dimensional direct numerical simulations of an inertial wave attractor are presented. In the linear regime, we first recover the results of the linear calculations and asymptotic theory of Ogilvie (2005) who considered a prototypical problem involving the focusing of linear internal waves into a narrow beam centred on a wave attractor in a steady state. The velocity profile of the beam and its scalings with the Ekman number, as well as the asymptotic value of the dissipation rate, are found to be in agreement ...
Direct numerical simulation of turbulent liquid metal flow entering a magnetic field
Albets-Chico, X., E-mail: xalbets@ucy.ac.cy; Grigoriadis, D.G.E.; Votyakov, E.V.; Kassinos, S.
2013-12-15
Highlights: • Analysis of turbulence persistence of fully developed MHD pipe flow at Re{sub b} = 4000. • Turbulence decay of fully developed turbulence flow entering low, moderate and strong magnetic fields. • Analysis of the wall conductivity on the aforementioned phenomena. • Discovering and further analysis of flow instabilities of the flow entering a strong magnetic field. -- Abstract: This paper presents direct numerical simulations (DNS) of fully developed turbulent liquid-metal flow in a circular duct entering a magnetic field. The case of a magnetohydrodynamic flow leaving a strong magnetic field has been extensively studied experimentally and numerically owing to its similarity to typical flow configurations appearing in liquid metal blankets of nuclear fusion reactors. Although also relevant to the design of fusion reactor blankets, the flow entering the fringing field of a magnet remains unexplored because its high intricacy precludes any simplification of the governing equations. Indeed, the complexity of the magnetohydrodynamic–turbulence interaction can only be analysed by direct numerical simulations or experiments. With that purpose, this paper addresses the case of a fully developed turbulent flow (Re{sub τ} ≈ 520) entering low, intermediate and strong magnetic fields under electrically insulating and poorly conducting walls by means of three-dimensional direct numerical simulations. Purely hydrodynamic computations (without the effect of the magnetic field) reveal an excellent agreement against previous experimental and numerical results. Current MHD results provide a very detailed information of the turbulence decay and reveal new three-dimensional features related to liquid-metal flow entering strong increasing magnetic fields, such as flow instabilities due to the effect of the Lorentz forces within the fringing region at high Ha numbers.
A Numerical Investigation of Controllably Flexible Hydrofoil in Laminar Flows
He, G. Y.; Zhang, X.; Zhang, S. G.; He, G. W.
Aquatic animals, such as fishes, whales, seals and penguins, are naturally born to be flexible and deformable, which promise their effective locomotion through water. They are able to produce hydrodynamic thrust by active control of their body configurations. That is, the aquatic animals could wiggle their flexible bodies at an appropriate frequency and amplitude suitable to the hydrodynamics surrounding them. However, the mechanism for the active controls has not been adequately understood yet and attracts current research. One obstacle which hinders such investigation is the difficulty in experimental measurements of the flows around the wiggling bodies, and thus numerical simulation is becoming an indispensable alternative. In the paper, an immersed boundary method is developed to simulate the NACA 65-10 hydrofoil. It is observed that a wiggling hydrofoil exhibits a higher thrust while a stationary hydrofoil offers little improvement.
Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer
D. S. Lucas
2004-10-01
A graduate level course for Thermal Hydraulics (T/H) was taught through Idaho State University in the spring of 2004. A numerical approach was taken for the content of this course since the students were employed at the Idaho National Laboratory and had been users of T/H codes. The majority of the students had expressed an interest in learning about the Courant Limit, mass error, semi-implicit and implicit numerical integration schemes in the context of a computer code. Since no introductory text was found the author developed notes taught from his own research and courses taught for Westinghouse on the subject. The course started with a primer on control volume methods and the construction of a Homogeneous Equilibrium Model (HEM) (T/H) code. The primer was valuable for giving the students the basics behind such codes and their evolution to more complex codes for Thermal Hydraulics and Computational Fluid Dynamics (CFD). The course covered additional material including the Finite Element Method and non-equilibrium (T/H). The control volume primer and the construction of a three-equation (mass, momentum and energy) HEM code are the subject of this paper . The Fortran version of the code covered in this paper is elementary compared to its descendants. The steam tables used are less accurate than the available commercial version written in C Coupled to a Graphical User Interface (GUI). The Fortran version and input files can be downloaded at www.microfusionlab.com.
Windows and Fieldbus Based Software Computer Numerical Control System
WU Hongen; ZHANG Chengrui; LI Guili; WANG Baoren
2006-01-01
Computer numerical control (CNC) system is the base of modern digital and intelligent manufacturing technology. And opened its architecture and constituted based on PC and Windows operating system (OS) is the main trend of CNC system. However, even if the highest system priority is used in user mode, real-time capability of Windows (2000, NT, XP) for applications is not guaranteed. By using a device driver, which is running in kernel mode, the real time performance of Windows can be enhanced greatly. The acknowledgment performance of Windows to peripheral interrupts was evaluated. Harmonized with an intelligent real-time serial communication bus (RTSB), strict real-time performance can be achieved in Windows platform. An opened architecture software CNC system which is hardware independence is proposed based on PC and RTSB. A numerical control real time kernel (NCRTK), which is implemented as a device driver on Windows, is used to perform the NC tasks. Tasks are divided into real-time and non real-time. Real-time task is running in kernel mode and non real-time task is running in user mode. Data are exchanged between kernel and user mode by DMA and Windows Messages.
RodrIguez-MartInez, R; Urriolagoitia-Calderon, G; Urriolagoitia-Sosa, G; Hernandez-Gomez, L H [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de IngenierIa Mecanica y Electrica (ESIME), Edificio 5. 2do Piso, Unidad Profesional Adolfo Lopez Mateos ' Zacatenco' Col. Lindavista, C.P. 07738, Mexico, D.F. (Mexico); Merchan-Cruz, E A; RodrIguez-Canizo, R G; Sandoval-Pineda, J M, E-mail: rrodriguezm@ipn.m, E-mail: urrio332@hotmail.co, E-mail: guiurri@hotmail.co, E-mail: luishector56@hotmail.co, E-mail: eamerchan@gmail.co, E-mail: ricname@hotmail.co, E-mail: jsandovalp@ipn.m [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de IngenierIa Mecanica y Electrica (ESIME). Unidad profesional, AZCAPOTZALCO, Av. de las Granjas No. 682, Col. Sta. Catarina Azcapotzalco, C.P. 02550, Mexico D.F. (Mexico)
2009-08-01
In this paper, the case of Single Edge Notch (SEN) specimens subject to opening/compressive loading was analyzed; The loads are applied in several ratios to evaluate the influence of the specimen geometry, and the Stress Intensity Factor (SIF) K{sub 1} values on the directional stability of crack propagation. The main purpose of this work is to evaluate the behaviour of the fracture propagation, when modifying the geometry of the SEN specimen and different relationships of load tension/compression are applied. Additionally, the precision of the numerical and experimental analysis is evaluated to determine its reliability when solving this type of problems. The specimens are subjected to biaxial opening/compression loading; both results (numerical and experimental) are compared in order to evaluate the condition of directional stability on crack propagation. Finally, an apparent transition point related to the length of specimens was identified, in which the behaviour of values of SIF changes for different loading ratios.
Carbone, Francesco; El, Gennady
2015-01-01
We undertake a detailed comparison of the results of direct numerical simulations of the integrable soliton gas dynamics with the analytical predictions inferred from the exact solutions of the relevant kinetic equation for solitons. We use the KdV soliton gas as a simplest analytically accessible model yielding major insight into the general properties of soliton gases in integrable systems. Two model problems are considered: (i) the propagation of a `trial' soliton through a one-component `cold' soliton gas consisting of randomly distributed solitons of approximately the same amplitude; and (ii) collision of two cold soliton gases of different amplitudes (soliton gas shock tube problem) leading to the formation of an incoherend dispersive shock wave. In both cases excellent agreement is observed between the analytical predictions of the soliton gas kinetics and the direct numerical simulations. Our results confirm relevance of the kinetic equation for solitons as a quantitatively accurate model for macrosco...
Research on assembly reliability control technology for computer numerical control machine tools
Yan Ran
2017-01-01
Full Text Available Nowadays, although more and more companies focus on improving the quality of computer numerical control machine tools, its reliability control still remains as an unsolved problem. Since assembly reliability control is very important in product reliability assurance in China, a new key assembly processes extraction method based on the integration of quality function deployment; failure mode, effects, and criticality analysis; and fuzzy theory for computer numerical control machine tools is proposed. Firstly, assembly faults and assembly reliability control flow of computer numerical control machine tools are studied. Secondly, quality function deployment; failure mode, effects, and criticality analysis; and fuzzy theory are integrated to build a scientific extraction model, by which the key assembly processes meeting both customer functional demands and failure data distribution can be extracted, also an example is given to illustrate the correctness and effectiveness of the method. Finally, the assembly reliability monitoring system is established based on key assembly processes to realize and simplify this method.
Zhu, X.; Ostilla-Monico, Rodolfo; Verzicco, R.; Lohse, D.
2016-01-01
We present direct numerical simulations of Taylor–Couette flow with grooved walls at a fixed radius ratio ${\\it\\eta}=r_{i}/r_{o}=0.714$η=ri/ro=0.714 with inner cylinder Reynolds number up to $Re_{i}=3.76\\times 10^{4}$Rei=3.76×104, corresponding to Taylor number up to $Ta=2.15\\times 10^{9}$Ta=2.15×10
Direct numerical simulations of vortex rings at ReΓ = 7500
Bergdorf, Michael; Koumoutsakos, Petros; Leonard, Anthony
2007-01-01
We present direct numerical simulations of the turbulent decay of vortex rings with ReΓ = 7500. We analyse the vortex dynamics during the nonlinear stage of the instability along with the structure of the vortex wake during the turbulent stage. These simulations enable the quantification of vorticity dynamics and their correlation with structures from dye visualization and the observations of circulation decay that have been reported in related experimental works. Movies are available with th...
Pore-scale Direct Numerical Simulation of Flow and Transport in Porous Media
Pulloor Kuttanikkad, Sreejith
2009-01-01
This dissertation presents research on the pore-scale simulation of flow and transport in porous media and describes the application of a new numerical approach based on the discontinuous Galerkin (DG) finite elements to pore-scale modelling. In this approach, the partial differential equations governing the flow at the pore-scale are solved directly where the main advantage is that it does not require a body fitted grid and works on a structured partition of the domain. Furthermore this appr...
Directed polymer in random media, in two dimensions: numerical study of the aging dynamics
Barrat, A.
1997-01-01
Following a recent work by Yoshino, we study the aging dynamics of a directed polymer in random media, in 1+1 dimensions. Through temperature quench, and temperature cycling numerical experiments similar to the experiments on real spin glasses, we show that the observed behaviour is comparable to the one of a well known mean field spin glass model. The observation of various quantities (correlation function, ``clonation'' overlap function) leads to an analysis of the phase space landscape.
Environmental controls: Market incentives v. direct regulation
Kosobud, R.F.; Atallah, D.S. [Univ. of Illinois, Chicago, IL (United States)
1996-12-31
Cap-and-trade environmental markets, where the commodities are tradable pollution rights, are being introduced in several closely watched applications as a potentially more cost-effective way of cleaning up the environment than direct or command-and-control (CAC) regulation. In this study, we examine the evidence on control cost savings provided by price and transactions data from the first few years of activity in two markets designed to reduce atmospheric pollution. Some observers of both markets have argued that prices for tradable permits lower than expected, and transactions fewer than expected, are evidence that the markets are not achieving the hoped for savings. It was found, on the contrary, that observed prices point toward more flexible and improved pollution control choices and that the number of transactions has been steadily increasing as market incentives are incorporated into enterprise decisions. These new markets during their first few years are generating, according to our estimates, control cost savings in the neighborhood of one to two billion dollars annually. However, there is evidence that the markets have not yet reached their full potential. In the course of this study, several obstacles to market performance were found that are worthy of attention by policy makers. 13 refs., 4 figs., 1 tab.
Numerical and experimental direct shear tests for coarse-grained soils
Ahad Bagherzadeh-Khalkhali; Ali Asghar Mirghasemi
2009-01-01
The presence of particles larger than the permissible dimensions of conventional laboratory specimens causes difficulty in the determination of shear strength of coarse-grained soils. In this research, the influence of particle size on shear strength of coarse-grained soils was investigated by resorting to experimental tests in different scale and numerical simulations based on discrete element method (DEM). Experimental tests on such soil specimens were based on using the techniques designated as "parallel" and "scalping" to prepare gradation of samples in view of the limitation of laboratory specimen size. As a second approach, the direct shear test was numerically simulated on assemblies of elliptical particles. The behaviors of samples under experimental and numerical tests are presented and compared, indicating that the modification of sample gradation has a significant influence on the mechanical properties of coarse-grained soils. It is noted that the shear strengths of samples produced by the scalping method are higher than samples by the parallel method. The scalping method for preparing specimens for direct shear test is therefore recommended. The micromechanical behavior of assemblies under direct shear test is also discussed and the effects of stress level on sample behavior are investigated.
Pulse shape control in a dual cavity laser: numerical modeling
Yashkir, Yuri
2006-04-01
We present a numerical model of the laser system for generating a special shape of the pulse: a steep peak at the beginning followed by a long pulse tail. Laser pulses of this nature are required for various applications (laser material processing, optical breakdown spectroscopy, etc.). The laser system consists of two "overlapped" cavities with different round-trip times. The laser crystal, the Q-switching element, the back mirror, and the output coupler are shared. A shorter pulse is generated in a short cavity. A small fraction of this pulse is injected into the long cavity as a seed. It triggers generation of the longer pulse. The output emission from this hybrid laser produces a required pulse shape. Parameters of the laser pulse (ratios of durations and energies of short- and long- pulse components) can be controlled through cavity length and the output coupler reflection. Modelling of the laser system is based on a set of coupled rate equations for dynamic variables of the system: the inverse population in an active laser media and photon densities in coupled cavities. Numerical experiments were provided with typical parameters of a Nd:YAG laser to study the system behaviour for different combinations of parameters.
M. Boumaza
2015-07-01
Full Text Available Transient convection heat transfer is of fundamental interest in many industrial and environmental situations, as well as in electronic devices and security of energy systems. Transient fluid flow problems are among the more difficult to analyze and yet are very often encountered in modern day technology. The main objective of this research project is to carry out a theoretical and numerical analysis of transient convective heat transfer in vertical flows, when the thermal field is due to different kinds of variation, in time and space of some boundary conditions, such as wall temperature or wall heat flux. This is achieved by the development of a mathematical model and its resolution by suitable numerical methods, as well as performing various sensitivity analyses. These objectives are achieved through a theoretical investigation of the effects of wall and fluid axial conduction, physical properties and heat capacity of the pipe wall on the transient downward mixed convection in a circular duct experiencing a sudden change in the applied heat flux on the outside surface of a central zone.
Direct numerical simulation methods of hypersonic flat-plate boundary layer in thermally perfect gas
Jia, WenLi; Cao, Wei
2014-01-01
High-temperature effects alter the physical and transport properties of air such as vibrational excitation in a thermally perfect gas, and this factor should be considered in order to compute the flow field correctly. Herein, for the thermally perfect gas, a simple method of direct numerical simulation on flat-plat boundary layer is put forward, using the equivalent specific heat ratio instead of constant specific heat ratio in the N-S equations and flux splitting form of a calorically perfect gas. The results calculated by the new method are consistent with that by solving the N-S equations of a thermally perfect gas directly. The mean flow has the similarity, and consistent to the corresponding Blasius solution, which confirms that satisfactory results can be obtained basing on the Blasius solution as the mean flow directly in stability analysis. The amplitude growth curve of small disturbance is introduced at the inlet by using direct numerical simulation, which is consistent with that obtained by linear stability theory. It verified that the equation established and the simulation method is correct.
The Numerical Control Design for a Pair of Dubins Vehicles
Tjahjana, Heru; Muhammad, Hari; Naiborhu, J; Miswanto,
2008-01-01
In this paper, a model of a pair of Dubins vehicles is considered. The vehicles move from an initial position and orientation to final position and orientation. A long the motion, the two vehicles are not allowed to collide however the two vehicles cant to far each other. The optimal control of the vehicle is found using the Pontryagins Maximum Principle (PMP). This PMP leads to a Hamiltonian system consisting of a system of differential equation and its adjoint. The originally differential equation has initial and final condition but the adjoint system doesn't have one. The classical difficulty is solved numerically by the greatest gradient descent method. Some simulation results are presented in this paper.
Numerical Construction of Viable Sets for Autonomous Conflict Control Systems
Nikolai Botkin
2014-04-01
Full Text Available A conflict control system with state constraints is under consideration. A method for finding viability kernels (the largest subsets of state constraints where the system can be confined is proposed. The method is related to differential games theory essentially developed by N. N. Krasovskii and A. I. Subbotin. The viability kernel is constructed as the limit of sets generated by a Pontryagin-like backward procedure. This method is implemented in the framework of a level set technique based on the computation of limiting viscosity solutions of an appropriate Hamilton–Jacobi equation. To fulfill this, the authors adapt their numerical methods formerly developed for solving time-dependent Hamilton–Jacobi equations arising from problems with state constraints. Examples of computing viability sets are given.
LQR Control of Thin Shell Dynamics: Formulation and Numerical Implementation
delRosario, R. C. H.; Smith, R. C.
1997-01-01
A PDE-based feedback control method for thin cylindrical shells with surface-mounted piezoceramic actuators is presented. Donnell-Mushtari equations modified to incorporate both passive and active piezoceramic patch contributions are used to model the system dynamics. The well-posedness of this model and the associated LQR problem with an unbounded input operator are established through analytic semigroup theory. The model is discretized using a Galerkin expansion with basis functions constructed from Fourier polynomials tensored with cubic splines, and convergence criteria for the associated approximate LQR problem are established. The effectiveness of the method for attenuating the coupled longitudinal, circumferential and transverse shell displacements is illustrated through a set of numerical examples.
Peeters, J.; Ribbens, B.; Dirckx, J. J. J.; Steenackers, G.
2016-07-01
Little research has examined that inaccurate estimations of directional emissivity form a major challenge during both passive and active thermographic measurements. Especially with the increasing use of complex curved shapes and the growing precision of thermal cameras, these errors limit the accuracy of the thermal measurements. In this work we developed a technique to estimate the directional emissivity using updated numerical simulations. The reradiation on concave surfaces is examined by thermal imaging of a homogeneous heated curved metal and nylon test sample. We used finite element modelling to predict the reradiation of concave structures in order to calculate the parameters of an approximating formula for the emissivity dependent on the angle to the normal vector on each element. The differences between experimental and numerical results of the steel test sample are explained using electron microscopy imaging and the validation on different materials. The results suggest that it is possible to determine the errors of thermal imaging testing of complex shapes using a numerical model.
Min Wei; Limin Wang; Jinghai Li
2013-01-01
Fully resolved simulations of particulate and aggregative fluidization systems are performed successfully with the so-called combined lattice Boltzmann method and time-driven hard-sphere model (LBM-TDHS).In this method,the discrete particle phase is described by time-driven hard-sphere model,and the governing equations of the continuous fluid phase are solved with lattice Boltzmann method.Particle-fluid coupling is implemented by immersed moving boundary method.Time averaged flow structure of the simulated results show the formation of core-annulus structure and sigmoid distribution of voidage in the axial direction,which are typical phenomena in fluidization systems.Combining the results of the simulation,the energy consumption Nst for suspending and transporting solids is calculated from the direct numerical simulation (DNS) of fluidization,and the stability criterion Nst/NT =min proposed in EMMS/bubbling model is verified numerically.Furthermore the numerical results show that the value of Nst/NT in particulate fluidization is much higher than that in aggregative fluidization,but Nst/NT =min is effective for both particulate and aggregative fluidization.
Direct numerical simulation of gravity-driven avalanches immersed in a viscous fluid
Bonometti, Thomas; Izard, Edouard; Lacaze, Laurent; OTE Team
2014-11-01
This work deals with direct numerical simulations of sediment transport at the scale of O(103) grains. A soft-sphere discrete element method is coupled to an immersed boundary method in order to compute the flow around moving and colliding grains in an incompressible Newtonian fluid. A lubrication force is added for representing fluid-particles interaction near contact. The numerical method is shown to adequately reproduce the effective coefficient of restitution measured in experiments of the normal and oblique rebound of a grain on a wall. An analytical model is proposed and highlights the importance of the grain roughness and Stokes number on the rebound phenomenon. Three-dimensional configurations of gravity-driven dense granular flows in a fluid, namely the granular avalanche on an inclined plane and the collapse of a granular column, are performed. The granular flow regimes (viscous, inertial and dry) observed in experiments are identified as a function of the grain-to-fluid density ratio and the Stokes number. In particular, the simulations provide insights on the grain and fluid velocity profiles and force balance in each regime. In the second case, results agree well with experiments and the pore pressure feedback is observed for the first time in direct numerical simulations.
Numerical Prediction of a Bi-Directional Micro Thermal Flow Sensors
M. Al-Amayrah
2011-09-01
Full Text Available Thermal flow sensors such as hot-wire anemometer (HWA can be used to measure the flow velocity with certain accuracy. However, HWA can measure the flow velocity without determining the flow direction. Pulsed-Wire Anemometer (PWA with 3 wires can be used to measure flow velocity and flow directions. The present study aims to develop a numerical analysis of unsteady flow around a pulsed hot-wire anemometer using three parallel wires. The pulsed wire which is called the heated wire is located in the middle and the two sensor wires are installed upstream and downstream of the pulsed wire. 2-D numerical models were built and simulated using different wires arrangements. The ratio of the separation distance between the heated wire and sensor wire (x to the diameter of the heated wire (D ratios (x/D was varied between 3.33 and 183.33. The output results are plotted as a function of Peclet number (convection time / diffusion time. It was found that as the ratio of x/D increases, the sensitivity of PWA device to the time of flight decreases. But at the same the reading of the time of flight becomes more accurate, because the effects of the diffusion and wake after the heated wire decrease. Also, a very good agreement has been obtained between the present numerical simulation and the previous experimental data.
Ruban, V P
2015-01-01
The nonlinear dynamics of an obliquely oriented wave packet at sea surface is studied both analytically and numerically for various initial parameters of the packet, in connection with the problem of oceanic rogue waves. In the framework of Gaussian variational ansatz applied to the corresponding (1+2D) hyperbolic nonlinear Schr\\"odinger equation, a simplified Lagrangian system of differential equations is derived, which determines the evolution of coefficients of the real and imaginary quadratic forms appearing in the Gaussian. This model provides a semi-quantitative description for the process of nonlinear spatio-temporal focusing, which is one of the most probable mechanisms of rogue wave formation in random wave fields. The system is integrated in quadratures, which fact allows us to understand qualitative differences between the linear and nonlinear regimes of the focusing of wave packet. Comparison of the Gaussian model predictions with results of direct numerical simulation of fully nonlinear long-cres...
Direct Numerical Simulation of Insoluble Surfactant Effect on Turbulent Channel Bubbly Flows
Lu, Jiacai; Tryggvason, Gretar
2016-11-01
Direct Numerical Simulations (DNS) have been successfully used to obtain detailed data for turbulent channel bubbly flows. However, most of DNS that have been done so far remain problematic in comparing to most experiments. One of the major reasons is that real bubbly flows contain surfactants. The surfactants adhere to the interface, and produce an uneven distribution of the surfactant concentration due to the moving of bubbles and result in uneven surface tension over bubble surfaces. In this project, the effect of surfactants on the flow of many bubbles in an upward turbulent channel flow is studied by using of Direct Numerical Simulation with 3D Front-tracking method. The surfactant mass and the interfacial area are directly tracked in the method, and the surfactant mass remains conserved during the evolution. By using of different elasticity numbers in the non-linear equation of state which relates the surface tension to the surfactant concentration, the simulations show that the evolution of the turbulent channel bubbly flow are much different among the cases with contaminated bubbles and clean bubbles. Profiles of many parameters, such as streamwise velocity, shear stress and etc., are also compared at the statistically steady state for these cases. Research supported by DOE (CASL).
A Numerical Implementation of a Nonlinear Mild Slope Model for Shoaling Directional Waves
Justin R. Davis
2014-02-01
Full Text Available We describe the numerical implementation of a phase-resolving, nonlinear spectral model for shoaling directional waves over a mild sloping beach with straight parallel isobaths. The model accounts for non-linear, quadratic (triad wave interactions as well as shoaling and refraction. The model integrates the coupled, nonlinear hyperbolic evolution equations that describe the transformation of the complex Fourier amplitudes of the deep-water directional wave field. Because typical directional wave spectra (observed or produced by deep-water forecasting models such as WAVEWATCH III™ do not contain phase information, individual realizations are generated by associating a random phase to each Fourier mode. The approach provides a natural extension to the deep-water spectral wave models, and has the advantage of fully describing the shoaling wave stochastic process, i.e., the evolution of both the variance and higher order statistics (phase correlations, the latter related to the evolution of the wave shape. The numerical implementation (a Fortran 95/2003 code includes unidirectional (shore-perpendicular propagation as a special case. Interoperability, both with post-processing programs (e.g., MATLAB/Tecplot 360 and future model coupling (e.g., offshore wave conditions from WAVEWATCH III™, is promoted by using NetCDF-4/HD5 formatted output files. The capabilities of the model are demonstrated using a JONSWAP spectrum with a cos2s directional distribution, for shore-perpendicular and oblique propagation. The simulated wave transformation under combined shoaling, refraction and nonlinear interactions shows the expected generation of directional harmonics of the spectral peak and of infragravity (frequency <0.05 Hz waves. Current development efforts focus on analytic testing, development of additional physics modules essential for applications and validation with laboratory and field observations.
Direct Numerical Simulation of Incompressible Pipe Flow Using a B-Spline Spectral Method
Loulou, Patrick; Moser, Robert D.; Mansour, Nagi N.; Cantwell, Brian J.
1997-01-01
A numerical method based on b-spline polynomials was developed to study incompressible flows in cylindrical geometries. A b-spline method has the advantages of possessing spectral accuracy and the flexibility of standard finite element methods. Using this method it was possible to ensure regularity of the solution near the origin, i.e. smoothness and boundedness. Because b-splines have compact support, it is also possible to remove b-splines near the center to alleviate the constraint placed on the time step by an overly fine grid. Using the natural periodicity in the azimuthal direction and approximating the streamwise direction as periodic, so-called time evolving flow, greatly reduced the cost and complexity of the computations. A direct numerical simulation of pipe flow was carried out using the method described above at a Reynolds number of 5600 based on diameter and bulk velocity. General knowledge of pipe flow and the availability of experimental measurements make pipe flow the ideal test case with which to validate the numerical method. Results indicated that high flatness levels of the radial component of velocity in the near wall region are physical; regions of high radial velocity were detected and appear to be related to high speed streaks in the boundary layer. Budgets of Reynolds stress transport equations showed close similarity with those of channel flow. However contrary to channel flow, the log layer of pipe flow is not homogeneous for the present Reynolds number. A topological method based on a classification of the invariants of the velocity gradient tensor was used. Plotting iso-surfaces of the discriminant of the invariants proved to be a good method for identifying vortical eddies in the flow field.
Direct drive ablation front stability: numerical predictions against flame front model
Masse, L. [Phd Student at IRPHE St Jerome, 13 - Marseille (France)]|[CEA/DAM-Ile de France, 91 - Bruyeres Le Chatel (France); Hallo, L.; Tallot, C. [CEA/DAM-Ile de France, 91 - Bruyeres Le Chatel (France)
2000-07-01
We study the linear stability of flows resulting from constant heating of planar targets by a laser. In the coordinate system of the ablation front there is a flow from the cold to hot region, which is situated in a gravity field oriented from hot to cold region. Similar types of flow can be observed in combustion systems, which involve propagation of flame fronts. A spectral model which studies linear perturbation is directly taken from the combustion community. Here we present the results for state as well as perturbed flows. Growth rate determined from the models are compared to each other, and preliminary numerical results from FC12 simulations are shown. (authors)
Perlekar, Prasad; Pandit, Rahul
2010-01-01
We carry out a direct numerical simulation (DNS) study that reveals the effects of polymers on statistically steady, forced, homogeneous, isotropic fluid turbulence. We find clear manifestations of dissipation-reduction phenomena: On the addition of polymers to the turbulent fluid, we obtain a reduction in the energy dissipation rate, a significant modification of the fluid energy spectrum, especially in the deep-dissipation range, a suppression of small-scale intermittency, and a decrease in small-scale vorticity filaments. We also compare our results with recent experiments and earlier DNS studies of decaying fluid turbulence with polymer additives.
Testing of Subgrid—Scale Stress Models by Using Results from Direct Numerical SImulations
HongruiGONG
1998-01-01
The most commonly used dynamic subgrid models,Germano's model and dynamic kinetic energy model,and their base models-the Smagorinsky model and the kinetic energy model,were tested using results from direct numerical simulations of various turbulent flows.In germano's dynamic model,the model coefficient was treated as a constant within the test filter,This treatment is conceptually inconsistent.An iteration procedure was proposed to calculate the model coefficient and an improved correlation coefficient was found.
Zhi-yue Zhang
2002-01-01
Both numerical simulation and theoretical analysis of seawater intrusion in coastal regions are of great theoretical importance in environmental sciences. The mathematical model can be described as a coupled system of three dimensional nonlinear partial differential equations with initial-boundary value problems. In this paper, according to the actual conditions of molecular and three-dimensional characteristic of the problem,we construct the characteristic finite element alternating-direction schemes which can be divided into three continuous one-dimensional problems. By making use of tensor product algorithm, and priori estimation theory and techniques, the optimal order estimates in H1 norm are derived for the error in the approximate solution.
The Direct Numerical Simulation of A Turbulent Channel Flow with Analyses of the Database
ChunxiaoXU; ZhaoshunZHANG
1996-01-01
The database of fully developed turbulent channel flow at low Reynolds number is set up through direct numerical simulations.The budget of dissipation-rate of turbulent kinetic energy is calculated and some existing models for the transport equation of the dissipation rate are evaluated.A new model for the turbulent production and viscous destruction terms is given.It makes a considerable improvement in the near-wall behavior,A new flow structure contributing much to high kurtosis levels in transverse velocity fluctuation in viscous sublayer is found.The common characters they possessed are described.
A high-order public domain code for direct numerical simulations of turbulent combustion
Babkovskaia, N; Brandenburg, A
2010-01-01
A high-order scheme for direct numerical simulations of turbulent combustion is discussed. Its implementation in the massively parallel and publicly available Pencil Code is validated with the focus on hydrogen combustion. Ignition delay times (0D) and laminar flame velocities (1D) are calculated and compared with results from the commercially available Chemkin code. The scheme is verified to be fifth order in space. Upon doubling the resolution, a 32-fold increase in the accuracy of the flame front is demonstrated. Finally, also turbulent and spherical flame front velocities are calculated and the implementation of the non-reflecting so-called Navier-Stokes Characteristic Boundary Condition is validated in all three directions.
Direct numerical simulation of particle-fluid flows in turbulent mixing layer
无
2002-01-01
The coherent structures of a three-dimensional temporally mixing layer and the associated dispersion patterns of particles are numerically studied using a pseudospectral method for fluid and the Lagrangian approach for tracing particles at different Stokes numbers without consideration of particle-particle interactions. The results show that the particles with Stokes number of the order of unity have the largest concentration near the outer edges of the large-scale spanwise vortex structures. The study validates the effect of the streamwise large-scale structures on the particle distribution along the spanwise and transverse directions and it enhances with the development of the three-dimensionality of the mixing layer, which results in a ‘mushroom’ shape of the particle distribution in the spanwise direction.
Krygier, Michael; Grigoriev, Roman
2015-11-01
A direct transition from laminar to turbulent flow has recently been discovered experimentally in the small-gap Taylor-Couette flow with counter-rotating cylinders. The subcritical nature of this transition is a result of relatively small aspect ratio, Γ = 5 . 26 for large Γ the transition is supercritical and involves an intermediate stable state (Coughlin & Marcus, 1996) - interpenetrating spirals (IPS). We investigate this transition numerically to probe the dynamics in regimes inaccessible to experiments for a fixed Reo = - 1000 by varying Rei . The numerics reproduce all the experimentally observed features and confirm the hysteretic nature of the transition. As Rei is increased, the laminar flow transitions to turbulence, with an unstable IPS state mediating the transition, similar to the Tollmien-Schlichting waves in plane Poiseuille flow. As Rei is decreased, turbulent flow transitions to a stable, temporally chaotic IPS state. This IPS state further transitions to either laminar or turbulent flow as Rei is decreased or increased. The stable IPS state is reminiscent of the pre-turbulent chaotic states found numerically in plane Poiseuille flow (Zammert & Eckhardt, 2015), but previously never observed experimentally.
Temporal, M.; Canaud, B.; Laffite, S.; Le Garrec, B. J.; Murakami, M.
2010-11-01
In the Inertial Confinement Fusion the uniformity of the irradiation still represents a crucial issue. In this context a spherical capsule directly driven by laser beams have been assessed numerically [1]. Two schemes characterized by 32 and 48 directions of irradiation [2] with associated a single laser beam or a bundle of laser beams [3] characterized by a super-Gaussian intensity profile are considered. Beam imperfections as power imbalance and pointing errors have been taken into account. It is found that the focal spot that minimizes the rms deviation depends on the beam imperfections [4]. The numerical calculations show that the uniformity of the irradiation evolves in time. The results calculated considering the illumination of a spherical target will be compared with those obtained when the irradiation is taken into account. [1] M. Temporal, B. Canaud. Eur. Phys. J. D 55 139 (2009). [2] M. Murakami, N. Sarukura, H. Azechi, M. Temporal, A.J. Schmitt, in press to Phys. Plasmas (July issue, 2010). [3] M. Temporal, B. Canaud, B. J. Le Garrec, Phys. Plasmas 17 022701 (2010). [4] M. Temporal, B. Canaud, S. Laffite, B.J. Le Garrec, M. Murakami. Phys. Plasmas 17 064504 (2010).
Card, J. M.; Chen, J. H.; Day, M.; Mahalingam, S.
1994-01-01
Turbulent non-premixed stoichiometric methane-air flames modeled with reduced kinetics have been studied using the direct numerical simulation approach. The simulations include realistic chemical kinetics, and the molecular transport is modeled with constant Lewis numbers for individual species. The effect of turbulence on the internal flame structure and extinction characteristics of methane-air flames is evaluated. Consistent with earlier DNS with simple one-step chemistry, the flame is wrinkled and in some regions extinguished by the turbulence, while the turbulence is weakened in the vicinity of the flame due to a combination of dilatation and an increase in kinematic viscosity. Unlike previous results, reignition is observed in the present simulations. Lewis number effects are important in determining the local stoichiometry of the flame. The results presented in this work are preliminary but demonstrate the feasibility of incorporating reduced kinetics for the oxidation of methane with direct numerical simulations of homogeneous turbulence to evaluate the limitations of various levels of reduction in the kinetics and to address the formation of thermal and prompt NO(x).
Direct Numerical Simulation of an Airfoil with Sand Grain Roughness on the Leading Edge
Ribeiro, Andre F. P.; Casalino, Damiano; Fares, Ehab; Choudhari, Meelan
2016-01-01
As part of a computational study of acoustic radiation due to the passage of turbulent boundary layer eddies over the trailing edge of an airfoil, the Lattice-Boltzmann method is used to perform direct numerical simulations of compressible, low Mach number flow past an NACA 0012 airfoil at zero degrees angle of attack. The chord Reynolds number of approximately 0.657 million models one of the test conditions from a previous experiment by Brooks, Pope, and Marcolini at NASA Langley Research Center. A unique feature of these simulations involves direct modeling of the sand grain roughness on the leading edge, which was used in the abovementioned experiment to trip the boundary layer to fully turbulent flow. This report documents the findings of preliminary, proof-of-concept simulations based on a narrow spanwise domain and a limited time interval. The inclusion of fully-resolved leading edge roughness in this simulation leads to significantly earlier transition than that in the absence of any roughness. The simulation data is used in conjunction with both the Ffowcs Williams-Hawkings acoustic analogy and a semi-analytical model by Roger and Moreau to predict the farfield noise. The encouraging agreement between the computed noise spectrum and that measured in the experiment indicates the potential payoff from a full-fledged numerical investigation based on the current approach. Analysis of the computed data is used to identify the required improvements to the preliminary simulations described herein.
Inflow conditions for spatial direct numerical simulation of turbulent boundary layers
2008-01-01
The inflow conditions for spatial direct numerical simulation(SDNS) of turbulent boundary layers should reflect the characteristics of upstream turbulence,which is a puzzle. In this paper a new method is suggested,in which the flow field obtained by using temporal direct numerical simulation(TDNS) for fully developed turbulent flow(only flow field for a single moment is sufficient) can be used as the inflow of SDNS with a proper transformation. The calculation results confirm that this method is feasible and effective. It is also found that,under a proper time-space transformation,all statistics of the fully developed turbulence obtained by both temporal mode and spatial mode DNS are in excellent agreement with each other,not only qualitatively,but also quantitatively. The normal-wise distributions of mean flow profile,turbulent Mach number and the root mean square(RMS) of the fluctuations of various variables,as well as the Reynolds stresses of the fully developed turbulence obtained by using SDNS,bear similarity in nature.
Striatal direct and indirect pathways control decision-making behavior
Tom eMacpherson
2014-11-01
Full Text Available Despite our ever-changing environment, animals are remarkable adept at selecting courses of action that are predictive of optimal outcomes. While requiring the contribution of a number of brain regions, a vast body of evidence implicates striatal mechanisms of associative learning and action selection to be critical to this ability. While numerous models of striatal-based decision-making have been developed, it is only recently that we have begun to understand the precise contributions of specific subpopulations of striatal neurons. Studies utilizing contemporary cell-type-specific technologies indicate that striatal output pathways play distinct roles in controlling goal-directed and social behaviors. Here we review current models of striatal-based decision-making, discuss recent developments in defining the functional roles of striatal output pathways, and assess how striatal dysfunction may contribute to the etiology of various neuropathologies.
Wetting of anisotropic sinusoidal surfaces—experimental and numerical study of directional spreading
Fischer, G.; Bigerelle, M.; Kubiak, K. J.; Mathia, T. G.; Khatir, Z.; Anselme, K.
2014-10-01
Directional wettability, i.e. the variation of wetting properties, depending on the surface orientation, can be achieved by anisotropic surface texturing. A new high-precision process can produce homogeneous sinusoidal surfaces (in particular, parallel grooves) at the microscale, with a nanoscale residual roughness five orders of magnitude smaller than the texture features. Static wetting experiments have shown that this pattern, even with a very small aspect ratio, can induce a strong variation of the contact angle, depending on the direction of the observation. A comparison with numerical simulations (using Surface Evolver software) shows good agreement and could be used to predict fluid-solid interaction and droplet behaviour on textured surfaces. Two primary mechanisms of directional spreading of water droplets on textured stainless steel surface have been identified. The first one is the mechanical barrier created by the textured surface peaks; this limits spreading in a perpendicular direction to the surface anisotropy. The second one is the capillary action inside of the sinusoidal grooves, which accelerates spreading along the grooves. Spreading has been shown to depend strongly on the history of wetting and internal drop dynamics.
Direct imaging of turbid media using long-time back-scattered photons, a numerical study
Boulanger, Joan; Liu, Fengshan [Groupe de Recherche en Ingenierie des Procedes et Systemes, Departement des Sciences Appliquees, Universite du Quebec a Chicoutimi, 555 Boulevard de l' Universite, Chicoutimi, PQ, G7H 2B1 (Canada); El Akel, Azad; Charette, Andre [Technologie de la Combustion, Institut de Technologie des Procedes Chimiques et de l' Environnement, Conseil National de Recherche du Canada, 1200 Chemin de Montreal, Ottawa, ON, K1A 0R6 (Canada)
2006-06-15
Direct imaging is a convenient way to obtain information on the interior of a semi-transparent turbid material by non-invasive probing using laser beams. The major difficulty is linked to scattering which scrambles the directional information coming from the laser beam. It is found in this paper that the long-term multiple-scattered reflected photons may provide structural information on the inside of a material, which offers an interesting alternative to using information only from un-scattered or least-scattered photons as obtained from current direct imaging set-ups for thin media. Based on some observations on a non-homogeneous three layered 1-D slab irradiated by a laser pulse, a direct probing methodology making use of the long-term back-scattered photons is illustrated to recover inclusions positions in a turbid 2-D medium. First, the numerical model is presented. Second, an extended parametrical study is conducted on 1-D homogeneous and non-homogeneous slabs with different laser pulse durations. It is found that the reflected asymptotic logarithmic slope carries information about the presence of the inclusion and that short laser pulses are not necessary since only the decaying parts of the remanent optical signature is important. Longer laser pulses allow a higher level of energy injection and signal to noise ratio. Third, those observations are used for the probing of a 2-D non-homogeneous phantom. (author)
Annenkov, Sergei; Shrira, Victor
2016-04-01
We study numerically the long-term evolution of water wave spectra without wind forcing, using three different models, aiming at understanding the role of different sets of assumptions. The first model is the classical Hasselmann kinetic equation (KE). We employ the WRT code kindly provided by G. van Vledder. Two other models are new. As the second model, we use the generalised kinetic equation (gKE), derived without the assumption of quasi-stationarity. Thus, unlike the KE, the gKE is valid in the cases when a wave spectrum is changing rapidly (e.g. at the initial stage of evolution of a narrow spectrum). However, the gKE employs the same statistical closure as the KE. The third model is based on the Zakharov integrodifferential equation for water waves and does not depend on any statistical assumptions. Since the Zakharov equation plays the role of the primitive equation of the theory of wave turbulence, we refer to this model as direct numerical simulation of spectral evolution (DNS-ZE). For initial conditions, we choose two narrow-banded spectra with the same frequency distribution (a JONSWAP spectrum with high peakedness γ = 6) and different degrees of directionality. These spectra are from the set of observations collected in a directional wave tank by Onorato et al (2009). Spectrum A is very narrow in angle (corresponding to N = 840 in the cosN directional model). Spectrum B is initially wider in angle (corresponds to N = 24). Short-term evolution of both spectra (O(102) wave periods) has been studied numerically by Xiao et al (2013) using two other approaches (broad-band modified nonlinear Schrödinger equation and direct numerical simulation based on the high-order spectral method). We use these results to verify the initial stage of our DNS-ZE simulations. However, the advantage of the DNS-ZE method is that it allows to study long-term spectral evolution (up to O(104) periods), which was previously possible only with the KE. In the short-term evolution
Directional Diffusion Regulator (DDR) for some numerical solvers of hyperbolic conservation laws
Jaisankar, S.; Sheshadri, T. S.
2013-01-01
A computational tool called "Directional Diffusion Regulator (DDR)" is proposed to bring forth real multidimensional physics into the upwind discretization in some numerical schemes of hyperbolic conservation laws. The direction based regulator when used with dimension splitting solvers, is set to moderate the excess multidimensional diffusion and hence cause genuine multidimensional upwinding like effect. The basic idea of this regulator driven method is to retain a full upwind scheme across local discontinuities, with the upwind bias decreasing smoothly to a minimum in the farthest direction. The discontinuous solutions are quantified as gradients and the regulator parameter across a typical finite volume interface or a finite difference interpolation point is formulated based on fractional local maximum gradient in any of the weak solution flow variables (say density, pressure, temperature, Mach number or even wave velocity etc.). DDR is applied to both the non-convective as well as whole unsplit dissipative flux terms of some numerical schemes, mainly of Local Lax-Friedrichs, to solve some benchmark problems describing inviscid compressible flow, shallow water dynamics and magneto-hydrodynamics. The first order solutions consistently improved depending on the extent of grid non-alignment to discontinuities, with the major influence due to regulation of non-convective diffusion. The application is also experimented on schemes such as Roe, Jameson-Schmidt-Turkel and some second order accurate methods. The consistent improvement in accuracy either at moderate or marked levels, for a variety of problems and with increasing grid size, reasonably indicate a scope for DDR as a regular tool to impart genuine multidimensional upwinding effect in a simpler framework.
Effects of Paradoxical and Self-Control Directives in Counseling.
Lopez, Frederick G.; Wambach, Cathrine A.
1982-01-01
Subjects (N=32) with recurring procrastination problems were assigned to either of two directive interview conditions (paradoxical or self-control) or to a no-interview control condition. Results indicated both directive groups exhibited generally greater improvement over time than controls and that opposing forms of direction promoted different…
Lee, David; Ge, Yi; Cha, Soyoung Stephen; Ramachandran, Narayanan; Rose, M. Franklin (Technical Monitor)
2001-01-01
Measurement of three-dimensional (3-D) three-component velocity fields is of great importance in both ground and space experiments for understanding materials processing and fluid physics. The experiments in these fields most likely inhibit the application of conventional planar probes for observing 3-D phenomena. Here, we present the investigation results of stereoscopic tracking velocimetry (STV) for measuring 3-D velocity fields, which include diagnostic technology development, experimental velocity measurement, and comparison with analytical and numerical computation. STV is advantageous in system simplicity for building compact hardware and in software efficiency for continual near-real-time monitoring. It has great freedom in illuminating and observing volumetric fields from arbitrary directions. STV is based on stereoscopic observation of particles-Seeded in a flow by CCD sensors. In the approach, part of the individual particle images that provide data points is likely to be lost or cause errors when their images overlap and crisscross each other especially under a high particle density. In order to maximize the valid recovery of data points, neural networks are implemented for these two important processes. For the step of particle overlap decomposition, the back propagation neural network is utilized because of its ability in pattern recognition with pertinent particle image feature parameters. For the step of particle tracking, the Hopfield neural network is employed to find appropriate particle tracks based on global optimization. Our investigation indicates that the neural networks are very efficient and useful for stereoscopically tracking particles. As an initial assessment of the diagnostic technology performance, laminar water jets with and without pulsation are measured. The jet tip velocity profiles are in good agreement with analytical predictions. Finally, for testing in material processing applications, a simple directional solidification
Numerical prediction of energy consumption in buildings with controlled interior temperature
Jarošová, P.; Št’astník, S. [Brno University of Technology, Faculty of Civil Engineering, 602 00 Brno, Veveří 95, Czech Republic, e-mail jarosova.p@fce.vutbr.cz, stastnik.s@fce.vutbr.cz (Czech Republic)
2015-03-10
New European directives bring strong requirement to the energy consumption of building objects, supporting the renewable energy sources. Whereas in the case of family and similar houses this can lead up to absurd consequences, for building objects with controlled interior temperature the optimization of energy demand is really needed. The paper demonstrates the system approach to the modelling of thermal insulation and accumulation abilities of such objetcs, incorporating the significant influence of additional physical processes, as surface heat radiation and moisture-driven deterioration of insulation layers. An illustrative example shows the numerical prediction of energy consumption of a freezing plant in one Central European climatic year.
Ronald E. Coleman
1977-01-01
SEMTAP (Serpentine End Match TApe Program) is an easy and inexpensive method of programing a numerically controlled router for the manufacture of SEM (Serpentine End Matching) joints. The SEMTAP computer program allows the user to issue commands that will accurately direct a numerically controlled router along any SEM path. The user need not be a computer programer to...
E. Rajabi
2014-01-01
Full Text Available In this research a direct numerical simulation (DNS of turbulent flow is performed in a geometrically standard case like plane channel flow. Pseudo spectral (PS method is used due to geometry specifications and very high accuracy achieved despite relatively few grid points. A variable time-stepping algorithm is proposed which may reduce requirement of computational cost in simulation of such wall-bounded flow. Channel flow analysis is performed with both constant and varied time-step for 128 × 65×128 grid points. The time advancement is carried out by implicit third-order backward differentiation scheme for linear terms and explicit forward Euler for nonlinear convection term. PS method is used in Cartesian coordinates with Chebychev polynomial expansion in normal direction for one non-periodic boundary condition. Also Fourier series is employed in stream-wise and span-wise directions for two periodic boundary conditions. The friction Reynolds number is about Reτ=175 based on a friction velocity and channel half width. Standard common rotational form was chosen for discritization of nonlinear convective term of Navier-Stocks equation. The comparison is made between turbulent quantities such as the turbulent statistics, Reynolds stress, wall shear velocity, standard deviation of (u and total normalized energy of instantaneous velocities in both time-discretization methods. The results show that if final decision rests on economics, the proposed variable time-stepping algorithm will be proper choice which satisfies the accuracy and reduces the computational cost.
Manufacturing Research: Self-Directed Control
1991-01-01
Knudsen Cell over its entire operating range. A topic of continuing interest in PID controllers is the automatic tuning of the PID parameters that...PID map for the Knudsen Cells was explored using commercial automatic tuning PID controllers and software based tuning algorithms. For a complete state...decisions are made by a Hewlett-Packard HP 1000 computer. The HP 1000 sends its control signals to Barber-Colman PID controllers . We took advantage of
A parallel direct numerical simulation of dust particles in a turbulent flow
Nguyen, H. V.; Yokota, R.; Stenchikov, G.; Kocurek, G.
2012-04-01
Due to their effects on radiation transport, aerosols play an important role in the global climate. Mineral dust aerosol is a predominant natural aerosol in the desert and semi-desert regions of the Middle East and North Africa (MENA). The Arabian Peninsula is one of the three predominant source regions on the planet "exporting" dust to almost the entire world. Mineral dust aerosols make up about 50% of the tropospheric aerosol mass and therefore produces a significant impact on the Earth's climate and the atmospheric environment, especially in the MENA region that is characterized by frequent dust storms and large aerosol generation. Understanding the mechanisms of dust emission, transport and deposition is therefore essential for correctly representing dust in numerical climate prediction. In this study we present results of numerical simulations of dust particles in a turbulent flow to study the interaction between dust and the atmosphere. Homogenous and passive dust particles in the boundary layers are entrained and advected under the influence of a turbulent flow. Currently no interactions between particles are included. Turbulence is resolved through direct numerical simulation using a parallel incompressible Navier-Stokes flow solver. Model output provides information on particle trajectories, turbulent transport of dust and effects of gravity on dust motion, which will be used to compare with the wind tunnel experiments at University of Texas at Austin. Results of testing of parallel efficiency and scalability is provided. Future versions of the model will include air-particle momentum exchanges, varying particle sizes and saltation effect. The results will be used for interpreting wind tunnel and field experiments and for improvement of dust generation parameterizations in meteorological models.
Investigation of the Dynamic Contact Angle Using a Direct Numerical Simulation Method.
Zhu, Guangpu; Yao, Jun; Zhang, Lei; Sun, Hai; Li, Aifen; Shams, Bilal
2016-11-15
A large amount of residual oil, which exists as isolated oil slugs, remains trapped in reservoirs after water flooding. Numerous numerical studies are performed to investigate the fundamental flow mechanism of oil slugs to improve flooding efficiency. Dynamic contact angle models are usually introduced to simulate an accurate contact angle and meniscus displacement of oil slugs under a high capillary number. Nevertheless, in the oil slug flow simulation process, it is unnecessary to introduce the dynamic contact angle model because of a negligible change in the meniscus displacement after using the dynamic contact angle model when the capillary number is small. Therefore, a critical capillary number should be introduced to judge whether the dynamic contact model should be incorporated into simulations. In this study, a direct numerical simulation method is employed to simulate the oil slug flow in a capillary tube at the pore scale. The position of the interface between water and the oil slug is determined using the phase-field method. The capacity and accuracy of the model are validated using a classical benchmark: a dynamic capillary filling process. Then, different dynamic contact angle models and the factors that affect the dynamic contact angle are analyzed. The meniscus displacements of oil slugs with a dynamic contact angle and a static contact angle (SCA) are obtained during simulations, and the relative error between them is calculated automatically. The relative error limit has been defined to be 5%, beyond which the dynamic contact angle model needs to be incorporated into the simulation to approach the realistic displacement. Thus, the desired critical capillary number can be determined. A three-dimensional universal chart of critical capillary number, which functions as static contact angle and viscosity ratio, is given to provide a guideline for oil slug simulation. Also, a fitting formula is presented for ease of use.
Influence of lubrication forces in direct numerical simulations of particle-laden flows
Maitri, Rohit; Peters, Frank; Padding, Johan; Kuipers, Hans
2016-11-01
Accurate numerical representation of particle-laden flows is important for fundamental understanding and optimizing the complex processes such as proppant transport in fracking. Liquid-solid flows are fundamentally different from gas-solid flows because of lower density ratios (solid to fluid) and non-negligible lubrication forces. In this interface resolved model, fluid-solid coupling is achieved by incorporating the no-slip boundary condition implicitly at particle's surfaces by means of an efficient second order ghost-cell immersed boundary method. A fixed Eulerian grid is used for solving the Navier-Stokes equations and the particle-particle interactions are implemented using the soft sphere collision and sub-grid scale lubrication model. Due to the range of influence of lubrication force on a smaller scale than the grid size, it is important to implement the lubrication model accurately. In this work, different implementations of the lubrication model on particle dynamics are studied for various flow conditions. The effect of a particle surface roughness on lubrication force and the particle transport is also investigated. This study is aimed at developing a validated methodology to incorporate lubrication models in direct numerical simulation of particle laden flows. This research is supported from Grant 13CSER014 of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO).
Direct numerical simulation of heat transfer in a spatially developing turbulent boundary layer
Li, Dong; Luo, Kun; Fan, Jianren
2016-10-01
Direct numerical simulation has been performed to investigate heat transfer in a zero-pressure-gradient spatially developing turbulent boundary layer with realistic thermal inflow boundary conditions. The temperature is considered as a passive scalar and the molecular Prandtl number is set to be 0.71. The turbulence statistics for both the velocity and temperature fields show good agreement with previous numerical and experimental data in the literature. The present study provides a valuable database for the spatially developing turbulent thermal boundary layer over a wide range of Reynolds numbers from Reθ = 1100 to 1940. The simulation results indicate that both the peak value and peak location of the streamwise velocity fluctuation grow slightly with increasing Reynolds number, same as those of the temperature fluctuation. The relationship between the streamwise velocity and temperature fluctuations has been examined and a strong correlation is observed in the vicinity of the wall. With increasing distance from the wall, however, the degree of correlation significantly decreases. In addition, the difference between the turbulent velocity and temperature fields is also analysed by investigating the mechanisms of heat and momentum transport in boundary layer flow.
Experimentation and direct numerical simulation of self-similar convergent detonation wave
Bozier O.
2011-01-01
Full Text Available The propagation of self similar convergent detonation wave in TATB-based explosive composition was studied both experimentally and numerically. The device constists in a 50 mm cylinder of TATB surrounded by an HMX tube. The detonation in HMX overdrives the detonation in TATB which adapts to the propagation velocity with a convergent front at centerline. We measured a curvature of κ = −21.2 m−1 for propagation velocity of 8750 m/s, which extends the knowledge of the (Dn,κ law. A wide ranged EOS/reaction rate model inspired from previous work of Wescott et al. was calibrated to reproduce both the run-to-detonation distance and the newly extended (Dn,κ law for the 1D sligthly curved detonation theory. 2D Direct Numerical Simulations (DNS were made on fine resolved mesh grid for the experimental configuration and for various driver velocities. The simulation reproduces the experimental data both qualitatively (overall detonation structure and quantitatively (κ = −25.4 m−1.
Ruban, V. P., E-mail: ruban@itp.ac.ru [Russian Academy of Sciences, Landau Institute for Theoretical Physics (Russian Federation)
2015-05-15
The nonlinear dynamics of an obliquely oriented wave packet on a sea surface is analyzed analytically and numerically for various initial parameters of the packet in relation to the problem of the so-called rogue waves. Within the Gaussian variational ansatz applied to the corresponding (1+2)-dimensional hyperbolic nonlinear Schrödinger equation (NLSE), a simplified Lagrangian system of differential equations is derived that describes the evolution of the coefficients of the real and imaginary quadratic forms appearing in the Gaussian. This model provides a semi-quantitative description of the process of nonlinear spatiotemporal focusing, which is one of the most probable mechanisms of rogue wave formation in random wave fields. The system of equations is integrated in quadratures, which allows one to better understand the qualitative differences between linear and nonlinear focusing regimes of a wave packet. Predictions of the Gaussian model are compared with the results of direct numerical simulation of fully nonlinear long-crested waves.
Chan, Leon; MacDonald, Michael; Chung, Daniel; Hutchins, Nicholas; Ooi, Andrew
2014-11-01
Direct Numerical Simulations (DNS) are conducted at low to medium Reynolds numbers for a turbulent pipe flow with roughness. The roughness, which is comprised of three-dimensional sinusoidal elements, causes a downward shift in the mean velocity profile known as the Hama roughness function ΔU+ . In engineering applications, ΔU+ (which is related to the coefficient of drag Cf) is an important parameter as it is used to quantify the increase in drag and the decrease in efficiency. To have a better understanding of roughness and how it affects the flow, a range of numerical studies were conducted where the roughness height h+, wavelength λ+ and Reynolds number of the flow are varied. For the range of cases simulated, it is found that the roughness average height ka+ (which is proportional to h+) is strongly correlated to the roughness function ΔU+ whereas λ+ has a weaker influence on the flow. Results from simulations of more complicated surfaces comprised of two superimposed modes of different wavelength are also presented. Analysis of the turbulence statistics convincingly supports Townsend's outer-layer hypothesis for all of the cases simulated.
Direct numerical simulation of a small Atwood number Rayleigh-Taylor instability-driven mixing layer
Mueschke, Nicholas; Schilling, Oleg; Andrews, Malcolm
2005-11-01
A direct numerical simulation (DNS) of a small Atwood number Rayleigh-Taylor mixing layer was performed using a spectral/compact-difference scheme. The initial conditions were parameterized from interfacial and velocity perturbations measured from water channel experiments at Texas A&M University. Turbulence and mixing statistics, as well as energy spectra, obtained from experimental measurements are compared with those from the DNS to validate the use of experimental measurements as computational initial conditions. The experimental and numerical data are used to examine the transitional dynamics of the mixing layer. The DNS results indicate that initial conditions including both interfacial and velocity perturbations are required to accurately simulate the flow. This research was sponsored by the U.S. DOE National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grant #DE-FG03- 02NA00060. This work was also performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W- 7405-Eng-48. UCRL-ABS-214352.
Huang, Junji; Duan, Lian; Choudhari, Meelan M.
2017-01-01
The acoustic radiation from the turbulent boundary layer on the nozzle wall of a Mach 6 Ludwieg Tube is simulated using Direct Numerical Simulations (DNS), with the flow conditions falling within the operational range of the Mach 6 Hypersonic Ludwieg Tube, Braunschweig (HLB). The mean and turbulence statistics of the nozzle-wall boundary layer show good agreement with those predicted by Pate's correlation and Reynolds Averaged Navier-Stokes (RANS) computations. The rms pressure fluctuation P'(rms)/T(w) plateaus in the freestream core of the nozzle. The intensity of the freestream noise within the nozzle is approximately 20% higher than that radiated from a single at pate with a similar freestream Mach number, potentially because of the contributions to the acoustic radiation from multiple azimuthal segments of the nozzle wall.
Direct numerical simulation of convection and dissolution at a vertical ice-seawater interface
Gayen, Bishakhdatta; Griffiths, Ross W.; Kerr, Ross C.
2015-11-01
Direct numerical simulations are performed to investigate the convection generated when a wall of ice dissolves into seawater under Antarctic ocean conditions. The ambient water temperatures are kept between - 1° C and 6° C and salinities around 35 ppm, where diffusion of salt to the ice-water interface depresses the freezing point and further enhances heat diffusion to the ice. We use three coupled interface equations, along with the Boussinesq approximation and the equation of state for seawater, to solve for interface temperature, salinity and melt rate. Fluxes of both heat and salt to the interface play a significant role in governing the rate of dissolution of ice. At the presently achievable Grashof numbers turbulence is equally produced from both buoyancy and velocity shear, which indicates the importance of shear production at geophysical scales.
Direct Numerical Simulation and Theories of Wall Turbulence with a Range of Pressure Gradients
Coleman, G. N.; Garbaruk, A.; Spalart, P. R.
2014-01-01
A new Direct Numerical Simulation (DNS) of Couette-Poiseuille flow at a higher Reynolds number is presented and compared with DNS of other wall-bounded flows. It is analyzed in terms of testing semi-theoretical proposals for universal behavior of the velocity, mixing length, or eddy viscosity in pressure gradients, and in terms of assessing the accuracy of two turbulence models. These models are used in two modes, the traditional one with only a dependence on the wall-normal coordinate y, and a newer one in which a lateral dependence on z is added. For pure Couette flow and the Couette-Poiseuille case considered here, this z-dependence allows some models to generate steady streamwise vortices, which generally improves the agreement with DNS and experiment. On the other hand, it complicates the comparison between DNS and models.
Direct numerical simulation of a heat removal configuration for fusion blankets
Kakarantzas, S.C.; Grecos, A.P.; Vlachos, N.S. [University of Thessaly, Volos (Greece). Department of Mechanical and Industrial Engineering; Sarris, I.E.; Knaepen, B.; Carati, D. [Universite Libre de Bruxelles, Brussels (Belgium). Physique Statistique et Plasmas
2007-11-15
A series of direct numerical simulations (DNS) are performed to study the natural convection heat transfer between concentric cylinders at several Rayleigh and Hartmann numbers. The buoyant flow is driven by the temperature difference between the inner and the outer walls, with the inner wall being at lower temperature, while an external transverse magnetic field is imposed. Both laminar and turbulent flows are observed depending on the magnitude of the Rayleigh and Hartmann numbers. The resulting flow structures of the cases studied were both laminar and turbulent. The results show the 3D nature of turbulence and the tendency of the magnetic field to form narrow Hartmann layers, 3D jets and wakes at specific azimuthal angles. Some particular features of the turbulent regime as well as the heat transfer are also investigated. The magnetic field effect on the convective heat transfer is assessed via the Nusselt number showing that conduction dominates as the Hartmann number increases. (author)
Xingtuan Yang
2015-01-01
Full Text Available This study investigates the anisotropic characteristics of turbulent energy dissipation rate in a rotating jet flow via direct numerical simulation. The turbulent energy dissipation tensor, including its eigenvalues in the swirling flows with different rotating velocities, is analyzed to investigate the anisotropic characteristics of turbulence and dissipation. In addition, the probability density function of the eigenvalues of turbulence dissipation tensor is presented. The isotropic subrange of PDF always exists in swirling flows relevant to small-scale vortex structure. Thus, with remarkable large-scale vortex breakdown, the isotropic subrange of PDF is reduced in strongly swirling flows, and anisotropic energy dissipation is proven to exist in the core region of the vortex breakdown. More specifically, strong anisotropic turbulence dissipation occurs concentratively in the vortex breakdown region, whereas nearly isotropic turbulence dissipation occurs dispersively in the peripheral region of the strong swirling flows.
Direct numerical simulations (DNS) of particles in spatially varying electric fields
Amah, E.; Janjua, M.; Fischer, I. S.; Singh, P.
2013-11-01
We have developed a direct numerical simulation (DNS) scheme to simulate the motion of dielectric particles suspended in a dielectric liquid in nonuniform electric fields. The motion of particles is tracked using a distributed Lagrange multiplier method (DLM) and the electric forces acting on the particles are calculated by an efficient scheme in which the Maxwell stress tensor (MST) is integrated over the surfaces of the particles to obtain the force. The code is validated by performing a convergence study and by comparing the particle trajectories in a dielectrophoretic cage with those given by the point-dipole method. We also show that the trajectories of the two or more interacting particles given by the MST method can be different from those obtained using the point-dipole method since the latter does not consider particle-particle interactions.
Wacks, Daniel H.; Chakraborty, Nilanjan; Klein, Markus; Arias, Paul G.; Im, Hong G.
2016-12-01
The distributions of flow topologies within the flames representing the corrugated flamelets, thin reaction zones, and broken reaction zone regimes of premixed turbulent combustion are investigated using direct numerical simulation data of statistically planar turbulent H2-air flames with an equivalence ratio ϕ =0.7 . It was found that the diminishing influence of dilatation rate with increasing Karlovitz number has significant influences on the statistical behaviors of the first, second, and third invariants (i.e., P ,Q , and R ) of the velocity gradient tensor. These differences are reflected in the distributions of the flow topologies within the flames considered in this analysis. This has important consequences for those topologies that make dominant contributions to the scalar-turbulence interaction and vortex-stretching terms in the scalar dissipation rate and enstrophy transport equations, respectively. Detailed physical explanations are provided for the observed regime dependences of the flow topologies and their implications on the scalar dissipation rate and enstrophy transport.
Focke, C; Kuschel, M; Sommerfeld, M
2012-01-01
Binary droplet collisions are of importance in a variety of practical applications comprising dispersed two-phase flows. The background of our research is the prediction of properties of particulate products formed in spray processes. To gain a more thorough understanding of the elementary sub-processes inside a spray, experiments and direct numerical simulations of binary droplet collisions are used. The aim of these investigations is to develop semi-analytical descriptions for the outcome of droplet collisions. Such collision models can then be employed as closure terms for scale-reduced simulations. In the present work we focus on the collision of droplets of different liquids. These kinds of collisions take place in every spray drying process when droplets with different solids contents collide in recirculation zones. A new experimental method has been developed allowing for high spatial and time resolved recordings via Laser-induced fluorescence. The results obtained with the proposed method will be comp...
Direct Numerical Simulation of Gas-Solid Two-Phase Mixing Layer
Wenchun LI; Guilin HU; Zhe ZHOU; Jianren FAN; Kefa CEN
2005-01-01
In this paper, the spatially evolving of the higher Reynolds numbers gas-solid mixing layer under compressible conditions was investigated by a new direct numerical simulation technology. A high-resolution solver was performed for the gas-phase flow-field, particles with different Stokes numbers were traced by the Lagrangian approach based on one-way coupling. The processes of the vortex rolling up and pairing in the two-dimensional mixing layer were captured precisely. The large-scale structures developed from the initial inflow are characterized by the counter-rotating vortices. The mean velocity and the fluctuation intensities profiles agree well with the experimental data. Particles with smaller Stokes numbers accumulate at the vortex centers due to the smaller aerodynamic response time; particles with moderate Stokes numbers tend to orbit around individual streamwise vortices and in the periphery of paring vortices; particles with larger Stokes numbers disperse less evenly, showing a concentration distribution in the flow field.
无
2000-01-01
Petroleum science has made remarkable progress in organic geochemistry and in the research into the theories of petroleum origin,its transport and accumulation.In estimating the oil-gas resources of a basin.the knowledge of its evolutionary history and especially the numerical computation of fluid flow and.the history of its changes under heat is vital.The mathematical model can be described as a coupled system of nonlinear partial differentical equations with initial-boundary value problems.This thesis,from actual conditions such as the effect of fluid compressibility and the characteristic of largescal science-engineering computalion,puts forward a kind of characteristic finite difference alternating-direction scheme.Optimal order estimates in L2 norm are derived for the error in the approximate solutions.
First principle basis of the direct numerical simulation for turbulence of inert and reactive gases
Tsuge, S
1997-01-01
An open question of whether phenomenological fluid equations to be used for direct numerical simulation of turbulence are warranted on `first principles' is addressed, and the problem is posed using Klimontovich microscopic density to replace the Boltzmann function of the classical statistical mechanics. For inert monatomic gases, it is shown that all the gasdynamic equations, namely, the three conservation equations plus the Navier-Stokes stress law and the Fourier heat conduction law are retrieved as governing instantaneous quantities, without having recourse to any concepts of averaging or statistical equilibrium. For reactive gases, however, the Arrhenius reaction rate law written in terms of the fluctuating temperature is not justified, reflecting the fact that this rate law hinges crucially on these concepts.
Direct numerical simulation of laminar-turbulent flow over a flat plate at hypersonic flow speeds
Egorov, I. V.; Novikov, A. V.
2016-06-01
A method for direct numerical simulation of a laminar-turbulent flow around bodies at hypersonic flow speeds is proposed. The simulation is performed by solving the full three-dimensional unsteady Navier-Stokes equations. The method of calculation is oriented to application of supercomputers and is based on implicit monotonic approximation schemes and a modified Newton-Raphson method for solving nonlinear difference equations. By this method, the development of three-dimensional perturbations in the boundary layer over a flat plate and in a near-wall flow in a compression corner is studied at the Mach numbers of the free-stream of M = 5.37. In addition to pulsation characteristic, distributions of the mean coefficients of the viscous flow in the transient section of the streamlined surface are obtained, which enables one to determine the beginning of the laminar-turbulent transition and estimate the characteristics of the turbulent flow in the boundary layer.
Energy spectrum in high-resolution direct numerical simulations of turbulence
Ishihara, Takashi; Morishita, Koji; Yokokawa, Mitsuo; Uno, Atsuya; Kaneda, Yukio
2016-12-01
A study is made about the energy spectrum E (k ) of turbulence on the basis of high-resolution direct numerical simulations (DNSs) of forced incompressible turbulence in a periodic box using a Fourier spectral method with the number of grid points and the Taylor scale Reynolds number Rλ up to 12 2883 and approximately 2300, respectively. The DNS data show that there is a wave-number range (approximately 5 ×10-3 2 /3k-5 /3] =c (kL ) m , where is the mean energy dissipation rate per unit mass; L is the integral length scale; and m ≈-0.12 . The coefficient c is independent of k , but has a Rλ dependence, such as c =C Rλζ , where C ≈0.9 and ζ ≈0.14 .
Wacks, Daniel H.
2016-12-02
The distributions of flow topologies within the flames representing the corrugated flamelets, thin reaction zones, and broken reaction zone regimes of premixed turbulent combustion are investigated using direct numerical simulation data of statistically planar turbulent H-2-air flames with an equivalence ratio phi = 0.7. It was found that the diminishing influence of dilatation rate with increasing Karlovitz number has significant influences on the statistical behaviors of the first, second, and third invariants (i.e., P, Q, and R) of the velocity gradient tensor. These differences are reflected in the distributions of the flow topologies within the flames considered in this analysis. This has important consequences for those topologies that make dominant contributions to the scalar-turbulence interaction and vortex-stretching terms in the scalar dissipation rate and enstrophy transport equations, respectively. Detailed physical explanations are provided for the observed regime dependences of the flow topologies and their implications on the scalar dissipation rate and enstrophy transport.
Direct numerical simulations of non-premixed ethylene-air flames: Local flame extinction criterion
Lecoustre, Vivien R.
2014-11-01
Direct Numerical Simulations (DNS) of ethylene/air diffusion flame extinctions in decaying two-dimensional turbulence were performed. A Damköhler-number-based flame extinction criterion as provided by classical large activation energy asymptotic (AEA) theory is assessed for its validity in predicting flame extinction and compared to one based on Chemical Explosive Mode Analysis (CEMA) of the detailed chemistry. The DNS code solves compressible flow conservation equations using high order finite difference and explicit time integration schemes. The ethylene/air chemistry is simulated with a reduced mechanism that is generated based on the directed relation graph (DRG) based methods along with stiffness removal. The numerical configuration is an ethylene fuel strip embedded in ambient air and exposed to a prescribed decaying turbulent flow field. The emphasis of this study is on the several flame extinction events observed in contrived parametric simulations. A modified viscosity and changing pressure (MVCP) scheme was adopted in order to artificially manipulate the probability of flame extinction. Using MVCP, pressure was changed from the baseline case of 1 atm to 0.1 and 10 atm. In the high pressure MVCP case, the simulated flame is extinction-free, whereas in the low pressure MVCP case, the simulated flame features frequent extinction events and is close to global extinction. Results show that, despite its relative simplicity and provided that the global flame activation temperature is correctly calibrated, the AEA-based flame extinction criterion can accurately predict the simulated flame extinction events. It is also found that the AEA-based criterion provides predictions of flame extinction that are consistent with those provided by a CEMA-based criterion. This study supports the validity of a simple Damköhler-number-based criterion to predict flame extinction in engineering-level CFD models. © 2014 The Combustion Institute.
Khaled N. Faris
2015-12-01
Full Text Available According to various advantages of linear induction motor (LIM, such as high starting thrust force, high speed operation and reduction of mechanical losses, more applications have utilized this type of motors. Direct Thrust Control (DTC technique is considered as one of the most efficient techniques that can be used for LIM. DTC is preferable to give a fast and good dynamic thrust response. So, to improve the accuracy and robustness of contouring control for CNC machine tools, linear induction motors with a direct thrust control technique are introduced for driving these machines. An industry standard motion control system is applied for reducing the tracking error and improving the desired accuracy. Different loading conditions are simulated to validate the reliability and robustness of the introduced system to match the application field. The proposed system is simulated using the MATLAB/SIMULINK Package; simulation results validated both tracking accuracy and robustness of the proposed motion control system for contouring control for a CNC (Computer Numerical Control milling machine.
Experimental and Numerical Evaluation of Direct Tension Test for Cylindrical Concrete Specimens
Jung J. Kim
2014-01-01
Full Text Available Concrete cracking strength can be defined as the tensile strength of concrete subjected to pure tension stress. However, as it is difficult to apply direct tension load to concrete specimens, concrete cracking is usually quantified by the modulus of rupture for flexural members. In this study, a new direct tension test setup for cylindrical specimens (101.6 mm in diameter and 203.2 mm in height similar to those used in compression test is developed. Double steel plates are used to obtain uniform stress distributions. Finite element analysis for the proposed test setup is conducted. The uniformity of the stress distribution along the cylindrical specimen is examined and compared with rectangular cross section. Fuzzy image pattern recognition method is used to assess stress uniformity along the specimen. Moreover, the probability of cracking at different locations along the specimen is evaluated using probabilistic finite element analysis. The experimental and numerical results of the cracking location showed that gravity effect on fresh concrete during setting time might affect the distribution of concrete cracking strength along the height of the structural elements.
Jiang Lei
2015-01-01
Full Text Available Direct numerical simulation (DNS of a round jet in crossflow based on lattice Boltzmann method (LBM is carried out on multi-GPU cluster. Data parallel SIMT (single instruction multiple thread characteristic of GPU matches the parallelism of LBM well, which leads to the high efficiency of GPU on the LBM solver. With present GPU settings (6 Nvidia Tesla K20M, the present DNS simulation can be completed in several hours. A grid system of 1.5 × 108 is adopted and largest jet Reynolds number reaches 3000. The jet-to-free-stream velocity ratio is set as 3.3. The jet is orthogonal to the mainstream flow direction. The validated code shows good agreement with experiments. Vortical structures of CRVP, shear-layer vortices and horseshoe vortices, are presented and analyzed based on velocity fields and vorticity distributions. Turbulent statistical quantities of Reynolds stress are also displayed. Coherent structures are revealed in a very fine resolution based on the second invariant of the velocity gradients.
Direct numerical simulations of type Ia supernovae flames I: The landau-darrieus instability
Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.
2003-11-24
Planar flames are intrinsically unstable in open domains due to the thermal expansion across the burning front--the Landau-Darrieus instability. This instability leads to wrinkling and growth of the flame surface, and corresponding acceleration of the flame, until it is stabilized by cusp formation. We look at the Landau-Darrieus in stability for C/O thermonuclear flames at conditions relevant to the late stages of a Type Ia supernova explosion. Two-dimensional direct numerical simulations of both single-mode and multi-mode perturbations using a low Mach number hydrodynamics code are presented. We show the effect of the instability on the flame speed as a function of both the density and domain size, demonstrate the existence of the small scale cutoff to the growth of the instability, and look for the proposed breakdown of the non-linear stabilization at low densities. The effects of curvature on the flame as quantified through measurements of the growth rate and computation of the corresponding Markstein number. While accelerations of a few percent are observed, they are too small to have any direct outcome on the supernova explosion.
Direct numerical simulation of hydrogen turbulent lifted jet flame in a vitiated coflow
WANG ZhiHua; FAN JianRen; ZHOU JunHu; CEN KeFa
2007-01-01
The direct numerical simulation (DNS) method with 16 steps detailed chemical kinetics was applied to a lifted turbulent jet flame with H2/N2 fuel issuing into a wide hot coflow of lean combustion products, at temperature of 1045 K and low oxygen concentrations. The chemical reactions were handled by the library function of CHEMKIN which was called by the main program in every time step. Parallel computational technology based on message passing interface method (MPI) was used in the simulation. All the cases were run by 12 CPUs on a high performance computer system. Faver-averaged DNS results were obtained by long time averaging the transient profile and compared with the experimental data. The roll-up and evolution of the vortices in jet flame were well captured. The vortices in the same rotating direction attracted each other and those in different rotating directions repulsed each other. Through complex interactions between vortices, the original symmetrical vortex structure could be converted into nonsymmetrical and more complex structures by combination, distortion and splitting of the vortices. The transient profiles of H, OH and H2O mass fraction at 5.76 ms showed the flame structure in jet flame, especially the autoignition regions clearly. The lift-off height was about 9 d-11 d, in agreement with the experimental observation. At the corner point of the flame sheet indicated by OH and H profiles, the combustion was always enhanced by the flame curvature and extended resident time. The profiles of turbulence intensities show that the flames were diffused from the original two outside flame sheets into the core. The DNS results can be considered in developing more accurate and more universal turbulence models.
Classical oscillators in the control of quantum tunneling: Numerical experiments
Kar, Susmita; Bhattacharyya, S. P.
2016-06-01
The dynamics of a classical anharmonic oscillator is exploited to control the tunneling dynamics of a quantum particle to which the classical oscillator is coupled. The mixed quantum classical problem is investigated at a mean-field like level. The anharmonic strength (λ) , particle mass (Mc) and harmonic stiffness (ωc) of the classical controller are explored as possible control parameters for the tunneling dynamics. The strength, the type of coupling between the quantum system and classical controller and the effective frequency of the controller emerge as crucial factors in shaping the nature and extent of the control. A whole spectrum of possibilities starting from enhancement, suppression to complete destruction of tunneling emerge depending on values assigned to the control parameters, the type of coupling and the control configuration used. When classical controller is replaced by a quantum controller, the control landscape becomes much simpler.
Direct Numerical Simulation of a Turbulent Reactive Plume on a Parallel Computer
Cook, Andrew W.; Riley, James J.
1996-12-01
A computational algorithm is described for direct numerical simulation (DNS) of a reactive plume in spatially evolving grid turbulence. The algorithm uses sixth-order compact differencing in conjunction with a fifth-order compact boundary scheme which has been developed and found to be stable. A compact filtering method is discussed as a means of stabilizing calculations where the viscous/diffusive terms are differenced in their conservative form. This approach serves as an alternative to nonconservative differencing, previously advocated as a means of damping the 2δ waves. In numerically solving the low Mach number equations the time derivative of the density field in the pressure Poisson equation was found to be the most destabilizing part of the calculation. Even-ordered finite difference approximations to this derivative were found to be more stable (allow for larger density gradients) than odd-ordered approximations. Turbulence at the inlet boundary is generated by scanning through an existing three-dimensional field of fully developed turbulence. In scanning through the inlet field, it was found that a high order interpolation, e.g., cubic-spline interpolation, is necessary in order to provide continuous velocity derivatives. Regarding pressure, a Neumann inlet condition combined with a Dirichlet outlet condition was found to work well. The chemistry follows the single-step, irreversible, global reaction: Fuel + ( r) Oxidizer → (1 + r)Product + Heat, with parameters chosen to match experimental data as far as allowed by resolution constraints. Simulation results are presented for four different cases in order to examine the effects of heat release, Damköhler number, and Arrhenius kinetics on the flow physics. Statistical data from the DNS are compared to theory and wind tunnel data and found in reasonable agreement with regard to growth of turbulent length scales, decay of turbulent kinetic energy, decay of centerline scalar concentration, decrease in
Numerical simulations of blast-impact problems using the direct simulation Monte Carlo method
Sharma, Anupam
There is an increasing need to design protective structures that can withstand or mitigate the impulsive loading due to the impact of a blast or a shock wave. A preliminary step in designing such structures is the prediction of the pressure loading on the structure. This is called the "load definition." This thesis is focused on a numerical approach to predict the load definition on arbitrary geometries for a given strength of the incident blast/shock wave. A particle approach, namely the Direct Simulation Monte Carlo (DSMC) method, is used as the numerical model. A three-dimensional, time-accurate DSMC flow solver is developed as a part of this study. Embedded surfaces, modeled as triangulations, are used to represent arbitrary-shaped structures. Several techniques to improve the computational efficiency of the algorithm of particle-structure interaction are presented. The code is designed using the Object Oriented Programming (OOP) paradigm. Domain decomposition with message passing is used to solve large problems in parallel. The solver is extensively validated against analytical results and against experiments. Two kinds of geometries, a box and an I-shaped beam are investigated for blast impact. These simulations are performed in both two- and three-dimensions. A major portion of the thesis is dedicated to studying the uncoupled fluid dynamics problem where the structure is assumed to remain stationary and intact during the simulation. A coupled, fluid-structure dynamics problem is solved in one spatial dimension using a simple, spring-mass-damper system to model the dynamics of the structure. A parametric study, by varying the mass, spring constant, and the damping coefficient, to study their effect on the loading and the displacement of the structure is also performed. Finally, the parallel performance of the solver is reported for three sample-size problems on two Beowulf clusters.
Terascale direct numerical simulations of turbulent combustion using S3D.
Sankaran, Ramanan; Mellor-Crummy, J.; DeVries, M.; Yoo, Chun Sang; Ma, K. L.; Podhorski, N.; Liao, W. K.; Klasky, S.; de Supinski, B.; Choudhary, A.; Hawkes, Evatt R.; Chen, Jacqueline H.; Shende, Sameer
2008-08-01
Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air co-flow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory
Terascale direct numerical simulations of turbulent combustion using S3D
Chen, J. H.; Choudhary, A.; de Supinski, B.; DeVries, M.; Hawkes, E. R.; Klasky, S.; Liao, W. K.; Ma, K. L.; Mellor-Crummey, J.; Podhorszki, N.; Sankaran, R.; Shende, S.; Yoo, C. S.
2009-01-01
Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air coflow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory
Directions for rf-controlled intelligent microvalve
Enderling, Stefan; Varadan, Vijay K.; Abbott, Derek
2001-03-01
In this paper, we consider the novel concept of a Radio Frequency (RF) controllable microvalve for different medical applications. Wireless communication via a Surface Acoustic Wave Identification-mark (SAW ID-tag) is used to control, drive and locate the microvalve inside the human body. The energy required for these functions is provided by RF pulses, which are transmitted to the valve and back by a reader/transmitter system outside of the body. These RF bursts are converted into Surface Acoustic Waves (SAWs), which propagate along the piezoelectric actuator material of the microvalve. These waves cause deflections, which are employed to open and close the microvalve. We identified five important areas of application of the microvalve in biomedicine: 1) fertility control; 2) artificial venous valves; 3) flow cytometry; 4) drug delivery and 5) DNA mapping.
Optimal control novel directions and applications
Aronna, Maria; Kalise, Dante
2017-01-01
Focusing on applications to science and engineering, this book presents the results of the ITN-FP7 SADCO network’s innovative research in optimization and control in the following interconnected topics: optimality conditions in optimal control, dynamic programming approaches to optimal feedback synthesis and reachability analysis, and computational developments in model predictive control. The novelty of the book resides in the fact that it has been developed by early career researchers, providing a good balance between clarity and scientific rigor. Each chapter features an introduction addressed to PhD students and some original contributions aimed at specialist researchers. Requiring only a graduate mathematical background, the book is self-contained. It will be of particular interest to graduate and advanced undergraduate students, industrial practitioners and to senior scientists wishing to update their knowledge.
Madsen, U.; Aubertin, G.; Breum, N. O.;
Numerical modelling of direct capture efficiency of a local exhaust is used to compare the tracer gas technique of a proposed CEN standard against a more consistent approach based on an imaginary control box. It is concluded that the tracer gas technique is useful for field applications....
Direct Load Control by AC Frequency Modulation
Douglass, Philip James; You, Shi
2012-01-01
Fine-grained under frequency load shedding called “demand as a frequency controlled reserve“ (DFCR) has been shown to be a promising method of providingfrequency regulation service from distributed loads [1]. Micro-grids with a large portion of intermittent renewable generation will benefit great...
Numerical modeling of a Jet Ignition Direct Injection (JIDI) LPG engine
albert boretti
2016-01-01
The paper presents indirectly validated simulations of the operation of a LPG engine fitted with Direct Injection (DI) and Jet Ignition (JI). It is demonstrated that the engine may have diesel like efficiencies and load control by quantity of fuel injected. As the liquid propane quickly evaporates after injection in the main chamber, the main chamber mixture may be much closer to stoichiometry than a diesel for a better specific power at low engine speeds. This design also works at the high ...
Zhu, Xiaojue; Verzicco, Roberto; Lohse, Detlef
2015-01-01
We present direct numerical simulations of Taylor-Couette flow with grooved walls at a fixed radius ratio $\\eta=r_i/r_o=0.714$ with inner cylinder Reynolds number up to $Re_i=3.76\\times10^4$, corresponding to Taylor number up to $Ta=2.15\\times10^9$. The grooves are axisymmetric V-shaped obstacles attached to the wall with a tip angle of $90^\\circ$. Results are compared with the smooth wall case in order to investigate the effects of grooves on Taylor-Couette flow. We focus on the effective scaling laws for the torque, flow structures, and boundary layers. It is found that, when the groove height is smaller than the boundary layer thickness, the torque is the same as that of the smooth wall cases. With increasing $Ta$, the boundary layer thickness becomes smaller than the groove height. Plumes are ejected from tips of the grooves and a secondary circulation between the latter is formed. This is associated to a sharp increase of the torque and thus the effective scaling law for the torque vs. $Ta$ becomes much ...
A Novel Quantum-Behaved Bat Algorithm with Mean Best Position Directed for Numerical Optimization.
Zhu, Binglian; Zhu, Wenyong; Liu, Zijuan; Duan, Qingyan; Cao, Long
2016-01-01
This paper proposes a novel quantum-behaved bat algorithm with the direction of mean best position (QMBA). In QMBA, the position of each bat is mainly updated by the current optimal solution in the early stage of searching and in the late search it also depends on the mean best position which can enhance the convergence speed of the algorithm. During the process of searching, quantum behavior of bats is introduced which is beneficial to jump out of local optimal solution and make the quantum-behaved bats not easily fall into local optimal solution, and it has better ability to adapt complex environment. Meanwhile, QMBA makes good use of statistical information of best position which bats had experienced to generate better quality solutions. This approach not only inherits the characteristic of quick convergence, simplicity, and easy implementation of original bat algorithm, but also increases the diversity of population and improves the accuracy of solution. Twenty-four benchmark test functions are tested and compared with other variant bat algorithms for numerical optimization the simulation results show that this approach is simple and efficient and can achieve a more accurate solution.
Numerical simulation of a direct current glow discharge in atmospheric pressure helium
Yin, Zeng-Qian; Wang, Yan; Zhang, Pan-Pan; Zhang, Qi; Li, Xue-Chen
2016-12-01
Characteristics of a direct current (DC) discharge in atmospheric pressure helium are numerically investigated based on a one-dimensional fluid model. The results indicate that the discharge does not reach its steady state till it takes a period of time. Moreover, the required time increases and the current density of the steady state decreases with increasing the gap width. Through analyzing the spatial distributions of the electron density, the ion density and the electric field at different discharge moments, it is found that the DC discharge starts with a Townsend regime, then transits to a glow regime. In addition, the discharge operates in a normal glow mode or an abnormal glow one under different parameters, such as the gap width, the ballast resistors, and the secondary electron emission coefficients, judged by its voltage-current characteristics. Project supported by the National Natural Science Foundation of China (Grant Nos. 11575050 and 10805013), the Midwest Universities Comprehensive Strength Promotion Project, the Natural Science Foundation of Hebei Province, China (Grant Nos. A2016201042 and A2015201092), and the Research Foundation of Education Bureau of Hebei Province, China (Grant No. LJRC011).
Hydrodynamics of Lock-exchange Turbidity Currents down a Slope Based on Direct Numerical Simulation
Zhao, Liang; Lin, Ying-Tien; Hu, Peng; Liang, Xiaolong; He, Zhiguo
2016-01-01
Turbidity currents play a vital role in various geophysical environments. However, until now, few studies have taken into the effects of both suspended particle and slope on its evolution, which requires a precise information of the spatio-temporal flow field. Hence, this study presents high-resolution and two-dimensional direct numerical simulations (DNS) of lock-exchange turbidity currents down a slope. By analyzing front velocity, water entrainment, and energy budget, the factors that affect the driving force, thus the development of the turbidity current, are detailedly investigated. The front velocity history exhibits three distinct stages over time, i.e., a short acceleration stage, a quasi-constant stage, and a deceleration stage. The calculation of the entrainment ratio shows that the mixing due to the collapse of the dense fluid is much stronger than that due to the Kelvin-Helmholtz instabilities and turbulent billows. For a turbidity current down a slope, the entrainment volume of ambient water decr...
Pore-Network Modeling vs. Direct Numerical Simulation: a Comparative Study
Mehmani, Y.; Tchelepi, H.
2016-12-01
Pore-scale models of flow and transport fall into one of two broad categories: (a) direct numerical simulators (DNS) and (b) pore-network models (PNM). The former is more fundamental as it solves the governing equations on the "actual" pore space geometry obtained through some kind of imaging technology (e.g., µCT). Its drawback is that it is computationally very expensive. PNM, however, reduces the complex pore-space geometry into a "ball-and-stick" network representation, which makes it highly efficient. But geometric simplifications are accompanied by secondary simplifications in the flow and transport physics, which result in a loss of predictive accuracy. We perform one-to-one comparisons between PNM and DNS simulations (i.e., on the same porous media) to assess the impact of such simplifications on macroscopic single-phase transport dynamics. DNS simulations are performed using the popular OpenFOAM software, while our PNM utilizes a particle-tracking approach. The influence of order and disorder in the pore space morphology on the accuracy of PNM predictions is discussed.
Direct Numerical Simulation of a Cavity-Stabilized Ethylene/Air Premixed Flame
Chen, Jacqueline; Konduri, Aditya; Kolla, Hemanth; Rauch, Andreas; Chelliah, Harsha
2016-11-01
Cavity flame holders have been shown to be important for flame stabilization in scramjet combustors. In the present study the stabilization of a lean premixed ethylene/air flame in a rectangular cavity at thermo-chemical conditions relevant to scramjet combustors is simulated using a compressible reacting multi-block direct numerical simulation solver, S3D, incorporating a 22 species ethylene-air reduced chemical model. The fuel is premixed with air to an equivalence ratio of 0.4 and enters the computational domain at Mach numbers between 0.3 and 0.6. An auxiliary inert channel flow simulation is used to provide the turbulent velocity profile at the inlet for the reacting flow simulation. The detailed interaction between intense turbulence, nonequilibrium concentrations of radical species formed in the cavity and mixing with the premixed main stream under density variations due to heat release rate and compressibility effects is quantified. The mechanism for flame stabilization is quantified in terms of relevant non-dimensional parameters, and detailed analysis of the flame and turbulence structure will be presented. We acknowledge the sponsorship of the AFOSR-NSF Joint Effort on Turbulent Combustion Model Assumptions and the DOE Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.
Direct numerical simulation of a low momentum round jet in channel crossflow
Wu, Zhao, E-mail: zhao.wu@manchester.ac.uk; Laurence, Dominique; Afgan, Imran
2017-03-15
Highlights: • Detailed flow physics of jet in crossflow with low velocity ratio, R, is analysed. • The horseshoe vortex comes from the reversed jet fluid, different from high R JICF. • CVP comes from the stretching and reorientation of the injection-flow vorticity. • Recirculation is seen at the downstream low-pressure region. • The shear layer vortices are from shed crossflow boundary layer vortices. - Abstract: Results of a direct numerical simulation of a jet in crossflow with passive scalar mixing are presented. The laminar jet issues from a circular exit into the channel crossflow with a low jet-to-crossflow velocity ratio of 1/6. The governing equations are solved by Incompact3d, an open-source code combining the high-order compact scheme and Poisson spectral solver. An internal recycling approach is used to generate the fully turbulent channel flow profile. Four main flow structures are identified: 1) a large recirculation seen immediately downstream of the jet-exit; 2) a contour-rotating vortex pair formed from the stretching and reorientation of the injection-flow vorticity; 3) a horseshoe vortex generated as a result of the stretching of the vorticity at the jet-exit windward side; 4) shear layer vortices coming from the lifted and shed crossflow boundary layer vorticity. Passive scalar profiles show the mixing are strong in the shear layer where the crossflow fluid encounters the jet fluid. The database is made available online for public access.
Direct Numerical Simulation of Hypersonic Turbulent Boundary Layer inside an Axisymmetric Nozzle
Huang, Junji; Zhang, Chao; Duan, Lian; Choudhari, Meelan M.
2017-01-01
As a first step toward a study of acoustic disturbance field within a conventional, hypersonic wind tunnel, direct numerical simulations (DNS) of a Mach 6 turbulent boundary layer on the inner wall of a straight axisymmetric nozzle are conducted and the results are compared with those for a flat plate. The DNS results for a nozzle radius to boundary-layer thickness ratio of 5:5 show that the turbulence statistics of the nozzle-wall boundary layer are nearly unaffected by the transverse curvature of the nozzle wall. Before the acoustic waves emanating from different parts of the nozzle surface can interfere with each other and undergo reflections from adjacent portions of the nozzle surface, the rms pressure fluctuation beyond the boundary layer edge increases toward the nozzle axis, apparently due to a focusing effect inside the axisymmetric configuration. Spectral analysis of pressure fluctuations at both the wall and the freestream indicates a similar distribution of energy content for both the nozzle and the flat plate, with the peak of the premultiplied frequency spectrum at a frequency of [(omega)(delta)]/U(sub infinity) approximately 6.0 inside the free stream and at [(omega)(delta)]/U(sub infinity) approximately 2.0 along the wall. The present results provide the basis for follow-on simulations involving reverberation effects inside the nozzle.
Bisetti, Fabrizio; Attili, Antonio; Pitsch, Heinz
2014-08-13
Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs.
Direct numerical simulation of the motion of circular pollutant particles in Newtonian fluid
SHAO Xue-ming; LIN Jian-zhong; YU Zhao-sheng
2003-01-01
An improved implementation of distributed multiplier/fictitious domain method is presented for the direct numerical simulation of particulate flow. The key improvement is to replace a finite-element triangulation for the velocity and a "twice-coarser" triangulation for the pressure with a rectangular discretization for the velocity and pressure. For code validation, the sedimentation of a single particle in a two-dimensional channel was simulated. The results show that the simulation is independent of the mesh size as well as the time step. The comparison between experimental data and our simulation shows that our code can give a more accurate simulation on the motion of particles than previous DLM code. Our code was then applied to simulate the sedimentation of 600 particles in a rectangular box. The falling course is presented and discussed. At the same time, this simulation also demonstrates that the method presented in this paper can be used for solving the initial problems involving a lager number of particles exactly with computing durations kept at acceptable levels.
Xingtuan Yang
2015-05-01
Full Text Available A direct numerical simulation study of the characteristics of macroscopic and microscopic rotating motions in swirling jets confined in a rectangular flow domain is carried out. The different structures of vortex cores for different swirl levels are illustrated. It is found that the vortex cores of low swirl flows are of regular cylindrical-helix patterns, whereas those of the high swirl flows are characterized by the formation of the bubble-type vortex breakdown followed by the radiant processing vortex cores. The results of mean velocity fields show the general procedures of vortex origination. Moreover, the effects of macroscopic and microscopic rotating motions with respect to the mean and fluctuation fields of the swirling flows are evaluated. The microscopic rotating effects, especially the effects with respect to the turbulent fluctuation motion, are increasingly intermittent with the increase in the swirl levels. In contrast, the maximum value of the probability density functions with respect to the macroscopic rotating effects of the fluctuation motion occurs at moderate swirl levels since the macroscopic rotating effects are attenuated by the formation of the bubble vortex breakdown with a region of stagnant fluids at supercritical swirl levels.
GPU accelerated flow solver for direct numerical simulation of turbulent flows
Salvadore, Francesco; Bernardini, Matteo; Botti, Michela
2013-02-01
Graphical processing units (GPUs), characterized by significant computing performance, are nowadays very appealing for the solution of computationally demanding tasks in a wide variety of scientific applications. However, to run on GPUs, existing codes need to be ported and optimized, a procedure which is not yet standardized and may require non trivial efforts, even to high-performance computing specialists. In the present paper we accurately describe the porting to CUDA (Compute Unified Device Architecture) of a finite-difference compressible Navier-Stokes solver, suitable for direct numerical simulation (DNS) of turbulent flows. Porting and validation processes are illustrated in detail, with emphasis on computational strategies and techniques that can be applied to overcome typical bottlenecks arising from the porting of common computational fluid dynamics solvers. We demonstrate that a careful optimization work is crucial to get the highest performance from GPU accelerators. The results show that the overall speedup of one NVIDIA Tesla S2070 GPU is approximately 22 compared with one AMD Opteron 2352 Barcelona chip and 11 compared with one Intel Xeon X5650 Westmere core. The potential of GPU devices in the simulation of unsteady three-dimensional turbulent flows is proved by performing a DNS of a spatially evolving compressible mixing layer.
GPU accelerated flow solver for direct numerical simulation of turbulent flows
Salvadore, Francesco [CASPUR – via dei Tizii 6/b, 00185 Rome (Italy); Bernardini, Matteo, E-mail: matteo.bernardini@uniroma1.it [Department of Mechanical and Aerospace Engineering, University of Rome ‘La Sapienza’ – via Eudossiana 18, 00184 Rome (Italy); Botti, Michela [CASPUR – via dei Tizii 6/b, 00185 Rome (Italy)
2013-02-15
Graphical processing units (GPUs), characterized by significant computing performance, are nowadays very appealing for the solution of computationally demanding tasks in a wide variety of scientific applications. However, to run on GPUs, existing codes need to be ported and optimized, a procedure which is not yet standardized and may require non trivial efforts, even to high-performance computing specialists. In the present paper we accurately describe the porting to CUDA (Compute Unified Device Architecture) of a finite-difference compressible Navier–Stokes solver, suitable for direct numerical simulation (DNS) of turbulent flows. Porting and validation processes are illustrated in detail, with emphasis on computational strategies and techniques that can be applied to overcome typical bottlenecks arising from the porting of common computational fluid dynamics solvers. We demonstrate that a careful optimization work is crucial to get the highest performance from GPU accelerators. The results show that the overall speedup of one NVIDIA Tesla S2070 GPU is approximately 22 compared with one AMD Opteron 2352 Barcelona chip and 11 compared with one Intel Xeon X5650 Westmere core. The potential of GPU devices in the simulation of unsteady three-dimensional turbulent flows is proved by performing a DNS of a spatially evolving compressible mixing layer.
Direct Numerical Simulation of Zero-Pressure Gradient and Sink Flow Turbulent Boundary Layers
Ramesh, O.; Patwardhan, Saurabh
2010-11-01
Direct Numerical Simulations have been performed for the zero pressure gradient (ZPG) (600 < Reθ< 900) and for the sink flow turbulent boundary layers (K = 7.71x10-7). A finite difference code on Cartesian grid was used to perform the simulations. Inflow generation method developed by Lund et al. was used to generate inflow boundary condition for the ZPG case. This method was slightly modified for the case of sink flow in view of self-similarity it possesses in the inner co-ordinates. Hence, there was no need to use empirical relations for the calculation of inlet θ or δ and rescaling in outer co-ordinates. The average statistics obtained from the simulations are in close agreement with the experimental as well as DNS data available in the literature. The intermittency distribution in the case of sink flow approaches zero inside the boundary layer (y = 0.8δ), an observation which is also confirmed by the experiments. This effect could be due to the acceleration near the boundary layer edge which suppresses the turbulent fluctuations near the boundary layer edge.
Direct numerical simulation of stationary lean premixed methane-air flames under intense turbulence
Sankaran, Ramanan [ORNL; Hawkes, Evatt R [Sandia National Laboratories (SNL); Yoo, Chun S [Sandia National Laboratories (SNL); Chen, Jacqueline H [Sandia National Laboratories (SNL); Lu, Tianfeng [Princeton University; Law, Chung K [Princeton University
2007-01-01
Direct numerical simulation of a three-dimensional spatially- developing turbulent Bunsen flame has been performed at three different turbulence intensities. The simulations are performed using a reduced methane-air chemical mechanism which is specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration is used in which turbulent preheated methane-air mixture at 0.7 equivalence ratio issues through a central jet and is surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow are selected such that combustion occurs in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity the conditions fall on the boundary between the TRZ regime and the corrugated flamelet regime. At the highest turbulence intensity the conditions correspond to the boundary between the TRZ regime and the broken reaction zones regime. The data from the three simulations is analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Statistical analysis of the data shows that the thermal preheat layer of the flame is thickened due to the action of turbulence, but the reaction zone is not significantly affected.
杨飞; 马瑞光; 吴翊; 孙昊; 纽春萍; 荣命哲
2012-01-01
This paper focuses on the numerical investigation of arc plasma behavior during arc commutation process in a medium-voltage direct current circuit breaker （DCCB） contact system. A three-dimensional magneto-hydrodynamic （MHD） model of air arc plasma in the contact system of a DCCB is developed, based on commercial software FLUENT. Coupled electromagnetic and gas dynamic interactions are considered as usual, and a thin layer of nonlinear electrical resistance elements is used to represent the voltage drop of plasma sheath and the formation of new arc root. The distributions of pressure, temperature, gas flow and current density of arc plasma in arc region are calculated. The simulation results indicate that the pressure distribution related to the contact system has a strong effect on the arc commutation process, arising from the change of electrical conductivity in the arc root region. In DCCB contact system, the pressure of arc root region will be concentrated and higher if the space above the moving contact is enclosed, which is not good for arc root commutation. However, when the region is opened, the pressure distribution would be lower and more evenly, which is favorable for the arc root commutation.
Bisetti, Fabrizio
2014-07-14
Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs. © 2014 The Author(s) Published by the Royal Society.
Assessment of tomographic PIV in wall-bounded turbulence using direct numerical simulation data
Silva, C.M. de; Baidya, R.; Khashehchi, M.; Marusic, I. [University of Melbourne, Department of Mechanical Engineering, Melbourne, VIC (Australia)
2012-02-15
Simulations of tomographic particle image velocimetry (Tomo-PIV) are performed using direct numerical simulation data of a channel flow at Reynolds number of Re{sub {tau}} = 934, to investigate the influence of experimental parameters such as camera position, seeding density, interrogation volume size and spatial resolution. The simulations employ camera modelling, a Mie scattering illumination model, lens distortion effects and calibration to realistically model a tomographic experiment. Results are presented for camera position and orientation in three-dimensional space, to obtain an optimal reconstruction quality. Furthermore, a quantitative analysis is performed on the accuracy of first and second order flow statistics, at various voxel sizes normalised using the viscous inner length scale. This enables the result to be used as a general reference for wall-bounded turbulent experiments. In addition, a ratio relating seeding density and the interrogation volume size is proposed to obtain an optimal reference value that remains constant. This can be used to determine the required seeding density concentration for a certain interrogation volume size. (orig.)
Utilizing Direct Numerical Simulations of Transition and Turbulence in Design Optimization
Rai, Man M.
2015-01-01
Design optimization methods that use the Reynolds-averaged Navier-Stokes equations with the associated turbulence and transition models, or other model-based forms of the governing equations, may result in aerodynamic designs with actual performance levels that are noticeably different from the expected values because of the complexity of modeling turbulence/transition accurately in certain flows. Flow phenomena such as wake-blade interaction and trailing edge vortex shedding in turbines and compressors (examples of such flows) may require a computational approach that is free of transition/turbulence models, such as direct numerical simulations (DNS), for the underlying physics to be computed accurately. Here we explore the possibility of utilizing DNS data in designing a turbine blade section. The ultimate objective is to substantially reduce differences between predicted performance metrics and those obtained in reality. The redesign of a typical low-pressure turbine blade section with the goal of reducing total pressure loss in the row is provided as an example. The basic ideas presented here are of course just as applicable elsewhere in aerodynamic shape optimization as long as the computational costs are not excessive.
Direct numerical simulation of fluid-acoustic interactions in a recorder with tone holes.
Yokoyama, Hiroshi; Miki, Akira; Onitsuka, Hirofumi; Iida, Akiyoshi
2015-08-01
To clarify fluid-acoustic interactions in an actual recorder with opened and closed tone holes, flow and acoustic fields were directly numerically simulated on the basis of the compressible Navier-Stokes equations. To validate the simulation accuracy, the flow field around the windway and sound pressure above the window were measured. The predicted acoustic fields clarify changes of the positions of pressure nodes and anti-nodes in accordance with the state of the tone holes and the Mach number of the jet velocity. The fundamental mechanism of the self-sustained oscillations in a three-dimensional actual recorder is visualized by the predicted acoustic and flow fields. This result is also consistent with the relationship between the jet behaviors and pressure fluctuations based on the jet-drive model. Moreover, the effects of the fine vortices in the jet, which appear at the high Mach number of jet velocity of 0.099, on the sound are discussed. The time difference between the generation of the disturbances and the most intense deflection of the jet is identified and compared with the time delay of acoustic reflection around the window.
Direct numerical simulation of turbulent flow in a channel with different types of surface roughness
Bolotnov, Igor A.
2011-11-01
Direct numerical simulation (DNS) was performed for turbulent channel flow (Reτ = 400) for two types of wall surface roughness and well as smooth walls. The roughness elements of first type were assumed to be two-dimensional, transverse square rods positioned on both walls in a non-staggered arrangement. The height of the rods corresponds to y+ = 13.6 and thus extends in the buffer layer. The second type of roughness was represented by a set of hemispherical obstacles (height of y+ = 10) located on both channel walls and arranged on a square lattice. The presented simulations are part of benchmark problems defined by thermal-hydraulics focus area of the Consortium for Advanced Simulations of Light Water Reactors (CASL). This problem simulates the effect of the presence of growing bubbles on the walls of nuclear reactor fuel rods and aimed on evaluating CFD capabilities of various codes before applying them to more advanced problems. Mean turbulent quantities were computed and compared with available analytical and experimental results. The results of this work will be used to evaluate the performance of other LES and RANS codes on this benchmark problem. Supported by Consortium for Advanced Simulation of Light Water Reactors (CASL).
Large scale Direct Numerical Simulation of premixed turbulent jet flames at high Reynolds number
Attili, Antonio; Luca, Stefano; Lo Schiavo, Ermanno; Bisetti, Fabrizio; Creta, Francesco
2016-11-01
A set of direct numerical simulations of turbulent premixed jet flames at different Reynolds and Karlovitz numbers is presented. The simulations feature finite rate chemistry with 16 species and 73 reactions and up to 22 Billion grid points. The jet consists of a methane/air mixture with equivalence ratio ϕ = 0 . 7 and temperature varying between 500 and 800 K. The temperature and species concentrations in the coflow correspond to the equilibrium state of the burnt mixture. All the simulations are performed at 4 atm. The flame length, normalized by the jet width, decreases significantly as the Reynolds number increases. This is consistent with an increase of the turbulent flame speed due to the increased integral scale of turbulence. This behavior is typical of flames in the thin-reaction zone regime, which are affected by turbulent transport in the preheat layer. Fractal dimension and topology of the flame surface, statistics of temperature gradients, and flame structure are investigated and the dependence of these quantities on the Reynolds number is assessed.
Direct Numerical Simulations of Type Ia Supernovae Flames I: The Landau-Darrieus Instability
Bell, J B; Rendleman, C A; Woosley, S E; Zingale, M A
2004-01-01
Planar flames are intrinsically unstable in open domains due to the thermal expansion across the burning front--the Landau-Darrieus instability. This instability leads to wrinkling and growth of the flame surface, and corresponding acceleration of the flame, until it is stabilized by cusp formation. We look at the Landau-Darrieus instability for C/O thermonuclear flames at conditions relevant to the late stages of a Type Ia supernova explosion. Two-dimensional direct numerical simulations of both single-mode and multi-mode perturbations using a low Mach number hydrodynamics code are presented. We show the effect of the instability on the flame speed as a function of both the density and domain size, demonstrate the existence of the small scale cutoff to the growth of the instability, and look for the proposed breakdown of the non-linear stabilization at low densities. The effects of curvature on the flame as quantified through measurements of the growth rate and computation of the corresponding Markstein numb...
Direct Numerical Simulation of biomass pyrolysis and combustion with gas phase reactions
Awasthi, A.; Kuerten, J. G. M.; Geurts, B. J.
2016-09-01
We present Direct Numerical Simulation of biomass pyrolysis and combustion in a turbulent channel flow. The model includes simplified models for biomass pyrolysis and char combustion along with a model for particle tracking. The gas phase is modelled as a mixture of reacting gas species. The gas-particle interactions for mass, momentum, and energy exchange are included by two-way coupling terms. The effect of two-way coupling on the conversion time of biomass particles is found noticeable for particle volume fractions > 10-5. We also observe that at constant volume fraction the effect of two-way coupling increases as the particle size is reduced, due to the higher total heat exchange area in case of smaller particles. The inclusion of gas phase homogeneous reactions in the DNS model decreases the biomass pyrolysis time due to higher gas temperatures. In contrast, including gas phase reactions increases the combustion time of biomass due to the lower concentration of oxygen at the particle surface.
Direct numerical simulation and statistical analysis of turbulent convection in lead-bismuth
Otic, I.; Grotzbach, G. [Forschungszentrum Karlsruhe GmbH, Institut fuer Kern-und Energietechnik (Germany)
2003-07-01
Improved turbulent heat flux models are required to develop and analyze the reactor concept of an lead-bismuth cooled Accelerator-Driven-System. Because of specific properties of many liquid metals we have still no sensors for accurate measurements of the high frequency velocity fluctuations. So, the development of the turbulent heat transfer models which are required in our CFD (computational fluid dynamics) tools needs also data from direct numerical simulations of turbulent flows. We use new simulation results for the model problem of Rayleigh-Benard convection to show some peculiarities of the turbulent natural convection in lead-bismuth (Pr = 0.025). Simulations for this flow at sufficiently large turbulence levels became only recently feasible because this flow requires the resolution of very small velocity scales with the need for recording long-wave structures for the slow changes in the convective temperature field. The results are analyzed regarding the principle convection and heat transfer features. They are also used to perform statistical analysis to show that the currently available modeling is indeed not adequate for these fluids. Basing on the knowledge of the details of the statistical features of turbulence in this convection type and using the two-point correlation technique, a proposal for an improved statistical turbulence model is developed which is expected to account better for the peculiarities of the heat transfer in the turbulent convection in low Prandtl number fluids. (authors)
Wang, Guoqing; Mukherjee, Partha P.; Wang, Chao-Yang [Electrochemical Engine Center (ECEC), Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)
2007-06-30
The cathode catalyst layer (CL), due to sluggish oxygen reduction reaction and several transport losses therein, plays an important role in the overall performance of polymer electrolyte fuel cells (PEFCs). The relative volume fractions of the constituent phases, i.e. the electronic, electrolyte and void phases, of the cathode CL need to be selected appropriately in order to achieve an optimal balance between oxygen diffusion and proton conduction. In this work, the influence of electrolyte and void phase fractions of the cathode CL on the cell performance is investigated based on a pore-level description of species and charge transport through a random CL microstructure via the direct numerical simulation (DNS) model. Additionally, the effects of inlet relative humidity and net water transport from the anode on the cathode performance have been studied which indicate the interdependence between the CL composition and the cell operating conditions. The results indicate that the low humidity operation benefits the performance by enhancing the oxygen transport especially under high current densities. Finally, the DNS model predicts the volume fractions of 0.4 and 0.26 for the void and electrolyte phases, respectively, as the optimal composition of the catalyst layer for the best performance. (author)
Direct numerical simulation of broadband trailing edge noise from a NACA 0012 airfoil
Mehrabadi, Mohammad; Bodony, Daniel
2016-11-01
Commercial jet-powered aircraft produce unwanted noise at takeoff and landing when they are close to near-airport communities. Modern high-bypass-ratio turbofan engines have reduced jet exhaust noise sufficiently such that noise from the main fan is now significant. In preparation for a large-eddy simulation of the NASA/GE Source Diagnostic Test Fan, we study the broadband noise due to the turbulent flow on a NACA 0012 airfoil at zero degree angle-of-attack, a chord-based Reynolds number of 408,000 and a Mach number of 0.115 using direct numerical simulation (DNS) and wall-modeled large-eddy simulation (WMLES). The flow conditions correspond to existing experimental data. We investigate the roughness-induced transition-to-turbulence and sound generation from a DNS perspective as well as examine how these two features are captured by a wall model. Comparisons between the DNS- and WMLES-predicted noise are made and provide guidance on the use of WMLES for broadband fan noise prediction. AeroAcoustics Research Consortium.
Direct numerical simulation of turbulent combustion: fundamental insights towards predictive models
Hawkes, Evatt R.; Sankaran, Ramanan; Sutherland, James C.; Chen, Jacqueline H.
2005-01-01
The advancement of our basic understanding of turbulent combustion processes and the development of physics-based predictive tools for design and optimization of the next generation of combustion devices are strategic areas of research for the development of a secure, environmentally sound energy infrastructure. In direct numerical simulation (DNS) approaches, all scales of the reacting flow problem are resolved. However, because of the magnitude of this task, DNS of practical high Reynolds number turbulent hydrocarbon flames is out of reach of even terascale computing. For the foreseeable future, the approach to this complex multi-scale problem is to employ distinct but synergistic approaches to tackle smaller sub-ranges of the complete problem, which then require models for the small scale interactions. With full access to the spatially and temporally resolved fields, DNS can play a major role in the development of these models and in the development of fundamental understanding of the micro-physics of turbulence-chemistry interactions. Two examples, from simulations performed at terascale Office of Science computing facilities, are presented to illustrate the role of DNS in delivering new insights to advance the predictive capability of models. Results are presented from new three-dimensional DNS with detailed chemistry of turbulent non-premixed jet flames, revealing the differences between mixing of passive and reacting scalars, and determining an optimal lower dimensional representation of the full thermochemical state space.
Numerical modeling of a Jet Ignition Direct Injection (JIDI LPG engine
albert boretti
2016-12-01
Full Text Available The paper presents indirectly validated simulations of the operation of a LPG engine fitted with Direct Injection (DI and Jet Ignition (JI. It is demonstrated that the engine may have diesel like efficiencies and load control by quantity of fuel injected. As the liquid propane quickly evaporates after injection in the main chamber, the main chamber mixture may be much closer to stoichiometry than a diesel for a better specific power at low engine speeds. This design also works at the high engine speeds impossible for the diesel, as combustion within the main chamber is controlled by the turbulent mixing rather than the vaporization and diffusion processes of the injected fuel of the diesel.
A numerical model including PID control of a multizone crystal growth furnace
Panzarella, Charles H.; Kassemi, Mohammad
This paper presents a 2D axisymmetric combined conduction and radiation model of a multizone crystal growth furnace. The model is based on a programmable multizone furnace (PMZF) designed and built at NASA Lewis Research Center for growing high quality semiconductor crystals. A novel feature of this model is a control algorithm which automatically adjusts the power in any number of independently controlled heaters to establish the desired crystal temperatures in the furnace model. The control algorithm eliminates the need for numerous trial and error runs previously required to obtain the same results. The finite element code, FIDAP, used to develop the furnace model, was modified to directly incorporate the control algorithm. This algorithm, which presently uses PID control, and the associated heat transfer model are briefly discussed. Together, they have been used to predict the heater power distributions for a variety of furnace configurations and desired temperature profiles. Examples are included to demonstrate the effectiveness of the PID controlled model in establishing isothermal, Bridgman, and other complicated temperature profies in the sample. Finally, an example is given to show how the algorithm can be used to change the desired profile with time according to a prescribed temperature-time evolution.
Test and numerical simulation of a new type of hybrid control technique
Meng Qingli; Zhang Minzheng; Cheng Dong
2005-01-01
In this paper, a new hybrid control technique, based on a combination of base-isolation and semi-active variable stiffness/damping in a superstructure, is presented. To illustrate the efficiency of the proposed control system, model tests on a mini-electromagnetic shaking table and a numerical simulation were performed. The test and numerical calculation results indicate that this new hybrid control mode with additional damping and smaller additional stiffness can achieve a better control efficiency.
Forbidden Zones for Numerically-Controlled Machine Tools
Philpot, D.
1986-01-01
Computer-controlled machine tool prevented from striking and damaging protruding members on workpiece by creating forbidden zone in control program. With aid of computer graphics, tool profile and coordinates of forbidden zone digitized and stored in computer memory as part of tool path.
Numerical Modeling of Plasma Actuators for Flow Control
KOURTZANIDIS, Konstantinos
2014-01-01
As aerodynamic ﬂow control still remains one of the top subjects of research in the aerospace scientiﬁc world, new ways to perform such a control are being constantly studied. Microwave plasma discharges have been proposed as a mean of a non-intrusive ﬂow control method based on the creation of hot spots of air (via the creation of plasma discharges) which can eventually interact with the external ﬂow and modify its attributes in a beneﬁcial way to the aerodynamic coefﬁcients of the body of i...
Graham, Jonathan Pietarila; Mininni, Pablo D; Pouquet, Annick
2005-10-01
We present direct numerical simulations and Lagrangian averaged (also known as alpha model) simulations of forced and free decaying magnetohydrodynamic turbulence in two dimensions. The statistics of sign cancellations of the current at small scales is studied using both the cancellation exponent and the fractal dimension of the structures. The alpha model is found to have the same scaling behavior between positive and negative contributions as the direct numerical simulations. The alpha model is also able to reproduce the time evolution of these quantities in free decaying turbulence. At large Reynolds numbers, an independence of the cancellation exponent with the Reynolds numbers is observed.
Wave- and Current-Supported Gravity Flows: Insights from Direct Numerical Simulations (DNS)
Ozdemir, C. E.
2016-12-01
Discoveries over the last three decades have shown that current- and wave-enhanced gravity flows (CWEGFs) are among the significant agents that carry substantial amounts of sediments across low-gradient shelves and thereby they are important elements of sediment source-to-sink. Computational fluid dynamics (CFD) complement the existing field and laboratory experiments in that it offers unprecedented details of participating physical processes. Also, since the state-of-the-art optical and acoustic sensors are limited to measure 50 kg/m3 of suspended sediment concentration, CFD becomes the only means to evaluate the physical processes when the turbid layer is highly concentrated. In this presentation, the roles of wave- and alongshore current-induced turbulent boundary layers are investigated separately on across-shelf fine sediment transport. Turbulence-resolving simulations (Direct Numerical Simulations) that utilize a simplified Eulerian-Eulerian two-phase flow model are conducted. The results show that the sediment carrying capacity of wave boundary layers far exceeds the ones carried by along-shelf currents. The results also show that across-shelf velocity in wall units obeys a logarithmic profile, u+=α ln(z+)+β . However, this logarithmic velocity profile is far apart from the log-law and parameters α and β are dependent on sediment loading and the representative settling velocity of sediments. The key parameters that characterize CWEGFs, such as drag coefficient, Cd, and their variation are also calculated and are found to be close to the ones that are observed in the field experiments. It is also found that for wave boundary layers, drag coefficient increases as the wave orbital velocity increases. Further discussion on the details of the sediment-turbulence interaction is also warranted.
S. D. Parkinson
2014-09-01
Full Text Available High-resolution direct numerical simulations (DNSs are an important tool for the detailed analysis of turbidity current dynamics. Models that resolve the vertical structure and turbulence of the flow are typically based upon the Navier–Stokes equations. Two-dimensional simulations are known to produce unrealistic cohesive vortices that are not representative of the real three-dimensional physics. The effect of this phenomena is particularly apparent in the later stages of flow propagation. The ideal solution to this problem is to run the simulation in three dimensions but this is computationally expensive. This paper presents a novel finite-element (FE DNS turbidity current model that has been built within Fluidity, an open source, general purpose, computational fluid dynamics code. The model is validated through re-creation of a lock release density current at a Grashof number of 5 × 106 in two and three dimensions. Validation of the model considers the flow energy budget, sedimentation rate, head speed, wall normal velocity profiles and the final deposit. Conservation of energy in particular is found to be a good metric for measuring model performance in capturing the range of dynamics on a range of meshes. FE models scale well over many thousands of processors and do not impose restrictions on domain shape, but they are computationally expensive. The use of adaptive mesh optimisation is shown to reduce the required element count by approximately two orders of magnitude in comparison with fixed, uniform mesh simulations. This leads to a substantial reduction in computational cost. The computational savings and flexibility afforded by adaptivity along with the flexibility of FE methods make this model well suited to simulating turbidity currents in complex domains.
Krisman, Alexander; Hawkes, Evatt Robert.; Talei, Mohsen; Bhagatwala, Ankit; Chen, Jacqueline H.
2016-11-11
In diesel engines, combustion is initiated by a two-staged autoignition that includes both low- and high-temperature chemistry. The location and timing of both stages of autoignition are important parameters that influence the development and stabilisation of the flame. In this study, a two-dimensional direct numerical simulation (DNS) is conducted to provide a fully resolved description of ignition at diesel engine-relevant conditions. The DNS is performed at a pressure of 40 atmospheres and at an ambient temperature of 900 K using dimethyl ether (DME) as the fuel, with a 30 species reduced chemical mechanism. At these conditions, similar to diesel fuel, DME exhibits two-stage ignition. The focus of this study is on the behaviour of the low-temperature chemistry (LTC) and the way in which it influences the high-temperature ignition. The results show that the LTC develops as a “spotty” first-stage autoignition in lean regions which transitions to a diffusively supported cool-flame and then propagates up the local mixture fraction gradient towards richer regions. The cool-flame speed is much faster than can be attributed to spatial gradients in first-stage ignition delay time in homogeneous reactors. The cool-flame causes a shortening of the second-stage ignition delay times compared to a homogeneous reactor and the shortening becomes more pronounced at richer mixtures. Multiple high-temperature ignition kernels are observed over a range of rich mixtures that are much richer than the homogeneous most reactive mixture and most kernels form much earlier than suggested by the homogeneous ignition delay time of the corresponding local mixture. Altogether, the results suggest that LTC can strongly influence both the timing and location in composition space of the high-temperature ignition.
Parkinson, S. D.; Hill, J.; Piggott, M. D.; Allison, P. A.
2014-09-01
High-resolution direct numerical simulations (DNSs) are an important tool for the detailed analysis of turbidity current dynamics. Models that resolve the vertical structure and turbulence of the flow are typically based upon the Navier-Stokes equations. Two-dimensional simulations are known to produce unrealistic cohesive vortices that are not representative of the real three-dimensional physics. The effect of this phenomena is particularly apparent in the later stages of flow propagation. The ideal solution to this problem is to run the simulation in three dimensions but this is computationally expensive. This paper presents a novel finite-element (FE) DNS turbidity current model that has been built within Fluidity, an open source, general purpose, computational fluid dynamics code. The model is validated through re-creation of a lock release density current at a Grashof number of 5 × 106 in two and three dimensions. Validation of the model considers the flow energy budget, sedimentation rate, head speed, wall normal velocity profiles and the final deposit. Conservation of energy in particular is found to be a good metric for measuring model performance in capturing the range of dynamics on a range of meshes. FE models scale well over many thousands of processors and do not impose restrictions on domain shape, but they are computationally expensive. The use of adaptive mesh optimisation is shown to reduce the required element count by approximately two orders of magnitude in comparison with fixed, uniform mesh simulations. This leads to a substantial reduction in computational cost. The computational savings and flexibility afforded by adaptivity along with the flexibility of FE methods make this model well suited to simulating turbidity currents in complex domains.
Direct Numerical Simulation of Evaporative Cooling at the Lateral Boundary of Shallow Cumulus Clouds
Heus, T.; Abma, D.; Mellado, J.
2012-12-01
This study investigates the dynamics of a narrow region of subsiding air at the lateral boundary of cumulus clouds, focusing on the role of evaporative cooling. Previous observational and large-eddy simulations showed the relevance of this subsiding shell in cloud dynamics, but have also showed that the size of this shell is well below what large-eddy simulations can resolve. Therefore, we have performed direct numerical simulations of an idealized subsiding shell to investigate accurately the complete turbulent field. The system develops a self-similar, Reynolds number independent flow which allows for the determination of explicit scaling laws relating the characteristic length, time and velocity scales of the shell. In particular, it is found that the shell width grows quadratically in time, and linearly with decreasing height. The magnitude of these growth rates confirm the importance of the subsiding shell because of the relatively fast development of entrainment-determining scales: for typical thermodynamic conditions in cumulus clouds, a velocity of the order of 1~m~s-1 and a thickness of the order of 10 meters are established in about 2 minutes. This fits well within the typical cloud life time, suggesting that our idealization is an adequate framework for the analysis of relevant aspects in the subsiding shell associated with buoyancy reversal. It also indicates that the scaling laws derived here can be used to estimate the potential strength of a subsiding shell and the mean lateral entrainment associated with it, provided an estimate of the local thermodynamical state of the cloud boundary. It is shown that the dominant parameter of this system is the saturation buoyancy, whereas the effect of the saturation mixing fraction is minor.uoyancy field in the subsiding shell. Blue colors are low values, red colors are high values.
S. D. Parkinson
2014-05-01
Full Text Available High resolution direct numerical simulations (DNS are an important tool for the detailed analysis of turbidity current dynamics. Models that resolve the vertical structure and turbulence of the flow are typically based upon the Navier–Stokes equations. Two-dimensional simulations are known to produce unrealistic cohesive vortices that are not representative of the real three-dimensional physics. The effect of this phenomena is particularly apparent in the later stages of flow propagation. The ideal solution to this problem is to run the simulation in three dimensions but this is computationally expensive. This paper presents a novel finite-element (FE DNS turbidity current model that has been built within Fluidity, an open source, general purpose, computational fluid dynamics code. The model is validated through re-creation of a lock release density current at a Grashof number of 5 × 106 in two, and three-dimensions. Validation of the model considers the flow energy budget, sedimentation rate, head speed, wall normal velocity profiles and the final deposit. Conservation of energy in particular is found to be a good metric for measuring mesh performance in capturing the range of dynamics. FE models scale well over many thousands of processors and do not impose restrictions on domain shape, but they are computationally expensive. Use of discontinuous discretisations and adaptive unstructured meshing technologies, which reduce the required element count by approximately two orders of magnitude, results in high resolution DNS models of turbidity currents at a fraction of the cost of traditional FE models. The benefits of this technique will enable simulation of turbidity currents in complex and large domains where DNS modelling was previously unachievable.
Mukkavilli, S. K.; Kay, M. J.; Taylor, R.; Prasad, A. A.; Troccoli, A.
2014-12-01
The Australian Solar Energy Forecasting System (ASEFS) project requires forecasting timeframes which range from nowcasting to long-term forecasts (minutes to two years). As concentrating solar power (CSP) plant operators are one of the key stakeholders in the national energy market, research and development enhancements for direct normal irradiance (DNI) forecasts is a major subtask. This project involves comparing different radiative scheme codes to improve day ahead DNI forecasts on the national supercomputing infrastructure running mesoscale simulations on NOAA's Weather Research & Forecast (WRF) model. ASEFS also requires aerosol data fusion for improving accurate representation of spatio-temporally variable atmospheric aerosols to reduce DNI bias error in clear sky conditions over southern Queensland & New South Wales where solar power is vulnerable to uncertainities from frequent aerosol radiative events such as bush fires and desert dust. Initial results from thirteen years of Bureau of Meteorology's (BOM) deseasonalised DNI and MODIS NASA-Terra aerosol optical depth (AOD) anomalies demonstrated strong negative correlations in north and southeast Australia along with strong variability in AOD (~0.03-0.05). Radiative transfer schemes, DNI and AOD anomaly correlations will be discussed for the population and transmission grid centric regions where current and planned CSP plants dispatch electricity to capture peak prices in the market. Aerosol and solar irradiance datasets include satellite and ground based assimilations from the national BOM, regional aerosol researchers and agencies. The presentation will provide an overview of this ASEFS project task on WRF and results to date. The overall goal of this ASEFS subtask is to develop a hybrid numerical weather prediction (NWP) and statistical/machine learning multi-model ensemble strategy that meets future operational requirements of CSP plant operators.
Temporal slow-growth formulation for direct numerical simulation of compressible wall-bounded flows
Topalian, Victor; Oliver, Todd A.; Ulerich, Rhys; Moser, Robert D.
2017-08-01
A slow-growth formulation for DNS of wall-bounded turbulent flow is developed and demonstrated to enable extension of slow-growth modeling concepts to wall-bounded flows with complex physics. As in previous slow-growth approaches, the formulation assumes scale separation between the fast scales of turbulence and the slow evolution of statistics such as the mean flow. This separation enables the development of approaches where the fast scales of turbulence are directly simulated while the forcing provided by the slow evolution is modeled. The resulting model admits periodic boundary conditions in the streamwise direction, which avoids the need for extremely long domains and complex inflow conditions that typically accompany spatially developing simulations. Further, it enables the use of efficient Fourier numerics. Unlike previous approaches [Guarini, Moser, Shariff, and Wray, J. Fluid Mech. 414, 1 (2000), 10.1017/S0022112000008466; Maeder, Adams, and Kleiser, J. Fluid Mech. 429, 187 (2001), 10.1017/S0022112000002718; Spalart, J. Fluid Mech. 187, 61 (1988), 10.1017/S0022112088000345], the present approach is based on a temporally evolving boundary layer and is specifically tailored to give results for calibration and validation of Reynolds-averaged Navier-Stokes (RANS) turbulence models. The use of a temporal homogenization simplifies the modeling, enabling straightforward extension to flows with complicating features, including cold and blowing walls. To generate data useful for calibration and validation of RANS models, special care is taken to ensure that the mean slow-growth forcing is closed in terms of the mean and other quantities that appear in standard RANS models, ensuring that there is no confounding between typical RANS closures and additional closures required for the slow-growth problem. The performance of the method is demonstrated on two problems: an essentially incompressible, zero-pressure-gradient boundary layer and a transonic boundary layer over
Qiang Zhang
2014-07-01
Full Text Available In order to directly control the premixed combustion phasing, a Jet Controlled Compression Ignition (JCCI for diesel premixed compression ignition systems is investigated. Experiments were conducted on a single cylinder natural aspirated diesel engine without EGR at 3000 rpm. Numerical models were validated by load sweep experiments at fixed spark timing. Detailed combustion characteristics were analyzed based on the BMEP of 2.18 bar. The simulation results showed that the high temperature jets of reacting active radical species issued from the ignition chamber played an important role on the onset of combustion in the JCCI system. The combustion of diesel pre-mixtures was initiated rapidly by the combustion products issued from the ignition chamber. Moreover, the flame propagation was not obvious, similar to that in Pre-mixed Charge Compression Ignition (PCCI. Consequently, spark timing sweep experiments were conducted. The results showed a good linear relationship between spark timing in the ignition chamber and CA10 and CA50, which indicated the ability for direct combustion phasing control in diesel PCCI. The NOx and soot emissions gradually changed with the decrease of spark advance angle. The maximum reduction of NOx and soot were both over 90%, and HC and CO emissions were increased.
Jacobsen, Rune Shim; Lavrinenko, Andrei; Frandsen, Lars Hagedorn
2005-01-01
We report on time-of-flight experimental measurements and numerical calculations of the group-index dispersion in a photonic crystal waveguide realized in silicon-on-insulator material. Experimentally group indices higher than 230 has been observed. Numerical 2D and 3D time-domain simulations show...
Numerical Modeling of the Fluid Flow in Continuous Casting Tundish with Different Control Devices
Zhu He
2013-01-01
Full Text Available Numerical simulations were conducted to study the melt flow under the influence of control devices in a T-type two-strand bloom caster tundish via the open source Computational Fluid Dynamics software OpenFOAM. Three different cases were studied: a bare tundish, a tundish with two pairs of baffles, and a tundish equipped with a turbulence inhibitor and a pair of baffles. Turbulence inhibitor and baffles arrangement showed an improvement of the fluid flow characteristics, yielding lower values of dead volume and higher values of plug flow. With a turbulence inhibitor, the velocity of metal which flows directly toward the tundish floor is smaller and the turbulence kinetic energy of the melt top surface is lower than the other two arrangements.
A Numerical Proof of Concept for Thermal Flow Control
V. Dragan
2017-02-01
Full Text Available In this paper computational fluid dynamics is used to provide a proof of concept for controlled flow separation using thermal wall interactions with the velocity boundary layer. A 3D case study is presented, using a transition modeling Shear Stress Transport turbulence model. The highly loaded single slot flap airfoil was chosen to be representative for a light aircraft and the flow conditions were modeled after a typical landing speed. In the baseline case, adiabatic walls were considered while in the separation control case, the top surface of the flaps was heated to 500 K. This heating lead to flow separation on the flaps and a significant alteration of the flow pattern across all the elements of the wing. The findings indicate that this control method has potential, with implications in both aeronautical as well as sports and civil engineering applications.
van den Beld, Wesley Theodorus Eduardus; van den Berg, Albert; Eijkel, Jan C.T.
2016-01-01
In this paper we present a method for the spatial control of direct graphene synthesis onto silicon dioxide by controlled dewetting. The dewetting process is controlled through a combination of using a grooved substrate and conducting copper deposition at an angle. The substrate is then treated
Beld, van den Wesley T.E.; Berg, van den Albert; Eijkel, Jan C.T.
2016-01-01
In this paper we present a method for the spatial control of direct graphene synthesis onto silicon dioxide by controlled dewetting. The dewetting process is controlled through a combination of using a grooved substrate and conducting copper deposition at an angle. The substrate is then treated usin
Direct numerical simulations and modeling of a spatially-evolving turbulent wake
Cimbala, John M.
1994-01-01
Understanding of turbulent free shear flows (wakes, jets, and mixing layers) is important, not only for scientific interest, but also because of their appearance in numerous practical applications. Turbulent wakes, in particular, have recently received increased attention by researchers at NASA Langley. The turbulent wake generated by a two-dimensional airfoil has been selected as the test-case for detailed high-resolution particle image velocimetry (PIV) experiments. This same wake has also been chosen to enhance NASA's turbulence modeling efforts. Over the past year, the author has completed several wake computations, while visiting NASA through the 1993 and 1994 ASEE summer programs, and also while on sabbatical leave during the 1993-94 academic year. These calculations have included two-equation (K-omega and K-epsilon) models, algebraic stress models (ASM), full Reynolds stress closure models, and direct numerical simulations (DNS). Recently, there has been mutually beneficial collaboration of the experimental and computational efforts. In fact, these projects have been chosen for joint presentation at the NASA Turbulence Peer Review, scheduled for September 1994. DNS calculations are presently underway for a turbulent wake at Re(sub theta) = 1000 and at a Mach number of 0.20. (Theta is the momentum thickness, which remains constant in the wake of a two dimensional body.) These calculations utilize a compressible DNS code written by M. M. Rai of NASA Ames, and modified for the wake by J. Cimbala. The code employs fifth-order accurate upwind-biased finite differencing for the convective terms, fourth-order accurate central differencing for the viscous terms, and an iterative-implicit time-integration scheme. The computational domain for these calculations starts at x/theta = 10, and extends to x/theta = 610. Fully developed turbulent wake profiles, obtained from experimental data from several wake generators, are supplied at the computational inlet, along with
An Intuitive Definition of Demand Flexibility in Direct Load Control
Tahersima, Fatemeh; Madsen, Per Printz; Andersen, Palle
2013-01-01
Two control approaches: direct and indirect control of demand side energy management in a smart grid are studied. Indirect control of energy demands is based on economic incentives. In this approach, consumers will shift their energy consumption with the benefit of a cut down in the electricity...
Zhengrong Zhang
2012-01-01
Full Text Available Numerical manifold method was applied to directly solve Navier-Stokes (N-S equations for incompressible viscous flow in this paper, and numerical manifold schemes for N-S equations coupled velocity and pressure were derived based on Galerkin weighted residuals method as well. Mixed cover with linear polynomial function for velocity and constant function for pressure was employed in finite element cover system. As an application, mixed cover 4-node rectangular manifold element has been used to simulate the incompressible viscous flow around a square cylinder in a channel. Numerical tests illustrate that NMM is an effective and high-order accurate numerical method for incompressible viscous flow N-S equations.
Numerical solution of control problems governed by nonlinear differential equations
Heinkenschloss, M. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)
1994-12-31
In this presentation the author investigates an iterative method for the solution of optimal control problems. These problems are formulated as constrained optimization problems with constraints arising from the state equation and in the form of bound constraints on the control. The method for the solution of these problems uses the special structure of the problem arising from the bound constraint and the state equation. It is derived from SQP methods and projected Newton methods and combines the advantages of both methods. The bound constraint is satisfied by all iterates using a projection, the nonlinear state equation is satisfied in the limit. Only a linearized state equation has to be solved in every iteration. The solution of the linearized problems are done using multilevel methods and GMRES.
Givi, Peyman; Madnia, Cyrus K.; Steinberger, C. J.; Frankel, S. H.
1992-01-01
The principal objective is to extend the boundaries within which large eddy simulations (LES) and direct numerical simulations (DNS) can be applied in computational analyses of high speed reacting flows. A summary of work accomplished during the last six months is presented.
Controllability of Weighted and Directed Networks with Nonidentical Node Dynamics
Linying Xiang
2013-01-01
Full Text Available The concept of controllability from control theory is applied to weighted and directed networks with heterogenous linear or linearized node dynamics subject to exogenous inputs, where the nodes are grouped into leaders and followers. Under this framework, the controllability of the controlled network can be decomposed into two independent problems: the controllability of the isolated leader subsystem and the controllability of the extended follower subsystem. Some necessary and/or sufficient conditions for the controllability of the leader-follower network are derived based on matrix theory and graph theory. In particular, it is shown that a single-leader network is controllable if it is a directed path or cycle, but it is uncontrollable for a complete digraph or a star digraph in general. Furthermore, some approaches to improving the controllability of a heterogenous network are presented. Some simulation examples are given for illustration and verification.
Design and Realization of Numerical Control Ladder Diagram Edition Software
ZHAO Haixin; MO Yimin; PAN Yunping
2006-01-01
The thesis is directed by the idea of oriented- object. Considering the basic functions that NC system Ladder Diagram editor should provide, and through theoretical research and practice, the thesis developed a set of NC system Ladder Diagram editor which can form a Ladder Diagram editor based on vector plotting, intelligently compiling, simulation. This system uses the ladder diagram symbol to express operational order and use the chart symbol series-parallel connection and the position order to express the logical relations between the operational orders, divide the ladder diagram into four parts: the stave, the line, the row and the part, uses the standard order vessel list vessel of the standard template stack (STL) to save the data which involved in the design process. This system can write PLC program by ladder diagram language and is easy to use. The compilation and simulation for PLC diagram have been achieved. It greatly improves the work-efficiency.
Direct numerical simulation of Taylor-Couette flow subjected to a radial temperature gradient
Teng, Hao; Liu, Nansheng, E-mail: lns@ustc.edu.cn; Lu, Xiyun [Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Khomami, Bamin, E-mail: bkhomami@utk.edu [Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee 37996 (United States)
2015-12-15
Direct numerical simulations have been performed to study the Taylor-Couette (TC) flow between two rotating, coaxial cylinders in the presence of a radial temperature gradient. Specifically, the influence of the buoyant force and the outer cylinder rotation on the turbulent TC flow system with the radius ratio η = 0.912 was examined. For the co-rotating TC flows with Re{sub i} (inner cylinder) =1000 and Re{sub o} (outer cylinder) =100, a transition pathway to highly turbulent flows is realized by increasing σ, a parameter signifying the ratio of buoyant to inertial force. This nonlinear flow transition involves four intriguing states that emerge in sequence as chaotic wavy vortex flow for σ = 0, wavy interpenetrating spiral flows for σ = 0.02 and 0.05, intermittent turbulent spirals for σ = 0.1 and 0.2, and turbulent spirals for σ = 0.4. Overall, the fluid motion changes from a centrifugally driven flow regime characterized by large-scale wavy Taylor vortices (TVs) to a buoyancy-dominated flow regime characterized by small-scale turbulent vortices. Commensurate changes in turbulence statistics and heat transfer are seen as a result of the weakening of large-scale TV circulations and enhancement of turbulent motions. Additionally, the influence of variation of the outer cylinder rotation, −500 < Re{sub o} < 500 in presence of buoyancy (σ = 0.1) with Re{sub i} = 1000, has been considered. Specifically, it is demonstrated that this variation strongly influences the azimuthal and axial mean flows with a weaker influence on the fluctuating fluid motions. Of special interest, here are the turbulent dynamics near the outer wall where a marked decrease of turbulence intensity and a sign inversion of the Reynolds stress R{sub rz} are observed for the strongly counter-rotating regimes (Re{sub o} = − 300 and −500). To this end, it has been shown that the underlying flow physics for this drastic modification are associated with the modification of the correlation
Han, Lanshan; Camlibel, M. Kanat; Pang, Jong-Shi; Heemels, W. P. Maurice H.
2012-01-01
This paper presents a numerical scheme for solving the continuous-time convex linear-quadratic (LQ) optimal control problem with mixed polyhedral state and control constraints. Unifying a discretization of this optimal control problem as often employed in model predictive control and that obtained
Formation Control for Unmanned Aerial Vehicles with Directed and Switching Topologies
Yahui Qi
2016-01-01
Full Text Available Formation control problems for unmanned aerial vehicle (UAV swarm systems with directed and switching topologies are investigated. A general formation control protocol is proposed firstly. Then, by variable transformation, the formation problem is transformed into a consensus problem, which can be solved by a novel matrix decomposition method. Sufficient conditions to achieve formation with directed and switching topologies are provided and an explicit expression of the formation reference function is given. Furthermore, an algorithm to design the gain matrices of the protocol is presented. Finally, numerical simulations are provided to illustrate the effectiveness of the theoretical results.
Sheridan, Rebecca; van Rooijen, Maaike; Giles, Oscar; Mushtaq, Faisal; Steenbergen, Bert; Mon-Williams, Mark; Waterman, Amanda
2017-07-27
Mathematics is often conducted with a writing implement. But is there a relationship between numerical processing and sensorimotor 'pen' control? We asked participants to move a stylus so it crossed an unmarked line at a location specified by a symbolic number (1-9), where number colour indicated whether the line ran left-right ('normal') or vice versa ('reversed'). The task could be simplified through the use of a 'mental number line' (MNL). Many modern societies use number lines in mathematical education and the brain's representation of number appears to follow a culturally determined spatial organisation (so better task performance is associated with this culturally normal orientation-the MNL effect). Participants (counter-balanced) completed two consistent blocks of trials, 'normal' and 'reversed', followed by a mixed block where line direction varied randomly. Experiment 1 established that the MNL effect was robust, and showed that the cognitive load associated with reversing the MNL not only affected response selection but also the actual movement execution (indexed by duration) within the mixed trials. Experiment 2 showed that an individual's motor abilities predicted performance in the difficult (mixed) condition but not the easier blocks. These results suggest that numerical processing is not isolated from motor capabilities-a finding with applied consequences.
NUMERICAL SIMULATION OF THIN LAYER COFFEE DRYING BY CONTROL VOLUMES
CIRO-VELÁSQUEZ, HÉCTOR J.; ABUD-CANO, LUIS C.; PÉREZ-ALEGRÍA, LUIS. R.
2010-01-01
El modelo de secado en capa delgada desarrollado por Sokhansanj y Bruce (1987) fue implementado para simular el secado de un grano de café pergamino. El modelo computacional fue definido en estado transitorio y unidimensional para una esfera de radio equivalente utilizando la técnica del volumen de control. Los resultados indicaron que el valor numérico del coeficiente de transferencia de masa es muy pequeño (orden de magnitud alrededor de 10 7 m/s) haciendo que la predicción del contenido de...
The Terahertz Controlled Duplex Isolator: Physical Grounds and Numerical Experiment
Konstantin Vytovtov
2016-01-01
Full Text Available Electromagnetic properties of an anisotropic stratified slab with an arbitrary orientation of the anisotropy axis under an oblique incidence of a plane harmonic wave are studied. The dependence of the eigenwave wavenumbers and the reflection coefficient on an anisotropy axis orientation and frequency is investigated. For the first time, the expression for the translation matrix is obtained in the compact analytical form. The controlled two-way dual-frequency (duplex isolator based on the above described slab is presented for the first time. It is based on the properties of the anisotropic structure described here but not on the Faraday effect.
Multiple Property Cross Direction Control of Paper Machines
Markku Ohenoja
2011-07-01
Full Text Available Cross direction (CD control in sheet-forming process forms a challenging problem with high dimensions. Accounting the interactions between different properties and actuators, the dimensionality increases further and also computational issues arise. We present a multiple property controller feasible to be used especially with imaging measurements that provide high sampling frequency and therefore enable short control interval. The simulation results state the benefits of multiple property CD control over single property control and single property control using full feedforward compensation. The controller presented may also be tuned in automated manner and the results demonstrate the effect of tuning on input saturation.
Numerical solutions of a control problem governed by functional differential equations
Banks, H. T.; Thrift, P. R.; Burns, J. A.; Cliff, E. M.
1978-01-01
A numerical procedure is proposed for solving optimal control problems governed by linear retarded functional differential equations. The procedure is based on the idea of 'averaging approximations', due to Banks and Burns (1975). For illustration, numerical results generated on an IBM 370/158 computer, which demonstrate the rapid convergence of the method are presented.
NUMERICAL SIMULATION OF THIN LAYER COFFEE DRYING BY CONTROL VOLUMES
HÉCTOR J. CIRO-VELÁSQUEZ
2010-01-01
Full Text Available El modelo de secado en capa delgada desarrollado por Sokhansanj y Bruce (1987 fue implementado para simular el secado de un grano de café pergamino. El modelo computacional fue definido en estado transitorio y unidimensional para una esfera de radio equivalente utilizando la técnica del volumen de control. Los resultados indicaron que el valor numérico del coeficiente de transferencia de masa es muy pequeño (orden de magnitud alrededor de 10 7 m/s haciendo que la predicción del contenido de humedad sea muy sensible a este valor. Además, los resultados de la simulación mostraron que la predicción del modelo numérico fue favorablemente similar a los datos experimentales dados en la literatura.
Drost, Kevin; Apte, Sourabh
2010-11-01
Direct numerical simulations are performed to investigate the effect of a movable leading edge on the unsteady flow at high angles of attack over a flat, thin airfoil at Reynolds number of 14700 based on the chord length. The leading edge of the airfoil is hinged at one-third chord length allowing dynamic variations in the effective angle of attack through specified oscillations (or flapping). A fictitious-domain based finite volume approach [(Apte et al. (JCP 2009)] is used to compute the flow over an airfoil with a flapping leading edge on a fixed background mesh. Cases were run at 20 degrees angle of attack to study the drag and lift characteristics with sinusoidal flapping of the leading edge about the hinge over a range of reduced frequencies (k=πf c/U∞ = 0.57- 5.7). It is shown that high-frequency low amplitude actuation of the leading edge significantly alters the leading edge boundary-layer and vortex shedding and increases the mean lift- to-drag ratio. The concept of an actuated leading-edge flap has potential for development of control techniques to stabilize and maneuver low-Reynolds number micro-air vehicles in response to unsteady perturbations.
Numerical Simulation of Transit-Time Ultrasonic Flowmeters by a Direct Approach.
Luca, Adrian; Marchiano, Regis; Chassaing, Jean-Camille
2016-06-01
This paper deals with the development of a computational code for the numerical simulation of wave propagation through domains with a complex geometry consisting in both solids and moving fluids. The emphasis is on the numerical simulation of ultrasonic flowmeters (UFMs) by modeling the wave propagation in solids with the equations of linear elasticity (ELE) and in fluids with the linearized Euler equations (LEEs). This approach requires high performance computing because of the high number of degrees of freedom and the long propagation distances. Therefore, the numerical method should be chosen with care. In order to minimize the numerical dissipation which may occur in this kind of configuration, the numerical method employed here is the nodal discontinuous Galerkin (DG) method. Also, this method is well suited for parallel computing. To speed up the code, almost all the computational stages have been implemented to run on graphical processing unit (GPU) by using the compute unified device architecture (CUDA) programming model from NVIDIA. This approach has been validated and then used for the two-dimensional simulation of gas UFMs. The large contrast of acoustic impedance characteristic to gas UFMs makes their simulation a real challenge.
Tobacco Products Directive - new opportunities for EU tobacco control
Anna-Eva Ampelas
2016-03-01
Full Text Available The Tobacco Products Directive 2014/40/EU was adopted in 2014 and needs to be transposed by Member States by 20 May 2016. It sets out ambitious tobacco control measures in the areas of ingredients, packaging & labelling, electronic cigarettes and tracking & tracing. The new Directive focuses on preventing young people from taking up smoking.
Strategic directions of government control of national information space
Ірина Романівна Боднар
2015-03-01
Full Text Available The main directions of state information politics are considered. The legal framework and functioning of national information sphere is analyzed. The basic directions of government control of Ukraine's information space are considered. The approaches to the efficiency of the national information system are proposed
Albets-Chico, X., E-mail: xalbets@ucy.ac.c [Computational Science Laboratory - UCY-CompSci, Department of Mechanical and Manufacturing Engineering, University of Cyprus, 75 Kallipoleos, Nicosia 1678 (Cyprus); Votyakov, E.V.; Radhakrishnan, H. [Computational Science Laboratory - UCY-CompSci, Department of Mechanical and Manufacturing Engineering, University of Cyprus, 75 Kallipoleos, Nicosia 1678 (Cyprus); Kassinos, S., E-mail: kassinos@ucy.ac.c [Computational Science Laboratory - UCY-CompSci, Department of Mechanical and Manufacturing Engineering, University of Cyprus, 75 Kallipoleos, Nicosia 1678 (Cyprus)
2011-01-15
We investigate the effects of the consistency of strong fringing decreasing magnetic fields on numerical simulations of classical experimental data. Studies about fringing magnetic fields have attracted the attention of the fusion community in relation to the design of the liquid-metal flow blankets for fusion nuclear reactors. One-dimensional fitting functions neglecting magnetic field consistency have been adopted in previous numerical studies. Thanks to complete three-dimensional numerical simulations, the effect of the physical consistency of the magnetic field on fluid flow can now be assessed. We present a technique for generating discretely consistent magnetic fields based on classical one-dimensional fittings. With this method, key magnetic field features, such as the bending of the magnetic lines, are accurately reproduced and, therefore, the validity of the technique is established. Consistent and inconsistent magnetic fields have been tested under very strong decreasing magnetic fields with insulating and conducting walls using direct numerical simulations. The results show a moderate, but systematic, improvement of the predictions with respect to the experiments. As an example, the repeated under-prediction of the peak transverse pressure gradient, observed in the results of asymptotic methods and of direct numerical simulations, is explained by the historically neglected consistency of the fringing magnetic field.
DIRECT TORQUE CONTROL FOR INDUCTION MOTOR USING INTELLIGENT TECHNIQUES
R.Toufouti
2007-09-01
Full Text Available In this paper, we propose two approach intelligent techniques of improvement of Direct Torque Control (DTC of Induction motor such as fuzzy logic (FL and artificial neural network (ANN, applied in switching select voltage vector .The comparison with conventional direct torque control (DTC, show that the use of the DTC_FL and DTC_ANN, reduced the torque, stator flux, and current ripples. The validity of the proposed methods is confirmed by the simulative results.
Development of precision numerical controlled high vacuum electron beam welding machine
Li Shao Lin
2002-01-01
The structure, main technical parameters and characteristics of the precision numerical controlled high vacuum electron beam welding machine are introduced. The design principle, some features and solutions to some key technique problems of this new type machine are described
Laboratory investigation and direct numerical simulation of wind effect on steep surface waves
Troitskaya, Yuliya; Sergeev, Daniil; Druzhinin, Oleg; Ermakova, Olga
2015-04-01
particles 20 μm in diameter were injected into the airflow. The images of the illuminated particles were photographed with a digital CCD video camera at a rate of 1000 frames per second. For the each given parameters of wind and waves, a statistical ensemble of 30 movies with duration from 200 to 600 ms was obtained. Individual flow realizations manifested the typical features of flow separation, while the average vector velocity fields obtained by the phase averaging of the individual vector fields were smooth and slightly asymmetrical, with the minimum of the horizontal velocity near the water surface shifted to the leeward side of the wave profile, but do not demonstrate the features of flow separation. The wave-induced pressure perturbations, averaged over the turbulent fluctuations, were retrieved from the measured velocity fields, using the Reynolds equations. It ensures sufficient accuracy for study of the dependence of the wave increment on the wave amplitude. The dependences of the wave growth rate on the wave steepness are weakly decreasing, serving as indirect proof of the non-separated character of flow over waves. Also direct numerical simulation of the airflow over finite amplitude periodic surface wave was performed. In the experiments the primitive 3-dimensional fluid mechanics equations were solved in the airflow over curved water boundary for the following parameters: the Reynolds number Re=15000, the wave steepness ka=0-0.2, the parameter c/u*=0-10 (where u* is the friction velocity and c is the wave celerity). Similar to the physical experiment the instant realizations of the velocity field demonstrate flow separation at the crests of the waves, but the ensemble averaged velocity fields had typical structures similar to those excising in shear flows near critical levels, where the phase velocity of the disturbance coincides with the flow velocity. The wind growth rate determined by the ensemble averaged wave-induced pressure component in phase of the
A Direct Numerical Reconstruction Algorithm for the 3D Calderón Problem
Delbary, Fabrice; Hansen, Per Christian; Knudsen, Kim
2011-01-01
In three dimensions Calderón's problem was addressed and solved in theory in the 1980s in a series of papers, but only recently the numerical implementation of the algorithm was initiated. The main ingredients in the solution of the problem are complex geometrical optics solutions to the conducti...
Design and Comparison Direct Torque Control Techniques for Induction Motors
Blaabjerg, Frede; Kazmierkowski, Marian P.; Zelechowski, Marcin
2005-01-01
In this paper a comparison of two significant control methods of induction motor are presented. The first one is a classical Direct Torque and Flux Control (DTC) and is compared with a scheme, which uses Space Vector Modulator (DTC-SVM). A comparison in respect to dynamic and steady state...
Cryptanalysis and improvement of controlled secure direct communication
Kao Shih-Hung; Hwang Tzonelih
2013-01-01
This paper points out that,due to a flaw in the sender's encoding,the receiver in Gao et al.'s controlled quantum secret direct communication (CQSDC) protocol [Chin.Phys.14 (2005),No.5,p.893] can reveal the whole secret message without permission from the controller.An improvement is proposed to avoid this flaw.
IPMSM Motion-Sensorless Direct Torque and Flux Control
Pitict, Christian Ilie; Andreescu, Gheorghe-Daniel; Blaabjerg, Frede
2005-01-01
The paper presents a rather comprehensive implementation of a wide speed motion-sensorless control of IPMSM drives via direct torque and flux control (DTFC) with space vector modulation (SVM). Signal injection with only one D-module vector filter and phase-locked loop (PLL) observer is used at low...
IPMSM Motion-Sensorless Direct Torque and Flux Control
Pitict, Christian Ilie; Andreescu, Gheorghe-Daniel; Blaabjerg, Frede
2005-01-01
The paper presents a rather comprehensive implementation of a wide speed motion-sensorless control of IPMSM drives via direct torque and flux control (DTFC) with space vector modulation (SVM). Signal injection with only one D-module vector filter and phase-locked loop (PLL) observer is used at low...
A Direct Feedback Control Based on Fuzzy Recurrent Neural Network
李明; 马小平
2002-01-01
A direct feedback control system based on fuzzy-recurrent neural network is proposed, and a method of training weights of fuzzy-recurrent neural network was designed by applying modified contract mapping genetic algorithm. Computer simul ation results indicate that fuzzy-recurrent neural network controller has perfect dynamic and static performances .
Eltaweel, Ahmed
Prediction and reduction of airframe noise are critically important to the development of quieter civil transport aircraft. The key to noise reduction is a full understanding of the underlying noise source mechanisms. In this study, tandem cylinders in cross-flow as an idealization of a complex aircraft landing gear configuration are considered to investigate the noise generation and its reduction by flow control using single dielectric barrier discharge plasma actuators. The flow over tandem cylinders at ReD = 22, 000 with and without plasma actuation is computed using large-eddy simulation. The plasma effect is modeled as a body force obtained from a semi-empirical model. The flow statistics and surface pressure frequency spectra show excellent agreement with previous experimental measurements. For acoustic calculations, a boundary-element method is implemented to solve the convected Lighthill equation. The solution method is validated in a number of benchmark problems including flows over a cylinder, a rod-airfoil configuration, and a sphere. With validated flow field and acoustic solver, acoustic analysis is performed for the tandem-cylinder configuration to extend the experimental results and understand the mechanisms of noise generation and its control. Without flow control, the acoustic field is dominated by the interaction between the downstream cylinder and the upstream wake. Through suppression of vortex shedding from the upstream cylinder, the interaction noise is reduced drastically by the plasma flow control, and the vortex-shedding noise from the downstream cylinder becomes equally important. At a free-stream Mach number of 0.2, the peak sound pressure level is reduced by approximately 16 dB. This suggests the viability of plasma actuation for active control of airframe noise. The numerical investigation is extended to the noise from a realistic landing gear experimental model. Coarse-mesh computations are performed, and preliminary results are
Direct Model Reference Adaptive Control for a Magnetic Bearing
Durling, Mike [Rensselaer Polytechnic Inst., Troy, NY (United States)
1999-11-01
A Direct Model Reference Adaptive Controller (DMRAC) is applied to a magnetic bearing test stand. The bearing of interest is the MBC 500 Magnetic Bearing System manufactured by Magnetic Moments, LLC. The bearing model is presented in state space form and the system transfer function is measured directly using a closed-loop swept sine technique. Next, the bearing models are used to design a phase-lead controller, notch filter and then a DMRAC. The controllers are tuned in simulations and finally are implemented using a combination of MATLAB, SIMULINK and dSPACE. The results show a successful implementation of a DMRAC on the magnetic bearing hardware.
Optimization of controllability and robustness of complex networks by edge directionality
Liang, Man; Jin, Suoqin; Wang, Dingjie; Zou, Xiufen
2016-09-01
Recently, controllability of complex networks has attracted enormous attention in various fields of science and engineering. How to optimize structural controllability has also become a significant issue. Previous studies have shown that an appropriate directional assignment can improve structural controllability; however, the evolution of the structural controllability of complex networks under attacks and cascading has always been ignored. To address this problem, this study proposes a new edge orientation method (NEOM) based on residual degree that changes the link direction while conserving topology and directionality. By comparing the results with those of previous methods in two random graph models and several realistic networks, our proposed approach is demonstrated to be an effective and competitive method for improving the structural controllability of complex networks. Moreover, numerical simulations show that our method is near-optimal in optimizing structural controllability. Strikingly, compared to the original network, our method maintains the structural controllability of the network under attacks and cascading, indicating that the NEOM can also enhance the robustness of controllability of networks. These results alter the view of the nature of controllability in complex networks, change the understanding of structural controllability and affect the design of network models to control such networks.
Correction to the crack extension direction in numerical modelling of mixed mode crack paths
Lucht, Tore; Aliabadi, M.H.
2007-01-01
In order to avoid introduction of an error when a local crack-growth criterion is used in an incremental crack growth formulation, each straight crack extension would have to be infinitesimal or have its direction corrected. In this paper a new procedure to correct the crack extension direction i...
Mei ZHAN; He YANG; Liang HUANG
2006-01-01
Springback is one of important factors influencing the forming quality of. numerical control(NC)bending of thin-walled tube. In this paper, a numerical-analytic method for springback angle prediction of the process was put forward. The method is based on springback angle model derived using analytic method and simulation results from three-dimensional(3D)rigid-plastic finite element method(FEM). The method is validated through comparison with experimental results. The features of the method are as follows:(1)The method is high in efficiency because it combines advantages of rigid-plastic FEM and analytic method.(2)The method is satisfactory in accuracy, since the field variables used in the model is resulting from 3D rigid-plastic FEM solution, and the effects both of axial force and strain neutral axis shift have been included.(3)Research on multi-factor effects can be carried out using the method due to its advantage inheriting from rigid-plastic FEM. The method described here is also of general significance to other bending processes.
Direct Numerical Simulation of the Rayleigh-Taylor Instability with the Spectral Element Method
ZHANG Xu; TAN Duo-Wang
2009-01-01
A novel method is proposed to simulate Rayleigh-Taylor instabilities using a specially-developed unsteady threedimensional high-order spectral element method code.The numerical model used consists of Navier-Stokes equations and a transport-diffusive equation.The code is first validated with the results of linear stability perturbation theory.Then several characteristics of the Rayleigh-Taylor instabjJjties are studied using this three-dimensional unsteady code,inducling instantaneous turbulent structures and statistical turbulent mixing heights under different initial wave numbers.These results indicate that turbulent structures ofRayleigh-Taylor instabilities are strongly dependent on the initial conditions.The results also suggest that a high-order numerical method should provide the capability of sir.ulating small scale fluctuations of Rayleigh-Taylor instabilities of turbulent flows.
Direct Numerical Simulation of Electrokinetic Instability and Transition to Chaotic Motion
Demekhin, E A; Shelistov, V S
2013-01-01
A new type of instability - electrokinetic instability - and an unusual transition to chaotic motion near a charge-selective surface was studied by numerical integration of the Nernst-Planck-Poisson-Stokes system and a weakly nonlinear analysis near the threshold of instability. Two kinds of initial conditions were considered: (a) white noise initial conditions to mimic "room disturbances" and subsequent natural evolution of the solution; (b) an artificial monochromatic ion distribution with a fixed wave number to simulate regular wave patterns. The results were studied from the viewpoint of hydrodynamic stability and bifurcation theory. The threshold of electroconvective movement was found by the linear spectral stability theory, the results of which were confirmed by numerical simulation of the entire system. The following regimes, which replace each other as the potential drop between the selective surfaces increases, were obtained: one-dimensional steady solution; two-dimensional steady electroconvective ...
Numerical and Experimental Modal Control of Flexible Rotor Using Electromagnetic Actuator
Edson Hideki Koroishi
2014-01-01
Full Text Available The present work is dedicated to active modal control applied to flexible rotors. The effectiveness of the corresponding techniques for controlling a flexible rotor is tested numerically and experimentally. Two different approaches are used to determine the appropriate controllers. The first uses the linear quadratic regulator and the second approach is the fuzzy modal control. This paper is focused on the electromagnetic actuator, which in this case is part of a hybrid bearing. Due to numerical reasons it was necessary to reduce the size of the model of the rotating system so that the design of the controllers and estimator could be performed. The role of the Kalman estimator in the present contribution is to estimate the modal states of the system and to determine the displacement of the rotor at the position of the hybrid bearing. Finally, numerical and experimental results demonstrate the success of the methodology conveyed.
de Groh, Henry C., III; Yao, Minwu
1994-01-01
A numerical and experimental study of the growth of succinonitrile (SCN) using a horizontal Bridginan furnace and transparent glass ampoule was conducted. Two experiments were considered: one in which the temperature profile was fixed relative to the ampoule (no-growth case); and a second in which the thermal profile was translated at a constant rate (steady growth case). Measured temperature profiles on the outer surface of the ampoule were used as thermal boundary conditions for the modelling. The apparent heat capacity formulation combined with the variable viscositymeth was used to model the phase change in SeN. Both 2-D and 3-D models were studied and numerical solutions obtained using the commercial finite element code, FIDAP1. Comparison of the numerical results to experimental data showed excellent agreement. The complex 3-D shallow-cavity flow in the melt, differences between 2-D and 3-D models, effects of natural convection on the thermal gradient and shape of the solid/liquid interface, and the sensitivity of simulations to specific assumptions, are also discussed.
Beyond Control Panels: Direct Manipulation for Visual Analytics
Endert, Alexander; Bradel, Lauren; North, Chris
2013-07-19
Information Visualization strives to provide visual representations through which users can think about and gain insight into information. By leveraging the visual and cognitive systems of humans, complex relationships and phenomena occurring within datasets can be uncovered by exploring information visually. Interaction metaphors for such visualizations are designed to enable users direct control over the filters, queries, and other parameters controlling how the data is visually represented. Through the evolution of information visualization, more complex mathematical and data analytic models are being used to visualize relationships and patterns in data – creating the field of Visual Analytics. However, the expectations for how users interact with these visualizations has remained largely unchanged – focused primarily on the direct manipulation of parameters of the underlying mathematical models. In this article we present an opportunity to evolve the methodology for user interaction from the direct manipulation of parameters through visual control panels, to interactions designed specifically for visual analytic systems. Instead of focusing on traditional direct manipulation of mathematical parameters, the evolution of the field can be realized through direct manipulation within the visual representation – where users can not only gain insight, but also interact. This article describes future directions and research challenges that fundamentally change the meaning of direct manipulation with regards to visual analytics, advancing the Science of Interaction.
Direct numerical simulation of electrokinetic instability and transition to chaotic motion
Demekhin, E. A., E-mail: edemekhi@gmail.com [Laboratory of Micro- and Nanofluidics, Moscow State University, Moscow 119192 (Russian Federation); Department of Computation Mathematics and Computer Science, Kuban State University, Krasnodar 350040 (Russian Federation); Institute of Mechanics, Moscow State University, Moscow 117192 (Russian Federation); Nikitin, N. V. [Institute of Mechanics, Moscow State University, Moscow 117192 (Russian Federation); Shelistov, V. S. [Institute of Mechanics, Moscow State University, Moscow 117192 (Russian Federation); Scientific Research Department, Kuban State University, Krasnodar 350040 (Russian Federation)
2013-12-15
A new type of instability—electrokinetic instability—and an unusual transition to chaotic motion near a charge-selective surface (semiselective electric membrane, electrode, or system of micro-/nanochannels) was studied by the numerical integration of the Nernst-Planck-Poisson-Stokes system and a weakly nonlinear analysis near the threshold of instability. A special finite-difference method was used for the space discretization along with a semi-implicit 31/3 -step Runge-Kutta scheme for the integration in time. Two kinds of initial conditions were considered: (a) white-noise initial conditions to mimic “room disturbances” and subsequent natural evolution of the solution, and (b) an artificial monochromatic ion distribution with a fixed wave number to simulate regular wave patterns. The results were studied from the viewpoint of hydrodynamic stability and bifurcation theory. The threshold of electroconvective movement was found by the linear spectral stability theory, the results of which were confirmed by numerical simulation of the entire system. Our weakly nonlinear analysis and numerical integration of the entire system predict possibility of both kinds of bifurcations at the critical point, supercritical and subcritical, depending on the system parameters. The following regimes, which replace each other as the potential drop between the selective surfaces increases, were obtained: one-dimensional steady solution, two-dimensional steady electroconvective vortices (stationary point in a proper phase space), unsteady vortices aperiodically changing their parameters (homoclinic contour), periodic motion (limit cycle), and chaotic motion. The transition to chaotic motion does not include Hopf bifurcation. The numerical resolution of the thin concentration polarization layer showed spike-like charge profiles along the surface, which could be, depending on the regime, either steady or aperiodically coalescent. The numerical investigation confirmed the
Control of directional change after mechanical stimulation in Drosophila
Zhou Yating
2012-10-01
Full Text Available Abstract Background Proper adjustment of moving direction after external mechanical stimulation is essential for animals to avoid danger (e.g. predators, and thus is vital for survival. This process involves sensory inputs, central processing and motor outputs. Recent studies have made considerable progress in identifying mechanosensitive neurons and mechanosensation receptor proteins. Our understandings of molecular and cellular mechanisms that link mechanosensation with the changes in moving direction, however, remain limited. Results In this study, we investigate the control of movement adjustment in Drosophila. In response to gentle touch at the anterior segments, Drosophila larvae reorient and select a new direction for forward movement. The extent of change in moving direction is correlated with the intensity of tactile stimuli. Sensation of gentle touch requires chordotonal organs and class IV da neurons. Genetic analysis indicates an important role for the evolutionarily conserved immunoglobulin (Ig superfamily protein Turtle (Tutl to regulate touch-initiated directional change. Tutl is required specifically in post-mitotic neurons at larval stage after the completion of embryonic development. Circuit breaking analysis identified a small subset of Tutl-positive neurons that are involved in the adjustment of moving direction. Conclusion We identify Tutl and a small subset of CNS neurons in modulating directional change in response to gentle touch. This study presents an excellent starting point for further dissection of molecular and cellular mechanisms controlling directional adjustment after mechanical stimulation.
NUMERICAL SIMULATION OF SEA SURFACE DIRECTIONAL WAVE SPECTRA UNDER TYPHOON WIND FORCING
无
2008-01-01
Numercial simulation of sea surface directional wave spectra under typhoon wind forcing in the South China Sea (SCS) was carreid out using the WAVEWATCH-III wave model. The simulation was run for 210 h until the Typhoon Damrey (2005) approached Vietnam. The simulated data were compared with buoy observations, which were obtained in the northwest sea area of Hainan Island. The results show that the significant wave height, wave direction, wave length and frequency spetra agree well with buoy observations. The spatial characteristics of the signifciant wave height, mean wave period, mean wave length, wave age and directional spectra depend on the relative position from the typhoon center. Also, the misalignment between local wind and wave directions were investigated.
Fedioun, Ivan; Lardjane, Nicolas; Gökalp, Iskender
2001-12-01
Some recent studies on the effects of truncation and aliasing errors on the large eddy simulation (LES) of turbulent flows via the concept of modified wave number are revisited. It is shown that all the results obtained for nonlinear partial differential equations projected and advanced in time in spectral space are not straightforwardly applicable to physical space calculations due to the nonequivalence by Fourier transform of spectral aliasing errors and numerical errors on a set of grid points in physical space. The consequences of spectral static aliasing errors on a set of grid points are analyzed in one dimension of space for quadratic products and their derivatives. The dynamical process that results through time stepping is illustrated on the Burgers equation. A method based on midpoint interpolation is proposed to remove in physical space the static grid point errors involved in divergence forms. It is compared to the sharp filtering technique on finer grids suggested by previous authors. Global performances resulting from combination of static aliasing errors and truncation errors are then discussed for all classical forms of the convective terms in Navier-Stokes equations. Some analytical results previously obtained on the relative magnitude of subgrid scale terms and numerical errors are confirmed with 3D realistic random fields. The physical space dynamical behavior and the stability of typical associations of numerical schemes and forms of nonlinear terms are finally evaluated on the LES of self-decaying homogeneous isotropic turbulence. It is shown that the convective form (if conservative properties are not strictly required) associated with highly resolving compact finite difference schemes provides the best compromise, which is nearly equivalent to dealiased pseudo-spectral calculations.
Direct numerical simulation of rotating fluid flow in a closed cylinder
Sørensen, Jens Nørkær; Christensen, Erik Adler
1995-01-01
, is validated against experimental visualizations of both transient and stable periodic flows. The complexity of the flow problem is illuminated numerically by injecting flow tracers into the flow domain and following their evolution in time. The vortex dynamics appears as stretching, folding and squeezing...... to three multiple solutions for the same Reynolds number, and to contain four discernible branches. The transition to strange attractor behavior was identified as a nontrivial Ruelle-Takens transition through a transient torus. The various solution branches of the rotating flow problem are illustrated...
无
1999-01-01
Directional solidification continuous casting (DSCC) process is a new manufacturing technology for metal- lic materials which combines advantages of both directional solidification technology and continuous casting technolo- gy. Unlimited long shaped metal with directionally solidifying microstructure can be produced by this process. It is experimentally shown that controlling condition of stable and continuous growth of single crystal structure means the precise control of the location of the S/L interface, which is affected and determined by seven process parameters. Moreover, these parameters are also interacted each other, so the disturbance of any parameters may cause the fail- ure of controlling of S/L interface. In this paper, on the basis of analyzing the forming conditions of continuously di- rectional microstructures in DSCC process, the control model of DSCC procedure by neural network control (NNC) method was proposed and discussed. Combining with the experiments, we first used the computer to simulate the effects of the solidification parameters on destination control variable (S/L interface) and the interactions among these parameters during DSCC procedure. Secondly many training samples necessary for neural network calculation can be obtained through the simulation. Moreover, these samples are inputted into neural network software (NNs) and trained, then the control model can be built up.
Active controlled muscles in numerical model of human arm for movement in two degrees of freedom
Budziszewski, P.; Nunen, E. van; Mordaka, J.K.; Kȩdzior, K.
2008-01-01
This paper describes the development of numerical model of human upper extremity able to perform movements and stabilization tasks in two degrees of freedom as a result of muscle activation controlled by a PID-based controller. These tasks are defined by functions of specified angle for every degree
Data-Driven Predictive Direct Load Control of Refrigeration Systems
Shafiei, Seyed Ehsan; Knudsen, Torben; Wisniewski, Rafal
2015-01-01
A predictive control using subspace identification is applied for the smart grid integration of refrigeration systems under a direct load control scheme. A realistic demand response scenario based on regulation of the electrical power consumption is considered. A receding horizon optimal control...... is proposed to fulfil two important objectives: to secure high coefficient of performance and to participate in power consumption management. Moreover, a new method for design of input signals for system identification is put forward. The control method is fully data driven without an explicit use of model...
Nonlinear Direct Robust Adaptive Control Using Lyapunov Method
Chunbo Xiu
2013-07-01
Full Text Available The problem of robust adaptive stabilization of a class of multi-input nonlinear systems with arbitrary unknown parameters and unknown structure of bounded variation have been considered. By employing the direct adaptive and control Lyapunov function method, a robust adaptive controller is designed to complete the globally adaptive stability of the system states. By employing our result, a kind of nonlinear system is analyzed, the concrete form of the control law is given and the meaningful quadratic control Lyapunov function for the system is constructed. Simulation of parallel manipulator is provided to illustrate the effectiveness of the proposed method.
Stelian, Carmen; Duffar, Thierry; Nicoara, Irina
2003-07-01
The effect of Bridgman furnace configuration on the temperature field, melt convection and the solute distribution in the resulting crystal are experimentally and numerically analyzed for the semiconductor diluted alloy solidification. The governing equations of the heat and mass transfer are solved by using the finite element method with help of the commercial software FIDAP ®. Two different solidification experiments of Ga 1- xIn xSb ( x=0.01 and 0.04) are simulated in order to compare the numerical results for thermal, velocity and solute fields. The central objective of the work is to give the conditions for which a more uniform distribution of the solute in the crystal can be obtained. It is found that crystals obtained in conditions of a strong convective regime in the vicinity of the solid-liquid interface are more homogeneous radially and on a significant length than the crystals for which solidification occurred in a quasi-diffusive regime. The results, in terms of axial and radial segregation, are compared to experimental chemical analysis.
Direct numerical simulation of fluid-particle mass, momentum, and heat tranfers in reactive systems.
Hammouti, Abdelkader; Wachs, Anthony
2015-11-01
Many industrial processes like coal combustion, catalytic cracking, gas phase polymerization reactors and more recently biomass gasification and chemical looping involve two-phase reactive flows in which the continuous phase is a fluid and the dispersed phase consists of rigid particles. Improving both the design and the operating conditions of these processes represents a major scientific and industrial challenge in a context of markedly rising energy cost and sustainable development. Thus, it is above all important to better understand the coupling of hydrodynamic, chemical and thermal phenomena in those flows in order to be able to predict them reliably. The aim of our work is to build up a multi-scale modelling approach of reactive particulate flows and at first to focus on the development of a microscopic-scale including heat and mass transfers and chemical reactions for the prediction of particle-laden flows in dense and dilute regimes. A first step is the upgrading and the validation of our numerical tools via analytical solutions or empirical correlations when it is feasible. These couplings are implemented in a massively parallel numerical code that already enable to take a step towards the enhanced design of semi-industrial processes.
Song, Bo; Wen, Peng; Ahfock, Tony; Li, Yan
2016-01-01
This study constructed a series of high-resolution realistic human-head models with brain tumors, and numerically investigated the influence of brain tumor's location and grade on the current distributions, under different electrode montages during tDCS. The threshold area and the peak current density were also derived and analyzed in the region of interest. The simulation result showed that it is safe to apply tDCS on the patients with brain tumors to treat their neuropsychiatric conditions and cancer pain caused by the tumor; although considerable changes of the current distributions are induced by the presence of a brain tumor. In addition, several observations on the global and local influences of tumor grade and possible edema have been made as well. These findings should be helpful for researchers and clinical doctors to treat patients with brain tumors. This study is also the first numerical study to fill in the gap of tDCS applications on the patients with brain tumors.
Controlled Directional Growth of TiO2 Nanotubes
In, Su-il; Hou, Yidong; Abrams, Billie
2010-01-01
We demonstrate how the anodization direction and growth rate of vertically aligned, highly ordered TiO2 nanotube (NT) arrays can be controlled and manipulated by the local concentration of O-2 in the electrolyte. This leads to the growth of highly active TiO2 NT arrays directly on nonconducting...... substrates in a single step. By controlling the oxygen concentration, the electrical contact to the titanium film can be preserved until the entire film is anodized. This approach to growing transparent TiO2 NT films yields possibilities for using glass without any transparent conducting oxide coating...
Direct SQP-methods for solving optimal control problems with delays
Goellmann, L.; Bueskens, C.; Maurer, H.
1994-12-31
The maximum principle for optimal control problems with delays leads to a boundary value problem (BVP) which is retarded in the state and advanced in the costate function. Based on shooting techniques, solution methods for this type of BVP have been proposed. In recent years, direct optimization methods have been favored for solving control problems without delays. Direct methods approximate the control and the state over a fixed mesh and solve the resulting NLP-problem with SQP-methods. These methods dispense with the costate function and have shown to be robust and efficient. In this paper, we propose a direct SQP-method for retarded control problems. In contrast to conventional direct methods, only the control variable is approximated by e.g. spline-functions. The state is computed via a high order Runge-Kutta type algorithm and does not enter explicitly the NLP-problem through an equation. This approach reduces the number of optimization variables considerably and is implementable even on a PC. Our method is illustrated by the numerical solution of retarded control problems with constraints. In particular, we consider the control of a continuous stirred tank reactor which has been solved by dynamic programming. This example illustrates the robustness and efficiency of the proposed method. Open questions concerning sufficient conditions and convergence of discretized NLP-problems are discussed.
Robust direct adaptive fuzzy control for nonlinear MIMO systems
ZHANG Huaguang; ZHANG Mingjun
2006-01-01
For a class of nonlinear multi-input multi-output systems with uncertainty, a robust direct adaptive fuzzy control scheme was proposed. The feedback control law and adaptive law for parameters were derived based on Lyapunov design approach. The overall control scheme can guarantee that the tracking error converges in the small neighborhood of origin, and all signals of the closed-loop system are uniformly bounded. The main advantage of the proposed control scheme is that in each subsystem only one parameter vector needs to be adjusted on-line in the adaptive mechanism, and so the on-line computing burden is reduced. In addition, the proposed control scheme is a smooth control with no chattering phenomena. A simulation example was proposed to demonstrate the effectiveness of the proposed control algorithm.
A numerical method for solving optimal control problems using state parametrization
Mehne, H.; Borzabadi, A.
2006-06-01
A numerical method for solving a special class of optimal control problems is given. The solution is based on state parametrization as a polynomial with unknown coefficients. This converts the problem to a non-linear optimization problem. To facilitate the computation of optimal coefficients, an improved iterative method is suggested. Convergence of this iterative method and its implementation for numerical examples are also given.
Experimental Study and Numerical Simulation of Directionally Solidified Turbine Blade Casting
Jing YU; Qingyan XU; Baicheng LIU; Jiarong LI; Hailong YUAN; Haipeng JIN
2008-01-01
The directional solidification process of turbine blade sample castings was investigated in the work. Variable withdrawal rates were used in one withdrawal process and compared with the other using uniform rate. A mathematical model for heat radiation transfer and microstructure simulation of directional solidification process was developed based on CA-FD method. The temperature distribution and microstructure were simulated and compared with the experimental results. The stray grains were predicted and compared with the experimental results. The uneven temperature distribution of platform was the main reason of the formation of stray grains.
Global Observer-Based Attitude Controller Using Direct Inertial Measurements
Saâdi Bouhired
2014-04-01
Full Text Available In this work, we address the problem of global attitude control using direct inertial measurements. When using direct inertial measurement to observe the rigid body attitude, it is shown that due to a geometrical obstruction, it is impossible to achieve global asymptotic stability. In fact, for a particular initial condition the tracking error quaternion converges to a pure imaginary quaternion formed by an eigenvector of a characteristic matrix related to the inertial constant and known vectors. Our proposition consists of adding a dynamic signal to force the rigid body to escape from such a situation. The proposed observer-based controller is synthesized based on a single Lyapunov function and a stability analysis shows that the controller stabilizes globally and asymptotically the rigid body attitude at the desired one. The effectiveness of the proposed observer-based controller is confirmed by simulation results.
Ilic, C; Chadwick, A; Helm-Petersen, Jacob
2000-01-01
Recent studies of advanced directional analysis techniques have mainly centred on incident wave fields. In the study of coastal structures, however, partially reflective wave fields are commonly present. In the near structure field, phase locked methods can be successfully applied. In the far fie...
Direct numerical simulation of three-dimensional coherent structure in plane mixing layer
无
2001-01-01
The three-dimensional temporally evolving plane mixing layer is sinulated by directly solying the Navier-Stokes equations using pseudo-spectral method. The process of loss of stability, and the formation paring, and development of vortex are presented. The simulated result shows that the evolving characteristics of coherent structure are important mechanism of growing and entrainment of mixing layer.
Ran, Dechao; Chen, Xiaoqian; Misra, Arun K.
2017-07-01
This paper investigates the finite time coordinated formation control problem for spacecraft formation flying (SFF) under the assumption of directed communication topology. By using the neighborhood state measurements, a robust finite time coordinated formation controller is firstly designed based on the nonsingular terminal sliding mode surface. To address the special case that the desired trajectory of the formation is only accessible to a subset of spacecraft in the formation, an adaptive finite time coordinated formation controller is also proposed by designing a novel sliding mode surface. In both cases, the external disturbances are explicitly taken into account. Rigorous theoretical analysis proves that the proposed control schemes ensure that the closed-loop system can track the desired time-varying trajectory in finite time. Numerical simulations are presented that not only highlights the closed-loop performance benefits from the proposed control algorithms, but also illustrates the effectiveness in the presence of external disturbances when compared with the existing coordinated formation control schemes.
Modesti, Davide
2016-01-01
We develop a semi-implicit algorithm for time-accurate simulation of the compressible Navier-Stokes equations, with special reference to wall-bounded flows. The method is based on linearization of the partial convective fluxes associated with acoustic waves, in such a way to suppress, or at least mitigate the acoustic time step limitation. Together with replacement of the total energy equation with the entropy transport equation, this approach avoids the inversion of block-banded matrices involved in classical methods, which is replaced by less demanding inversion of standard banded matrices. The method is extended to deal with implicit integration of viscous terms and to multiple space dimensions through approximate factorization, and used as a building block of third-order Runge-Kutta time stepping scheme. Numerical experiments are carried out for isotropic turbulence, plane channel flow, and flow in a square duct. All available data support higher computational efficiency than existing methods, and saving ...
Liu, Xinghua; Xian, Richang; Yu, Peng; Pei, Ying; Lv, Xuebin; Sun, Xuefeng; Wang, Tao; Ning, Shangyuan; Wang, Shikun
2017-05-01
In order to explore the characteristics of electron in DC negative corona discharge, microcosmic process of negative corona discharge in air is simulated in this paper. The numerical computation is established with a bar-plate electrode configuration with an inter-electrode gap of 3.3 mm, the negative DC voltage applied to the bar is 5.0 kV, the pressure in air discharge is fixed at 1.0 atm, and the gas temperature is assumed to be a constant (300 K). By solution the system of electron conservation equation, the electron mean energy conservation, the heavy species multi-component diffusion transport equation, and the Poisson’s equation, characteristics of electrons (electron mean energy, electron density, and generation and dissipation performances of electrons) at 6 representative time points during a pulse are obtained and then discussed emphatically.
Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.
1996-01-01
A numerical model of heat transfer using combined conduction, radiation and convection in AADSF was used to evaluate temperature gradients in the vicinity of the crystal/melt interface for variety of hot and cold zone set point temperatures specifically for the growth of mercury cadmium telluride (MCT). Reverse usage of hot and cold zones was simulated to aid the choice of proper orientation of crystal/melt interface regarding residual acceleration vector without actual change of furnace location on board the orbiter. It appears that an additional booster heater will be extremely helpful to ensure desired temperature gradient when hot and cold zones are reversed. Further efforts are required to investigate advantages/disadvantages of symmetrical furnace design (i.e. with similar length of hot and cold zones).
Estimation of turbulent diffusivity with direct numerical simulation of stellar convection
Hotta, H; Yokoyama, T
2012-01-01
We investigate the value of horizontal turbulent diffusivity {\\eta} by numerical calculation of thermal convection. In this study, we introduce a new method whereby the turbulent diffusivity is estimated by monitoring the time devel- opment of the passive scalar, which is initially distributed in a given Gaussian function with a spatial scale d0. Our conclusions are as follows: (1) Assuming the relation {\\eta} = Lcvrms/3 where vrms is the RMS velocity, the characteristic length Lc is restricted by the shortest one among the pressure (density) scale height and the region depth. (2) The value of turbulent diffusivity becomes greater with the larger initial distribution scale d0. (3) The approximation of turbulent diffusion holds better when the ratio of the initial distribution scale d0 to the characteristic length Lc is larger.
Ceuca, Sabin Cristian [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany); Laurinavicius, Darius [Lithuanian Energy Institute, Kaunas (Lithuania)
2016-11-15
The complex direct contact condensation phenomenon is investigated in horizontal flow channels both experimentally and numerically with special emphasis on its implications on safety assessment studies. Under certain conditions direct contact condensation can act as the driving force for the water hammer phenomenon with potentially local devastating results, thus posing a threat to the integrity of the affected NPP components. New experimental results of in-depth analysis of the direct contact condensation phenomena obtained in Kaunas at the Lithuanian Energy Institute will be presented. The German system code ATHLET employing for the calculation of the heat transfer coefficient a mechanistic model accounting for two different eddy length scales, combined with the interfacial area transport equation will be assessed against condensation induced water hammer experimental data from the integral thermal-hydraulic experimental facility PMK-2, located at the KFKI Atomic Energy Research Institute in Budapest Hungary.
Tobias U. Hauser
2013-06-01
Full Text Available The ability to accurately process numerical magnitudes and solve mental arithmetic is of highest importance for schooling and professional career. Although impairments in these domains in disorders such as developmental dyscalculia (DD are highly detrimental, remediation is still sparse. In recent years, transcranial brain stimulation methods such as transcranial Direct Current Stimulation (tDCS have been suggested as a treatment for various neurologic and neuropsychiatric disorders. The posterior parietal cortex (PPC is known to be crucially involved in numerical magnitude processing and mental arithmetic. In this study, we evaluated whether tDCS has a beneficial effect on numerical magnitude processing and mental arithmetic. Due to the unclear lateralization, we stimulated the left, right as well as both hemispheres simultaneously in two experiments. We found that left anodal tDCS significantly enhanced performance in a number comparison and a subtraction task, while bilateral and right anodal tDCS did not induce any improvements compared to sham. Our findings demonstrate that the left PPC is causally involved in numerical magnitude processing and mental arithmetic. Furthermore, we show that these cognitive functions can be enhanced by means of tDCS. These findings encourage to further investigate the beneficial effect of tDCS in the domain of mathematics in healthy and impaired humans.
Shen, M.; Touchard, F.; Bezine, G.; Brillaud, J.
2010-06-01
The work is to predict fracture behaviour of bio-composites from the tensile properties of its components. In this work, we have realized a direct numerical simulation of fracture behaviour for random short spruce fibers reinforced composites. For calculations, wood fibers have been considered as linear elastic bodies, polypropylene matrix as an elastic-plastic material. Then, numerical results have been compared with experimental results that have been obtained by digital image correlation. This comparison indicates that random fiber FE model of random short spruce fibers reinforced composites can be able to fairly reflect the influence of random fibers microstructure in the composite on its fracture behavior. The calculation of both random fiber and homogeneous FE model and their comparison with experiments show that the average values of J-integral in a region in the front of the crack tip from both numerical FE models are in good agreement with the average J value of DIC experiment in the same region when the numerical and experimental CT specimens of the short spruce fiber reinforced composite are subjected to the same extension at their loading point.
Brillaud J.
2010-06-01
Full Text Available The work is to predict fracture behaviour of bio-composites from the tensile properties of its components. In this work, we have realized a direct numerical simulation of fracture behaviour for random short spruce fibers reinforced composites. For calculations, wood fibers have been considered as linear elastic bodies, polypropylene matrix as an elastic-plastic material. Then, numerical results have been compared with experimental results that have been obtained by digital image correlation. This comparison indicates that random fiber FE model of random short spruce fibers reinforced composites can be able to fairly reflect the influence of random fibers microstructure in the composite on its fracture behavior. The calculation of both random fiber and homogeneous FE model and their comparison with experiments show that the average values of J-integral in a region in the front of the crack tip from both numerical FE models are in good agreement with the average J value of DIC experiment in the same region when the numerical and experimental CT specimens of the short spruce fiber reinforced composite are subjected to the same extension at their loading point.
Eleiwi, Fadi
2015-09-21
In this paper, the problem of stabilization and production rate reference tracking for a Direct-Contact Membrane Distillation (DCMD) system is addressed. Sufficient conditions for the asymptotic and exponential stabilization for DCMD system are presented using the Gronwall-Bellman lemma and Linear Matrix Inequalities (LMIs) approaches, respectively. A nonlinear observer is then proposed to estimate the temperature distribution among the DCMD domain. This contributes to propose a reference production rate control design for the DCMD process via observer-based output control approach. Finally, numerical simulations are given to show the effectiveness of the proposed methods.
Direct Torque Control With Feedback Linearization for Induction Motor Drives
Lascu, Cristian Vaslie; Jafarzadeh, Saeed; Fadali, Sami M.
2017-01-01
This paper describes a direct-torque-controlled (DTC) induction motor (IM) drive that employs feedback linearization and sliding-mode control (SMC). A new feedback linearization approach is proposed, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude....... This intuitive linear model is used to implement a DTC-type controller that preserves all DTC advantages and eliminates its main drawback, the flux and torque ripple. Robust, fast, and ripple-free control is achieved by using SMC with proportional control in the vicinity of the sliding surface. SMC assures...... robustness as in DTC, while the proportional component eliminates the torque and flux ripple. The torque time response is similar to conventional DTC and the proposed solution is flexible and highly tunable due to the P component. The controller design is presented, and its robust stability is analyzed...
Stability analysis of direct current control in current source rectifier
Lu, Dapeng; Wang, Xiongfei; Blaabjerg, Frede
2017-01-01
Current source rectifier with high switching frequency has a great potential for improving the power efficiency and power density in ac-dc power conversion. This paper analyzes the stability of direct current control based on the time delay effect. Small signal model including dynamic behaviors...... of dc link is developed to identify the control plants of grid ac current control and dc current control. Analysis on the poles and zeros under dq frame is carried out. Base on this model, it turns out that the phase lag caused by the time delay can stabilized the grid ac current control while reduces...... the stable region for dc current control. Simulation and experimental results are presented to validate the theoretical analysis....
Chen, G.; Zheng, Q.; Coleman, M.; Weerakoon, S.
1983-01-01
This paper briefly reviews convergent finite difference schemes for hyperbolic initial boundary value problems and their applications to boundary control systems of hyperbolic type which arise in the modelling of vibrations. These difference schemes are combined with the primal and the dual approaches to compute the optimal control in the unconstrained case, as well as the case when the control is subject to inequality constraints. Some of the preliminary numerical results are also presented.
Bhagatwala, Ankit; Sankaran, Ramanan; Kokjohn, Sage; Chen, Jacqueline
2014-11-01
Results from one and two-dimensional direct numerical simulations under dual-fuel Reactivity Controlled Compression Ignition (RCCI) conditions will be presented. These simulations employ an improved model of compression heating through mass source/sink terms developed in a previous work, which incorporates feedback from the flow to follow a predetermined experimental pressure trace. One-dimensional simulations explored the effect of temperature and fuel concentration gradients on the combustion mode. Two-dimensional simulations explored parametric variation in temperature stratification, pressure profiles and n-heptane concentration. Statistics derived from analysis of local diffusion/reaction balances were used to elucidate combustion characteristics for the different cases. Both deflagration and spontaneous ignition modes were observed to co-exist. Higher n-heptane concentration and higher level of thermal stratification resulted in a greater degree of flame propagation, whereas lower n-heptane concentration (higher fraction of iso-octane) and higher pressure resulted in more prevalent autoignition. Starting with a uniform initial temperature and a stratified n-heptane concentration also resulted in a large fraction of combustion occurring through flame propagation.
Nonlinear mechanics of thin-walled structures asymptotics, direct approach and numerical analysis
Vetyukov, Yury
2014-01-01
This book presents a hybrid approach to the mechanics of thin bodies. Classical theories of rods, plates and shells with constrained shear are based on asymptotic splitting of the equations and boundary conditions of three-dimensional elasticity. The asymptotic solutions become accurate as the thickness decreases, and the three-dimensional fields of stresses and displacements can be determined. The analysis includes practically important effects of electromechanical coupling and material inhomogeneity. The extension to the geometrically nonlinear range uses the direct approach based on the principle of virtual work. Vibrations and buckling of pre-stressed structures are studied with the help of linearized incremental formulations, and direct tensor calculus rounds out the list of analytical techniques used throughout the book. A novel theory of thin-walled rods of open profile is subsequently developed from the models of rods and shells, and traditionally applied equations are proven to be asymptotically exa...
Anger in School Managers: Continuity, Direction, Control and Style
Koc, Mustafa; Iskender, Murat; Cardak, Mehmet; Dusunceli, Betul
2012-01-01
School managers undertake an important duty in structuring of education institutions. In the study carried out in this context; anger conditions, continuity, and direction of anger, anger control levels and anger styles of school managers who are the decision makers in schools were examined according to the ages, working periods, duty types, ways…
Direct laser additive fabrication system with image feedback control
Griffith, Michelle L. (Albuquerque, NM); Hofmeister, William H. (Nashville, TN); Knorovsky, Gerald A. (Albuquerque, NM); MacCallum, Danny O. (Edgewood, NM); Schlienger, M. Eric (Albuquerque, NM); Smugeresky, John E. (Pleasanton, CA)
2002-01-01
A closed-loop, feedback-controlled direct laser fabrication system is disclosed. The feedback refers to the actual growth conditions obtained by real-time analysis of thermal radiation images. The resulting system can fabricate components with severalfold improvement in dimensional tolerances and surface finish.
49 CFR 30.9 - Citizenship: Direct or indirect control.
2010-10-01
... 49 Transportation 1 2010-10-01 2010-10-01 false Citizenship: Direct or indirect control. 30.9 Section 30.9 Transportation Office of the Secretary of Transportation DENIAL OF PUBLIC WORKS CONTRACTS TO SUPPLIERS OF GOODS AND SERVICES OF COUNTRIES THAT DENY PROCUREMENT MARKET ACCESS TO U.S. CONTRACTORS §...
Hydraulically controlled flexible arm can bend in any direction
Griffin, F. D.
1966-01-01
Arm assembly consisting of four flexible tubes controlled by a four-way hydraulic or pneumatic valve can bend in any direction. The flexible arm could be used for probing areas that cannot be reached by ordinary tools, handling hazardous materials, and for graph recording.
Polarization-controlled directional scattering for nanoscopic position sensing
Neugebauer, Martin; Woźniak, Paweł; Bag, Ankan; Leuchs, Gerd; Banzer, Peter
2016-04-01
Controlling the propagation and coupling of light to sub-wavelength antennas is a crucial prerequisite for many nanoscale optical devices. Recently, the main focus of attention has been directed towards high-refractive-index materials such as silicon as an integral part of the antenna design. This development is motivated by the rich spectral properties of individual high-refractive-index nanoparticles. Here we take advantage of the interference of their magnetic and electric resonances to achieve strong lateral directionality. For controlled excitation of a spherical silicon nanoantenna, we use tightly focused radially polarized light. The resultant directional emission depends on the antenna's position relative to the focus. This approach finds application as a novel position sensing technique, which might be implemented in modern nanometrology and super-resolution microscopy set-ups. We demonstrate in a proof-of-concept experiment that a lateral resolution in the Ångström regime can be achieved.
Polarization Controlled Directional Scattering for Nanoscopic Position Sensing
Neugebauer, Martin; Bag, Ankan; Leuchs, Gerd; Banzer, Peter
2015-01-01
Controlling the propagation and coupling of light to sub-wavelength antennas is a crucial prerequisite for many nanoscale optical devices. Recently, the main focus of attention has been directed towards high-refractive index materials such as silicon as an integral part of the antenna design. The development is motivated by the rich spectral properties of individual high-refractive index nanoparticles, featuring magnetic and electric resonances in the visible regime, whose interference may yield remarkably strong directivity. Here, we use tightly focused radially polarized light for controlled excitation of a spherical silicon nanoantenna. The resultant emission can be highly directional, depending on the antenna's position relative to the focus. This approach finds application as a novel position sensing technique, a discipline, which is of paramount importance in modern nanometrology, because of its special role in super-resolution microscopy. We yield a lateral resolution in the Angstrom regime.
Lamellar orientation control in directionally solidified TiAl intermetallics
Su Yanqing
2014-07-01
Full Text Available TiAl-based alloys are potentially used as high-temperature structural materials with a high specific strength in the range of ~ 900 °C. However, the mechanical properties of TiAl-based alloys are extremely anisotropic with respect to the lamellar orientation of the microstructures. A balance combination of room-temperature ductility and strength can be achieved when the lamellar orientation are aligned parallel to the tensile stress direction. Lamellar orientation control of TiAl-based alloys by directional solidification technique has been widely studied in recent years. Two different directional solidification processes can be used to modify the lamellar Orientation. One is a seeding technique and the other is adjusting the solidification path. This paper reviews the principles of the two methods and their progress. The influence of alloy composition and solidification parameters on lamellar orientation control is also discussed.
Direct numerical reconstruction of conductivities in three dimensions using scattering transforms
Bikowski, Jutta; Knudsen, Kim; Mueller, Jennifer L
2011-01-01
A direct three-dimensional EIT reconstruction algorithm based on complex geometrical optics solutions and a nonlinear scattering transform is presented and implemented for spherically symmetric conductivity distributions. The scattering transform is computed both with a Born approximation and fro...... the forward problem for purposes of comparison. Reconstructions are computed for several test problems. A connection to Calderón's linear reconstruction algorithm is established, and reconstructions using both methods are compared....
Quanren Zeng; Zhenhai Xu; Yankang Tian; Yi Qin
2016-01-01
The development speed and application range of the additive manufacturing (AM) processes, such as selective laser melting (SLM), laser metal deposition (LMD) or laser-engineering net shaping (LENS), are ever-increasing in modern advanced manufacturing field for rapid manufacturing, tooling repair or surface enhancement of the critical metal components. LMD is based on a kind of directed energy deposition (DED) technology which ejects a strand of metal powders into a moving molten pool caused ...
2016-02-26
massive direct numerical simulations ( DNS ), detailed molecular dynamics simulations and novel laser based experimental approaches were developed to explore...TERMS Aerothermodynamics and Nonequillibrium, Hypersonic and Gas-surface Interaction 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18...multidisciplinary nature of the scientific problem, a combination of state-of-the-art massive direct numerical simulations ( DNS ), detailed molecular dynamics
Numerical modeling and validation of wave heights and directionality in the ice using WAVEWATCH III
Ardhuin, Fabrice; Dumont, Dany; Accensi, Mickael; Sevigny, Caroline; Boutin, Guillaume; Rogers, Erick
2016-04-01
The poorly understood attenuation of waves, the key dynamic effect that defines the width of the Marginal Ice Zone, has been attributed to the combined effect of wave scattering and wave dissipation. Because scattering and dissipation have very different effects on the directional distribution of wave energy, it is possible to better understand the balance between scattering and dissipation by an analysis of the width of the directional wave spectrum. We have thus introduced dissipation and scattering terms in the spectral wave model WAVEWATCH III, and an estimation of the maximum ice floe size. Academic and realistic simulations show that the energy level and directional spreading far into the Arctic pack ice (Wadhams and Doble 2009) can be well explained by dissipative processes without the need for scattering. The same is true of observed swells in the Southern Ocean (Ardhuin et al. 2015). However, the dissipation level required to explain the observed wave height goes from 2 in the southern ocean to 12 times the viscous dissipation under a smooth ice plate. This and other data suggest that broken ice causes less dissipation than a continuous ice cover, possibly due to the dissipation by creep inside the ice when it is not broken and bends. Work is under way to parameterize that effect using the estimated maximum ice floe size.
Madavan, Nateri K.
1995-01-01
The work in this report was conducted at NASA Ames Research Center during the period from August 1993 to January 1995 deals with the direct numerical simulation of transitional and turbulent flow at low Mach numbers using high-order-accurate finite-difference techniques. A computation of transition to turbulence of the spatially-evolving boundary layer on a heated flat plate in the presence of relatively high freestream turbulence was performed. The geometry and flow conditions were chosen to match earlier experiments. The development of the momentum and thermal boundary layers was documented. Velocity and temperature profiles, as well as distributions of skin friction, surface heat transfer rate, Reynolds shear stress, and turbulent heat flux were shown to compare well with experiment. The numerical method used here can be applied to complex geometries in a straightforward manner.
Zhang Hong-Na; Li Feng-Chen; Cao Yang; Kunugi Tomoaki; Yu Bo
2013-01-01
In this paper,we present a direct numerical simulation (DNS) of elastic turbulence of viscoelastic fluid at vanishingly low Reynolds number (Re =1) in a three-dimensional straight channel flow for the first time,using the Giesekus constitutive model for the fluid.In order to generate and maintain the turbulent fluid motion in the straight channel,a sinusoidal force term is added to the momentum equation,and then the elastic turbulence is numerically realized with an initialized chaotic velocity field and a stretched conformation field.Statistical and structural characteristics of the elastic turbulence therein are analyzed based on the detailed information obtained from the DNS.The fluid mixing enhancement effect of elastic turbulence is also demonstrated for the potential applications of this phenomenon.
Improved Four-Switch BLDCM Direct Current Control
Pan Lei
2013-08-01
Full Text Available The main purpose of this study is to describe a low cost four-switch brushless dc motor (BLDCM drive. An improved direct current controlled scheme is designed and implemented to produce the desired dynamic and static current and speed characteristics. Eight voltage vectors are summarized, which are selected to control BLDCM in SVPWM pattern. This method avoids the undesired current distortion which is caused by uncontrollable phase. The operational principle of the four-switch BLDC motor drive and the developed control scheme are theoretically analyzed and the performance is demonstrated by both simulation and experimental results.
Goodrich, John W.
2017-01-01
This paper presents results from numerical experiments for controlling the error caused by a damping layer boundary treatment when simulating the propagation of an acoustic signal from a continuous pressure source. The computations are with the 2D Linearized Euler Equations (LEE) for both a uniform mean flow and a steady parallel jet. The numerical experiments are with algorithms that are third, fifth, seventh and ninth order accurate in space and time. The numerical domain is enclosed in a damping layer boundary treatment. The damping is implemented in a time accurate manner, with simple polynomial damping profiles of second, fourth, sixth and eighth power. At the outer boundaries of the damping layer the propagating solution is uniformly set to zero. The complete boundary treatment is remarkably simple and intrinsically independant from the dimension of the spatial domain. The reported results show the relative effect on the error from the boundary treatment by varying the damping layer width, damping profile power, damping amplitude, propagtion time, grid resolution and algorithm order. The issue that is being addressed is not the accuracy of the numerical solution when compared to a mathematical solution, but the effect of the complete boundary treatment on the numerical solution, and to what degree the error in the numerical solution from the complete boundary treatment can be controlled. We report maximum relative absolute errors from just the boundary treatment that range from O[10-2] to O[10-7].
Marxen, Olaf, E-mail: olaf.marxen@vki.ac.be [Center for Turbulence Research, Building 500, Stanford University, Stanford, CA 94305-3035 (United States); Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Chaussée de Waterloo, 72, 1640 Rhode-St-Genèse (Belgium); Magin, Thierry E. [Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Chaussée de Waterloo, 72, 1640 Rhode-St-Genèse (Belgium); Shaqfeh, Eric S.G.; Iaccarino, Gianluca [Center for Turbulence Research, Building 500, Stanford University, Stanford, CA 94305-3035 (United States)
2013-12-15
A new numerical method is presented here that allows to consider chemically reacting gases during the direct numerical simulation of a hypersonic fluid flow. The method comprises the direct coupling of a solver for the fluid mechanical model and a library providing the physio-chemical model. The numerical method for the fluid mechanical model integrates the compressible Navier–Stokes equations using an explicit time advancement scheme and high-order finite differences. This Navier–Stokes code can be applied to the investigation of laminar-turbulent transition and boundary-layer instability. The numerical method for the physio-chemical model provides thermodynamic and transport properties for different gases as well as chemical production rates, while here we exclusively consider a five species air mixture. The new method is verified for a number of test cases at Mach 10, including the one-dimensional high-temperature flow downstream of a normal shock, a hypersonic chemical reacting boundary layer in local thermodynamic equilibrium and a hypersonic reacting boundary layer with finite-rate chemistry. We are able to confirm that the diffusion flux plays an important role for a high-temperature boundary layer in local thermodynamic equilibrium. Moreover, we demonstrate that the flow for a case previously considered as a benchmark for the investigation of non-equilibrium chemistry can be regarded as frozen. Finally, the new method is applied to investigate the effect of finite-rate chemistry on boundary layer instability by considering the downstream evolution of a small-amplitude wave and comparing results with those obtained for a frozen gas as well as a gas in local thermodynamic equilibrium.
Direct numerical simulation of a compressible multiphase flow through the fast Eulerian approach
Cerminara, Matteo; Ongaro, Tomaso Esposti; Salvetti, Maria Vittoria
2014-01-01
Our work is motivated by the analysis of ash plume dynamics, arising in the study of volcanic eruptions. Such phenomena are characterized by large Reynolds number (exceeding $10^7$) and a large number of polydispersed particles~[1]. Thus, the choice of the methodology to be used is straightforward: we need LES of a multiphase gas-particles flow. Since the simulation of the behavior of a large number of dispersed particles is very difficult with Lagrangian methods, we model the particles as a continuum, Eulerian fluid (dust), by using reduced models involving two fluids, as proposed in Ref.~[2,3,4]. Moreover, we need a robust numerical scheme to simultaneously treat compressibility, buoyancy effects and turbulent dispersal dynamics. We analyze the turbulence properties of such models in a homogeneous and isotropic setting, with the aim of formulating a LES model. In particular, we examine the development of freely decaying homogeneous and isotropic turbulence in subsonic regime (the r.m.s. Mach number either 0...
Mixa, T.; Fritts, D. C.; Laughman, B.; Wang, L.; Kantha, L. H.
2015-12-01
Multiple observations provide compelling evidence that gravity wave dissipation events often occur in multi-scale environments having highly-structured wind and stability profiles extending from the stable boundary layer into the mesosphere and lower thermosphere. Such events tend to be highly localized and thus yield local energy and momentum deposition and efficient secondary gravity wave generation expected to have strong influences at higher altitudes [e.g., Fritts et al., 2013; Baumgarten and Fritts, 2014]. Lidars, radars, and airglow imagers typically cannot achieve the spatial resolution needed to fully quantify these small-scale instability dynamics. Hence, we employ high-resolution modeling to explore these dynamics in representative environments. Specifically, we describe numerical studies of gravity wave packets impinging on a sheet of high stratification and shear and the resulting instabilities and impacts on the gravity wave amplitude and momentum flux for various flow and gravity wave parameters. References: Baumgarten, Gerd, and David C. Fritts (2014). Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations. Journal of Geophysical Research: Atmospheres, 119.15, 9324-9337. Fritts, D. C., Wang, L., & Werne, J. A. (2013). Gravity wave-fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. Journal of the Atmospheric Sciences, 70(12), 3710-3734.
Catalina, Adrian V.; Sen, S.; Rose, M. Franklin (Technical Monitor)
2001-01-01
The evolution of cellular solid/liquid interfaces from an initially unstable planar front was studied by means of a two-dimensional computer simulation. The developed numerical model makes use of an interface tracking procedure and has the capability to describe the dynamics of the interface morphology based on local changes of the thermodynamic conditions. The fundamental physics of this formulation was validated against experimental microgravity results and the predictions of the analytical linear stability theory. The performed simulations revealed that in certain conditions, based on a competitive growth mechanism, an interface could become unstable to random perturbations of infinitesimal amplitude even at wavelengths smaller than the neutral wavelength, lambda(sub c), predicted by the linear stability theory. Furthermore, two main stages of spacing selection have been identified. In the first stage, at low perturbations amplitude, the selection mechanism is driven by the maximum growth rate of instabilities while in the second stage the selection is influenced by nonlinear phenomena caused by the interactions between the neighboring cells. Comparison of these predictions with other existing theories of pattern formation and experimental results will be discussed.
Kun Zhou
2013-01-01
Full Text Available The concentration and orientation of suspended fibers in a mixing layer are investigated numerically. Two cases (diffusive and nondiffusive are investigated for the fiber concentration distribution. The fine structures of the instantaneous distributions under these two cases are very different due to molecular diffusion. Sharp front of concentration is observed in the nondiffusive case. However, there is no obvious difference in the mean concentration between the two cases. With regard to the orientation, a fiber may rotate periodically or approach an asymptotic orientation, which is determined by a determinant defined with the stain rate. The symmetric part of the strain rate tends to make a fiber align to an asymptotic orientation, while the antisymmetric part drives a fiber to rotate. When a fluid parcel passes through a region with relatively high shear rate, fibers carried by the fluid parcel are most likely to rotate incessantly. On the other hand, in the region of relatively high extension rate, fibers tend to align to some asymptotic orientation. Generally, fibers tend to align with the shear plane. This fact has significant implications in predicting the rheological properties of fiber suspension flows.
Campbell, Bryce; Hendrickson, Kelli; Liu, Yuming; Subramani, Hariprasad
2014-11-01
For gas-liquid flows through pipes and channels, a flow regime (referred to as slug flow) may occur when waves form at the interface of a stratified flow and grow until they bridge the pipe diameter trapping large elongated gas bubbles within the liquid. Slug formation is often accompanied by strong nonlinear wave-wave interactions, wave breaking, and gas entrainment. This work numerically investigates the fully nonlinear interfacial evolution of a two-phase density/viscosity stratified flow through a horizontal channel. A Navier-Stokes flow solver coupled with a conservative volume-of-fluid algorithm is use to carry out high resolution three-dimensional simulations of a turbulent gas flowing over laminar (or turbulent) liquid layers. The analysis of such flows over a range of gas and liquid Reynolds numbers permits the characterization of the interfacial stresses and turbulent flow statistics allowing for the development of physics-based models that approximate the coupled interfacial-turbulent interactions and supplement the heuristic models built into existing industrial slug simulators.
Sensorless direct vector control of an induction motor
Menaa, M. [Laboratoire de Robotique Parallelisme et Electro-energetique, Departement d' Electrotechnique, Universite des Sciences et de la Technologie Houari Boumediene BP 32 EL Allia, Alger 16111, (Algeria); Touhami, O.; Ibtiouen, R. [Departement de Genie Electrique, Ecole Nationale polytechnique, 10 AV Pasteur, El-Harrach, Alger, (Algeria); Fadel, M. [Laboratoire d' Electrotechnique et d' Electronique Industrielle ENSEEIHT, Toulouse, 2 Rue Camichel BP 7122-31071 Cedex7, (France)
2008-01-15
In high-performance variable speed AC drive systems it is often important to accurately determine machine parameters and rotor speed values. An extended complex Kalman filter (ECKF) is used to estimate rotor resistance and mutual inductance without the use of a speed sensor. Such estimates are important in air gap flux orientation control. The ECKF is chosen over the more common extended Kalman filter based on the real-valued model as it is not as computationally intensive. The model of an induction machine obtained by the spiral vector theory and the ECKF are used to develop a new adaptive direct air gap flux orientation control with two sensors: one for the stator voltage and one for the stator current without Park transformation. The simulation tests show the effectiveness of the proposed adaptive direct air gap flux orientation control method. (Author)
F. P. Santos
2013-09-01
Full Text Available Direct-quadrature generalized moment based methods were analysed in terms of accuracy, computational cost and robustness for the solution of the population balance problems in the [0,∞ and [0,1] domains. The minimum condition number of the coefficient matrix of their linear system of equations was obtained by global optimization. An heuristic scaling rule from the literature was also evaluated. The results indicate that the methods based on Legendre generalized moments are the most robust for the finite domain problems, while the DQMoM formulation that solves for the abscissas and weights using the heuristic scaling rule is the best for the infinite domain problems.
Sharma, Anupam; Long, Lyle N.
2004-10-01
A particle approach using the Direct Simulation Monte Carlo (DSMC) method is used to solve the problem of blast impact with structures. A novel approach to model the solid boundary condition for particle methods is presented. The solver is validated against an analytical solution of the Riemann shocktube problem and against experiments on interaction of a planar shock with a square cavity. Blast impact simulations are performed for two model shapes, a box and an I-shaped beam, assuming that the solid body does not deform. The solver uses domain decomposition technique to run in parallel. The parallel performance of the solver on two Beowulf clusters is also presented.
Numerical experiments on transition control in wall-bounded shear flows
Biringen, S.; Caruso, M. J.
1987-01-01
Results are presented from a numerical simulation of transition control in plane channel and boundary layer flows. The analysis is based on a pseudo-spectral/finite difference semi-implicit solution procedure employed to numerically integrate the time-dependent, three-dimensional, incompressible Navier-Stokes equations in a doubly periodic domain. In the channel flow, it was found that the active periodic suction/blowing method was effective in controlling strongly three-dimensional disturbances. In the boundary layer, the preliminary analysis indicated that in the early stages, passive control by suction is as effective as active control to suppress instabilities. The current work is focused on a detailed comparison of active and passive control by suction/blowing in the boundary layer.
Numerical investigation on feedback control of flow around an oscillating hydrofoil by Lorentz force
Liu Zongkai; Zhou Benmou; Liu Huixing; Ji Yanliang; Huang Yadong, E-mail: kfliukai@126.com [Science and Technology on Transient Physics Laboratory, Nanjing University of Science and Technology, Nanjing 210094 (China)
2013-06-15
In order to improve the hydrodynamic characteristics of a hydrofoil (NACA0012), this paper investigates an oscillating hydrofoil immersed in seawater (an electrically poorly conducting fluid) with feedback control of electromagnetic force (Lorentz force). This method is used in the iterative process, by forecasting the location of boundary layer separation points and attack angle at the next time step and figuring out the optimal force distribution function based on these parameters, then returns to the current time step and applies the optimal force onto the leeside to control the flow separation. Based on the basic flow governing equations, the flow field structures, lift evolutions and energy consumptions (the input impulse of Lorentz force) have been numerically investigated. Numerical results show that with this control, the flow separation could be fully suppressed. Meanwhile, the lift increases dramatically and oscillation is suppressed successfully. Furthermore, under similar lift improvement and control effects, the feedback control optimal ratio is 72.58%. (paper)
Numerical investigation on feedback control of flow around an oscillating hydrofoil by Lorentz force
Liu, Zong-Kai; Zhou, Ben-Mou; Liu, Hui-Xing; Ji, Yan-Liang; Huang, Ya-Dong
2013-06-01
In order to improve the hydrodynamic characteristics of a hydrofoil (NACA0012), this paper investigates an oscillating hydrofoil immersed in seawater (an electrically poorly conducting fluid) with feedback control of electromagnetic force (Lorentz force). This method is used in the iterative process, by forecasting the location of boundary layer separation points and attack angle at the next time step and figuring out the optimal force distribution function based on these parameters, then returns to the current time step and applies the optimal force onto the leeside to control the flow separation. Based on the basic flow governing equations, the flow field structures, lift evolutions and energy consumptions (the input impulse of Lorentz force) have been numerically investigated. Numerical results show that with this control, the flow separation could be fully suppressed. Meanwhile, the lift increases dramatically and oscillation is suppressed successfully. Furthermore, under similar lift improvement and control effects, the feedback control optimal ratio is 72.58%.
Yang, Xiaofan; Scheibe, Timothy D.; Richmond, Marshall C.; Perkins, William A.; Vogt, Sarah J.; Codd, Sarah L.; Seymour, Joseph D.; McKinley, Matthew I.
2013-04-01
A significant body of current research is aimed at developing methods for numerical simulation of flow and transport in porous media that explicitly resolve complex pore and solid geometries, and at utilizing such models to study the relationships between fundamental pore-scale processes and macroscopic manifestations at larger (i.e., Darcy) scales. A number of different numerical methods for pore-scale simulation have been developed, and have been extensively tested and validated for simplified geometries. However, validation of pore-scale simulations of fluid velocity for complex, three-dimensional (3D) pore geometries that are representative of natural porous media is challenging due to our limited ability to measure pore-scale velocity in such systems. Recent advances in magnetic resonance imaging (MRI) offer the opportunity to measure not only the pore geometry, but also local fluid velocities under steady-state flow conditions in 3D and with high spatial resolution. In this paper, we present a 3D velocity field measured at sub-pore resolution (tens of micrometers) over a centimeter-scale 3D domain using MRI methods. We have utilized the measured pore geometry to perform 3D simulations of Navier-Stokes flow over the same domain using direct numerical simulation techniques. We present a comparison of the numerical simulation results with the measured velocity field. It is shown that the numerical results match the observed velocity patterns well overall except for a variance and small systematic scaling which can be attributed to the known experimental uncertainty in the MRI measurements. The comparisons presented here provide strong validation of the pore-scale simulation methods and new insights for interpretation of uncertainty in MRI measurements of pore-scale velocity. This study also provides a potential benchmark for future comparison of other pore-scale simulation methods. 2012 Elsevier Science.
Numerical and algebraic studies for the control of finite-dimensional quantum systems
Sander, Uwe
2010-11-18
In this thesis, two aspects of control theory, namely controllability and optimal control, are applied to quantum systems. The presented results are based on group theoretical techniques and numerical studies. By Lie-algebraic analysis, the controllability properties of systems with an arbitrary topology are described and related to the symmetries existing in these systems. We find that symmetry precludes full controllability. Our work investigates well-known control systems and gives rules for the design of new systems. Furthermore, theoretical and numerical concepts are instrumental to studying quantum channels: Their capacities are optimised using gradient flows on the unitary group in order to find counterexamples to a long-established additivity conjecture. The last part of this thesis presents and benchmarks a modular optimal control algorithm known as GRAPE. Numerical tests show how the interplay of its modules can be optimised for higher performance, and how the algorithm performs in comparison to a Krotov-type optimal control algorithm. It is found that GRAPE performs particularly well when aiming for high qualities. (orig.)
Direct torque control with feedback linearization for induction motor drives
Lascu, Cristian; Jafarzadeh, Saeed; Fadali, Sami M.
2015-01-01
This paper describes a Direct Torque Controlled (DTC) Induction Machine (IM) drive that employs feedback linearization and sliding-mode control. A feedback linearization approach is investigated, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude...... of the sliding surface. The VSC component assures robustness as in DTC, while the proportional component eliminates the torque and flux ripple. The torque time response is similar to DTC and the proposed solution is flexible and highly tunable due to the proportional controller. The controller design and its...... robust stability analysis are presented. The sliding controller is compared with a linear DTC scheme, and experimental results for a sensorless IM drive validate the proposed solution....
Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks
Jorgensen, Charles C.
1997-01-01
A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.
Numerical simulation on directional solidification of Al-Ni-Co alloy based on FEM
Yang Zhili
2010-02-01
Full Text Available The ratio, of the temperature gradient at the solidification front to the solidification rate of solid-liquid interface, plays a large part in columnar grain growth. The transient temperature fields of directional solidification of Al-Ni-Co alloy were studied by employing a finite element method. The temperature gradient at the solidification front and the solidification rate were analyzed for molten steels pouring at different temperatures. The results show that with different initial pouring temperatures, the individual ratio of the temperature gradient at solidification front to the solidification rate soars up in the initial stage of solidification, then varies within 2,000-6,000 ℃·s·cm-2, and finally goes down rapidly and even tend to be closed to each other when the solidification thickness reaches 5-6 cm. The simulation result is consistent with the practical production which can provide an available reference for process optimization of directional solidified Al-Ni-Co alloy.
DIRECT NUMERICAL SIMULATION OF TURBULENT HEAT TRANSFER IN A WALL-NORMAL ROTATING CHANNEL FLOW
无
2006-01-01
Direct Nmerical Simulation (DNS) of turbulent heat transfer in a wall-normal rotating channel flow has been carried out for the rotation number Nτ from 0 to 0.1, the Reynolds number 194 based on the friction velocity of non-rotating case and the half-height of the channel, and the Prandtl number 1. The objective of this study is to reveal the effects of rotation on the characteristics of turbulent flow and heat transfer. Based on the present calculated results, two typical rotation regimes are identified. When 0＜Nτ＜0.06, turbulence and thermal statistics correlated with the spanwise velocity fluctuation are enhanced since the shear rate of spanwise mean flow induced by Coriolis force increases; however, the other statistics are suppressed. When Nτ＞0.06, turbulence and thermal statistics are suppressed significantly because the Coriolis force effect plays as a dominated role in the rotating flow. Remarkable change of the direction of near-wall streak structures based on the velocity and temperature fluctuations is identified.
Xue Xiang
2010-08-01
Full Text Available The boundary heat flow has important significance for the microstructures of directional solidified binary alloy. Interface evolution of the directional solidified microstructure with different boundary heat flow was discussed. In this study, only one interface was allowed to have heat flow, and Neumann boundary conditions were imposed at the other three interfaces. From the calculated results, it was found that different boundary heat flows will result in different microstructures. When the boundary heat flow equals to 20 W·cm-2, the growth of longitudinal side branches is accelerated and the growth of transverse side branches is restrained, and meanwhile, there is dendritic remelting in the calculation domain. When the boundary heat flow equals to 40 W·cm-2, the growths of the transverse and longitudinal side branches compete with each other, and when the boundary heat flow equals to 100-200 W·cm-2, the growth of transverse side branches dominates absolutely. The temperature field of dendritic growth was analyzed and the relation between boundary heat flow and temperature field was also investigated.
Xue Xiang; Tang Jinjun
2010-01-01
The boundary heat flow has important significance for the microstructures of directional solidified binary alloy. Interface evolution of the directional solidified microstructure with different boundary heat flow was discussed. In this study, only one interface was allowed to have heat flow, and Neumann boundary conditions were imposed at the other three interfaces. From the calculated results, it was found that different boundary heat flows will result in different microstructures. When the boundary heat flow equals to 20 W-cm-2, the growth of longitudinal side branches is accelerated and the growth of transverse side branches is restrained, and meanwhile, there is dendritic remelting in the calculation domain. When the boundary heat flow equals to 40 W-cm-2, the growths of the transverse and longitudinal side branches compete with each other, and when the boundary heat flow equals to 100-200 W-cm-2, the growth of transverse side branches dominates absolutely. The temperature field of dendritic growth was analyzed and the relation between boundary heat flow and temperature field was also investigated.
Topalian, Victor; Oliver, Todd; Ulerich, Rhys; Moser, Robert
2013-11-01
A DNS of a compressible, reacting boundary layer flow at Reθ ~ 430 was performed using a temporal slow-growth homogenization, for a multispecies flow model of air at supersonic regime. The overall scenario parameters are related to those of the flow over an ablating surface of a space capsule upon Earth's atmospheric re-entry. The simulation algorithm features Fourier spatial discretization in the streamwise and spanwise directions, B-splines in the wall normal direction, and is marched semi-implicitly in time using the SMR91 scheme. Flow statistics will be presented for relevant flow quantities, in particular those related with RANS modeling. Since analogous slow growth computations can be performed using RANS to predict the flow mean profiles, the use of data gathered from this type of simulation as a vehicle for the calibration and uncertainty quantification of RANS models will be discussed. This work is supported by the Department of Energy [National Nuclear Security Administration] under Award Number [DE-FC52-08NA28615].
Directional sensitivity of "first trial" reactions in human balance control.
Oude Nijhuis, Lars B; Allum, John H J; Borm, George F; Honegger, Flurin; Overeem, Sebastiaan; Bloem, Bastiaan R
2009-06-01
Support-surface movements are commonly used to examine balance control. Subjects typically receive a series of identical or randomly interspersed multidirectional balance perturbations and the atypical "first trial reaction" (evoked by the first perturbation) is often excluded from further analysis. However, this procedure may obscure vital information about neurophysiological mechanisms associated with the first perturbation and, by analogy, fully unexpected falls. We studied first trial reactions, aiming to clarify their directional impact on postural control and to characterize the underlying neurophysiological substrate. We instructed 36 subjects to maintain balance following support-surface rotations in six different directions. Perturbations in each direction were delivered in blocks, consisting of 10 serial stimuli. Full body kinematics, surface reactive forces, and electromyographic (EMG) responses were recorded. Regardless of direction, for the very first rotation, displacement of the center of mass was 15% larger compared with the ensuing nine identical rotations (P postural instability, mainly due to increased response amplitudes. Although rapid habituation occurs following presentation of identical stimuli, subjects immediately become unstable again when the perturbation direction suddenly changes. Excessive responses due to a failure to combine proprioceptive and vestibular cues effectively may explain this instability seen with first trials, particularly when falling backward.
Arrighi, Chiara; Campo, Lorenzo
2017-04-01
In last years, the concern about the economical and lives loss due to urban floods has grown hand in hand with the numerical skills in simulating such events. The large amount of computational power needed in order to address the problem (simulating a flood in a complex terrain such as a medium-large city) is only one of the issues. Among them it is possible to consider the general lack of exhaustive observations during the event (exact extension, dynamic, water level reached in different parts of the involved area), needed for calibration and validation of the model, the need of considering the sewers effects, and the availability of a correct and precise description of the geometry of the problem. In large cities the topographic surveys are in general available with a number of points, but a complete hydraulic simulation needs a detailed description of the terrain on the whole computational domain. LIDAR surveys can achieve this goal, providing a comprehensive description of the terrain, although they often lack precision. In this work an optimal merging of these two sources of geometrical information, measured elevation points and LIDAR survey, is proposed, by taking into account the error variance of both. The procedure is applied to a flood-prone city over an area of 35 square km approximately starting with a DTM from LIDAR with a spatial resolution of 1 m, and 13000 measured points. The spatial pattern of the error (LIDAR vs points) is analysed, and the merging method is tested with a series of Jackknife procedures that take into account different densities of the available points. A discussion of the results is provided.
Statistics for long irregular wave run-up on a plane beach from direct numerical simulations
Didenkulova, Ira; Senichev, Dmitry; Dutykh, Denys
2017-04-01
Very often for global and transoceanic events, due to the initial wave transformation, refraction, diffraction and multiple reflections from coastal topography and underwater bathymetry, the tsunami approaches the beach as a very long wave train, which can be considered as an irregular wave field. The prediction of possible flooding and properties of the water flow on the coast in this case should be done statistically taking into account the formation of extreme (rogue) tsunami wave on a beach. When it comes to tsunami run-up on a beach, the most used mathematical model is the nonlinear shallow water model. For a beach of constant slope, the nonlinear shallow water equations have rigorous analytical solution, which substantially simplifies the mathematical formulation. In (Didenkulova et al. 2011) we used this solution to study statistical characteristics of the vertical displacement of the moving shoreline and its horizontal velocity. The influence of the wave nonlinearity was approached by considering modifications of probability distribution of the moving shoreline and its horizontal velocity for waves of different amplitudes. It was shown that wave nonlinearity did not affect the probability distribution of the velocity of the moving shoreline, while the vertical displacement of the moving shoreline was affected substantially demonstrating the longer duration of coastal floods with an increase in the wave nonlinearity. However, this analysis did not take into account the actual transformation of irregular wave field offshore to oscillations of the moving shoreline on a slopping beach. In this study we would like to cover this gap by means of extensive numerical simulations. The modeling is performed in the framework of nonlinear shallow water equations, which are solved using a modern shock-capturing finite volume method. Although the shallow water model does not pursue the wave breaking and bore formation in a general sense (including the water surface
Liou, Luen-Woei; Ray, Asok
1991-01-01
A state feedback control law for integrated communication and control systems (ICCS) is formulated by using the dynamic programming and optimality principle on a finite-time horizon. The control law is derived on the basis of a stochastic model of the plant which is augmented in state space to allow for the effects of randomly varying delays in the feedback loop. A numerical procedure for synthesizing the control parameters is then presented, and the performance of the control law is evaluated by simulating the flight dynamics model of an advanced aircraft. Finally, recommendations for future work are made.
Stepwise multiple test procedures and control of directional errors
1999-01-01
One of the most difficult problems occurring with stepwise multiple test procedures for a set of two-sided hypotheses is the control of direc-tional errors if rejection of a hypothesis is accomplished with a directional decision. In this paper we generalize a result for so-called step-down procedures derived by Shaffer to a large class of stepwise or closed multiple test procedures. In a unifying way we obtain results for a large class of order statistics procedures includin...
Polarization controlled directional propagation of Bloch surface wave.
Kovalevich, Tatiana; Boyer, Philippe; Suarez, Miguel; Salut, Roland; Kim, Myun-Sik; Herzig, Hans Peter; Bernal, Maria-Pilar; Grosjean, Thierry
2017-03-06
Bloch surface waves (BSWs) are recently developing alternative to surface plasmon polaritons (SPPs). Due to dramatically enhanced propagation distance and strong field confinement these surface states can be successfully used in on-chip all-optical integrated devices of increased complexity. In this work we propose a highly miniaturized grating based BSW coupler which is gathering launching and directional switching functionalities in a single element. This device allows to control with polarization the propagation direction of Bloch surface waves at subwavelength scale, thus impacting a large panel of domains such as optical circuitry, function design, quantum optics, etc.
Numerical and experimental investigation of direct solar crop dryer for farmers
Kareem, M. W.; Habib, Khairul; Sulaiman, S. A.
2015-07-01
This article presents a theoretical and experimental investigation on effects of weather on direct solar crop drying technique. The SIMULINK tool was employed to analyze the energy balance equations of the transient system model. A prototype of the drying system was made and data were collected between the months of June and July in Perak, Malaysia. The contribution of intense sunny days was encouraging despite the wet season, and the wind velocity was dynamic during the period of investigation. However, high percentage of relative humidity was observed. This constitutes a hindrance to efficient drying process. The reported studies were silent on the effect of thick atmospheric moisture content on drying rate of agricultural products in tropic climate. This finding has revealed the mean values of insolation, wind speed, moisturized air, system performance efficiency and chili microscopy image morphology. The predicted and measured results were compared with good agreement.
Numerical simulation of direct methanol fuel cells using lattice Boltzmann method
Delavar, Mojtaba Aghajani; Farhadi, Mousa; Sedighi, Kurosh [Faculty of Mechanical Engineering, Babol University of Technology, Babol, P.O. Box 484 (Iran)
2010-09-15
In this study Lattice Boltzmann Method (LBM) as an alternative of conventional computational fluid dynamics method is used to simulate Direct Methanol Fuel Cell (DMFC). A two dimensional lattice Boltzmann model with 9 velocities, D2Q9, is used to solve the problem. The computational domain includes all seven parts of DMFC: anode channel, catalyst and diffusion layers, membrane and cathode channel, catalyst and diffusion layers. The model has been used to predict the flow pattern and concentration fields of different species in both clear and porous channels to investigate cell performance. The results have been compared well with results in literature for flow in porous and clear channels and cell polarization curves of the DMFC at different flow speeds and feed methanol concentrations. (author)
VERSE-Guided Numerical RF Pulse Design: A Fast Method for Peak RF Power Control
Lee, Daeho; Grissom, William A.; Lustig, Michael; Kerr, Adam B.; Stang, Pascal P.; Pauly, John M.
2013-01-01
In parallel excitation, the computational speed of numerical radiofrequency (RF) pulse design methods is critical when subject dependencies and system nonidealities need to be incorporated on-the-fly. One important concern with optimization-based methods is high peak RF power exceeding hardware or safety limits. Hence, online controllability of the peak RF power is essential. Variable-rate selective excitation pulse reshaping is ideally suited to this problem due to its simplicity and low computational cost. In this work, we first improve the fidelity of variable-rate selective excitation implementation for discrete-time waveforms through waveform oversampling such that variable-rate selective excitation can be robustly applied to numerically designed RF pulses. Then, a variable-rate selective excitation-guided numerical RF pulse design is suggested as an online RF pulse design framework, aiming to simultaneously control peak RF power and compensate for off-resonance. PMID:22135085
Direct and Indirect Gradient Control for Static Optimisation
Yi Cao
2005-01-01
Static "self-optimising" control is an important concept, which provides a link between static optimisation and control[1]. According to the concept, a dynamic control system could be configured in such a way that when a set of certain variables are maintained at their setpoints, the overall process operation is automatically optimal or near optimal at steadystate in the presence of disturbances. A novel approach using constrained gradient control to achieve "self-optimisation" has been proposed by Cao[2]. However, for most process plants, the information required to get the gradient measure may not be available in real-time. In such cases, controlled variable selection has to be carried out based on measurable candidates. In this work, the idea of direct gradient control has been extended to controlled variable selection based on gradient sensitivity analysis (indirect gradient control). New criteria, which indicate the sensitivity of the gradient function to disturbances and implementation errors, have been derived for selection. The particular case study shows that the controlled variables selected by gradient sensitivity measures are able to achieve near optimal performance.
Torque Ripple Reduction in Direct Torque Control Based Induction Motor using Intelligent Controllers
Sudhakar, Ambarapu; Vijaya Kumar, M.
2015-09-01
This paper presents intelligent control scheme together with conventional control scheme to overcome the problems with uncertainties in the structure encountered with classical model based design of induction motor drive based on direct torque control (DTC). It allows high dynamic performance to be obtained with very simple hysteresis control scheme. Direct control of the torque and flux is achieved by proper selection of inverter voltage space vector through a lookup table. This paper also presents the application of intelligent controllers like neural network and fuzzy logic controllers to control induction machines with DTC. Intelligent controllers are used to emulate the state selector of the DTC. With implementation of intelligent controllers the system is also verified and proved to be operated stably with reduced torque ripple. The proposed method validity and effectiveness has been verified by computer simulations using Matlab/Simulink®. These results are compared with the ones obtained with a classical DTC using proportional integral speed controller.
Controlling death: the false promise of advance directives.
Perkins, Henry S
2007-07-03
Advance directives promise patients a say in their future care but actually have had little effect. Many experts blame problems with completion and implementation, but the advance directive concept itself may be fundamentally flawed. Advance directives simply presuppose more control over future care than is realistic. Medical crises cannot be predicted in detail, making most prior instructions difficult to adapt, irrelevant, or even misleading. Furthermore, many proxies either do not know patients' wishes or do not pursue those wishes effectively. Thus, unexpected problems arise often to defeat advance directives, as the case in this paper illustrates. Because advance directives offer only limited benefit, advance care planning should emphasize not the completion of directives but the emotional preparation of patients and families for future crises. The existentialist Albert Camus might suggest that physicians should warn patients and families that momentous, unforeseeable decisions lie ahead. Then, when the crisis hits, physicians should provide guidance; should help make decisions despite the inevitable uncertainties; should share responsibility for those decisions; and, above all, should courageously see patients and families through the fearsome experience of dying.
Direct Numerical Simulation of Interfacial Flows: Implicit Sharp-Interface Method (I-SIM)
Robert Nourgaliev; Theo Theofanous; HyeongKae Park; Vincent Mousseau; Dana Knoll
2008-01-01
In recent work (Nourgaliev, Liou, Theofanous, JCP in press) we demonstrated that numerical simulations of interfacial flows in the presence of strong shear must be cast in dynamically sharp terms (sharp interface treatment or SIM), and that moreover they must meet stringent resolution requirements (i.e., resolving the critical layer). The present work is an outgrowth of that work aiming to overcome consequent limitations on the temporal treatment, which become still more severe in the presence of phase change. The key is to avoid operator splitting between interface motion, fluid convection, viscous/heat diffusion and reactions; instead treating all these non-linear operators fully-coupled within a Newton iteration scheme. To this end, the SIM’s cut-cell meshing is combined with the high-orderaccurate implicit Runge-Kutta and the “recovery” Discontinuous Galerkin methods along with a Jacobian-free, Krylov subspace iteration algorithm and its physics-based preconditioning. In particular, the interfacial geometry (i.e., marker’s positions and volumes of cut cells) is a part of the Newton-Krylov solution vector, so that the interface dynamics and fluid motions are fully-(non-linearly)-coupled. We show that our method is: (a) robust (L-stable) and efficient, allowing to step over stability time steps at will while maintaining high-(up to the 5th)-order temporal accuracy; (b) fully conservative, even near multimaterial contacts, without any adverse consequences (pressure/velocity oscillations); and (c) highorder-accurate in spatial discretization (demonstrated here up to the 12th-order for smoothin-the-bulk-fluid flows), capturing interfacial jumps sharply, within one cell. Performance is illustrated with a variety of test problems, including low-Mach-number “manufactured” solutions, shock dynamics/tracking with slow dynamic time scales, and multi-fluid, highspeed shock-tube problems. We briefly discuss preconditioning, and we introduce two physics
Fang, Wen-Zhen; Zhang, Hu; Chen, Li; Tao, Wen-Quan
2015-01-01
In this paper, a multiple-relaxation-time lattice Boltzmann model with an off-diagonal collision matrix was adopted to predict the effective thermal conductivities of the anisotropic heterogeneous materials whose components are also anisotropic. The half lattice division scheme was adopted to deal with the internal boundaries to guarantee the heat flux continuity at the interfaces. Accuracy of the model was confirmed by comparisons with benchmark results and existing simulation data. The present method was then adopted to numerically predict the transverse and longitudinal effective thermal conductivities of three-dimensional (3D) four-directional braided composites. Some corresponding experiments based on the Hot Disk method were conducted to measure their transverse and longitudinal effective thermal conductivities. The predicted data fit the experiment data well. Influences of fiber volume fractions and interior braiding angles on the effective thermal conductivities of 3D four-directional braided composit...
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.
2016-09-01
We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, including several performed specifically to reproduce this event. Our calculations go beyond existing semianalytic models, because for all simulations—including sources with two independent, precessing spins—we perform comparisons which account for all the spin-weighted quadrupolar modes, and separately which account for all the quadrupolar and octopolar modes. Consistent with the posterior distributions reported by Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016)] (at the 90% credible level), we find the data are compatible with a wide range of nonprecessing and precessing simulations. Follow-up simulations performed using previously estimated binary parameters most resemble the data, even when all quadrupolar and octopolar modes are included. Comparisons including only the quadrupolar modes constrain the total redshifted mass Mz∈[64 M⊙-82 M⊙] , mass ratio 1 /q =m2/m1∈[0.6 ,1 ], and effective aligned spin χeff∈[-0.3 ,0.2 ], where χeff=(S1/m1+S2/m2).L ^/M . Including both quadrupolar and octopolar modes, we find the mass ratio is even more tightly constrained. Even accounting for precession, simulations with extreme mass ratios and effective spins are highly inconsistent with the data, at any mass. Several nonprecessing and precessing simulations with similar mass ratio and χeff are consistent with the data. Though correlated, the components' spins (both in magnitude and directions) are not significantly constrained by the data: the data is consistent with simulations with component spin magnitudes a1 ,2 up to at least 0.8, with random orientations. Further detailed follow-up calculations are needed to determine if the data contain a weak imprint from transverse (precessing) spins. For nonprecessing binaries, interpolating between simulations, we reconstruct a posterior distribution consistent with previous results. The final black hole
B. Kafash
2014-04-01
Full Text Available In this paper, we present a computational method for solving optimal control problems and the controlled Duffing oscillator. This method is based on state parametrization. In fact, the state variable is approximated by Boubaker polynomials with unknown coefficients. The equation of motion, performance index and boundary conditions are converted into some algebraic equations. Thus, an optimal control problem converts to a optimization problem, which can then be solved easily. By this method, the numerical value of the performance index is obtained. Also, the control and state variables can be approximated as functions of time. Convergence of the algorithms is proved. Numerical results are given for several test examples to demonstrate the applicability and efficiency of the method.
Skowronski, Steven D.
This student guide provides materials for a course designed to instruct the student in the recommended procedures used when setting up tooling and verifying part programs for a two-axis computer numerical control (CNC) turning center. The course consists of seven units. Unit 1 discusses course content and reviews and demonstrates set-up procedures…
CNC Turning Center Advanced Operations. Computer Numerical Control Operator/Programmer. 444-332.
Skowronski, Steven D.; Tatum, Kenneth
This student guide provides materials for a course designed to introduce the student to the operations and functions of a two-axis computer numerical control (CNC) turning center. The course consists of seven units. Unit 1 presents course expectations and syllabus, covers safety precautions, and describes the CNC turning center components, CNC…
Numerical Control Machining and the Issue of Deskilling. An Empirical View.
Zicklin, Gilbert
1987-01-01
Research on the effects of numerical control (NC) machining on the skills of machinists presents mixed results. Interviews with a small group of machinists experienced in both conventional and NC matching suggest seven major factors that affect whether NC automation changes the overall skill level. The deskilling hypothesis is not supported by…
Fast numerical methods for mixed-integer nonlinear model-predictive control
Kirches, Christian
2011-01-01
Christian Kirches develops a fast numerical algorithm of wide applicability that efficiently solves mixed-integer nonlinear optimal control problems. He uses convexification and relaxation techniques to obtain computationally tractable reformulations for which feasibility and optimality certificates can be given even after discretization and rounding.
Katzin, D.; Katzin, Naama; Salti, Moti; Leibovich, Tali; Henik, Avishai
2016-01-01
Non-symbolic stimuli (i.e., dot arrays) are commonly used to study numerical cognition. However, in addition to numerosity, non-symbolic stimuli entail continuous magnitudes (e.g., total surface area, convex-hull, etc.) that correlate with numerosity. Several methods for controlling for continuous m
Stanton, Michael; And Others
1985-01-01
Three reports on the effects of high technology on the nature of work include (1) Stanton on applications and implications of computer-aided design for engineers, drafters, and architects; (2) Nardone on the outlook and training of numerical-control machine tool operators; and (3) Austin and Drake on the future of clerical occupations in automated…
Skowronski, Steven D.
This student guide provides materials for a course designed to instruct the student in the recommended procedures used when setting up tooling and verifying part programs for a two-axis computer numerical control (CNC) turning center. The course consists of seven units. Unit 1 discusses course content and reviews and demonstrates set-up procedures…
CNC Turning Center Advanced Operations. Computer Numerical Control Operator/Programmer. 444-332.
Skowronski, Steven D.; Tatum, Kenneth
This student guide provides materials for a course designed to introduce the student to the operations and functions of a two-axis computer numerical control (CNC) turning center. The course consists of seven units. Unit 1 presents course expectations and syllabus, covers safety precautions, and describes the CNC turning center components, CNC…
Tomar, P.; Pandey, R. K.; Nath, Y.
2013-11-01
The objective of this article is to investigate numerically frictional stress in the contact zone at the die/billet interface in the direct extrusion of aluminum alloys considering starved lubricated conditions. In the modeling, both the inlet and work zones have been investigated by coupled solution of the governing equations. The influences of the billet material's strain hardening and its heating due to the plastic deformation are accounted for in the numerical computation. The frictional shear stress at the die/billet interface is computed using three different lubricating oils. Numerical results have been presented herein for the various operating parameters viz. starvation factor ( ψ = 0.2-0.6), lubricants' viscosities ( η 0 = 0.05 Pa s-0.2 Pa s), semi die angle ( β = 10°-20°), and material parameter ( G = 0.56-2.25). It has been observed that the frictional stress increases with an increase in the severity of the lubricant's starvation for the given values of semi-die angle, extrusion speed, and material parameter.
Velazquez, N.; Sauceda, D.; Beltran, R. [Instituto de Ingenieria, Universidad Autonoma de Baja California, Blvd. Benito Juarez y Calle de la Normal s/n, Mexicali, Baja California 21280 (Mexico); Garcia-Valladares, O. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Temixco, Morelos 62580 (Mexico)
2010-03-15
In this work a methodological analysis to design and evaluate the technical feasibility of use a Linear Fresnel Reflector Concentrator (LFRC) as generator in an advanced absorption refrigeration system (Solar-GAX cycle) has been carried out. For this purpose, a detailed one-dimensional numerical simulation of the thermal and fluid-dynamic behavior of a LFRC that solves, in a segregated manner, four subroutines: (a) fluid flow inside the receptor tube, (b) heat transfer in the receptor tube wall, (c) heat transfer in cover tube wall, and (d) solar thermal analysis in the solar concentrator has been developed. The LFRC numerical model has been validated with experimental data obtained from the technical literature; after that, a parametric study for different configurations of design has been carried out in order to obtain the highest solar concentration with the lowest thermal losses, keeping in mind both specific weather conditions and construction restrictions. The numerical result obtained demonstrates that using a LFRC as a direct generator in a Solar-GAX cycle satisfy not only the quantity and quality of the energy demanded by the advanced cooling system, it also allows to obtain higher global efficiencies of the system due to it can be operated in conditions where the maximum performance of the Solar-GAX cycle is obtained without affecting in any significant way the solar collector efficiency. (author)
Zhang, Hong-Na; Li, Feng-Chen; Li, Xiao-Bin; Li, Dong-Yang; Cai, Wei-Hua; Yu, Bo
2016-09-01
Direct numerical simulations (DNSs) of purely elastic turbulence in rectilinear shear flows in a three-dimensional (3D) parallel plate channel were carried out, by which numerical databases were established. Based on the numerical databases, the present paper analyzed the structural and statistical characteristics of the elastic turbulence including flow patterns, the wall effect on the turbulent kinetic energy spectrum, and the local relationship between the flow motion and the microstructures’ behavior. Moreover, to address the underlying physical mechanism of elastic turbulence, its generation was presented in terms of the global energy budget. The results showed that the flow structures in elastic turbulence were 3D with spatial scales on the order of the geometrical characteristic length, and vortex tubes were more likely to be embedded in the regions where the polymers were strongly stretched. In addition, the patterns of microstructures’ elongation behave like a filament. From the results of the turbulent kinetic energy budget, it was found that the continuous energy releasing from the polymers into the main flow was the main source of the generation and maintenance of the elastic turbulent status. Project supported by the National Natural Science Foundation of China (Grant Nos. 51276046 and 51506037), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51421063), the China Postdoctoral Science Foundation (Grant No. 2016M591526), the Heilongjiang Postdoctoral Fund, China (Grant No. LBH-Z15063), and the China Postdoctoral International Exchange Program.
Sergiu Ciprian Catinas
2015-07-01
Full Text Available A detailed theoretical and practical investigation of the reinforced concrete elements is due to recent techniques and method that are implemented in the construction market. More over a theoretical study is a demand for a better and faster approach nowadays due to rapid development of the calculus technique. The paper above will present a study for implementing in a static calculus the direct stiffness matrix method in order capable to address phenomena related to different stages of loading, rapid change of cross section area and physical properties. The method is a demand due to the fact that in our days the FEM (Finite Element Method is the only alternative to such a calculus and FEM are considered as expensive methods from the time and calculus resources point of view. The main goal in such a method is to create the moment-curvature diagram in the cross section that is analyzed. The paper above will express some of the most important techniques and new ideas as well in order to create the moment curvature graphic in the cross sections considered.
Liu Xing-Hua; He Wei; Yang Fan; Wang Hong-Yu; Liao Rui-Jin; Xiao Han-Guang
2012-01-01
Air corona discharge is one of the critical problems associated with high-voltage equipment.Investigating the corona mechanism plays a key role in enhancing the electrical insulation performance.An improved self-consistent multi-component two-dimensional plasma hybrid model is presented for the simulation of a direct current atmospheric pressure corona discharge in air.The model is based on plasma hydrodynamic and chemical models,and includes 12 species and 26 reactions.In addition,the photoionization effect is introduced into the model.The simulation on a bar-plate electrode configuration with an inter-electrode gap of 5.0 mm is carried out.The discharge voltage-current characteristics and the current density distribution predicted by the hybrid model agree with the experimental measurements.In addition,the dynamics of volume charged species generation,discharge current waveform,current density distribution at an electrode,charge density,electron temperature,and electric field variations are investigated in detail based on the model.The results indicate that the model can contribute valuable insights into the physics of an air plasma discharge.
Numerical studies of spray breakup in a gasoline direct injection (GDI engine
Jafarmadar Samad
2011-01-01
Full Text Available The objective of this study is to investigate Spray Breakup process of sprays injected from single and two-hole nozzles for gasoline direct Injection (GDI engines by using three dimensional CFD code. Spray characteristics were examined for spray tip penetration and other characteristics including: the vapor phase concentration distribution and droplet spatial distribution, which were acquired using the computational fluid dynamics (CFD simulation. Results showed that as the hole-axis-angle (γ of the two-hole nozzle decreased, the droplet coalescence increased and vapor mass decreased. The spray with cone angle (θ0 5 deg for single hole nozzle has the longest spray tip penetration and the spray with the γ of 30 deg and spray cone angle θ0=30 deg for two hole nozzles had the shortest one. Also, when the spray cone angle (θ0 and hole-axis-angle (γ increased from 5 to 30 deg, the Sauter mean diameter (SMD decreased for both single-hole and two-hole nozzles used in this study. For a single-hole nozzle, when spray cone angle increased from 5 to 30 deg, the vaporization rate very much because of low level of coalescence. The result of model for tip penetration is good agreement with the corresponding experimental data in the literatures.
Abbott, B P; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bejger, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calder'on; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavagli`a, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J -P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dasgupta, A; Costa, C F Da Silva; Dattilo, V; Dave, I; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Del'eglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; D'iaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H -B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J -D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Geng, P; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; Gonz'alez, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J -M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jian, L; Jim'enez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; K'ef'elian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y -M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Kr'olak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; L"uck, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Zertuche, L Magaña; Magee, R M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; M'arka, S; M'arka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Nedkova, K; Nelemans, G; Nelson, T J N; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; P"urrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosi'nska, D; Rowan, S; R"udiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Sch"onbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepa'nczyk, M J; Tacca, M; Talukder, D; Tanner, D B; T'apai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torres, C V; Torrie, C I; T"oyr"a, D; Travasso, F; Traylor, G; Trifir`o, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; Brand, J F J van den; Broeck, C Van Den; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vas'uth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Vicer'e, A; Vinciguerra, S; Vine, D J; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; zny, A Zadro; Zangrando, L; Zanolin, M; Zendri, J -P; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Campanelli, M; Chu, T; Clark, M; Fauchon-Jones, E; Fong, H; Hannam, M; Healy, J; Hemberger, D; Hinder, I; Husa, S; Kalaghati, C; Khan, S; Kidder, L E; Kinsey, M; Laguna, P; London, L T; Lousto, C O; Lovelace, G; Ossokine, S; Pannarale, F; Pfeiffer, H P; Scheel, M; Shoemaker, D M; Szilagyi, B; Teukolsky, S; Vinuales, A Vano; Zlochower, Y
2016-01-01
We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, accounting for all the spin-weighted quadrupolar modes, and separately accounting for all the quadrupolar and octopolar modes. Consistent with the posterior distributions reported in LVC_PE[1] (at 90% confidence), we find the data are compatible with a wide range of nonprecessing and precessing simulations. Followup simulations performed using previously-estimated binary parameters most resemble the data. Comparisons including only the quadrupolar modes constrain the total redshifted mass Mz \\in [64 - 82M_\\odot], mass ratio q = m2/m1 \\in [0.6,1], and effective aligned spin \\chi_eff \\in [-0.3, 0.2], where \\chi_{eff} = (S1/m1 + S2/m2) \\cdot\\hat{L} /M. Including both quadrupolar and octopolar modes, we find the mass ratio is even more tightly constrained. Simulations with extreme mass ratios and effective spins are highly inconsistent with the data, at any mass. Several nonprecessing and precessing simulation...
CHEN Chang-ping; LI Yu-cheng; ZHAO Yun-peng; DONG Guo-hai; GUI Fu-kun
2009-01-01
In this paper,the numerical model of the net cage with the grid mooring system in waves is set up by the lumped mass method and rigid kinematics theory,and then the motion equations of floating system,net system,mooring system,and floaters are solved by the Runge-Kutta fifth-order method.For the verification of the numerical model,a series of physical model tests have been carried out.According to the comparisons between the simulated and experimental results,it can be found that the simulated and experimental results agree well in each condition.Then,the effects of submerged depth of grid and direction of incident wave propagation on hydrodynamic behaviors of the net cage are analyzed.According to the simulated results,it can be found that with the increase of submerged depth of grid,the forces acting on mooring lines and bridle lines increase,while the forces on grid lines decrease;the horizontal motion amplitudes of floating collar decrease obviously,while the vertical motion amplitudes of floating collar change little.When the direction of incident wave propagation changes,forces on mooting lines and motion of net cage also change accordingly.When the propagation direction of incident wave changes from 0° to 45°,forces on the main ropes and bridle ropes increase,while the forces on the grid ropes decrease.With the increasing propagation direction of incident wave,the horizontal amplitude of the forces collar decreases,while the vertical amplitude of the floating collar has little variation.
[Application of directed acyclic graphs in control of confounding].
Xiang, R; Dai, W J; Xiong, Y; Wu, X; Yang, Y F; Wang, L; Dai, Z H; Li, J; Liu, A Z
2016-07-01
Observational study is a method most commonly used in the etiology study of epidemiology, but confounders, always distort the true causality between exposure and outcome when local inferencing. In order to eliminate these confounding, the determining of variables which need to be adjusted become a key issue. Directed acyclic graph(DAG)could visualize complex causality, provide a simple and intuitive way to identify the confounding, and convert it into the finding of the minimal sufficient adjustment for the control of confounding. On the one hand, directed acyclic graph can choose less variables, which increase statistical efficiency of the analysis. On the other hand, it could help avoiding variables that is not measured or with missing values. In a word, the directed acyclic graph could facilitate the reveal of the real causality effectively.
Direct drive digital servo press with high parallel control
Murata, Chikara; Yabe, Jun; Endou, Junichi; Hasegawa, Kiyoshi
2013-12-01
Direct drive digital servo press has been developed as the university-industry joint research and development since 1998. On the basis of this result, 4-axes direct drive digital servo press has been developed and in the market on April of 2002. This servo press is composed of 1 slide supported by 4 ball screws and each axis has linearscale measuring the position of each axis with high accuracy less than μm order level. Each axis is controlled independently by servo motor and feedback system. This system can keep high level parallelism and high accuracy even with high eccentric load. Furthermore the 'full stroke full power' is obtained by using ball screws. Using these features, new various types of press forming and stamping have been obtained by development and production. The new stamping and forming methods are introduced and 'manufacturing' need strategy of press forming with high added value and also the future direction of press forming are also introduced.
Shape-Grinding by Direct Position/Force Control
Chen, Guanghua; Xu, Weiwei; Minami, Mamoru
Based on the analysis of the interaction between a manipulator's hand and a working object, a model representing the constrained dynamics of the robot is first discussed. The constrained forces are expressed by an algebraic function of states, input generalized forces, and the constraint condition, and then a direct position/force controller without force sensor is proposed based on the algebraic relation. To give a grinding system the ability to adapt to any object shape being changed by the grinding, we add a function estimating the constraint condition in real time for the adaptive position/force control. Evaluations through simulations, by fitting the changing constraint surface with spline functions, indicate that reliable position/force control and shape-grinding can be achieved by the proposed controller.
TECHNIQUES ABOUT DIRECT OPTIMIZING CONTROL OF GREEN SAND QUALITY*
无
2002-01-01
Green sand casting is still a main method in the world at present and it is very significant to develop the technology of controlling green sand quality. A new concept, from contents test to contents control, is advanced. In order to realize the new idea, a new method to on-line test active clay and moisture of green sand - double powers energizing alternately (DPEA) method is put forwards. The principle of the new method is to energize standard sand sample with AC and DC powers and to test the electric parameters, and then, to calculate active clay and moisture of green sand by using artificial neural network (ANN). Based on this new method, a direct optimizing system for controlling green sand quality is developed. Techniques about testing and controlling methods, hardware and software are discussed.
Ivanov, D. S.; Ovchinnikov, M. Yu.; Penkov, V. I.; Roldugin, D. S.; Doronin, D. M.; Ovchinnikov, A. V.
2017-03-01
Attitude motion of a satellite equipped with magnetic control system is considered. System comprises of three magnetorquers and one three-axis magnetometer. Satellite is stabilized in orbital reference frame using PD controller and extended Kalman filter. Three-axis attitude is analyzed numerically with advanced assumptions: inertia tensor uncertainty, disturbances of unknown nature, magnetometer errors are taken into account. Stabilization and determination accuracy dependence on orbit inclination is studied.
Experimental and numerical investigation of flow control on bluff bodies by passive ventilation
Falchi, M.; Provenzano, G.; Pietrogiacomi, D.; Romano, G. P.
2006-07-01
In this work, the so-called natural or passive ventilation drag reduction method is investigated experimentally and numerically. Passive ventilation is performed by directly connecting the high pressure region at the front of a body to the lower pressure in the near wake using a venting duct; in this manner, a net mass flux is established within the wake. In particular, in aerodynamic applications it appears suitable to attain a global reduction in the drag of a body moving in a fluid and a reduction in turbulence levels by means of a global modification of the body wake. Velocity field investigations using particle image velocimetry measurements and a Reynolds averaged numerical code are employed at moderately high Reynolds numbers to clarify the effectiveness of drag reduction on a vented bluff body. The numerical and experimental results agree qualitatively, but the amount of reduction for the vented body (about 10%) is underestimated numerically. The effectiveness of drag reduction has been proved both for smooth and rough (single strip) models. Direct balance measurements are used for comparisons.
Melt Flow Control in the Directional Solidification of Binary Alloys
Zabaras, Nicholas
2003-01-01
Our main project objectives are to develop computational techniques based on inverse problem theory that can be used to design directional solidification processes that lead to desired temperature gradient and growth conditions at the freezing front at various levels of gravity. It is known that control of these conditions plays a significant role in the selection of the form and scale of the obtained solidification microstructures. Emphasis is given on the control of the effects of various melt flow mechanisms on the local to the solidification front conditions. The thermal boundary conditions (furnace design) as well as the magnitude and direction of an externally applied magnetic field are the main design variables. We will highlight computational design models for sharp front solidification models and briefly discuss work in progress toward the development of design techniques for multi-phase volume-averaging based solidification models.
Direct-Torque Neuro-Fuzzy Control of Induction Motor
徐君鹏; CHEN Yan-feng; LI Guo-hou
2007-01-01
Fuzzy systems are currently being used in a wide field of industrial and scientific applications. Since the design and especially the optimization process of fuzzy systems can be very time consuming, it is convenient to have algorithms which construct and optimize them automatically. In order to improve the system stability and raise the response speed, a new control scheme, direct-torque neuro-fuzzy control for induction motor drive, was put forward. The design and tuning procedure have been described. Also, the improved stator flux estimation algorithm, which guarantees eccentric estimated flux has been proposed.
Subfemtosecond directional control of chemical processes in molecules
Alnaser, Ali S.; Litvinyuk, Igor V.
2017-02-01
Laser pulses with a waveform-controlled electric field and broken inversion symmetry establish the opportunity to achieve directional control of molecular processes on a subfemtosecond timescale. Several techniques could be used to break the inversion symmetry of an electric field. The most common ones include combining a fundamental laser frequency with its second harmonic or with higher -frequency pulses (or pulse trains) as well as using few-cycle pulses with known carrier-envelope phase (CEP). In the case of CEP, control over chemical transformations, typically occurring on a timescale of many femtoseconds, is driven by much faster sub-cycle processes of subfemtosecond to few-femtosecond duration. This is possible because electrons are much lighter than nuclei and fast electron motion is coupled to the much slower nuclear motion. The control originates from populating coherent superpositions of different electronic or vibrational states with relative phases that are dependent on the CEP or phase offset between components of a two-color pulse. In this paper, we review the recent progress made in the directional control over chemical processes, driven by intense few-cycle laser pulses a of waveform-tailored electric field, in different molecules.
Algorithm for direct numerical simulation of emulsion flow through a granular material
Zinchenko, Alexander Z.; Davis, Robert H.
2008-08-01
A multipole-accelerated 3D boundary-integral algorithm capable of modelling an emulsion flow through a granular material by direct multiparticle-multidrop simulations in a periodic box is developed and tested. The particles form a random arrangement at high volume fraction rigidly held in space (including the case of an equilibrium packing in mechanical contact). Deformable drops (with non-deformed diameter comparable with the particle size) squeeze between the particles under a specified average pressure gradient. The algorithm includes recent boundary-integral desingularization tools especially important for drop-solid and drop-drop interactions, the Hebeker representation for solid particle contributions, and unstructured surface triangulations with fixed topology. Multipole acceleration, with two levels of mesh node decomposition (entire drop/solid surfaces and "patches"), is a significant improvement over schemes used in previous, purely multidrop simulations; it remains efficient at very high resolutions ( 104- 105 triangular elements per surface) and has no lower limitation on the number of particles or drops. Such resolutions are necessary in the problem to alleviate lubrication difficulties, especially for near-critical squeezing conditions, as well as using ˜104 time steps and an iterative solution at each step, both for contrast and matching viscosities. Examples are shown for squeezing of 25-40 drops through an array of 9-14 solids, with the total volume fraction of 70% for particles and drops. The flow rates for the drop and continuous phases are calculated. Extensive convergence testing with respect to program parameters (triangulation, multipole truncation, etc.) is made.
Direct numerical simulations of homogeneous isotropic turbulence in a dense gas
Giauque, A.; Corre, C.; Menghetti, M.
2017-03-01
A study of turbulence in BZT dense gas flows is performed using DNS. It is shown that for a large but realistic intensity, the turbulence in dense gas flows behaves in a highly compressible manner when the average thermodynamic state lies within the inversion region in which the gas fundamental derivative is negative. A close similarity is observed in the evolution of the kinetic energy when the initial turbulent Mach number and the Taylor Reynolds number are matched regardless of the Equation of State (EoS) considered. A large turbulent Mach number is yet more easily attained in dense gas flows lying in the inversion region because of the low speed of sound associated with it. In this case the turbulence shows a highly compressible evolution with periodic exchanges between the internal and kinetic energies. In order to assess the capabilities of currently available Large Eddy Simulation (LES) subgrid-scale models, a-posteriori tests are performed using the dynamic Smagorinsky model. Coherently with the hypothesis it relies on, the model perfectly captures the evolution of the kinetic energy when the turbulent Mach number is low enough. When using the perfect gas EoS at a higher turbulent Mach number the agreement is reasonable. Yet, when the average thermodynamic state lies within the inversion region and when using the thermal and caloric Martin&Hou EoS, the model is not able to capture the correct evolution of the kinetic energy. The results presented in this study call for a specific research effort directed towards the assessment and possibly the development of advanced subgrid-scale models for LES of turbulent dense gas flows.
Wang, Peitao; Cai, Meifeng; Ren, Fenhua; Li, Changhong; Yang, Tianhong
2017-07-01
This paper develops a numerical approach to determine the mechanical behavior of discrete fractures network (DFN) models based on digital image processing technique and particle flow code (PFC2D). A series of direct shear tests of jointed rocks were numerically performed to study the effect of normal stress, friction coefficient and joint bond strength on the mechanical behavior of joint rock and evaluate the influence of micro-parameters on the shear properties of jointed rocks using the proposed approach. The complete shear stress-displacement curve of the DFN model under direct shear tests was presented to evaluate the failure processes of jointed rock. The results show that the peak and residual strength are sensitive to normal stress. A higher normal stress has a greater effect on the initiation and propagation of cracks. Additionally, an increase in the bond strength ratio results in an increase in the number of both shear and normal cracks. The friction coefficient was also found to have a significant influence on the shear strength and shear cracks. Increasing in the friction coefficient resulted in the decreasing in the initiation of normal cracks. The unique contribution of this paper is the proposed modeling technique to simulate the mechanical behavior of jointed rock mass based on particle mechanics approaches.
Directional Control of Plasmon-Exciton interaction with Plexcitonic Crystals
Balci, Sinan; Karademir, Ertugrul; Kocabas, Coskun; Aydinli, Atilla
2015-03-01
Plexcitons are strongly coupled plasmon excitons modes. In this work, we developed a platform, consisting of one and two dimensional corrugated surface patterns coated with a thin metal film and a dye solution. This system shows a controlled coupling action based on the excitation direction of SPP modes. Our scheme is based on the control of wavelengths of the forbidden SPP modes. Three kinds of patterns have been tested; a one dimensional uniform, a triangular, and a square lattice type crystals. For all three cases, lowest wavelength of the band gap is observed in Γ to M direction. For triangular and square lattice cases, band gap center oscillates between two finite values for every 60° and 90°s, respectively. We utilized this behavior to control SPP and J-aggregate coupling. We observe directional dependence of Rabi splitting energy varying between 0 meV and 60 meV . Square lattice gives the ability to tune a larger band gap, whereas triangular lattice gives higher number of symmetry points. Simulations show that, an 80 nm deep triangular lattice with 280 nm periodicity can result in omnidirectional decoupling of plexcitons. TUBITAK, Grants 110T790, 110T589, and 112T091.
A New Approach for Controlling Chaos Based on Direct Optimizing Predictive Control
无
2006-01-01
We introduce the predictive control theory into the study of chaos control and propose a direct optimizing predictive control algorithm based on a neural network model. The proposed control system stabilizes the chaotic motion in an unknown chaotic system onto the desired target trajectory. Compared with the existing similar algorithms, the proposed control system has faster response, so it requires much shorter time for the stabilization of the chaotic systems.The proposed approach can control hyperchaos and the algorithm is simple. The convergence of the control algorithm and the stability of the control system can be guaranteed. The theoretic analysis and simulations demonstrate the effectiveness of the algorithm.
Sekimoto, Atsushi; Jiménez, Javier
2016-01-01
Statistically stationary and homogeneous shear turbulence (SS-HST) is investigated by means of a new direct numerical simulation, spectral in the two horizontal directions and compact-finite-differences in the direction of the shear. No remeshing is used to impose the shear-periodic boundary condition. The influence of the geometry of the computational box is explored. Since HST has no characteristic outer length scale and tends to fill the computational domain, long-term simulations of HST are `minimal' in the sense of containing on average only a few large-scale structures. It is found that the main limit is the spanwise box width, $L_z$, which sets the length and velocity scales of the turbulence, and that the two other box dimensions should be sufficiently large $(L_x\\gtrsim 2L_z$, $L_y \\gtrsim L_z$) to prevent other directions to be constrained as well. It is also found that very long boxes, $L_x \\gtrsim 2 L_y$, couple with the passing period of the shear-periodic boundary condition, and develop strong u...
Srinivasan, M.; Karuppasamy, P.; Ramasamy, P.; Barua, A. K.
2016-07-01
Numerical modelling has emerged as a powerful tool for the development and optimization of directional solidification process for mass production of multicrystalline silicon. A transient global heat transfer model is performed to investigate the effect of bottom grooved furnace upon the directional solidification (DS) process of multi-crystalline silicon (mc-Si). The temperature distribution, von Mises stress, residual stress and dislocation density rate in multi-crystalline silicon ingots grown by modified directional solidification method have been investigated for five growth stages using finite volume method at the critical Prandtl number, Pr = 0.01. This paper discusses bottom groove furnace instead of seed crystal DS method. It achieves an advanced understanding of the thermal and mechanical behaviour in grown multi-crystalline ingot by bottom grooved directional solidification method. The von Mises stress and dislocation density were reduced while using the bottom grooved furnace. This work was carried out in the different grooves of radius 30 mm, 60 mm and 90 mm of the heat exchanger block of the DS furnace. In this paper, the results are presented for 60 mm radius groove only because it has got better results compared to the other grooves. Also, the computational results of bottom grooved DS method show better performance compared the conventional DS method for stress and dislocation density in grown ingot. [Figure not available: see fulltext.
Damping Force Tracking Control of MR Damper System Using a New Direct Adaptive Fuzzy Controller
Xuan Phu Do
2015-01-01
Full Text Available This paper presents a new direct adaptive fuzzy controller and its effectiveness is verified by investigating the damping force tracking control of magnetorheological (MR fluid based damper (MR damper in short system. In the formulation of the proposed controller, a model of interval type 2 fuzzy controller is combined with the direct adaptive control to achieve high performance in vibration control. In addition, H∞ (H infinity tracking technique is used in building a model of the direct adaptive fuzzy controller in which an enhanced iterative algorithm is combined with the fuzzy model. After establishing a closed-loop control structure to achieve high control performance, a cylindrical MR damper is adopted and damping force tracking results are obtained and discussed. In addition, in order to demonstrate the effectiveness of the proposed control strategy, two existing controllers are modified and tested for comparative work. It has been demonstrated from simulation and experiment that the proposed control scheme provides much better control performance in terms of damping force tracking error. This leads to excellent vibration control performance of the semiactive MR damper system associated with the proposed controller.
A dynamical programming approach for controlling the directed abelian Dhar-Ramaswamy model
Cajueiro, Daniel O
2013-01-01
A dynamical programming approach is used to deal with the problem of controlling the directed abelian Dhar-Ramaswamy model on two-dimensional square lattice. Two strategies are considered to obtain explicit results to this task. First, the optimal solution of the problem is characterized by the solution of the Bellman equation obtained by numerical algorithms. Second, the solution is used as a benchmark to value how far from the optimum other heuristics that can be applied to larger systems are. This approach is the first attempt on the direction of schemes for controlling self-organized criticality that are based on optimization principles that consider explicitly a tradeoff between the size of the avalanches and the cost of intervention.
Grugel, R. N.; Fedoseyev, A. I.; Kim, S.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Gravity-driven thermosolutal convection that arises during controlled directional solidification (DS) of dendritic alloys promotes detrimental macro-segregation (e.g. freckles and steepling) in products such as turbine blades. Considerable time and effort has been spent to experimentally and theoretically investigate this phenomena; although our knowledge has advanced to the point where convection can be modeled and accurately compared to experimental results, little has been done to minimize its onset and deleterious effects. The experimental work demonstrates that segregation can be. minimized and microstructural uniformity promoted when a slow axial rotation is applied to the sample crucible during controlled directional solidification processing. Numerical modeling utilizing continuation and bifurcation methods have been employed to develop accurate physical and mathematical models with the intent of identifying and optimizing processing parameters.
NUMERICAL MODELING OF CHANNEL EQUILIBRIUM PROFILE AND ITS EFFECT ON FLOOD CONTROL
无
2002-01-01
Based on the morphology of Luoshan-Hankou reach at the middle Yangtze River, the one-dimensional, unsteady flow and sediment transport numerical model was adopted to study the generalized channel equilibrium profile. The variation of the longitudinal equilibrium profile, and the relation with the condition of the inflow water and sediment from the upper reach were analyzed. Meanwhile, the numerical simulation results were compared with the corresponding theoretical results. Finally, the equilibrium longitudinal slope variations and its impact on flood control were analyzed after the sediment transport process has changed.
Numerical Simulation of Nano Scanning in Intermittent-Contact Mode AFM under Q control
Varol, Aydin; Orun, Bilal; Basdogan, Cagatay
2012-01-01
We investigate nano scanning in tapping mode atomic force microscopy (AFM) under quality (Q) control via numerical simulations performed in SIMULINK. We focus on the simulation of whole scan process rather than the simulation of cantilever dynamics and the force interactions between the probe tip and the surface alone, as in most of the earlier numerical studies. This enables us to quantify the scan performance under Q control for different scan settings. Using the numerical simulations, we first investigate the effect of elastic modulus of sample (relative to the substrate surface) and probe stiffness on the scan results. Our numerical simulations show that scanning in attractive regime using soft cantilevers with high Qeff results in a better image quality. We, then demonstrate the trade-off in setting the effective Q factor (Qeff) of the probe in Q control: low values of Qeff cause an increase in tapping forces while higher ones limit the maximum achievable scan speed due to the slow response of the cantil...
Shaking table test and numerical analysis of offshore wind turbine tower systems controlled by TLCD
Chen, Jianbing; Liu, Youkun; Bai, Xueyuan
2015-03-01
A wind turbine system equipped with a tuned liquid column damper (TLCD) is comprehensively studied via shaking table tests using a 1/13-scaled model. The effects of wind and wave actions are considered by inputting response-equivalent accelerations on the shaking table. The test results show that the control effect of the TLCD system is significant in reducing the responses under both wind-wave equivalent loads and ground motions, but obviously varies for different inputs. Further, a blade-hub-tower integrated numerical model for the wind turbine system is established. The model is capable of considering the rotational effect of blades by combining Kane's equation with the finite element method. The responses of the wind tower equipped with TLCD devices are numerically obtained and compared to the test results, showing that under both controlled and uncontrolled conditions with and without blades' rotation, the corresponding responses exhibit good agreement. This demonstrates that the proposed numerical model performs well in capturing the wind-wave coupled response of the offshore wind turbine systems under control. Both numerical and experimental results show that the TLCD system can significantly reduce the structural response and thus improve the safety and serviceability of the offshore wind turbine tower systems. Additional issues that require further study are discussed.
Extremum-Seeking Control and Applications A Numerical Optimization-Based Approach
Zhang, Chunlei
2012-01-01
Extremum seeking control tracks a varying maximum or minimum in a performance function such as a cost. It attempts to determine the optimal performance of a control system as it operates, thereby reducing downtime and the need for system analysis. Extremum Seeking Control and Applications is divided into two parts. In the first, the authors review existing analog optimization based extremum seeking control including gradient, perturbation and sliding mode based control designs. They then propose a novel numerical optimization based extremum seeking control based on optimization algorithms and state regulation. This control design is developed for simple linear time-invariant systems and then extended for a class of feedback linearizable nonlinear systems. The two main optimization algorithms – line search and trust region methods – are analyzed for robustness. Finite-time and asymptotic state regulators are put forward for linear and nonlinear systems respectively. Further design flexibility is achieved u...
Mariegaard, Jesper Sandvig
We consider a control problem for the wave equation: Given the initial state, find a specific boundary condition, called a control, that steers the system to a desired final state. The Hilbert uniqueness method (HUM) is a mathematical method for the solution of such control problems. It builds...... on the duality between the control system and its adjoint system, and these systems are connected via a so-called controllability operator. In this project, we are concerned with the numerical approximation of HUM control for the one-dimensional wave equation. We study two semi-discretizations of the wave...... equation: a linear finite element method (L-FEM) and a discontinuous Galerkin-FEM (DG-FEM). The controllability operator is discretized with both L-FEM and DG-FEM to obtain a HUM matrix. We show that formulating HUM in a sine basis is beneficial for several reasons: (i) separation of low and high frequency...
Design and Implementation of Distributed Numerical Control in Flexible Manufacturing System
周炳海; 余传猛; 奚立峰; 曹永上
2004-01-01
To monitor, control and manage the work process ofcomputer numerical control machine tools in a flexible manufacturing system (FMS) effectively, the distributed numerical control (distributed-NC) software should be innovated with the characteristics of modularization and reconfiguration. In this paper, firstly, distributed-NC functions in the FMS environment are described. Then, we present a design and development method of the real time distributed-NC that is on the basis of the re-configurable software and hardware platform and with an object-oriented model concept. Finally, to verify the proposed method, the distributed-NC software has been implemented in VC + +6.0 and has been tested in connection with the different physical flexible manufacturing shops.
Xin Gu
2017-01-01
Full Text Available The constitutive modeling and numerical implementation of a nonordinary state-based peridynamic (NOSB-PD model corresponding to the classical elastic model are presented. Besides, the numerical instability problem of the NOSB-PD model is analyzed, and a penalty method involving the hourglass force is proposed to control the instabilities. Further, two benchmark problems, the static elastic deformation of a simple supported beam and the elastic wave propagation in a two-dimensional rod, are discussed with the present method. It proves that the penalty instability control method is effective in suppressing the displacement oscillations and improving the accuracy of calculated stress fields with a proper hourglass force coefficient, and the NOSB-PD approach with instability control can analyze the problems of structure deformation and elastic wave propagation well.
LIU Quan; QU Xuehong; ZHOU Henglin; LONG Yihong
2006-01-01
This paper designed an embedded video monitoring system using DSP(Digital Signal Processing) and ARM(Advanced RISC Machine). This system is an important part of self-service operation of numerical control machine tools. At first the analog input signals from the CCD(Charge Coupled Device) camera are transformed into digital signals, and then output to the DSP system, where the video sequence is encoded according to the new generation image compressing standard called H.264. The code will be transmitted to the ARM system through xBus, and then be packed in the ARM system and transmitted to the client port through the gateway. Web technology, embedded technology and image compressing as well as coding technology are integrated in the system, which can be widely used in self-service operation of numerical control machine tools and intelligent robot control areas.
Numerical Modeling of Cavitating Venturi: A Flow Control Element of Propulsion System
Majumdar, Alok; Saxon, Jeff (Technical Monitor)
2002-01-01
In a propulsion system, the propellant flow and mixture ratio could be controlled either by variable area flow control valves or by passive flow control elements such as cavitating venturies. Cavitating venturies maintain constant propellant flowrate for fixed inlet conditions (pressure and temperature) and wide range of outlet pressures, thereby maintain constant, engine thrust and mixture ratio. The flowrate through the venturi reaches a constant value and becomes independent of outlet pressure when the pressure at throat becomes equal to vapor pressure. In order to develop a numerical model of propulsion system, it is necessary to model cavitating venturies in propellant feed systems. This paper presents a finite volume model of flow network of a cavitating venturi. The venturi was discretized into a number of control volumes and mass, momentum and energy conservation equations in each control volume are simultaneously solved to calculate one-dimensional pressure, density, and flowrate and temperature distribution. The numerical model predicts cavitations at the throat when outlet pressure was gradually reduced. Once cavitation starts, with further reduction of downstream pressure, no change in flowrate is found. The numerical predictions have been compared with test data and empirical equation based on Bernoulli's equation.
ZHAO Xiaohu; LI Yinghong; WU Yun; ZHU Tao; LI Yiwen
2012-01-01
To discover the characteristic of separated flows and mechanism of plasma flow control on a highly loaded compressor cascade,numerical investigation is conducted.The simulation method is validated by oil flow visualization and pressure distribution.The loss coefficients,streamline patterns,and topology structure as well as vortex structure are analyzed.Results show thai the numbers of singular points increase and three pairs of additional singular points of topology structure on solid surface generate with the increase of angle of attack,and the total pressure loss increases greatly.There are several principal vortices inside the cascade passage.The pressure side leg of horse-shoe vortex coexists within a specific region together with passage vortex,but finally merges into the latter.Comer vortex exists independently and does not evolve from the suction side leg of horse-shoe vortex.One pair of radial coupling-vortex exists near blade trailing edge and becomes the main part of backflow on the suction surface.Passage vortex interacts with the concentrated shedding vortex and they evolve into a large-scale vortex rotating in the direction opposite to passage vortex.The singular points and separation lines represent the basic separation feature of cascade passage.Plasma actuation has better effect at low freestream velocity,and the relative reductions of pitch-averaged total pressure loss coefficient with different actuation layouts of five and two pairs of electrodes are up to 30.8％ and 26.7％ while the angle of attack is 2°.Plasma actuation changes the local topology structure,but does not change the number relation of singular points.One pair of additional singular point of topology structure generates with plasma actuation and one more reattachment line appears,both of which break the separation line on the suction surface.
Towards a reference numerical scheme using MCNPX for PWR control rod tip fluence estimations
Ferroukhi, H.; Vasiliev, A. [Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland); Dufresne, A. [Dept. of Physics, EPFL, 1015 Lausanne (Switzerland); Chawla, R. [Dept. of Physics, EPFL, 1015 Lausanne (Switzerland); Paul Scherrer Institut (Switzerland)
2012-07-01
Recent occurrences of cracks and fissures on the cladding tubes of PWR control rod (CR) fingers employed in the Swiss reactors prompted the need to develop more reliable analytical methods for CR tip fluence estimations. To partly address this need, a deterministic methodology based on SIMULATE-3/CASMO-4 was in recent years developed at PSI. Although this methodology has already been applied for independent support to licensing issues related to CR lifetime, two main questions are currently being the center of attention for further enhancements. First, the methodology relies on several assumptions that have so far not been verified. Secondly, an assessment of the achieved accuracy has not been addressed. In an attempt to answer both these open questions, it was considered appropriate to develop an alternative computational scheme based on the stochastic MCNPX code with the objective to provide reference numerical solutions. This paper presents the first steps undertaken in that direction. To start, a methodology for a volumetric neutron source transfer to full core MCNPX models with detailed CR as well as axial reflector representations is established. On this basis, the assumptions of the deterministic methodology are studied for selected CR configurations for two Beginning-of-Life cores by comparing the spatial neutron flux distributions obtained with the two approaches for the entire spectrum. Finally, for the high-energy range (E> 1 MeV) and for a few CRs, the new MCNPX scheme is applied to estimate the accumulated fluence over one real operated cycle and the results are compared with the deterministic approach. (authors)
Direct Torque Control of a Small Wind Turbine with a Sliding-Mode Speed Controller
Sri Lal Senanayaka, Jagath; Karimi, Hamid Reza; Robbersmyr, Kjell G.
2016-09-01
In this paper. the method of direct torque control in the presence of a sliding-mode speed controller is proposed for a small wind turbine being used in water heating applications. This concept and control system design can be expanded to grid connected or off-grid applications. Direct torque control of electrical machines has shown several advantages including very fast dynamics torque control over field-oriented control. Moreover. the torque and flux controllers in the direct torque control algorithms are based on hvsteretic controllers which are nonlinear. In the presence of a sliding-mode speed control. a nonlinear control system can be constructed which is matched for AC/DC conversion of the converter that gives fast responses with low overshoots. The main control objectives of the proposed small wind turbine can be maximum power point tracking and soft-stall power control. This small wind turbine consists of permanent magnet synchronous generator and external wind speed. and rotor speed measurements are not required for the system. However. a sensor is needed to detect the rated wind speed overpass events to activate proper speed references for the wind turbine. Based on the low-cost design requirement of small wind turbines. an available wind speed sensor can be modified. or a new sensor can be designed to get the required measurement. The simulation results will be provided to illustrate the excellent performance of the closed-loop control system in entire wind speed range (4-25 m/s).
Sondergaard, R.; Cantwell, B.; Mansour, N.
1997-01-01
Direct numerical simulations have been used to examine the effect of the initial disturbance field on the development of three-dimensionality and the transition to turbulence in the incompressible plane wake. The simulations were performed using a new numerical method for solving the time-dependent, three-dimensional, incompressible Navier-Stokes equations in flows with one infinite and two periodic directions. The method uses standard Fast Fourier Transforms and is applicable to cases where the vorticity field is compact in the infinite direction. Initial disturbances fields examined were combinations of two-dimensional waves and symmetric pairs of 60 deg oblique waves at the fundamental, subharmonic, and sub-subharmonic wavelengths. The results of these simulations indicate that the presence of 60 deg disturbances at the subharmonic streamwise wavelength results in the development of strong coherent three-dimensional structures. The resulting strong three-dimensional rate-of-strain triggers the growth of intense fine scale motions. Wakes initiated with 60 deg disturbances at the fundamental streamwise wavelength develop weak coherent streamwise structures, and do not develop significant fine scale motions, even at high Reynolds numbers. The wakes which develop strong three-dimensional structures exhibit growth rates on par with experimentally observed turbulent plane wakes. Wakes which develop only weak three-dimensional structures exhibit significantly lower late time growth rates. Preliminary studies of wakes initiated with an oblique fundamental and a two-dimensional subharmonic, which develop asymmetric coherent oblique structures at the subharmonic wavelength, indicate that significant fine scale motions only develop if the resulting oblique structures are above an angle of approximately 45 deg.
Stroe, Gabriela; Andrei, Irina-Carmen; Frunzulica, Florin
2017-01-01
The objectives of this paper are the study and the implementation of both aerodynamic and propulsion models, as linear interpolations using look-up tables in a database. The aerodynamic and propulsion dependencies on state and control variable have been described by analytic polynomial models. Some simplifying hypotheses were made in the development of the nonlinear aircraft simulations. The choice of a certain technique to use depends on the desired accuracy of the solution and the computational effort to be expended. Each nonlinear simulation includes the full nonlinear dynamics of the bare airframe, with a scaled direct connection from pilot inputs to control surface deflections to provide adequate pilot control. The engine power dynamic response was modeled with an additional state equation as first order lag in the actual power level response to commanded power level was computed as a function of throttle position. The number of control inputs and engine power states varied depending on the number of control surfaces and aircraft engines. The set of coupled, nonlinear, first-order ordinary differential equations that comprise the simulation model can be represented by the vector differential equation. A linear time-invariant (LTI) system representing aircraft dynamics for small perturbations about a reference trim condition is given by the state and output equations present. The gradients are obtained numerically by perturbing each state and control input independently and recording the changes in the trimmed state and output equations. This is done using the numerical technique of central finite differences, including the perturbations of the state and control variables. For a reference trim condition of straight and level flight, linearization results in two decoupled sets of linear, constant-coefficient differential equations for longitudinal and lateral / directional motion. The linearization is valid for small perturbations about the reference trim
Induction machine Direct Torque Control system based on fuzzy adaptive control
Li, Shi-ping; Yu, Yan; Jiao, Zhen-gang; Gu, Shu-sheng
2009-07-01
Direct Torque Control technology is a high-performance communication control method, it uses the space voltage vector method, and then to the inverter switch state control, to obtain high torque dynamic performance. But none of the switching states is able to generate the exact voltage vector to produce the desired changes in torque and flux in most of the switching instances. This causes a high ripple in torque. To solve this problem, a fuzzy implementation of Direct Torque Control of Induction machine is presented here. Error of stator flux, error of motor electromagnetic torque and position of angle of flux are taken as fuzzy variables. In order to further solve nonlinear problem of variation parameters in direct torque control system, the paper proposes a fuzzy parameter PID adaptive control method which is suitable for the direct torque control of an asynchronous motor. The generation of its fuzzy control is obtained by analyzing and optimizing PID control step response and combining expert's experience. For this reason, it carries out fuzzy work to PID regulator of motor speed to achieve to regulate PID parameters. Therefore the control system gets swifter response velocity, stronger robustness and higher precision of velocity control. The computer simulated results verify the validity of this novel method.
Numerical Study on Nonlinear Semiactive Control of Steel-Concrete Hybrid Structures Using MR Dampers
Long-He Xu
2013-01-01
Full Text Available Controlling the damage process, avoiding the global collapse, and increasing the seismic safety of the super high-rise building structures are of great significance to the casualties’ reduction and seismic losses mitigation. In this paper, a semiactive control platform based on magnetorheological (MR dampers comprising the Bouc-Wen model, the semi-active control law, and the shear wall damage criteria and steel damage material model is developed in LS-DYNA program, based on the data transferring between the main program and the control platform; it can realize the purpose of integrated modeling, analysis, and design of the nonlinear semi-active control system. The nonlinear seismic control effectiveness is verified by the numerical example of a 15-story steel-concrete hybrid structure; the results indicate that the control platform and the numerical method are stable and fast, the relative displacement, shear force, and damage of the steel-concrete structure are largely reduced using the optimal designed MR dampers, and the deformations and shear forces of the concrete tube and frame are better consorted by the control devices.
Ying, Zu-guang; Luo, Yin-miao; Zhu, Wei-qiu; Ni, Yi-qing; Ko, Jan-ming
2012-04-01
A semi-analytical direct optimal control solution for strongly excited and dissipative Hamiltonian systems is proposed based on the extended Hamiltonian principle, the Hamilton-Jacobi-Bellman (HJB) equation and its variational integral equation, and the finite time element approximation. The differential extended Hamiltonian equations for structural vibration systems are replaced by the variational integral equation, which can preserve intrinsic system structure. The optimal control law dependent on the value function is determined by the HJB equation so as to satisfy the overall optimality principle. The partial differential equation for the value function is converted into the integral equation with variational weighting. Then the successive solution of optimal control with system state is designed. The two variational integral equations are applied to sequential time elements and transformed into the algebraic equations by using the finite time element approximation. The direct optimal control on each time element is obtained respectively by solving the algebraic equations, which is unconstrained by the system state observed. The proposed control algorithm is applicable to linear and nonlinear systems with the quadratic performance index, and takes into account the effects of external excitations measured on control. Numerical examples are given to illustrate the optimal control effectiveness.
Control concepts for direct steam generation in parabolic troughs
Valenzuela, Loreto; Zarza, Eduardo [CIEMAT, Plataforma Solar de Almeria, Tabernas (Almeria) (Spain); Berenguel, Manuel [Universidad de Almeria, Dept. de Lenguajes y Computacion, Almeria (Spain); Camacho, Eduardo F. [Universidad de Sevilla, Dept. de Ingenieria de Sistemas y Automatica, Sevilla (Spain)
2005-02-01
A new prototype parabolic-trough collector system was erected at the Plataforma Solar de Almeria (PSA) (1996-1998) to investigate direct steam generation (DSG) in a solar thermal power plant under real solar conditions. The system has been under evaluation for efficiency, cost, control and other parameters since 1999. The main objective of the control system is to obtain steam at constant temperature and pressure at the solar field outlet, so that changes in inlet water conditions and/or in solar radiation affect the amount of steam, but not its quality or the nominal plant efficiency. This paper presents control schemes designed and tested for two operating modes, 'Recirculation', for which a proportional-integral-derivative (PI/PID) control functions scheme has been implemented, and 'Once-through', requiring more complex control strategies, for which the scheme is based on proportional-integral (PI), feedforward and cascade control. Experimental results of both operation modes are discussed. (Author)
A program for the numerical control of a pulse increment system
Gray, D.C.
1963-08-21
This report will describe the important features of the development of magnetic tapes for the numerical control of a pulse-increment system consisting of a modified Gorton lathe and its associated control unit developed by L. E. Foley of Equipment Development Service, Engineering Services, General Electric Co., Schenectady, N.Y. Included is a description of CUPID (Control and Utilization of Pulse Increment Devices), a FORTRAN program for the design of these tapes on the IBM 7090 computer, and instructions for its operation.
Nirban Chakraborty
2014-04-01
Full Text Available This paper presents the speed control scheme of direct vector control of Induction Motor drive (IM drive. The Fuzzy logic controller is (FLC used as the controller part here for the direct vector control of Induction Motor using Sinusoidal PWM Inverter (SPWM. Fuzzy logic controller has become a very popular controlling scheme in the field of Industrial application. The entire module of this IM is divided into several parts such as IM body module, Inverter module, coordinate transformation module and Sinusoidal pulse width modulation (SPWM production module and so on. With the help of this module we can analyze a variety of different simulation waveforms, which provide an effective means for the analysis and design of the IM control system using FLC technique.
Mariela Olguín
2015-01-01
Full Text Available The objective of this work is to make the numerical analysis, through the finite element method with Lagrange’s triangles of type 1, of a continuous optimal control problem governed by an elliptic variational inequality where the control variable is the internal energy g. The existence and uniqueness of this continuous optimal control problem and its associated state system were proved previously. In this paper, we discretize the elliptic variational inequality which defines the state system and the corresponding cost functional, and we prove that there exist a discrete optimal control and its associated discrete state system for each positive h (the parameter of the finite element method approximation. Finally, we show that the discrete optimal control and its associated state system converge to the continuous optimal control and its associated state system when the parameter h goes to zero.
Kuruoǧlu, Zeki C.
2016-11-01
Direct numerical solution of the coordinate-space integral-equation version of the two-particle Lippmann-Schwinger (LS) equation is considered without invoking the traditional partial-wave decomposition. The singular kernel of the three-dimensional LS equation in coordinate space is regularized by a subtraction technique. The resulting nonsingular integral equation is then solved via the Nystrom method employing a direct-product quadrature rule for three variables. To reduce the computational burden of discretizing three variables, advantage is taken of the fact that, for central potentials, the azimuthal angle can be integrated out, leaving a two-variable reduced integral equation. A regularization method for the kernel of the two-variable integral equation is derived from the treatment of the singularity in the three-dimensional equation. A quadrature rule constructed as the direct product of single-variable quadrature rules for radial distance and polar angle is used to discretize the two-variable integral equation. These two- and three-variable methods are tested on the Hartree potential. The results show that the Nystrom method for the coordinate-space LS equation compares favorably in terms of its ease of implementation and effectiveness with the Nystrom method for the momentum-space version of the LS equation.
Qian, Ying-Jing; Yang, Xiao-Dong; Zhai, Guan-Qiao; Zhang, Wei
2017-08-01
Innovated by the nonlinear modes concept in the vibrational dynamics, the vertical periodic orbits around the triangular libration points are revisited for the Circular Restricted Three-body Problem. The ζ -component motion is treated as the dominant motion and the ξ and η -component motions are treated as the slave motions. The slave motions are in nature related to the dominant motion through the approximate nonlinear polynomial expansions with respect to the ζ -position and ζ -velocity during the one of the periodic orbital motions. By employing the relations among the three directions, the three-dimensional system can be transferred into one-dimensional problem. Then the approximate three-dimensional vertical periodic solution can be analytically obtained by solving the dominant motion only on ζ -direction. To demonstrate the effectiveness of the proposed method, an accuracy study was carried out to validate the polynomial expansion (PE) method. As one of the applications, the invariant nonlinear relations in polynomial expansion form are used as constraints to obtain numerical solutions by differential correction. The nonlinear relations among the directions provide an alternative point of view to explore the overall dynamics of periodic orbits around libration points with general rules.
Complete control, direct observation and study of molecular super rotors
Korobenko, Aleksey; Milner, Valery
2013-01-01
Extremely fast rotating molecules carrying significantly more energy in their rotation than in any other degree of freedom are known as "super rotors". It has been speculated that super rotors may exhibit a number of unique and intriguing properties. Theoretical studies showed that ultrafast molecular rotation may change the character of molecular scattering from solid surfaces, alter molecular trajectories in external fields, make super rotors surprisingly stable against collisions, and lead to the formation of gas vortices. New ways of molecular cooling and selective chemical bond breaking by ultrafast spinning have been proposed. Owing to the fundamental laws of nature, bringing a large number of molecules to fast, directional and synchronous rotation is rather challenging. As a result, only indirect evidence of super rotors has been reported to date. Here we demonstrate the first controlled creation, direct observation and study of molecular super rotors. Using intense laser pulses tailored to produce an ...
Lee, Chany; Jung, Young-Jin; Lee, Sang Jun; Im, Chang-Hwan
2017-02-01
Since there is no way to measure electric current generated by transcranial direct current stimulation (tDCS) inside the human head through in vivo experiments, numerical analysis based on the finite element method has been widely used to estimate the electric field inside the head. In 2013, we released a MATLAB toolbox named COMETS, which has been used by a number of groups and has helped researchers to gain insight into the electric field distribution during stimulation. The aim of this study was to develop an advanced MATLAB toolbox, named COMETS2, for the numerical analysis of the electric field generated by tDCS. COMETS2 can generate any sizes of rectangular pad electrodes on any positions on the scalp surface. To reduce the large computational burden when repeatedly testing multiple electrode locations and sizes, a new technique to decompose the global stiffness matrix was proposed. As examples of potential applications, we observed the effects of sizes and displacements of electrodes on the results of electric field analysis. The proposed mesh decomposition method significantly enhanced the overall computational efficiency. We implemented an automatic electrode modeler for the first time, and proposed a new technique to enhance the computational efficiency. In this paper, an efficient toolbox for tDCS analysis is introduced (freely available at http://www.cometstool.com). It is expected that COMETS2 will be a useful toolbox for researchers who want to benefit from the numerical analysis of electric fields generated by tDCS. Copyright © 2016. Published by Elsevier B.V.
Kidanemariam, Aman G
2014-01-01
A numerical method based upon the immersed boundary technique for the fluid-solid coupling and on a soft-sphere approach for solid-solid contact is used to perform direct numerical simulation of the flow-induced motion of a thick bed of spherical particles in a horizontal plane channel. The collision model features a normal force component with a spring and a damper, as well as a damping tangential component, limited by a Coulomb friction law. The standard test case of a single particle colliding perpendicularly with a horizontal wall in a viscous fluid is simulated over a broad range of Stokes numbers, yielding values of the effective restitution coefficient in close agreement with experimental data. The case of bedload particle transport by laminar channel flow is simulated for 24 different parameter values covering a broad range of the Shields number. Comparison of the present results with reference data from the experiment of Aussillous et al. (J. Fluid Mech. 2013) yields excellent agreement. It is confir...
LEE; ChunHian
2010-01-01
Direct numerical simulation (DNS) of incompressible magnetohydrodynamic (MHD) turbulent channel flow has been performed under the low magnetic Reynolds number assumption.The velocity-electric field and electric-electric field correlations were studied in the present work for different magnetic field orientations.The Kenjeres-Hanjalic (K-H) model was validated with the DNS data in a term by term manner.The numerical results showed that the K-H model makes good predictions for most components of the velocity-electric field correlations.The mechanisms of turbulence suppression were also analyzed for different magnetic field orientations utilizing the DNS data and the K-H model.The results revealed that the dissipative MHD source term is responsible for the turbulence suppression for the case of streamwise and spanwise magnetic orientation,while the Lorentz force which speeds up the near-wall fluid and decreases the production term is responsible for the turbulence suppression for the case of the wall normal magnetic orientation.
Nourgaliev R.; Knoll D.; Mousseau V.; Berry R.
2007-04-01
The state-of-the-art for Direct Numerical Simulation (DNS) of boiling multiphase flows is reviewed, focussing on potential of available computational techniques, the level of current success for their applications to model several basic flow regimes (film, pool-nucleate and wall-nucleate boiling -- FB, PNB and WNB, respectively). Then, we discuss multiphysics and multiscale nature of practical boiling flows in LWR reactors, requiring high-fidelity treatment of interfacial dynamics, phase-change, hydrodynamics, compressibility, heat transfer, and non-equilibrium thermodynamics and chemistry of liquid/vapor and fluid/solid-wall interfaces. Finally, we outline the framework for the {\\sf Fervent} code, being developed at INL for DNS of reactor-relevant boiling multiphase flows, with the purpose of gaining insight into the physics of multiphase flow regimes, and generating a basis for effective-field modeling in terms of its formulation and closure laws.
Liu, Nan-Suey; Shih, Tsan-Hsing; Wey, C. Thomas
2011-01-01
A series of numerical simulations of Jet-A spray reacting flow in a single-element lean direct injection (LDI) combustor have been conducted by using the National Combustion Code (NCC). The simulations have been carried out using the time filtered Navier-Stokes (TFNS) approach ranging from the steady Reynolds-averaged Navier-Stokes (RANS), unsteady RANS (URANS), to the dynamic flow structure simulation (DFS). The sub-grid model employed for turbulent mixing and combustion includes the well-mixed model, the linear eddy mixing (LEM) model, and the filtered mass density function (FDF/PDF) model. The starting condition of the injected liquid spray is specified via empirical droplet size correlation, and a five-species single-step global reduced mechanism is employed for fuel chemistry. All the calculations use the same grid whose resolution is of the RANS type. Comparisons of results from various models are presented.
Research on Direct Torque Control System Based on Induction Motor
康劲松; 陶生桂; 毛明平
2003-01-01
The mathematic model of direct torque control (DTC) was deduced. Two simulating models based on the MATLAB & SIMULINK were established. The emphasis is focused on study of the performance difference of the DTC system with stator flux hexagon and circle trajectories. The simulation waveforms of flux, torque and current characters with two flux trajectories were given. Experiments were carried out in an AC drive system based on induction motor and two-level inverter. A dual-CPU structure was used and the communication with two CPUs was obtained by a dual-port RAM in this system.
Direct Torque Control for Double Star Induction Motor
LEKHCHINE, SALIMA; BAHI, TAHAR; Soufi, Youcef
2016-01-01
This paper describes a direct torque control (DTC) of dual star induction motor (DSIM). This machine possesses several advantages over conventional three-phase machine and is also known as the six-phase induction machine. The research has been underway for the last two decades to investigate the various issues related to the use of six-phase machine as a potential alternative to the conventional three-phase machine. Though six-phase machines have existed for some time, in the literature very ...
Matrix converter controlled with the direct transfer function approach
Rodriguez, J.; Silva, E.; Blaabjerg, Frede
2005-01-01
Power electronics is an emerging technology. New power circuits are invented and have to be introduced into the power electronics curriculum. One of the interesting new circuits is the matrix converter (MC), and this paper analyses its working principles. A simple model is proposed to represent...... the power circuit, including the input filter. The power semiconductors are modelled as ideal bidirectional switches and the MC is controlled using a direct transfer function approach. The modulation strategy of the converter is explained in a complete and clear form. The commutation problem of two switches...
Some aspects of numerical simulation of control valves for steam turbines
Matas Richard
2012-04-01
Full Text Available The contribution deals with the numerical simulation of air and steam flow through the model of control valve for steam turbines. Numerical simulations were compared with experimental measurements for the award of the same boundary conditions. Valve characteristics have been computed for individual travel heights and pressure ratios of two variants of seat inflow angle (90° and 60°. Some other aspects are discussed in the article - comparison of the axysymmetric and 3D modelling, influence of the computational domain size, comparison of characteristics for two flow media, experimental model of the valve etc. The mentioned results are important for engineering simulations and also for design of the control valves for steam turbines of the large output.
NUMERICAL SIMULATION OF ICE CONTROL EFFECT OF SOLAR ENERGY ON TIBETAN CHANNELS
AN Rui-dong; CHEN Ming-qian; LI Ran; Banjiuciren; SHI Yun-qiang
2007-01-01
With the Tanghe Diversion Channel in Tibet as an example, the theoretical study on the ice control effect of the solar sacks was conducted based on the previous study. The numerical simulation method was adopted and a one-dimensional numerical model for ice crystal in diversion channels in high-altitude cold regions was developed in this article. The heat transfer through the air-water interface and the mass transfer between ice and water were considered in the model. The model was validated by the field observation data on the diversion channel of the Tanghe Hydropower Station. The results show that the ice control effect of the solar sacks is obvious in the channel with large mass flow rate in the high-altitude cold regions.
Park, Hee Su; Sharma, Aditya
2016-12-01
We calculate the operation wavelength range of polarization controllers based on rotating wave plates such as paddle-type optical fiber devices. The coverages over arbitrary polarization conversion or arbitrary birefringence compensation are numerically estimated. The results present the acceptable phase retardation range of polarization controllers composed of two quarter-wave plates or a quarter-half-quarter-wave plate combination, and thereby determines the operation wavelength range of a given design. We further prove that a quarter-quarter-half-wave-plate combination is also an arbitrary birefringence compensator as well as a conventional quarter-half-quarter-wave-plate combination, and show that the two configurations have the identical range of acceptable phase retardance within the uncertainty of our numerical method.
Direct digital simulation of power semiconductor-controlled electrical machines
Bahnassy, H. M.
1981-06-01
Generalized computer programming techniques for simulating power semiconductor-controlled electric machines in coil-variable representation are presented. These techniques are developed primarily for implementation in large scale general purpose computer-aided design and analysis (CADA) circuit programs. To demonstrate the validity of the developed techniques, a coil-variable model of a brushless synchronous generator with an ac exciter and rotating rectifiers was constructed. The performance of the control system (thyristor voltage regulator) is represented by a transfer function block diagram model. The CADA circuit program used is the recently developed SUPER SCEPTRE program. The model is validated using the design data and test results of a 60 kVA brushless generator. Numerous computer simulation cases are presented including the steady state and transient conditions. Brushless generator performance under diode failure faults (opened-diode, shorted-diode) is simulated. The effects of the external faults, at the main generator terminals, on the main generator, as well as its excitation system currents, are simulated.
Taib, Nabil; Francois, Bruno
2010-01-01
A few papers have been interested by the fixed switching frequency direct torque control fed by direct matrix converters, where we can find just the use of direct torque controlled space vector modulated method. In this present paper, we present an improved method used for a fixed switching frequency direct torque control (DTC) using a direct matrix converter (DMC). This method is characterized by a simple structure, a fixed switching frequency which causes minimal torque ripple and a unity input power factor. Using this strategy, we combine the direct matrix converters advantages with those of direct torque control (DTC) schemes. The used technique for constant frequency is combined with the input current space vector to create the switching table of direct matrix converter (DMC). Simulation results clearly demonstrate a better dynamic and steady state performances of the proposed method.
Scalability of Parallel Spatial Direct Numerical Simulations on Intel Hypercube and IBM SP1 and SP2
Joslin, Ronald D.; Hanebutte, Ulf R.; Zubair, Mohammad
1995-01-01
The implementation and performance of a parallel spatial direct numerical simulation (PSDNS) approach on the Intel iPSC/860 hypercube and IBM SP1 and SP2 parallel computers is documented. Spatially evolving disturbances associated with the laminar-to-turbulent transition in boundary-layer flows are computed with the PSDNS code. The feasibility of using the PSDNS to perform transition studies on these computers is examined. The results indicate that PSDNS approach can effectively be parallelized on a distributed-memory parallel machine by remapping the distributed data structure during the course of the calculation. Scalability information is provided to estimate computational costs to match the actual costs relative to changes in the number of grid points. By increasing the number of processors, slower than linear speedups are achieved with optimized (machine-dependent library) routines. This slower than linear speedup results because the computational cost is dominated by FFT routine, which yields less than ideal speedups. By using appropriate compile options and optimized library routines on the SP1, the serial code achieves 52-56 M ops on a single node of the SP1 (45 percent of theoretical peak performance). The actual performance of the PSDNS code on the SP1 is evaluated with a "real world" simulation that consists of 1.7 million grid points. One time step of this simulation is calculated on eight nodes of the SP1 in the same time as required by a Cray Y/MP supercomputer. For the same simulation, 32-nodes of the SP1 and SP2 are required to reach the performance of a Cray C-90. A 32 node SP1 (SP2) configuration is 2.9 (4.6) times faster than a Cray Y/MP for this simulation, while the hypercube is roughly 2 times slower than the Y/MP for this application. KEY WORDS: Spatial direct numerical simulations; incompressible viscous flows; spectral methods; finite differences; parallel computing.
Polarization controlled directional excitation of Bloch surface waves (Conference Presentation)
Kovalevich, Tatiana; Boyer, Philippe; Bernal, Maria-Pilar; Kim, Myun-Sik; Herzig, Hans Peter; Grosjean, Thierry
2016-09-01
Bloch surface waves (BSWs) are electromagnetic surface waves which can be excited at the interface between periodic dielectric multilayer and a surrounding medium. In comparison with surface plasmon polaritons these surface states perform high quality factor due to low loss characteristics of dielectric materials and can be exited both by TE and TM polarized light. A platform consisting of periodic stacks of alternative SiO2 and Si3N4 layers is designed and fabricated to work at the wavelength of 1.55 µm. The platform has an application in sensing and in integrated optics domain. A standard way of BSW excitation is coupling via Kretschmann configuration, but in this work we investigate a grating coupling of BSWs. Grating parameters are analytically and numerically optimized by RCWA and FDTD methods in order to obtain the best coupling conditions. The light is launched orthogonally to the surface of the photonic crystal and the grating. Due to a special grating configuration we demonstrate directionality of the BSW propagation depending on polarization of the incident light. The structure was experimentally realized on the surface of the photonic crystal by FIB milling. Experimental results are in a good agreement with a theory. The investigated configuration can be successfully used as a BSW launcher in on-chip all-optical integrated systems and work as a surface wave switch or modulator.
Direct Self-Repairing Control for Quadrotor Helicopter Attitude Systems
Huiliao Yang
2014-01-01
Full Text Available A quadrotor helicopter with uncertain actuator faults, such as loss of effectiveness and lock-in-place, is studied in this paper. An adaptive fuzzy sliding mode controller based on direct self-repairing control is designed for such nonlinear system to track the desired output signal, when any actuator of this quadrotor helicopter is loss of effectiveness or stuck at some place. Moreover, using the Lyapunov stability theory, the stability of the whole system and the convergence of the tracking error can be guaranteed. Finally, the availability of the proposed method is verified by simulation on 3-DOF hover to ensure that the system performance under faulty conditions can be quickly recovered to its normal level. And this proposed method is also proved to be better than that of LQR through simulation.
Controlled Levitation of Colloids through Direct Current Electric Fields.
Silvera Batista, Carlos A; Rezvantalab, Hossein; Larson, Ronald G; Solomon, Michael J
2017-07-07
We report the controlled levitation of surface-modified colloids in direct current (dc) electric fields at distances as far as 75 μm from an electrode surface. Instead of experiencing electrophoretic deposition, colloids modified through metallic deposition or the covalent bonding of poly(ethylene glycol) (PEG) undergo migration and focusing that results in levitation at these large distances. The levitation is a sensitive function of the surface chemistry and magnitude of the field, thus providing the means to achieve control over the levitation height. Experiments with particles of different surface charge show that levitation occurs only when the absolute zeta potential is below a threshold value. An electrodiffusiophoretic mechanism is proposed to explain the observed large-scale levitation.
Direct metal writing: Controlling the rheology through microstructure
Chen, Wen; Thornley, Luke; Coe, Hannah G.; Tonneslan, Samuel J.; Vericella, John J.; Zhu, Cheng; Duoss, Eric B.; Hunt, Ryan M.; Wight, Michael J.; Apelian, Diran; Pascall, Andrew J.; Kuntz, Joshua D.; Spadaccini, Christopher M.
2017-02-01
Most metal additive manufacturing approaches are based on powder-bed melting techniques such as laser selective melting or electron beam melting, which often yield uncontrolled microstructures with defects (e.g., pores or microcracks) and residual stresses. Here, we introduce a proof-of-concept prototype of a 3D metal freeform fabrication process by direct writing of metallic alloys in the semi-solid regime. This process is achieved through controlling the particular microstructure and the rheological behavior of semi-solid alloy slurries, which demonstrate a well suited viscosity and a shear thinning property to retain the shape upon printing. The ability to control the microstructure through this method yields a flexible manufacturing route to fabricating 3D metal parts with full density and complex geometries.
STATOR FLUX OPTIMIZATION ON DIRECT TORQUE CONTROL WITH FUZZY LOGIC
Fatih Korkmaz
2012-07-01
Full Text Available The Direct Torque Control (DTC is well known as an effective control technique for high performance drives in a wide variety of industrial applications and conventional DTC technique uses two constant reference value: torque and stator flux. In this paper, fuzzy logic based stator flux optimization technique for DTC drives that has been proposed. The proposed fuzzy logic based stator flux optimizer self-regulates the stator flux reference using induction motor load situation without need of any motor parameters. Simulation studies have been carried out with Matlab/Simulink to compare the proposed system behaviors at vary load conditions. Simulation results show that the performance of the proposed DTC technique has been improved and especially at low-load conditions torque ripple are greatly reduced with respect to the conventional DTC.
System for controllable magnetic measurement with direct field determination
Stupakov, O.
2012-02-01
This work describes a specially designed setup for magnetic hysteresis and Barkhausen noise measurements. The setup combines two main elements: an improved fast algorithm to control the waveform of magnetic induction and simultaneous direct determination of the magnetic field. The digital feedback algorithm uses only the previous measurement cycle to correct the magnetization voltage without any additional correlation parameter; it usually converges after several tens of cycles. The magnetic field is measured at the sample surface using a vertically mounted array of sensitive Hall sensors. Linear extrapolation of the tangential field profile to the sample surface determines the true waveform of the magnetic field. This unique combination of physically based control for both parameters of the magnetization process provides stable and reliable results, which are independent of a specified experimental configuration. This is illustrated for the industrially attractive measurements of non-oriented electrical steels with a 50 Hz sinusoidal induction waveform.
Diniş, C. M.; Popa, G. N.; Iagăr, A.
2016-02-01
The paper is an analysis of two-positions (hysteresis) regulators, self-tuned PID controller and PID controller for temperature control used for indirect heat resistance furnaces. For PID controller was used three methods of tuning: Ziegler-Nichols step response model, Cohen-Coon tuning rules and Ziegler-Nichols tuning rules. In experiments it used an electric furnace with indirect heating with active power of resistance of 1 kW/230V AC and a numerical temperature regulator AT-503 type (ANLY). It got a much better temperature control when using the Cohen-Coon tuning rules method than those of Ziegler-Nichols step response method and Ziegler-Nichols tuning rules method.
Olga L. Quintero
Full Text Available Biotechnological processes represent a challenge in the control field, due to their high nonlinearity. In particular, continuous alcoholic fermentation from Zymomonas mobilis (Z.m presents a significant challenge. This bioprocess has high ethanol performance, but it exhibits an oscillatory behavior in process variables due to the influence of inhibition dynamics (rate of ethanol concentration over biomass, substrate, and product concentrations. In this work a new solution for control of biotechnological variables in the fermentation process is proposed, based on numerical methods and linear algebra. In addition, an improvement to a previously reported state estimator, based on particle filtering techniques, is used in the control loop. The feasibility estimator and its performance are demonstrated in the proposed control loop. This methodology makes it possible to develop a controller design through the use of dynamic analysis with a tested biomass estimator in Z.m and without the use of complex calculations.
Direct Torque Control of IPMSM to Improve Torque ripple and Efficiency based on Fuzzy Controller
B. Mirzaeian Dehkordi
2012-09-01
Full Text Available In this paper, a stator-flux-reference frame control method is proposed in order to control the speed and torque of an Interior Permanent Magnet Synchronous Machine (IPMSM in different loads condition. Direct Torque Control method (DTC based on Space Vector Modulation (SVM is used for control of IPMSM. In the proposed control method, conventional PI controller is used for controlling the stator flux, and torque of the motor. Also, a fuzzy controller is considered to improve the dynamic performance of DTC technique for speed control. In comparison to the conventional reference flux controller methods, this method, in addition, improves the torque profile of the motor drive. Moreover, it reduces copper losses. Simulation results for a 240V, 120A, 2500rpm, IPMSM confirm the appropriate performances of the method.
Construction and direct electrochemistry of orientation controlled laccase electrode.
Li, Ying; Zhang, Jiwei; Huang, Xirong; Wang, Tianhong
2014-03-28
A laccase has multiple redox centres. Chemisorption of laccases on a gold electrode through a polypeptide tag introduced at the protein surface provides an isotropic orientation of laccases on the Au surface, which allows the orientation dependent study of the direct electrochemistry of laccase. In this paper, using genetic engineering technology, two forms of recombinant laccase which has Cys-6×His tag at the N or C terminus were generated. Via the Au-S linkage, the recombinant laccase was assembled orientationally on gold electrode. A direct electron transfer and a bioelectrocatalytic activity toward oxygen reduction were observed on the two orientation controlled laccase electrodes, but their electrochemical behaviors were found to be quite different. The orientation of laccase on the gold electrode affects both the electron transfer pathway and the electron transfer efficiency of O2 reduction. The present study is helpful not only to the in-depth understanding of the direct electrochemistry of laccase, but also to the development of laccase-based biofuel cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Zelechowski, M.; Kazmierkowski, M.P.; Blaabjerg, Frede
2005-01-01
In this paper two different methods of PI controllers for direct torque controlled-space vector modulated induction motor drives have been studied. The first one is simple method based only on symmetric optimum criterion. The second approach takes into account the full model of induction motor in...
Novel Design for Direct Torque Control System of PMSM
HUANG Xu-chao
2013-04-01
Full Text Available Nowadays, with the rapid development of high-performance servo system, The conventional permanent magnet synchronous motor (PMSM Direct Torque Control (DTC system has large torque ripple in low speed which cannot be well adapted to today`s development. The main reason is because the number of voltage vectors provided by the two-level inverter is only six and the relationship between voltage vector and torque is not clear[1-5.10-12]. In this paper, the basic concept of direct torque control of permanent magnet synchronous motor is investigated in order to emphasize the effects produced by a given voltage vector on stator and torque variations in this paper. Modified the voltage sector switching table, a novel DTC scheme for the permanent magnet synchronous motor is proposed which is using a novel three-level inverter. An improvement of the drive performance can be obtained by using the novel DTC scheme. The simulation results showed that the scheme could reduce the torque ripple in low speed and improved the stability of the motor under the condition of keeping the system dynamic performance.
Numerical solution of the controlled Duffing oscillator by semi-orthogonal spline wavelets
Lakestani, M [Department of Applied Mathematics, Amirkabir University of Technology, Tehran, Iran (Iran, Islamic Republic of); Razzaghi, M [Department of Applied Mathematics, Amirkabir University of Technology, Tehran, Iran (Iran, Islamic Republic of); Dehghan, M [Department of Applied Mathematics, Amirkabir University of Technology, Tehran, Iran (Iran, Islamic Republic of)
2006-09-15
This paper presents a numerical method for solving the controlled Duffing oscillator. The method can be extended to nonlinear calculus of variations and optimal control problems. The method is based upon compactly supported linear semi-orthogonal B-spline wavelets. The differential and integral expressions which arise in the system dynamics, the performance index and the boundary conditions are converted into some algebraic equations which can be solved for the unknown coefficients. Illustrative examples are included to demonstrate the validity and applicability of the technique.
Tang, Xiaojun
2016-04-01
The main purpose of this work is to provide multiple-interval integral Gegenbauer pseudospectral methods for solving optimal control problems. The latest developed single-interval integral Gauss/(flipped Radau) pseudospectral methods can be viewed as special cases of the proposed methods. We present an exact and efficient approach to compute the mesh pseudospectral integration matrices for the Gegenbauer-Gauss and flipped Gegenbauer-Gauss-Radau points. Numerical results on benchmark optimal control problems confirm the ability of the proposed methods to obtain highly accurate solutions.
Minimizing Segregation during the Controlled Directional Solidification of Dendric Alloys
Grugel, Richard N.; Fedoseyev, Alex; Kim, Shin-Woo
2003-01-01
Gravity-driven convection induced in the liquid by density gradients of temperature or composition disrupts uniform dendritic growth during controlled directional solidification and promotes severe macrosegregation. The solute-rich region about the dendrite tip appears to play a pivotal role in channel initiation. Allen and Hunt referred to this region as an "initial transient" or dynamic region constituting steep concentration gradients. Experimental investigation also point to the role the tip region plays in developing microstructure. Hellawell and co-workers showed that flow-through dendritic channels could be effectively disrupted, and segregation minimized, during the gradient freezing of bulk castings by rotating the melt through a slight angle with respect to Earth's gravity vector. Adapting this principle to controlled directional solidification, it has been shown" that segregation in dendritic alloys can be minimized, and properties improved, by processing the sample near horizontal in conjunction with a slow axial rotation of the crucible. It is postulated that the observed microstructural uniformity arises by maintaining the developing solute field about the dendrite tip. Solute rejected during vertical directional solidification will rise or sink parallel to the primary dendrite arms during axial rotation setting the stage for accumulation, instabilities, and segregation. In contrast, during horizontal growth, the rejected solute will sink or rise perpendicular to the primary dendrite. Now, in the presence of a slight axial rotation, solute that was initially sinking (or rising) will find itself above (or below) its parent dendrite, i.e., still about the tip region. The following is intended to experimentally demonstrate the viability of this concept in coordination with a model that gives predictive insight regarding solute distribution about growing dendrites. Alloys based on the lead-tin eutectic system were used in this study. The system is well
Grosveld, Ferdinand W.
1996-01-01
The active acoustic and structural noise control characteristics of a double wall cylinder with and without ring stiffeners were numerically evaluated. An exterior monopole was assumed to acoustically excite the outside of the double wall cylinder at an acoustic cavity resonance frequency. Structural modal vibration properties of the inner and outer shells were analyzed by post-processing the results from a finite element analysis. A boundary element approach was used to calculate the acoustic cavity response and the coupled structural-acoustic interaction. In the frequency region of interest, below 500 Hz, all structural resonant modes were found to be acoustically slow and the nonresonant modal response to be dominant. Active sound transmission control was achieved by control forces applied to the inner or outer shell, or acoustic control monopoles placed just outside the inner or outer shell. A least mean square technique was used to minimize the interior sound pressures at the nodes of a data recovery mesh. Results showed that single acoustic control monopoles placed just outside the inner or outer shells resulted in better sound transmission control than six distributed point forces applied to either one of the shells. Adding stiffeners to the double wall structure constrained the modal vibrations of the shells, making the double wall stiffer with associated higher modal frequencies. Active noise control obtained for the stiffened double wall configurations was less than for the unstiffened cylinder. In all cases, the acoustic control monopoles controlled the sound transmission into the interior better than the structural control forces.
Direct versus Facility Centric Load Control for Automated Demand Response
Koch, Ed; Piette, Mary Ann
2009-11-06
Direct load control (DLC) refers to the scenario where third party entities outside the home or facility are responsible for deciding how and when specific customer loads will be controlled in response to Demand Response (DR) events on the electric grid. Examples of third parties responsible for performing DLC may be Utilities, Independent System Operators (ISO), Aggregators, or third party control companies. DLC can be contrasted with facility centric load control (FCLC) where the decisions for how loads are controlled are made entirely within the facility or enterprise control systems. In FCLC the facility owner has more freedom of choice in how to respond to DR events on the grid. Both approaches are in use today in automation of DR and both will continue to be used in future market segments including industrial, commercial and residential facilities. This paper will present a framework which can be used to differentiate between DLC and FCLC based upon where decisions are made on how specific loads are controlled in response to DR events. This differentiation is then used to compare and contrast the differences between DLC and FCLC to identify the impact each has on:(1)Utility/ISO and third party systems for managing demand response, (2)Facility systems for implementing load control, (3)Communications networks for interacting with the facility and (4)Facility operators and managers. Finally a survey of some of the existing DR related specifications and communications standards is given and their applicability to DLC or FCLC. In general FCLC adds more cost and responsibilities to the facilities whereas DLC represents higher costs and complexity for the Utility/ISO. This difference is primarily due to where the DR Logic is implemented and the consequences that creates. DLC may be more certain than FCLC because it is more predictable - however as more loads have the capability to respond to DR signals, people may prefer to have their own control of end-use loads
Yu Ji
2016-01-01
Full Text Available The present article analyzes the dissipation characteristics of the direct contact condensation (DCC phenomenon that occurs when steam is injected into a water tank at a subsonic speed using a new modeling approach for the entropy generation over the calculation domain. The developed entropy assessment model is based on the local equilibrium hypothesis of non-equilibrium thermodynamics. The fluid flow and heat transfer processes are investigated numerically. To describe the condensation and evaporation process at the vapor-liquid interface, a phase change model originated from the kinetic theory of gas is implemented with the mixture model for multiphase flow in the computational fluid dynamics (CFD code ANSYS-FLUENT. The CFD predictions agree well with the published works, which indicates the phase change model combined with the mixture model is a promising way to simulate the DCC phenomenon. In addition, three clear stages as initial stage, developing stage and oscillatory stage are discriminated from both the thermal-hydraulic results and the entropy generation information. During different stages, different proportion of the entropy generation rate owing to heat transfer, viscous direct dissipation, turbulent dissipation and inner phase change in total entropy generation rate is estimated, which is favorable to deeper understanding the irreversibility of DCC phenomenon, designing and optimizing the equipment involved in the process.
Wu, Yu-liang; Jiang, Ze-yi; Zhang, Xin-xin; Wang, Peng; She, Xue-feng
2013-07-01
A mathematical model was established to describe the direct reduction of pellets in a rotary hearth furnace (RHF). In the model, heat transfer, mass transfer, and gas-solid chemical reactions were taken into account. The behaviors of iron metallization and dezincification were analyzed by the numerical method, which was validated by experimental data of the direct reduction of pellets in a Si-Mo furnace. The simulation results show that if the production targets of iron metallization and dezincification are up to 80% and 90%, respectively, the furnace temperature for high-temperature sections must be set higher than 1300°C. Moreover, an undersupply of secondary air by 20% will lead to a decline in iron metallization rate of discharged pellets by 10% and a decrease in dezincing rate by 13%. In addition, if the residence time of pellets in the furnace is over 20 min, its further extension will hardly lead to an obvious increase in production indexes under the same furnace temperature curve.
Pecha, M. Brennan; Garcia-Perez, Manuel; Foust, Thomas D.; Ciesielski, Peter N.
2017-01-03
Direct numerical simulation of convective heat transfer from hot gas to isolated biomass particle models with realistic morphology and explicit microstructure was performed over a range of conditions with laminar flow of hot gas (500 degrees C). Steady-state results demonstrated that convective interfacial heat transfer is dependent on the wood species. The computed heat transfer coefficients were shown to vary between the pine and aspen models by nearly 20%. These differences are attributed to the species-specific variations in the exterior surface morphology of the biomass particles. We also quantify variations in heat transfer experienced by the particle when positioned in different orientations with respect to the direction of fluid flow. These results are compared to previously reported heat transfer coefficient correlations in the range of 0.1 < Pr < 1.5 and 10 < Re < 500. Comparison of these simulation results to correlations commonly used in the literature (Gunn, Ranz-Marshall, and Bird-Stewart-Lightfoot) shows that the Ranz-Marshall (sphere) correlation gave the closest h values to our steady-state simulations for both wood species, though no existing correlation was within 20% of both species at all conditions studied. In general, this work exemplifies the fact that all biomass feedstocks are not created equal, and that their species-specific characteristics must be appreciated in order to facilitate accurate simulations of conversion processes.
Hockett, P; Lux, C; Baumert, T
2015-01-01
The feasibility of complete photoionization experiments, in which the full set of photoionization matrix elements are determined, using multiphoton ionization schemes with polarization-shaped pulses has recently been demonstrated [Hockett et. al., Phys. Rev. Lett. 112, 223001 (2014)]. Here we extend on our previous work to discuss further details of the numerics and analysis methodology utilised, and compare the results directly to new tomographic photoelectron measurements, which provide a more sensitive test of the validity of the results. In so doing we discuss in detail the physics of the photoionziation process, and suggest various avenues and prospects for this coherent multiplexing methodology.
Direct adaptive control for nonlinear uncertain system based on control Lyapunov function method
Chen Yimei; Han Zhengzhi; Tang Houjun
2006-01-01
The problem of adaptive stabilization of a class of multi-input nonlinear systems with unknown parameters both in the state vector-field and the input vector-field has been considered. By employing the control Lyapunov function method, a direct adaptive controller is designed to complete the global adaptive stability of the uncertain system. At the same time, the controller is also verified to possess the optimality. Example and simulations are provided to illustrate the effectiveness of the proposed method.
Deformation Control of Deep Excavation Pit and Numerical Simulation with Finite Element Method
无
2002-01-01
The authors firstly introduce deformation control of deep excavation pit in detail, and then put forward new conceptions such as: effective coefficient of excavation pit, effective area, ineffective area and critical line, and also put forward the referential criteria of deformation control. The System of Optimization Design with Deformation Control of Deep Excavation Pit and Numerical Simulation with Finite Element Method (SDCDEFEM) is also briefly introduced. Factors influencing deformation of excavation pit are analyzed by the system. The measured and simulated data of maximum deformations (settlement, displacement and upheaval) and their positions are analyzed and discussed. The statistic formula estimating maximum deformations and their positions was gained, and economical-effective measures of deformation control were brought forward.